linux/drivers/md/bcache/writeback.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * background writeback - scan btree for dirty data and write it to the backing
   4 * device
   5 *
   6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
   7 * Copyright 2012 Google, Inc.
   8 */
   9
  10#include "bcache.h"
  11#include "btree.h"
  12#include "debug.h"
  13#include "writeback.h"
  14
  15#include <linux/delay.h>
  16#include <linux/kthread.h>
  17#include <linux/sched/clock.h>
  18#include <trace/events/bcache.h>
  19
  20static void update_gc_after_writeback(struct cache_set *c)
  21{
  22        if (c->gc_after_writeback != (BCH_ENABLE_AUTO_GC) ||
  23            c->gc_stats.in_use < BCH_AUTO_GC_DIRTY_THRESHOLD)
  24                return;
  25
  26        c->gc_after_writeback |= BCH_DO_AUTO_GC;
  27}
  28
  29/* Rate limiting */
  30static uint64_t __calc_target_rate(struct cached_dev *dc)
  31{
  32        struct cache_set *c = dc->disk.c;
  33
  34        /*
  35         * This is the size of the cache, minus the amount used for
  36         * flash-only devices
  37         */
  38        uint64_t cache_sectors = c->nbuckets * c->cache->sb.bucket_size -
  39                                atomic_long_read(&c->flash_dev_dirty_sectors);
  40
  41        /*
  42         * Unfortunately there is no control of global dirty data.  If the
  43         * user states that they want 10% dirty data in the cache, and has,
  44         * e.g., 5 backing volumes of equal size, we try and ensure each
  45         * backing volume uses about 2% of the cache for dirty data.
  46         */
  47        uint32_t bdev_share =
  48                div64_u64(bdev_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT,
  49                                c->cached_dev_sectors);
  50
  51        uint64_t cache_dirty_target =
  52                div_u64(cache_sectors * dc->writeback_percent, 100);
  53
  54        /* Ensure each backing dev gets at least one dirty share */
  55        if (bdev_share < 1)
  56                bdev_share = 1;
  57
  58        return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT;
  59}
  60
  61static void __update_writeback_rate(struct cached_dev *dc)
  62{
  63        /*
  64         * PI controller:
  65         * Figures out the amount that should be written per second.
  66         *
  67         * First, the error (number of sectors that are dirty beyond our
  68         * target) is calculated.  The error is accumulated (numerically
  69         * integrated).
  70         *
  71         * Then, the proportional value and integral value are scaled
  72         * based on configured values.  These are stored as inverses to
  73         * avoid fixed point math and to make configuration easy-- e.g.
  74         * the default value of 40 for writeback_rate_p_term_inverse
  75         * attempts to write at a rate that would retire all the dirty
  76         * blocks in 40 seconds.
  77         *
  78         * The writeback_rate_i_inverse value of 10000 means that 1/10000th
  79         * of the error is accumulated in the integral term per second.
  80         * This acts as a slow, long-term average that is not subject to
  81         * variations in usage like the p term.
  82         */
  83        int64_t target = __calc_target_rate(dc);
  84        int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
  85        int64_t error = dirty - target;
  86        int64_t proportional_scaled =
  87                div_s64(error, dc->writeback_rate_p_term_inverse);
  88        int64_t integral_scaled;
  89        uint32_t new_rate;
  90
  91        /*
  92         * We need to consider the number of dirty buckets as well
  93         * when calculating the proportional_scaled, Otherwise we might
  94         * have an unreasonable small writeback rate at a highly fragmented situation
  95         * when very few dirty sectors consumed a lot dirty buckets, the
  96         * worst case is when dirty buckets reached cutoff_writeback_sync and
  97         * dirty data is still not even reached to writeback percent, so the rate
  98         * still will be at the minimum value, which will cause the write
  99         * stuck at a non-writeback mode.
 100         */
 101        struct cache_set *c = dc->disk.c;
 102
 103        int64_t dirty_buckets = c->nbuckets - c->avail_nbuckets;
 104
 105        if (dc->writeback_consider_fragment &&
 106                c->gc_stats.in_use > BCH_WRITEBACK_FRAGMENT_THRESHOLD_LOW && dirty > 0) {
 107                int64_t fragment =
 108                        div_s64((dirty_buckets *  c->cache->sb.bucket_size), dirty);
 109                int64_t fp_term;
 110                int64_t fps;
 111
 112                if (c->gc_stats.in_use <= BCH_WRITEBACK_FRAGMENT_THRESHOLD_MID) {
 113                        fp_term = (int64_t)dc->writeback_rate_fp_term_low *
 114                        (c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_LOW);
 115                } else if (c->gc_stats.in_use <= BCH_WRITEBACK_FRAGMENT_THRESHOLD_HIGH) {
 116                        fp_term = (int64_t)dc->writeback_rate_fp_term_mid *
 117                        (c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_MID);
 118                } else {
 119                        fp_term = (int64_t)dc->writeback_rate_fp_term_high *
 120                        (c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_HIGH);
 121                }
 122                fps = div_s64(dirty, dirty_buckets) * fp_term;
 123                if (fragment > 3 && fps > proportional_scaled) {
 124                        /* Only overrite the p when fragment > 3 */
 125                        proportional_scaled = fps;
 126                }
 127        }
 128
 129        if ((error < 0 && dc->writeback_rate_integral > 0) ||
 130            (error > 0 && time_before64(local_clock(),
 131                         dc->writeback_rate.next + NSEC_PER_MSEC))) {
 132                /*
 133                 * Only decrease the integral term if it's more than
 134                 * zero.  Only increase the integral term if the device
 135                 * is keeping up.  (Don't wind up the integral
 136                 * ineffectively in either case).
 137                 *
 138                 * It's necessary to scale this by
 139                 * writeback_rate_update_seconds to keep the integral
 140                 * term dimensioned properly.
 141                 */
 142                dc->writeback_rate_integral += error *
 143                        dc->writeback_rate_update_seconds;
 144        }
 145
 146        integral_scaled = div_s64(dc->writeback_rate_integral,
 147                        dc->writeback_rate_i_term_inverse);
 148
 149        new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled),
 150                        dc->writeback_rate_minimum, NSEC_PER_SEC);
 151
 152        dc->writeback_rate_proportional = proportional_scaled;
 153        dc->writeback_rate_integral_scaled = integral_scaled;
 154        dc->writeback_rate_change = new_rate -
 155                        atomic_long_read(&dc->writeback_rate.rate);
 156        atomic_long_set(&dc->writeback_rate.rate, new_rate);
 157        dc->writeback_rate_target = target;
 158}
 159
 160static bool set_at_max_writeback_rate(struct cache_set *c,
 161                                       struct cached_dev *dc)
 162{
 163        /* Don't sst max writeback rate if it is disabled */
 164        if (!c->idle_max_writeback_rate_enabled)
 165                return false;
 166
 167        /* Don't set max writeback rate if gc is running */
 168        if (!c->gc_mark_valid)
 169                return false;
 170        /*
 171         * Idle_counter is increased everytime when update_writeback_rate() is
 172         * called. If all backing devices attached to the same cache set have
 173         * identical dc->writeback_rate_update_seconds values, it is about 6
 174         * rounds of update_writeback_rate() on each backing device before
 175         * c->at_max_writeback_rate is set to 1, and then max wrteback rate set
 176         * to each dc->writeback_rate.rate.
 177         * In order to avoid extra locking cost for counting exact dirty cached
 178         * devices number, c->attached_dev_nr is used to calculate the idle
 179         * throushold. It might be bigger if not all cached device are in write-
 180         * back mode, but it still works well with limited extra rounds of
 181         * update_writeback_rate().
 182         */
 183        if (atomic_inc_return(&c->idle_counter) <
 184            atomic_read(&c->attached_dev_nr) * 6)
 185                return false;
 186
 187        if (atomic_read(&c->at_max_writeback_rate) != 1)
 188                atomic_set(&c->at_max_writeback_rate, 1);
 189
 190        atomic_long_set(&dc->writeback_rate.rate, INT_MAX);
 191
 192        /* keep writeback_rate_target as existing value */
 193        dc->writeback_rate_proportional = 0;
 194        dc->writeback_rate_integral_scaled = 0;
 195        dc->writeback_rate_change = 0;
 196
 197        /*
 198         * Check c->idle_counter and c->at_max_writeback_rate agagain in case
 199         * new I/O arrives during before set_at_max_writeback_rate() returns.
 200         * Then the writeback rate is set to 1, and its new value should be
 201         * decided via __update_writeback_rate().
 202         */
 203        if ((atomic_read(&c->idle_counter) <
 204             atomic_read(&c->attached_dev_nr) * 6) ||
 205            !atomic_read(&c->at_max_writeback_rate))
 206                return false;
 207
 208        return true;
 209}
 210
 211static void update_writeback_rate(struct work_struct *work)
 212{
 213        struct cached_dev *dc = container_of(to_delayed_work(work),
 214                                             struct cached_dev,
 215                                             writeback_rate_update);
 216        struct cache_set *c = dc->disk.c;
 217
 218        /*
 219         * should check BCACHE_DEV_RATE_DW_RUNNING before calling
 220         * cancel_delayed_work_sync().
 221         */
 222        set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
 223        /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
 224        smp_mb__after_atomic();
 225
 226        /*
 227         * CACHE_SET_IO_DISABLE might be set via sysfs interface,
 228         * check it here too.
 229         */
 230        if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) ||
 231            test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
 232                clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
 233                /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
 234                smp_mb__after_atomic();
 235                return;
 236        }
 237
 238        if (atomic_read(&dc->has_dirty) && dc->writeback_percent) {
 239                /*
 240                 * If the whole cache set is idle, set_at_max_writeback_rate()
 241                 * will set writeback rate to a max number. Then it is
 242                 * unncessary to update writeback rate for an idle cache set
 243                 * in maximum writeback rate number(s).
 244                 */
 245                if (!set_at_max_writeback_rate(c, dc)) {
 246                        down_read(&dc->writeback_lock);
 247                        __update_writeback_rate(dc);
 248                        update_gc_after_writeback(c);
 249                        up_read(&dc->writeback_lock);
 250                }
 251        }
 252
 253
 254        /*
 255         * CACHE_SET_IO_DISABLE might be set via sysfs interface,
 256         * check it here too.
 257         */
 258        if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) &&
 259            !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
 260                schedule_delayed_work(&dc->writeback_rate_update,
 261                              dc->writeback_rate_update_seconds * HZ);
 262        }
 263
 264        /*
 265         * should check BCACHE_DEV_RATE_DW_RUNNING before calling
 266         * cancel_delayed_work_sync().
 267         */
 268        clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
 269        /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
 270        smp_mb__after_atomic();
 271}
 272
 273static unsigned int writeback_delay(struct cached_dev *dc,
 274                                    unsigned int sectors)
 275{
 276        if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
 277            !dc->writeback_percent)
 278                return 0;
 279
 280        return bch_next_delay(&dc->writeback_rate, sectors);
 281}
 282
 283struct dirty_io {
 284        struct closure          cl;
 285        struct cached_dev       *dc;
 286        uint16_t                sequence;
 287        struct bio              bio;
 288};
 289
 290static void dirty_init(struct keybuf_key *w)
 291{
 292        struct dirty_io *io = w->private;
 293        struct bio *bio = &io->bio;
 294
 295        bio_init(bio, bio->bi_inline_vecs,
 296                 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS));
 297        if (!io->dc->writeback_percent)
 298                bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
 299
 300        bio->bi_iter.bi_size    = KEY_SIZE(&w->key) << 9;
 301        bio->bi_private         = w;
 302        bch_bio_map(bio, NULL);
 303}
 304
 305static void dirty_io_destructor(struct closure *cl)
 306{
 307        struct dirty_io *io = container_of(cl, struct dirty_io, cl);
 308
 309        kfree(io);
 310}
 311
 312static void write_dirty_finish(struct closure *cl)
 313{
 314        struct dirty_io *io = container_of(cl, struct dirty_io, cl);
 315        struct keybuf_key *w = io->bio.bi_private;
 316        struct cached_dev *dc = io->dc;
 317
 318        bio_free_pages(&io->bio);
 319
 320        /* This is kind of a dumb way of signalling errors. */
 321        if (KEY_DIRTY(&w->key)) {
 322                int ret;
 323                unsigned int i;
 324                struct keylist keys;
 325
 326                bch_keylist_init(&keys);
 327
 328                bkey_copy(keys.top, &w->key);
 329                SET_KEY_DIRTY(keys.top, false);
 330                bch_keylist_push(&keys);
 331
 332                for (i = 0; i < KEY_PTRS(&w->key); i++)
 333                        atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
 334
 335                ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
 336
 337                if (ret)
 338                        trace_bcache_writeback_collision(&w->key);
 339
 340                atomic_long_inc(ret
 341                                ? &dc->disk.c->writeback_keys_failed
 342                                : &dc->disk.c->writeback_keys_done);
 343        }
 344
 345        bch_keybuf_del(&dc->writeback_keys, w);
 346        up(&dc->in_flight);
 347
 348        closure_return_with_destructor(cl, dirty_io_destructor);
 349}
 350
 351static void dirty_endio(struct bio *bio)
 352{
 353        struct keybuf_key *w = bio->bi_private;
 354        struct dirty_io *io = w->private;
 355
 356        if (bio->bi_status) {
 357                SET_KEY_DIRTY(&w->key, false);
 358                bch_count_backing_io_errors(io->dc, bio);
 359        }
 360
 361        closure_put(&io->cl);
 362}
 363
 364static void write_dirty(struct closure *cl)
 365{
 366        struct dirty_io *io = container_of(cl, struct dirty_io, cl);
 367        struct keybuf_key *w = io->bio.bi_private;
 368        struct cached_dev *dc = io->dc;
 369
 370        uint16_t next_sequence;
 371
 372        if (atomic_read(&dc->writeback_sequence_next) != io->sequence) {
 373                /* Not our turn to write; wait for a write to complete */
 374                closure_wait(&dc->writeback_ordering_wait, cl);
 375
 376                if (atomic_read(&dc->writeback_sequence_next) == io->sequence) {
 377                        /*
 378                         * Edge case-- it happened in indeterminate order
 379                         * relative to when we were added to wait list..
 380                         */
 381                        closure_wake_up(&dc->writeback_ordering_wait);
 382                }
 383
 384                continue_at(cl, write_dirty, io->dc->writeback_write_wq);
 385                return;
 386        }
 387
 388        next_sequence = io->sequence + 1;
 389
 390        /*
 391         * IO errors are signalled using the dirty bit on the key.
 392         * If we failed to read, we should not attempt to write to the
 393         * backing device.  Instead, immediately go to write_dirty_finish
 394         * to clean up.
 395         */
 396        if (KEY_DIRTY(&w->key)) {
 397                dirty_init(w);
 398                bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
 399                io->bio.bi_iter.bi_sector = KEY_START(&w->key);
 400                bio_set_dev(&io->bio, io->dc->bdev);
 401                io->bio.bi_end_io       = dirty_endio;
 402
 403                /* I/O request sent to backing device */
 404                closure_bio_submit(io->dc->disk.c, &io->bio, cl);
 405        }
 406
 407        atomic_set(&dc->writeback_sequence_next, next_sequence);
 408        closure_wake_up(&dc->writeback_ordering_wait);
 409
 410        continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
 411}
 412
 413static void read_dirty_endio(struct bio *bio)
 414{
 415        struct keybuf_key *w = bio->bi_private;
 416        struct dirty_io *io = w->private;
 417
 418        /* is_read = 1 */
 419        bch_count_io_errors(io->dc->disk.c->cache,
 420                            bio->bi_status, 1,
 421                            "reading dirty data from cache");
 422
 423        dirty_endio(bio);
 424}
 425
 426static void read_dirty_submit(struct closure *cl)
 427{
 428        struct dirty_io *io = container_of(cl, struct dirty_io, cl);
 429
 430        closure_bio_submit(io->dc->disk.c, &io->bio, cl);
 431
 432        continue_at(cl, write_dirty, io->dc->writeback_write_wq);
 433}
 434
 435static void read_dirty(struct cached_dev *dc)
 436{
 437        unsigned int delay = 0;
 438        struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w;
 439        size_t size;
 440        int nk, i;
 441        struct dirty_io *io;
 442        struct closure cl;
 443        uint16_t sequence = 0;
 444
 445        BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list));
 446        atomic_set(&dc->writeback_sequence_next, sequence);
 447        closure_init_stack(&cl);
 448
 449        /*
 450         * XXX: if we error, background writeback just spins. Should use some
 451         * mempools.
 452         */
 453
 454        next = bch_keybuf_next(&dc->writeback_keys);
 455
 456        while (!kthread_should_stop() &&
 457               !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
 458               next) {
 459                size = 0;
 460                nk = 0;
 461
 462                do {
 463                        BUG_ON(ptr_stale(dc->disk.c, &next->key, 0));
 464
 465                        /*
 466                         * Don't combine too many operations, even if they
 467                         * are all small.
 468                         */
 469                        if (nk >= MAX_WRITEBACKS_IN_PASS)
 470                                break;
 471
 472                        /*
 473                         * If the current operation is very large, don't
 474                         * further combine operations.
 475                         */
 476                        if (size >= MAX_WRITESIZE_IN_PASS)
 477                                break;
 478
 479                        /*
 480                         * Operations are only eligible to be combined
 481                         * if they are contiguous.
 482                         *
 483                         * TODO: add a heuristic willing to fire a
 484                         * certain amount of non-contiguous IO per pass,
 485                         * so that we can benefit from backing device
 486                         * command queueing.
 487                         */
 488                        if ((nk != 0) && bkey_cmp(&keys[nk-1]->key,
 489                                                &START_KEY(&next->key)))
 490                                break;
 491
 492                        size += KEY_SIZE(&next->key);
 493                        keys[nk++] = next;
 494                } while ((next = bch_keybuf_next(&dc->writeback_keys)));
 495
 496                /* Now we have gathered a set of 1..5 keys to write back. */
 497                for (i = 0; i < nk; i++) {
 498                        w = keys[i];
 499
 500                        io = kzalloc(struct_size(io, bio.bi_inline_vecs,
 501                                                DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS)),
 502                                     GFP_KERNEL);
 503                        if (!io)
 504                                goto err;
 505
 506                        w->private      = io;
 507                        io->dc          = dc;
 508                        io->sequence    = sequence++;
 509
 510                        dirty_init(w);
 511                        bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
 512                        io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
 513                        bio_set_dev(&io->bio, dc->disk.c->cache->bdev);
 514                        io->bio.bi_end_io       = read_dirty_endio;
 515
 516                        if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
 517                                goto err_free;
 518
 519                        trace_bcache_writeback(&w->key);
 520
 521                        down(&dc->in_flight);
 522
 523                        /*
 524                         * We've acquired a semaphore for the maximum
 525                         * simultaneous number of writebacks; from here
 526                         * everything happens asynchronously.
 527                         */
 528                        closure_call(&io->cl, read_dirty_submit, NULL, &cl);
 529                }
 530
 531                delay = writeback_delay(dc, size);
 532
 533                while (!kthread_should_stop() &&
 534                       !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
 535                       delay) {
 536                        schedule_timeout_interruptible(delay);
 537                        delay = writeback_delay(dc, 0);
 538                }
 539        }
 540
 541        if (0) {
 542err_free:
 543                kfree(w->private);
 544err:
 545                bch_keybuf_del(&dc->writeback_keys, w);
 546        }
 547
 548        /*
 549         * Wait for outstanding writeback IOs to finish (and keybuf slots to be
 550         * freed) before refilling again
 551         */
 552        closure_sync(&cl);
 553}
 554
 555/* Scan for dirty data */
 556
 557void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned int inode,
 558                                  uint64_t offset, int nr_sectors)
 559{
 560        struct bcache_device *d = c->devices[inode];
 561        unsigned int stripe_offset, sectors_dirty;
 562        int stripe;
 563
 564        if (!d)
 565                return;
 566
 567        stripe = offset_to_stripe(d, offset);
 568        if (stripe < 0)
 569                return;
 570
 571        if (UUID_FLASH_ONLY(&c->uuids[inode]))
 572                atomic_long_add(nr_sectors, &c->flash_dev_dirty_sectors);
 573
 574        stripe_offset = offset & (d->stripe_size - 1);
 575
 576        while (nr_sectors) {
 577                int s = min_t(unsigned int, abs(nr_sectors),
 578                              d->stripe_size - stripe_offset);
 579
 580                if (nr_sectors < 0)
 581                        s = -s;
 582
 583                if (stripe >= d->nr_stripes)
 584                        return;
 585
 586                sectors_dirty = atomic_add_return(s,
 587                                        d->stripe_sectors_dirty + stripe);
 588                if (sectors_dirty == d->stripe_size)
 589                        set_bit(stripe, d->full_dirty_stripes);
 590                else
 591                        clear_bit(stripe, d->full_dirty_stripes);
 592
 593                nr_sectors -= s;
 594                stripe_offset = 0;
 595                stripe++;
 596        }
 597}
 598
 599static bool dirty_pred(struct keybuf *buf, struct bkey *k)
 600{
 601        struct cached_dev *dc = container_of(buf,
 602                                             struct cached_dev,
 603                                             writeback_keys);
 604
 605        BUG_ON(KEY_INODE(k) != dc->disk.id);
 606
 607        return KEY_DIRTY(k);
 608}
 609
 610static void refill_full_stripes(struct cached_dev *dc)
 611{
 612        struct keybuf *buf = &dc->writeback_keys;
 613        unsigned int start_stripe, next_stripe;
 614        int stripe;
 615        bool wrapped = false;
 616
 617        stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
 618        if (stripe < 0)
 619                stripe = 0;
 620
 621        start_stripe = stripe;
 622
 623        while (1) {
 624                stripe = find_next_bit(dc->disk.full_dirty_stripes,
 625                                       dc->disk.nr_stripes, stripe);
 626
 627                if (stripe == dc->disk.nr_stripes)
 628                        goto next;
 629
 630                next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
 631                                                 dc->disk.nr_stripes, stripe);
 632
 633                buf->last_scanned = KEY(dc->disk.id,
 634                                        stripe * dc->disk.stripe_size, 0);
 635
 636                bch_refill_keybuf(dc->disk.c, buf,
 637                                  &KEY(dc->disk.id,
 638                                       next_stripe * dc->disk.stripe_size, 0),
 639                                  dirty_pred);
 640
 641                if (array_freelist_empty(&buf->freelist))
 642                        return;
 643
 644                stripe = next_stripe;
 645next:
 646                if (wrapped && stripe > start_stripe)
 647                        return;
 648
 649                if (stripe == dc->disk.nr_stripes) {
 650                        stripe = 0;
 651                        wrapped = true;
 652                }
 653        }
 654}
 655
 656/*
 657 * Returns true if we scanned the entire disk
 658 */
 659static bool refill_dirty(struct cached_dev *dc)
 660{
 661        struct keybuf *buf = &dc->writeback_keys;
 662        struct bkey start = KEY(dc->disk.id, 0, 0);
 663        struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
 664        struct bkey start_pos;
 665
 666        /*
 667         * make sure keybuf pos is inside the range for this disk - at bringup
 668         * we might not be attached yet so this disk's inode nr isn't
 669         * initialized then
 670         */
 671        if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
 672            bkey_cmp(&buf->last_scanned, &end) > 0)
 673                buf->last_scanned = start;
 674
 675        if (dc->partial_stripes_expensive) {
 676                refill_full_stripes(dc);
 677                if (array_freelist_empty(&buf->freelist))
 678                        return false;
 679        }
 680
 681        start_pos = buf->last_scanned;
 682        bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
 683
 684        if (bkey_cmp(&buf->last_scanned, &end) < 0)
 685                return false;
 686
 687        /*
 688         * If we get to the end start scanning again from the beginning, and
 689         * only scan up to where we initially started scanning from:
 690         */
 691        buf->last_scanned = start;
 692        bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
 693
 694        return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
 695}
 696
 697static int bch_writeback_thread(void *arg)
 698{
 699        struct cached_dev *dc = arg;
 700        struct cache_set *c = dc->disk.c;
 701        bool searched_full_index;
 702
 703        bch_ratelimit_reset(&dc->writeback_rate);
 704
 705        while (!kthread_should_stop() &&
 706               !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
 707                down_write(&dc->writeback_lock);
 708                set_current_state(TASK_INTERRUPTIBLE);
 709                /*
 710                 * If the bache device is detaching, skip here and continue
 711                 * to perform writeback. Otherwise, if no dirty data on cache,
 712                 * or there is dirty data on cache but writeback is disabled,
 713                 * the writeback thread should sleep here and wait for others
 714                 * to wake up it.
 715                 */
 716                if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
 717                    (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) {
 718                        up_write(&dc->writeback_lock);
 719
 720                        if (kthread_should_stop() ||
 721                            test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
 722                                set_current_state(TASK_RUNNING);
 723                                break;
 724                        }
 725
 726                        schedule();
 727                        continue;
 728                }
 729                set_current_state(TASK_RUNNING);
 730
 731                searched_full_index = refill_dirty(dc);
 732
 733                if (searched_full_index &&
 734                    RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
 735                        atomic_set(&dc->has_dirty, 0);
 736                        SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
 737                        bch_write_bdev_super(dc, NULL);
 738                        /*
 739                         * If bcache device is detaching via sysfs interface,
 740                         * writeback thread should stop after there is no dirty
 741                         * data on cache. BCACHE_DEV_DETACHING flag is set in
 742                         * bch_cached_dev_detach().
 743                         */
 744                        if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) {
 745                                struct closure cl;
 746
 747                                closure_init_stack(&cl);
 748                                memset(&dc->sb.set_uuid, 0, 16);
 749                                SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
 750
 751                                bch_write_bdev_super(dc, &cl);
 752                                closure_sync(&cl);
 753
 754                                up_write(&dc->writeback_lock);
 755                                break;
 756                        }
 757
 758                        /*
 759                         * When dirty data rate is high (e.g. 50%+), there might
 760                         * be heavy buckets fragmentation after writeback
 761                         * finished, which hurts following write performance.
 762                         * If users really care about write performance they
 763                         * may set BCH_ENABLE_AUTO_GC via sysfs, then when
 764                         * BCH_DO_AUTO_GC is set, garbage collection thread
 765                         * will be wake up here. After moving gc, the shrunk
 766                         * btree and discarded free buckets SSD space may be
 767                         * helpful for following write requests.
 768                         */
 769                        if (c->gc_after_writeback ==
 770                            (BCH_ENABLE_AUTO_GC|BCH_DO_AUTO_GC)) {
 771                                c->gc_after_writeback &= ~BCH_DO_AUTO_GC;
 772                                force_wake_up_gc(c);
 773                        }
 774                }
 775
 776                up_write(&dc->writeback_lock);
 777
 778                read_dirty(dc);
 779
 780                if (searched_full_index) {
 781                        unsigned int delay = dc->writeback_delay * HZ;
 782
 783                        while (delay &&
 784                               !kthread_should_stop() &&
 785                               !test_bit(CACHE_SET_IO_DISABLE, &c->flags) &&
 786                               !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
 787                                delay = schedule_timeout_interruptible(delay);
 788
 789                        bch_ratelimit_reset(&dc->writeback_rate);
 790                }
 791        }
 792
 793        if (dc->writeback_write_wq) {
 794                flush_workqueue(dc->writeback_write_wq);
 795                destroy_workqueue(dc->writeback_write_wq);
 796        }
 797        cached_dev_put(dc);
 798        wait_for_kthread_stop();
 799
 800        return 0;
 801}
 802
 803/* Init */
 804#define INIT_KEYS_EACH_TIME     500000
 805#define INIT_KEYS_SLEEP_MS      100
 806
 807struct sectors_dirty_init {
 808        struct btree_op op;
 809        unsigned int    inode;
 810        size_t          count;
 811        struct bkey     start;
 812};
 813
 814static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
 815                                 struct bkey *k)
 816{
 817        struct sectors_dirty_init *op = container_of(_op,
 818                                                struct sectors_dirty_init, op);
 819        if (KEY_INODE(k) > op->inode)
 820                return MAP_DONE;
 821
 822        if (KEY_DIRTY(k))
 823                bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
 824                                             KEY_START(k), KEY_SIZE(k));
 825
 826        op->count++;
 827        if (atomic_read(&b->c->search_inflight) &&
 828            !(op->count % INIT_KEYS_EACH_TIME)) {
 829                bkey_copy_key(&op->start, k);
 830                return -EAGAIN;
 831        }
 832
 833        return MAP_CONTINUE;
 834}
 835
 836static int bch_root_node_dirty_init(struct cache_set *c,
 837                                     struct bcache_device *d,
 838                                     struct bkey *k)
 839{
 840        struct sectors_dirty_init op;
 841        int ret;
 842
 843        bch_btree_op_init(&op.op, -1);
 844        op.inode = d->id;
 845        op.count = 0;
 846        op.start = KEY(op.inode, 0, 0);
 847
 848        do {
 849                ret = bcache_btree(map_keys_recurse,
 850                                   k,
 851                                   c->root,
 852                                   &op.op,
 853                                   &op.start,
 854                                   sectors_dirty_init_fn,
 855                                   0);
 856                if (ret == -EAGAIN)
 857                        schedule_timeout_interruptible(
 858                                msecs_to_jiffies(INIT_KEYS_SLEEP_MS));
 859                else if (ret < 0) {
 860                        pr_warn("sectors dirty init failed, ret=%d!\n", ret);
 861                        break;
 862                }
 863        } while (ret == -EAGAIN);
 864
 865        return ret;
 866}
 867
 868static int bch_dirty_init_thread(void *arg)
 869{
 870        struct dirty_init_thrd_info *info = arg;
 871        struct bch_dirty_init_state *state = info->state;
 872        struct cache_set *c = state->c;
 873        struct btree_iter iter;
 874        struct bkey *k, *p;
 875        int cur_idx, prev_idx, skip_nr;
 876
 877        k = p = NULL;
 878        cur_idx = prev_idx = 0;
 879
 880        bch_btree_iter_init(&c->root->keys, &iter, NULL);
 881        k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
 882        BUG_ON(!k);
 883
 884        p = k;
 885
 886        while (k) {
 887                spin_lock(&state->idx_lock);
 888                cur_idx = state->key_idx;
 889                state->key_idx++;
 890                spin_unlock(&state->idx_lock);
 891
 892                skip_nr = cur_idx - prev_idx;
 893
 894                while (skip_nr) {
 895                        k = bch_btree_iter_next_filter(&iter,
 896                                                       &c->root->keys,
 897                                                       bch_ptr_bad);
 898                        if (k)
 899                                p = k;
 900                        else {
 901                                atomic_set(&state->enough, 1);
 902                                /* Update state->enough earlier */
 903                                smp_mb__after_atomic();
 904                                goto out;
 905                        }
 906                        skip_nr--;
 907                        cond_resched();
 908                }
 909
 910                if (p) {
 911                        if (bch_root_node_dirty_init(c, state->d, p) < 0)
 912                                goto out;
 913                }
 914
 915                p = NULL;
 916                prev_idx = cur_idx;
 917                cond_resched();
 918        }
 919
 920out:
 921        /* In order to wake up state->wait in time */
 922        smp_mb__before_atomic();
 923        if (atomic_dec_and_test(&state->started))
 924                wake_up(&state->wait);
 925
 926        return 0;
 927}
 928
 929static int bch_btre_dirty_init_thread_nr(void)
 930{
 931        int n = num_online_cpus()/2;
 932
 933        if (n == 0)
 934                n = 1;
 935        else if (n > BCH_DIRTY_INIT_THRD_MAX)
 936                n = BCH_DIRTY_INIT_THRD_MAX;
 937
 938        return n;
 939}
 940
 941void bch_sectors_dirty_init(struct bcache_device *d)
 942{
 943        int i;
 944        struct bkey *k = NULL;
 945        struct btree_iter iter;
 946        struct sectors_dirty_init op;
 947        struct cache_set *c = d->c;
 948        struct bch_dirty_init_state *state;
 949        char name[32];
 950
 951        /* Just count root keys if no leaf node */
 952        if (c->root->level == 0) {
 953                bch_btree_op_init(&op.op, -1);
 954                op.inode = d->id;
 955                op.count = 0;
 956                op.start = KEY(op.inode, 0, 0);
 957
 958                for_each_key_filter(&c->root->keys,
 959                                    k, &iter, bch_ptr_invalid)
 960                        sectors_dirty_init_fn(&op.op, c->root, k);
 961                return;
 962        }
 963
 964        state = kzalloc(sizeof(struct bch_dirty_init_state), GFP_KERNEL);
 965        if (!state) {
 966                pr_warn("sectors dirty init failed: cannot allocate memory\n");
 967                return;
 968        }
 969
 970        state->c = c;
 971        state->d = d;
 972        state->total_threads = bch_btre_dirty_init_thread_nr();
 973        state->key_idx = 0;
 974        spin_lock_init(&state->idx_lock);
 975        atomic_set(&state->started, 0);
 976        atomic_set(&state->enough, 0);
 977        init_waitqueue_head(&state->wait);
 978
 979        for (i = 0; i < state->total_threads; i++) {
 980                /* Fetch latest state->enough earlier */
 981                smp_mb__before_atomic();
 982                if (atomic_read(&state->enough))
 983                        break;
 984
 985                state->infos[i].state = state;
 986                atomic_inc(&state->started);
 987                snprintf(name, sizeof(name), "bch_dirty_init[%d]", i);
 988
 989                state->infos[i].thread =
 990                        kthread_run(bch_dirty_init_thread,
 991                                    &state->infos[i],
 992                                    name);
 993                if (IS_ERR(state->infos[i].thread)) {
 994                        pr_err("fails to run thread bch_dirty_init[%d]\n", i);
 995                        for (--i; i >= 0; i--)
 996                                kthread_stop(state->infos[i].thread);
 997                        goto out;
 998                }
 999        }
1000
1001        wait_event_interruptible(state->wait,
1002                 atomic_read(&state->started) == 0 ||
1003                 test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1004
1005out:
1006        kfree(state);
1007}
1008
1009void bch_cached_dev_writeback_init(struct cached_dev *dc)
1010{
1011        sema_init(&dc->in_flight, 64);
1012        init_rwsem(&dc->writeback_lock);
1013        bch_keybuf_init(&dc->writeback_keys);
1014
1015        dc->writeback_metadata          = true;
1016        dc->writeback_running           = false;
1017        dc->writeback_consider_fragment = true;
1018        dc->writeback_percent           = 10;
1019        dc->writeback_delay             = 30;
1020        atomic_long_set(&dc->writeback_rate.rate, 1024);
1021        dc->writeback_rate_minimum      = 8;
1022
1023        dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT;
1024        dc->writeback_rate_p_term_inverse = 40;
1025        dc->writeback_rate_fp_term_low = 1;
1026        dc->writeback_rate_fp_term_mid = 10;
1027        dc->writeback_rate_fp_term_high = 1000;
1028        dc->writeback_rate_i_term_inverse = 10000;
1029
1030        WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
1031        INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
1032}
1033
1034int bch_cached_dev_writeback_start(struct cached_dev *dc)
1035{
1036        dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
1037                                                WQ_MEM_RECLAIM, 0);
1038        if (!dc->writeback_write_wq)
1039                return -ENOMEM;
1040
1041        cached_dev_get(dc);
1042        dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
1043                                              "bcache_writeback");
1044        if (IS_ERR(dc->writeback_thread)) {
1045                cached_dev_put(dc);
1046                destroy_workqueue(dc->writeback_write_wq);
1047                return PTR_ERR(dc->writeback_thread);
1048        }
1049        dc->writeback_running = true;
1050
1051        WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
1052        schedule_delayed_work(&dc->writeback_rate_update,
1053                              dc->writeback_rate_update_seconds * HZ);
1054
1055        bch_writeback_queue(dc);
1056
1057        return 0;
1058}
1059