linux/drivers/md/bcache/super.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * bcache setup/teardown code, and some metadata io - read a superblock and
   4 * figure out what to do with it.
   5 *
   6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
   7 * Copyright 2012 Google, Inc.
   8 */
   9
  10#include "bcache.h"
  11#include "btree.h"
  12#include "debug.h"
  13#include "extents.h"
  14#include "request.h"
  15#include "writeback.h"
  16#include "features.h"
  17
  18#include <linux/blkdev.h>
  19#include <linux/pagemap.h>
  20#include <linux/debugfs.h>
  21#include <linux/genhd.h>
  22#include <linux/idr.h>
  23#include <linux/kthread.h>
  24#include <linux/workqueue.h>
  25#include <linux/module.h>
  26#include <linux/random.h>
  27#include <linux/reboot.h>
  28#include <linux/sysfs.h>
  29
  30unsigned int bch_cutoff_writeback;
  31unsigned int bch_cutoff_writeback_sync;
  32
  33static const char bcache_magic[] = {
  34        0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
  35        0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
  36};
  37
  38static const char invalid_uuid[] = {
  39        0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
  40        0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
  41};
  42
  43static struct kobject *bcache_kobj;
  44struct mutex bch_register_lock;
  45bool bcache_is_reboot;
  46LIST_HEAD(bch_cache_sets);
  47static LIST_HEAD(uncached_devices);
  48
  49static int bcache_major;
  50static DEFINE_IDA(bcache_device_idx);
  51static wait_queue_head_t unregister_wait;
  52struct workqueue_struct *bcache_wq;
  53struct workqueue_struct *bch_flush_wq;
  54struct workqueue_struct *bch_journal_wq;
  55
  56
  57#define BTREE_MAX_PAGES         (256 * 1024 / PAGE_SIZE)
  58/* limitation of partitions number on single bcache device */
  59#define BCACHE_MINORS           128
  60/* limitation of bcache devices number on single system */
  61#define BCACHE_DEVICE_IDX_MAX   ((1U << MINORBITS)/BCACHE_MINORS)
  62
  63/* Superblock */
  64
  65static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s)
  66{
  67        unsigned int bucket_size = le16_to_cpu(s->bucket_size);
  68
  69        if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
  70                if (bch_has_feature_large_bucket(sb)) {
  71                        unsigned int max, order;
  72
  73                        max = sizeof(unsigned int) * BITS_PER_BYTE - 1;
  74                        order = le16_to_cpu(s->bucket_size);
  75                        /*
  76                         * bcache tool will make sure the overflow won't
  77                         * happen, an error message here is enough.
  78                         */
  79                        if (order > max)
  80                                pr_err("Bucket size (1 << %u) overflows\n",
  81                                        order);
  82                        bucket_size = 1 << order;
  83                } else if (bch_has_feature_obso_large_bucket(sb)) {
  84                        bucket_size +=
  85                                le16_to_cpu(s->obso_bucket_size_hi) << 16;
  86                }
  87        }
  88
  89        return bucket_size;
  90}
  91
  92static const char *read_super_common(struct cache_sb *sb,  struct block_device *bdev,
  93                                     struct cache_sb_disk *s)
  94{
  95        const char *err;
  96        unsigned int i;
  97
  98        sb->first_bucket= le16_to_cpu(s->first_bucket);
  99        sb->nbuckets    = le64_to_cpu(s->nbuckets);
 100        sb->bucket_size = get_bucket_size(sb, s);
 101
 102        sb->nr_in_set   = le16_to_cpu(s->nr_in_set);
 103        sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
 104
 105        err = "Too many journal buckets";
 106        if (sb->keys > SB_JOURNAL_BUCKETS)
 107                goto err;
 108
 109        err = "Too many buckets";
 110        if (sb->nbuckets > LONG_MAX)
 111                goto err;
 112
 113        err = "Not enough buckets";
 114        if (sb->nbuckets < 1 << 7)
 115                goto err;
 116
 117        err = "Bad block size (not power of 2)";
 118        if (!is_power_of_2(sb->block_size))
 119                goto err;
 120
 121        err = "Bad block size (larger than page size)";
 122        if (sb->block_size > PAGE_SECTORS)
 123                goto err;
 124
 125        err = "Bad bucket size (not power of 2)";
 126        if (!is_power_of_2(sb->bucket_size))
 127                goto err;
 128
 129        err = "Bad bucket size (smaller than page size)";
 130        if (sb->bucket_size < PAGE_SECTORS)
 131                goto err;
 132
 133        err = "Invalid superblock: device too small";
 134        if (get_capacity(bdev->bd_disk) <
 135            sb->bucket_size * sb->nbuckets)
 136                goto err;
 137
 138        err = "Bad UUID";
 139        if (bch_is_zero(sb->set_uuid, 16))
 140                goto err;
 141
 142        err = "Bad cache device number in set";
 143        if (!sb->nr_in_set ||
 144            sb->nr_in_set <= sb->nr_this_dev ||
 145            sb->nr_in_set > MAX_CACHES_PER_SET)
 146                goto err;
 147
 148        err = "Journal buckets not sequential";
 149        for (i = 0; i < sb->keys; i++)
 150                if (sb->d[i] != sb->first_bucket + i)
 151                        goto err;
 152
 153        err = "Too many journal buckets";
 154        if (sb->first_bucket + sb->keys > sb->nbuckets)
 155                goto err;
 156
 157        err = "Invalid superblock: first bucket comes before end of super";
 158        if (sb->first_bucket * sb->bucket_size < 16)
 159                goto err;
 160
 161        err = NULL;
 162err:
 163        return err;
 164}
 165
 166
 167static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
 168                              struct cache_sb_disk **res)
 169{
 170        const char *err;
 171        struct cache_sb_disk *s;
 172        struct page *page;
 173        unsigned int i;
 174
 175        page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
 176                                   SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL);
 177        if (IS_ERR(page))
 178                return "IO error";
 179        s = page_address(page) + offset_in_page(SB_OFFSET);
 180
 181        sb->offset              = le64_to_cpu(s->offset);
 182        sb->version             = le64_to_cpu(s->version);
 183
 184        memcpy(sb->magic,       s->magic, 16);
 185        memcpy(sb->uuid,        s->uuid, 16);
 186        memcpy(sb->set_uuid,    s->set_uuid, 16);
 187        memcpy(sb->label,       s->label, SB_LABEL_SIZE);
 188
 189        sb->flags               = le64_to_cpu(s->flags);
 190        sb->seq                 = le64_to_cpu(s->seq);
 191        sb->last_mount          = le32_to_cpu(s->last_mount);
 192        sb->keys                = le16_to_cpu(s->keys);
 193
 194        for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
 195                sb->d[i] = le64_to_cpu(s->d[i]);
 196
 197        pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n",
 198                 sb->version, sb->flags, sb->seq, sb->keys);
 199
 200        err = "Not a bcache superblock (bad offset)";
 201        if (sb->offset != SB_SECTOR)
 202                goto err;
 203
 204        err = "Not a bcache superblock (bad magic)";
 205        if (memcmp(sb->magic, bcache_magic, 16))
 206                goto err;
 207
 208        err = "Bad checksum";
 209        if (s->csum != csum_set(s))
 210                goto err;
 211
 212        err = "Bad UUID";
 213        if (bch_is_zero(sb->uuid, 16))
 214                goto err;
 215
 216        sb->block_size  = le16_to_cpu(s->block_size);
 217
 218        err = "Superblock block size smaller than device block size";
 219        if (sb->block_size << 9 < bdev_logical_block_size(bdev))
 220                goto err;
 221
 222        switch (sb->version) {
 223        case BCACHE_SB_VERSION_BDEV:
 224                sb->data_offset = BDEV_DATA_START_DEFAULT;
 225                break;
 226        case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
 227        case BCACHE_SB_VERSION_BDEV_WITH_FEATURES:
 228                sb->data_offset = le64_to_cpu(s->data_offset);
 229
 230                err = "Bad data offset";
 231                if (sb->data_offset < BDEV_DATA_START_DEFAULT)
 232                        goto err;
 233
 234                break;
 235        case BCACHE_SB_VERSION_CDEV:
 236        case BCACHE_SB_VERSION_CDEV_WITH_UUID:
 237                err = read_super_common(sb, bdev, s);
 238                if (err)
 239                        goto err;
 240                break;
 241        case BCACHE_SB_VERSION_CDEV_WITH_FEATURES:
 242                /*
 243                 * Feature bits are needed in read_super_common(),
 244                 * convert them firstly.
 245                 */
 246                sb->feature_compat = le64_to_cpu(s->feature_compat);
 247                sb->feature_incompat = le64_to_cpu(s->feature_incompat);
 248                sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat);
 249
 250                /* Check incompatible features */
 251                err = "Unsupported compatible feature found";
 252                if (bch_has_unknown_compat_features(sb))
 253                        goto err;
 254
 255                err = "Unsupported read-only compatible feature found";
 256                if (bch_has_unknown_ro_compat_features(sb))
 257                        goto err;
 258
 259                err = "Unsupported incompatible feature found";
 260                if (bch_has_unknown_incompat_features(sb))
 261                        goto err;
 262
 263                err = read_super_common(sb, bdev, s);
 264                if (err)
 265                        goto err;
 266                break;
 267        default:
 268                err = "Unsupported superblock version";
 269                goto err;
 270        }
 271
 272        sb->last_mount = (u32)ktime_get_real_seconds();
 273        *res = s;
 274        return NULL;
 275err:
 276        put_page(page);
 277        return err;
 278}
 279
 280static void write_bdev_super_endio(struct bio *bio)
 281{
 282        struct cached_dev *dc = bio->bi_private;
 283
 284        if (bio->bi_status)
 285                bch_count_backing_io_errors(dc, bio);
 286
 287        closure_put(&dc->sb_write);
 288}
 289
 290static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out,
 291                struct bio *bio)
 292{
 293        unsigned int i;
 294
 295        bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META;
 296        bio->bi_iter.bi_sector  = SB_SECTOR;
 297        __bio_add_page(bio, virt_to_page(out), SB_SIZE,
 298                        offset_in_page(out));
 299
 300        out->offset             = cpu_to_le64(sb->offset);
 301
 302        memcpy(out->uuid,       sb->uuid, 16);
 303        memcpy(out->set_uuid,   sb->set_uuid, 16);
 304        memcpy(out->label,      sb->label, SB_LABEL_SIZE);
 305
 306        out->flags              = cpu_to_le64(sb->flags);
 307        out->seq                = cpu_to_le64(sb->seq);
 308
 309        out->last_mount         = cpu_to_le32(sb->last_mount);
 310        out->first_bucket       = cpu_to_le16(sb->first_bucket);
 311        out->keys               = cpu_to_le16(sb->keys);
 312
 313        for (i = 0; i < sb->keys; i++)
 314                out->d[i] = cpu_to_le64(sb->d[i]);
 315
 316        if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
 317                out->feature_compat    = cpu_to_le64(sb->feature_compat);
 318                out->feature_incompat  = cpu_to_le64(sb->feature_incompat);
 319                out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat);
 320        }
 321
 322        out->version            = cpu_to_le64(sb->version);
 323        out->csum = csum_set(out);
 324
 325        pr_debug("ver %llu, flags %llu, seq %llu\n",
 326                 sb->version, sb->flags, sb->seq);
 327
 328        submit_bio(bio);
 329}
 330
 331static void bch_write_bdev_super_unlock(struct closure *cl)
 332{
 333        struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
 334
 335        up(&dc->sb_write_mutex);
 336}
 337
 338void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
 339{
 340        struct closure *cl = &dc->sb_write;
 341        struct bio *bio = &dc->sb_bio;
 342
 343        down(&dc->sb_write_mutex);
 344        closure_init(cl, parent);
 345
 346        bio_init(bio, dc->sb_bv, 1);
 347        bio_set_dev(bio, dc->bdev);
 348        bio->bi_end_io  = write_bdev_super_endio;
 349        bio->bi_private = dc;
 350
 351        closure_get(cl);
 352        /* I/O request sent to backing device */
 353        __write_super(&dc->sb, dc->sb_disk, bio);
 354
 355        closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
 356}
 357
 358static void write_super_endio(struct bio *bio)
 359{
 360        struct cache *ca = bio->bi_private;
 361
 362        /* is_read = 0 */
 363        bch_count_io_errors(ca, bio->bi_status, 0,
 364                            "writing superblock");
 365        closure_put(&ca->set->sb_write);
 366}
 367
 368static void bcache_write_super_unlock(struct closure *cl)
 369{
 370        struct cache_set *c = container_of(cl, struct cache_set, sb_write);
 371
 372        up(&c->sb_write_mutex);
 373}
 374
 375void bcache_write_super(struct cache_set *c)
 376{
 377        struct closure *cl = &c->sb_write;
 378        struct cache *ca = c->cache;
 379        struct bio *bio = &ca->sb_bio;
 380        unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
 381
 382        down(&c->sb_write_mutex);
 383        closure_init(cl, &c->cl);
 384
 385        ca->sb.seq++;
 386
 387        if (ca->sb.version < version)
 388                ca->sb.version = version;
 389
 390        bio_init(bio, ca->sb_bv, 1);
 391        bio_set_dev(bio, ca->bdev);
 392        bio->bi_end_io  = write_super_endio;
 393        bio->bi_private = ca;
 394
 395        closure_get(cl);
 396        __write_super(&ca->sb, ca->sb_disk, bio);
 397
 398        closure_return_with_destructor(cl, bcache_write_super_unlock);
 399}
 400
 401/* UUID io */
 402
 403static void uuid_endio(struct bio *bio)
 404{
 405        struct closure *cl = bio->bi_private;
 406        struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
 407
 408        cache_set_err_on(bio->bi_status, c, "accessing uuids");
 409        bch_bbio_free(bio, c);
 410        closure_put(cl);
 411}
 412
 413static void uuid_io_unlock(struct closure *cl)
 414{
 415        struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
 416
 417        up(&c->uuid_write_mutex);
 418}
 419
 420static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
 421                    struct bkey *k, struct closure *parent)
 422{
 423        struct closure *cl = &c->uuid_write;
 424        struct uuid_entry *u;
 425        unsigned int i;
 426        char buf[80];
 427
 428        BUG_ON(!parent);
 429        down(&c->uuid_write_mutex);
 430        closure_init(cl, parent);
 431
 432        for (i = 0; i < KEY_PTRS(k); i++) {
 433                struct bio *bio = bch_bbio_alloc(c);
 434
 435                bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
 436                bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
 437
 438                bio->bi_end_io  = uuid_endio;
 439                bio->bi_private = cl;
 440                bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
 441                bch_bio_map(bio, c->uuids);
 442
 443                bch_submit_bbio(bio, c, k, i);
 444
 445                if (op != REQ_OP_WRITE)
 446                        break;
 447        }
 448
 449        bch_extent_to_text(buf, sizeof(buf), k);
 450        pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf);
 451
 452        for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
 453                if (!bch_is_zero(u->uuid, 16))
 454                        pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n",
 455                                 u - c->uuids, u->uuid, u->label,
 456                                 u->first_reg, u->last_reg, u->invalidated);
 457
 458        closure_return_with_destructor(cl, uuid_io_unlock);
 459}
 460
 461static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
 462{
 463        struct bkey *k = &j->uuid_bucket;
 464
 465        if (__bch_btree_ptr_invalid(c, k))
 466                return "bad uuid pointer";
 467
 468        bkey_copy(&c->uuid_bucket, k);
 469        uuid_io(c, REQ_OP_READ, 0, k, cl);
 470
 471        if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
 472                struct uuid_entry_v0    *u0 = (void *) c->uuids;
 473                struct uuid_entry       *u1 = (void *) c->uuids;
 474                int i;
 475
 476                closure_sync(cl);
 477
 478                /*
 479                 * Since the new uuid entry is bigger than the old, we have to
 480                 * convert starting at the highest memory address and work down
 481                 * in order to do it in place
 482                 */
 483
 484                for (i = c->nr_uuids - 1;
 485                     i >= 0;
 486                     --i) {
 487                        memcpy(u1[i].uuid,      u0[i].uuid, 16);
 488                        memcpy(u1[i].label,     u0[i].label, 32);
 489
 490                        u1[i].first_reg         = u0[i].first_reg;
 491                        u1[i].last_reg          = u0[i].last_reg;
 492                        u1[i].invalidated       = u0[i].invalidated;
 493
 494                        u1[i].flags     = 0;
 495                        u1[i].sectors   = 0;
 496                }
 497        }
 498
 499        return NULL;
 500}
 501
 502static int __uuid_write(struct cache_set *c)
 503{
 504        BKEY_PADDED(key) k;
 505        struct closure cl;
 506        struct cache *ca = c->cache;
 507        unsigned int size;
 508
 509        closure_init_stack(&cl);
 510        lockdep_assert_held(&bch_register_lock);
 511
 512        if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true))
 513                return 1;
 514
 515        size =  meta_bucket_pages(&ca->sb) * PAGE_SECTORS;
 516        SET_KEY_SIZE(&k.key, size);
 517        uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
 518        closure_sync(&cl);
 519
 520        /* Only one bucket used for uuid write */
 521        atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
 522
 523        bkey_copy(&c->uuid_bucket, &k.key);
 524        bkey_put(c, &k.key);
 525        return 0;
 526}
 527
 528int bch_uuid_write(struct cache_set *c)
 529{
 530        int ret = __uuid_write(c);
 531
 532        if (!ret)
 533                bch_journal_meta(c, NULL);
 534
 535        return ret;
 536}
 537
 538static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
 539{
 540        struct uuid_entry *u;
 541
 542        for (u = c->uuids;
 543             u < c->uuids + c->nr_uuids; u++)
 544                if (!memcmp(u->uuid, uuid, 16))
 545                        return u;
 546
 547        return NULL;
 548}
 549
 550static struct uuid_entry *uuid_find_empty(struct cache_set *c)
 551{
 552        static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
 553
 554        return uuid_find(c, zero_uuid);
 555}
 556
 557/*
 558 * Bucket priorities/gens:
 559 *
 560 * For each bucket, we store on disk its
 561 *   8 bit gen
 562 *  16 bit priority
 563 *
 564 * See alloc.c for an explanation of the gen. The priority is used to implement
 565 * lru (and in the future other) cache replacement policies; for most purposes
 566 * it's just an opaque integer.
 567 *
 568 * The gens and the priorities don't have a whole lot to do with each other, and
 569 * it's actually the gens that must be written out at specific times - it's no
 570 * big deal if the priorities don't get written, if we lose them we just reuse
 571 * buckets in suboptimal order.
 572 *
 573 * On disk they're stored in a packed array, and in as many buckets are required
 574 * to fit them all. The buckets we use to store them form a list; the journal
 575 * header points to the first bucket, the first bucket points to the second
 576 * bucket, et cetera.
 577 *
 578 * This code is used by the allocation code; periodically (whenever it runs out
 579 * of buckets to allocate from) the allocation code will invalidate some
 580 * buckets, but it can't use those buckets until their new gens are safely on
 581 * disk.
 582 */
 583
 584static void prio_endio(struct bio *bio)
 585{
 586        struct cache *ca = bio->bi_private;
 587
 588        cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
 589        bch_bbio_free(bio, ca->set);
 590        closure_put(&ca->prio);
 591}
 592
 593static void prio_io(struct cache *ca, uint64_t bucket, int op,
 594                    unsigned long op_flags)
 595{
 596        struct closure *cl = &ca->prio;
 597        struct bio *bio = bch_bbio_alloc(ca->set);
 598
 599        closure_init_stack(cl);
 600
 601        bio->bi_iter.bi_sector  = bucket * ca->sb.bucket_size;
 602        bio_set_dev(bio, ca->bdev);
 603        bio->bi_iter.bi_size    = meta_bucket_bytes(&ca->sb);
 604
 605        bio->bi_end_io  = prio_endio;
 606        bio->bi_private = ca;
 607        bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
 608        bch_bio_map(bio, ca->disk_buckets);
 609
 610        closure_bio_submit(ca->set, bio, &ca->prio);
 611        closure_sync(cl);
 612}
 613
 614int bch_prio_write(struct cache *ca, bool wait)
 615{
 616        int i;
 617        struct bucket *b;
 618        struct closure cl;
 619
 620        pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n",
 621                 fifo_used(&ca->free[RESERVE_PRIO]),
 622                 fifo_used(&ca->free[RESERVE_NONE]),
 623                 fifo_used(&ca->free_inc));
 624
 625        /*
 626         * Pre-check if there are enough free buckets. In the non-blocking
 627         * scenario it's better to fail early rather than starting to allocate
 628         * buckets and do a cleanup later in case of failure.
 629         */
 630        if (!wait) {
 631                size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) +
 632                               fifo_used(&ca->free[RESERVE_NONE]);
 633                if (prio_buckets(ca) > avail)
 634                        return -ENOMEM;
 635        }
 636
 637        closure_init_stack(&cl);
 638
 639        lockdep_assert_held(&ca->set->bucket_lock);
 640
 641        ca->disk_buckets->seq++;
 642
 643        atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
 644                        &ca->meta_sectors_written);
 645
 646        for (i = prio_buckets(ca) - 1; i >= 0; --i) {
 647                long bucket;
 648                struct prio_set *p = ca->disk_buckets;
 649                struct bucket_disk *d = p->data;
 650                struct bucket_disk *end = d + prios_per_bucket(ca);
 651
 652                for (b = ca->buckets + i * prios_per_bucket(ca);
 653                     b < ca->buckets + ca->sb.nbuckets && d < end;
 654                     b++, d++) {
 655                        d->prio = cpu_to_le16(b->prio);
 656                        d->gen = b->gen;
 657                }
 658
 659                p->next_bucket  = ca->prio_buckets[i + 1];
 660                p->magic        = pset_magic(&ca->sb);
 661                p->csum         = bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8);
 662
 663                bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait);
 664                BUG_ON(bucket == -1);
 665
 666                mutex_unlock(&ca->set->bucket_lock);
 667                prio_io(ca, bucket, REQ_OP_WRITE, 0);
 668                mutex_lock(&ca->set->bucket_lock);
 669
 670                ca->prio_buckets[i] = bucket;
 671                atomic_dec_bug(&ca->buckets[bucket].pin);
 672        }
 673
 674        mutex_unlock(&ca->set->bucket_lock);
 675
 676        bch_journal_meta(ca->set, &cl);
 677        closure_sync(&cl);
 678
 679        mutex_lock(&ca->set->bucket_lock);
 680
 681        /*
 682         * Don't want the old priorities to get garbage collected until after we
 683         * finish writing the new ones, and they're journalled
 684         */
 685        for (i = 0; i < prio_buckets(ca); i++) {
 686                if (ca->prio_last_buckets[i])
 687                        __bch_bucket_free(ca,
 688                                &ca->buckets[ca->prio_last_buckets[i]]);
 689
 690                ca->prio_last_buckets[i] = ca->prio_buckets[i];
 691        }
 692        return 0;
 693}
 694
 695static int prio_read(struct cache *ca, uint64_t bucket)
 696{
 697        struct prio_set *p = ca->disk_buckets;
 698        struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
 699        struct bucket *b;
 700        unsigned int bucket_nr = 0;
 701        int ret = -EIO;
 702
 703        for (b = ca->buckets;
 704             b < ca->buckets + ca->sb.nbuckets;
 705             b++, d++) {
 706                if (d == end) {
 707                        ca->prio_buckets[bucket_nr] = bucket;
 708                        ca->prio_last_buckets[bucket_nr] = bucket;
 709                        bucket_nr++;
 710
 711                        prio_io(ca, bucket, REQ_OP_READ, 0);
 712
 713                        if (p->csum !=
 714                            bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) {
 715                                pr_warn("bad csum reading priorities\n");
 716                                goto out;
 717                        }
 718
 719                        if (p->magic != pset_magic(&ca->sb)) {
 720                                pr_warn("bad magic reading priorities\n");
 721                                goto out;
 722                        }
 723
 724                        bucket = p->next_bucket;
 725                        d = p->data;
 726                }
 727
 728                b->prio = le16_to_cpu(d->prio);
 729                b->gen = b->last_gc = d->gen;
 730        }
 731
 732        ret = 0;
 733out:
 734        return ret;
 735}
 736
 737/* Bcache device */
 738
 739static int open_dev(struct block_device *b, fmode_t mode)
 740{
 741        struct bcache_device *d = b->bd_disk->private_data;
 742
 743        if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
 744                return -ENXIO;
 745
 746        closure_get(&d->cl);
 747        return 0;
 748}
 749
 750static void release_dev(struct gendisk *b, fmode_t mode)
 751{
 752        struct bcache_device *d = b->private_data;
 753
 754        closure_put(&d->cl);
 755}
 756
 757static int ioctl_dev(struct block_device *b, fmode_t mode,
 758                     unsigned int cmd, unsigned long arg)
 759{
 760        struct bcache_device *d = b->bd_disk->private_data;
 761
 762        return d->ioctl(d, mode, cmd, arg);
 763}
 764
 765static const struct block_device_operations bcache_cached_ops = {
 766        .submit_bio     = cached_dev_submit_bio,
 767        .open           = open_dev,
 768        .release        = release_dev,
 769        .ioctl          = ioctl_dev,
 770        .owner          = THIS_MODULE,
 771};
 772
 773static const struct block_device_operations bcache_flash_ops = {
 774        .submit_bio     = flash_dev_submit_bio,
 775        .open           = open_dev,
 776        .release        = release_dev,
 777        .ioctl          = ioctl_dev,
 778        .owner          = THIS_MODULE,
 779};
 780
 781void bcache_device_stop(struct bcache_device *d)
 782{
 783        if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
 784                /*
 785                 * closure_fn set to
 786                 * - cached device: cached_dev_flush()
 787                 * - flash dev: flash_dev_flush()
 788                 */
 789                closure_queue(&d->cl);
 790}
 791
 792static void bcache_device_unlink(struct bcache_device *d)
 793{
 794        lockdep_assert_held(&bch_register_lock);
 795
 796        if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
 797                struct cache *ca = d->c->cache;
 798
 799                sysfs_remove_link(&d->c->kobj, d->name);
 800                sysfs_remove_link(&d->kobj, "cache");
 801
 802                bd_unlink_disk_holder(ca->bdev, d->disk);
 803        }
 804}
 805
 806static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
 807                               const char *name)
 808{
 809        struct cache *ca = c->cache;
 810        int ret;
 811
 812        bd_link_disk_holder(ca->bdev, d->disk);
 813
 814        snprintf(d->name, BCACHEDEVNAME_SIZE,
 815                 "%s%u", name, d->id);
 816
 817        ret = sysfs_create_link(&d->kobj, &c->kobj, "cache");
 818        if (ret < 0)
 819                pr_err("Couldn't create device -> cache set symlink\n");
 820
 821        ret = sysfs_create_link(&c->kobj, &d->kobj, d->name);
 822        if (ret < 0)
 823                pr_err("Couldn't create cache set -> device symlink\n");
 824
 825        clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
 826}
 827
 828static void bcache_device_detach(struct bcache_device *d)
 829{
 830        lockdep_assert_held(&bch_register_lock);
 831
 832        atomic_dec(&d->c->attached_dev_nr);
 833
 834        if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
 835                struct uuid_entry *u = d->c->uuids + d->id;
 836
 837                SET_UUID_FLASH_ONLY(u, 0);
 838                memcpy(u->uuid, invalid_uuid, 16);
 839                u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
 840                bch_uuid_write(d->c);
 841        }
 842
 843        bcache_device_unlink(d);
 844
 845        d->c->devices[d->id] = NULL;
 846        closure_put(&d->c->caching);
 847        d->c = NULL;
 848}
 849
 850static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
 851                                 unsigned int id)
 852{
 853        d->id = id;
 854        d->c = c;
 855        c->devices[id] = d;
 856
 857        if (id >= c->devices_max_used)
 858                c->devices_max_used = id + 1;
 859
 860        closure_get(&c->caching);
 861}
 862
 863static inline int first_minor_to_idx(int first_minor)
 864{
 865        return (first_minor/BCACHE_MINORS);
 866}
 867
 868static inline int idx_to_first_minor(int idx)
 869{
 870        return (idx * BCACHE_MINORS);
 871}
 872
 873static void bcache_device_free(struct bcache_device *d)
 874{
 875        struct gendisk *disk = d->disk;
 876
 877        lockdep_assert_held(&bch_register_lock);
 878
 879        if (disk)
 880                pr_info("%s stopped\n", disk->disk_name);
 881        else
 882                pr_err("bcache device (NULL gendisk) stopped\n");
 883
 884        if (d->c)
 885                bcache_device_detach(d);
 886
 887        if (disk) {
 888                bool disk_added = (disk->flags & GENHD_FL_UP) != 0;
 889
 890                if (disk_added)
 891                        del_gendisk(disk);
 892
 893                blk_cleanup_disk(disk);
 894                ida_simple_remove(&bcache_device_idx,
 895                                  first_minor_to_idx(disk->first_minor));
 896        }
 897
 898        bioset_exit(&d->bio_split);
 899        kvfree(d->full_dirty_stripes);
 900        kvfree(d->stripe_sectors_dirty);
 901
 902        closure_debug_destroy(&d->cl);
 903}
 904
 905static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
 906                sector_t sectors, struct block_device *cached_bdev,
 907                const struct block_device_operations *ops)
 908{
 909        struct request_queue *q;
 910        const size_t max_stripes = min_t(size_t, INT_MAX,
 911                                         SIZE_MAX / sizeof(atomic_t));
 912        uint64_t n;
 913        int idx;
 914
 915        if (!d->stripe_size)
 916                d->stripe_size = 1 << 31;
 917
 918        n = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
 919        if (!n || n > max_stripes) {
 920                pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n",
 921                        n);
 922                return -ENOMEM;
 923        }
 924        d->nr_stripes = n;
 925
 926        n = d->nr_stripes * sizeof(atomic_t);
 927        d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
 928        if (!d->stripe_sectors_dirty)
 929                return -ENOMEM;
 930
 931        n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
 932        d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
 933        if (!d->full_dirty_stripes)
 934                return -ENOMEM;
 935
 936        idx = ida_simple_get(&bcache_device_idx, 0,
 937                                BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
 938        if (idx < 0)
 939                return idx;
 940
 941        if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
 942                        BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
 943                goto err;
 944
 945        d->disk = blk_alloc_disk(NUMA_NO_NODE);
 946        if (!d->disk)
 947                goto err;
 948
 949        set_capacity(d->disk, sectors);
 950        snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
 951
 952        d->disk->major          = bcache_major;
 953        d->disk->first_minor    = idx_to_first_minor(idx);
 954        d->disk->minors         = BCACHE_MINORS;
 955        d->disk->fops           = ops;
 956        d->disk->private_data   = d;
 957
 958        q = d->disk->queue;
 959        q->limits.max_hw_sectors        = UINT_MAX;
 960        q->limits.max_sectors           = UINT_MAX;
 961        q->limits.max_segment_size      = UINT_MAX;
 962        q->limits.max_segments          = BIO_MAX_VECS;
 963        blk_queue_max_discard_sectors(q, UINT_MAX);
 964        q->limits.discard_granularity   = 512;
 965        q->limits.io_min                = block_size;
 966        q->limits.logical_block_size    = block_size;
 967        q->limits.physical_block_size   = block_size;
 968
 969        if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) {
 970                /*
 971                 * This should only happen with BCACHE_SB_VERSION_BDEV.
 972                 * Block/page size is checked for BCACHE_SB_VERSION_CDEV.
 973                 */
 974                pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n",
 975                        d->disk->disk_name, q->limits.logical_block_size,
 976                        PAGE_SIZE, bdev_logical_block_size(cached_bdev));
 977
 978                /* This also adjusts physical block size/min io size if needed */
 979                blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev));
 980        }
 981
 982        blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
 983        blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
 984        blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue);
 985
 986        blk_queue_write_cache(q, true, true);
 987
 988        return 0;
 989
 990err:
 991        ida_simple_remove(&bcache_device_idx, idx);
 992        return -ENOMEM;
 993
 994}
 995
 996/* Cached device */
 997
 998static void calc_cached_dev_sectors(struct cache_set *c)
 999{
1000        uint64_t sectors = 0;
1001        struct cached_dev *dc;
1002
1003        list_for_each_entry(dc, &c->cached_devs, list)
1004                sectors += bdev_sectors(dc->bdev);
1005
1006        c->cached_dev_sectors = sectors;
1007}
1008
1009#define BACKING_DEV_OFFLINE_TIMEOUT 5
1010static int cached_dev_status_update(void *arg)
1011{
1012        struct cached_dev *dc = arg;
1013        struct request_queue *q;
1014
1015        /*
1016         * If this delayed worker is stopping outside, directly quit here.
1017         * dc->io_disable might be set via sysfs interface, so check it
1018         * here too.
1019         */
1020        while (!kthread_should_stop() && !dc->io_disable) {
1021                q = bdev_get_queue(dc->bdev);
1022                if (blk_queue_dying(q))
1023                        dc->offline_seconds++;
1024                else
1025                        dc->offline_seconds = 0;
1026
1027                if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
1028                        pr_err("%s: device offline for %d seconds\n",
1029                               dc->backing_dev_name,
1030                               BACKING_DEV_OFFLINE_TIMEOUT);
1031                        pr_err("%s: disable I/O request due to backing device offline\n",
1032                               dc->disk.name);
1033                        dc->io_disable = true;
1034                        /* let others know earlier that io_disable is true */
1035                        smp_mb();
1036                        bcache_device_stop(&dc->disk);
1037                        break;
1038                }
1039                schedule_timeout_interruptible(HZ);
1040        }
1041
1042        wait_for_kthread_stop();
1043        return 0;
1044}
1045
1046
1047int bch_cached_dev_run(struct cached_dev *dc)
1048{
1049        int ret = 0;
1050        struct bcache_device *d = &dc->disk;
1051        char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
1052        char *env[] = {
1053                "DRIVER=bcache",
1054                kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
1055                kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
1056                NULL,
1057        };
1058
1059        if (dc->io_disable) {
1060                pr_err("I/O disabled on cached dev %s\n",
1061                       dc->backing_dev_name);
1062                ret = -EIO;
1063                goto out;
1064        }
1065
1066        if (atomic_xchg(&dc->running, 1)) {
1067                pr_info("cached dev %s is running already\n",
1068                       dc->backing_dev_name);
1069                ret = -EBUSY;
1070                goto out;
1071        }
1072
1073        if (!d->c &&
1074            BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
1075                struct closure cl;
1076
1077                closure_init_stack(&cl);
1078
1079                SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
1080                bch_write_bdev_super(dc, &cl);
1081                closure_sync(&cl);
1082        }
1083
1084        add_disk(d->disk);
1085        bd_link_disk_holder(dc->bdev, dc->disk.disk);
1086        /*
1087         * won't show up in the uevent file, use udevadm monitor -e instead
1088         * only class / kset properties are persistent
1089         */
1090        kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
1091
1092        if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
1093            sysfs_create_link(&disk_to_dev(d->disk)->kobj,
1094                              &d->kobj, "bcache")) {
1095                pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n");
1096                ret = -ENOMEM;
1097                goto out;
1098        }
1099
1100        dc->status_update_thread = kthread_run(cached_dev_status_update,
1101                                               dc, "bcache_status_update");
1102        if (IS_ERR(dc->status_update_thread)) {
1103                pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n");
1104        }
1105
1106out:
1107        kfree(env[1]);
1108        kfree(env[2]);
1109        kfree(buf);
1110        return ret;
1111}
1112
1113/*
1114 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
1115 * work dc->writeback_rate_update is running. Wait until the routine
1116 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
1117 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
1118 * seconds, give up waiting here and continue to cancel it too.
1119 */
1120static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
1121{
1122        int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
1123
1124        do {
1125                if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
1126                              &dc->disk.flags))
1127                        break;
1128                time_out--;
1129                schedule_timeout_interruptible(1);
1130        } while (time_out > 0);
1131
1132        if (time_out == 0)
1133                pr_warn("give up waiting for dc->writeback_write_update to quit\n");
1134
1135        cancel_delayed_work_sync(&dc->writeback_rate_update);
1136}
1137
1138static void cached_dev_detach_finish(struct work_struct *w)
1139{
1140        struct cached_dev *dc = container_of(w, struct cached_dev, detach);
1141
1142        BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
1143        BUG_ON(refcount_read(&dc->count));
1144
1145
1146        if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1147                cancel_writeback_rate_update_dwork(dc);
1148
1149        if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1150                kthread_stop(dc->writeback_thread);
1151                dc->writeback_thread = NULL;
1152        }
1153
1154        mutex_lock(&bch_register_lock);
1155
1156        calc_cached_dev_sectors(dc->disk.c);
1157        bcache_device_detach(&dc->disk);
1158        list_move(&dc->list, &uncached_devices);
1159
1160        clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1161        clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1162
1163        mutex_unlock(&bch_register_lock);
1164
1165        pr_info("Caching disabled for %s\n", dc->backing_dev_name);
1166
1167        /* Drop ref we took in cached_dev_detach() */
1168        closure_put(&dc->disk.cl);
1169}
1170
1171void bch_cached_dev_detach(struct cached_dev *dc)
1172{
1173        lockdep_assert_held(&bch_register_lock);
1174
1175        if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1176                return;
1177
1178        if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1179                return;
1180
1181        /*
1182         * Block the device from being closed and freed until we're finished
1183         * detaching
1184         */
1185        closure_get(&dc->disk.cl);
1186
1187        bch_writeback_queue(dc);
1188
1189        cached_dev_put(dc);
1190}
1191
1192int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1193                          uint8_t *set_uuid)
1194{
1195        uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1196        struct uuid_entry *u;
1197        struct cached_dev *exist_dc, *t;
1198        int ret = 0;
1199
1200        if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) ||
1201            (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16)))
1202                return -ENOENT;
1203
1204        if (dc->disk.c) {
1205                pr_err("Can't attach %s: already attached\n",
1206                       dc->backing_dev_name);
1207                return -EINVAL;
1208        }
1209
1210        if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1211                pr_err("Can't attach %s: shutting down\n",
1212                       dc->backing_dev_name);
1213                return -EINVAL;
1214        }
1215
1216        if (dc->sb.block_size < c->cache->sb.block_size) {
1217                /* Will die */
1218                pr_err("Couldn't attach %s: block size less than set's block size\n",
1219                       dc->backing_dev_name);
1220                return -EINVAL;
1221        }
1222
1223        /* Check whether already attached */
1224        list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1225                if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1226                        pr_err("Tried to attach %s but duplicate UUID already attached\n",
1227                                dc->backing_dev_name);
1228
1229                        return -EINVAL;
1230                }
1231        }
1232
1233        u = uuid_find(c, dc->sb.uuid);
1234
1235        if (u &&
1236            (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1237             BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1238                memcpy(u->uuid, invalid_uuid, 16);
1239                u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1240                u = NULL;
1241        }
1242
1243        if (!u) {
1244                if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1245                        pr_err("Couldn't find uuid for %s in set\n",
1246                               dc->backing_dev_name);
1247                        return -ENOENT;
1248                }
1249
1250                u = uuid_find_empty(c);
1251                if (!u) {
1252                        pr_err("Not caching %s, no room for UUID\n",
1253                               dc->backing_dev_name);
1254                        return -EINVAL;
1255                }
1256        }
1257
1258        /*
1259         * Deadlocks since we're called via sysfs...
1260         * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1261         */
1262
1263        if (bch_is_zero(u->uuid, 16)) {
1264                struct closure cl;
1265
1266                closure_init_stack(&cl);
1267
1268                memcpy(u->uuid, dc->sb.uuid, 16);
1269                memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1270                u->first_reg = u->last_reg = rtime;
1271                bch_uuid_write(c);
1272
1273                memcpy(dc->sb.set_uuid, c->set_uuid, 16);
1274                SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1275
1276                bch_write_bdev_super(dc, &cl);
1277                closure_sync(&cl);
1278        } else {
1279                u->last_reg = rtime;
1280                bch_uuid_write(c);
1281        }
1282
1283        bcache_device_attach(&dc->disk, c, u - c->uuids);
1284        list_move(&dc->list, &c->cached_devs);
1285        calc_cached_dev_sectors(c);
1286
1287        /*
1288         * dc->c must be set before dc->count != 0 - paired with the mb in
1289         * cached_dev_get()
1290         */
1291        smp_wmb();
1292        refcount_set(&dc->count, 1);
1293
1294        /* Block writeback thread, but spawn it */
1295        down_write(&dc->writeback_lock);
1296        if (bch_cached_dev_writeback_start(dc)) {
1297                up_write(&dc->writeback_lock);
1298                pr_err("Couldn't start writeback facilities for %s\n",
1299                       dc->disk.disk->disk_name);
1300                return -ENOMEM;
1301        }
1302
1303        if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1304                atomic_set(&dc->has_dirty, 1);
1305                bch_writeback_queue(dc);
1306        }
1307
1308        bch_sectors_dirty_init(&dc->disk);
1309
1310        ret = bch_cached_dev_run(dc);
1311        if (ret && (ret != -EBUSY)) {
1312                up_write(&dc->writeback_lock);
1313                /*
1314                 * bch_register_lock is held, bcache_device_stop() is not
1315                 * able to be directly called. The kthread and kworker
1316                 * created previously in bch_cached_dev_writeback_start()
1317                 * have to be stopped manually here.
1318                 */
1319                kthread_stop(dc->writeback_thread);
1320                cancel_writeback_rate_update_dwork(dc);
1321                pr_err("Couldn't run cached device %s\n",
1322                       dc->backing_dev_name);
1323                return ret;
1324        }
1325
1326        bcache_device_link(&dc->disk, c, "bdev");
1327        atomic_inc(&c->attached_dev_nr);
1328
1329        if (bch_has_feature_obso_large_bucket(&(c->cache->sb))) {
1330                pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1331                pr_err("Please update to the latest bcache-tools to create the cache device\n");
1332                set_disk_ro(dc->disk.disk, 1);
1333        }
1334
1335        /* Allow the writeback thread to proceed */
1336        up_write(&dc->writeback_lock);
1337
1338        pr_info("Caching %s as %s on set %pU\n",
1339                dc->backing_dev_name,
1340                dc->disk.disk->disk_name,
1341                dc->disk.c->set_uuid);
1342        return 0;
1343}
1344
1345/* when dc->disk.kobj released */
1346void bch_cached_dev_release(struct kobject *kobj)
1347{
1348        struct cached_dev *dc = container_of(kobj, struct cached_dev,
1349                                             disk.kobj);
1350        kfree(dc);
1351        module_put(THIS_MODULE);
1352}
1353
1354static void cached_dev_free(struct closure *cl)
1355{
1356        struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1357
1358        if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1359                cancel_writeback_rate_update_dwork(dc);
1360
1361        if (!IS_ERR_OR_NULL(dc->writeback_thread))
1362                kthread_stop(dc->writeback_thread);
1363        if (!IS_ERR_OR_NULL(dc->status_update_thread))
1364                kthread_stop(dc->status_update_thread);
1365
1366        mutex_lock(&bch_register_lock);
1367
1368        if (atomic_read(&dc->running))
1369                bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1370        bcache_device_free(&dc->disk);
1371        list_del(&dc->list);
1372
1373        mutex_unlock(&bch_register_lock);
1374
1375        if (dc->sb_disk)
1376                put_page(virt_to_page(dc->sb_disk));
1377
1378        if (!IS_ERR_OR_NULL(dc->bdev))
1379                blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1380
1381        wake_up(&unregister_wait);
1382
1383        kobject_put(&dc->disk.kobj);
1384}
1385
1386static void cached_dev_flush(struct closure *cl)
1387{
1388        struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1389        struct bcache_device *d = &dc->disk;
1390
1391        mutex_lock(&bch_register_lock);
1392        bcache_device_unlink(d);
1393        mutex_unlock(&bch_register_lock);
1394
1395        bch_cache_accounting_destroy(&dc->accounting);
1396        kobject_del(&d->kobj);
1397
1398        continue_at(cl, cached_dev_free, system_wq);
1399}
1400
1401static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1402{
1403        int ret;
1404        struct io *io;
1405        struct request_queue *q = bdev_get_queue(dc->bdev);
1406
1407        __module_get(THIS_MODULE);
1408        INIT_LIST_HEAD(&dc->list);
1409        closure_init(&dc->disk.cl, NULL);
1410        set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1411        kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1412        INIT_WORK(&dc->detach, cached_dev_detach_finish);
1413        sema_init(&dc->sb_write_mutex, 1);
1414        INIT_LIST_HEAD(&dc->io_lru);
1415        spin_lock_init(&dc->io_lock);
1416        bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1417
1418        dc->sequential_cutoff           = 4 << 20;
1419
1420        for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1421                list_add(&io->lru, &dc->io_lru);
1422                hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1423        }
1424
1425        dc->disk.stripe_size = q->limits.io_opt >> 9;
1426
1427        if (dc->disk.stripe_size)
1428                dc->partial_stripes_expensive =
1429                        q->limits.raid_partial_stripes_expensive;
1430
1431        ret = bcache_device_init(&dc->disk, block_size,
1432                         bdev_nr_sectors(dc->bdev) - dc->sb.data_offset,
1433                         dc->bdev, &bcache_cached_ops);
1434        if (ret)
1435                return ret;
1436
1437        blk_queue_io_opt(dc->disk.disk->queue,
1438                max(queue_io_opt(dc->disk.disk->queue), queue_io_opt(q)));
1439
1440        atomic_set(&dc->io_errors, 0);
1441        dc->io_disable = false;
1442        dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1443        /* default to auto */
1444        dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1445
1446        bch_cached_dev_request_init(dc);
1447        bch_cached_dev_writeback_init(dc);
1448        return 0;
1449}
1450
1451/* Cached device - bcache superblock */
1452
1453static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
1454                                 struct block_device *bdev,
1455                                 struct cached_dev *dc)
1456{
1457        const char *err = "cannot allocate memory";
1458        struct cache_set *c;
1459        int ret = -ENOMEM;
1460
1461        bdevname(bdev, dc->backing_dev_name);
1462        memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1463        dc->bdev = bdev;
1464        dc->bdev->bd_holder = dc;
1465        dc->sb_disk = sb_disk;
1466
1467        if (cached_dev_init(dc, sb->block_size << 9))
1468                goto err;
1469
1470        err = "error creating kobject";
1471        if (kobject_add(&dc->disk.kobj, bdev_kobj(bdev), "bcache"))
1472                goto err;
1473        if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1474                goto err;
1475
1476        pr_info("registered backing device %s\n", dc->backing_dev_name);
1477
1478        list_add(&dc->list, &uncached_devices);
1479        /* attach to a matched cache set if it exists */
1480        list_for_each_entry(c, &bch_cache_sets, list)
1481                bch_cached_dev_attach(dc, c, NULL);
1482
1483        if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1484            BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) {
1485                err = "failed to run cached device";
1486                ret = bch_cached_dev_run(dc);
1487                if (ret)
1488                        goto err;
1489        }
1490
1491        return 0;
1492err:
1493        pr_notice("error %s: %s\n", dc->backing_dev_name, err);
1494        bcache_device_stop(&dc->disk);
1495        return ret;
1496}
1497
1498/* Flash only volumes */
1499
1500/* When d->kobj released */
1501void bch_flash_dev_release(struct kobject *kobj)
1502{
1503        struct bcache_device *d = container_of(kobj, struct bcache_device,
1504                                               kobj);
1505        kfree(d);
1506}
1507
1508static void flash_dev_free(struct closure *cl)
1509{
1510        struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1511
1512        mutex_lock(&bch_register_lock);
1513        atomic_long_sub(bcache_dev_sectors_dirty(d),
1514                        &d->c->flash_dev_dirty_sectors);
1515        bcache_device_free(d);
1516        mutex_unlock(&bch_register_lock);
1517        kobject_put(&d->kobj);
1518}
1519
1520static void flash_dev_flush(struct closure *cl)
1521{
1522        struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1523
1524        mutex_lock(&bch_register_lock);
1525        bcache_device_unlink(d);
1526        mutex_unlock(&bch_register_lock);
1527        kobject_del(&d->kobj);
1528        continue_at(cl, flash_dev_free, system_wq);
1529}
1530
1531static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1532{
1533        struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1534                                          GFP_KERNEL);
1535        if (!d)
1536                return -ENOMEM;
1537
1538        closure_init(&d->cl, NULL);
1539        set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1540
1541        kobject_init(&d->kobj, &bch_flash_dev_ktype);
1542
1543        if (bcache_device_init(d, block_bytes(c->cache), u->sectors,
1544                        NULL, &bcache_flash_ops))
1545                goto err;
1546
1547        bcache_device_attach(d, c, u - c->uuids);
1548        bch_sectors_dirty_init(d);
1549        bch_flash_dev_request_init(d);
1550        add_disk(d->disk);
1551
1552        if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1553                goto err;
1554
1555        bcache_device_link(d, c, "volume");
1556
1557        if (bch_has_feature_obso_large_bucket(&c->cache->sb)) {
1558                pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1559                pr_err("Please update to the latest bcache-tools to create the cache device\n");
1560                set_disk_ro(d->disk, 1);
1561        }
1562
1563        return 0;
1564err:
1565        kobject_put(&d->kobj);
1566        return -ENOMEM;
1567}
1568
1569static int flash_devs_run(struct cache_set *c)
1570{
1571        int ret = 0;
1572        struct uuid_entry *u;
1573
1574        for (u = c->uuids;
1575             u < c->uuids + c->nr_uuids && !ret;
1576             u++)
1577                if (UUID_FLASH_ONLY(u))
1578                        ret = flash_dev_run(c, u);
1579
1580        return ret;
1581}
1582
1583int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1584{
1585        struct uuid_entry *u;
1586
1587        if (test_bit(CACHE_SET_STOPPING, &c->flags))
1588                return -EINTR;
1589
1590        if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1591                return -EPERM;
1592
1593        u = uuid_find_empty(c);
1594        if (!u) {
1595                pr_err("Can't create volume, no room for UUID\n");
1596                return -EINVAL;
1597        }
1598
1599        get_random_bytes(u->uuid, 16);
1600        memset(u->label, 0, 32);
1601        u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1602
1603        SET_UUID_FLASH_ONLY(u, 1);
1604        u->sectors = size >> 9;
1605
1606        bch_uuid_write(c);
1607
1608        return flash_dev_run(c, u);
1609}
1610
1611bool bch_cached_dev_error(struct cached_dev *dc)
1612{
1613        if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1614                return false;
1615
1616        dc->io_disable = true;
1617        /* make others know io_disable is true earlier */
1618        smp_mb();
1619
1620        pr_err("stop %s: too many IO errors on backing device %s\n",
1621               dc->disk.disk->disk_name, dc->backing_dev_name);
1622
1623        bcache_device_stop(&dc->disk);
1624        return true;
1625}
1626
1627/* Cache set */
1628
1629__printf(2, 3)
1630bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1631{
1632        struct va_format vaf;
1633        va_list args;
1634
1635        if (c->on_error != ON_ERROR_PANIC &&
1636            test_bit(CACHE_SET_STOPPING, &c->flags))
1637                return false;
1638
1639        if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1640                pr_info("CACHE_SET_IO_DISABLE already set\n");
1641
1642        /*
1643         * XXX: we can be called from atomic context
1644         * acquire_console_sem();
1645         */
1646
1647        va_start(args, fmt);
1648
1649        vaf.fmt = fmt;
1650        vaf.va = &args;
1651
1652        pr_err("error on %pU: %pV, disabling caching\n",
1653               c->set_uuid, &vaf);
1654
1655        va_end(args);
1656
1657        if (c->on_error == ON_ERROR_PANIC)
1658                panic("panic forced after error\n");
1659
1660        bch_cache_set_unregister(c);
1661        return true;
1662}
1663
1664/* When c->kobj released */
1665void bch_cache_set_release(struct kobject *kobj)
1666{
1667        struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1668
1669        kfree(c);
1670        module_put(THIS_MODULE);
1671}
1672
1673static void cache_set_free(struct closure *cl)
1674{
1675        struct cache_set *c = container_of(cl, struct cache_set, cl);
1676        struct cache *ca;
1677
1678        debugfs_remove(c->debug);
1679
1680        bch_open_buckets_free(c);
1681        bch_btree_cache_free(c);
1682        bch_journal_free(c);
1683
1684        mutex_lock(&bch_register_lock);
1685        bch_bset_sort_state_free(&c->sort);
1686        free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb)));
1687
1688        ca = c->cache;
1689        if (ca) {
1690                ca->set = NULL;
1691                c->cache = NULL;
1692                kobject_put(&ca->kobj);
1693        }
1694
1695
1696        if (c->moving_gc_wq)
1697                destroy_workqueue(c->moving_gc_wq);
1698        bioset_exit(&c->bio_split);
1699        mempool_exit(&c->fill_iter);
1700        mempool_exit(&c->bio_meta);
1701        mempool_exit(&c->search);
1702        kfree(c->devices);
1703
1704        list_del(&c->list);
1705        mutex_unlock(&bch_register_lock);
1706
1707        pr_info("Cache set %pU unregistered\n", c->set_uuid);
1708        wake_up(&unregister_wait);
1709
1710        closure_debug_destroy(&c->cl);
1711        kobject_put(&c->kobj);
1712}
1713
1714static void cache_set_flush(struct closure *cl)
1715{
1716        struct cache_set *c = container_of(cl, struct cache_set, caching);
1717        struct cache *ca = c->cache;
1718        struct btree *b;
1719
1720        bch_cache_accounting_destroy(&c->accounting);
1721
1722        kobject_put(&c->internal);
1723        kobject_del(&c->kobj);
1724
1725        if (!IS_ERR_OR_NULL(c->gc_thread))
1726                kthread_stop(c->gc_thread);
1727
1728        if (!IS_ERR_OR_NULL(c->root))
1729                list_add(&c->root->list, &c->btree_cache);
1730
1731        /*
1732         * Avoid flushing cached nodes if cache set is retiring
1733         * due to too many I/O errors detected.
1734         */
1735        if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1736                list_for_each_entry(b, &c->btree_cache, list) {
1737                        mutex_lock(&b->write_lock);
1738                        if (btree_node_dirty(b))
1739                                __bch_btree_node_write(b, NULL);
1740                        mutex_unlock(&b->write_lock);
1741                }
1742
1743        if (ca->alloc_thread)
1744                kthread_stop(ca->alloc_thread);
1745
1746        if (c->journal.cur) {
1747                cancel_delayed_work_sync(&c->journal.work);
1748                /* flush last journal entry if needed */
1749                c->journal.work.work.func(&c->journal.work.work);
1750        }
1751
1752        closure_return(cl);
1753}
1754
1755/*
1756 * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1757 * cache set is unregistering due to too many I/O errors. In this condition,
1758 * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1759 * value and whether the broken cache has dirty data:
1760 *
1761 * dc->stop_when_cache_set_failed    dc->has_dirty   stop bcache device
1762 *  BCH_CACHED_STOP_AUTO               0               NO
1763 *  BCH_CACHED_STOP_AUTO               1               YES
1764 *  BCH_CACHED_DEV_STOP_ALWAYS         0               YES
1765 *  BCH_CACHED_DEV_STOP_ALWAYS         1               YES
1766 *
1767 * The expected behavior is, if stop_when_cache_set_failed is configured to
1768 * "auto" via sysfs interface, the bcache device will not be stopped if the
1769 * backing device is clean on the broken cache device.
1770 */
1771static void conditional_stop_bcache_device(struct cache_set *c,
1772                                           struct bcache_device *d,
1773                                           struct cached_dev *dc)
1774{
1775        if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1776                pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n",
1777                        d->disk->disk_name, c->set_uuid);
1778                bcache_device_stop(d);
1779        } else if (atomic_read(&dc->has_dirty)) {
1780                /*
1781                 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1782                 * and dc->has_dirty == 1
1783                 */
1784                pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n",
1785                        d->disk->disk_name);
1786                /*
1787                 * There might be a small time gap that cache set is
1788                 * released but bcache device is not. Inside this time
1789                 * gap, regular I/O requests will directly go into
1790                 * backing device as no cache set attached to. This
1791                 * behavior may also introduce potential inconsistence
1792                 * data in writeback mode while cache is dirty.
1793                 * Therefore before calling bcache_device_stop() due
1794                 * to a broken cache device, dc->io_disable should be
1795                 * explicitly set to true.
1796                 */
1797                dc->io_disable = true;
1798                /* make others know io_disable is true earlier */
1799                smp_mb();
1800                bcache_device_stop(d);
1801        } else {
1802                /*
1803                 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1804                 * and dc->has_dirty == 0
1805                 */
1806                pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n",
1807                        d->disk->disk_name);
1808        }
1809}
1810
1811static void __cache_set_unregister(struct closure *cl)
1812{
1813        struct cache_set *c = container_of(cl, struct cache_set, caching);
1814        struct cached_dev *dc;
1815        struct bcache_device *d;
1816        size_t i;
1817
1818        mutex_lock(&bch_register_lock);
1819
1820        for (i = 0; i < c->devices_max_used; i++) {
1821                d = c->devices[i];
1822                if (!d)
1823                        continue;
1824
1825                if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1826                    test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1827                        dc = container_of(d, struct cached_dev, disk);
1828                        bch_cached_dev_detach(dc);
1829                        if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1830                                conditional_stop_bcache_device(c, d, dc);
1831                } else {
1832                        bcache_device_stop(d);
1833                }
1834        }
1835
1836        mutex_unlock(&bch_register_lock);
1837
1838        continue_at(cl, cache_set_flush, system_wq);
1839}
1840
1841void bch_cache_set_stop(struct cache_set *c)
1842{
1843        if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1844                /* closure_fn set to __cache_set_unregister() */
1845                closure_queue(&c->caching);
1846}
1847
1848void bch_cache_set_unregister(struct cache_set *c)
1849{
1850        set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1851        bch_cache_set_stop(c);
1852}
1853
1854#define alloc_meta_bucket_pages(gfp, sb)                \
1855        ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb))))
1856
1857struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1858{
1859        int iter_size;
1860        struct cache *ca = container_of(sb, struct cache, sb);
1861        struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1862
1863        if (!c)
1864                return NULL;
1865
1866        __module_get(THIS_MODULE);
1867        closure_init(&c->cl, NULL);
1868        set_closure_fn(&c->cl, cache_set_free, system_wq);
1869
1870        closure_init(&c->caching, &c->cl);
1871        set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1872
1873        /* Maybe create continue_at_noreturn() and use it here? */
1874        closure_set_stopped(&c->cl);
1875        closure_put(&c->cl);
1876
1877        kobject_init(&c->kobj, &bch_cache_set_ktype);
1878        kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1879
1880        bch_cache_accounting_init(&c->accounting, &c->cl);
1881
1882        memcpy(c->set_uuid, sb->set_uuid, 16);
1883
1884        c->cache                = ca;
1885        c->cache->set           = c;
1886        c->bucket_bits          = ilog2(sb->bucket_size);
1887        c->block_bits           = ilog2(sb->block_size);
1888        c->nr_uuids             = meta_bucket_bytes(sb) / sizeof(struct uuid_entry);
1889        c->devices_max_used     = 0;
1890        atomic_set(&c->attached_dev_nr, 0);
1891        c->btree_pages          = meta_bucket_pages(sb);
1892        if (c->btree_pages > BTREE_MAX_PAGES)
1893                c->btree_pages = max_t(int, c->btree_pages / 4,
1894                                       BTREE_MAX_PAGES);
1895
1896        sema_init(&c->sb_write_mutex, 1);
1897        mutex_init(&c->bucket_lock);
1898        init_waitqueue_head(&c->btree_cache_wait);
1899        spin_lock_init(&c->btree_cannibalize_lock);
1900        init_waitqueue_head(&c->bucket_wait);
1901        init_waitqueue_head(&c->gc_wait);
1902        sema_init(&c->uuid_write_mutex, 1);
1903
1904        spin_lock_init(&c->btree_gc_time.lock);
1905        spin_lock_init(&c->btree_split_time.lock);
1906        spin_lock_init(&c->btree_read_time.lock);
1907
1908        bch_moving_init_cache_set(c);
1909
1910        INIT_LIST_HEAD(&c->list);
1911        INIT_LIST_HEAD(&c->cached_devs);
1912        INIT_LIST_HEAD(&c->btree_cache);
1913        INIT_LIST_HEAD(&c->btree_cache_freeable);
1914        INIT_LIST_HEAD(&c->btree_cache_freed);
1915        INIT_LIST_HEAD(&c->data_buckets);
1916
1917        iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size + 1) *
1918                sizeof(struct btree_iter_set);
1919
1920        c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL);
1921        if (!c->devices)
1922                goto err;
1923
1924        if (mempool_init_slab_pool(&c->search, 32, bch_search_cache))
1925                goto err;
1926
1927        if (mempool_init_kmalloc_pool(&c->bio_meta, 2,
1928                        sizeof(struct bbio) +
1929                        sizeof(struct bio_vec) * meta_bucket_pages(sb)))
1930                goto err;
1931
1932        if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size))
1933                goto err;
1934
1935        if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1936                        BIOSET_NEED_RESCUER))
1937                goto err;
1938
1939        c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb);
1940        if (!c->uuids)
1941                goto err;
1942
1943        c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0);
1944        if (!c->moving_gc_wq)
1945                goto err;
1946
1947        if (bch_journal_alloc(c))
1948                goto err;
1949
1950        if (bch_btree_cache_alloc(c))
1951                goto err;
1952
1953        if (bch_open_buckets_alloc(c))
1954                goto err;
1955
1956        if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1957                goto err;
1958
1959        c->congested_read_threshold_us  = 2000;
1960        c->congested_write_threshold_us = 20000;
1961        c->error_limit  = DEFAULT_IO_ERROR_LIMIT;
1962        c->idle_max_writeback_rate_enabled = 1;
1963        WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1964
1965        return c;
1966err:
1967        bch_cache_set_unregister(c);
1968        return NULL;
1969}
1970
1971static int run_cache_set(struct cache_set *c)
1972{
1973        const char *err = "cannot allocate memory";
1974        struct cached_dev *dc, *t;
1975        struct cache *ca = c->cache;
1976        struct closure cl;
1977        LIST_HEAD(journal);
1978        struct journal_replay *l;
1979
1980        closure_init_stack(&cl);
1981
1982        c->nbuckets = ca->sb.nbuckets;
1983        set_gc_sectors(c);
1984
1985        if (CACHE_SYNC(&c->cache->sb)) {
1986                struct bkey *k;
1987                struct jset *j;
1988
1989                err = "cannot allocate memory for journal";
1990                if (bch_journal_read(c, &journal))
1991                        goto err;
1992
1993                pr_debug("btree_journal_read() done\n");
1994
1995                err = "no journal entries found";
1996                if (list_empty(&journal))
1997                        goto err;
1998
1999                j = &list_entry(journal.prev, struct journal_replay, list)->j;
2000
2001                err = "IO error reading priorities";
2002                if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]))
2003                        goto err;
2004
2005                /*
2006                 * If prio_read() fails it'll call cache_set_error and we'll
2007                 * tear everything down right away, but if we perhaps checked
2008                 * sooner we could avoid journal replay.
2009                 */
2010
2011                k = &j->btree_root;
2012
2013                err = "bad btree root";
2014                if (__bch_btree_ptr_invalid(c, k))
2015                        goto err;
2016
2017                err = "error reading btree root";
2018                c->root = bch_btree_node_get(c, NULL, k,
2019                                             j->btree_level,
2020                                             true, NULL);
2021                if (IS_ERR_OR_NULL(c->root))
2022                        goto err;
2023
2024                list_del_init(&c->root->list);
2025                rw_unlock(true, c->root);
2026
2027                err = uuid_read(c, j, &cl);
2028                if (err)
2029                        goto err;
2030
2031                err = "error in recovery";
2032                if (bch_btree_check(c))
2033                        goto err;
2034
2035                bch_journal_mark(c, &journal);
2036                bch_initial_gc_finish(c);
2037                pr_debug("btree_check() done\n");
2038
2039                /*
2040                 * bcache_journal_next() can't happen sooner, or
2041                 * btree_gc_finish() will give spurious errors about last_gc >
2042                 * gc_gen - this is a hack but oh well.
2043                 */
2044                bch_journal_next(&c->journal);
2045
2046                err = "error starting allocator thread";
2047                if (bch_cache_allocator_start(ca))
2048                        goto err;
2049
2050                /*
2051                 * First place it's safe to allocate: btree_check() and
2052                 * btree_gc_finish() have to run before we have buckets to
2053                 * allocate, and bch_bucket_alloc_set() might cause a journal
2054                 * entry to be written so bcache_journal_next() has to be called
2055                 * first.
2056                 *
2057                 * If the uuids were in the old format we have to rewrite them
2058                 * before the next journal entry is written:
2059                 */
2060                if (j->version < BCACHE_JSET_VERSION_UUID)
2061                        __uuid_write(c);
2062
2063                err = "bcache: replay journal failed";
2064                if (bch_journal_replay(c, &journal))
2065                        goto err;
2066        } else {
2067                unsigned int j;
2068
2069                pr_notice("invalidating existing data\n");
2070                ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
2071                                        2, SB_JOURNAL_BUCKETS);
2072
2073                for (j = 0; j < ca->sb.keys; j++)
2074                        ca->sb.d[j] = ca->sb.first_bucket + j;
2075
2076                bch_initial_gc_finish(c);
2077
2078                err = "error starting allocator thread";
2079                if (bch_cache_allocator_start(ca))
2080                        goto err;
2081
2082                mutex_lock(&c->bucket_lock);
2083                bch_prio_write(ca, true);
2084                mutex_unlock(&c->bucket_lock);
2085
2086                err = "cannot allocate new UUID bucket";
2087                if (__uuid_write(c))
2088                        goto err;
2089
2090                err = "cannot allocate new btree root";
2091                c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
2092                if (IS_ERR_OR_NULL(c->root))
2093                        goto err;
2094
2095                mutex_lock(&c->root->write_lock);
2096                bkey_copy_key(&c->root->key, &MAX_KEY);
2097                bch_btree_node_write(c->root, &cl);
2098                mutex_unlock(&c->root->write_lock);
2099
2100                bch_btree_set_root(c->root);
2101                rw_unlock(true, c->root);
2102
2103                /*
2104                 * We don't want to write the first journal entry until
2105                 * everything is set up - fortunately journal entries won't be
2106                 * written until the SET_CACHE_SYNC() here:
2107                 */
2108                SET_CACHE_SYNC(&c->cache->sb, true);
2109
2110                bch_journal_next(&c->journal);
2111                bch_journal_meta(c, &cl);
2112        }
2113
2114        err = "error starting gc thread";
2115        if (bch_gc_thread_start(c))
2116                goto err;
2117
2118        closure_sync(&cl);
2119        c->cache->sb.last_mount = (u32)ktime_get_real_seconds();
2120        bcache_write_super(c);
2121
2122        if (bch_has_feature_obso_large_bucket(&c->cache->sb))
2123                pr_err("Detect obsoleted large bucket layout, all attached bcache device will be read-only\n");
2124
2125        list_for_each_entry_safe(dc, t, &uncached_devices, list)
2126                bch_cached_dev_attach(dc, c, NULL);
2127
2128        flash_devs_run(c);
2129
2130        set_bit(CACHE_SET_RUNNING, &c->flags);
2131        return 0;
2132err:
2133        while (!list_empty(&journal)) {
2134                l = list_first_entry(&journal, struct journal_replay, list);
2135                list_del(&l->list);
2136                kfree(l);
2137        }
2138
2139        closure_sync(&cl);
2140
2141        bch_cache_set_error(c, "%s", err);
2142
2143        return -EIO;
2144}
2145
2146static const char *register_cache_set(struct cache *ca)
2147{
2148        char buf[12];
2149        const char *err = "cannot allocate memory";
2150        struct cache_set *c;
2151
2152        list_for_each_entry(c, &bch_cache_sets, list)
2153                if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) {
2154                        if (c->cache)
2155                                return "duplicate cache set member";
2156
2157                        goto found;
2158                }
2159
2160        c = bch_cache_set_alloc(&ca->sb);
2161        if (!c)
2162                return err;
2163
2164        err = "error creating kobject";
2165        if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) ||
2166            kobject_add(&c->internal, &c->kobj, "internal"))
2167                goto err;
2168
2169        if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
2170                goto err;
2171
2172        bch_debug_init_cache_set(c);
2173
2174        list_add(&c->list, &bch_cache_sets);
2175found:
2176        sprintf(buf, "cache%i", ca->sb.nr_this_dev);
2177        if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
2178            sysfs_create_link(&c->kobj, &ca->kobj, buf))
2179                goto err;
2180
2181        kobject_get(&ca->kobj);
2182        ca->set = c;
2183        ca->set->cache = ca;
2184
2185        err = "failed to run cache set";
2186        if (run_cache_set(c) < 0)
2187                goto err;
2188
2189        return NULL;
2190err:
2191        bch_cache_set_unregister(c);
2192        return err;
2193}
2194
2195/* Cache device */
2196
2197/* When ca->kobj released */
2198void bch_cache_release(struct kobject *kobj)
2199{
2200        struct cache *ca = container_of(kobj, struct cache, kobj);
2201        unsigned int i;
2202
2203        if (ca->set) {
2204                BUG_ON(ca->set->cache != ca);
2205                ca->set->cache = NULL;
2206        }
2207
2208        free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb)));
2209        kfree(ca->prio_buckets);
2210        vfree(ca->buckets);
2211
2212        free_heap(&ca->heap);
2213        free_fifo(&ca->free_inc);
2214
2215        for (i = 0; i < RESERVE_NR; i++)
2216                free_fifo(&ca->free[i]);
2217
2218        if (ca->sb_disk)
2219                put_page(virt_to_page(ca->sb_disk));
2220
2221        if (!IS_ERR_OR_NULL(ca->bdev))
2222                blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2223
2224        kfree(ca);
2225        module_put(THIS_MODULE);
2226}
2227
2228static int cache_alloc(struct cache *ca)
2229{
2230        size_t free;
2231        size_t btree_buckets;
2232        struct bucket *b;
2233        int ret = -ENOMEM;
2234        const char *err = NULL;
2235
2236        __module_get(THIS_MODULE);
2237        kobject_init(&ca->kobj, &bch_cache_ktype);
2238
2239        bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
2240
2241        /*
2242         * when ca->sb.njournal_buckets is not zero, journal exists,
2243         * and in bch_journal_replay(), tree node may split,
2244         * so bucket of RESERVE_BTREE type is needed,
2245         * the worst situation is all journal buckets are valid journal,
2246         * and all the keys need to replay,
2247         * so the number of  RESERVE_BTREE type buckets should be as much
2248         * as journal buckets
2249         */
2250        btree_buckets = ca->sb.njournal_buckets ?: 8;
2251        free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2252        if (!free) {
2253                ret = -EPERM;
2254                err = "ca->sb.nbuckets is too small";
2255                goto err_free;
2256        }
2257
2258        if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2259                                                GFP_KERNEL)) {
2260                err = "ca->free[RESERVE_BTREE] alloc failed";
2261                goto err_btree_alloc;
2262        }
2263
2264        if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2265                                                        GFP_KERNEL)) {
2266                err = "ca->free[RESERVE_PRIO] alloc failed";
2267                goto err_prio_alloc;
2268        }
2269
2270        if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2271                err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2272                goto err_movinggc_alloc;
2273        }
2274
2275        if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2276                err = "ca->free[RESERVE_NONE] alloc failed";
2277                goto err_none_alloc;
2278        }
2279
2280        if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2281                err = "ca->free_inc alloc failed";
2282                goto err_free_inc_alloc;
2283        }
2284
2285        if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2286                err = "ca->heap alloc failed";
2287                goto err_heap_alloc;
2288        }
2289
2290        ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2291                              ca->sb.nbuckets));
2292        if (!ca->buckets) {
2293                err = "ca->buckets alloc failed";
2294                goto err_buckets_alloc;
2295        }
2296
2297        ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2298                                   prio_buckets(ca), 2),
2299                                   GFP_KERNEL);
2300        if (!ca->prio_buckets) {
2301                err = "ca->prio_buckets alloc failed";
2302                goto err_prio_buckets_alloc;
2303        }
2304
2305        ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb);
2306        if (!ca->disk_buckets) {
2307                err = "ca->disk_buckets alloc failed";
2308                goto err_disk_buckets_alloc;
2309        }
2310
2311        ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2312
2313        for_each_bucket(b, ca)
2314                atomic_set(&b->pin, 0);
2315        return 0;
2316
2317err_disk_buckets_alloc:
2318        kfree(ca->prio_buckets);
2319err_prio_buckets_alloc:
2320        vfree(ca->buckets);
2321err_buckets_alloc:
2322        free_heap(&ca->heap);
2323err_heap_alloc:
2324        free_fifo(&ca->free_inc);
2325err_free_inc_alloc:
2326        free_fifo(&ca->free[RESERVE_NONE]);
2327err_none_alloc:
2328        free_fifo(&ca->free[RESERVE_MOVINGGC]);
2329err_movinggc_alloc:
2330        free_fifo(&ca->free[RESERVE_PRIO]);
2331err_prio_alloc:
2332        free_fifo(&ca->free[RESERVE_BTREE]);
2333err_btree_alloc:
2334err_free:
2335        module_put(THIS_MODULE);
2336        if (err)
2337                pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2338        return ret;
2339}
2340
2341static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
2342                                struct block_device *bdev, struct cache *ca)
2343{
2344        const char *err = NULL; /* must be set for any error case */
2345        int ret = 0;
2346
2347        bdevname(bdev, ca->cache_dev_name);
2348        memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2349        ca->bdev = bdev;
2350        ca->bdev->bd_holder = ca;
2351        ca->sb_disk = sb_disk;
2352
2353        if (blk_queue_discard(bdev_get_queue(bdev)))
2354                ca->discard = CACHE_DISCARD(&ca->sb);
2355
2356        ret = cache_alloc(ca);
2357        if (ret != 0) {
2358                /*
2359                 * If we failed here, it means ca->kobj is not initialized yet,
2360                 * kobject_put() won't be called and there is no chance to
2361                 * call blkdev_put() to bdev in bch_cache_release(). So we
2362                 * explicitly call blkdev_put() here.
2363                 */
2364                blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2365                if (ret == -ENOMEM)
2366                        err = "cache_alloc(): -ENOMEM";
2367                else if (ret == -EPERM)
2368                        err = "cache_alloc(): cache device is too small";
2369                else
2370                        err = "cache_alloc(): unknown error";
2371                goto err;
2372        }
2373
2374        if (kobject_add(&ca->kobj, bdev_kobj(bdev), "bcache")) {
2375                err = "error calling kobject_add";
2376                ret = -ENOMEM;
2377                goto out;
2378        }
2379
2380        mutex_lock(&bch_register_lock);
2381        err = register_cache_set(ca);
2382        mutex_unlock(&bch_register_lock);
2383
2384        if (err) {
2385                ret = -ENODEV;
2386                goto out;
2387        }
2388
2389        pr_info("registered cache device %s\n", ca->cache_dev_name);
2390
2391out:
2392        kobject_put(&ca->kobj);
2393
2394err:
2395        if (err)
2396                pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2397
2398        return ret;
2399}
2400
2401/* Global interfaces/init */
2402
2403static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2404                               const char *buffer, size_t size);
2405static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2406                                         struct kobj_attribute *attr,
2407                                         const char *buffer, size_t size);
2408
2409kobj_attribute_write(register,          register_bcache);
2410kobj_attribute_write(register_quiet,    register_bcache);
2411kobj_attribute_write(pendings_cleanup,  bch_pending_bdevs_cleanup);
2412
2413static bool bch_is_open_backing(dev_t dev)
2414{
2415        struct cache_set *c, *tc;
2416        struct cached_dev *dc, *t;
2417
2418        list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2419                list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2420                        if (dc->bdev->bd_dev == dev)
2421                                return true;
2422        list_for_each_entry_safe(dc, t, &uncached_devices, list)
2423                if (dc->bdev->bd_dev == dev)
2424                        return true;
2425        return false;
2426}
2427
2428static bool bch_is_open_cache(dev_t dev)
2429{
2430        struct cache_set *c, *tc;
2431
2432        list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2433                struct cache *ca = c->cache;
2434
2435                if (ca->bdev->bd_dev == dev)
2436                        return true;
2437        }
2438
2439        return false;
2440}
2441
2442static bool bch_is_open(dev_t dev)
2443{
2444        return bch_is_open_cache(dev) || bch_is_open_backing(dev);
2445}
2446
2447struct async_reg_args {
2448        struct delayed_work reg_work;
2449        char *path;
2450        struct cache_sb *sb;
2451        struct cache_sb_disk *sb_disk;
2452        struct block_device *bdev;
2453};
2454
2455static void register_bdev_worker(struct work_struct *work)
2456{
2457        int fail = false;
2458        struct async_reg_args *args =
2459                container_of(work, struct async_reg_args, reg_work.work);
2460        struct cached_dev *dc;
2461
2462        dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2463        if (!dc) {
2464                fail = true;
2465                put_page(virt_to_page(args->sb_disk));
2466                blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2467                goto out;
2468        }
2469
2470        mutex_lock(&bch_register_lock);
2471        if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0)
2472                fail = true;
2473        mutex_unlock(&bch_register_lock);
2474
2475out:
2476        if (fail)
2477                pr_info("error %s: fail to register backing device\n",
2478                        args->path);
2479        kfree(args->sb);
2480        kfree(args->path);
2481        kfree(args);
2482        module_put(THIS_MODULE);
2483}
2484
2485static void register_cache_worker(struct work_struct *work)
2486{
2487        int fail = false;
2488        struct async_reg_args *args =
2489                container_of(work, struct async_reg_args, reg_work.work);
2490        struct cache *ca;
2491
2492        ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2493        if (!ca) {
2494                fail = true;
2495                put_page(virt_to_page(args->sb_disk));
2496                blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2497                goto out;
2498        }
2499
2500        /* blkdev_put() will be called in bch_cache_release() */
2501        if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0)
2502                fail = true;
2503
2504out:
2505        if (fail)
2506                pr_info("error %s: fail to register cache device\n",
2507                        args->path);
2508        kfree(args->sb);
2509        kfree(args->path);
2510        kfree(args);
2511        module_put(THIS_MODULE);
2512}
2513
2514static void register_device_async(struct async_reg_args *args)
2515{
2516        if (SB_IS_BDEV(args->sb))
2517                INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker);
2518        else
2519                INIT_DELAYED_WORK(&args->reg_work, register_cache_worker);
2520
2521        /* 10 jiffies is enough for a delay */
2522        queue_delayed_work(system_wq, &args->reg_work, 10);
2523}
2524
2525static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2526                               const char *buffer, size_t size)
2527{
2528        const char *err;
2529        char *path = NULL;
2530        struct cache_sb *sb;
2531        struct cache_sb_disk *sb_disk;
2532        struct block_device *bdev;
2533        ssize_t ret;
2534        bool async_registration = false;
2535
2536#ifdef CONFIG_BCACHE_ASYNC_REGISTRATION
2537        async_registration = true;
2538#endif
2539
2540        ret = -EBUSY;
2541        err = "failed to reference bcache module";
2542        if (!try_module_get(THIS_MODULE))
2543                goto out;
2544
2545        /* For latest state of bcache_is_reboot */
2546        smp_mb();
2547        err = "bcache is in reboot";
2548        if (bcache_is_reboot)
2549                goto out_module_put;
2550
2551        ret = -ENOMEM;
2552        err = "cannot allocate memory";
2553        path = kstrndup(buffer, size, GFP_KERNEL);
2554        if (!path)
2555                goto out_module_put;
2556
2557        sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2558        if (!sb)
2559                goto out_free_path;
2560
2561        ret = -EINVAL;
2562        err = "failed to open device";
2563        bdev = blkdev_get_by_path(strim(path),
2564                                  FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2565                                  sb);
2566        if (IS_ERR(bdev)) {
2567                if (bdev == ERR_PTR(-EBUSY)) {
2568                        dev_t dev;
2569
2570                        mutex_lock(&bch_register_lock);
2571                        if (lookup_bdev(strim(path), &dev) == 0 &&
2572                            bch_is_open(dev))
2573                                err = "device already registered";
2574                        else
2575                                err = "device busy";
2576                        mutex_unlock(&bch_register_lock);
2577                        if (attr == &ksysfs_register_quiet)
2578                                goto done;
2579                }
2580                goto out_free_sb;
2581        }
2582
2583        err = "failed to set blocksize";
2584        if (set_blocksize(bdev, 4096))
2585                goto out_blkdev_put;
2586
2587        err = read_super(sb, bdev, &sb_disk);
2588        if (err)
2589                goto out_blkdev_put;
2590
2591        err = "failed to register device";
2592
2593        if (async_registration) {
2594                /* register in asynchronous way */
2595                struct async_reg_args *args =
2596                        kzalloc(sizeof(struct async_reg_args), GFP_KERNEL);
2597
2598                if (!args) {
2599                        ret = -ENOMEM;
2600                        err = "cannot allocate memory";
2601                        goto out_put_sb_page;
2602                }
2603
2604                args->path      = path;
2605                args->sb        = sb;
2606                args->sb_disk   = sb_disk;
2607                args->bdev      = bdev;
2608                register_device_async(args);
2609                /* No wait and returns to user space */
2610                goto async_done;
2611        }
2612
2613        if (SB_IS_BDEV(sb)) {
2614                struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2615
2616                if (!dc)
2617                        goto out_put_sb_page;
2618
2619                mutex_lock(&bch_register_lock);
2620                ret = register_bdev(sb, sb_disk, bdev, dc);
2621                mutex_unlock(&bch_register_lock);
2622                /* blkdev_put() will be called in cached_dev_free() */
2623                if (ret < 0)
2624                        goto out_free_sb;
2625        } else {
2626                struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2627
2628                if (!ca)
2629                        goto out_put_sb_page;
2630
2631                /* blkdev_put() will be called in bch_cache_release() */
2632                if (register_cache(sb, sb_disk, bdev, ca) != 0)
2633                        goto out_free_sb;
2634        }
2635
2636done:
2637        kfree(sb);
2638        kfree(path);
2639        module_put(THIS_MODULE);
2640async_done:
2641        return size;
2642
2643out_put_sb_page:
2644        put_page(virt_to_page(sb_disk));
2645out_blkdev_put:
2646        blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2647out_free_sb:
2648        kfree(sb);
2649out_free_path:
2650        kfree(path);
2651        path = NULL;
2652out_module_put:
2653        module_put(THIS_MODULE);
2654out:
2655        pr_info("error %s: %s\n", path?path:"", err);
2656        return ret;
2657}
2658
2659
2660struct pdev {
2661        struct list_head list;
2662        struct cached_dev *dc;
2663};
2664
2665static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2666                                         struct kobj_attribute *attr,
2667                                         const char *buffer,
2668                                         size_t size)
2669{
2670        LIST_HEAD(pending_devs);
2671        ssize_t ret = size;
2672        struct cached_dev *dc, *tdc;
2673        struct pdev *pdev, *tpdev;
2674        struct cache_set *c, *tc;
2675
2676        mutex_lock(&bch_register_lock);
2677        list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
2678                pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL);
2679                if (!pdev)
2680                        break;
2681                pdev->dc = dc;
2682                list_add(&pdev->list, &pending_devs);
2683        }
2684
2685        list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2686                char *pdev_set_uuid = pdev->dc->sb.set_uuid;
2687                list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2688                        char *set_uuid = c->set_uuid;
2689
2690                        if (!memcmp(pdev_set_uuid, set_uuid, 16)) {
2691                                list_del(&pdev->list);
2692                                kfree(pdev);
2693                                break;
2694                        }
2695                }
2696        }
2697        mutex_unlock(&bch_register_lock);
2698
2699        list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2700                pr_info("delete pdev %p\n", pdev);
2701                list_del(&pdev->list);
2702                bcache_device_stop(&pdev->dc->disk);
2703                kfree(pdev);
2704        }
2705
2706        return ret;
2707}
2708
2709static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2710{
2711        if (bcache_is_reboot)
2712                return NOTIFY_DONE;
2713
2714        if (code == SYS_DOWN ||
2715            code == SYS_HALT ||
2716            code == SYS_POWER_OFF) {
2717                DEFINE_WAIT(wait);
2718                unsigned long start = jiffies;
2719                bool stopped = false;
2720
2721                struct cache_set *c, *tc;
2722                struct cached_dev *dc, *tdc;
2723
2724                mutex_lock(&bch_register_lock);
2725
2726                if (bcache_is_reboot)
2727                        goto out;
2728
2729                /* New registration is rejected since now */
2730                bcache_is_reboot = true;
2731                /*
2732                 * Make registering caller (if there is) on other CPU
2733                 * core know bcache_is_reboot set to true earlier
2734                 */
2735                smp_mb();
2736
2737                if (list_empty(&bch_cache_sets) &&
2738                    list_empty(&uncached_devices))
2739                        goto out;
2740
2741                mutex_unlock(&bch_register_lock);
2742
2743                pr_info("Stopping all devices:\n");
2744
2745                /*
2746                 * The reason bch_register_lock is not held to call
2747                 * bch_cache_set_stop() and bcache_device_stop() is to
2748                 * avoid potential deadlock during reboot, because cache
2749                 * set or bcache device stopping process will acqurie
2750                 * bch_register_lock too.
2751                 *
2752                 * We are safe here because bcache_is_reboot sets to
2753                 * true already, register_bcache() will reject new
2754                 * registration now. bcache_is_reboot also makes sure
2755                 * bcache_reboot() won't be re-entered on by other thread,
2756                 * so there is no race in following list iteration by
2757                 * list_for_each_entry_safe().
2758                 */
2759                list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2760                        bch_cache_set_stop(c);
2761
2762                list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2763                        bcache_device_stop(&dc->disk);
2764
2765
2766                /*
2767                 * Give an early chance for other kthreads and
2768                 * kworkers to stop themselves
2769                 */
2770                schedule();
2771
2772                /* What's a condition variable? */
2773                while (1) {
2774                        long timeout = start + 10 * HZ - jiffies;
2775
2776                        mutex_lock(&bch_register_lock);
2777                        stopped = list_empty(&bch_cache_sets) &&
2778                                list_empty(&uncached_devices);
2779
2780                        if (timeout < 0 || stopped)
2781                                break;
2782
2783                        prepare_to_wait(&unregister_wait, &wait,
2784                                        TASK_UNINTERRUPTIBLE);
2785
2786                        mutex_unlock(&bch_register_lock);
2787                        schedule_timeout(timeout);
2788                }
2789
2790                finish_wait(&unregister_wait, &wait);
2791
2792                if (stopped)
2793                        pr_info("All devices stopped\n");
2794                else
2795                        pr_notice("Timeout waiting for devices to be closed\n");
2796out:
2797                mutex_unlock(&bch_register_lock);
2798        }
2799
2800        return NOTIFY_DONE;
2801}
2802
2803static struct notifier_block reboot = {
2804        .notifier_call  = bcache_reboot,
2805        .priority       = INT_MAX, /* before any real devices */
2806};
2807
2808static void bcache_exit(void)
2809{
2810        bch_debug_exit();
2811        bch_request_exit();
2812        if (bcache_kobj)
2813                kobject_put(bcache_kobj);
2814        if (bcache_wq)
2815                destroy_workqueue(bcache_wq);
2816        if (bch_journal_wq)
2817                destroy_workqueue(bch_journal_wq);
2818        if (bch_flush_wq)
2819                destroy_workqueue(bch_flush_wq);
2820        bch_btree_exit();
2821
2822        if (bcache_major)
2823                unregister_blkdev(bcache_major, "bcache");
2824        unregister_reboot_notifier(&reboot);
2825        mutex_destroy(&bch_register_lock);
2826}
2827
2828/* Check and fixup module parameters */
2829static void check_module_parameters(void)
2830{
2831        if (bch_cutoff_writeback_sync == 0)
2832                bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
2833        else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
2834                pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n",
2835                        bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
2836                bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
2837        }
2838
2839        if (bch_cutoff_writeback == 0)
2840                bch_cutoff_writeback = CUTOFF_WRITEBACK;
2841        else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
2842                pr_warn("set bch_cutoff_writeback (%u) to max value %u\n",
2843                        bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
2844                bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
2845        }
2846
2847        if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
2848                pr_warn("set bch_cutoff_writeback (%u) to %u\n",
2849                        bch_cutoff_writeback, bch_cutoff_writeback_sync);
2850                bch_cutoff_writeback = bch_cutoff_writeback_sync;
2851        }
2852}
2853
2854static int __init bcache_init(void)
2855{
2856        static const struct attribute *files[] = {
2857                &ksysfs_register.attr,
2858                &ksysfs_register_quiet.attr,
2859                &ksysfs_pendings_cleanup.attr,
2860                NULL
2861        };
2862
2863        check_module_parameters();
2864
2865        mutex_init(&bch_register_lock);
2866        init_waitqueue_head(&unregister_wait);
2867        register_reboot_notifier(&reboot);
2868
2869        bcache_major = register_blkdev(0, "bcache");
2870        if (bcache_major < 0) {
2871                unregister_reboot_notifier(&reboot);
2872                mutex_destroy(&bch_register_lock);
2873                return bcache_major;
2874        }
2875
2876        if (bch_btree_init())
2877                goto err;
2878
2879        bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
2880        if (!bcache_wq)
2881                goto err;
2882
2883        /*
2884         * Let's not make this `WQ_MEM_RECLAIM` for the following reasons:
2885         *
2886         * 1. It used `system_wq` before which also does no memory reclaim.
2887         * 2. With `WQ_MEM_RECLAIM` desktop stalls, increased boot times, and
2888         *    reduced throughput can be observed.
2889         *
2890         * We still want to user our own queue to not congest the `system_wq`.
2891         */
2892        bch_flush_wq = alloc_workqueue("bch_flush", 0, 0);
2893        if (!bch_flush_wq)
2894                goto err;
2895
2896        bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
2897        if (!bch_journal_wq)
2898                goto err;
2899
2900        bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2901        if (!bcache_kobj)
2902                goto err;
2903
2904        if (bch_request_init() ||
2905            sysfs_create_files(bcache_kobj, files))
2906                goto err;
2907
2908        bch_debug_init();
2909        closure_debug_init();
2910
2911        bcache_is_reboot = false;
2912
2913        return 0;
2914err:
2915        bcache_exit();
2916        return -ENOMEM;
2917}
2918
2919/*
2920 * Module hooks
2921 */
2922module_exit(bcache_exit);
2923module_init(bcache_init);
2924
2925module_param(bch_cutoff_writeback, uint, 0);
2926MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
2927
2928module_param(bch_cutoff_writeback_sync, uint, 0);
2929MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
2930
2931MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2932MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2933MODULE_LICENSE("GPL");
2934