linux/drivers/infiniband/core/umem_odp.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2014 Mellanox Technologies. All rights reserved.
   3 *
   4 * This software is available to you under a choice of one of two
   5 * licenses.  You may choose to be licensed under the terms of the GNU
   6 * General Public License (GPL) Version 2, available from the file
   7 * COPYING in the main directory of this source tree, or the
   8 * OpenIB.org BSD license below:
   9 *
  10 *     Redistribution and use in source and binary forms, with or
  11 *     without modification, are permitted provided that the following
  12 *     conditions are met:
  13 *
  14 *      - Redistributions of source code must retain the above
  15 *        copyright notice, this list of conditions and the following
  16 *        disclaimer.
  17 *
  18 *      - Redistributions in binary form must reproduce the above
  19 *        copyright notice, this list of conditions and the following
  20 *        disclaimer in the documentation and/or other materials
  21 *        provided with the distribution.
  22 *
  23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30 * SOFTWARE.
  31 */
  32
  33#include <linux/types.h>
  34#include <linux/sched.h>
  35#include <linux/sched/mm.h>
  36#include <linux/sched/task.h>
  37#include <linux/pid.h>
  38#include <linux/slab.h>
  39#include <linux/export.h>
  40#include <linux/vmalloc.h>
  41#include <linux/hugetlb.h>
  42#include <linux/interval_tree.h>
  43#include <linux/hmm.h>
  44#include <linux/pagemap.h>
  45
  46#include <rdma/ib_verbs.h>
  47#include <rdma/ib_umem.h>
  48#include <rdma/ib_umem_odp.h>
  49
  50#include "uverbs.h"
  51
  52static inline int ib_init_umem_odp(struct ib_umem_odp *umem_odp,
  53                                   const struct mmu_interval_notifier_ops *ops)
  54{
  55        int ret;
  56
  57        umem_odp->umem.is_odp = 1;
  58        mutex_init(&umem_odp->umem_mutex);
  59
  60        if (!umem_odp->is_implicit_odp) {
  61                size_t page_size = 1UL << umem_odp->page_shift;
  62                unsigned long start;
  63                unsigned long end;
  64                size_t ndmas, npfns;
  65
  66                start = ALIGN_DOWN(umem_odp->umem.address, page_size);
  67                if (check_add_overflow(umem_odp->umem.address,
  68                                       (unsigned long)umem_odp->umem.length,
  69                                       &end))
  70                        return -EOVERFLOW;
  71                end = ALIGN(end, page_size);
  72                if (unlikely(end < page_size))
  73                        return -EOVERFLOW;
  74
  75                ndmas = (end - start) >> umem_odp->page_shift;
  76                if (!ndmas)
  77                        return -EINVAL;
  78
  79                npfns = (end - start) >> PAGE_SHIFT;
  80                umem_odp->pfn_list = kvcalloc(
  81                        npfns, sizeof(*umem_odp->pfn_list), GFP_KERNEL);
  82                if (!umem_odp->pfn_list)
  83                        return -ENOMEM;
  84
  85                umem_odp->dma_list = kvcalloc(
  86                        ndmas, sizeof(*umem_odp->dma_list), GFP_KERNEL);
  87                if (!umem_odp->dma_list) {
  88                        ret = -ENOMEM;
  89                        goto out_pfn_list;
  90                }
  91
  92                ret = mmu_interval_notifier_insert(&umem_odp->notifier,
  93                                                   umem_odp->umem.owning_mm,
  94                                                   start, end - start, ops);
  95                if (ret)
  96                        goto out_dma_list;
  97        }
  98
  99        return 0;
 100
 101out_dma_list:
 102        kvfree(umem_odp->dma_list);
 103out_pfn_list:
 104        kvfree(umem_odp->pfn_list);
 105        return ret;
 106}
 107
 108/**
 109 * ib_umem_odp_alloc_implicit - Allocate a parent implicit ODP umem
 110 *
 111 * Implicit ODP umems do not have a VA range and do not have any page lists.
 112 * They exist only to hold the per_mm reference to help the driver create
 113 * children umems.
 114 *
 115 * @device: IB device to create UMEM
 116 * @access: ib_reg_mr access flags
 117 */
 118struct ib_umem_odp *ib_umem_odp_alloc_implicit(struct ib_device *device,
 119                                               int access)
 120{
 121        struct ib_umem *umem;
 122        struct ib_umem_odp *umem_odp;
 123        int ret;
 124
 125        if (access & IB_ACCESS_HUGETLB)
 126                return ERR_PTR(-EINVAL);
 127
 128        umem_odp = kzalloc(sizeof(*umem_odp), GFP_KERNEL);
 129        if (!umem_odp)
 130                return ERR_PTR(-ENOMEM);
 131        umem = &umem_odp->umem;
 132        umem->ibdev = device;
 133        umem->writable = ib_access_writable(access);
 134        umem->owning_mm = current->mm;
 135        umem_odp->is_implicit_odp = 1;
 136        umem_odp->page_shift = PAGE_SHIFT;
 137
 138        umem_odp->tgid = get_task_pid(current->group_leader, PIDTYPE_PID);
 139        ret = ib_init_umem_odp(umem_odp, NULL);
 140        if (ret) {
 141                put_pid(umem_odp->tgid);
 142                kfree(umem_odp);
 143                return ERR_PTR(ret);
 144        }
 145        return umem_odp;
 146}
 147EXPORT_SYMBOL(ib_umem_odp_alloc_implicit);
 148
 149/**
 150 * ib_umem_odp_alloc_child - Allocate a child ODP umem under an implicit
 151 *                           parent ODP umem
 152 *
 153 * @root: The parent umem enclosing the child. This must be allocated using
 154 *        ib_alloc_implicit_odp_umem()
 155 * @addr: The starting userspace VA
 156 * @size: The length of the userspace VA
 157 * @ops: MMU interval ops, currently only @invalidate
 158 */
 159struct ib_umem_odp *
 160ib_umem_odp_alloc_child(struct ib_umem_odp *root, unsigned long addr,
 161                        size_t size,
 162                        const struct mmu_interval_notifier_ops *ops)
 163{
 164        /*
 165         * Caller must ensure that root cannot be freed during the call to
 166         * ib_alloc_odp_umem.
 167         */
 168        struct ib_umem_odp *odp_data;
 169        struct ib_umem *umem;
 170        int ret;
 171
 172        if (WARN_ON(!root->is_implicit_odp))
 173                return ERR_PTR(-EINVAL);
 174
 175        odp_data = kzalloc(sizeof(*odp_data), GFP_KERNEL);
 176        if (!odp_data)
 177                return ERR_PTR(-ENOMEM);
 178        umem = &odp_data->umem;
 179        umem->ibdev = root->umem.ibdev;
 180        umem->length     = size;
 181        umem->address    = addr;
 182        umem->writable   = root->umem.writable;
 183        umem->owning_mm  = root->umem.owning_mm;
 184        odp_data->page_shift = PAGE_SHIFT;
 185        odp_data->notifier.ops = ops;
 186
 187        /*
 188         * A mmget must be held when registering a notifier, the owming_mm only
 189         * has a mm_grab at this point.
 190         */
 191        if (!mmget_not_zero(umem->owning_mm)) {
 192                ret = -EFAULT;
 193                goto out_free;
 194        }
 195
 196        odp_data->tgid = get_pid(root->tgid);
 197        ret = ib_init_umem_odp(odp_data, ops);
 198        if (ret)
 199                goto out_tgid;
 200        mmput(umem->owning_mm);
 201        return odp_data;
 202
 203out_tgid:
 204        put_pid(odp_data->tgid);
 205        mmput(umem->owning_mm);
 206out_free:
 207        kfree(odp_data);
 208        return ERR_PTR(ret);
 209}
 210EXPORT_SYMBOL(ib_umem_odp_alloc_child);
 211
 212/**
 213 * ib_umem_odp_get - Create a umem_odp for a userspace va
 214 *
 215 * @device: IB device struct to get UMEM
 216 * @addr: userspace virtual address to start at
 217 * @size: length of region to pin
 218 * @access: IB_ACCESS_xxx flags for memory being pinned
 219 * @ops: MMU interval ops, currently only @invalidate
 220 *
 221 * The driver should use when the access flags indicate ODP memory. It avoids
 222 * pinning, instead, stores the mm for future page fault handling in
 223 * conjunction with MMU notifiers.
 224 */
 225struct ib_umem_odp *ib_umem_odp_get(struct ib_device *device,
 226                                    unsigned long addr, size_t size, int access,
 227                                    const struct mmu_interval_notifier_ops *ops)
 228{
 229        struct ib_umem_odp *umem_odp;
 230        struct mm_struct *mm;
 231        int ret;
 232
 233        if (WARN_ON_ONCE(!(access & IB_ACCESS_ON_DEMAND)))
 234                return ERR_PTR(-EINVAL);
 235
 236        umem_odp = kzalloc(sizeof(struct ib_umem_odp), GFP_KERNEL);
 237        if (!umem_odp)
 238                return ERR_PTR(-ENOMEM);
 239
 240        umem_odp->umem.ibdev = device;
 241        umem_odp->umem.length = size;
 242        umem_odp->umem.address = addr;
 243        umem_odp->umem.writable = ib_access_writable(access);
 244        umem_odp->umem.owning_mm = mm = current->mm;
 245        umem_odp->notifier.ops = ops;
 246
 247        umem_odp->page_shift = PAGE_SHIFT;
 248#ifdef CONFIG_HUGETLB_PAGE
 249        if (access & IB_ACCESS_HUGETLB)
 250                umem_odp->page_shift = HPAGE_SHIFT;
 251#endif
 252
 253        umem_odp->tgid = get_task_pid(current->group_leader, PIDTYPE_PID);
 254        ret = ib_init_umem_odp(umem_odp, ops);
 255        if (ret)
 256                goto err_put_pid;
 257        return umem_odp;
 258
 259err_put_pid:
 260        put_pid(umem_odp->tgid);
 261        kfree(umem_odp);
 262        return ERR_PTR(ret);
 263}
 264EXPORT_SYMBOL(ib_umem_odp_get);
 265
 266void ib_umem_odp_release(struct ib_umem_odp *umem_odp)
 267{
 268        /*
 269         * Ensure that no more pages are mapped in the umem.
 270         *
 271         * It is the driver's responsibility to ensure, before calling us,
 272         * that the hardware will not attempt to access the MR any more.
 273         */
 274        if (!umem_odp->is_implicit_odp) {
 275                mutex_lock(&umem_odp->umem_mutex);
 276                ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem_odp),
 277                                            ib_umem_end(umem_odp));
 278                mutex_unlock(&umem_odp->umem_mutex);
 279                mmu_interval_notifier_remove(&umem_odp->notifier);
 280                kvfree(umem_odp->dma_list);
 281                kvfree(umem_odp->pfn_list);
 282        }
 283        put_pid(umem_odp->tgid);
 284        kfree(umem_odp);
 285}
 286EXPORT_SYMBOL(ib_umem_odp_release);
 287
 288/*
 289 * Map for DMA and insert a single page into the on-demand paging page tables.
 290 *
 291 * @umem: the umem to insert the page to.
 292 * @dma_index: index in the umem to add the dma to.
 293 * @page: the page struct to map and add.
 294 * @access_mask: access permissions needed for this page.
 295 * @current_seq: sequence number for synchronization with invalidations.
 296 *               the sequence number is taken from
 297 *               umem_odp->notifiers_seq.
 298 *
 299 * The function returns -EFAULT if the DMA mapping operation fails.
 300 *
 301 */
 302static int ib_umem_odp_map_dma_single_page(
 303                struct ib_umem_odp *umem_odp,
 304                unsigned int dma_index,
 305                struct page *page,
 306                u64 access_mask)
 307{
 308        struct ib_device *dev = umem_odp->umem.ibdev;
 309        dma_addr_t *dma_addr = &umem_odp->dma_list[dma_index];
 310
 311        if (*dma_addr) {
 312                /*
 313                 * If the page is already dma mapped it means it went through
 314                 * a non-invalidating trasition, like read-only to writable.
 315                 * Resync the flags.
 316                 */
 317                *dma_addr = (*dma_addr & ODP_DMA_ADDR_MASK) | access_mask;
 318                return 0;
 319        }
 320
 321        *dma_addr = ib_dma_map_page(dev, page, 0, 1 << umem_odp->page_shift,
 322                                    DMA_BIDIRECTIONAL);
 323        if (ib_dma_mapping_error(dev, *dma_addr)) {
 324                *dma_addr = 0;
 325                return -EFAULT;
 326        }
 327        umem_odp->npages++;
 328        *dma_addr |= access_mask;
 329        return 0;
 330}
 331
 332/**
 333 * ib_umem_odp_map_dma_and_lock - DMA map userspace memory in an ODP MR and lock it.
 334 *
 335 * Maps the range passed in the argument to DMA addresses.
 336 * The DMA addresses of the mapped pages is updated in umem_odp->dma_list.
 337 * Upon success the ODP MR will be locked to let caller complete its device
 338 * page table update.
 339 *
 340 * Returns the number of pages mapped in success, negative error code
 341 * for failure.
 342 * @umem_odp: the umem to map and pin
 343 * @user_virt: the address from which we need to map.
 344 * @bcnt: the minimal number of bytes to pin and map. The mapping might be
 345 *        bigger due to alignment, and may also be smaller in case of an error
 346 *        pinning or mapping a page. The actual pages mapped is returned in
 347 *        the return value.
 348 * @access_mask: bit mask of the requested access permissions for the given
 349 *               range.
 350 * @fault: is faulting required for the given range
 351 */
 352int ib_umem_odp_map_dma_and_lock(struct ib_umem_odp *umem_odp, u64 user_virt,
 353                                 u64 bcnt, u64 access_mask, bool fault)
 354                        __acquires(&umem_odp->umem_mutex)
 355{
 356        struct task_struct *owning_process  = NULL;
 357        struct mm_struct *owning_mm = umem_odp->umem.owning_mm;
 358        int pfn_index, dma_index, ret = 0, start_idx;
 359        unsigned int page_shift, hmm_order, pfn_start_idx;
 360        unsigned long num_pfns, current_seq;
 361        struct hmm_range range = {};
 362        unsigned long timeout;
 363
 364        if (access_mask == 0)
 365                return -EINVAL;
 366
 367        if (user_virt < ib_umem_start(umem_odp) ||
 368            user_virt + bcnt > ib_umem_end(umem_odp))
 369                return -EFAULT;
 370
 371        page_shift = umem_odp->page_shift;
 372
 373        /*
 374         * owning_process is allowed to be NULL, this means somehow the mm is
 375         * existing beyond the lifetime of the originating process.. Presumably
 376         * mmget_not_zero will fail in this case.
 377         */
 378        owning_process = get_pid_task(umem_odp->tgid, PIDTYPE_PID);
 379        if (!owning_process || !mmget_not_zero(owning_mm)) {
 380                ret = -EINVAL;
 381                goto out_put_task;
 382        }
 383
 384        range.notifier = &umem_odp->notifier;
 385        range.start = ALIGN_DOWN(user_virt, 1UL << page_shift);
 386        range.end = ALIGN(user_virt + bcnt, 1UL << page_shift);
 387        pfn_start_idx = (range.start - ib_umem_start(umem_odp)) >> PAGE_SHIFT;
 388        num_pfns = (range.end - range.start) >> PAGE_SHIFT;
 389        if (fault) {
 390                range.default_flags = HMM_PFN_REQ_FAULT;
 391
 392                if (access_mask & ODP_WRITE_ALLOWED_BIT)
 393                        range.default_flags |= HMM_PFN_REQ_WRITE;
 394        }
 395
 396        range.hmm_pfns = &(umem_odp->pfn_list[pfn_start_idx]);
 397        timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
 398
 399retry:
 400        current_seq = range.notifier_seq =
 401                mmu_interval_read_begin(&umem_odp->notifier);
 402
 403        mmap_read_lock(owning_mm);
 404        ret = hmm_range_fault(&range);
 405        mmap_read_unlock(owning_mm);
 406        if (unlikely(ret)) {
 407                if (ret == -EBUSY && !time_after(jiffies, timeout))
 408                        goto retry;
 409                goto out_put_mm;
 410        }
 411
 412        start_idx = (range.start - ib_umem_start(umem_odp)) >> page_shift;
 413        dma_index = start_idx;
 414
 415        mutex_lock(&umem_odp->umem_mutex);
 416        if (mmu_interval_read_retry(&umem_odp->notifier, current_seq)) {
 417                mutex_unlock(&umem_odp->umem_mutex);
 418                goto retry;
 419        }
 420
 421        for (pfn_index = 0; pfn_index < num_pfns;
 422                pfn_index += 1 << (page_shift - PAGE_SHIFT), dma_index++) {
 423
 424                if (fault) {
 425                        /*
 426                         * Since we asked for hmm_range_fault() to populate
 427                         * pages it shouldn't return an error entry on success.
 428                         */
 429                        WARN_ON(range.hmm_pfns[pfn_index] & HMM_PFN_ERROR);
 430                        WARN_ON(!(range.hmm_pfns[pfn_index] & HMM_PFN_VALID));
 431                } else {
 432                        if (!(range.hmm_pfns[pfn_index] & HMM_PFN_VALID)) {
 433                                WARN_ON(umem_odp->dma_list[dma_index]);
 434                                continue;
 435                        }
 436                        access_mask = ODP_READ_ALLOWED_BIT;
 437                        if (range.hmm_pfns[pfn_index] & HMM_PFN_WRITE)
 438                                access_mask |= ODP_WRITE_ALLOWED_BIT;
 439                }
 440
 441                hmm_order = hmm_pfn_to_map_order(range.hmm_pfns[pfn_index]);
 442                /* If a hugepage was detected and ODP wasn't set for, the umem
 443                 * page_shift will be used, the opposite case is an error.
 444                 */
 445                if (hmm_order + PAGE_SHIFT < page_shift) {
 446                        ret = -EINVAL;
 447                        ibdev_dbg(umem_odp->umem.ibdev,
 448                                  "%s: un-expected hmm_order %u, page_shift %u\n",
 449                                  __func__, hmm_order, page_shift);
 450                        break;
 451                }
 452
 453                ret = ib_umem_odp_map_dma_single_page(
 454                                umem_odp, dma_index, hmm_pfn_to_page(range.hmm_pfns[pfn_index]),
 455                                access_mask);
 456                if (ret < 0) {
 457                        ibdev_dbg(umem_odp->umem.ibdev,
 458                                  "ib_umem_odp_map_dma_single_page failed with error %d\n", ret);
 459                        break;
 460                }
 461        }
 462        /* upon sucesss lock should stay on hold for the callee */
 463        if (!ret)
 464                ret = dma_index - start_idx;
 465        else
 466                mutex_unlock(&umem_odp->umem_mutex);
 467
 468out_put_mm:
 469        mmput(owning_mm);
 470out_put_task:
 471        if (owning_process)
 472                put_task_struct(owning_process);
 473        return ret;
 474}
 475EXPORT_SYMBOL(ib_umem_odp_map_dma_and_lock);
 476
 477void ib_umem_odp_unmap_dma_pages(struct ib_umem_odp *umem_odp, u64 virt,
 478                                 u64 bound)
 479{
 480        dma_addr_t dma_addr;
 481        dma_addr_t dma;
 482        int idx;
 483        u64 addr;
 484        struct ib_device *dev = umem_odp->umem.ibdev;
 485
 486        lockdep_assert_held(&umem_odp->umem_mutex);
 487
 488        virt = max_t(u64, virt, ib_umem_start(umem_odp));
 489        bound = min_t(u64, bound, ib_umem_end(umem_odp));
 490        for (addr = virt; addr < bound; addr += BIT(umem_odp->page_shift)) {
 491                idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
 492                dma = umem_odp->dma_list[idx];
 493
 494                /* The access flags guaranteed a valid DMA address in case was NULL */
 495                if (dma) {
 496                        unsigned long pfn_idx = (addr - ib_umem_start(umem_odp)) >> PAGE_SHIFT;
 497                        struct page *page = hmm_pfn_to_page(umem_odp->pfn_list[pfn_idx]);
 498
 499                        dma_addr = dma & ODP_DMA_ADDR_MASK;
 500                        ib_dma_unmap_page(dev, dma_addr,
 501                                          BIT(umem_odp->page_shift),
 502                                          DMA_BIDIRECTIONAL);
 503                        if (dma & ODP_WRITE_ALLOWED_BIT) {
 504                                struct page *head_page = compound_head(page);
 505                                /*
 506                                 * set_page_dirty prefers being called with
 507                                 * the page lock. However, MMU notifiers are
 508                                 * called sometimes with and sometimes without
 509                                 * the lock. We rely on the umem_mutex instead
 510                                 * to prevent other mmu notifiers from
 511                                 * continuing and allowing the page mapping to
 512                                 * be removed.
 513                                 */
 514                                set_page_dirty(head_page);
 515                        }
 516                        umem_odp->dma_list[idx] = 0;
 517                        umem_odp->npages--;
 518                }
 519        }
 520}
 521EXPORT_SYMBOL(ib_umem_odp_unmap_dma_pages);
 522