linux/drivers/md/raid1.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * raid1.c : Multiple Devices driver for Linux
   4 *
   5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   6 *
   7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   8 *
   9 * RAID-1 management functions.
  10 *
  11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  12 *
  13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  15 *
  16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  17 * bitmapped intelligence in resync:
  18 *
  19 *      - bitmap marked during normal i/o
  20 *      - bitmap used to skip nondirty blocks during sync
  21 *
  22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  23 * - persistent bitmap code
  24 */
  25
  26#include <linux/slab.h>
  27#include <linux/delay.h>
  28#include <linux/blkdev.h>
  29#include <linux/module.h>
  30#include <linux/seq_file.h>
  31#include <linux/ratelimit.h>
  32#include <linux/interval_tree_generic.h>
  33
  34#include <trace/events/block.h>
  35
  36#include "md.h"
  37#include "raid1.h"
  38#include "md-bitmap.h"
  39
  40#define UNSUPPORTED_MDDEV_FLAGS         \
  41        ((1L << MD_HAS_JOURNAL) |       \
  42         (1L << MD_JOURNAL_CLEAN) |     \
  43         (1L << MD_HAS_PPL) |           \
  44         (1L << MD_HAS_MULTIPLE_PPLS))
  45
  46static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
  47static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
  48
  49#define raid1_log(md, fmt, args...)                             \
  50        do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
  51
  52#include "raid1-10.c"
  53
  54#define START(node) ((node)->start)
  55#define LAST(node) ((node)->last)
  56INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
  57                     START, LAST, static inline, raid1_rb);
  58
  59static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
  60                                struct serial_info *si, int idx)
  61{
  62        unsigned long flags;
  63        int ret = 0;
  64        sector_t lo = r1_bio->sector;
  65        sector_t hi = lo + r1_bio->sectors;
  66        struct serial_in_rdev *serial = &rdev->serial[idx];
  67
  68        spin_lock_irqsave(&serial->serial_lock, flags);
  69        /* collision happened */
  70        if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
  71                ret = -EBUSY;
  72        else {
  73                si->start = lo;
  74                si->last = hi;
  75                raid1_rb_insert(si, &serial->serial_rb);
  76        }
  77        spin_unlock_irqrestore(&serial->serial_lock, flags);
  78
  79        return ret;
  80}
  81
  82static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
  83{
  84        struct mddev *mddev = rdev->mddev;
  85        struct serial_info *si;
  86        int idx = sector_to_idx(r1_bio->sector);
  87        struct serial_in_rdev *serial = &rdev->serial[idx];
  88
  89        if (WARN_ON(!mddev->serial_info_pool))
  90                return;
  91        si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
  92        wait_event(serial->serial_io_wait,
  93                   check_and_add_serial(rdev, r1_bio, si, idx) == 0);
  94}
  95
  96static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
  97{
  98        struct serial_info *si;
  99        unsigned long flags;
 100        int found = 0;
 101        struct mddev *mddev = rdev->mddev;
 102        int idx = sector_to_idx(lo);
 103        struct serial_in_rdev *serial = &rdev->serial[idx];
 104
 105        spin_lock_irqsave(&serial->serial_lock, flags);
 106        for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
 107             si; si = raid1_rb_iter_next(si, lo, hi)) {
 108                if (si->start == lo && si->last == hi) {
 109                        raid1_rb_remove(si, &serial->serial_rb);
 110                        mempool_free(si, mddev->serial_info_pool);
 111                        found = 1;
 112                        break;
 113                }
 114        }
 115        if (!found)
 116                WARN(1, "The write IO is not recorded for serialization\n");
 117        spin_unlock_irqrestore(&serial->serial_lock, flags);
 118        wake_up(&serial->serial_io_wait);
 119}
 120
 121/*
 122 * for resync bio, r1bio pointer can be retrieved from the per-bio
 123 * 'struct resync_pages'.
 124 */
 125static inline struct r1bio *get_resync_r1bio(struct bio *bio)
 126{
 127        return get_resync_pages(bio)->raid_bio;
 128}
 129
 130static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
 131{
 132        struct pool_info *pi = data;
 133        int size = offsetof(struct r1bio, bios[pi->raid_disks]);
 134
 135        /* allocate a r1bio with room for raid_disks entries in the bios array */
 136        return kzalloc(size, gfp_flags);
 137}
 138
 139#define RESYNC_DEPTH 32
 140#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 141#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
 142#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
 143#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
 144#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 145
 146static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
 147{
 148        struct pool_info *pi = data;
 149        struct r1bio *r1_bio;
 150        struct bio *bio;
 151        int need_pages;
 152        int j;
 153        struct resync_pages *rps;
 154
 155        r1_bio = r1bio_pool_alloc(gfp_flags, pi);
 156        if (!r1_bio)
 157                return NULL;
 158
 159        rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
 160                            gfp_flags);
 161        if (!rps)
 162                goto out_free_r1bio;
 163
 164        /*
 165         * Allocate bios : 1 for reading, n-1 for writing
 166         */
 167        for (j = pi->raid_disks ; j-- ; ) {
 168                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 169                if (!bio)
 170                        goto out_free_bio;
 171                r1_bio->bios[j] = bio;
 172        }
 173        /*
 174         * Allocate RESYNC_PAGES data pages and attach them to
 175         * the first bio.
 176         * If this is a user-requested check/repair, allocate
 177         * RESYNC_PAGES for each bio.
 178         */
 179        if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 180                need_pages = pi->raid_disks;
 181        else
 182                need_pages = 1;
 183        for (j = 0; j < pi->raid_disks; j++) {
 184                struct resync_pages *rp = &rps[j];
 185
 186                bio = r1_bio->bios[j];
 187
 188                if (j < need_pages) {
 189                        if (resync_alloc_pages(rp, gfp_flags))
 190                                goto out_free_pages;
 191                } else {
 192                        memcpy(rp, &rps[0], sizeof(*rp));
 193                        resync_get_all_pages(rp);
 194                }
 195
 196                rp->raid_bio = r1_bio;
 197                bio->bi_private = rp;
 198        }
 199
 200        r1_bio->master_bio = NULL;
 201
 202        return r1_bio;
 203
 204out_free_pages:
 205        while (--j >= 0)
 206                resync_free_pages(&rps[j]);
 207
 208out_free_bio:
 209        while (++j < pi->raid_disks)
 210                bio_put(r1_bio->bios[j]);
 211        kfree(rps);
 212
 213out_free_r1bio:
 214        rbio_pool_free(r1_bio, data);
 215        return NULL;
 216}
 217
 218static void r1buf_pool_free(void *__r1_bio, void *data)
 219{
 220        struct pool_info *pi = data;
 221        int i;
 222        struct r1bio *r1bio = __r1_bio;
 223        struct resync_pages *rp = NULL;
 224
 225        for (i = pi->raid_disks; i--; ) {
 226                rp = get_resync_pages(r1bio->bios[i]);
 227                resync_free_pages(rp);
 228                bio_put(r1bio->bios[i]);
 229        }
 230
 231        /* resync pages array stored in the 1st bio's .bi_private */
 232        kfree(rp);
 233
 234        rbio_pool_free(r1bio, data);
 235}
 236
 237static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
 238{
 239        int i;
 240
 241        for (i = 0; i < conf->raid_disks * 2; i++) {
 242                struct bio **bio = r1_bio->bios + i;
 243                if (!BIO_SPECIAL(*bio))
 244                        bio_put(*bio);
 245                *bio = NULL;
 246        }
 247}
 248
 249static void free_r1bio(struct r1bio *r1_bio)
 250{
 251        struct r1conf *conf = r1_bio->mddev->private;
 252
 253        put_all_bios(conf, r1_bio);
 254        mempool_free(r1_bio, &conf->r1bio_pool);
 255}
 256
 257static void put_buf(struct r1bio *r1_bio)
 258{
 259        struct r1conf *conf = r1_bio->mddev->private;
 260        sector_t sect = r1_bio->sector;
 261        int i;
 262
 263        for (i = 0; i < conf->raid_disks * 2; i++) {
 264                struct bio *bio = r1_bio->bios[i];
 265                if (bio->bi_end_io)
 266                        rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 267        }
 268
 269        mempool_free(r1_bio, &conf->r1buf_pool);
 270
 271        lower_barrier(conf, sect);
 272}
 273
 274static void reschedule_retry(struct r1bio *r1_bio)
 275{
 276        unsigned long flags;
 277        struct mddev *mddev = r1_bio->mddev;
 278        struct r1conf *conf = mddev->private;
 279        int idx;
 280
 281        idx = sector_to_idx(r1_bio->sector);
 282        spin_lock_irqsave(&conf->device_lock, flags);
 283        list_add(&r1_bio->retry_list, &conf->retry_list);
 284        atomic_inc(&conf->nr_queued[idx]);
 285        spin_unlock_irqrestore(&conf->device_lock, flags);
 286
 287        wake_up(&conf->wait_barrier);
 288        md_wakeup_thread(mddev->thread);
 289}
 290
 291/*
 292 * raid_end_bio_io() is called when we have finished servicing a mirrored
 293 * operation and are ready to return a success/failure code to the buffer
 294 * cache layer.
 295 */
 296static void call_bio_endio(struct r1bio *r1_bio)
 297{
 298        struct bio *bio = r1_bio->master_bio;
 299
 300        if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 301                bio->bi_status = BLK_STS_IOERR;
 302
 303        if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
 304                bio_end_io_acct(bio, r1_bio->start_time);
 305        bio_endio(bio);
 306}
 307
 308static void raid_end_bio_io(struct r1bio *r1_bio)
 309{
 310        struct bio *bio = r1_bio->master_bio;
 311        struct r1conf *conf = r1_bio->mddev->private;
 312
 313        /* if nobody has done the final endio yet, do it now */
 314        if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 315                pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
 316                         (bio_data_dir(bio) == WRITE) ? "write" : "read",
 317                         (unsigned long long) bio->bi_iter.bi_sector,
 318                         (unsigned long long) bio_end_sector(bio) - 1);
 319
 320                call_bio_endio(r1_bio);
 321        }
 322        /*
 323         * Wake up any possible resync thread that waits for the device
 324         * to go idle.  All I/Os, even write-behind writes, are done.
 325         */
 326        allow_barrier(conf, r1_bio->sector);
 327
 328        free_r1bio(r1_bio);
 329}
 330
 331/*
 332 * Update disk head position estimator based on IRQ completion info.
 333 */
 334static inline void update_head_pos(int disk, struct r1bio *r1_bio)
 335{
 336        struct r1conf *conf = r1_bio->mddev->private;
 337
 338        conf->mirrors[disk].head_position =
 339                r1_bio->sector + (r1_bio->sectors);
 340}
 341
 342/*
 343 * Find the disk number which triggered given bio
 344 */
 345static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
 346{
 347        int mirror;
 348        struct r1conf *conf = r1_bio->mddev->private;
 349        int raid_disks = conf->raid_disks;
 350
 351        for (mirror = 0; mirror < raid_disks * 2; mirror++)
 352                if (r1_bio->bios[mirror] == bio)
 353                        break;
 354
 355        BUG_ON(mirror == raid_disks * 2);
 356        update_head_pos(mirror, r1_bio);
 357
 358        return mirror;
 359}
 360
 361static void raid1_end_read_request(struct bio *bio)
 362{
 363        int uptodate = !bio->bi_status;
 364        struct r1bio *r1_bio = bio->bi_private;
 365        struct r1conf *conf = r1_bio->mddev->private;
 366        struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
 367
 368        /*
 369         * this branch is our 'one mirror IO has finished' event handler:
 370         */
 371        update_head_pos(r1_bio->read_disk, r1_bio);
 372
 373        if (uptodate)
 374                set_bit(R1BIO_Uptodate, &r1_bio->state);
 375        else if (test_bit(FailFast, &rdev->flags) &&
 376                 test_bit(R1BIO_FailFast, &r1_bio->state))
 377                /* This was a fail-fast read so we definitely
 378                 * want to retry */
 379                ;
 380        else {
 381                /* If all other devices have failed, we want to return
 382                 * the error upwards rather than fail the last device.
 383                 * Here we redefine "uptodate" to mean "Don't want to retry"
 384                 */
 385                unsigned long flags;
 386                spin_lock_irqsave(&conf->device_lock, flags);
 387                if (r1_bio->mddev->degraded == conf->raid_disks ||
 388                    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 389                     test_bit(In_sync, &rdev->flags)))
 390                        uptodate = 1;
 391                spin_unlock_irqrestore(&conf->device_lock, flags);
 392        }
 393
 394        if (uptodate) {
 395                raid_end_bio_io(r1_bio);
 396                rdev_dec_pending(rdev, conf->mddev);
 397        } else {
 398                /*
 399                 * oops, read error:
 400                 */
 401                char b[BDEVNAME_SIZE];
 402                pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
 403                                   mdname(conf->mddev),
 404                                   bdevname(rdev->bdev, b),
 405                                   (unsigned long long)r1_bio->sector);
 406                set_bit(R1BIO_ReadError, &r1_bio->state);
 407                reschedule_retry(r1_bio);
 408                /* don't drop the reference on read_disk yet */
 409        }
 410}
 411
 412static void close_write(struct r1bio *r1_bio)
 413{
 414        /* it really is the end of this request */
 415        if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 416                bio_free_pages(r1_bio->behind_master_bio);
 417                bio_put(r1_bio->behind_master_bio);
 418                r1_bio->behind_master_bio = NULL;
 419        }
 420        /* clear the bitmap if all writes complete successfully */
 421        md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 422                           r1_bio->sectors,
 423                           !test_bit(R1BIO_Degraded, &r1_bio->state),
 424                           test_bit(R1BIO_BehindIO, &r1_bio->state));
 425        md_write_end(r1_bio->mddev);
 426}
 427
 428static void r1_bio_write_done(struct r1bio *r1_bio)
 429{
 430        if (!atomic_dec_and_test(&r1_bio->remaining))
 431                return;
 432
 433        if (test_bit(R1BIO_WriteError, &r1_bio->state))
 434                reschedule_retry(r1_bio);
 435        else {
 436                close_write(r1_bio);
 437                if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 438                        reschedule_retry(r1_bio);
 439                else
 440                        raid_end_bio_io(r1_bio);
 441        }
 442}
 443
 444static void raid1_end_write_request(struct bio *bio)
 445{
 446        struct r1bio *r1_bio = bio->bi_private;
 447        int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 448        struct r1conf *conf = r1_bio->mddev->private;
 449        struct bio *to_put = NULL;
 450        int mirror = find_bio_disk(r1_bio, bio);
 451        struct md_rdev *rdev = conf->mirrors[mirror].rdev;
 452        bool discard_error;
 453        sector_t lo = r1_bio->sector;
 454        sector_t hi = r1_bio->sector + r1_bio->sectors;
 455
 456        discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 457
 458        /*
 459         * 'one mirror IO has finished' event handler:
 460         */
 461        if (bio->bi_status && !discard_error) {
 462                set_bit(WriteErrorSeen, &rdev->flags);
 463                if (!test_and_set_bit(WantReplacement, &rdev->flags))
 464                        set_bit(MD_RECOVERY_NEEDED, &
 465                                conf->mddev->recovery);
 466
 467                if (test_bit(FailFast, &rdev->flags) &&
 468                    (bio->bi_opf & MD_FAILFAST) &&
 469                    /* We never try FailFast to WriteMostly devices */
 470                    !test_bit(WriteMostly, &rdev->flags)) {
 471                        md_error(r1_bio->mddev, rdev);
 472                }
 473
 474                /*
 475                 * When the device is faulty, it is not necessary to
 476                 * handle write error.
 477                 */
 478                if (!test_bit(Faulty, &rdev->flags))
 479                        set_bit(R1BIO_WriteError, &r1_bio->state);
 480                else {
 481                        /* Fail the request */
 482                        set_bit(R1BIO_Degraded, &r1_bio->state);
 483                        /* Finished with this branch */
 484                        r1_bio->bios[mirror] = NULL;
 485                        to_put = bio;
 486                }
 487        } else {
 488                /*
 489                 * Set R1BIO_Uptodate in our master bio, so that we
 490                 * will return a good error code for to the higher
 491                 * levels even if IO on some other mirrored buffer
 492                 * fails.
 493                 *
 494                 * The 'master' represents the composite IO operation
 495                 * to user-side. So if something waits for IO, then it
 496                 * will wait for the 'master' bio.
 497                 */
 498                sector_t first_bad;
 499                int bad_sectors;
 500
 501                r1_bio->bios[mirror] = NULL;
 502                to_put = bio;
 503                /*
 504                 * Do not set R1BIO_Uptodate if the current device is
 505                 * rebuilding or Faulty. This is because we cannot use
 506                 * such device for properly reading the data back (we could
 507                 * potentially use it, if the current write would have felt
 508                 * before rdev->recovery_offset, but for simplicity we don't
 509                 * check this here.
 510                 */
 511                if (test_bit(In_sync, &rdev->flags) &&
 512                    !test_bit(Faulty, &rdev->flags))
 513                        set_bit(R1BIO_Uptodate, &r1_bio->state);
 514
 515                /* Maybe we can clear some bad blocks. */
 516                if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
 517                                &first_bad, &bad_sectors) && !discard_error) {
 518                        r1_bio->bios[mirror] = IO_MADE_GOOD;
 519                        set_bit(R1BIO_MadeGood, &r1_bio->state);
 520                }
 521        }
 522
 523        if (behind) {
 524                if (test_bit(CollisionCheck, &rdev->flags))
 525                        remove_serial(rdev, lo, hi);
 526                if (test_bit(WriteMostly, &rdev->flags))
 527                        atomic_dec(&r1_bio->behind_remaining);
 528
 529                /*
 530                 * In behind mode, we ACK the master bio once the I/O
 531                 * has safely reached all non-writemostly
 532                 * disks. Setting the Returned bit ensures that this
 533                 * gets done only once -- we don't ever want to return
 534                 * -EIO here, instead we'll wait
 535                 */
 536                if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 537                    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 538                        /* Maybe we can return now */
 539                        if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 540                                struct bio *mbio = r1_bio->master_bio;
 541                                pr_debug("raid1: behind end write sectors"
 542                                         " %llu-%llu\n",
 543                                         (unsigned long long) mbio->bi_iter.bi_sector,
 544                                         (unsigned long long) bio_end_sector(mbio) - 1);
 545                                call_bio_endio(r1_bio);
 546                        }
 547                }
 548        } else if (rdev->mddev->serialize_policy)
 549                remove_serial(rdev, lo, hi);
 550        if (r1_bio->bios[mirror] == NULL)
 551                rdev_dec_pending(rdev, conf->mddev);
 552
 553        /*
 554         * Let's see if all mirrored write operations have finished
 555         * already.
 556         */
 557        r1_bio_write_done(r1_bio);
 558
 559        if (to_put)
 560                bio_put(to_put);
 561}
 562
 563static sector_t align_to_barrier_unit_end(sector_t start_sector,
 564                                          sector_t sectors)
 565{
 566        sector_t len;
 567
 568        WARN_ON(sectors == 0);
 569        /*
 570         * len is the number of sectors from start_sector to end of the
 571         * barrier unit which start_sector belongs to.
 572         */
 573        len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
 574              start_sector;
 575
 576        if (len > sectors)
 577                len = sectors;
 578
 579        return len;
 580}
 581
 582/*
 583 * This routine returns the disk from which the requested read should
 584 * be done. There is a per-array 'next expected sequential IO' sector
 585 * number - if this matches on the next IO then we use the last disk.
 586 * There is also a per-disk 'last know head position' sector that is
 587 * maintained from IRQ contexts, both the normal and the resync IO
 588 * completion handlers update this position correctly. If there is no
 589 * perfect sequential match then we pick the disk whose head is closest.
 590 *
 591 * If there are 2 mirrors in the same 2 devices, performance degrades
 592 * because position is mirror, not device based.
 593 *
 594 * The rdev for the device selected will have nr_pending incremented.
 595 */
 596static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
 597{
 598        const sector_t this_sector = r1_bio->sector;
 599        int sectors;
 600        int best_good_sectors;
 601        int best_disk, best_dist_disk, best_pending_disk;
 602        int has_nonrot_disk;
 603        int disk;
 604        sector_t best_dist;
 605        unsigned int min_pending;
 606        struct md_rdev *rdev;
 607        int choose_first;
 608        int choose_next_idle;
 609
 610        rcu_read_lock();
 611        /*
 612         * Check if we can balance. We can balance on the whole
 613         * device if no resync is going on, or below the resync window.
 614         * We take the first readable disk when above the resync window.
 615         */
 616 retry:
 617        sectors = r1_bio->sectors;
 618        best_disk = -1;
 619        best_dist_disk = -1;
 620        best_dist = MaxSector;
 621        best_pending_disk = -1;
 622        min_pending = UINT_MAX;
 623        best_good_sectors = 0;
 624        has_nonrot_disk = 0;
 625        choose_next_idle = 0;
 626        clear_bit(R1BIO_FailFast, &r1_bio->state);
 627
 628        if ((conf->mddev->recovery_cp < this_sector + sectors) ||
 629            (mddev_is_clustered(conf->mddev) &&
 630            md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 631                    this_sector + sectors)))
 632                choose_first = 1;
 633        else
 634                choose_first = 0;
 635
 636        for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 637                sector_t dist;
 638                sector_t first_bad;
 639                int bad_sectors;
 640                unsigned int pending;
 641                bool nonrot;
 642
 643                rdev = rcu_dereference(conf->mirrors[disk].rdev);
 644                if (r1_bio->bios[disk] == IO_BLOCKED
 645                    || rdev == NULL
 646                    || test_bit(Faulty, &rdev->flags))
 647                        continue;
 648                if (!test_bit(In_sync, &rdev->flags) &&
 649                    rdev->recovery_offset < this_sector + sectors)
 650                        continue;
 651                if (test_bit(WriteMostly, &rdev->flags)) {
 652                        /* Don't balance among write-mostly, just
 653                         * use the first as a last resort */
 654                        if (best_dist_disk < 0) {
 655                                if (is_badblock(rdev, this_sector, sectors,
 656                                                &first_bad, &bad_sectors)) {
 657                                        if (first_bad <= this_sector)
 658                                                /* Cannot use this */
 659                                                continue;
 660                                        best_good_sectors = first_bad - this_sector;
 661                                } else
 662                                        best_good_sectors = sectors;
 663                                best_dist_disk = disk;
 664                                best_pending_disk = disk;
 665                        }
 666                        continue;
 667                }
 668                /* This is a reasonable device to use.  It might
 669                 * even be best.
 670                 */
 671                if (is_badblock(rdev, this_sector, sectors,
 672                                &first_bad, &bad_sectors)) {
 673                        if (best_dist < MaxSector)
 674                                /* already have a better device */
 675                                continue;
 676                        if (first_bad <= this_sector) {
 677                                /* cannot read here. If this is the 'primary'
 678                                 * device, then we must not read beyond
 679                                 * bad_sectors from another device..
 680                                 */
 681                                bad_sectors -= (this_sector - first_bad);
 682                                if (choose_first && sectors > bad_sectors)
 683                                        sectors = bad_sectors;
 684                                if (best_good_sectors > sectors)
 685                                        best_good_sectors = sectors;
 686
 687                        } else {
 688                                sector_t good_sectors = first_bad - this_sector;
 689                                if (good_sectors > best_good_sectors) {
 690                                        best_good_sectors = good_sectors;
 691                                        best_disk = disk;
 692                                }
 693                                if (choose_first)
 694                                        break;
 695                        }
 696                        continue;
 697                } else {
 698                        if ((sectors > best_good_sectors) && (best_disk >= 0))
 699                                best_disk = -1;
 700                        best_good_sectors = sectors;
 701                }
 702
 703                if (best_disk >= 0)
 704                        /* At least two disks to choose from so failfast is OK */
 705                        set_bit(R1BIO_FailFast, &r1_bio->state);
 706
 707                nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
 708                has_nonrot_disk |= nonrot;
 709                pending = atomic_read(&rdev->nr_pending);
 710                dist = abs(this_sector - conf->mirrors[disk].head_position);
 711                if (choose_first) {
 712                        best_disk = disk;
 713                        break;
 714                }
 715                /* Don't change to another disk for sequential reads */
 716                if (conf->mirrors[disk].next_seq_sect == this_sector
 717                    || dist == 0) {
 718                        int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
 719                        struct raid1_info *mirror = &conf->mirrors[disk];
 720
 721                        best_disk = disk;
 722                        /*
 723                         * If buffered sequential IO size exceeds optimal
 724                         * iosize, check if there is idle disk. If yes, choose
 725                         * the idle disk. read_balance could already choose an
 726                         * idle disk before noticing it's a sequential IO in
 727                         * this disk. This doesn't matter because this disk
 728                         * will idle, next time it will be utilized after the
 729                         * first disk has IO size exceeds optimal iosize. In
 730                         * this way, iosize of the first disk will be optimal
 731                         * iosize at least. iosize of the second disk might be
 732                         * small, but not a big deal since when the second disk
 733                         * starts IO, the first disk is likely still busy.
 734                         */
 735                        if (nonrot && opt_iosize > 0 &&
 736                            mirror->seq_start != MaxSector &&
 737                            mirror->next_seq_sect > opt_iosize &&
 738                            mirror->next_seq_sect - opt_iosize >=
 739                            mirror->seq_start) {
 740                                choose_next_idle = 1;
 741                                continue;
 742                        }
 743                        break;
 744                }
 745
 746                if (choose_next_idle)
 747                        continue;
 748
 749                if (min_pending > pending) {
 750                        min_pending = pending;
 751                        best_pending_disk = disk;
 752                }
 753
 754                if (dist < best_dist) {
 755                        best_dist = dist;
 756                        best_dist_disk = disk;
 757                }
 758        }
 759
 760        /*
 761         * If all disks are rotational, choose the closest disk. If any disk is
 762         * non-rotational, choose the disk with less pending request even the
 763         * disk is rotational, which might/might not be optimal for raids with
 764         * mixed ratation/non-rotational disks depending on workload.
 765         */
 766        if (best_disk == -1) {
 767                if (has_nonrot_disk || min_pending == 0)
 768                        best_disk = best_pending_disk;
 769                else
 770                        best_disk = best_dist_disk;
 771        }
 772
 773        if (best_disk >= 0) {
 774                rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
 775                if (!rdev)
 776                        goto retry;
 777                atomic_inc(&rdev->nr_pending);
 778                sectors = best_good_sectors;
 779
 780                if (conf->mirrors[best_disk].next_seq_sect != this_sector)
 781                        conf->mirrors[best_disk].seq_start = this_sector;
 782
 783                conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
 784        }
 785        rcu_read_unlock();
 786        *max_sectors = sectors;
 787
 788        return best_disk;
 789}
 790
 791static void flush_bio_list(struct r1conf *conf, struct bio *bio)
 792{
 793        /* flush any pending bitmap writes to disk before proceeding w/ I/O */
 794        md_bitmap_unplug(conf->mddev->bitmap);
 795        wake_up(&conf->wait_barrier);
 796
 797        while (bio) { /* submit pending writes */
 798                struct bio *next = bio->bi_next;
 799                struct md_rdev *rdev = (void *)bio->bi_bdev;
 800                bio->bi_next = NULL;
 801                bio_set_dev(bio, rdev->bdev);
 802                if (test_bit(Faulty, &rdev->flags)) {
 803                        bio_io_error(bio);
 804                } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
 805                                    !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
 806                        /* Just ignore it */
 807                        bio_endio(bio);
 808                else
 809                        submit_bio_noacct(bio);
 810                bio = next;
 811                cond_resched();
 812        }
 813}
 814
 815static void flush_pending_writes(struct r1conf *conf)
 816{
 817        /* Any writes that have been queued but are awaiting
 818         * bitmap updates get flushed here.
 819         */
 820        spin_lock_irq(&conf->device_lock);
 821
 822        if (conf->pending_bio_list.head) {
 823                struct blk_plug plug;
 824                struct bio *bio;
 825
 826                bio = bio_list_get(&conf->pending_bio_list);
 827                conf->pending_count = 0;
 828                spin_unlock_irq(&conf->device_lock);
 829
 830                /*
 831                 * As this is called in a wait_event() loop (see freeze_array),
 832                 * current->state might be TASK_UNINTERRUPTIBLE which will
 833                 * cause a warning when we prepare to wait again.  As it is
 834                 * rare that this path is taken, it is perfectly safe to force
 835                 * us to go around the wait_event() loop again, so the warning
 836                 * is a false-positive.  Silence the warning by resetting
 837                 * thread state
 838                 */
 839                __set_current_state(TASK_RUNNING);
 840                blk_start_plug(&plug);
 841                flush_bio_list(conf, bio);
 842                blk_finish_plug(&plug);
 843        } else
 844                spin_unlock_irq(&conf->device_lock);
 845}
 846
 847/* Barriers....
 848 * Sometimes we need to suspend IO while we do something else,
 849 * either some resync/recovery, or reconfigure the array.
 850 * To do this we raise a 'barrier'.
 851 * The 'barrier' is a counter that can be raised multiple times
 852 * to count how many activities are happening which preclude
 853 * normal IO.
 854 * We can only raise the barrier if there is no pending IO.
 855 * i.e. if nr_pending == 0.
 856 * We choose only to raise the barrier if no-one is waiting for the
 857 * barrier to go down.  This means that as soon as an IO request
 858 * is ready, no other operations which require a barrier will start
 859 * until the IO request has had a chance.
 860 *
 861 * So: regular IO calls 'wait_barrier'.  When that returns there
 862 *    is no backgroup IO happening,  It must arrange to call
 863 *    allow_barrier when it has finished its IO.
 864 * backgroup IO calls must call raise_barrier.  Once that returns
 865 *    there is no normal IO happeing.  It must arrange to call
 866 *    lower_barrier when the particular background IO completes.
 867 *
 868 * If resync/recovery is interrupted, returns -EINTR;
 869 * Otherwise, returns 0.
 870 */
 871static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
 872{
 873        int idx = sector_to_idx(sector_nr);
 874
 875        spin_lock_irq(&conf->resync_lock);
 876
 877        /* Wait until no block IO is waiting */
 878        wait_event_lock_irq(conf->wait_barrier,
 879                            !atomic_read(&conf->nr_waiting[idx]),
 880                            conf->resync_lock);
 881
 882        /* block any new IO from starting */
 883        atomic_inc(&conf->barrier[idx]);
 884        /*
 885         * In raise_barrier() we firstly increase conf->barrier[idx] then
 886         * check conf->nr_pending[idx]. In _wait_barrier() we firstly
 887         * increase conf->nr_pending[idx] then check conf->barrier[idx].
 888         * A memory barrier here to make sure conf->nr_pending[idx] won't
 889         * be fetched before conf->barrier[idx] is increased. Otherwise
 890         * there will be a race between raise_barrier() and _wait_barrier().
 891         */
 892        smp_mb__after_atomic();
 893
 894        /* For these conditions we must wait:
 895         * A: while the array is in frozen state
 896         * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
 897         *    existing in corresponding I/O barrier bucket.
 898         * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
 899         *    max resync count which allowed on current I/O barrier bucket.
 900         */
 901        wait_event_lock_irq(conf->wait_barrier,
 902                            (!conf->array_frozen &&
 903                             !atomic_read(&conf->nr_pending[idx]) &&
 904                             atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
 905                                test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
 906                            conf->resync_lock);
 907
 908        if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
 909                atomic_dec(&conf->barrier[idx]);
 910                spin_unlock_irq(&conf->resync_lock);
 911                wake_up(&conf->wait_barrier);
 912                return -EINTR;
 913        }
 914
 915        atomic_inc(&conf->nr_sync_pending);
 916        spin_unlock_irq(&conf->resync_lock);
 917
 918        return 0;
 919}
 920
 921static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
 922{
 923        int idx = sector_to_idx(sector_nr);
 924
 925        BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
 926
 927        atomic_dec(&conf->barrier[idx]);
 928        atomic_dec(&conf->nr_sync_pending);
 929        wake_up(&conf->wait_barrier);
 930}
 931
 932static void _wait_barrier(struct r1conf *conf, int idx)
 933{
 934        /*
 935         * We need to increase conf->nr_pending[idx] very early here,
 936         * then raise_barrier() can be blocked when it waits for
 937         * conf->nr_pending[idx] to be 0. Then we can avoid holding
 938         * conf->resync_lock when there is no barrier raised in same
 939         * barrier unit bucket. Also if the array is frozen, I/O
 940         * should be blocked until array is unfrozen.
 941         */
 942        atomic_inc(&conf->nr_pending[idx]);
 943        /*
 944         * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
 945         * check conf->barrier[idx]. In raise_barrier() we firstly increase
 946         * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
 947         * barrier is necessary here to make sure conf->barrier[idx] won't be
 948         * fetched before conf->nr_pending[idx] is increased. Otherwise there
 949         * will be a race between _wait_barrier() and raise_barrier().
 950         */
 951        smp_mb__after_atomic();
 952
 953        /*
 954         * Don't worry about checking two atomic_t variables at same time
 955         * here. If during we check conf->barrier[idx], the array is
 956         * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
 957         * 0, it is safe to return and make the I/O continue. Because the
 958         * array is frozen, all I/O returned here will eventually complete
 959         * or be queued, no race will happen. See code comment in
 960         * frozen_array().
 961         */
 962        if (!READ_ONCE(conf->array_frozen) &&
 963            !atomic_read(&conf->barrier[idx]))
 964                return;
 965
 966        /*
 967         * After holding conf->resync_lock, conf->nr_pending[idx]
 968         * should be decreased before waiting for barrier to drop.
 969         * Otherwise, we may encounter a race condition because
 970         * raise_barrer() might be waiting for conf->nr_pending[idx]
 971         * to be 0 at same time.
 972         */
 973        spin_lock_irq(&conf->resync_lock);
 974        atomic_inc(&conf->nr_waiting[idx]);
 975        atomic_dec(&conf->nr_pending[idx]);
 976        /*
 977         * In case freeze_array() is waiting for
 978         * get_unqueued_pending() == extra
 979         */
 980        wake_up(&conf->wait_barrier);
 981        /* Wait for the barrier in same barrier unit bucket to drop. */
 982        wait_event_lock_irq(conf->wait_barrier,
 983                            !conf->array_frozen &&
 984                             !atomic_read(&conf->barrier[idx]),
 985                            conf->resync_lock);
 986        atomic_inc(&conf->nr_pending[idx]);
 987        atomic_dec(&conf->nr_waiting[idx]);
 988        spin_unlock_irq(&conf->resync_lock);
 989}
 990
 991static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
 992{
 993        int idx = sector_to_idx(sector_nr);
 994
 995        /*
 996         * Very similar to _wait_barrier(). The difference is, for read
 997         * I/O we don't need wait for sync I/O, but if the whole array
 998         * is frozen, the read I/O still has to wait until the array is
 999         * unfrozen. Since there is no ordering requirement with
1000         * conf->barrier[idx] here, memory barrier is unnecessary as well.
1001         */
1002        atomic_inc(&conf->nr_pending[idx]);
1003
1004        if (!READ_ONCE(conf->array_frozen))
1005                return;
1006
1007        spin_lock_irq(&conf->resync_lock);
1008        atomic_inc(&conf->nr_waiting[idx]);
1009        atomic_dec(&conf->nr_pending[idx]);
1010        /*
1011         * In case freeze_array() is waiting for
1012         * get_unqueued_pending() == extra
1013         */
1014        wake_up(&conf->wait_barrier);
1015        /* Wait for array to be unfrozen */
1016        wait_event_lock_irq(conf->wait_barrier,
1017                            !conf->array_frozen,
1018                            conf->resync_lock);
1019        atomic_inc(&conf->nr_pending[idx]);
1020        atomic_dec(&conf->nr_waiting[idx]);
1021        spin_unlock_irq(&conf->resync_lock);
1022}
1023
1024static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1025{
1026        int idx = sector_to_idx(sector_nr);
1027
1028        _wait_barrier(conf, idx);
1029}
1030
1031static void _allow_barrier(struct r1conf *conf, int idx)
1032{
1033        atomic_dec(&conf->nr_pending[idx]);
1034        wake_up(&conf->wait_barrier);
1035}
1036
1037static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1038{
1039        int idx = sector_to_idx(sector_nr);
1040
1041        _allow_barrier(conf, idx);
1042}
1043
1044/* conf->resync_lock should be held */
1045static int get_unqueued_pending(struct r1conf *conf)
1046{
1047        int idx, ret;
1048
1049        ret = atomic_read(&conf->nr_sync_pending);
1050        for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1051                ret += atomic_read(&conf->nr_pending[idx]) -
1052                        atomic_read(&conf->nr_queued[idx]);
1053
1054        return ret;
1055}
1056
1057static void freeze_array(struct r1conf *conf, int extra)
1058{
1059        /* Stop sync I/O and normal I/O and wait for everything to
1060         * go quiet.
1061         * This is called in two situations:
1062         * 1) management command handlers (reshape, remove disk, quiesce).
1063         * 2) one normal I/O request failed.
1064
1065         * After array_frozen is set to 1, new sync IO will be blocked at
1066         * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1067         * or wait_read_barrier(). The flying I/Os will either complete or be
1068         * queued. When everything goes quite, there are only queued I/Os left.
1069
1070         * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1071         * barrier bucket index which this I/O request hits. When all sync and
1072         * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1073         * of all conf->nr_queued[]. But normal I/O failure is an exception,
1074         * in handle_read_error(), we may call freeze_array() before trying to
1075         * fix the read error. In this case, the error read I/O is not queued,
1076         * so get_unqueued_pending() == 1.
1077         *
1078         * Therefore before this function returns, we need to wait until
1079         * get_unqueued_pendings(conf) gets equal to extra. For
1080         * normal I/O context, extra is 1, in rested situations extra is 0.
1081         */
1082        spin_lock_irq(&conf->resync_lock);
1083        conf->array_frozen = 1;
1084        raid1_log(conf->mddev, "wait freeze");
1085        wait_event_lock_irq_cmd(
1086                conf->wait_barrier,
1087                get_unqueued_pending(conf) == extra,
1088                conf->resync_lock,
1089                flush_pending_writes(conf));
1090        spin_unlock_irq(&conf->resync_lock);
1091}
1092static void unfreeze_array(struct r1conf *conf)
1093{
1094        /* reverse the effect of the freeze */
1095        spin_lock_irq(&conf->resync_lock);
1096        conf->array_frozen = 0;
1097        spin_unlock_irq(&conf->resync_lock);
1098        wake_up(&conf->wait_barrier);
1099}
1100
1101static void alloc_behind_master_bio(struct r1bio *r1_bio,
1102                                           struct bio *bio)
1103{
1104        int size = bio->bi_iter.bi_size;
1105        unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1106        int i = 0;
1107        struct bio *behind_bio = NULL;
1108
1109        behind_bio = bio_alloc_bioset(GFP_NOIO, vcnt, &r1_bio->mddev->bio_set);
1110        if (!behind_bio)
1111                return;
1112
1113        /* discard op, we don't support writezero/writesame yet */
1114        if (!bio_has_data(bio)) {
1115                behind_bio->bi_iter.bi_size = size;
1116                goto skip_copy;
1117        }
1118
1119        behind_bio->bi_write_hint = bio->bi_write_hint;
1120
1121        while (i < vcnt && size) {
1122                struct page *page;
1123                int len = min_t(int, PAGE_SIZE, size);
1124
1125                page = alloc_page(GFP_NOIO);
1126                if (unlikely(!page))
1127                        goto free_pages;
1128
1129                bio_add_page(behind_bio, page, len, 0);
1130
1131                size -= len;
1132                i++;
1133        }
1134
1135        bio_copy_data(behind_bio, bio);
1136skip_copy:
1137        r1_bio->behind_master_bio = behind_bio;
1138        set_bit(R1BIO_BehindIO, &r1_bio->state);
1139
1140        return;
1141
1142free_pages:
1143        pr_debug("%dB behind alloc failed, doing sync I/O\n",
1144                 bio->bi_iter.bi_size);
1145        bio_free_pages(behind_bio);
1146        bio_put(behind_bio);
1147}
1148
1149struct raid1_plug_cb {
1150        struct blk_plug_cb      cb;
1151        struct bio_list         pending;
1152        int                     pending_cnt;
1153};
1154
1155static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1156{
1157        struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1158                                                  cb);
1159        struct mddev *mddev = plug->cb.data;
1160        struct r1conf *conf = mddev->private;
1161        struct bio *bio;
1162
1163        if (from_schedule || current->bio_list) {
1164                spin_lock_irq(&conf->device_lock);
1165                bio_list_merge(&conf->pending_bio_list, &plug->pending);
1166                conf->pending_count += plug->pending_cnt;
1167                spin_unlock_irq(&conf->device_lock);
1168                wake_up(&conf->wait_barrier);
1169                md_wakeup_thread(mddev->thread);
1170                kfree(plug);
1171                return;
1172        }
1173
1174        /* we aren't scheduling, so we can do the write-out directly. */
1175        bio = bio_list_get(&plug->pending);
1176        flush_bio_list(conf, bio);
1177        kfree(plug);
1178}
1179
1180static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1181{
1182        r1_bio->master_bio = bio;
1183        r1_bio->sectors = bio_sectors(bio);
1184        r1_bio->state = 0;
1185        r1_bio->mddev = mddev;
1186        r1_bio->sector = bio->bi_iter.bi_sector;
1187}
1188
1189static inline struct r1bio *
1190alloc_r1bio(struct mddev *mddev, struct bio *bio)
1191{
1192        struct r1conf *conf = mddev->private;
1193        struct r1bio *r1_bio;
1194
1195        r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1196        /* Ensure no bio records IO_BLOCKED */
1197        memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1198        init_r1bio(r1_bio, mddev, bio);
1199        return r1_bio;
1200}
1201
1202static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1203                               int max_read_sectors, struct r1bio *r1_bio)
1204{
1205        struct r1conf *conf = mddev->private;
1206        struct raid1_info *mirror;
1207        struct bio *read_bio;
1208        struct bitmap *bitmap = mddev->bitmap;
1209        const int op = bio_op(bio);
1210        const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1211        int max_sectors;
1212        int rdisk;
1213        bool r1bio_existed = !!r1_bio;
1214        char b[BDEVNAME_SIZE];
1215
1216        /*
1217         * If r1_bio is set, we are blocking the raid1d thread
1218         * so there is a tiny risk of deadlock.  So ask for
1219         * emergency memory if needed.
1220         */
1221        gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1222
1223        if (r1bio_existed) {
1224                /* Need to get the block device name carefully */
1225                struct md_rdev *rdev;
1226                rcu_read_lock();
1227                rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1228                if (rdev)
1229                        bdevname(rdev->bdev, b);
1230                else
1231                        strcpy(b, "???");
1232                rcu_read_unlock();
1233        }
1234
1235        /*
1236         * Still need barrier for READ in case that whole
1237         * array is frozen.
1238         */
1239        wait_read_barrier(conf, bio->bi_iter.bi_sector);
1240
1241        if (!r1_bio)
1242                r1_bio = alloc_r1bio(mddev, bio);
1243        else
1244                init_r1bio(r1_bio, mddev, bio);
1245        r1_bio->sectors = max_read_sectors;
1246
1247        /*
1248         * make_request() can abort the operation when read-ahead is being
1249         * used and no empty request is available.
1250         */
1251        rdisk = read_balance(conf, r1_bio, &max_sectors);
1252
1253        if (rdisk < 0) {
1254                /* couldn't find anywhere to read from */
1255                if (r1bio_existed) {
1256                        pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1257                                            mdname(mddev),
1258                                            b,
1259                                            (unsigned long long)r1_bio->sector);
1260                }
1261                raid_end_bio_io(r1_bio);
1262                return;
1263        }
1264        mirror = conf->mirrors + rdisk;
1265
1266        if (r1bio_existed)
1267                pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1268                                    mdname(mddev),
1269                                    (unsigned long long)r1_bio->sector,
1270                                    bdevname(mirror->rdev->bdev, b));
1271
1272        if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1273            bitmap) {
1274                /*
1275                 * Reading from a write-mostly device must take care not to
1276                 * over-take any writes that are 'behind'
1277                 */
1278                raid1_log(mddev, "wait behind writes");
1279                wait_event(bitmap->behind_wait,
1280                           atomic_read(&bitmap->behind_writes) == 0);
1281        }
1282
1283        if (max_sectors < bio_sectors(bio)) {
1284                struct bio *split = bio_split(bio, max_sectors,
1285                                              gfp, &conf->bio_split);
1286                bio_chain(split, bio);
1287                submit_bio_noacct(bio);
1288                bio = split;
1289                r1_bio->master_bio = bio;
1290                r1_bio->sectors = max_sectors;
1291        }
1292
1293        r1_bio->read_disk = rdisk;
1294
1295        if (!r1bio_existed && blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1296                r1_bio->start_time = bio_start_io_acct(bio);
1297
1298        read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1299
1300        r1_bio->bios[rdisk] = read_bio;
1301
1302        read_bio->bi_iter.bi_sector = r1_bio->sector +
1303                mirror->rdev->data_offset;
1304        bio_set_dev(read_bio, mirror->rdev->bdev);
1305        read_bio->bi_end_io = raid1_end_read_request;
1306        bio_set_op_attrs(read_bio, op, do_sync);
1307        if (test_bit(FailFast, &mirror->rdev->flags) &&
1308            test_bit(R1BIO_FailFast, &r1_bio->state))
1309                read_bio->bi_opf |= MD_FAILFAST;
1310        read_bio->bi_private = r1_bio;
1311
1312        if (mddev->gendisk)
1313                trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1314                                      r1_bio->sector);
1315
1316        submit_bio_noacct(read_bio);
1317}
1318
1319static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1320                                int max_write_sectors)
1321{
1322        struct r1conf *conf = mddev->private;
1323        struct r1bio *r1_bio;
1324        int i, disks;
1325        struct bitmap *bitmap = mddev->bitmap;
1326        unsigned long flags;
1327        struct md_rdev *blocked_rdev;
1328        struct blk_plug_cb *cb;
1329        struct raid1_plug_cb *plug = NULL;
1330        int first_clone;
1331        int max_sectors;
1332
1333        if (mddev_is_clustered(mddev) &&
1334             md_cluster_ops->area_resyncing(mddev, WRITE,
1335                     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1336
1337                DEFINE_WAIT(w);
1338                for (;;) {
1339                        prepare_to_wait(&conf->wait_barrier,
1340                                        &w, TASK_IDLE);
1341                        if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1342                                                        bio->bi_iter.bi_sector,
1343                                                        bio_end_sector(bio)))
1344                                break;
1345                        schedule();
1346                }
1347                finish_wait(&conf->wait_barrier, &w);
1348        }
1349
1350        /*
1351         * Register the new request and wait if the reconstruction
1352         * thread has put up a bar for new requests.
1353         * Continue immediately if no resync is active currently.
1354         */
1355        wait_barrier(conf, bio->bi_iter.bi_sector);
1356
1357        r1_bio = alloc_r1bio(mddev, bio);
1358        r1_bio->sectors = max_write_sectors;
1359
1360        if (conf->pending_count >= max_queued_requests) {
1361                md_wakeup_thread(mddev->thread);
1362                raid1_log(mddev, "wait queued");
1363                wait_event(conf->wait_barrier,
1364                           conf->pending_count < max_queued_requests);
1365        }
1366        /* first select target devices under rcu_lock and
1367         * inc refcount on their rdev.  Record them by setting
1368         * bios[x] to bio
1369         * If there are known/acknowledged bad blocks on any device on
1370         * which we have seen a write error, we want to avoid writing those
1371         * blocks.
1372         * This potentially requires several writes to write around
1373         * the bad blocks.  Each set of writes gets it's own r1bio
1374         * with a set of bios attached.
1375         */
1376
1377        disks = conf->raid_disks * 2;
1378 retry_write:
1379        blocked_rdev = NULL;
1380        rcu_read_lock();
1381        max_sectors = r1_bio->sectors;
1382        for (i = 0;  i < disks; i++) {
1383                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1384                if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1385                        atomic_inc(&rdev->nr_pending);
1386                        blocked_rdev = rdev;
1387                        break;
1388                }
1389                r1_bio->bios[i] = NULL;
1390                if (!rdev || test_bit(Faulty, &rdev->flags)) {
1391                        if (i < conf->raid_disks)
1392                                set_bit(R1BIO_Degraded, &r1_bio->state);
1393                        continue;
1394                }
1395
1396                atomic_inc(&rdev->nr_pending);
1397                if (test_bit(WriteErrorSeen, &rdev->flags)) {
1398                        sector_t first_bad;
1399                        int bad_sectors;
1400                        int is_bad;
1401
1402                        is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1403                                             &first_bad, &bad_sectors);
1404                        if (is_bad < 0) {
1405                                /* mustn't write here until the bad block is
1406                                 * acknowledged*/
1407                                set_bit(BlockedBadBlocks, &rdev->flags);
1408                                blocked_rdev = rdev;
1409                                break;
1410                        }
1411                        if (is_bad && first_bad <= r1_bio->sector) {
1412                                /* Cannot write here at all */
1413                                bad_sectors -= (r1_bio->sector - first_bad);
1414                                if (bad_sectors < max_sectors)
1415                                        /* mustn't write more than bad_sectors
1416                                         * to other devices yet
1417                                         */
1418                                        max_sectors = bad_sectors;
1419                                rdev_dec_pending(rdev, mddev);
1420                                /* We don't set R1BIO_Degraded as that
1421                                 * only applies if the disk is
1422                                 * missing, so it might be re-added,
1423                                 * and we want to know to recover this
1424                                 * chunk.
1425                                 * In this case the device is here,
1426                                 * and the fact that this chunk is not
1427                                 * in-sync is recorded in the bad
1428                                 * block log
1429                                 */
1430                                continue;
1431                        }
1432                        if (is_bad) {
1433                                int good_sectors = first_bad - r1_bio->sector;
1434                                if (good_sectors < max_sectors)
1435                                        max_sectors = good_sectors;
1436                        }
1437                }
1438                r1_bio->bios[i] = bio;
1439        }
1440        rcu_read_unlock();
1441
1442        if (unlikely(blocked_rdev)) {
1443                /* Wait for this device to become unblocked */
1444                int j;
1445
1446                for (j = 0; j < i; j++)
1447                        if (r1_bio->bios[j])
1448                                rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1449                r1_bio->state = 0;
1450                allow_barrier(conf, bio->bi_iter.bi_sector);
1451                raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1452                md_wait_for_blocked_rdev(blocked_rdev, mddev);
1453                wait_barrier(conf, bio->bi_iter.bi_sector);
1454                goto retry_write;
1455        }
1456
1457        if (max_sectors < bio_sectors(bio)) {
1458                struct bio *split = bio_split(bio, max_sectors,
1459                                              GFP_NOIO, &conf->bio_split);
1460                bio_chain(split, bio);
1461                submit_bio_noacct(bio);
1462                bio = split;
1463                r1_bio->master_bio = bio;
1464                r1_bio->sectors = max_sectors;
1465        }
1466
1467        if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1468                r1_bio->start_time = bio_start_io_acct(bio);
1469        atomic_set(&r1_bio->remaining, 1);
1470        atomic_set(&r1_bio->behind_remaining, 0);
1471
1472        first_clone = 1;
1473
1474        for (i = 0; i < disks; i++) {
1475                struct bio *mbio = NULL;
1476                struct md_rdev *rdev = conf->mirrors[i].rdev;
1477                if (!r1_bio->bios[i])
1478                        continue;
1479
1480                if (first_clone) {
1481                        /* do behind I/O ?
1482                         * Not if there are too many, or cannot
1483                         * allocate memory, or a reader on WriteMostly
1484                         * is waiting for behind writes to flush */
1485                        if (bitmap &&
1486                            (atomic_read(&bitmap->behind_writes)
1487                             < mddev->bitmap_info.max_write_behind) &&
1488                            !waitqueue_active(&bitmap->behind_wait)) {
1489                                alloc_behind_master_bio(r1_bio, bio);
1490                        }
1491
1492                        md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1493                                             test_bit(R1BIO_BehindIO, &r1_bio->state));
1494                        first_clone = 0;
1495                }
1496
1497                if (r1_bio->behind_master_bio)
1498                        mbio = bio_clone_fast(r1_bio->behind_master_bio,
1499                                              GFP_NOIO, &mddev->bio_set);
1500                else
1501                        mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1502
1503                if (r1_bio->behind_master_bio) {
1504                        if (test_bit(CollisionCheck, &rdev->flags))
1505                                wait_for_serialization(rdev, r1_bio);
1506                        if (test_bit(WriteMostly, &rdev->flags))
1507                                atomic_inc(&r1_bio->behind_remaining);
1508                } else if (mddev->serialize_policy)
1509                        wait_for_serialization(rdev, r1_bio);
1510
1511                r1_bio->bios[i] = mbio;
1512
1513                mbio->bi_iter.bi_sector = (r1_bio->sector +
1514                                   conf->mirrors[i].rdev->data_offset);
1515                bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1516                mbio->bi_end_io = raid1_end_write_request;
1517                mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1518                if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1519                    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1520                    conf->raid_disks - mddev->degraded > 1)
1521                        mbio->bi_opf |= MD_FAILFAST;
1522                mbio->bi_private = r1_bio;
1523
1524                atomic_inc(&r1_bio->remaining);
1525
1526                if (mddev->gendisk)
1527                        trace_block_bio_remap(mbio, disk_devt(mddev->gendisk),
1528                                              r1_bio->sector);
1529                /* flush_pending_writes() needs access to the rdev so...*/
1530                mbio->bi_bdev = (void *)conf->mirrors[i].rdev;
1531
1532                cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1533                if (cb)
1534                        plug = container_of(cb, struct raid1_plug_cb, cb);
1535                else
1536                        plug = NULL;
1537                if (plug) {
1538                        bio_list_add(&plug->pending, mbio);
1539                        plug->pending_cnt++;
1540                } else {
1541                        spin_lock_irqsave(&conf->device_lock, flags);
1542                        bio_list_add(&conf->pending_bio_list, mbio);
1543                        conf->pending_count++;
1544                        spin_unlock_irqrestore(&conf->device_lock, flags);
1545                        md_wakeup_thread(mddev->thread);
1546                }
1547        }
1548
1549        r1_bio_write_done(r1_bio);
1550
1551        /* In case raid1d snuck in to freeze_array */
1552        wake_up(&conf->wait_barrier);
1553}
1554
1555static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1556{
1557        sector_t sectors;
1558
1559        if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1560            && md_flush_request(mddev, bio))
1561                return true;
1562
1563        /*
1564         * There is a limit to the maximum size, but
1565         * the read/write handler might find a lower limit
1566         * due to bad blocks.  To avoid multiple splits,
1567         * we pass the maximum number of sectors down
1568         * and let the lower level perform the split.
1569         */
1570        sectors = align_to_barrier_unit_end(
1571                bio->bi_iter.bi_sector, bio_sectors(bio));
1572
1573        if (bio_data_dir(bio) == READ)
1574                raid1_read_request(mddev, bio, sectors, NULL);
1575        else {
1576                if (!md_write_start(mddev,bio))
1577                        return false;
1578                raid1_write_request(mddev, bio, sectors);
1579        }
1580        return true;
1581}
1582
1583static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1584{
1585        struct r1conf *conf = mddev->private;
1586        int i;
1587
1588        seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1589                   conf->raid_disks - mddev->degraded);
1590        rcu_read_lock();
1591        for (i = 0; i < conf->raid_disks; i++) {
1592                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1593                seq_printf(seq, "%s",
1594                           rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1595        }
1596        rcu_read_unlock();
1597        seq_printf(seq, "]");
1598}
1599
1600static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1601{
1602        char b[BDEVNAME_SIZE];
1603        struct r1conf *conf = mddev->private;
1604        unsigned long flags;
1605
1606        /*
1607         * If it is not operational, then we have already marked it as dead
1608         * else if it is the last working disks with "fail_last_dev == false",
1609         * ignore the error, let the next level up know.
1610         * else mark the drive as failed
1611         */
1612        spin_lock_irqsave(&conf->device_lock, flags);
1613        if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1614            && (conf->raid_disks - mddev->degraded) == 1) {
1615                /*
1616                 * Don't fail the drive, act as though we were just a
1617                 * normal single drive.
1618                 * However don't try a recovery from this drive as
1619                 * it is very likely to fail.
1620                 */
1621                conf->recovery_disabled = mddev->recovery_disabled;
1622                spin_unlock_irqrestore(&conf->device_lock, flags);
1623                return;
1624        }
1625        set_bit(Blocked, &rdev->flags);
1626        if (test_and_clear_bit(In_sync, &rdev->flags))
1627                mddev->degraded++;
1628        set_bit(Faulty, &rdev->flags);
1629        spin_unlock_irqrestore(&conf->device_lock, flags);
1630        /*
1631         * if recovery is running, make sure it aborts.
1632         */
1633        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1634        set_mask_bits(&mddev->sb_flags, 0,
1635                      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1636        pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1637                "md/raid1:%s: Operation continuing on %d devices.\n",
1638                mdname(mddev), bdevname(rdev->bdev, b),
1639                mdname(mddev), conf->raid_disks - mddev->degraded);
1640}
1641
1642static void print_conf(struct r1conf *conf)
1643{
1644        int i;
1645
1646        pr_debug("RAID1 conf printout:\n");
1647        if (!conf) {
1648                pr_debug("(!conf)\n");
1649                return;
1650        }
1651        pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1652                 conf->raid_disks);
1653
1654        rcu_read_lock();
1655        for (i = 0; i < conf->raid_disks; i++) {
1656                char b[BDEVNAME_SIZE];
1657                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1658                if (rdev)
1659                        pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1660                                 i, !test_bit(In_sync, &rdev->flags),
1661                                 !test_bit(Faulty, &rdev->flags),
1662                                 bdevname(rdev->bdev,b));
1663        }
1664        rcu_read_unlock();
1665}
1666
1667static void close_sync(struct r1conf *conf)
1668{
1669        int idx;
1670
1671        for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1672                _wait_barrier(conf, idx);
1673                _allow_barrier(conf, idx);
1674        }
1675
1676        mempool_exit(&conf->r1buf_pool);
1677}
1678
1679static int raid1_spare_active(struct mddev *mddev)
1680{
1681        int i;
1682        struct r1conf *conf = mddev->private;
1683        int count = 0;
1684        unsigned long flags;
1685
1686        /*
1687         * Find all failed disks within the RAID1 configuration
1688         * and mark them readable.
1689         * Called under mddev lock, so rcu protection not needed.
1690         * device_lock used to avoid races with raid1_end_read_request
1691         * which expects 'In_sync' flags and ->degraded to be consistent.
1692         */
1693        spin_lock_irqsave(&conf->device_lock, flags);
1694        for (i = 0; i < conf->raid_disks; i++) {
1695                struct md_rdev *rdev = conf->mirrors[i].rdev;
1696                struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1697                if (repl
1698                    && !test_bit(Candidate, &repl->flags)
1699                    && repl->recovery_offset == MaxSector
1700                    && !test_bit(Faulty, &repl->flags)
1701                    && !test_and_set_bit(In_sync, &repl->flags)) {
1702                        /* replacement has just become active */
1703                        if (!rdev ||
1704                            !test_and_clear_bit(In_sync, &rdev->flags))
1705                                count++;
1706                        if (rdev) {
1707                                /* Replaced device not technically
1708                                 * faulty, but we need to be sure
1709                                 * it gets removed and never re-added
1710                                 */
1711                                set_bit(Faulty, &rdev->flags);
1712                                sysfs_notify_dirent_safe(
1713                                        rdev->sysfs_state);
1714                        }
1715                }
1716                if (rdev
1717                    && rdev->recovery_offset == MaxSector
1718                    && !test_bit(Faulty, &rdev->flags)
1719                    && !test_and_set_bit(In_sync, &rdev->flags)) {
1720                        count++;
1721                        sysfs_notify_dirent_safe(rdev->sysfs_state);
1722                }
1723        }
1724        mddev->degraded -= count;
1725        spin_unlock_irqrestore(&conf->device_lock, flags);
1726
1727        print_conf(conf);
1728        return count;
1729}
1730
1731static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1732{
1733        struct r1conf *conf = mddev->private;
1734        int err = -EEXIST;
1735        int mirror = 0;
1736        struct raid1_info *p;
1737        int first = 0;
1738        int last = conf->raid_disks - 1;
1739
1740        if (mddev->recovery_disabled == conf->recovery_disabled)
1741                return -EBUSY;
1742
1743        if (md_integrity_add_rdev(rdev, mddev))
1744                return -ENXIO;
1745
1746        if (rdev->raid_disk >= 0)
1747                first = last = rdev->raid_disk;
1748
1749        /*
1750         * find the disk ... but prefer rdev->saved_raid_disk
1751         * if possible.
1752         */
1753        if (rdev->saved_raid_disk >= 0 &&
1754            rdev->saved_raid_disk >= first &&
1755            rdev->saved_raid_disk < conf->raid_disks &&
1756            conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1757                first = last = rdev->saved_raid_disk;
1758
1759        for (mirror = first; mirror <= last; mirror++) {
1760                p = conf->mirrors + mirror;
1761                if (!p->rdev) {
1762                        if (mddev->gendisk)
1763                                disk_stack_limits(mddev->gendisk, rdev->bdev,
1764                                                  rdev->data_offset << 9);
1765
1766                        p->head_position = 0;
1767                        rdev->raid_disk = mirror;
1768                        err = 0;
1769                        /* As all devices are equivalent, we don't need a full recovery
1770                         * if this was recently any drive of the array
1771                         */
1772                        if (rdev->saved_raid_disk < 0)
1773                                conf->fullsync = 1;
1774                        rcu_assign_pointer(p->rdev, rdev);
1775                        break;
1776                }
1777                if (test_bit(WantReplacement, &p->rdev->flags) &&
1778                    p[conf->raid_disks].rdev == NULL) {
1779                        /* Add this device as a replacement */
1780                        clear_bit(In_sync, &rdev->flags);
1781                        set_bit(Replacement, &rdev->flags);
1782                        rdev->raid_disk = mirror;
1783                        err = 0;
1784                        conf->fullsync = 1;
1785                        rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1786                        break;
1787                }
1788        }
1789        if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1790                blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1791        print_conf(conf);
1792        return err;
1793}
1794
1795static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1796{
1797        struct r1conf *conf = mddev->private;
1798        int err = 0;
1799        int number = rdev->raid_disk;
1800        struct raid1_info *p = conf->mirrors + number;
1801
1802        if (rdev != p->rdev)
1803                p = conf->mirrors + conf->raid_disks + number;
1804
1805        print_conf(conf);
1806        if (rdev == p->rdev) {
1807                if (test_bit(In_sync, &rdev->flags) ||
1808                    atomic_read(&rdev->nr_pending)) {
1809                        err = -EBUSY;
1810                        goto abort;
1811                }
1812                /* Only remove non-faulty devices if recovery
1813                 * is not possible.
1814                 */
1815                if (!test_bit(Faulty, &rdev->flags) &&
1816                    mddev->recovery_disabled != conf->recovery_disabled &&
1817                    mddev->degraded < conf->raid_disks) {
1818                        err = -EBUSY;
1819                        goto abort;
1820                }
1821                p->rdev = NULL;
1822                if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1823                        synchronize_rcu();
1824                        if (atomic_read(&rdev->nr_pending)) {
1825                                /* lost the race, try later */
1826                                err = -EBUSY;
1827                                p->rdev = rdev;
1828                                goto abort;
1829                        }
1830                }
1831                if (conf->mirrors[conf->raid_disks + number].rdev) {
1832                        /* We just removed a device that is being replaced.
1833                         * Move down the replacement.  We drain all IO before
1834                         * doing this to avoid confusion.
1835                         */
1836                        struct md_rdev *repl =
1837                                conf->mirrors[conf->raid_disks + number].rdev;
1838                        freeze_array(conf, 0);
1839                        if (atomic_read(&repl->nr_pending)) {
1840                                /* It means that some queued IO of retry_list
1841                                 * hold repl. Thus, we cannot set replacement
1842                                 * as NULL, avoiding rdev NULL pointer
1843                                 * dereference in sync_request_write and
1844                                 * handle_write_finished.
1845                                 */
1846                                err = -EBUSY;
1847                                unfreeze_array(conf);
1848                                goto abort;
1849                        }
1850                        clear_bit(Replacement, &repl->flags);
1851                        p->rdev = repl;
1852                        conf->mirrors[conf->raid_disks + number].rdev = NULL;
1853                        unfreeze_array(conf);
1854                }
1855
1856                clear_bit(WantReplacement, &rdev->flags);
1857                err = md_integrity_register(mddev);
1858        }
1859abort:
1860
1861        print_conf(conf);
1862        return err;
1863}
1864
1865static void end_sync_read(struct bio *bio)
1866{
1867        struct r1bio *r1_bio = get_resync_r1bio(bio);
1868
1869        update_head_pos(r1_bio->read_disk, r1_bio);
1870
1871        /*
1872         * we have read a block, now it needs to be re-written,
1873         * or re-read if the read failed.
1874         * We don't do much here, just schedule handling by raid1d
1875         */
1876        if (!bio->bi_status)
1877                set_bit(R1BIO_Uptodate, &r1_bio->state);
1878
1879        if (atomic_dec_and_test(&r1_bio->remaining))
1880                reschedule_retry(r1_bio);
1881}
1882
1883static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1884{
1885        sector_t sync_blocks = 0;
1886        sector_t s = r1_bio->sector;
1887        long sectors_to_go = r1_bio->sectors;
1888
1889        /* make sure these bits don't get cleared. */
1890        do {
1891                md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1892                s += sync_blocks;
1893                sectors_to_go -= sync_blocks;
1894        } while (sectors_to_go > 0);
1895}
1896
1897static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1898{
1899        if (atomic_dec_and_test(&r1_bio->remaining)) {
1900                struct mddev *mddev = r1_bio->mddev;
1901                int s = r1_bio->sectors;
1902
1903                if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1904                    test_bit(R1BIO_WriteError, &r1_bio->state))
1905                        reschedule_retry(r1_bio);
1906                else {
1907                        put_buf(r1_bio);
1908                        md_done_sync(mddev, s, uptodate);
1909                }
1910        }
1911}
1912
1913static void end_sync_write(struct bio *bio)
1914{
1915        int uptodate = !bio->bi_status;
1916        struct r1bio *r1_bio = get_resync_r1bio(bio);
1917        struct mddev *mddev = r1_bio->mddev;
1918        struct r1conf *conf = mddev->private;
1919        sector_t first_bad;
1920        int bad_sectors;
1921        struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1922
1923        if (!uptodate) {
1924                abort_sync_write(mddev, r1_bio);
1925                set_bit(WriteErrorSeen, &rdev->flags);
1926                if (!test_and_set_bit(WantReplacement, &rdev->flags))
1927                        set_bit(MD_RECOVERY_NEEDED, &
1928                                mddev->recovery);
1929                set_bit(R1BIO_WriteError, &r1_bio->state);
1930        } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1931                               &first_bad, &bad_sectors) &&
1932                   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1933                                r1_bio->sector,
1934                                r1_bio->sectors,
1935                                &first_bad, &bad_sectors)
1936                )
1937                set_bit(R1BIO_MadeGood, &r1_bio->state);
1938
1939        put_sync_write_buf(r1_bio, uptodate);
1940}
1941
1942static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1943                            int sectors, struct page *page, int rw)
1944{
1945        if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1946                /* success */
1947                return 1;
1948        if (rw == WRITE) {
1949                set_bit(WriteErrorSeen, &rdev->flags);
1950                if (!test_and_set_bit(WantReplacement,
1951                                      &rdev->flags))
1952                        set_bit(MD_RECOVERY_NEEDED, &
1953                                rdev->mddev->recovery);
1954        }
1955        /* need to record an error - either for the block or the device */
1956        if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1957                md_error(rdev->mddev, rdev);
1958        return 0;
1959}
1960
1961static int fix_sync_read_error(struct r1bio *r1_bio)
1962{
1963        /* Try some synchronous reads of other devices to get
1964         * good data, much like with normal read errors.  Only
1965         * read into the pages we already have so we don't
1966         * need to re-issue the read request.
1967         * We don't need to freeze the array, because being in an
1968         * active sync request, there is no normal IO, and
1969         * no overlapping syncs.
1970         * We don't need to check is_badblock() again as we
1971         * made sure that anything with a bad block in range
1972         * will have bi_end_io clear.
1973         */
1974        struct mddev *mddev = r1_bio->mddev;
1975        struct r1conf *conf = mddev->private;
1976        struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1977        struct page **pages = get_resync_pages(bio)->pages;
1978        sector_t sect = r1_bio->sector;
1979        int sectors = r1_bio->sectors;
1980        int idx = 0;
1981        struct md_rdev *rdev;
1982
1983        rdev = conf->mirrors[r1_bio->read_disk].rdev;
1984        if (test_bit(FailFast, &rdev->flags)) {
1985                /* Don't try recovering from here - just fail it
1986                 * ... unless it is the last working device of course */
1987                md_error(mddev, rdev);
1988                if (test_bit(Faulty, &rdev->flags))
1989                        /* Don't try to read from here, but make sure
1990                         * put_buf does it's thing
1991                         */
1992                        bio->bi_end_io = end_sync_write;
1993        }
1994
1995        while(sectors) {
1996                int s = sectors;
1997                int d = r1_bio->read_disk;
1998                int success = 0;
1999                int start;
2000
2001                if (s > (PAGE_SIZE>>9))
2002                        s = PAGE_SIZE >> 9;
2003                do {
2004                        if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2005                                /* No rcu protection needed here devices
2006                                 * can only be removed when no resync is
2007                                 * active, and resync is currently active
2008                                 */
2009                                rdev = conf->mirrors[d].rdev;
2010                                if (sync_page_io(rdev, sect, s<<9,
2011                                                 pages[idx],
2012                                                 REQ_OP_READ, 0, false)) {
2013                                        success = 1;
2014                                        break;
2015                                }
2016                        }
2017                        d++;
2018                        if (d == conf->raid_disks * 2)
2019                                d = 0;
2020                } while (!success && d != r1_bio->read_disk);
2021
2022                if (!success) {
2023                        char b[BDEVNAME_SIZE];
2024                        int abort = 0;
2025                        /* Cannot read from anywhere, this block is lost.
2026                         * Record a bad block on each device.  If that doesn't
2027                         * work just disable and interrupt the recovery.
2028                         * Don't fail devices as that won't really help.
2029                         */
2030                        pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2031                                            mdname(mddev), bio_devname(bio, b),
2032                                            (unsigned long long)r1_bio->sector);
2033                        for (d = 0; d < conf->raid_disks * 2; d++) {
2034                                rdev = conf->mirrors[d].rdev;
2035                                if (!rdev || test_bit(Faulty, &rdev->flags))
2036                                        continue;
2037                                if (!rdev_set_badblocks(rdev, sect, s, 0))
2038                                        abort = 1;
2039                        }
2040                        if (abort) {
2041                                conf->recovery_disabled =
2042                                        mddev->recovery_disabled;
2043                                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2044                                md_done_sync(mddev, r1_bio->sectors, 0);
2045                                put_buf(r1_bio);
2046                                return 0;
2047                        }
2048                        /* Try next page */
2049                        sectors -= s;
2050                        sect += s;
2051                        idx++;
2052                        continue;
2053                }
2054
2055                start = d;
2056                /* write it back and re-read */
2057                while (d != r1_bio->read_disk) {
2058                        if (d == 0)
2059                                d = conf->raid_disks * 2;
2060                        d--;
2061                        if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2062                                continue;
2063                        rdev = conf->mirrors[d].rdev;
2064                        if (r1_sync_page_io(rdev, sect, s,
2065                                            pages[idx],
2066                                            WRITE) == 0) {
2067                                r1_bio->bios[d]->bi_end_io = NULL;
2068                                rdev_dec_pending(rdev, mddev);
2069                        }
2070                }
2071                d = start;
2072                while (d != r1_bio->read_disk) {
2073                        if (d == 0)
2074                                d = conf->raid_disks * 2;
2075                        d--;
2076                        if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2077                                continue;
2078                        rdev = conf->mirrors[d].rdev;
2079                        if (r1_sync_page_io(rdev, sect, s,
2080                                            pages[idx],
2081                                            READ) != 0)
2082                                atomic_add(s, &rdev->corrected_errors);
2083                }
2084                sectors -= s;
2085                sect += s;
2086                idx ++;
2087        }
2088        set_bit(R1BIO_Uptodate, &r1_bio->state);
2089        bio->bi_status = 0;
2090        return 1;
2091}
2092
2093static void process_checks(struct r1bio *r1_bio)
2094{
2095        /* We have read all readable devices.  If we haven't
2096         * got the block, then there is no hope left.
2097         * If we have, then we want to do a comparison
2098         * and skip the write if everything is the same.
2099         * If any blocks failed to read, then we need to
2100         * attempt an over-write
2101         */
2102        struct mddev *mddev = r1_bio->mddev;
2103        struct r1conf *conf = mddev->private;
2104        int primary;
2105        int i;
2106        int vcnt;
2107
2108        /* Fix variable parts of all bios */
2109        vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2110        for (i = 0; i < conf->raid_disks * 2; i++) {
2111                blk_status_t status;
2112                struct bio *b = r1_bio->bios[i];
2113                struct resync_pages *rp = get_resync_pages(b);
2114                if (b->bi_end_io != end_sync_read)
2115                        continue;
2116                /* fixup the bio for reuse, but preserve errno */
2117                status = b->bi_status;
2118                bio_reset(b);
2119                b->bi_status = status;
2120                b->bi_iter.bi_sector = r1_bio->sector +
2121                        conf->mirrors[i].rdev->data_offset;
2122                bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2123                b->bi_end_io = end_sync_read;
2124                rp->raid_bio = r1_bio;
2125                b->bi_private = rp;
2126
2127                /* initialize bvec table again */
2128                md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2129        }
2130        for (primary = 0; primary < conf->raid_disks * 2; primary++)
2131                if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2132                    !r1_bio->bios[primary]->bi_status) {
2133                        r1_bio->bios[primary]->bi_end_io = NULL;
2134                        rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2135                        break;
2136                }
2137        r1_bio->read_disk = primary;
2138        for (i = 0; i < conf->raid_disks * 2; i++) {
2139                int j = 0;
2140                struct bio *pbio = r1_bio->bios[primary];
2141                struct bio *sbio = r1_bio->bios[i];
2142                blk_status_t status = sbio->bi_status;
2143                struct page **ppages = get_resync_pages(pbio)->pages;
2144                struct page **spages = get_resync_pages(sbio)->pages;
2145                struct bio_vec *bi;
2146                int page_len[RESYNC_PAGES] = { 0 };
2147                struct bvec_iter_all iter_all;
2148
2149                if (sbio->bi_end_io != end_sync_read)
2150                        continue;
2151                /* Now we can 'fixup' the error value */
2152                sbio->bi_status = 0;
2153
2154                bio_for_each_segment_all(bi, sbio, iter_all)
2155                        page_len[j++] = bi->bv_len;
2156
2157                if (!status) {
2158                        for (j = vcnt; j-- ; ) {
2159                                if (memcmp(page_address(ppages[j]),
2160                                           page_address(spages[j]),
2161                                           page_len[j]))
2162                                        break;
2163                        }
2164                } else
2165                        j = 0;
2166                if (j >= 0)
2167                        atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2168                if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2169                              && !status)) {
2170                        /* No need to write to this device. */
2171                        sbio->bi_end_io = NULL;
2172                        rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2173                        continue;
2174                }
2175
2176                bio_copy_data(sbio, pbio);
2177        }
2178}
2179
2180static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2181{
2182        struct r1conf *conf = mddev->private;
2183        int i;
2184        int disks = conf->raid_disks * 2;
2185        struct bio *wbio;
2186
2187        if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2188                /* ouch - failed to read all of that. */
2189                if (!fix_sync_read_error(r1_bio))
2190                        return;
2191
2192        if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2193                process_checks(r1_bio);
2194
2195        /*
2196         * schedule writes
2197         */
2198        atomic_set(&r1_bio->remaining, 1);
2199        for (i = 0; i < disks ; i++) {
2200                wbio = r1_bio->bios[i];
2201                if (wbio->bi_end_io == NULL ||
2202                    (wbio->bi_end_io == end_sync_read &&
2203                     (i == r1_bio->read_disk ||
2204                      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2205                        continue;
2206                if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2207                        abort_sync_write(mddev, r1_bio);
2208                        continue;
2209                }
2210
2211                bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2212                if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2213                        wbio->bi_opf |= MD_FAILFAST;
2214
2215                wbio->bi_end_io = end_sync_write;
2216                atomic_inc(&r1_bio->remaining);
2217                md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2218
2219                submit_bio_noacct(wbio);
2220        }
2221
2222        put_sync_write_buf(r1_bio, 1);
2223}
2224
2225/*
2226 * This is a kernel thread which:
2227 *
2228 *      1.      Retries failed read operations on working mirrors.
2229 *      2.      Updates the raid superblock when problems encounter.
2230 *      3.      Performs writes following reads for array synchronising.
2231 */
2232
2233static void fix_read_error(struct r1conf *conf, int read_disk,
2234                           sector_t sect, int sectors)
2235{
2236        struct mddev *mddev = conf->mddev;
2237        while(sectors) {
2238                int s = sectors;
2239                int d = read_disk;
2240                int success = 0;
2241                int start;
2242                struct md_rdev *rdev;
2243
2244                if (s > (PAGE_SIZE>>9))
2245                        s = PAGE_SIZE >> 9;
2246
2247                do {
2248                        sector_t first_bad;
2249                        int bad_sectors;
2250
2251                        rcu_read_lock();
2252                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2253                        if (rdev &&
2254                            (test_bit(In_sync, &rdev->flags) ||
2255                             (!test_bit(Faulty, &rdev->flags) &&
2256                              rdev->recovery_offset >= sect + s)) &&
2257                            is_badblock(rdev, sect, s,
2258                                        &first_bad, &bad_sectors) == 0) {
2259                                atomic_inc(&rdev->nr_pending);
2260                                rcu_read_unlock();
2261                                if (sync_page_io(rdev, sect, s<<9,
2262                                         conf->tmppage, REQ_OP_READ, 0, false))
2263                                        success = 1;
2264                                rdev_dec_pending(rdev, mddev);
2265                                if (success)
2266                                        break;
2267                        } else
2268                                rcu_read_unlock();
2269                        d++;
2270                        if (d == conf->raid_disks * 2)
2271                                d = 0;
2272                } while (!success && d != read_disk);
2273
2274                if (!success) {
2275                        /* Cannot read from anywhere - mark it bad */
2276                        struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2277                        if (!rdev_set_badblocks(rdev, sect, s, 0))
2278                                md_error(mddev, rdev);
2279                        break;
2280                }
2281                /* write it back and re-read */
2282                start = d;
2283                while (d != read_disk) {
2284                        if (d==0)
2285                                d = conf->raid_disks * 2;
2286                        d--;
2287                        rcu_read_lock();
2288                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2289                        if (rdev &&
2290                            !test_bit(Faulty, &rdev->flags)) {
2291                                atomic_inc(&rdev->nr_pending);
2292                                rcu_read_unlock();
2293                                r1_sync_page_io(rdev, sect, s,
2294                                                conf->tmppage, WRITE);
2295                                rdev_dec_pending(rdev, mddev);
2296                        } else
2297                                rcu_read_unlock();
2298                }
2299                d = start;
2300                while (d != read_disk) {
2301                        char b[BDEVNAME_SIZE];
2302                        if (d==0)
2303                                d = conf->raid_disks * 2;
2304                        d--;
2305                        rcu_read_lock();
2306                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2307                        if (rdev &&
2308                            !test_bit(Faulty, &rdev->flags)) {
2309                                atomic_inc(&rdev->nr_pending);
2310                                rcu_read_unlock();
2311                                if (r1_sync_page_io(rdev, sect, s,
2312                                                    conf->tmppage, READ)) {
2313                                        atomic_add(s, &rdev->corrected_errors);
2314                                        pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2315                                                mdname(mddev), s,
2316                                                (unsigned long long)(sect +
2317                                                                     rdev->data_offset),
2318                                                bdevname(rdev->bdev, b));
2319                                }
2320                                rdev_dec_pending(rdev, mddev);
2321                        } else
2322                                rcu_read_unlock();
2323                }
2324                sectors -= s;
2325                sect += s;
2326        }
2327}
2328
2329static int narrow_write_error(struct r1bio *r1_bio, int i)
2330{
2331        struct mddev *mddev = r1_bio->mddev;
2332        struct r1conf *conf = mddev->private;
2333        struct md_rdev *rdev = conf->mirrors[i].rdev;
2334
2335        /* bio has the data to be written to device 'i' where
2336         * we just recently had a write error.
2337         * We repeatedly clone the bio and trim down to one block,
2338         * then try the write.  Where the write fails we record
2339         * a bad block.
2340         * It is conceivable that the bio doesn't exactly align with
2341         * blocks.  We must handle this somehow.
2342         *
2343         * We currently own a reference on the rdev.
2344         */
2345
2346        int block_sectors;
2347        sector_t sector;
2348        int sectors;
2349        int sect_to_write = r1_bio->sectors;
2350        int ok = 1;
2351
2352        if (rdev->badblocks.shift < 0)
2353                return 0;
2354
2355        block_sectors = roundup(1 << rdev->badblocks.shift,
2356                                bdev_logical_block_size(rdev->bdev) >> 9);
2357        sector = r1_bio->sector;
2358        sectors = ((sector + block_sectors)
2359                   & ~(sector_t)(block_sectors - 1))
2360                - sector;
2361
2362        while (sect_to_write) {
2363                struct bio *wbio;
2364                if (sectors > sect_to_write)
2365                        sectors = sect_to_write;
2366                /* Write at 'sector' for 'sectors'*/
2367
2368                if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2369                        wbio = bio_clone_fast(r1_bio->behind_master_bio,
2370                                              GFP_NOIO,
2371                                              &mddev->bio_set);
2372                } else {
2373                        wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2374                                              &mddev->bio_set);
2375                }
2376
2377                bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2378                wbio->bi_iter.bi_sector = r1_bio->sector;
2379                wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2380
2381                bio_trim(wbio, sector - r1_bio->sector, sectors);
2382                wbio->bi_iter.bi_sector += rdev->data_offset;
2383                bio_set_dev(wbio, rdev->bdev);
2384
2385                if (submit_bio_wait(wbio) < 0)
2386                        /* failure! */
2387                        ok = rdev_set_badblocks(rdev, sector,
2388                                                sectors, 0)
2389                                && ok;
2390
2391                bio_put(wbio);
2392                sect_to_write -= sectors;
2393                sector += sectors;
2394                sectors = block_sectors;
2395        }
2396        return ok;
2397}
2398
2399static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2400{
2401        int m;
2402        int s = r1_bio->sectors;
2403        for (m = 0; m < conf->raid_disks * 2 ; m++) {
2404                struct md_rdev *rdev = conf->mirrors[m].rdev;
2405                struct bio *bio = r1_bio->bios[m];
2406                if (bio->bi_end_io == NULL)
2407                        continue;
2408                if (!bio->bi_status &&
2409                    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2410                        rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2411                }
2412                if (bio->bi_status &&
2413                    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2414                        if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2415                                md_error(conf->mddev, rdev);
2416                }
2417        }
2418        put_buf(r1_bio);
2419        md_done_sync(conf->mddev, s, 1);
2420}
2421
2422static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2423{
2424        int m, idx;
2425        bool fail = false;
2426
2427        for (m = 0; m < conf->raid_disks * 2 ; m++)
2428                if (r1_bio->bios[m] == IO_MADE_GOOD) {
2429                        struct md_rdev *rdev = conf->mirrors[m].rdev;
2430                        rdev_clear_badblocks(rdev,
2431                                             r1_bio->sector,
2432                                             r1_bio->sectors, 0);
2433                        rdev_dec_pending(rdev, conf->mddev);
2434                } else if (r1_bio->bios[m] != NULL) {
2435                        /* This drive got a write error.  We need to
2436                         * narrow down and record precise write
2437                         * errors.
2438                         */
2439                        fail = true;
2440                        if (!narrow_write_error(r1_bio, m)) {
2441                                md_error(conf->mddev,
2442                                         conf->mirrors[m].rdev);
2443                                /* an I/O failed, we can't clear the bitmap */
2444                                set_bit(R1BIO_Degraded, &r1_bio->state);
2445                        }
2446                        rdev_dec_pending(conf->mirrors[m].rdev,
2447                                         conf->mddev);
2448                }
2449        if (fail) {
2450                spin_lock_irq(&conf->device_lock);
2451                list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2452                idx = sector_to_idx(r1_bio->sector);
2453                atomic_inc(&conf->nr_queued[idx]);
2454                spin_unlock_irq(&conf->device_lock);
2455                /*
2456                 * In case freeze_array() is waiting for condition
2457                 * get_unqueued_pending() == extra to be true.
2458                 */
2459                wake_up(&conf->wait_barrier);
2460                md_wakeup_thread(conf->mddev->thread);
2461        } else {
2462                if (test_bit(R1BIO_WriteError, &r1_bio->state))
2463                        close_write(r1_bio);
2464                raid_end_bio_io(r1_bio);
2465        }
2466}
2467
2468static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2469{
2470        struct mddev *mddev = conf->mddev;
2471        struct bio *bio;
2472        struct md_rdev *rdev;
2473
2474        clear_bit(R1BIO_ReadError, &r1_bio->state);
2475        /* we got a read error. Maybe the drive is bad.  Maybe just
2476         * the block and we can fix it.
2477         * We freeze all other IO, and try reading the block from
2478         * other devices.  When we find one, we re-write
2479         * and check it that fixes the read error.
2480         * This is all done synchronously while the array is
2481         * frozen
2482         */
2483
2484        bio = r1_bio->bios[r1_bio->read_disk];
2485        bio_put(bio);
2486        r1_bio->bios[r1_bio->read_disk] = NULL;
2487
2488        rdev = conf->mirrors[r1_bio->read_disk].rdev;
2489        if (mddev->ro == 0
2490            && !test_bit(FailFast, &rdev->flags)) {
2491                freeze_array(conf, 1);
2492                fix_read_error(conf, r1_bio->read_disk,
2493                               r1_bio->sector, r1_bio->sectors);
2494                unfreeze_array(conf);
2495        } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2496                md_error(mddev, rdev);
2497        } else {
2498                r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2499        }
2500
2501        rdev_dec_pending(rdev, conf->mddev);
2502        allow_barrier(conf, r1_bio->sector);
2503        bio = r1_bio->master_bio;
2504
2505        /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2506        r1_bio->state = 0;
2507        raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2508}
2509
2510static void raid1d(struct md_thread *thread)
2511{
2512        struct mddev *mddev = thread->mddev;
2513        struct r1bio *r1_bio;
2514        unsigned long flags;
2515        struct r1conf *conf = mddev->private;
2516        struct list_head *head = &conf->retry_list;
2517        struct blk_plug plug;
2518        int idx;
2519
2520        md_check_recovery(mddev);
2521
2522        if (!list_empty_careful(&conf->bio_end_io_list) &&
2523            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2524                LIST_HEAD(tmp);
2525                spin_lock_irqsave(&conf->device_lock, flags);
2526                if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2527                        list_splice_init(&conf->bio_end_io_list, &tmp);
2528                spin_unlock_irqrestore(&conf->device_lock, flags);
2529                while (!list_empty(&tmp)) {
2530                        r1_bio = list_first_entry(&tmp, struct r1bio,
2531                                                  retry_list);
2532                        list_del(&r1_bio->retry_list);
2533                        idx = sector_to_idx(r1_bio->sector);
2534                        atomic_dec(&conf->nr_queued[idx]);
2535                        if (mddev->degraded)
2536                                set_bit(R1BIO_Degraded, &r1_bio->state);
2537                        if (test_bit(R1BIO_WriteError, &r1_bio->state))
2538                                close_write(r1_bio);
2539                        raid_end_bio_io(r1_bio);
2540                }
2541        }
2542
2543        blk_start_plug(&plug);
2544        for (;;) {
2545
2546                flush_pending_writes(conf);
2547
2548                spin_lock_irqsave(&conf->device_lock, flags);
2549                if (list_empty(head)) {
2550                        spin_unlock_irqrestore(&conf->device_lock, flags);
2551                        break;
2552                }
2553                r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2554                list_del(head->prev);
2555                idx = sector_to_idx(r1_bio->sector);
2556                atomic_dec(&conf->nr_queued[idx]);
2557                spin_unlock_irqrestore(&conf->device_lock, flags);
2558
2559                mddev = r1_bio->mddev;
2560                conf = mddev->private;
2561                if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2562                        if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2563                            test_bit(R1BIO_WriteError, &r1_bio->state))
2564                                handle_sync_write_finished(conf, r1_bio);
2565                        else
2566                                sync_request_write(mddev, r1_bio);
2567                } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2568                           test_bit(R1BIO_WriteError, &r1_bio->state))
2569                        handle_write_finished(conf, r1_bio);
2570                else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2571                        handle_read_error(conf, r1_bio);
2572                else
2573                        WARN_ON_ONCE(1);
2574
2575                cond_resched();
2576                if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2577                        md_check_recovery(mddev);
2578        }
2579        blk_finish_plug(&plug);
2580}
2581
2582static int init_resync(struct r1conf *conf)
2583{
2584        int buffs;
2585
2586        buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2587        BUG_ON(mempool_initialized(&conf->r1buf_pool));
2588
2589        return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2590                            r1buf_pool_free, conf->poolinfo);
2591}
2592
2593static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2594{
2595        struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2596        struct resync_pages *rps;
2597        struct bio *bio;
2598        int i;
2599
2600        for (i = conf->poolinfo->raid_disks; i--; ) {
2601                bio = r1bio->bios[i];
2602                rps = bio->bi_private;
2603                bio_reset(bio);
2604                bio->bi_private = rps;
2605        }
2606        r1bio->master_bio = NULL;
2607        return r1bio;
2608}
2609
2610/*
2611 * perform a "sync" on one "block"
2612 *
2613 * We need to make sure that no normal I/O request - particularly write
2614 * requests - conflict with active sync requests.
2615 *
2616 * This is achieved by tracking pending requests and a 'barrier' concept
2617 * that can be installed to exclude normal IO requests.
2618 */
2619
2620static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2621                                   int *skipped)
2622{
2623        struct r1conf *conf = mddev->private;
2624        struct r1bio *r1_bio;
2625        struct bio *bio;
2626        sector_t max_sector, nr_sectors;
2627        int disk = -1;
2628        int i;
2629        int wonly = -1;
2630        int write_targets = 0, read_targets = 0;
2631        sector_t sync_blocks;
2632        int still_degraded = 0;
2633        int good_sectors = RESYNC_SECTORS;
2634        int min_bad = 0; /* number of sectors that are bad in all devices */
2635        int idx = sector_to_idx(sector_nr);
2636        int page_idx = 0;
2637
2638        if (!mempool_initialized(&conf->r1buf_pool))
2639                if (init_resync(conf))
2640                        return 0;
2641
2642        max_sector = mddev->dev_sectors;
2643        if (sector_nr >= max_sector) {
2644                /* If we aborted, we need to abort the
2645                 * sync on the 'current' bitmap chunk (there will
2646                 * only be one in raid1 resync.
2647                 * We can find the current addess in mddev->curr_resync
2648                 */
2649                if (mddev->curr_resync < max_sector) /* aborted */
2650                        md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2651                                           &sync_blocks, 1);
2652                else /* completed sync */
2653                        conf->fullsync = 0;
2654
2655                md_bitmap_close_sync(mddev->bitmap);
2656                close_sync(conf);
2657
2658                if (mddev_is_clustered(mddev)) {
2659                        conf->cluster_sync_low = 0;
2660                        conf->cluster_sync_high = 0;
2661                }
2662                return 0;
2663        }
2664
2665        if (mddev->bitmap == NULL &&
2666            mddev->recovery_cp == MaxSector &&
2667            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2668            conf->fullsync == 0) {
2669                *skipped = 1;
2670                return max_sector - sector_nr;
2671        }
2672        /* before building a request, check if we can skip these blocks..
2673         * This call the bitmap_start_sync doesn't actually record anything
2674         */
2675        if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2676            !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2677                /* We can skip this block, and probably several more */
2678                *skipped = 1;
2679                return sync_blocks;
2680        }
2681
2682        /*
2683         * If there is non-resync activity waiting for a turn, then let it
2684         * though before starting on this new sync request.
2685         */
2686        if (atomic_read(&conf->nr_waiting[idx]))
2687                schedule_timeout_uninterruptible(1);
2688
2689        /* we are incrementing sector_nr below. To be safe, we check against
2690         * sector_nr + two times RESYNC_SECTORS
2691         */
2692
2693        md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2694                mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2695
2696
2697        if (raise_barrier(conf, sector_nr))
2698                return 0;
2699
2700        r1_bio = raid1_alloc_init_r1buf(conf);
2701
2702        rcu_read_lock();
2703        /*
2704         * If we get a correctably read error during resync or recovery,
2705         * we might want to read from a different device.  So we
2706         * flag all drives that could conceivably be read from for READ,
2707         * and any others (which will be non-In_sync devices) for WRITE.
2708         * If a read fails, we try reading from something else for which READ
2709         * is OK.
2710         */
2711
2712        r1_bio->mddev = mddev;
2713        r1_bio->sector = sector_nr;
2714        r1_bio->state = 0;
2715        set_bit(R1BIO_IsSync, &r1_bio->state);
2716        /* make sure good_sectors won't go across barrier unit boundary */
2717        good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2718
2719        for (i = 0; i < conf->raid_disks * 2; i++) {
2720                struct md_rdev *rdev;
2721                bio = r1_bio->bios[i];
2722
2723                rdev = rcu_dereference(conf->mirrors[i].rdev);
2724                if (rdev == NULL ||
2725                    test_bit(Faulty, &rdev->flags)) {
2726                        if (i < conf->raid_disks)
2727                                still_degraded = 1;
2728                } else if (!test_bit(In_sync, &rdev->flags)) {
2729                        bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2730                        bio->bi_end_io = end_sync_write;
2731                        write_targets ++;
2732                } else {
2733                        /* may need to read from here */
2734                        sector_t first_bad = MaxSector;
2735                        int bad_sectors;
2736
2737                        if (is_badblock(rdev, sector_nr, good_sectors,
2738                                        &first_bad, &bad_sectors)) {
2739                                if (first_bad > sector_nr)
2740                                        good_sectors = first_bad - sector_nr;
2741                                else {
2742                                        bad_sectors -= (sector_nr - first_bad);
2743                                        if (min_bad == 0 ||
2744                                            min_bad > bad_sectors)
2745                                                min_bad = bad_sectors;
2746                                }
2747                        }
2748                        if (sector_nr < first_bad) {
2749                                if (test_bit(WriteMostly, &rdev->flags)) {
2750                                        if (wonly < 0)
2751                                                wonly = i;
2752                                } else {
2753                                        if (disk < 0)
2754                                                disk = i;
2755                                }
2756                                bio_set_op_attrs(bio, REQ_OP_READ, 0);
2757                                bio->bi_end_io = end_sync_read;
2758                                read_targets++;
2759                        } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2760                                test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2761                                !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2762                                /*
2763                                 * The device is suitable for reading (InSync),
2764                                 * but has bad block(s) here. Let's try to correct them,
2765                                 * if we are doing resync or repair. Otherwise, leave
2766                                 * this device alone for this sync request.
2767                                 */
2768                                bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2769                                bio->bi_end_io = end_sync_write;
2770                                write_targets++;
2771                        }
2772                }
2773                if (rdev && bio->bi_end_io) {
2774                        atomic_inc(&rdev->nr_pending);
2775                        bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2776                        bio_set_dev(bio, rdev->bdev);
2777                        if (test_bit(FailFast, &rdev->flags))
2778                                bio->bi_opf |= MD_FAILFAST;
2779                }
2780        }
2781        rcu_read_unlock();
2782        if (disk < 0)
2783                disk = wonly;
2784        r1_bio->read_disk = disk;
2785
2786        if (read_targets == 0 && min_bad > 0) {
2787                /* These sectors are bad on all InSync devices, so we
2788                 * need to mark them bad on all write targets
2789                 */
2790                int ok = 1;
2791                for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2792                        if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2793                                struct md_rdev *rdev = conf->mirrors[i].rdev;
2794                                ok = rdev_set_badblocks(rdev, sector_nr,
2795                                                        min_bad, 0
2796                                        ) && ok;
2797                        }
2798                set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2799                *skipped = 1;
2800                put_buf(r1_bio);
2801
2802                if (!ok) {
2803                        /* Cannot record the badblocks, so need to
2804                         * abort the resync.
2805                         * If there are multiple read targets, could just
2806                         * fail the really bad ones ???
2807                         */
2808                        conf->recovery_disabled = mddev->recovery_disabled;
2809                        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2810                        return 0;
2811                } else
2812                        return min_bad;
2813
2814        }
2815        if (min_bad > 0 && min_bad < good_sectors) {
2816                /* only resync enough to reach the next bad->good
2817                 * transition */
2818                good_sectors = min_bad;
2819        }
2820
2821        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2822                /* extra read targets are also write targets */
2823                write_targets += read_targets-1;
2824
2825        if (write_targets == 0 || read_targets == 0) {
2826                /* There is nowhere to write, so all non-sync
2827                 * drives must be failed - so we are finished
2828                 */
2829                sector_t rv;
2830                if (min_bad > 0)
2831                        max_sector = sector_nr + min_bad;
2832                rv = max_sector - sector_nr;
2833                *skipped = 1;
2834                put_buf(r1_bio);
2835                return rv;
2836        }
2837
2838        if (max_sector > mddev->resync_max)
2839                max_sector = mddev->resync_max; /* Don't do IO beyond here */
2840        if (max_sector > sector_nr + good_sectors)
2841                max_sector = sector_nr + good_sectors;
2842        nr_sectors = 0;
2843        sync_blocks = 0;
2844        do {
2845                struct page *page;
2846                int len = PAGE_SIZE;
2847                if (sector_nr + (len>>9) > max_sector)
2848                        len = (max_sector - sector_nr) << 9;
2849                if (len == 0)
2850                        break;
2851                if (sync_blocks == 0) {
2852                        if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2853                                                  &sync_blocks, still_degraded) &&
2854                            !conf->fullsync &&
2855                            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2856                                break;
2857                        if ((len >> 9) > sync_blocks)
2858                                len = sync_blocks<<9;
2859                }
2860
2861                for (i = 0 ; i < conf->raid_disks * 2; i++) {
2862                        struct resync_pages *rp;
2863
2864                        bio = r1_bio->bios[i];
2865                        rp = get_resync_pages(bio);
2866                        if (bio->bi_end_io) {
2867                                page = resync_fetch_page(rp, page_idx);
2868
2869                                /*
2870                                 * won't fail because the vec table is big
2871                                 * enough to hold all these pages
2872                                 */
2873                                bio_add_page(bio, page, len, 0);
2874                        }
2875                }
2876                nr_sectors += len>>9;
2877                sector_nr += len>>9;
2878                sync_blocks -= (len>>9);
2879        } while (++page_idx < RESYNC_PAGES);
2880
2881        r1_bio->sectors = nr_sectors;
2882
2883        if (mddev_is_clustered(mddev) &&
2884                        conf->cluster_sync_high < sector_nr + nr_sectors) {
2885                conf->cluster_sync_low = mddev->curr_resync_completed;
2886                conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2887                /* Send resync message */
2888                md_cluster_ops->resync_info_update(mddev,
2889                                conf->cluster_sync_low,
2890                                conf->cluster_sync_high);
2891        }
2892
2893        /* For a user-requested sync, we read all readable devices and do a
2894         * compare
2895         */
2896        if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2897                atomic_set(&r1_bio->remaining, read_targets);
2898                for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2899                        bio = r1_bio->bios[i];
2900                        if (bio->bi_end_io == end_sync_read) {
2901                                read_targets--;
2902                                md_sync_acct_bio(bio, nr_sectors);
2903                                if (read_targets == 1)
2904                                        bio->bi_opf &= ~MD_FAILFAST;
2905                                submit_bio_noacct(bio);
2906                        }
2907                }
2908        } else {
2909                atomic_set(&r1_bio->remaining, 1);
2910                bio = r1_bio->bios[r1_bio->read_disk];
2911                md_sync_acct_bio(bio, nr_sectors);
2912                if (read_targets == 1)
2913                        bio->bi_opf &= ~MD_FAILFAST;
2914                submit_bio_noacct(bio);
2915        }
2916        return nr_sectors;
2917}
2918
2919static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2920{
2921        if (sectors)
2922                return sectors;
2923
2924        return mddev->dev_sectors;
2925}
2926
2927static struct r1conf *setup_conf(struct mddev *mddev)
2928{
2929        struct r1conf *conf;
2930        int i;
2931        struct raid1_info *disk;
2932        struct md_rdev *rdev;
2933        int err = -ENOMEM;
2934
2935        conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2936        if (!conf)
2937                goto abort;
2938
2939        conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2940                                   sizeof(atomic_t), GFP_KERNEL);
2941        if (!conf->nr_pending)
2942                goto abort;
2943
2944        conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2945                                   sizeof(atomic_t), GFP_KERNEL);
2946        if (!conf->nr_waiting)
2947                goto abort;
2948
2949        conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2950                                  sizeof(atomic_t), GFP_KERNEL);
2951        if (!conf->nr_queued)
2952                goto abort;
2953
2954        conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2955                                sizeof(atomic_t), GFP_KERNEL);
2956        if (!conf->barrier)
2957                goto abort;
2958
2959        conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2960                                            mddev->raid_disks, 2),
2961                                GFP_KERNEL);
2962        if (!conf->mirrors)
2963                goto abort;
2964
2965        conf->tmppage = alloc_page(GFP_KERNEL);
2966        if (!conf->tmppage)
2967                goto abort;
2968
2969        conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2970        if (!conf->poolinfo)
2971                goto abort;
2972        conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2973        err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
2974                           rbio_pool_free, conf->poolinfo);
2975        if (err)
2976                goto abort;
2977
2978        err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
2979        if (err)
2980                goto abort;
2981
2982        conf->poolinfo->mddev = mddev;
2983
2984        err = -EINVAL;
2985        spin_lock_init(&conf->device_lock);
2986        rdev_for_each(rdev, mddev) {
2987                int disk_idx = rdev->raid_disk;
2988                if (disk_idx >= mddev->raid_disks
2989                    || disk_idx < 0)
2990                        continue;
2991                if (test_bit(Replacement, &rdev->flags))
2992                        disk = conf->mirrors + mddev->raid_disks + disk_idx;
2993                else
2994                        disk = conf->mirrors + disk_idx;
2995
2996                if (disk->rdev)
2997                        goto abort;
2998                disk->rdev = rdev;
2999                disk->head_position = 0;
3000                disk->seq_start = MaxSector;
3001        }
3002        conf->raid_disks = mddev->raid_disks;
3003        conf->mddev = mddev;
3004        INIT_LIST_HEAD(&conf->retry_list);
3005        INIT_LIST_HEAD(&conf->bio_end_io_list);
3006
3007        spin_lock_init(&conf->resync_lock);
3008        init_waitqueue_head(&conf->wait_barrier);
3009
3010        bio_list_init(&conf->pending_bio_list);
3011        conf->pending_count = 0;
3012        conf->recovery_disabled = mddev->recovery_disabled - 1;
3013
3014        err = -EIO;
3015        for (i = 0; i < conf->raid_disks * 2; i++) {
3016
3017                disk = conf->mirrors + i;
3018
3019                if (i < conf->raid_disks &&
3020                    disk[conf->raid_disks].rdev) {
3021                        /* This slot has a replacement. */
3022                        if (!disk->rdev) {
3023                                /* No original, just make the replacement
3024                                 * a recovering spare
3025                                 */
3026                                disk->rdev =
3027                                        disk[conf->raid_disks].rdev;
3028                                disk[conf->raid_disks].rdev = NULL;
3029                        } else if (!test_bit(In_sync, &disk->rdev->flags))
3030                                /* Original is not in_sync - bad */
3031                                goto abort;
3032                }
3033
3034                if (!disk->rdev ||
3035                    !test_bit(In_sync, &disk->rdev->flags)) {
3036                        disk->head_position = 0;
3037                        if (disk->rdev &&
3038                            (disk->rdev->saved_raid_disk < 0))
3039                                conf->fullsync = 1;
3040                }
3041        }
3042
3043        err = -ENOMEM;
3044        conf->thread = md_register_thread(raid1d, mddev, "raid1");
3045        if (!conf->thread)
3046                goto abort;
3047
3048        return conf;
3049
3050 abort:
3051        if (conf) {
3052                mempool_exit(&conf->r1bio_pool);
3053                kfree(conf->mirrors);
3054                safe_put_page(conf->tmppage);
3055                kfree(conf->poolinfo);
3056                kfree(conf->nr_pending);
3057                kfree(conf->nr_waiting);
3058                kfree(conf->nr_queued);
3059                kfree(conf->barrier);
3060                bioset_exit(&conf->bio_split);
3061                kfree(conf);
3062        }
3063        return ERR_PTR(err);
3064}
3065
3066static void raid1_free(struct mddev *mddev, void *priv);
3067static int raid1_run(struct mddev *mddev)
3068{
3069        struct r1conf *conf;
3070        int i;
3071        struct md_rdev *rdev;
3072        int ret;
3073        bool discard_supported = false;
3074
3075        if (mddev->level != 1) {
3076                pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3077                        mdname(mddev), mddev->level);
3078                return -EIO;
3079        }
3080        if (mddev->reshape_position != MaxSector) {
3081                pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3082                        mdname(mddev));
3083                return -EIO;
3084        }
3085        if (mddev_init_writes_pending(mddev) < 0)
3086                return -ENOMEM;
3087        /*
3088         * copy the already verified devices into our private RAID1
3089         * bookkeeping area. [whatever we allocate in run(),
3090         * should be freed in raid1_free()]
3091         */
3092        if (mddev->private == NULL)
3093                conf = setup_conf(mddev);
3094        else
3095                conf = mddev->private;
3096
3097        if (IS_ERR(conf))
3098                return PTR_ERR(conf);
3099
3100        if (mddev->queue) {
3101                blk_queue_max_write_same_sectors(mddev->queue, 0);
3102                blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3103        }
3104
3105        rdev_for_each(rdev, mddev) {
3106                if (!mddev->gendisk)
3107                        continue;
3108                disk_stack_limits(mddev->gendisk, rdev->bdev,
3109                                  rdev->data_offset << 9);
3110                if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3111                        discard_supported = true;
3112        }
3113
3114        mddev->degraded = 0;
3115        for (i = 0; i < conf->raid_disks; i++)
3116                if (conf->mirrors[i].rdev == NULL ||
3117                    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3118                    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3119                        mddev->degraded++;
3120        /*
3121         * RAID1 needs at least one disk in active
3122         */
3123        if (conf->raid_disks - mddev->degraded < 1) {
3124                ret = -EINVAL;
3125                goto abort;
3126        }
3127
3128        if (conf->raid_disks - mddev->degraded == 1)
3129                mddev->recovery_cp = MaxSector;
3130
3131        if (mddev->recovery_cp != MaxSector)
3132                pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3133                        mdname(mddev));
3134        pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3135                mdname(mddev), mddev->raid_disks - mddev->degraded,
3136                mddev->raid_disks);
3137
3138        /*
3139         * Ok, everything is just fine now
3140         */
3141        mddev->thread = conf->thread;
3142        conf->thread = NULL;
3143        mddev->private = conf;
3144        set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3145
3146        md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3147
3148        if (mddev->queue) {
3149                if (discard_supported)
3150                        blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3151                                                mddev->queue);
3152                else
3153                        blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3154                                                  mddev->queue);
3155        }
3156
3157        ret = md_integrity_register(mddev);
3158        if (ret) {
3159                md_unregister_thread(&mddev->thread);
3160                goto abort;
3161        }
3162        return 0;
3163
3164abort:
3165        raid1_free(mddev, conf);
3166        return ret;
3167}
3168
3169static void raid1_free(struct mddev *mddev, void *priv)
3170{
3171        struct r1conf *conf = priv;
3172
3173        mempool_exit(&conf->r1bio_pool);
3174        kfree(conf->mirrors);
3175        safe_put_page(conf->tmppage);
3176        kfree(conf->poolinfo);
3177        kfree(conf->nr_pending);
3178        kfree(conf->nr_waiting);
3179        kfree(conf->nr_queued);
3180        kfree(conf->barrier);
3181        bioset_exit(&conf->bio_split);
3182        kfree(conf);
3183}
3184
3185static int raid1_resize(struct mddev *mddev, sector_t sectors)
3186{
3187        /* no resync is happening, and there is enough space
3188         * on all devices, so we can resize.
3189         * We need to make sure resync covers any new space.
3190         * If the array is shrinking we should possibly wait until
3191         * any io in the removed space completes, but it hardly seems
3192         * worth it.
3193         */
3194        sector_t newsize = raid1_size(mddev, sectors, 0);
3195        if (mddev->external_size &&
3196            mddev->array_sectors > newsize)
3197                return -EINVAL;
3198        if (mddev->bitmap) {
3199                int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3200                if (ret)
3201                        return ret;
3202        }
3203        md_set_array_sectors(mddev, newsize);
3204        if (sectors > mddev->dev_sectors &&
3205            mddev->recovery_cp > mddev->dev_sectors) {
3206                mddev->recovery_cp = mddev->dev_sectors;
3207                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3208        }
3209        mddev->dev_sectors = sectors;
3210        mddev->resync_max_sectors = sectors;
3211        return 0;
3212}
3213
3214static int raid1_reshape(struct mddev *mddev)
3215{
3216        /* We need to:
3217         * 1/ resize the r1bio_pool
3218         * 2/ resize conf->mirrors
3219         *
3220         * We allocate a new r1bio_pool if we can.
3221         * Then raise a device barrier and wait until all IO stops.
3222         * Then resize conf->mirrors and swap in the new r1bio pool.
3223         *
3224         * At the same time, we "pack" the devices so that all the missing
3225         * devices have the higher raid_disk numbers.
3226         */
3227        mempool_t newpool, oldpool;
3228        struct pool_info *newpoolinfo;
3229        struct raid1_info *newmirrors;
3230        struct r1conf *conf = mddev->private;
3231        int cnt, raid_disks;
3232        unsigned long flags;
3233        int d, d2;
3234        int ret;
3235
3236        memset(&newpool, 0, sizeof(newpool));
3237        memset(&oldpool, 0, sizeof(oldpool));
3238
3239        /* Cannot change chunk_size, layout, or level */
3240        if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3241            mddev->layout != mddev->new_layout ||
3242            mddev->level != mddev->new_level) {
3243                mddev->new_chunk_sectors = mddev->chunk_sectors;
3244                mddev->new_layout = mddev->layout;
3245                mddev->new_level = mddev->level;
3246                return -EINVAL;
3247        }
3248
3249        if (!mddev_is_clustered(mddev))
3250                md_allow_write(mddev);
3251
3252        raid_disks = mddev->raid_disks + mddev->delta_disks;
3253
3254        if (raid_disks < conf->raid_disks) {
3255                cnt=0;
3256                for (d= 0; d < conf->raid_disks; d++)
3257                        if (conf->mirrors[d].rdev)
3258                                cnt++;
3259                if (cnt > raid_disks)
3260                        return -EBUSY;
3261        }
3262
3263        newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3264        if (!newpoolinfo)
3265                return -ENOMEM;
3266        newpoolinfo->mddev = mddev;
3267        newpoolinfo->raid_disks = raid_disks * 2;
3268
3269        ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3270                           rbio_pool_free, newpoolinfo);
3271        if (ret) {
3272                kfree(newpoolinfo);
3273                return ret;
3274        }
3275        newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3276                                         raid_disks, 2),
3277                             GFP_KERNEL);
3278        if (!newmirrors) {
3279                kfree(newpoolinfo);
3280                mempool_exit(&newpool);
3281                return -ENOMEM;
3282        }
3283
3284        freeze_array(conf, 0);
3285
3286        /* ok, everything is stopped */
3287        oldpool = conf->r1bio_pool;
3288        conf->r1bio_pool = newpool;
3289
3290        for (d = d2 = 0; d < conf->raid_disks; d++) {
3291                struct md_rdev *rdev = conf->mirrors[d].rdev;
3292                if (rdev && rdev->raid_disk != d2) {
3293                        sysfs_unlink_rdev(mddev, rdev);
3294                        rdev->raid_disk = d2;
3295                        sysfs_unlink_rdev(mddev, rdev);
3296                        if (sysfs_link_rdev(mddev, rdev))
3297                                pr_warn("md/raid1:%s: cannot register rd%d\n",
3298                                        mdname(mddev), rdev->raid_disk);
3299                }
3300                if (rdev)
3301                        newmirrors[d2++].rdev = rdev;
3302        }
3303        kfree(conf->mirrors);
3304        conf->mirrors = newmirrors;
3305        kfree(conf->poolinfo);
3306        conf->poolinfo = newpoolinfo;
3307
3308        spin_lock_irqsave(&conf->device_lock, flags);
3309        mddev->degraded += (raid_disks - conf->raid_disks);
3310        spin_unlock_irqrestore(&conf->device_lock, flags);
3311        conf->raid_disks = mddev->raid_disks = raid_disks;
3312        mddev->delta_disks = 0;
3313
3314        unfreeze_array(conf);
3315
3316        set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3317        set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3318        md_wakeup_thread(mddev->thread);
3319
3320        mempool_exit(&oldpool);
3321        return 0;
3322}
3323
3324static void raid1_quiesce(struct mddev *mddev, int quiesce)
3325{
3326        struct r1conf *conf = mddev->private;
3327
3328        if (quiesce)
3329                freeze_array(conf, 0);
3330        else
3331                unfreeze_array(conf);
3332}
3333
3334static void *raid1_takeover(struct mddev *mddev)
3335{
3336        /* raid1 can take over:
3337         *  raid5 with 2 devices, any layout or chunk size
3338         */
3339        if (mddev->level == 5 && mddev->raid_disks == 2) {
3340                struct r1conf *conf;
3341                mddev->new_level = 1;
3342                mddev->new_layout = 0;
3343                mddev->new_chunk_sectors = 0;
3344                conf = setup_conf(mddev);
3345                if (!IS_ERR(conf)) {
3346                        /* Array must appear to be quiesced */
3347                        conf->array_frozen = 1;
3348                        mddev_clear_unsupported_flags(mddev,
3349                                UNSUPPORTED_MDDEV_FLAGS);
3350                }
3351                return conf;
3352        }
3353        return ERR_PTR(-EINVAL);
3354}
3355
3356static struct md_personality raid1_personality =
3357{
3358        .name           = "raid1",
3359        .level          = 1,
3360        .owner          = THIS_MODULE,
3361        .make_request   = raid1_make_request,
3362        .run            = raid1_run,
3363        .free           = raid1_free,
3364        .status         = raid1_status,
3365        .error_handler  = raid1_error,
3366        .hot_add_disk   = raid1_add_disk,
3367        .hot_remove_disk= raid1_remove_disk,
3368        .spare_active   = raid1_spare_active,
3369        .sync_request   = raid1_sync_request,
3370        .resize         = raid1_resize,
3371        .size           = raid1_size,
3372        .check_reshape  = raid1_reshape,
3373        .quiesce        = raid1_quiesce,
3374        .takeover       = raid1_takeover,
3375};
3376
3377static int __init raid_init(void)
3378{
3379        return register_md_personality(&raid1_personality);
3380}
3381
3382static void raid_exit(void)
3383{
3384        unregister_md_personality(&raid1_personality);
3385}
3386
3387module_init(raid_init);
3388module_exit(raid_exit);
3389MODULE_LICENSE("GPL");
3390MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3391MODULE_ALIAS("md-personality-3"); /* RAID1 */
3392MODULE_ALIAS("md-raid1");
3393MODULE_ALIAS("md-level-1");
3394
3395module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3396