linux/drivers/md/raid10.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * raid10.c : Multiple Devices driver for Linux
   4 *
   5 * Copyright (C) 2000-2004 Neil Brown
   6 *
   7 * RAID-10 support for md.
   8 *
   9 * Base on code in raid1.c.  See raid1.c for further copyright information.
  10 */
  11
  12#include <linux/slab.h>
  13#include <linux/delay.h>
  14#include <linux/blkdev.h>
  15#include <linux/module.h>
  16#include <linux/seq_file.h>
  17#include <linux/ratelimit.h>
  18#include <linux/kthread.h>
  19#include <linux/raid/md_p.h>
  20#include <trace/events/block.h>
  21#include "md.h"
  22#include "raid10.h"
  23#include "raid0.h"
  24#include "md-bitmap.h"
  25
  26/*
  27 * RAID10 provides a combination of RAID0 and RAID1 functionality.
  28 * The layout of data is defined by
  29 *    chunk_size
  30 *    raid_disks
  31 *    near_copies (stored in low byte of layout)
  32 *    far_copies (stored in second byte of layout)
  33 *    far_offset (stored in bit 16 of layout )
  34 *    use_far_sets (stored in bit 17 of layout )
  35 *    use_far_sets_bugfixed (stored in bit 18 of layout )
  36 *
  37 * The data to be stored is divided into chunks using chunksize.  Each device
  38 * is divided into far_copies sections.   In each section, chunks are laid out
  39 * in a style similar to raid0, but near_copies copies of each chunk is stored
  40 * (each on a different drive).  The starting device for each section is offset
  41 * near_copies from the starting device of the previous section.  Thus there
  42 * are (near_copies * far_copies) of each chunk, and each is on a different
  43 * drive.  near_copies and far_copies must be at least one, and their product
  44 * is at most raid_disks.
  45 *
  46 * If far_offset is true, then the far_copies are handled a bit differently.
  47 * The copies are still in different stripes, but instead of being very far
  48 * apart on disk, there are adjacent stripes.
  49 *
  50 * The far and offset algorithms are handled slightly differently if
  51 * 'use_far_sets' is true.  In this case, the array's devices are grouped into
  52 * sets that are (near_copies * far_copies) in size.  The far copied stripes
  53 * are still shifted by 'near_copies' devices, but this shifting stays confined
  54 * to the set rather than the entire array.  This is done to improve the number
  55 * of device combinations that can fail without causing the array to fail.
  56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
  57 * on a device):
  58 *    A B C D    A B C D E
  59 *      ...         ...
  60 *    D A B C    E A B C D
  61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
  62 *    [A B] [C D]    [A B] [C D E]
  63 *    |...| |...|    |...| | ... |
  64 *    [B A] [D C]    [B A] [E C D]
  65 */
  66
  67static void allow_barrier(struct r10conf *conf);
  68static void lower_barrier(struct r10conf *conf);
  69static int _enough(struct r10conf *conf, int previous, int ignore);
  70static int enough(struct r10conf *conf, int ignore);
  71static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
  72                                int *skipped);
  73static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
  74static void end_reshape_write(struct bio *bio);
  75static void end_reshape(struct r10conf *conf);
  76
  77#define raid10_log(md, fmt, args...)                            \
  78        do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
  79
  80#include "raid1-10.c"
  81
  82/*
  83 * for resync bio, r10bio pointer can be retrieved from the per-bio
  84 * 'struct resync_pages'.
  85 */
  86static inline struct r10bio *get_resync_r10bio(struct bio *bio)
  87{
  88        return get_resync_pages(bio)->raid_bio;
  89}
  90
  91static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
  92{
  93        struct r10conf *conf = data;
  94        int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
  95
  96        /* allocate a r10bio with room for raid_disks entries in the
  97         * bios array */
  98        return kzalloc(size, gfp_flags);
  99}
 100
 101#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 102/* amount of memory to reserve for resync requests */
 103#define RESYNC_WINDOW (1024*1024)
 104/* maximum number of concurrent requests, memory permitting */
 105#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
 106#define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
 107#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 108
 109/*
 110 * When performing a resync, we need to read and compare, so
 111 * we need as many pages are there are copies.
 112 * When performing a recovery, we need 2 bios, one for read,
 113 * one for write (we recover only one drive per r10buf)
 114 *
 115 */
 116static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
 117{
 118        struct r10conf *conf = data;
 119        struct r10bio *r10_bio;
 120        struct bio *bio;
 121        int j;
 122        int nalloc, nalloc_rp;
 123        struct resync_pages *rps;
 124
 125        r10_bio = r10bio_pool_alloc(gfp_flags, conf);
 126        if (!r10_bio)
 127                return NULL;
 128
 129        if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
 130            test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
 131                nalloc = conf->copies; /* resync */
 132        else
 133                nalloc = 2; /* recovery */
 134
 135        /* allocate once for all bios */
 136        if (!conf->have_replacement)
 137                nalloc_rp = nalloc;
 138        else
 139                nalloc_rp = nalloc * 2;
 140        rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
 141        if (!rps)
 142                goto out_free_r10bio;
 143
 144        /*
 145         * Allocate bios.
 146         */
 147        for (j = nalloc ; j-- ; ) {
 148                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 149                if (!bio)
 150                        goto out_free_bio;
 151                r10_bio->devs[j].bio = bio;
 152                if (!conf->have_replacement)
 153                        continue;
 154                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 155                if (!bio)
 156                        goto out_free_bio;
 157                r10_bio->devs[j].repl_bio = bio;
 158        }
 159        /*
 160         * Allocate RESYNC_PAGES data pages and attach them
 161         * where needed.
 162         */
 163        for (j = 0; j < nalloc; j++) {
 164                struct bio *rbio = r10_bio->devs[j].repl_bio;
 165                struct resync_pages *rp, *rp_repl;
 166
 167                rp = &rps[j];
 168                if (rbio)
 169                        rp_repl = &rps[nalloc + j];
 170
 171                bio = r10_bio->devs[j].bio;
 172
 173                if (!j || test_bit(MD_RECOVERY_SYNC,
 174                                   &conf->mddev->recovery)) {
 175                        if (resync_alloc_pages(rp, gfp_flags))
 176                                goto out_free_pages;
 177                } else {
 178                        memcpy(rp, &rps[0], sizeof(*rp));
 179                        resync_get_all_pages(rp);
 180                }
 181
 182                rp->raid_bio = r10_bio;
 183                bio->bi_private = rp;
 184                if (rbio) {
 185                        memcpy(rp_repl, rp, sizeof(*rp));
 186                        rbio->bi_private = rp_repl;
 187                }
 188        }
 189
 190        return r10_bio;
 191
 192out_free_pages:
 193        while (--j >= 0)
 194                resync_free_pages(&rps[j]);
 195
 196        j = 0;
 197out_free_bio:
 198        for ( ; j < nalloc; j++) {
 199                if (r10_bio->devs[j].bio)
 200                        bio_put(r10_bio->devs[j].bio);
 201                if (r10_bio->devs[j].repl_bio)
 202                        bio_put(r10_bio->devs[j].repl_bio);
 203        }
 204        kfree(rps);
 205out_free_r10bio:
 206        rbio_pool_free(r10_bio, conf);
 207        return NULL;
 208}
 209
 210static void r10buf_pool_free(void *__r10_bio, void *data)
 211{
 212        struct r10conf *conf = data;
 213        struct r10bio *r10bio = __r10_bio;
 214        int j;
 215        struct resync_pages *rp = NULL;
 216
 217        for (j = conf->copies; j--; ) {
 218                struct bio *bio = r10bio->devs[j].bio;
 219
 220                if (bio) {
 221                        rp = get_resync_pages(bio);
 222                        resync_free_pages(rp);
 223                        bio_put(bio);
 224                }
 225
 226                bio = r10bio->devs[j].repl_bio;
 227                if (bio)
 228                        bio_put(bio);
 229        }
 230
 231        /* resync pages array stored in the 1st bio's .bi_private */
 232        kfree(rp);
 233
 234        rbio_pool_free(r10bio, conf);
 235}
 236
 237static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
 238{
 239        int i;
 240
 241        for (i = 0; i < conf->geo.raid_disks; i++) {
 242                struct bio **bio = & r10_bio->devs[i].bio;
 243                if (!BIO_SPECIAL(*bio))
 244                        bio_put(*bio);
 245                *bio = NULL;
 246                bio = &r10_bio->devs[i].repl_bio;
 247                if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
 248                        bio_put(*bio);
 249                *bio = NULL;
 250        }
 251}
 252
 253static void free_r10bio(struct r10bio *r10_bio)
 254{
 255        struct r10conf *conf = r10_bio->mddev->private;
 256
 257        put_all_bios(conf, r10_bio);
 258        mempool_free(r10_bio, &conf->r10bio_pool);
 259}
 260
 261static void put_buf(struct r10bio *r10_bio)
 262{
 263        struct r10conf *conf = r10_bio->mddev->private;
 264
 265        mempool_free(r10_bio, &conf->r10buf_pool);
 266
 267        lower_barrier(conf);
 268}
 269
 270static void reschedule_retry(struct r10bio *r10_bio)
 271{
 272        unsigned long flags;
 273        struct mddev *mddev = r10_bio->mddev;
 274        struct r10conf *conf = mddev->private;
 275
 276        spin_lock_irqsave(&conf->device_lock, flags);
 277        list_add(&r10_bio->retry_list, &conf->retry_list);
 278        conf->nr_queued ++;
 279        spin_unlock_irqrestore(&conf->device_lock, flags);
 280
 281        /* wake up frozen array... */
 282        wake_up(&conf->wait_barrier);
 283
 284        md_wakeup_thread(mddev->thread);
 285}
 286
 287/*
 288 * raid_end_bio_io() is called when we have finished servicing a mirrored
 289 * operation and are ready to return a success/failure code to the buffer
 290 * cache layer.
 291 */
 292static void raid_end_bio_io(struct r10bio *r10_bio)
 293{
 294        struct bio *bio = r10_bio->master_bio;
 295        struct r10conf *conf = r10_bio->mddev->private;
 296
 297        if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
 298                bio->bi_status = BLK_STS_IOERR;
 299
 300        if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
 301                bio_end_io_acct(bio, r10_bio->start_time);
 302        bio_endio(bio);
 303        /*
 304         * Wake up any possible resync thread that waits for the device
 305         * to go idle.
 306         */
 307        allow_barrier(conf);
 308
 309        free_r10bio(r10_bio);
 310}
 311
 312/*
 313 * Update disk head position estimator based on IRQ completion info.
 314 */
 315static inline void update_head_pos(int slot, struct r10bio *r10_bio)
 316{
 317        struct r10conf *conf = r10_bio->mddev->private;
 318
 319        conf->mirrors[r10_bio->devs[slot].devnum].head_position =
 320                r10_bio->devs[slot].addr + (r10_bio->sectors);
 321}
 322
 323/*
 324 * Find the disk number which triggered given bio
 325 */
 326static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
 327                         struct bio *bio, int *slotp, int *replp)
 328{
 329        int slot;
 330        int repl = 0;
 331
 332        for (slot = 0; slot < conf->geo.raid_disks; slot++) {
 333                if (r10_bio->devs[slot].bio == bio)
 334                        break;
 335                if (r10_bio->devs[slot].repl_bio == bio) {
 336                        repl = 1;
 337                        break;
 338                }
 339        }
 340
 341        update_head_pos(slot, r10_bio);
 342
 343        if (slotp)
 344                *slotp = slot;
 345        if (replp)
 346                *replp = repl;
 347        return r10_bio->devs[slot].devnum;
 348}
 349
 350static void raid10_end_read_request(struct bio *bio)
 351{
 352        int uptodate = !bio->bi_status;
 353        struct r10bio *r10_bio = bio->bi_private;
 354        int slot;
 355        struct md_rdev *rdev;
 356        struct r10conf *conf = r10_bio->mddev->private;
 357
 358        slot = r10_bio->read_slot;
 359        rdev = r10_bio->devs[slot].rdev;
 360        /*
 361         * this branch is our 'one mirror IO has finished' event handler:
 362         */
 363        update_head_pos(slot, r10_bio);
 364
 365        if (uptodate) {
 366                /*
 367                 * Set R10BIO_Uptodate in our master bio, so that
 368                 * we will return a good error code to the higher
 369                 * levels even if IO on some other mirrored buffer fails.
 370                 *
 371                 * The 'master' represents the composite IO operation to
 372                 * user-side. So if something waits for IO, then it will
 373                 * wait for the 'master' bio.
 374                 */
 375                set_bit(R10BIO_Uptodate, &r10_bio->state);
 376        } else {
 377                /* If all other devices that store this block have
 378                 * failed, we want to return the error upwards rather
 379                 * than fail the last device.  Here we redefine
 380                 * "uptodate" to mean "Don't want to retry"
 381                 */
 382                if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
 383                             rdev->raid_disk))
 384                        uptodate = 1;
 385        }
 386        if (uptodate) {
 387                raid_end_bio_io(r10_bio);
 388                rdev_dec_pending(rdev, conf->mddev);
 389        } else {
 390                /*
 391                 * oops, read error - keep the refcount on the rdev
 392                 */
 393                char b[BDEVNAME_SIZE];
 394                pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
 395                                   mdname(conf->mddev),
 396                                   bdevname(rdev->bdev, b),
 397                                   (unsigned long long)r10_bio->sector);
 398                set_bit(R10BIO_ReadError, &r10_bio->state);
 399                reschedule_retry(r10_bio);
 400        }
 401}
 402
 403static void close_write(struct r10bio *r10_bio)
 404{
 405        /* clear the bitmap if all writes complete successfully */
 406        md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
 407                           r10_bio->sectors,
 408                           !test_bit(R10BIO_Degraded, &r10_bio->state),
 409                           0);
 410        md_write_end(r10_bio->mddev);
 411}
 412
 413static void one_write_done(struct r10bio *r10_bio)
 414{
 415        if (atomic_dec_and_test(&r10_bio->remaining)) {
 416                if (test_bit(R10BIO_WriteError, &r10_bio->state))
 417                        reschedule_retry(r10_bio);
 418                else {
 419                        close_write(r10_bio);
 420                        if (test_bit(R10BIO_MadeGood, &r10_bio->state))
 421                                reschedule_retry(r10_bio);
 422                        else
 423                                raid_end_bio_io(r10_bio);
 424                }
 425        }
 426}
 427
 428static void raid10_end_write_request(struct bio *bio)
 429{
 430        struct r10bio *r10_bio = bio->bi_private;
 431        int dev;
 432        int dec_rdev = 1;
 433        struct r10conf *conf = r10_bio->mddev->private;
 434        int slot, repl;
 435        struct md_rdev *rdev = NULL;
 436        struct bio *to_put = NULL;
 437        bool discard_error;
 438
 439        discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 440
 441        dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
 442
 443        if (repl)
 444                rdev = conf->mirrors[dev].replacement;
 445        if (!rdev) {
 446                smp_rmb();
 447                repl = 0;
 448                rdev = conf->mirrors[dev].rdev;
 449        }
 450        /*
 451         * this branch is our 'one mirror IO has finished' event handler:
 452         */
 453        if (bio->bi_status && !discard_error) {
 454                if (repl)
 455                        /* Never record new bad blocks to replacement,
 456                         * just fail it.
 457                         */
 458                        md_error(rdev->mddev, rdev);
 459                else {
 460                        set_bit(WriteErrorSeen, &rdev->flags);
 461                        if (!test_and_set_bit(WantReplacement, &rdev->flags))
 462                                set_bit(MD_RECOVERY_NEEDED,
 463                                        &rdev->mddev->recovery);
 464
 465                        dec_rdev = 0;
 466                        if (test_bit(FailFast, &rdev->flags) &&
 467                            (bio->bi_opf & MD_FAILFAST)) {
 468                                md_error(rdev->mddev, rdev);
 469                        }
 470
 471                        /*
 472                         * When the device is faulty, it is not necessary to
 473                         * handle write error.
 474                         */
 475                        if (!test_bit(Faulty, &rdev->flags))
 476                                set_bit(R10BIO_WriteError, &r10_bio->state);
 477                        else {
 478                                /* Fail the request */
 479                                set_bit(R10BIO_Degraded, &r10_bio->state);
 480                                r10_bio->devs[slot].bio = NULL;
 481                                to_put = bio;
 482                                dec_rdev = 1;
 483                        }
 484                }
 485        } else {
 486                /*
 487                 * Set R10BIO_Uptodate in our master bio, so that
 488                 * we will return a good error code for to the higher
 489                 * levels even if IO on some other mirrored buffer fails.
 490                 *
 491                 * The 'master' represents the composite IO operation to
 492                 * user-side. So if something waits for IO, then it will
 493                 * wait for the 'master' bio.
 494                 */
 495                sector_t first_bad;
 496                int bad_sectors;
 497
 498                /*
 499                 * Do not set R10BIO_Uptodate if the current device is
 500                 * rebuilding or Faulty. This is because we cannot use
 501                 * such device for properly reading the data back (we could
 502                 * potentially use it, if the current write would have felt
 503                 * before rdev->recovery_offset, but for simplicity we don't
 504                 * check this here.
 505                 */
 506                if (test_bit(In_sync, &rdev->flags) &&
 507                    !test_bit(Faulty, &rdev->flags))
 508                        set_bit(R10BIO_Uptodate, &r10_bio->state);
 509
 510                /* Maybe we can clear some bad blocks. */
 511                if (is_badblock(rdev,
 512                                r10_bio->devs[slot].addr,
 513                                r10_bio->sectors,
 514                                &first_bad, &bad_sectors) && !discard_error) {
 515                        bio_put(bio);
 516                        if (repl)
 517                                r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
 518                        else
 519                                r10_bio->devs[slot].bio = IO_MADE_GOOD;
 520                        dec_rdev = 0;
 521                        set_bit(R10BIO_MadeGood, &r10_bio->state);
 522                }
 523        }
 524
 525        /*
 526         *
 527         * Let's see if all mirrored write operations have finished
 528         * already.
 529         */
 530        one_write_done(r10_bio);
 531        if (dec_rdev)
 532                rdev_dec_pending(rdev, conf->mddev);
 533        if (to_put)
 534                bio_put(to_put);
 535}
 536
 537/*
 538 * RAID10 layout manager
 539 * As well as the chunksize and raid_disks count, there are two
 540 * parameters: near_copies and far_copies.
 541 * near_copies * far_copies must be <= raid_disks.
 542 * Normally one of these will be 1.
 543 * If both are 1, we get raid0.
 544 * If near_copies == raid_disks, we get raid1.
 545 *
 546 * Chunks are laid out in raid0 style with near_copies copies of the
 547 * first chunk, followed by near_copies copies of the next chunk and
 548 * so on.
 549 * If far_copies > 1, then after 1/far_copies of the array has been assigned
 550 * as described above, we start again with a device offset of near_copies.
 551 * So we effectively have another copy of the whole array further down all
 552 * the drives, but with blocks on different drives.
 553 * With this layout, and block is never stored twice on the one device.
 554 *
 555 * raid10_find_phys finds the sector offset of a given virtual sector
 556 * on each device that it is on.
 557 *
 558 * raid10_find_virt does the reverse mapping, from a device and a
 559 * sector offset to a virtual address
 560 */
 561
 562static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
 563{
 564        int n,f;
 565        sector_t sector;
 566        sector_t chunk;
 567        sector_t stripe;
 568        int dev;
 569        int slot = 0;
 570        int last_far_set_start, last_far_set_size;
 571
 572        last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 573        last_far_set_start *= geo->far_set_size;
 574
 575        last_far_set_size = geo->far_set_size;
 576        last_far_set_size += (geo->raid_disks % geo->far_set_size);
 577
 578        /* now calculate first sector/dev */
 579        chunk = r10bio->sector >> geo->chunk_shift;
 580        sector = r10bio->sector & geo->chunk_mask;
 581
 582        chunk *= geo->near_copies;
 583        stripe = chunk;
 584        dev = sector_div(stripe, geo->raid_disks);
 585        if (geo->far_offset)
 586                stripe *= geo->far_copies;
 587
 588        sector += stripe << geo->chunk_shift;
 589
 590        /* and calculate all the others */
 591        for (n = 0; n < geo->near_copies; n++) {
 592                int d = dev;
 593                int set;
 594                sector_t s = sector;
 595                r10bio->devs[slot].devnum = d;
 596                r10bio->devs[slot].addr = s;
 597                slot++;
 598
 599                for (f = 1; f < geo->far_copies; f++) {
 600                        set = d / geo->far_set_size;
 601                        d += geo->near_copies;
 602
 603                        if ((geo->raid_disks % geo->far_set_size) &&
 604                            (d > last_far_set_start)) {
 605                                d -= last_far_set_start;
 606                                d %= last_far_set_size;
 607                                d += last_far_set_start;
 608                        } else {
 609                                d %= geo->far_set_size;
 610                                d += geo->far_set_size * set;
 611                        }
 612                        s += geo->stride;
 613                        r10bio->devs[slot].devnum = d;
 614                        r10bio->devs[slot].addr = s;
 615                        slot++;
 616                }
 617                dev++;
 618                if (dev >= geo->raid_disks) {
 619                        dev = 0;
 620                        sector += (geo->chunk_mask + 1);
 621                }
 622        }
 623}
 624
 625static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
 626{
 627        struct geom *geo = &conf->geo;
 628
 629        if (conf->reshape_progress != MaxSector &&
 630            ((r10bio->sector >= conf->reshape_progress) !=
 631             conf->mddev->reshape_backwards)) {
 632                set_bit(R10BIO_Previous, &r10bio->state);
 633                geo = &conf->prev;
 634        } else
 635                clear_bit(R10BIO_Previous, &r10bio->state);
 636
 637        __raid10_find_phys(geo, r10bio);
 638}
 639
 640static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
 641{
 642        sector_t offset, chunk, vchunk;
 643        /* Never use conf->prev as this is only called during resync
 644         * or recovery, so reshape isn't happening
 645         */
 646        struct geom *geo = &conf->geo;
 647        int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
 648        int far_set_size = geo->far_set_size;
 649        int last_far_set_start;
 650
 651        if (geo->raid_disks % geo->far_set_size) {
 652                last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 653                last_far_set_start *= geo->far_set_size;
 654
 655                if (dev >= last_far_set_start) {
 656                        far_set_size = geo->far_set_size;
 657                        far_set_size += (geo->raid_disks % geo->far_set_size);
 658                        far_set_start = last_far_set_start;
 659                }
 660        }
 661
 662        offset = sector & geo->chunk_mask;
 663        if (geo->far_offset) {
 664                int fc;
 665                chunk = sector >> geo->chunk_shift;
 666                fc = sector_div(chunk, geo->far_copies);
 667                dev -= fc * geo->near_copies;
 668                if (dev < far_set_start)
 669                        dev += far_set_size;
 670        } else {
 671                while (sector >= geo->stride) {
 672                        sector -= geo->stride;
 673                        if (dev < (geo->near_copies + far_set_start))
 674                                dev += far_set_size - geo->near_copies;
 675                        else
 676                                dev -= geo->near_copies;
 677                }
 678                chunk = sector >> geo->chunk_shift;
 679        }
 680        vchunk = chunk * geo->raid_disks + dev;
 681        sector_div(vchunk, geo->near_copies);
 682        return (vchunk << geo->chunk_shift) + offset;
 683}
 684
 685/*
 686 * This routine returns the disk from which the requested read should
 687 * be done. There is a per-array 'next expected sequential IO' sector
 688 * number - if this matches on the next IO then we use the last disk.
 689 * There is also a per-disk 'last know head position' sector that is
 690 * maintained from IRQ contexts, both the normal and the resync IO
 691 * completion handlers update this position correctly. If there is no
 692 * perfect sequential match then we pick the disk whose head is closest.
 693 *
 694 * If there are 2 mirrors in the same 2 devices, performance degrades
 695 * because position is mirror, not device based.
 696 *
 697 * The rdev for the device selected will have nr_pending incremented.
 698 */
 699
 700/*
 701 * FIXME: possibly should rethink readbalancing and do it differently
 702 * depending on near_copies / far_copies geometry.
 703 */
 704static struct md_rdev *read_balance(struct r10conf *conf,
 705                                    struct r10bio *r10_bio,
 706                                    int *max_sectors)
 707{
 708        const sector_t this_sector = r10_bio->sector;
 709        int disk, slot;
 710        int sectors = r10_bio->sectors;
 711        int best_good_sectors;
 712        sector_t new_distance, best_dist;
 713        struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
 714        int do_balance;
 715        int best_dist_slot, best_pending_slot;
 716        bool has_nonrot_disk = false;
 717        unsigned int min_pending;
 718        struct geom *geo = &conf->geo;
 719
 720        raid10_find_phys(conf, r10_bio);
 721        rcu_read_lock();
 722        best_dist_slot = -1;
 723        min_pending = UINT_MAX;
 724        best_dist_rdev = NULL;
 725        best_pending_rdev = NULL;
 726        best_dist = MaxSector;
 727        best_good_sectors = 0;
 728        do_balance = 1;
 729        clear_bit(R10BIO_FailFast, &r10_bio->state);
 730        /*
 731         * Check if we can balance. We can balance on the whole
 732         * device if no resync is going on (recovery is ok), or below
 733         * the resync window. We take the first readable disk when
 734         * above the resync window.
 735         */
 736        if ((conf->mddev->recovery_cp < MaxSector
 737             && (this_sector + sectors >= conf->next_resync)) ||
 738            (mddev_is_clustered(conf->mddev) &&
 739             md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 740                                            this_sector + sectors)))
 741                do_balance = 0;
 742
 743        for (slot = 0; slot < conf->copies ; slot++) {
 744                sector_t first_bad;
 745                int bad_sectors;
 746                sector_t dev_sector;
 747                unsigned int pending;
 748                bool nonrot;
 749
 750                if (r10_bio->devs[slot].bio == IO_BLOCKED)
 751                        continue;
 752                disk = r10_bio->devs[slot].devnum;
 753                rdev = rcu_dereference(conf->mirrors[disk].replacement);
 754                if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
 755                    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 756                        rdev = rcu_dereference(conf->mirrors[disk].rdev);
 757                if (rdev == NULL ||
 758                    test_bit(Faulty, &rdev->flags))
 759                        continue;
 760                if (!test_bit(In_sync, &rdev->flags) &&
 761                    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 762                        continue;
 763
 764                dev_sector = r10_bio->devs[slot].addr;
 765                if (is_badblock(rdev, dev_sector, sectors,
 766                                &first_bad, &bad_sectors)) {
 767                        if (best_dist < MaxSector)
 768                                /* Already have a better slot */
 769                                continue;
 770                        if (first_bad <= dev_sector) {
 771                                /* Cannot read here.  If this is the
 772                                 * 'primary' device, then we must not read
 773                                 * beyond 'bad_sectors' from another device.
 774                                 */
 775                                bad_sectors -= (dev_sector - first_bad);
 776                                if (!do_balance && sectors > bad_sectors)
 777                                        sectors = bad_sectors;
 778                                if (best_good_sectors > sectors)
 779                                        best_good_sectors = sectors;
 780                        } else {
 781                                sector_t good_sectors =
 782                                        first_bad - dev_sector;
 783                                if (good_sectors > best_good_sectors) {
 784                                        best_good_sectors = good_sectors;
 785                                        best_dist_slot = slot;
 786                                        best_dist_rdev = rdev;
 787                                }
 788                                if (!do_balance)
 789                                        /* Must read from here */
 790                                        break;
 791                        }
 792                        continue;
 793                } else
 794                        best_good_sectors = sectors;
 795
 796                if (!do_balance)
 797                        break;
 798
 799                nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
 800                has_nonrot_disk |= nonrot;
 801                pending = atomic_read(&rdev->nr_pending);
 802                if (min_pending > pending && nonrot) {
 803                        min_pending = pending;
 804                        best_pending_slot = slot;
 805                        best_pending_rdev = rdev;
 806                }
 807
 808                if (best_dist_slot >= 0)
 809                        /* At least 2 disks to choose from so failfast is OK */
 810                        set_bit(R10BIO_FailFast, &r10_bio->state);
 811                /* This optimisation is debatable, and completely destroys
 812                 * sequential read speed for 'far copies' arrays.  So only
 813                 * keep it for 'near' arrays, and review those later.
 814                 */
 815                if (geo->near_copies > 1 && !pending)
 816                        new_distance = 0;
 817
 818                /* for far > 1 always use the lowest address */
 819                else if (geo->far_copies > 1)
 820                        new_distance = r10_bio->devs[slot].addr;
 821                else
 822                        new_distance = abs(r10_bio->devs[slot].addr -
 823                                           conf->mirrors[disk].head_position);
 824
 825                if (new_distance < best_dist) {
 826                        best_dist = new_distance;
 827                        best_dist_slot = slot;
 828                        best_dist_rdev = rdev;
 829                }
 830        }
 831        if (slot >= conf->copies) {
 832                if (has_nonrot_disk) {
 833                        slot = best_pending_slot;
 834                        rdev = best_pending_rdev;
 835                } else {
 836                        slot = best_dist_slot;
 837                        rdev = best_dist_rdev;
 838                }
 839        }
 840
 841        if (slot >= 0) {
 842                atomic_inc(&rdev->nr_pending);
 843                r10_bio->read_slot = slot;
 844        } else
 845                rdev = NULL;
 846        rcu_read_unlock();
 847        *max_sectors = best_good_sectors;
 848
 849        return rdev;
 850}
 851
 852static void flush_pending_writes(struct r10conf *conf)
 853{
 854        /* Any writes that have been queued but are awaiting
 855         * bitmap updates get flushed here.
 856         */
 857        spin_lock_irq(&conf->device_lock);
 858
 859        if (conf->pending_bio_list.head) {
 860                struct blk_plug plug;
 861                struct bio *bio;
 862
 863                bio = bio_list_get(&conf->pending_bio_list);
 864                conf->pending_count = 0;
 865                spin_unlock_irq(&conf->device_lock);
 866
 867                /*
 868                 * As this is called in a wait_event() loop (see freeze_array),
 869                 * current->state might be TASK_UNINTERRUPTIBLE which will
 870                 * cause a warning when we prepare to wait again.  As it is
 871                 * rare that this path is taken, it is perfectly safe to force
 872                 * us to go around the wait_event() loop again, so the warning
 873                 * is a false-positive. Silence the warning by resetting
 874                 * thread state
 875                 */
 876                __set_current_state(TASK_RUNNING);
 877
 878                blk_start_plug(&plug);
 879                /* flush any pending bitmap writes to disk
 880                 * before proceeding w/ I/O */
 881                md_bitmap_unplug(conf->mddev->bitmap);
 882                wake_up(&conf->wait_barrier);
 883
 884                while (bio) { /* submit pending writes */
 885                        struct bio *next = bio->bi_next;
 886                        struct md_rdev *rdev = (void*)bio->bi_bdev;
 887                        bio->bi_next = NULL;
 888                        bio_set_dev(bio, rdev->bdev);
 889                        if (test_bit(Faulty, &rdev->flags)) {
 890                                bio_io_error(bio);
 891                        } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
 892                                            !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
 893                                /* Just ignore it */
 894                                bio_endio(bio);
 895                        else
 896                                submit_bio_noacct(bio);
 897                        bio = next;
 898                }
 899                blk_finish_plug(&plug);
 900        } else
 901                spin_unlock_irq(&conf->device_lock);
 902}
 903
 904/* Barriers....
 905 * Sometimes we need to suspend IO while we do something else,
 906 * either some resync/recovery, or reconfigure the array.
 907 * To do this we raise a 'barrier'.
 908 * The 'barrier' is a counter that can be raised multiple times
 909 * to count how many activities are happening which preclude
 910 * normal IO.
 911 * We can only raise the barrier if there is no pending IO.
 912 * i.e. if nr_pending == 0.
 913 * We choose only to raise the barrier if no-one is waiting for the
 914 * barrier to go down.  This means that as soon as an IO request
 915 * is ready, no other operations which require a barrier will start
 916 * until the IO request has had a chance.
 917 *
 918 * So: regular IO calls 'wait_barrier'.  When that returns there
 919 *    is no backgroup IO happening,  It must arrange to call
 920 *    allow_barrier when it has finished its IO.
 921 * backgroup IO calls must call raise_barrier.  Once that returns
 922 *    there is no normal IO happeing.  It must arrange to call
 923 *    lower_barrier when the particular background IO completes.
 924 */
 925
 926static void raise_barrier(struct r10conf *conf, int force)
 927{
 928        BUG_ON(force && !conf->barrier);
 929        spin_lock_irq(&conf->resync_lock);
 930
 931        /* Wait until no block IO is waiting (unless 'force') */
 932        wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
 933                            conf->resync_lock);
 934
 935        /* block any new IO from starting */
 936        conf->barrier++;
 937
 938        /* Now wait for all pending IO to complete */
 939        wait_event_lock_irq(conf->wait_barrier,
 940                            !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
 941                            conf->resync_lock);
 942
 943        spin_unlock_irq(&conf->resync_lock);
 944}
 945
 946static void lower_barrier(struct r10conf *conf)
 947{
 948        unsigned long flags;
 949        spin_lock_irqsave(&conf->resync_lock, flags);
 950        conf->barrier--;
 951        spin_unlock_irqrestore(&conf->resync_lock, flags);
 952        wake_up(&conf->wait_barrier);
 953}
 954
 955static void wait_barrier(struct r10conf *conf)
 956{
 957        spin_lock_irq(&conf->resync_lock);
 958        if (conf->barrier) {
 959                struct bio_list *bio_list = current->bio_list;
 960                conf->nr_waiting++;
 961                /* Wait for the barrier to drop.
 962                 * However if there are already pending
 963                 * requests (preventing the barrier from
 964                 * rising completely), and the
 965                 * pre-process bio queue isn't empty,
 966                 * then don't wait, as we need to empty
 967                 * that queue to get the nr_pending
 968                 * count down.
 969                 */
 970                raid10_log(conf->mddev, "wait barrier");
 971                wait_event_lock_irq(conf->wait_barrier,
 972                                    !conf->barrier ||
 973                                    (atomic_read(&conf->nr_pending) &&
 974                                     bio_list &&
 975                                     (!bio_list_empty(&bio_list[0]) ||
 976                                      !bio_list_empty(&bio_list[1]))) ||
 977                                     /* move on if recovery thread is
 978                                      * blocked by us
 979                                      */
 980                                     (conf->mddev->thread->tsk == current &&
 981                                      test_bit(MD_RECOVERY_RUNNING,
 982                                               &conf->mddev->recovery) &&
 983                                      conf->nr_queued > 0),
 984                                    conf->resync_lock);
 985                conf->nr_waiting--;
 986                if (!conf->nr_waiting)
 987                        wake_up(&conf->wait_barrier);
 988        }
 989        atomic_inc(&conf->nr_pending);
 990        spin_unlock_irq(&conf->resync_lock);
 991}
 992
 993static void allow_barrier(struct r10conf *conf)
 994{
 995        if ((atomic_dec_and_test(&conf->nr_pending)) ||
 996                        (conf->array_freeze_pending))
 997                wake_up(&conf->wait_barrier);
 998}
 999
1000static void freeze_array(struct r10conf *conf, int extra)
1001{
1002        /* stop syncio and normal IO and wait for everything to
1003         * go quiet.
1004         * We increment barrier and nr_waiting, and then
1005         * wait until nr_pending match nr_queued+extra
1006         * This is called in the context of one normal IO request
1007         * that has failed. Thus any sync request that might be pending
1008         * will be blocked by nr_pending, and we need to wait for
1009         * pending IO requests to complete or be queued for re-try.
1010         * Thus the number queued (nr_queued) plus this request (extra)
1011         * must match the number of pending IOs (nr_pending) before
1012         * we continue.
1013         */
1014        spin_lock_irq(&conf->resync_lock);
1015        conf->array_freeze_pending++;
1016        conf->barrier++;
1017        conf->nr_waiting++;
1018        wait_event_lock_irq_cmd(conf->wait_barrier,
1019                                atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1020                                conf->resync_lock,
1021                                flush_pending_writes(conf));
1022
1023        conf->array_freeze_pending--;
1024        spin_unlock_irq(&conf->resync_lock);
1025}
1026
1027static void unfreeze_array(struct r10conf *conf)
1028{
1029        /* reverse the effect of the freeze */
1030        spin_lock_irq(&conf->resync_lock);
1031        conf->barrier--;
1032        conf->nr_waiting--;
1033        wake_up(&conf->wait_barrier);
1034        spin_unlock_irq(&conf->resync_lock);
1035}
1036
1037static sector_t choose_data_offset(struct r10bio *r10_bio,
1038                                   struct md_rdev *rdev)
1039{
1040        if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1041            test_bit(R10BIO_Previous, &r10_bio->state))
1042                return rdev->data_offset;
1043        else
1044                return rdev->new_data_offset;
1045}
1046
1047struct raid10_plug_cb {
1048        struct blk_plug_cb      cb;
1049        struct bio_list         pending;
1050        int                     pending_cnt;
1051};
1052
1053static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1054{
1055        struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1056                                                   cb);
1057        struct mddev *mddev = plug->cb.data;
1058        struct r10conf *conf = mddev->private;
1059        struct bio *bio;
1060
1061        if (from_schedule || current->bio_list) {
1062                spin_lock_irq(&conf->device_lock);
1063                bio_list_merge(&conf->pending_bio_list, &plug->pending);
1064                conf->pending_count += plug->pending_cnt;
1065                spin_unlock_irq(&conf->device_lock);
1066                wake_up(&conf->wait_barrier);
1067                md_wakeup_thread(mddev->thread);
1068                kfree(plug);
1069                return;
1070        }
1071
1072        /* we aren't scheduling, so we can do the write-out directly. */
1073        bio = bio_list_get(&plug->pending);
1074        md_bitmap_unplug(mddev->bitmap);
1075        wake_up(&conf->wait_barrier);
1076
1077        while (bio) { /* submit pending writes */
1078                struct bio *next = bio->bi_next;
1079                struct md_rdev *rdev = (void*)bio->bi_bdev;
1080                bio->bi_next = NULL;
1081                bio_set_dev(bio, rdev->bdev);
1082                if (test_bit(Faulty, &rdev->flags)) {
1083                        bio_io_error(bio);
1084                } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1085                                    !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
1086                        /* Just ignore it */
1087                        bio_endio(bio);
1088                else
1089                        submit_bio_noacct(bio);
1090                bio = next;
1091        }
1092        kfree(plug);
1093}
1094
1095/*
1096 * 1. Register the new request and wait if the reconstruction thread has put
1097 * up a bar for new requests. Continue immediately if no resync is active
1098 * currently.
1099 * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1100 */
1101static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1102                                 struct bio *bio, sector_t sectors)
1103{
1104        wait_barrier(conf);
1105        while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1106            bio->bi_iter.bi_sector < conf->reshape_progress &&
1107            bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1108                raid10_log(conf->mddev, "wait reshape");
1109                allow_barrier(conf);
1110                wait_event(conf->wait_barrier,
1111                           conf->reshape_progress <= bio->bi_iter.bi_sector ||
1112                           conf->reshape_progress >= bio->bi_iter.bi_sector +
1113                           sectors);
1114                wait_barrier(conf);
1115        }
1116}
1117
1118static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1119                                struct r10bio *r10_bio)
1120{
1121        struct r10conf *conf = mddev->private;
1122        struct bio *read_bio;
1123        const int op = bio_op(bio);
1124        const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1125        int max_sectors;
1126        struct md_rdev *rdev;
1127        char b[BDEVNAME_SIZE];
1128        int slot = r10_bio->read_slot;
1129        struct md_rdev *err_rdev = NULL;
1130        gfp_t gfp = GFP_NOIO;
1131
1132        if (slot >= 0 && r10_bio->devs[slot].rdev) {
1133                /*
1134                 * This is an error retry, but we cannot
1135                 * safely dereference the rdev in the r10_bio,
1136                 * we must use the one in conf.
1137                 * If it has already been disconnected (unlikely)
1138                 * we lose the device name in error messages.
1139                 */
1140                int disk;
1141                /*
1142                 * As we are blocking raid10, it is a little safer to
1143                 * use __GFP_HIGH.
1144                 */
1145                gfp = GFP_NOIO | __GFP_HIGH;
1146
1147                rcu_read_lock();
1148                disk = r10_bio->devs[slot].devnum;
1149                err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1150                if (err_rdev)
1151                        bdevname(err_rdev->bdev, b);
1152                else {
1153                        strcpy(b, "???");
1154                        /* This never gets dereferenced */
1155                        err_rdev = r10_bio->devs[slot].rdev;
1156                }
1157                rcu_read_unlock();
1158        }
1159
1160        regular_request_wait(mddev, conf, bio, r10_bio->sectors);
1161        rdev = read_balance(conf, r10_bio, &max_sectors);
1162        if (!rdev) {
1163                if (err_rdev) {
1164                        pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1165                                            mdname(mddev), b,
1166                                            (unsigned long long)r10_bio->sector);
1167                }
1168                raid_end_bio_io(r10_bio);
1169                return;
1170        }
1171        if (err_rdev)
1172                pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1173                                   mdname(mddev),
1174                                   bdevname(rdev->bdev, b),
1175                                   (unsigned long long)r10_bio->sector);
1176        if (max_sectors < bio_sectors(bio)) {
1177                struct bio *split = bio_split(bio, max_sectors,
1178                                              gfp, &conf->bio_split);
1179                bio_chain(split, bio);
1180                allow_barrier(conf);
1181                submit_bio_noacct(bio);
1182                wait_barrier(conf);
1183                bio = split;
1184                r10_bio->master_bio = bio;
1185                r10_bio->sectors = max_sectors;
1186        }
1187        slot = r10_bio->read_slot;
1188
1189        if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1190                r10_bio->start_time = bio_start_io_acct(bio);
1191        read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1192
1193        r10_bio->devs[slot].bio = read_bio;
1194        r10_bio->devs[slot].rdev = rdev;
1195
1196        read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1197                choose_data_offset(r10_bio, rdev);
1198        bio_set_dev(read_bio, rdev->bdev);
1199        read_bio->bi_end_io = raid10_end_read_request;
1200        bio_set_op_attrs(read_bio, op, do_sync);
1201        if (test_bit(FailFast, &rdev->flags) &&
1202            test_bit(R10BIO_FailFast, &r10_bio->state))
1203                read_bio->bi_opf |= MD_FAILFAST;
1204        read_bio->bi_private = r10_bio;
1205
1206        if (mddev->gendisk)
1207                trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1208                                      r10_bio->sector);
1209        submit_bio_noacct(read_bio);
1210        return;
1211}
1212
1213static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1214                                  struct bio *bio, bool replacement,
1215                                  int n_copy)
1216{
1217        const int op = bio_op(bio);
1218        const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1219        const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1220        unsigned long flags;
1221        struct blk_plug_cb *cb;
1222        struct raid10_plug_cb *plug = NULL;
1223        struct r10conf *conf = mddev->private;
1224        struct md_rdev *rdev;
1225        int devnum = r10_bio->devs[n_copy].devnum;
1226        struct bio *mbio;
1227
1228        if (replacement) {
1229                rdev = conf->mirrors[devnum].replacement;
1230                if (rdev == NULL) {
1231                        /* Replacement just got moved to main 'rdev' */
1232                        smp_mb();
1233                        rdev = conf->mirrors[devnum].rdev;
1234                }
1235        } else
1236                rdev = conf->mirrors[devnum].rdev;
1237
1238        mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1239        if (replacement)
1240                r10_bio->devs[n_copy].repl_bio = mbio;
1241        else
1242                r10_bio->devs[n_copy].bio = mbio;
1243
1244        mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1245                                   choose_data_offset(r10_bio, rdev));
1246        bio_set_dev(mbio, rdev->bdev);
1247        mbio->bi_end_io = raid10_end_write_request;
1248        bio_set_op_attrs(mbio, op, do_sync | do_fua);
1249        if (!replacement && test_bit(FailFast,
1250                                     &conf->mirrors[devnum].rdev->flags)
1251                         && enough(conf, devnum))
1252                mbio->bi_opf |= MD_FAILFAST;
1253        mbio->bi_private = r10_bio;
1254
1255        if (conf->mddev->gendisk)
1256                trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
1257                                      r10_bio->sector);
1258        /* flush_pending_writes() needs access to the rdev so...*/
1259        mbio->bi_bdev = (void *)rdev;
1260
1261        atomic_inc(&r10_bio->remaining);
1262
1263        cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1264        if (cb)
1265                plug = container_of(cb, struct raid10_plug_cb, cb);
1266        else
1267                plug = NULL;
1268        if (plug) {
1269                bio_list_add(&plug->pending, mbio);
1270                plug->pending_cnt++;
1271        } else {
1272                spin_lock_irqsave(&conf->device_lock, flags);
1273                bio_list_add(&conf->pending_bio_list, mbio);
1274                conf->pending_count++;
1275                spin_unlock_irqrestore(&conf->device_lock, flags);
1276                md_wakeup_thread(mddev->thread);
1277        }
1278}
1279
1280static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1281{
1282        int i;
1283        struct r10conf *conf = mddev->private;
1284        struct md_rdev *blocked_rdev;
1285
1286retry_wait:
1287        blocked_rdev = NULL;
1288        rcu_read_lock();
1289        for (i = 0; i < conf->copies; i++) {
1290                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1291                struct md_rdev *rrdev = rcu_dereference(
1292                        conf->mirrors[i].replacement);
1293                if (rdev == rrdev)
1294                        rrdev = NULL;
1295                if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1296                        atomic_inc(&rdev->nr_pending);
1297                        blocked_rdev = rdev;
1298                        break;
1299                }
1300                if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1301                        atomic_inc(&rrdev->nr_pending);
1302                        blocked_rdev = rrdev;
1303                        break;
1304                }
1305
1306                if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1307                        sector_t first_bad;
1308                        sector_t dev_sector = r10_bio->devs[i].addr;
1309                        int bad_sectors;
1310                        int is_bad;
1311
1312                        /*
1313                         * Discard request doesn't care the write result
1314                         * so it doesn't need to wait blocked disk here.
1315                         */
1316                        if (!r10_bio->sectors)
1317                                continue;
1318
1319                        is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
1320                                             &first_bad, &bad_sectors);
1321                        if (is_bad < 0) {
1322                                /*
1323                                 * Mustn't write here until the bad block
1324                                 * is acknowledged
1325                                 */
1326                                atomic_inc(&rdev->nr_pending);
1327                                set_bit(BlockedBadBlocks, &rdev->flags);
1328                                blocked_rdev = rdev;
1329                                break;
1330                        }
1331                }
1332        }
1333        rcu_read_unlock();
1334
1335        if (unlikely(blocked_rdev)) {
1336                /* Have to wait for this device to get unblocked, then retry */
1337                allow_barrier(conf);
1338                raid10_log(conf->mddev, "%s wait rdev %d blocked",
1339                                __func__, blocked_rdev->raid_disk);
1340                md_wait_for_blocked_rdev(blocked_rdev, mddev);
1341                wait_barrier(conf);
1342                goto retry_wait;
1343        }
1344}
1345
1346static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1347                                 struct r10bio *r10_bio)
1348{
1349        struct r10conf *conf = mddev->private;
1350        int i;
1351        sector_t sectors;
1352        int max_sectors;
1353
1354        if ((mddev_is_clustered(mddev) &&
1355             md_cluster_ops->area_resyncing(mddev, WRITE,
1356                                            bio->bi_iter.bi_sector,
1357                                            bio_end_sector(bio)))) {
1358                DEFINE_WAIT(w);
1359                for (;;) {
1360                        prepare_to_wait(&conf->wait_barrier,
1361                                        &w, TASK_IDLE);
1362                        if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1363                                 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1364                                break;
1365                        schedule();
1366                }
1367                finish_wait(&conf->wait_barrier, &w);
1368        }
1369
1370        sectors = r10_bio->sectors;
1371        regular_request_wait(mddev, conf, bio, sectors);
1372        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1373            (mddev->reshape_backwards
1374             ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1375                bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1376             : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1377                bio->bi_iter.bi_sector < conf->reshape_progress))) {
1378                /* Need to update reshape_position in metadata */
1379                mddev->reshape_position = conf->reshape_progress;
1380                set_mask_bits(&mddev->sb_flags, 0,
1381                              BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1382                md_wakeup_thread(mddev->thread);
1383                raid10_log(conf->mddev, "wait reshape metadata");
1384                wait_event(mddev->sb_wait,
1385                           !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1386
1387                conf->reshape_safe = mddev->reshape_position;
1388        }
1389
1390        if (conf->pending_count >= max_queued_requests) {
1391                md_wakeup_thread(mddev->thread);
1392                raid10_log(mddev, "wait queued");
1393                wait_event(conf->wait_barrier,
1394                           conf->pending_count < max_queued_requests);
1395        }
1396        /* first select target devices under rcu_lock and
1397         * inc refcount on their rdev.  Record them by setting
1398         * bios[x] to bio
1399         * If there are known/acknowledged bad blocks on any device
1400         * on which we have seen a write error, we want to avoid
1401         * writing to those blocks.  This potentially requires several
1402         * writes to write around the bad blocks.  Each set of writes
1403         * gets its own r10_bio with a set of bios attached.
1404         */
1405
1406        r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1407        raid10_find_phys(conf, r10_bio);
1408
1409        wait_blocked_dev(mddev, r10_bio);
1410
1411        rcu_read_lock();
1412        max_sectors = r10_bio->sectors;
1413
1414        for (i = 0;  i < conf->copies; i++) {
1415                int d = r10_bio->devs[i].devnum;
1416                struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1417                struct md_rdev *rrdev = rcu_dereference(
1418                        conf->mirrors[d].replacement);
1419                if (rdev == rrdev)
1420                        rrdev = NULL;
1421                if (rdev && (test_bit(Faulty, &rdev->flags)))
1422                        rdev = NULL;
1423                if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1424                        rrdev = NULL;
1425
1426                r10_bio->devs[i].bio = NULL;
1427                r10_bio->devs[i].repl_bio = NULL;
1428
1429                if (!rdev && !rrdev) {
1430                        set_bit(R10BIO_Degraded, &r10_bio->state);
1431                        continue;
1432                }
1433                if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1434                        sector_t first_bad;
1435                        sector_t dev_sector = r10_bio->devs[i].addr;
1436                        int bad_sectors;
1437                        int is_bad;
1438
1439                        is_bad = is_badblock(rdev, dev_sector, max_sectors,
1440                                             &first_bad, &bad_sectors);
1441                        if (is_bad && first_bad <= dev_sector) {
1442                                /* Cannot write here at all */
1443                                bad_sectors -= (dev_sector - first_bad);
1444                                if (bad_sectors < max_sectors)
1445                                        /* Mustn't write more than bad_sectors
1446                                         * to other devices yet
1447                                         */
1448                                        max_sectors = bad_sectors;
1449                                /* We don't set R10BIO_Degraded as that
1450                                 * only applies if the disk is missing,
1451                                 * so it might be re-added, and we want to
1452                                 * know to recover this chunk.
1453                                 * In this case the device is here, and the
1454                                 * fact that this chunk is not in-sync is
1455                                 * recorded in the bad block log.
1456                                 */
1457                                continue;
1458                        }
1459                        if (is_bad) {
1460                                int good_sectors = first_bad - dev_sector;
1461                                if (good_sectors < max_sectors)
1462                                        max_sectors = good_sectors;
1463                        }
1464                }
1465                if (rdev) {
1466                        r10_bio->devs[i].bio = bio;
1467                        atomic_inc(&rdev->nr_pending);
1468                }
1469                if (rrdev) {
1470                        r10_bio->devs[i].repl_bio = bio;
1471                        atomic_inc(&rrdev->nr_pending);
1472                }
1473        }
1474        rcu_read_unlock();
1475
1476        if (max_sectors < r10_bio->sectors)
1477                r10_bio->sectors = max_sectors;
1478
1479        if (r10_bio->sectors < bio_sectors(bio)) {
1480                struct bio *split = bio_split(bio, r10_bio->sectors,
1481                                              GFP_NOIO, &conf->bio_split);
1482                bio_chain(split, bio);
1483                allow_barrier(conf);
1484                submit_bio_noacct(bio);
1485                wait_barrier(conf);
1486                bio = split;
1487                r10_bio->master_bio = bio;
1488        }
1489
1490        if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1491                r10_bio->start_time = bio_start_io_acct(bio);
1492        atomic_set(&r10_bio->remaining, 1);
1493        md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1494
1495        for (i = 0; i < conf->copies; i++) {
1496                if (r10_bio->devs[i].bio)
1497                        raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1498                if (r10_bio->devs[i].repl_bio)
1499                        raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1500        }
1501        one_write_done(r10_bio);
1502}
1503
1504static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1505{
1506        struct r10conf *conf = mddev->private;
1507        struct r10bio *r10_bio;
1508
1509        r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1510
1511        r10_bio->master_bio = bio;
1512        r10_bio->sectors = sectors;
1513
1514        r10_bio->mddev = mddev;
1515        r10_bio->sector = bio->bi_iter.bi_sector;
1516        r10_bio->state = 0;
1517        r10_bio->read_slot = -1;
1518        memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1519                        conf->geo.raid_disks);
1520
1521        if (bio_data_dir(bio) == READ)
1522                raid10_read_request(mddev, bio, r10_bio);
1523        else
1524                raid10_write_request(mddev, bio, r10_bio);
1525}
1526
1527static void raid_end_discard_bio(struct r10bio *r10bio)
1528{
1529        struct r10conf *conf = r10bio->mddev->private;
1530        struct r10bio *first_r10bio;
1531
1532        while (atomic_dec_and_test(&r10bio->remaining)) {
1533
1534                allow_barrier(conf);
1535
1536                if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1537                        first_r10bio = (struct r10bio *)r10bio->master_bio;
1538                        free_r10bio(r10bio);
1539                        r10bio = first_r10bio;
1540                } else {
1541                        md_write_end(r10bio->mddev);
1542                        bio_endio(r10bio->master_bio);
1543                        free_r10bio(r10bio);
1544                        break;
1545                }
1546        }
1547}
1548
1549static void raid10_end_discard_request(struct bio *bio)
1550{
1551        struct r10bio *r10_bio = bio->bi_private;
1552        struct r10conf *conf = r10_bio->mddev->private;
1553        struct md_rdev *rdev = NULL;
1554        int dev;
1555        int slot, repl;
1556
1557        /*
1558         * We don't care the return value of discard bio
1559         */
1560        if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1561                set_bit(R10BIO_Uptodate, &r10_bio->state);
1562
1563        dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1564        if (repl)
1565                rdev = conf->mirrors[dev].replacement;
1566        if (!rdev) {
1567                /*
1568                 * raid10_remove_disk uses smp_mb to make sure rdev is set to
1569                 * replacement before setting replacement to NULL. It can read
1570                 * rdev first without barrier protect even replacment is NULL
1571                 */
1572                smp_rmb();
1573                rdev = conf->mirrors[dev].rdev;
1574        }
1575
1576        raid_end_discard_bio(r10_bio);
1577        rdev_dec_pending(rdev, conf->mddev);
1578}
1579
1580/*
1581 * There are some limitations to handle discard bio
1582 * 1st, the discard size is bigger than stripe_size*2.
1583 * 2st, if the discard bio spans reshape progress, we use the old way to
1584 * handle discard bio
1585 */
1586static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1587{
1588        struct r10conf *conf = mddev->private;
1589        struct geom *geo = &conf->geo;
1590        int far_copies = geo->far_copies;
1591        bool first_copy = true;
1592        struct r10bio *r10_bio, *first_r10bio;
1593        struct bio *split;
1594        int disk;
1595        sector_t chunk;
1596        unsigned int stripe_size;
1597        unsigned int stripe_data_disks;
1598        sector_t split_size;
1599        sector_t bio_start, bio_end;
1600        sector_t first_stripe_index, last_stripe_index;
1601        sector_t start_disk_offset;
1602        unsigned int start_disk_index;
1603        sector_t end_disk_offset;
1604        unsigned int end_disk_index;
1605        unsigned int remainder;
1606
1607        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1608                return -EAGAIN;
1609
1610        wait_barrier(conf);
1611
1612        /*
1613         * Check reshape again to avoid reshape happens after checking
1614         * MD_RECOVERY_RESHAPE and before wait_barrier
1615         */
1616        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1617                goto out;
1618
1619        if (geo->near_copies)
1620                stripe_data_disks = geo->raid_disks / geo->near_copies +
1621                                        geo->raid_disks % geo->near_copies;
1622        else
1623                stripe_data_disks = geo->raid_disks;
1624
1625        stripe_size = stripe_data_disks << geo->chunk_shift;
1626
1627        bio_start = bio->bi_iter.bi_sector;
1628        bio_end = bio_end_sector(bio);
1629
1630        /*
1631         * Maybe one discard bio is smaller than strip size or across one
1632         * stripe and discard region is larger than one stripe size. For far
1633         * offset layout, if the discard region is not aligned with stripe
1634         * size, there is hole when we submit discard bio to member disk.
1635         * For simplicity, we only handle discard bio which discard region
1636         * is bigger than stripe_size * 2
1637         */
1638        if (bio_sectors(bio) < stripe_size*2)
1639                goto out;
1640
1641        /*
1642         * Keep bio aligned with strip size.
1643         */
1644        div_u64_rem(bio_start, stripe_size, &remainder);
1645        if (remainder) {
1646                split_size = stripe_size - remainder;
1647                split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1648                bio_chain(split, bio);
1649                allow_barrier(conf);
1650                /* Resend the fist split part */
1651                submit_bio_noacct(split);
1652                wait_barrier(conf);
1653        }
1654        div_u64_rem(bio_end, stripe_size, &remainder);
1655        if (remainder) {
1656                split_size = bio_sectors(bio) - remainder;
1657                split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1658                bio_chain(split, bio);
1659                allow_barrier(conf);
1660                /* Resend the second split part */
1661                submit_bio_noacct(bio);
1662                bio = split;
1663                wait_barrier(conf);
1664        }
1665
1666        bio_start = bio->bi_iter.bi_sector;
1667        bio_end = bio_end_sector(bio);
1668
1669        /*
1670         * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1671         * One stripe contains the chunks from all member disk (one chunk from
1672         * one disk at the same HBA address). For layout detail, see 'man md 4'
1673         */
1674        chunk = bio_start >> geo->chunk_shift;
1675        chunk *= geo->near_copies;
1676        first_stripe_index = chunk;
1677        start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1678        if (geo->far_offset)
1679                first_stripe_index *= geo->far_copies;
1680        start_disk_offset = (bio_start & geo->chunk_mask) +
1681                                (first_stripe_index << geo->chunk_shift);
1682
1683        chunk = bio_end >> geo->chunk_shift;
1684        chunk *= geo->near_copies;
1685        last_stripe_index = chunk;
1686        end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1687        if (geo->far_offset)
1688                last_stripe_index *= geo->far_copies;
1689        end_disk_offset = (bio_end & geo->chunk_mask) +
1690                                (last_stripe_index << geo->chunk_shift);
1691
1692retry_discard:
1693        r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1694        r10_bio->mddev = mddev;
1695        r10_bio->state = 0;
1696        r10_bio->sectors = 0;
1697        memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1698        wait_blocked_dev(mddev, r10_bio);
1699
1700        /*
1701         * For far layout it needs more than one r10bio to cover all regions.
1702         * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1703         * to record the discard bio. Other r10bio->master_bio record the first
1704         * r10bio. The first r10bio only release after all other r10bios finish.
1705         * The discard bio returns only first r10bio finishes
1706         */
1707        if (first_copy) {
1708                r10_bio->master_bio = bio;
1709                set_bit(R10BIO_Discard, &r10_bio->state);
1710                first_copy = false;
1711                first_r10bio = r10_bio;
1712        } else
1713                r10_bio->master_bio = (struct bio *)first_r10bio;
1714
1715        rcu_read_lock();
1716        for (disk = 0; disk < geo->raid_disks; disk++) {
1717                struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev);
1718                struct md_rdev *rrdev = rcu_dereference(
1719                        conf->mirrors[disk].replacement);
1720
1721                r10_bio->devs[disk].bio = NULL;
1722                r10_bio->devs[disk].repl_bio = NULL;
1723
1724                if (rdev && (test_bit(Faulty, &rdev->flags)))
1725                        rdev = NULL;
1726                if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1727                        rrdev = NULL;
1728                if (!rdev && !rrdev)
1729                        continue;
1730
1731                if (rdev) {
1732                        r10_bio->devs[disk].bio = bio;
1733                        atomic_inc(&rdev->nr_pending);
1734                }
1735                if (rrdev) {
1736                        r10_bio->devs[disk].repl_bio = bio;
1737                        atomic_inc(&rrdev->nr_pending);
1738                }
1739        }
1740        rcu_read_unlock();
1741
1742        atomic_set(&r10_bio->remaining, 1);
1743        for (disk = 0; disk < geo->raid_disks; disk++) {
1744                sector_t dev_start, dev_end;
1745                struct bio *mbio, *rbio = NULL;
1746                struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev);
1747                struct md_rdev *rrdev = rcu_dereference(
1748                        conf->mirrors[disk].replacement);
1749
1750                /*
1751                 * Now start to calculate the start and end address for each disk.
1752                 * The space between dev_start and dev_end is the discard region.
1753                 *
1754                 * For dev_start, it needs to consider three conditions:
1755                 * 1st, the disk is before start_disk, you can imagine the disk in
1756                 * the next stripe. So the dev_start is the start address of next
1757                 * stripe.
1758                 * 2st, the disk is after start_disk, it means the disk is at the
1759                 * same stripe of first disk
1760                 * 3st, the first disk itself, we can use start_disk_offset directly
1761                 */
1762                if (disk < start_disk_index)
1763                        dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1764                else if (disk > start_disk_index)
1765                        dev_start = first_stripe_index * mddev->chunk_sectors;
1766                else
1767                        dev_start = start_disk_offset;
1768
1769                if (disk < end_disk_index)
1770                        dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1771                else if (disk > end_disk_index)
1772                        dev_end = last_stripe_index * mddev->chunk_sectors;
1773                else
1774                        dev_end = end_disk_offset;
1775
1776                /*
1777                 * It only handles discard bio which size is >= stripe size, so
1778                 * dev_end > dev_start all the time
1779                 */
1780                if (r10_bio->devs[disk].bio) {
1781                        mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1782                        mbio->bi_end_io = raid10_end_discard_request;
1783                        mbio->bi_private = r10_bio;
1784                        r10_bio->devs[disk].bio = mbio;
1785                        r10_bio->devs[disk].devnum = disk;
1786                        atomic_inc(&r10_bio->remaining);
1787                        md_submit_discard_bio(mddev, rdev, mbio,
1788                                        dev_start + choose_data_offset(r10_bio, rdev),
1789                                        dev_end - dev_start);
1790                        bio_endio(mbio);
1791                }
1792                if (r10_bio->devs[disk].repl_bio) {
1793                        rbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1794                        rbio->bi_end_io = raid10_end_discard_request;
1795                        rbio->bi_private = r10_bio;
1796                        r10_bio->devs[disk].repl_bio = rbio;
1797                        r10_bio->devs[disk].devnum = disk;
1798                        atomic_inc(&r10_bio->remaining);
1799                        md_submit_discard_bio(mddev, rrdev, rbio,
1800                                        dev_start + choose_data_offset(r10_bio, rrdev),
1801                                        dev_end - dev_start);
1802                        bio_endio(rbio);
1803                }
1804        }
1805
1806        if (!geo->far_offset && --far_copies) {
1807                first_stripe_index += geo->stride >> geo->chunk_shift;
1808                start_disk_offset += geo->stride;
1809                last_stripe_index += geo->stride >> geo->chunk_shift;
1810                end_disk_offset += geo->stride;
1811                atomic_inc(&first_r10bio->remaining);
1812                raid_end_discard_bio(r10_bio);
1813                wait_barrier(conf);
1814                goto retry_discard;
1815        }
1816
1817        raid_end_discard_bio(r10_bio);
1818
1819        return 0;
1820out:
1821        allow_barrier(conf);
1822        return -EAGAIN;
1823}
1824
1825static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1826{
1827        struct r10conf *conf = mddev->private;
1828        sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1829        int chunk_sects = chunk_mask + 1;
1830        int sectors = bio_sectors(bio);
1831
1832        if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1833            && md_flush_request(mddev, bio))
1834                return true;
1835
1836        if (!md_write_start(mddev, bio))
1837                return false;
1838
1839        if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1840                if (!raid10_handle_discard(mddev, bio))
1841                        return true;
1842
1843        /*
1844         * If this request crosses a chunk boundary, we need to split
1845         * it.
1846         */
1847        if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1848                     sectors > chunk_sects
1849                     && (conf->geo.near_copies < conf->geo.raid_disks
1850                         || conf->prev.near_copies <
1851                         conf->prev.raid_disks)))
1852                sectors = chunk_sects -
1853                        (bio->bi_iter.bi_sector &
1854                         (chunk_sects - 1));
1855        __make_request(mddev, bio, sectors);
1856
1857        /* In case raid10d snuck in to freeze_array */
1858        wake_up(&conf->wait_barrier);
1859        return true;
1860}
1861
1862static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1863{
1864        struct r10conf *conf = mddev->private;
1865        int i;
1866
1867        if (conf->geo.near_copies < conf->geo.raid_disks)
1868                seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1869        if (conf->geo.near_copies > 1)
1870                seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1871        if (conf->geo.far_copies > 1) {
1872                if (conf->geo.far_offset)
1873                        seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1874                else
1875                        seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1876                if (conf->geo.far_set_size != conf->geo.raid_disks)
1877                        seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1878        }
1879        seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1880                                        conf->geo.raid_disks - mddev->degraded);
1881        rcu_read_lock();
1882        for (i = 0; i < conf->geo.raid_disks; i++) {
1883                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1884                seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1885        }
1886        rcu_read_unlock();
1887        seq_printf(seq, "]");
1888}
1889
1890/* check if there are enough drives for
1891 * every block to appear on atleast one.
1892 * Don't consider the device numbered 'ignore'
1893 * as we might be about to remove it.
1894 */
1895static int _enough(struct r10conf *conf, int previous, int ignore)
1896{
1897        int first = 0;
1898        int has_enough = 0;
1899        int disks, ncopies;
1900        if (previous) {
1901                disks = conf->prev.raid_disks;
1902                ncopies = conf->prev.near_copies;
1903        } else {
1904                disks = conf->geo.raid_disks;
1905                ncopies = conf->geo.near_copies;
1906        }
1907
1908        rcu_read_lock();
1909        do {
1910                int n = conf->copies;
1911                int cnt = 0;
1912                int this = first;
1913                while (n--) {
1914                        struct md_rdev *rdev;
1915                        if (this != ignore &&
1916                            (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1917                            test_bit(In_sync, &rdev->flags))
1918                                cnt++;
1919                        this = (this+1) % disks;
1920                }
1921                if (cnt == 0)
1922                        goto out;
1923                first = (first + ncopies) % disks;
1924        } while (first != 0);
1925        has_enough = 1;
1926out:
1927        rcu_read_unlock();
1928        return has_enough;
1929}
1930
1931static int enough(struct r10conf *conf, int ignore)
1932{
1933        /* when calling 'enough', both 'prev' and 'geo' must
1934         * be stable.
1935         * This is ensured if ->reconfig_mutex or ->device_lock
1936         * is held.
1937         */
1938        return _enough(conf, 0, ignore) &&
1939                _enough(conf, 1, ignore);
1940}
1941
1942static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1943{
1944        char b[BDEVNAME_SIZE];
1945        struct r10conf *conf = mddev->private;
1946        unsigned long flags;
1947
1948        /*
1949         * If it is not operational, then we have already marked it as dead
1950         * else if it is the last working disks with "fail_last_dev == false",
1951         * ignore the error, let the next level up know.
1952         * else mark the drive as failed
1953         */
1954        spin_lock_irqsave(&conf->device_lock, flags);
1955        if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1956            && !enough(conf, rdev->raid_disk)) {
1957                /*
1958                 * Don't fail the drive, just return an IO error.
1959                 */
1960                spin_unlock_irqrestore(&conf->device_lock, flags);
1961                return;
1962        }
1963        if (test_and_clear_bit(In_sync, &rdev->flags))
1964                mddev->degraded++;
1965        /*
1966         * If recovery is running, make sure it aborts.
1967         */
1968        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1969        set_bit(Blocked, &rdev->flags);
1970        set_bit(Faulty, &rdev->flags);
1971        set_mask_bits(&mddev->sb_flags, 0,
1972                      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1973        spin_unlock_irqrestore(&conf->device_lock, flags);
1974        pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1975                "md/raid10:%s: Operation continuing on %d devices.\n",
1976                mdname(mddev), bdevname(rdev->bdev, b),
1977                mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1978}
1979
1980static void print_conf(struct r10conf *conf)
1981{
1982        int i;
1983        struct md_rdev *rdev;
1984
1985        pr_debug("RAID10 conf printout:\n");
1986        if (!conf) {
1987                pr_debug("(!conf)\n");
1988                return;
1989        }
1990        pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1991                 conf->geo.raid_disks);
1992
1993        /* This is only called with ->reconfix_mutex held, so
1994         * rcu protection of rdev is not needed */
1995        for (i = 0; i < conf->geo.raid_disks; i++) {
1996                char b[BDEVNAME_SIZE];
1997                rdev = conf->mirrors[i].rdev;
1998                if (rdev)
1999                        pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
2000                                 i, !test_bit(In_sync, &rdev->flags),
2001                                 !test_bit(Faulty, &rdev->flags),
2002                                 bdevname(rdev->bdev,b));
2003        }
2004}
2005
2006static void close_sync(struct r10conf *conf)
2007{
2008        wait_barrier(conf);
2009        allow_barrier(conf);
2010
2011        mempool_exit(&conf->r10buf_pool);
2012}
2013
2014static int raid10_spare_active(struct mddev *mddev)
2015{
2016        int i;
2017        struct r10conf *conf = mddev->private;
2018        struct raid10_info *tmp;
2019        int count = 0;
2020        unsigned long flags;
2021
2022        /*
2023         * Find all non-in_sync disks within the RAID10 configuration
2024         * and mark them in_sync
2025         */
2026        for (i = 0; i < conf->geo.raid_disks; i++) {
2027                tmp = conf->mirrors + i;
2028                if (tmp->replacement
2029                    && tmp->replacement->recovery_offset == MaxSector
2030                    && !test_bit(Faulty, &tmp->replacement->flags)
2031                    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2032                        /* Replacement has just become active */
2033                        if (!tmp->rdev
2034                            || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2035                                count++;
2036                        if (tmp->rdev) {
2037                                /* Replaced device not technically faulty,
2038                                 * but we need to be sure it gets removed
2039                                 * and never re-added.
2040                                 */
2041                                set_bit(Faulty, &tmp->rdev->flags);
2042                                sysfs_notify_dirent_safe(
2043                                        tmp->rdev->sysfs_state);
2044                        }
2045                        sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2046                } else if (tmp->rdev
2047                           && tmp->rdev->recovery_offset == MaxSector
2048                           && !test_bit(Faulty, &tmp->rdev->flags)
2049                           && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2050                        count++;
2051                        sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2052                }
2053        }
2054        spin_lock_irqsave(&conf->device_lock, flags);
2055        mddev->degraded -= count;
2056        spin_unlock_irqrestore(&conf->device_lock, flags);
2057
2058        print_conf(conf);
2059        return count;
2060}
2061
2062static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2063{
2064        struct r10conf *conf = mddev->private;
2065        int err = -EEXIST;
2066        int mirror;
2067        int first = 0;
2068        int last = conf->geo.raid_disks - 1;
2069
2070        if (mddev->recovery_cp < MaxSector)
2071                /* only hot-add to in-sync arrays, as recovery is
2072                 * very different from resync
2073                 */
2074                return -EBUSY;
2075        if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2076                return -EINVAL;
2077
2078        if (md_integrity_add_rdev(rdev, mddev))
2079                return -ENXIO;
2080
2081        if (rdev->raid_disk >= 0)
2082                first = last = rdev->raid_disk;
2083
2084        if (rdev->saved_raid_disk >= first &&
2085            rdev->saved_raid_disk < conf->geo.raid_disks &&
2086            conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2087                mirror = rdev->saved_raid_disk;
2088        else
2089                mirror = first;
2090        for ( ; mirror <= last ; mirror++) {
2091                struct raid10_info *p = &conf->mirrors[mirror];
2092                if (p->recovery_disabled == mddev->recovery_disabled)
2093                        continue;
2094                if (p->rdev) {
2095                        if (!test_bit(WantReplacement, &p->rdev->flags) ||
2096                            p->replacement != NULL)
2097                                continue;
2098                        clear_bit(In_sync, &rdev->flags);
2099                        set_bit(Replacement, &rdev->flags);
2100                        rdev->raid_disk = mirror;
2101                        err = 0;
2102                        if (mddev->gendisk)
2103                                disk_stack_limits(mddev->gendisk, rdev->bdev,
2104                                                  rdev->data_offset << 9);
2105                        conf->fullsync = 1;
2106                        rcu_assign_pointer(p->replacement, rdev);
2107                        break;
2108                }
2109
2110                if (mddev->gendisk)
2111                        disk_stack_limits(mddev->gendisk, rdev->bdev,
2112                                          rdev->data_offset << 9);
2113
2114                p->head_position = 0;
2115                p->recovery_disabled = mddev->recovery_disabled - 1;
2116                rdev->raid_disk = mirror;
2117                err = 0;
2118                if (rdev->saved_raid_disk != mirror)
2119                        conf->fullsync = 1;
2120                rcu_assign_pointer(p->rdev, rdev);
2121                break;
2122        }
2123        if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
2124                blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
2125
2126        print_conf(conf);
2127        return err;
2128}
2129
2130static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2131{
2132        struct r10conf *conf = mddev->private;
2133        int err = 0;
2134        int number = rdev->raid_disk;
2135        struct md_rdev **rdevp;
2136        struct raid10_info *p = conf->mirrors + number;
2137
2138        print_conf(conf);
2139        if (rdev == p->rdev)
2140                rdevp = &p->rdev;
2141        else if (rdev == p->replacement)
2142                rdevp = &p->replacement;
2143        else
2144                return 0;
2145
2146        if (test_bit(In_sync, &rdev->flags) ||
2147            atomic_read(&rdev->nr_pending)) {
2148                err = -EBUSY;
2149                goto abort;
2150        }
2151        /* Only remove non-faulty devices if recovery
2152         * is not possible.
2153         */
2154        if (!test_bit(Faulty, &rdev->flags) &&
2155            mddev->recovery_disabled != p->recovery_disabled &&
2156            (!p->replacement || p->replacement == rdev) &&
2157            number < conf->geo.raid_disks &&
2158            enough(conf, -1)) {
2159                err = -EBUSY;
2160                goto abort;
2161        }
2162        *rdevp = NULL;
2163        if (!test_bit(RemoveSynchronized, &rdev->flags)) {
2164                synchronize_rcu();
2165                if (atomic_read(&rdev->nr_pending)) {
2166                        /* lost the race, try later */
2167                        err = -EBUSY;
2168                        *rdevp = rdev;
2169                        goto abort;
2170                }
2171        }
2172        if (p->replacement) {
2173                /* We must have just cleared 'rdev' */
2174                p->rdev = p->replacement;
2175                clear_bit(Replacement, &p->replacement->flags);
2176                smp_mb(); /* Make sure other CPUs may see both as identical
2177                           * but will never see neither -- if they are careful.
2178                           */
2179                p->replacement = NULL;
2180        }
2181
2182        clear_bit(WantReplacement, &rdev->flags);
2183        err = md_integrity_register(mddev);
2184
2185abort:
2186
2187        print_conf(conf);
2188        return err;
2189}
2190
2191static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2192{
2193        struct r10conf *conf = r10_bio->mddev->private;
2194
2195        if (!bio->bi_status)
2196                set_bit(R10BIO_Uptodate, &r10_bio->state);
2197        else
2198                /* The write handler will notice the lack of
2199                 * R10BIO_Uptodate and record any errors etc
2200                 */
2201                atomic_add(r10_bio->sectors,
2202                           &conf->mirrors[d].rdev->corrected_errors);
2203
2204        /* for reconstruct, we always reschedule after a read.
2205         * for resync, only after all reads
2206         */
2207        rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2208        if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2209            atomic_dec_and_test(&r10_bio->remaining)) {
2210                /* we have read all the blocks,
2211                 * do the comparison in process context in raid10d
2212                 */
2213                reschedule_retry(r10_bio);
2214        }
2215}
2216
2217static void end_sync_read(struct bio *bio)
2218{
2219        struct r10bio *r10_bio = get_resync_r10bio(bio);
2220        struct r10conf *conf = r10_bio->mddev->private;
2221        int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2222
2223        __end_sync_read(r10_bio, bio, d);
2224}
2225
2226static void end_reshape_read(struct bio *bio)
2227{
2228        /* reshape read bio isn't allocated from r10buf_pool */
2229        struct r10bio *r10_bio = bio->bi_private;
2230
2231        __end_sync_read(r10_bio, bio, r10_bio->read_slot);
2232}
2233
2234static void end_sync_request(struct r10bio *r10_bio)
2235{
2236        struct mddev *mddev = r10_bio->mddev;
2237
2238        while (atomic_dec_and_test(&r10_bio->remaining)) {
2239                if (r10_bio->master_bio == NULL) {
2240                        /* the primary of several recovery bios */
2241                        sector_t s = r10_bio->sectors;
2242                        if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2243                            test_bit(R10BIO_WriteError, &r10_bio->state))
2244                                reschedule_retry(r10_bio);
2245                        else
2246                                put_buf(r10_bio);
2247                        md_done_sync(mddev, s, 1);
2248                        break;
2249                } else {
2250                        struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2251                        if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2252                            test_bit(R10BIO_WriteError, &r10_bio->state))
2253                                reschedule_retry(r10_bio);
2254                        else
2255                                put_buf(r10_bio);
2256                        r10_bio = r10_bio2;
2257                }
2258        }
2259}
2260
2261static void end_sync_write(struct bio *bio)
2262{
2263        struct r10bio *r10_bio = get_resync_r10bio(bio);
2264        struct mddev *mddev = r10_bio->mddev;
2265        struct r10conf *conf = mddev->private;
2266        int d;
2267        sector_t first_bad;
2268        int bad_sectors;
2269        int slot;
2270        int repl;
2271        struct md_rdev *rdev = NULL;
2272
2273        d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2274        if (repl)
2275                rdev = conf->mirrors[d].replacement;
2276        else
2277                rdev = conf->mirrors[d].rdev;
2278
2279        if (bio->bi_status) {
2280                if (repl)
2281                        md_error(mddev, rdev);
2282                else {
2283                        set_bit(WriteErrorSeen, &rdev->flags);
2284                        if (!test_and_set_bit(WantReplacement, &rdev->flags))
2285                                set_bit(MD_RECOVERY_NEEDED,
2286                                        &rdev->mddev->recovery);
2287                        set_bit(R10BIO_WriteError, &r10_bio->state);
2288                }
2289        } else if (is_badblock(rdev,
2290                             r10_bio->devs[slot].addr,
2291                             r10_bio->sectors,
2292                             &first_bad, &bad_sectors))
2293                set_bit(R10BIO_MadeGood, &r10_bio->state);
2294
2295        rdev_dec_pending(rdev, mddev);
2296
2297        end_sync_request(r10_bio);
2298}
2299
2300/*
2301 * Note: sync and recover and handled very differently for raid10
2302 * This code is for resync.
2303 * For resync, we read through virtual addresses and read all blocks.
2304 * If there is any error, we schedule a write.  The lowest numbered
2305 * drive is authoritative.
2306 * However requests come for physical address, so we need to map.
2307 * For every physical address there are raid_disks/copies virtual addresses,
2308 * which is always are least one, but is not necessarly an integer.
2309 * This means that a physical address can span multiple chunks, so we may
2310 * have to submit multiple io requests for a single sync request.
2311 */
2312/*
2313 * We check if all blocks are in-sync and only write to blocks that
2314 * aren't in sync
2315 */
2316static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2317{
2318        struct r10conf *conf = mddev->private;
2319        int i, first;
2320        struct bio *tbio, *fbio;
2321        int vcnt;
2322        struct page **tpages, **fpages;
2323
2324        atomic_set(&r10_bio->remaining, 1);
2325
2326        /* find the first device with a block */
2327        for (i=0; i<conf->copies; i++)
2328                if (!r10_bio->devs[i].bio->bi_status)
2329                        break;
2330
2331        if (i == conf->copies)
2332                goto done;
2333
2334        first = i;
2335        fbio = r10_bio->devs[i].bio;
2336        fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2337        fbio->bi_iter.bi_idx = 0;
2338        fpages = get_resync_pages(fbio)->pages;
2339
2340        vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2341        /* now find blocks with errors */
2342        for (i=0 ; i < conf->copies ; i++) {
2343                int  j, d;
2344                struct md_rdev *rdev;
2345                struct resync_pages *rp;
2346
2347                tbio = r10_bio->devs[i].bio;
2348
2349                if (tbio->bi_end_io != end_sync_read)
2350                        continue;
2351                if (i == first)
2352                        continue;
2353
2354                tpages = get_resync_pages(tbio)->pages;
2355                d = r10_bio->devs[i].devnum;
2356                rdev = conf->mirrors[d].rdev;
2357                if (!r10_bio->devs[i].bio->bi_status) {
2358                        /* We know that the bi_io_vec layout is the same for
2359                         * both 'first' and 'i', so we just compare them.
2360                         * All vec entries are PAGE_SIZE;
2361                         */
2362                        int sectors = r10_bio->sectors;
2363                        for (j = 0; j < vcnt; j++) {
2364                                int len = PAGE_SIZE;
2365                                if (sectors < (len / 512))
2366                                        len = sectors * 512;
2367                                if (memcmp(page_address(fpages[j]),
2368                                           page_address(tpages[j]),
2369                                           len))
2370                                        break;
2371                                sectors -= len/512;
2372                        }
2373                        if (j == vcnt)
2374                                continue;
2375                        atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2376                        if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2377                                /* Don't fix anything. */
2378                                continue;
2379                } else if (test_bit(FailFast, &rdev->flags)) {
2380                        /* Just give up on this device */
2381                        md_error(rdev->mddev, rdev);
2382                        continue;
2383                }
2384                /* Ok, we need to write this bio, either to correct an
2385                 * inconsistency or to correct an unreadable block.
2386                 * First we need to fixup bv_offset, bv_len and
2387                 * bi_vecs, as the read request might have corrupted these
2388                 */
2389                rp = get_resync_pages(tbio);
2390                bio_reset(tbio);
2391
2392                md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2393
2394                rp->raid_bio = r10_bio;
2395                tbio->bi_private = rp;
2396                tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2397                tbio->bi_end_io = end_sync_write;
2398                bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2399
2400                bio_copy_data(tbio, fbio);
2401
2402                atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2403                atomic_inc(&r10_bio->remaining);
2404                md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2405
2406                if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2407                        tbio->bi_opf |= MD_FAILFAST;
2408                tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2409                bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2410                submit_bio_noacct(tbio);
2411        }
2412
2413        /* Now write out to any replacement devices
2414         * that are active
2415         */
2416        for (i = 0; i < conf->copies; i++) {
2417                int d;
2418
2419                tbio = r10_bio->devs[i].repl_bio;
2420                if (!tbio || !tbio->bi_end_io)
2421                        continue;
2422                if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2423                    && r10_bio->devs[i].bio != fbio)
2424                        bio_copy_data(tbio, fbio);
2425                d = r10_bio->devs[i].devnum;
2426                atomic_inc(&r10_bio->remaining);
2427                md_sync_acct(conf->mirrors[d].replacement->bdev,
2428                             bio_sectors(tbio));
2429                submit_bio_noacct(tbio);
2430        }
2431
2432done:
2433        if (atomic_dec_and_test(&r10_bio->remaining)) {
2434                md_done_sync(mddev, r10_bio->sectors, 1);
2435                put_buf(r10_bio);
2436        }
2437}
2438
2439/*
2440 * Now for the recovery code.
2441 * Recovery happens across physical sectors.
2442 * We recover all non-is_sync drives by finding the virtual address of
2443 * each, and then choose a working drive that also has that virt address.
2444 * There is a separate r10_bio for each non-in_sync drive.
2445 * Only the first two slots are in use. The first for reading,
2446 * The second for writing.
2447 *
2448 */
2449static void fix_recovery_read_error(struct r10bio *r10_bio)
2450{
2451        /* We got a read error during recovery.
2452         * We repeat the read in smaller page-sized sections.
2453         * If a read succeeds, write it to the new device or record
2454         * a bad block if we cannot.
2455         * If a read fails, record a bad block on both old and
2456         * new devices.
2457         */
2458        struct mddev *mddev = r10_bio->mddev;
2459        struct r10conf *conf = mddev->private;
2460        struct bio *bio = r10_bio->devs[0].bio;
2461        sector_t sect = 0;
2462        int sectors = r10_bio->sectors;
2463        int idx = 0;
2464        int dr = r10_bio->devs[0].devnum;
2465        int dw = r10_bio->devs[1].devnum;
2466        struct page **pages = get_resync_pages(bio)->pages;
2467
2468        while (sectors) {
2469                int s = sectors;
2470                struct md_rdev *rdev;
2471                sector_t addr;
2472                int ok;
2473
2474                if (s > (PAGE_SIZE>>9))
2475                        s = PAGE_SIZE >> 9;
2476
2477                rdev = conf->mirrors[dr].rdev;
2478                addr = r10_bio->devs[0].addr + sect,
2479                ok = sync_page_io(rdev,
2480                                  addr,
2481                                  s << 9,
2482                                  pages[idx],
2483                                  REQ_OP_READ, 0, false);
2484                if (ok) {
2485                        rdev = conf->mirrors[dw].rdev;
2486                        addr = r10_bio->devs[1].addr + sect;
2487                        ok = sync_page_io(rdev,
2488                                          addr,
2489                                          s << 9,
2490                                          pages[idx],
2491                                          REQ_OP_WRITE, 0, false);
2492                        if (!ok) {
2493                                set_bit(WriteErrorSeen, &rdev->flags);
2494                                if (!test_and_set_bit(WantReplacement,
2495                                                      &rdev->flags))
2496                                        set_bit(MD_RECOVERY_NEEDED,
2497                                                &rdev->mddev->recovery);
2498                        }
2499                }
2500                if (!ok) {
2501                        /* We don't worry if we cannot set a bad block -
2502                         * it really is bad so there is no loss in not
2503                         * recording it yet
2504                         */
2505                        rdev_set_badblocks(rdev, addr, s, 0);
2506
2507                        if (rdev != conf->mirrors[dw].rdev) {
2508                                /* need bad block on destination too */
2509                                struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2510                                addr = r10_bio->devs[1].addr + sect;
2511                                ok = rdev_set_badblocks(rdev2, addr, s, 0);
2512                                if (!ok) {
2513                                        /* just abort the recovery */
2514                                        pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2515                                                  mdname(mddev));
2516
2517                                        conf->mirrors[dw].recovery_disabled
2518                                                = mddev->recovery_disabled;
2519                                        set_bit(MD_RECOVERY_INTR,
2520                                                &mddev->recovery);
2521                                        break;
2522                                }
2523                        }
2524                }
2525
2526                sectors -= s;
2527                sect += s;
2528                idx++;
2529        }
2530}
2531
2532static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2533{
2534        struct r10conf *conf = mddev->private;
2535        int d;
2536        struct bio *wbio, *wbio2;
2537
2538        if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2539                fix_recovery_read_error(r10_bio);
2540                end_sync_request(r10_bio);
2541                return;
2542        }
2543
2544        /*
2545         * share the pages with the first bio
2546         * and submit the write request
2547         */
2548        d = r10_bio->devs[1].devnum;
2549        wbio = r10_bio->devs[1].bio;
2550        wbio2 = r10_bio->devs[1].repl_bio;
2551        /* Need to test wbio2->bi_end_io before we call
2552         * submit_bio_noacct as if the former is NULL,
2553         * the latter is free to free wbio2.
2554         */
2555        if (wbio2 && !wbio2->bi_end_io)
2556                wbio2 = NULL;
2557        if (wbio->bi_end_io) {
2558                atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2559                md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2560                submit_bio_noacct(wbio);
2561        }
2562        if (wbio2) {
2563                atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2564                md_sync_acct(conf->mirrors[d].replacement->bdev,
2565                             bio_sectors(wbio2));
2566                submit_bio_noacct(wbio2);
2567        }
2568}
2569
2570/*
2571 * Used by fix_read_error() to decay the per rdev read_errors.
2572 * We halve the read error count for every hour that has elapsed
2573 * since the last recorded read error.
2574 *
2575 */
2576static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2577{
2578        long cur_time_mon;
2579        unsigned long hours_since_last;
2580        unsigned int read_errors = atomic_read(&rdev->read_errors);
2581
2582        cur_time_mon = ktime_get_seconds();
2583
2584        if (rdev->last_read_error == 0) {
2585                /* first time we've seen a read error */
2586                rdev->last_read_error = cur_time_mon;
2587                return;
2588        }
2589
2590        hours_since_last = (long)(cur_time_mon -
2591                            rdev->last_read_error) / 3600;
2592
2593        rdev->last_read_error = cur_time_mon;
2594
2595        /*
2596         * if hours_since_last is > the number of bits in read_errors
2597         * just set read errors to 0. We do this to avoid
2598         * overflowing the shift of read_errors by hours_since_last.
2599         */
2600        if (hours_since_last >= 8 * sizeof(read_errors))
2601                atomic_set(&rdev->read_errors, 0);
2602        else
2603                atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2604}
2605
2606static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2607                            int sectors, struct page *page, int rw)
2608{
2609        sector_t first_bad;
2610        int bad_sectors;
2611
2612        if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2613            && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2614                return -1;
2615        if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2616                /* success */
2617                return 1;
2618        if (rw == WRITE) {
2619                set_bit(WriteErrorSeen, &rdev->flags);
2620                if (!test_and_set_bit(WantReplacement, &rdev->flags))
2621                        set_bit(MD_RECOVERY_NEEDED,
2622                                &rdev->mddev->recovery);
2623        }
2624        /* need to record an error - either for the block or the device */
2625        if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2626                md_error(rdev->mddev, rdev);
2627        return 0;
2628}
2629
2630/*
2631 * This is a kernel thread which:
2632 *
2633 *      1.      Retries failed read operations on working mirrors.
2634 *      2.      Updates the raid superblock when problems encounter.
2635 *      3.      Performs writes following reads for array synchronising.
2636 */
2637
2638static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2639{
2640        int sect = 0; /* Offset from r10_bio->sector */
2641        int sectors = r10_bio->sectors;
2642        struct md_rdev *rdev;
2643        int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2644        int d = r10_bio->devs[r10_bio->read_slot].devnum;
2645
2646        /* still own a reference to this rdev, so it cannot
2647         * have been cleared recently.
2648         */
2649        rdev = conf->mirrors[d].rdev;
2650
2651        if (test_bit(Faulty, &rdev->flags))
2652                /* drive has already been failed, just ignore any
2653                   more fix_read_error() attempts */
2654                return;
2655
2656        check_decay_read_errors(mddev, rdev);
2657        atomic_inc(&rdev->read_errors);
2658        if (atomic_read(&rdev->read_errors) > max_read_errors) {
2659                char b[BDEVNAME_SIZE];
2660                bdevname(rdev->bdev, b);
2661
2662                pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2663                          mdname(mddev), b,
2664                          atomic_read(&rdev->read_errors), max_read_errors);
2665                pr_notice("md/raid10:%s: %s: Failing raid device\n",
2666                          mdname(mddev), b);
2667                md_error(mddev, rdev);
2668                r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2669                return;
2670        }
2671
2672        while(sectors) {
2673                int s = sectors;
2674                int sl = r10_bio->read_slot;
2675                int success = 0;
2676                int start;
2677
2678                if (s > (PAGE_SIZE>>9))
2679                        s = PAGE_SIZE >> 9;
2680
2681                rcu_read_lock();
2682                do {
2683                        sector_t first_bad;
2684                        int bad_sectors;
2685
2686                        d = r10_bio->devs[sl].devnum;
2687                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2688                        if (rdev &&
2689                            test_bit(In_sync, &rdev->flags) &&
2690                            !test_bit(Faulty, &rdev->flags) &&
2691                            is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2692                                        &first_bad, &bad_sectors) == 0) {
2693                                atomic_inc(&rdev->nr_pending);
2694                                rcu_read_unlock();
2695                                success = sync_page_io(rdev,
2696                                                       r10_bio->devs[sl].addr +
2697                                                       sect,
2698                                                       s<<9,
2699                                                       conf->tmppage,
2700                                                       REQ_OP_READ, 0, false);
2701                                rdev_dec_pending(rdev, mddev);
2702                                rcu_read_lock();
2703                                if (success)
2704                                        break;
2705                        }
2706                        sl++;
2707                        if (sl == conf->copies)
2708                                sl = 0;
2709                } while (!success && sl != r10_bio->read_slot);
2710                rcu_read_unlock();
2711
2712                if (!success) {
2713                        /* Cannot read from anywhere, just mark the block
2714                         * as bad on the first device to discourage future
2715                         * reads.
2716                         */
2717                        int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2718                        rdev = conf->mirrors[dn].rdev;
2719
2720                        if (!rdev_set_badblocks(
2721                                    rdev,
2722                                    r10_bio->devs[r10_bio->read_slot].addr
2723                                    + sect,
2724                                    s, 0)) {
2725                                md_error(mddev, rdev);
2726                                r10_bio->devs[r10_bio->read_slot].bio
2727                                        = IO_BLOCKED;
2728                        }
2729                        break;
2730                }
2731
2732                start = sl;
2733                /* write it back and re-read */
2734                rcu_read_lock();
2735                while (sl != r10_bio->read_slot) {
2736                        char b[BDEVNAME_SIZE];
2737
2738                        if (sl==0)
2739                                sl = conf->copies;
2740                        sl--;
2741                        d = r10_bio->devs[sl].devnum;
2742                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2743                        if (!rdev ||
2744                            test_bit(Faulty, &rdev->flags) ||
2745                            !test_bit(In_sync, &rdev->flags))
2746                                continue;
2747
2748                        atomic_inc(&rdev->nr_pending);
2749                        rcu_read_unlock();
2750                        if (r10_sync_page_io(rdev,
2751                                             r10_bio->devs[sl].addr +
2752                                             sect,
2753                                             s, conf->tmppage, WRITE)
2754                            == 0) {
2755                                /* Well, this device is dead */
2756                                pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2757                                          mdname(mddev), s,
2758                                          (unsigned long long)(
2759                                                  sect +
2760                                                  choose_data_offset(r10_bio,
2761                                                                     rdev)),
2762                                          bdevname(rdev->bdev, b));
2763                                pr_notice("md/raid10:%s: %s: failing drive\n",
2764                                          mdname(mddev),
2765                                          bdevname(rdev->bdev, b));
2766                        }
2767                        rdev_dec_pending(rdev, mddev);
2768                        rcu_read_lock();
2769                }
2770                sl = start;
2771                while (sl != r10_bio->read_slot) {
2772                        char b[BDEVNAME_SIZE];
2773
2774                        if (sl==0)
2775                                sl = conf->copies;
2776                        sl--;
2777                        d = r10_bio->devs[sl].devnum;
2778                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2779                        if (!rdev ||
2780                            test_bit(Faulty, &rdev->flags) ||
2781                            !test_bit(In_sync, &rdev->flags))
2782                                continue;
2783
2784                        atomic_inc(&rdev->nr_pending);
2785                        rcu_read_unlock();
2786                        switch (r10_sync_page_io(rdev,
2787                                             r10_bio->devs[sl].addr +
2788                                             sect,
2789                                             s, conf->tmppage,
2790                                                 READ)) {
2791                        case 0:
2792                                /* Well, this device is dead */
2793                                pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2794                                       mdname(mddev), s,
2795                                       (unsigned long long)(
2796                                               sect +
2797                                               choose_data_offset(r10_bio, rdev)),
2798                                       bdevname(rdev->bdev, b));
2799                                pr_notice("md/raid10:%s: %s: failing drive\n",
2800                                       mdname(mddev),
2801                                       bdevname(rdev->bdev, b));
2802                                break;
2803                        case 1:
2804                                pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2805                                       mdname(mddev), s,
2806                                       (unsigned long long)(
2807                                               sect +
2808                                               choose_data_offset(r10_bio, rdev)),
2809                                       bdevname(rdev->bdev, b));
2810                                atomic_add(s, &rdev->corrected_errors);
2811                        }
2812
2813                        rdev_dec_pending(rdev, mddev);
2814                        rcu_read_lock();
2815                }
2816                rcu_read_unlock();
2817
2818                sectors -= s;
2819                sect += s;
2820        }
2821}
2822
2823static int narrow_write_error(struct r10bio *r10_bio, int i)
2824{
2825        struct bio *bio = r10_bio->master_bio;
2826        struct mddev *mddev = r10_bio->mddev;
2827        struct r10conf *conf = mddev->private;
2828        struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2829        /* bio has the data to be written to slot 'i' where
2830         * we just recently had a write error.
2831         * We repeatedly clone the bio and trim down to one block,
2832         * then try the write.  Where the write fails we record
2833         * a bad block.
2834         * It is conceivable that the bio doesn't exactly align with
2835         * blocks.  We must handle this.
2836         *
2837         * We currently own a reference to the rdev.
2838         */
2839
2840        int block_sectors;
2841        sector_t sector;
2842        int sectors;
2843        int sect_to_write = r10_bio->sectors;
2844        int ok = 1;
2845
2846        if (rdev->badblocks.shift < 0)
2847                return 0;
2848
2849        block_sectors = roundup(1 << rdev->badblocks.shift,
2850                                bdev_logical_block_size(rdev->bdev) >> 9);
2851        sector = r10_bio->sector;
2852        sectors = ((r10_bio->sector + block_sectors)
2853                   & ~(sector_t)(block_sectors - 1))
2854                - sector;
2855
2856        while (sect_to_write) {
2857                struct bio *wbio;
2858                sector_t wsector;
2859                if (sectors > sect_to_write)
2860                        sectors = sect_to_write;
2861                /* Write at 'sector' for 'sectors' */
2862                wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2863                bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2864                wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2865                wbio->bi_iter.bi_sector = wsector +
2866                                   choose_data_offset(r10_bio, rdev);
2867                bio_set_dev(wbio, rdev->bdev);
2868                bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2869
2870                if (submit_bio_wait(wbio) < 0)
2871                        /* Failure! */
2872                        ok = rdev_set_badblocks(rdev, wsector,
2873                                                sectors, 0)
2874                                && ok;
2875
2876                bio_put(wbio);
2877                sect_to_write -= sectors;
2878                sector += sectors;
2879                sectors = block_sectors;
2880        }
2881        return ok;
2882}
2883
2884static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2885{
2886        int slot = r10_bio->read_slot;
2887        struct bio *bio;
2888        struct r10conf *conf = mddev->private;
2889        struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2890
2891        /* we got a read error. Maybe the drive is bad.  Maybe just
2892         * the block and we can fix it.
2893         * We freeze all other IO, and try reading the block from
2894         * other devices.  When we find one, we re-write
2895         * and check it that fixes the read error.
2896         * This is all done synchronously while the array is
2897         * frozen.
2898         */
2899        bio = r10_bio->devs[slot].bio;
2900        bio_put(bio);
2901        r10_bio->devs[slot].bio = NULL;
2902
2903        if (mddev->ro)
2904                r10_bio->devs[slot].bio = IO_BLOCKED;
2905        else if (!test_bit(FailFast, &rdev->flags)) {
2906                freeze_array(conf, 1);
2907                fix_read_error(conf, mddev, r10_bio);
2908                unfreeze_array(conf);
2909        } else
2910                md_error(mddev, rdev);
2911
2912        rdev_dec_pending(rdev, mddev);
2913        allow_barrier(conf);
2914        r10_bio->state = 0;
2915        raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2916}
2917
2918static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2919{
2920        /* Some sort of write request has finished and it
2921         * succeeded in writing where we thought there was a
2922         * bad block.  So forget the bad block.
2923         * Or possibly if failed and we need to record
2924         * a bad block.
2925         */
2926        int m;
2927        struct md_rdev *rdev;
2928
2929        if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2930            test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2931                for (m = 0; m < conf->copies; m++) {
2932                        int dev = r10_bio->devs[m].devnum;
2933                        rdev = conf->mirrors[dev].rdev;
2934                        if (r10_bio->devs[m].bio == NULL ||
2935                                r10_bio->devs[m].bio->bi_end_io == NULL)
2936                                continue;
2937                        if (!r10_bio->devs[m].bio->bi_status) {
2938                                rdev_clear_badblocks(
2939                                        rdev,
2940                                        r10_bio->devs[m].addr,
2941                                        r10_bio->sectors, 0);
2942                        } else {
2943                                if (!rdev_set_badblocks(
2944                                            rdev,
2945                                            r10_bio->devs[m].addr,
2946                                            r10_bio->sectors, 0))
2947                                        md_error(conf->mddev, rdev);
2948                        }
2949                        rdev = conf->mirrors[dev].replacement;
2950                        if (r10_bio->devs[m].repl_bio == NULL ||
2951                                r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2952                                continue;
2953
2954                        if (!r10_bio->devs[m].repl_bio->bi_status) {
2955                                rdev_clear_badblocks(
2956                                        rdev,
2957                                        r10_bio->devs[m].addr,
2958                                        r10_bio->sectors, 0);
2959                        } else {
2960                                if (!rdev_set_badblocks(
2961                                            rdev,
2962                                            r10_bio->devs[m].addr,
2963                                            r10_bio->sectors, 0))
2964                                        md_error(conf->mddev, rdev);
2965                        }
2966                }
2967                put_buf(r10_bio);
2968        } else {
2969                bool fail = false;
2970                for (m = 0; m < conf->copies; m++) {
2971                        int dev = r10_bio->devs[m].devnum;
2972                        struct bio *bio = r10_bio->devs[m].bio;
2973                        rdev = conf->mirrors[dev].rdev;
2974                        if (bio == IO_MADE_GOOD) {
2975                                rdev_clear_badblocks(
2976                                        rdev,
2977                                        r10_bio->devs[m].addr,
2978                                        r10_bio->sectors, 0);
2979                                rdev_dec_pending(rdev, conf->mddev);
2980                        } else if (bio != NULL && bio->bi_status) {
2981                                fail = true;
2982                                if (!narrow_write_error(r10_bio, m)) {
2983                                        md_error(conf->mddev, rdev);
2984                                        set_bit(R10BIO_Degraded,
2985                                                &r10_bio->state);
2986                                }
2987                                rdev_dec_pending(rdev, conf->mddev);
2988                        }
2989                        bio = r10_bio->devs[m].repl_bio;
2990                        rdev = conf->mirrors[dev].replacement;
2991                        if (rdev && bio == IO_MADE_GOOD) {
2992                                rdev_clear_badblocks(
2993                                        rdev,
2994                                        r10_bio->devs[m].addr,
2995                                        r10_bio->sectors, 0);
2996                                rdev_dec_pending(rdev, conf->mddev);
2997                        }
2998                }
2999                if (fail) {
3000                        spin_lock_irq(&conf->device_lock);
3001                        list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
3002                        conf->nr_queued++;
3003                        spin_unlock_irq(&conf->device_lock);
3004                        /*
3005                         * In case freeze_array() is waiting for condition
3006                         * nr_pending == nr_queued + extra to be true.
3007                         */
3008                        wake_up(&conf->wait_barrier);
3009                        md_wakeup_thread(conf->mddev->thread);
3010                } else {
3011                        if (test_bit(R10BIO_WriteError,
3012                                     &r10_bio->state))
3013                                close_write(r10_bio);
3014                        raid_end_bio_io(r10_bio);
3015                }
3016        }
3017}
3018
3019static void raid10d(struct md_thread *thread)
3020{
3021        struct mddev *mddev = thread->mddev;
3022        struct r10bio *r10_bio;
3023        unsigned long flags;
3024        struct r10conf *conf = mddev->private;
3025        struct list_head *head = &conf->retry_list;
3026        struct blk_plug plug;
3027
3028        md_check_recovery(mddev);
3029
3030        if (!list_empty_careful(&conf->bio_end_io_list) &&
3031            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3032                LIST_HEAD(tmp);
3033                spin_lock_irqsave(&conf->device_lock, flags);
3034                if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3035                        while (!list_empty(&conf->bio_end_io_list)) {
3036                                list_move(conf->bio_end_io_list.prev, &tmp);
3037                                conf->nr_queued--;
3038                        }
3039                }
3040                spin_unlock_irqrestore(&conf->device_lock, flags);
3041                while (!list_empty(&tmp)) {
3042                        r10_bio = list_first_entry(&tmp, struct r10bio,
3043                                                   retry_list);
3044                        list_del(&r10_bio->retry_list);
3045                        if (mddev->degraded)
3046                                set_bit(R10BIO_Degraded, &r10_bio->state);
3047
3048                        if (test_bit(R10BIO_WriteError,
3049                                     &r10_bio->state))
3050                                close_write(r10_bio);
3051                        raid_end_bio_io(r10_bio);
3052                }
3053        }
3054
3055        blk_start_plug(&plug);
3056        for (;;) {
3057
3058                flush_pending_writes(conf);
3059
3060                spin_lock_irqsave(&conf->device_lock, flags);
3061                if (list_empty(head)) {
3062                        spin_unlock_irqrestore(&conf->device_lock, flags);
3063                        break;
3064                }
3065                r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3066                list_del(head->prev);
3067                conf->nr_queued--;
3068                spin_unlock_irqrestore(&conf->device_lock, flags);
3069
3070                mddev = r10_bio->mddev;
3071                conf = mddev->private;
3072                if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3073                    test_bit(R10BIO_WriteError, &r10_bio->state))
3074                        handle_write_completed(conf, r10_bio);
3075                else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3076                        reshape_request_write(mddev, r10_bio);
3077                else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3078                        sync_request_write(mddev, r10_bio);
3079                else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3080                        recovery_request_write(mddev, r10_bio);
3081                else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3082                        handle_read_error(mddev, r10_bio);
3083                else
3084                        WARN_ON_ONCE(1);
3085
3086                cond_resched();
3087                if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3088                        md_check_recovery(mddev);
3089        }
3090        blk_finish_plug(&plug);
3091}
3092
3093static int init_resync(struct r10conf *conf)
3094{
3095        int ret, buffs, i;
3096
3097        buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3098        BUG_ON(mempool_initialized(&conf->r10buf_pool));
3099        conf->have_replacement = 0;
3100        for (i = 0; i < conf->geo.raid_disks; i++)
3101                if (conf->mirrors[i].replacement)
3102                        conf->have_replacement = 1;
3103        ret = mempool_init(&conf->r10buf_pool, buffs,
3104                           r10buf_pool_alloc, r10buf_pool_free, conf);
3105        if (ret)
3106                return ret;
3107        conf->next_resync = 0;
3108        return 0;
3109}
3110
3111static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3112{
3113        struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3114        struct rsync_pages *rp;
3115        struct bio *bio;
3116        int nalloc;
3117        int i;
3118
3119        if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3120            test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3121                nalloc = conf->copies; /* resync */
3122        else
3123                nalloc = 2; /* recovery */
3124
3125        for (i = 0; i < nalloc; i++) {
3126                bio = r10bio->devs[i].bio;
3127                rp = bio->bi_private;
3128                bio_reset(bio);
3129                bio->bi_private = rp;
3130                bio = r10bio->devs[i].repl_bio;
3131                if (bio) {
3132                        rp = bio->bi_private;
3133                        bio_reset(bio);
3134                        bio->bi_private = rp;
3135                }
3136        }
3137        return r10bio;
3138}
3139
3140/*
3141 * Set cluster_sync_high since we need other nodes to add the
3142 * range [cluster_sync_low, cluster_sync_high] to suspend list.
3143 */
3144static void raid10_set_cluster_sync_high(struct r10conf *conf)
3145{
3146        sector_t window_size;
3147        int extra_chunk, chunks;
3148
3149        /*
3150         * First, here we define "stripe" as a unit which across
3151         * all member devices one time, so we get chunks by use
3152         * raid_disks / near_copies. Otherwise, if near_copies is
3153         * close to raid_disks, then resync window could increases
3154         * linearly with the increase of raid_disks, which means
3155         * we will suspend a really large IO window while it is not
3156         * necessary. If raid_disks is not divisible by near_copies,
3157         * an extra chunk is needed to ensure the whole "stripe" is
3158         * covered.
3159         */
3160
3161        chunks = conf->geo.raid_disks / conf->geo.near_copies;
3162        if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3163                extra_chunk = 0;
3164        else
3165                extra_chunk = 1;
3166        window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3167
3168        /*
3169         * At least use a 32M window to align with raid1's resync window
3170         */
3171        window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3172                        CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3173
3174        conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3175}
3176
3177/*
3178 * perform a "sync" on one "block"
3179 *
3180 * We need to make sure that no normal I/O request - particularly write
3181 * requests - conflict with active sync requests.
3182 *
3183 * This is achieved by tracking pending requests and a 'barrier' concept
3184 * that can be installed to exclude normal IO requests.
3185 *
3186 * Resync and recovery are handled very differently.
3187 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3188 *
3189 * For resync, we iterate over virtual addresses, read all copies,
3190 * and update if there are differences.  If only one copy is live,
3191 * skip it.
3192 * For recovery, we iterate over physical addresses, read a good
3193 * value for each non-in_sync drive, and over-write.
3194 *
3195 * So, for recovery we may have several outstanding complex requests for a
3196 * given address, one for each out-of-sync device.  We model this by allocating
3197 * a number of r10_bio structures, one for each out-of-sync device.
3198 * As we setup these structures, we collect all bio's together into a list
3199 * which we then process collectively to add pages, and then process again
3200 * to pass to submit_bio_noacct.
3201 *
3202 * The r10_bio structures are linked using a borrowed master_bio pointer.
3203 * This link is counted in ->remaining.  When the r10_bio that points to NULL
3204 * has its remaining count decremented to 0, the whole complex operation
3205 * is complete.
3206 *
3207 */
3208
3209static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3210                             int *skipped)
3211{
3212        struct r10conf *conf = mddev->private;
3213        struct r10bio *r10_bio;
3214        struct bio *biolist = NULL, *bio;
3215        sector_t max_sector, nr_sectors;
3216        int i;
3217        int max_sync;
3218        sector_t sync_blocks;
3219        sector_t sectors_skipped = 0;
3220        int chunks_skipped = 0;
3221        sector_t chunk_mask = conf->geo.chunk_mask;
3222        int page_idx = 0;
3223
3224        if (!mempool_initialized(&conf->r10buf_pool))
3225                if (init_resync(conf))
3226                        return 0;
3227
3228        /*
3229         * Allow skipping a full rebuild for incremental assembly
3230         * of a clean array, like RAID1 does.
3231         */
3232        if (mddev->bitmap == NULL &&
3233            mddev->recovery_cp == MaxSector &&
3234            mddev->reshape_position == MaxSector &&
3235            !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3236            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3237            !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3238            conf->fullsync == 0) {
3239                *skipped = 1;
3240                return mddev->dev_sectors - sector_nr;
3241        }
3242
3243 skipped:
3244        max_sector = mddev->dev_sectors;
3245        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3246            test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3247                max_sector = mddev->resync_max_sectors;
3248        if (sector_nr >= max_sector) {
3249                conf->cluster_sync_low = 0;
3250                conf->cluster_sync_high = 0;
3251
3252                /* If we aborted, we need to abort the
3253                 * sync on the 'current' bitmap chucks (there can
3254                 * be several when recovering multiple devices).
3255                 * as we may have started syncing it but not finished.
3256                 * We can find the current address in
3257                 * mddev->curr_resync, but for recovery,
3258                 * we need to convert that to several
3259                 * virtual addresses.
3260                 */
3261                if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3262                        end_reshape(conf);
3263                        close_sync(conf);
3264                        return 0;
3265                }
3266
3267                if (mddev->curr_resync < max_sector) { /* aborted */
3268                        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3269                                md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3270                                                   &sync_blocks, 1);
3271                        else for (i = 0; i < conf->geo.raid_disks; i++) {
3272                                sector_t sect =
3273                                        raid10_find_virt(conf, mddev->curr_resync, i);
3274                                md_bitmap_end_sync(mddev->bitmap, sect,
3275                                                   &sync_blocks, 1);
3276                        }
3277                } else {
3278                        /* completed sync */
3279                        if ((!mddev->bitmap || conf->fullsync)
3280                            && conf->have_replacement
3281                            && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3282                                /* Completed a full sync so the replacements
3283                                 * are now fully recovered.
3284                                 */
3285                                rcu_read_lock();
3286                                for (i = 0; i < conf->geo.raid_disks; i++) {
3287                                        struct md_rdev *rdev =
3288                                                rcu_dereference(conf->mirrors[i].replacement);
3289                                        if (rdev)
3290                                                rdev->recovery_offset = MaxSector;
3291                                }
3292                                rcu_read_unlock();
3293                        }
3294                        conf->fullsync = 0;
3295                }
3296                md_bitmap_close_sync(mddev->bitmap);
3297                close_sync(conf);
3298                *skipped = 1;
3299                return sectors_skipped;
3300        }
3301
3302        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3303                return reshape_request(mddev, sector_nr, skipped);
3304
3305        if (chunks_skipped >= conf->geo.raid_disks) {
3306                /* if there has been nothing to do on any drive,
3307                 * then there is nothing to do at all..
3308                 */
3309                *skipped = 1;
3310                return (max_sector - sector_nr) + sectors_skipped;
3311        }
3312
3313        if (max_sector > mddev->resync_max)
3314                max_sector = mddev->resync_max; /* Don't do IO beyond here */
3315
3316        /* make sure whole request will fit in a chunk - if chunks
3317         * are meaningful
3318         */
3319        if (conf->geo.near_copies < conf->geo.raid_disks &&
3320            max_sector > (sector_nr | chunk_mask))
3321                max_sector = (sector_nr | chunk_mask) + 1;
3322
3323        /*
3324         * If there is non-resync activity waiting for a turn, then let it
3325         * though before starting on this new sync request.
3326         */
3327        if (conf->nr_waiting)
3328                schedule_timeout_uninterruptible(1);
3329
3330        /* Again, very different code for resync and recovery.
3331         * Both must result in an r10bio with a list of bios that
3332         * have bi_end_io, bi_sector, bi_bdev set,
3333         * and bi_private set to the r10bio.
3334         * For recovery, we may actually create several r10bios
3335         * with 2 bios in each, that correspond to the bios in the main one.
3336         * In this case, the subordinate r10bios link back through a
3337         * borrowed master_bio pointer, and the counter in the master
3338         * includes a ref from each subordinate.
3339         */
3340        /* First, we decide what to do and set ->bi_end_io
3341         * To end_sync_read if we want to read, and
3342         * end_sync_write if we will want to write.
3343         */
3344
3345        max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3346        if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3347                /* recovery... the complicated one */
3348                int j;
3349                r10_bio = NULL;
3350
3351                for (i = 0 ; i < conf->geo.raid_disks; i++) {
3352                        int still_degraded;
3353                        struct r10bio *rb2;
3354                        sector_t sect;
3355                        int must_sync;
3356                        int any_working;
3357                        int need_recover = 0;
3358                        int need_replace = 0;
3359                        struct raid10_info *mirror = &conf->mirrors[i];
3360                        struct md_rdev *mrdev, *mreplace;
3361
3362                        rcu_read_lock();
3363                        mrdev = rcu_dereference(mirror->rdev);
3364                        mreplace = rcu_dereference(mirror->replacement);
3365
3366                        if (mrdev != NULL &&
3367                            !test_bit(Faulty, &mrdev->flags) &&
3368                            !test_bit(In_sync, &mrdev->flags))
3369                                need_recover = 1;
3370                        if (mreplace != NULL &&
3371                            !test_bit(Faulty, &mreplace->flags))
3372                                need_replace = 1;
3373
3374                        if (!need_recover && !need_replace) {
3375                                rcu_read_unlock();
3376                                continue;
3377                        }
3378
3379                        still_degraded = 0;
3380                        /* want to reconstruct this device */
3381                        rb2 = r10_bio;
3382                        sect = raid10_find_virt(conf, sector_nr, i);
3383                        if (sect >= mddev->resync_max_sectors) {
3384                                /* last stripe is not complete - don't
3385                                 * try to recover this sector.
3386                                 */
3387                                rcu_read_unlock();
3388                                continue;
3389                        }
3390                        if (mreplace && test_bit(Faulty, &mreplace->flags))
3391                                mreplace = NULL;
3392                        /* Unless we are doing a full sync, or a replacement
3393                         * we only need to recover the block if it is set in
3394                         * the bitmap
3395                         */
3396                        must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3397                                                         &sync_blocks, 1);
3398                        if (sync_blocks < max_sync)
3399                                max_sync = sync_blocks;
3400                        if (!must_sync &&
3401                            mreplace == NULL &&
3402                            !conf->fullsync) {
3403                                /* yep, skip the sync_blocks here, but don't assume
3404                                 * that there will never be anything to do here
3405                                 */
3406                                chunks_skipped = -1;
3407                                rcu_read_unlock();
3408                                continue;
3409                        }
3410                        atomic_inc(&mrdev->nr_pending);
3411                        if (mreplace)
3412                                atomic_inc(&mreplace->nr_pending);
3413                        rcu_read_unlock();
3414
3415                        r10_bio = raid10_alloc_init_r10buf(conf);
3416                        r10_bio->state = 0;
3417                        raise_barrier(conf, rb2 != NULL);
3418                        atomic_set(&r10_bio->remaining, 0);
3419
3420                        r10_bio->master_bio = (struct bio*)rb2;
3421                        if (rb2)
3422                                atomic_inc(&rb2->remaining);
3423                        r10_bio->mddev = mddev;
3424                        set_bit(R10BIO_IsRecover, &r10_bio->state);
3425                        r10_bio->sector = sect;
3426
3427                        raid10_find_phys(conf, r10_bio);
3428
3429                        /* Need to check if the array will still be
3430                         * degraded
3431                         */
3432                        rcu_read_lock();
3433                        for (j = 0; j < conf->geo.raid_disks; j++) {
3434                                struct md_rdev *rdev = rcu_dereference(
3435                                        conf->mirrors[j].rdev);
3436                                if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3437                                        still_degraded = 1;
3438                                        break;
3439                                }
3440                        }
3441
3442                        must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3443                                                         &sync_blocks, still_degraded);
3444
3445                        any_working = 0;
3446                        for (j=0; j<conf->copies;j++) {
3447                                int k;
3448                                int d = r10_bio->devs[j].devnum;
3449                                sector_t from_addr, to_addr;
3450                                struct md_rdev *rdev =
3451                                        rcu_dereference(conf->mirrors[d].rdev);
3452                                sector_t sector, first_bad;
3453                                int bad_sectors;
3454                                if (!rdev ||
3455                                    !test_bit(In_sync, &rdev->flags))
3456                                        continue;
3457                                /* This is where we read from */
3458                                any_working = 1;
3459                                sector = r10_bio->devs[j].addr;
3460
3461                                if (is_badblock(rdev, sector, max_sync,
3462                                                &first_bad, &bad_sectors)) {
3463                                        if (first_bad > sector)
3464                                                max_sync = first_bad - sector;
3465                                        else {
3466                                                bad_sectors -= (sector
3467                                                                - first_bad);
3468                                                if (max_sync > bad_sectors)
3469                                                        max_sync = bad_sectors;
3470                                                continue;
3471                                        }
3472                                }
3473                                bio = r10_bio->devs[0].bio;
3474                                bio->bi_next = biolist;
3475                                biolist = bio;
3476                                bio->bi_end_io = end_sync_read;
3477                                bio_set_op_attrs(bio, REQ_OP_READ, 0);
3478                                if (test_bit(FailFast, &rdev->flags))
3479                                        bio->bi_opf |= MD_FAILFAST;
3480                                from_addr = r10_bio->devs[j].addr;
3481                                bio->bi_iter.bi_sector = from_addr +
3482                                        rdev->data_offset;
3483                                bio_set_dev(bio, rdev->bdev);
3484                                atomic_inc(&rdev->nr_pending);
3485                                /* and we write to 'i' (if not in_sync) */
3486
3487                                for (k=0; k<conf->copies; k++)
3488                                        if (r10_bio->devs[k].devnum == i)
3489                                                break;
3490                                BUG_ON(k == conf->copies);
3491                                to_addr = r10_bio->devs[k].addr;
3492                                r10_bio->devs[0].devnum = d;
3493                                r10_bio->devs[0].addr = from_addr;
3494                                r10_bio->devs[1].devnum = i;
3495                                r10_bio->devs[1].addr = to_addr;
3496
3497                                if (need_recover) {
3498                                        bio = r10_bio->devs[1].bio;
3499                                        bio->bi_next = biolist;
3500                                        biolist = bio;
3501                                        bio->bi_end_io = end_sync_write;
3502                                        bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3503                                        bio->bi_iter.bi_sector = to_addr
3504                                                + mrdev->data_offset;
3505                                        bio_set_dev(bio, mrdev->bdev);
3506                                        atomic_inc(&r10_bio->remaining);
3507                                } else
3508                                        r10_bio->devs[1].bio->bi_end_io = NULL;
3509
3510                                /* and maybe write to replacement */
3511                                bio = r10_bio->devs[1].repl_bio;
3512                                if (bio)
3513                                        bio->bi_end_io = NULL;
3514                                /* Note: if need_replace, then bio
3515                                 * cannot be NULL as r10buf_pool_alloc will
3516                                 * have allocated it.
3517                                 */
3518                                if (!need_replace)
3519                                        break;
3520                                bio->bi_next = biolist;
3521                                biolist = bio;
3522                                bio->bi_end_io = end_sync_write;
3523                                bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3524                                bio->bi_iter.bi_sector = to_addr +
3525                                        mreplace->data_offset;
3526                                bio_set_dev(bio, mreplace->bdev);
3527                                atomic_inc(&r10_bio->remaining);
3528                                break;
3529                        }
3530                        rcu_read_unlock();
3531                        if (j == conf->copies) {
3532                                /* Cannot recover, so abort the recovery or
3533                                 * record a bad block */
3534                                if (any_working) {
3535                                        /* problem is that there are bad blocks
3536                                         * on other device(s)
3537                                         */
3538                                        int k;
3539                                        for (k = 0; k < conf->copies; k++)
3540                                                if (r10_bio->devs[k].devnum == i)
3541                                                        break;
3542                                        if (!test_bit(In_sync,
3543                                                      &mrdev->flags)
3544                                            && !rdev_set_badblocks(
3545                                                    mrdev,
3546                                                    r10_bio->devs[k].addr,
3547                                                    max_sync, 0))
3548                                                any_working = 0;
3549                                        if (mreplace &&
3550                                            !rdev_set_badblocks(
3551                                                    mreplace,
3552                                                    r10_bio->devs[k].addr,
3553                                                    max_sync, 0))
3554                                                any_working = 0;
3555                                }
3556                                if (!any_working)  {
3557                                        if (!test_and_set_bit(MD_RECOVERY_INTR,
3558                                                              &mddev->recovery))
3559                                                pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3560                                                       mdname(mddev));
3561                                        mirror->recovery_disabled
3562                                                = mddev->recovery_disabled;
3563                                }
3564                                put_buf(r10_bio);
3565                                if (rb2)
3566                                        atomic_dec(&rb2->remaining);
3567                                r10_bio = rb2;
3568                                rdev_dec_pending(mrdev, mddev);
3569                                if (mreplace)
3570                                        rdev_dec_pending(mreplace, mddev);
3571                                break;
3572                        }
3573                        rdev_dec_pending(mrdev, mddev);
3574                        if (mreplace)
3575                                rdev_dec_pending(mreplace, mddev);
3576                        if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3577                                /* Only want this if there is elsewhere to
3578                                 * read from. 'j' is currently the first
3579                                 * readable copy.
3580                                 */
3581                                int targets = 1;
3582                                for (; j < conf->copies; j++) {
3583                                        int d = r10_bio->devs[j].devnum;
3584                                        if (conf->mirrors[d].rdev &&
3585                                            test_bit(In_sync,
3586                                                      &conf->mirrors[d].rdev->flags))
3587                                                targets++;
3588                                }
3589                                if (targets == 1)
3590                                        r10_bio->devs[0].bio->bi_opf
3591                                                &= ~MD_FAILFAST;
3592                        }
3593                }
3594                if (biolist == NULL) {
3595                        while (r10_bio) {
3596                                struct r10bio *rb2 = r10_bio;
3597                                r10_bio = (struct r10bio*) rb2->master_bio;
3598                                rb2->master_bio = NULL;
3599                                put_buf(rb2);
3600                        }
3601                        goto giveup;
3602                }
3603        } else {
3604                /* resync. Schedule a read for every block at this virt offset */
3605                int count = 0;
3606
3607                /*
3608                 * Since curr_resync_completed could probably not update in
3609                 * time, and we will set cluster_sync_low based on it.
3610                 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3611                 * safety reason, which ensures curr_resync_completed is
3612                 * updated in bitmap_cond_end_sync.
3613                 */
3614                md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3615                                        mddev_is_clustered(mddev) &&
3616                                        (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3617
3618                if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3619                                          &sync_blocks, mddev->degraded) &&
3620                    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3621                                                 &mddev->recovery)) {
3622                        /* We can skip this block */
3623                        *skipped = 1;
3624                        return sync_blocks + sectors_skipped;
3625                }
3626                if (sync_blocks < max_sync)
3627                        max_sync = sync_blocks;
3628                r10_bio = raid10_alloc_init_r10buf(conf);
3629                r10_bio->state = 0;
3630
3631                r10_bio->mddev = mddev;
3632                atomic_set(&r10_bio->remaining, 0);
3633                raise_barrier(conf, 0);
3634                conf->next_resync = sector_nr;
3635
3636                r10_bio->master_bio = NULL;
3637                r10_bio->sector = sector_nr;
3638                set_bit(R10BIO_IsSync, &r10_bio->state);
3639                raid10_find_phys(conf, r10_bio);
3640                r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3641
3642                for (i = 0; i < conf->copies; i++) {
3643                        int d = r10_bio->devs[i].devnum;
3644                        sector_t first_bad, sector;
3645                        int bad_sectors;
3646                        struct md_rdev *rdev;
3647
3648                        if (r10_bio->devs[i].repl_bio)
3649                                r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3650
3651                        bio = r10_bio->devs[i].bio;
3652                        bio->bi_status = BLK_STS_IOERR;
3653                        rcu_read_lock();
3654                        rdev = rcu_dereference(conf->mirrors[d].rdev);
3655                        if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3656                                rcu_read_unlock();
3657                                continue;
3658                        }
3659                        sector = r10_bio->devs[i].addr;
3660                        if (is_badblock(rdev, sector, max_sync,
3661                                        &first_bad, &bad_sectors)) {
3662                                if (first_bad > sector)
3663                                        max_sync = first_bad - sector;
3664                                else {
3665                                        bad_sectors -= (sector - first_bad);
3666                                        if (max_sync > bad_sectors)
3667                                                max_sync = bad_sectors;
3668                                        rcu_read_unlock();
3669                                        continue;
3670                                }
3671                        }
3672                        atomic_inc(&rdev->nr_pending);
3673                        atomic_inc(&r10_bio->remaining);
3674                        bio->bi_next = biolist;
3675                        biolist = bio;
3676                        bio->bi_end_io = end_sync_read;
3677                        bio_set_op_attrs(bio, REQ_OP_READ, 0);
3678                        if (test_bit(FailFast, &rdev->flags))
3679                                bio->bi_opf |= MD_FAILFAST;
3680                        bio->bi_iter.bi_sector = sector + rdev->data_offset;
3681                        bio_set_dev(bio, rdev->bdev);
3682                        count++;
3683
3684                        rdev = rcu_dereference(conf->mirrors[d].replacement);
3685                        if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3686                                rcu_read_unlock();
3687                                continue;
3688                        }
3689                        atomic_inc(&rdev->nr_pending);
3690
3691                        /* Need to set up for writing to the replacement */
3692                        bio = r10_bio->devs[i].repl_bio;
3693                        bio->bi_status = BLK_STS_IOERR;
3694
3695                        sector = r10_bio->devs[i].addr;
3696                        bio->bi_next = biolist;
3697                        biolist = bio;
3698                        bio->bi_end_io = end_sync_write;
3699                        bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3700                        if (test_bit(FailFast, &rdev->flags))
3701                                bio->bi_opf |= MD_FAILFAST;
3702                        bio->bi_iter.bi_sector = sector + rdev->data_offset;
3703                        bio_set_dev(bio, rdev->bdev);
3704                        count++;
3705                        rcu_read_unlock();
3706                }
3707
3708                if (count < 2) {
3709                        for (i=0; i<conf->copies; i++) {
3710                                int d = r10_bio->devs[i].devnum;
3711                                if (r10_bio->devs[i].bio->bi_end_io)
3712                                        rdev_dec_pending(conf->mirrors[d].rdev,
3713                                                         mddev);
3714                                if (r10_bio->devs[i].repl_bio &&
3715                                    r10_bio->devs[i].repl_bio->bi_end_io)
3716                                        rdev_dec_pending(
3717                                                conf->mirrors[d].replacement,
3718                                                mddev);
3719                        }
3720                        put_buf(r10_bio);
3721                        biolist = NULL;
3722                        goto giveup;
3723                }
3724        }
3725
3726        nr_sectors = 0;
3727        if (sector_nr + max_sync < max_sector)
3728                max_sector = sector_nr + max_sync;
3729        do {
3730                struct page *page;
3731                int len = PAGE_SIZE;
3732                if (sector_nr + (len>>9) > max_sector)
3733                        len = (max_sector - sector_nr) << 9;
3734                if (len == 0)
3735                        break;
3736                for (bio= biolist ; bio ; bio=bio->bi_next) {
3737                        struct resync_pages *rp = get_resync_pages(bio);
3738                        page = resync_fetch_page(rp, page_idx);
3739                        /*
3740                         * won't fail because the vec table is big enough
3741                         * to hold all these pages
3742                         */
3743                        bio_add_page(bio, page, len, 0);
3744                }
3745                nr_sectors += len>>9;
3746                sector_nr += len>>9;
3747        } while (++page_idx < RESYNC_PAGES);
3748        r10_bio->sectors = nr_sectors;
3749
3750        if (mddev_is_clustered(mddev) &&
3751            test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3752                /* It is resync not recovery */
3753                if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3754                        conf->cluster_sync_low = mddev->curr_resync_completed;
3755                        raid10_set_cluster_sync_high(conf);
3756                        /* Send resync message */
3757                        md_cluster_ops->resync_info_update(mddev,
3758                                                conf->cluster_sync_low,
3759                                                conf->cluster_sync_high);
3760                }
3761        } else if (mddev_is_clustered(mddev)) {
3762                /* This is recovery not resync */
3763                sector_t sect_va1, sect_va2;
3764                bool broadcast_msg = false;
3765
3766                for (i = 0; i < conf->geo.raid_disks; i++) {
3767                        /*
3768                         * sector_nr is a device address for recovery, so we
3769                         * need translate it to array address before compare
3770                         * with cluster_sync_high.
3771                         */
3772                        sect_va1 = raid10_find_virt(conf, sector_nr, i);
3773
3774                        if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3775                                broadcast_msg = true;
3776                                /*
3777                                 * curr_resync_completed is similar as
3778                                 * sector_nr, so make the translation too.
3779                                 */
3780                                sect_va2 = raid10_find_virt(conf,
3781                                        mddev->curr_resync_completed, i);
3782
3783                                if (conf->cluster_sync_low == 0 ||
3784                                    conf->cluster_sync_low > sect_va2)
3785                                        conf->cluster_sync_low = sect_va2;
3786                        }
3787                }
3788                if (broadcast_msg) {
3789                        raid10_set_cluster_sync_high(conf);
3790                        md_cluster_ops->resync_info_update(mddev,
3791                                                conf->cluster_sync_low,
3792                                                conf->cluster_sync_high);
3793                }
3794        }
3795
3796        while (biolist) {
3797                bio = biolist;
3798                biolist = biolist->bi_next;
3799
3800                bio->bi_next = NULL;
3801                r10_bio = get_resync_r10bio(bio);
3802                r10_bio->sectors = nr_sectors;
3803
3804                if (bio->bi_end_io == end_sync_read) {
3805                        md_sync_acct_bio(bio, nr_sectors);
3806                        bio->bi_status = 0;
3807                        submit_bio_noacct(bio);
3808                }
3809        }
3810
3811        if (sectors_skipped)
3812                /* pretend they weren't skipped, it makes
3813                 * no important difference in this case
3814                 */
3815                md_done_sync(mddev, sectors_skipped, 1);
3816
3817        return sectors_skipped + nr_sectors;
3818 giveup:
3819        /* There is nowhere to write, so all non-sync
3820         * drives must be failed or in resync, all drives
3821         * have a bad block, so try the next chunk...
3822         */
3823        if (sector_nr + max_sync < max_sector)
3824                max_sector = sector_nr + max_sync;
3825
3826        sectors_skipped += (max_sector - sector_nr);
3827        chunks_skipped ++;
3828        sector_nr = max_sector;
3829        goto skipped;
3830}
3831
3832static sector_t
3833raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3834{
3835        sector_t size;
3836        struct r10conf *conf = mddev->private;
3837
3838        if (!raid_disks)
3839                raid_disks = min(conf->geo.raid_disks,
3840                                 conf->prev.raid_disks);
3841        if (!sectors)
3842                sectors = conf->dev_sectors;
3843
3844        size = sectors >> conf->geo.chunk_shift;
3845        sector_div(size, conf->geo.far_copies);
3846        size = size * raid_disks;
3847        sector_div(size, conf->geo.near_copies);
3848
3849        return size << conf->geo.chunk_shift;
3850}
3851
3852static void calc_sectors(struct r10conf *conf, sector_t size)
3853{
3854        /* Calculate the number of sectors-per-device that will
3855         * actually be used, and set conf->dev_sectors and
3856         * conf->stride
3857         */
3858
3859        size = size >> conf->geo.chunk_shift;
3860        sector_div(size, conf->geo.far_copies);
3861        size = size * conf->geo.raid_disks;
3862        sector_div(size, conf->geo.near_copies);
3863        /* 'size' is now the number of chunks in the array */
3864        /* calculate "used chunks per device" */
3865        size = size * conf->copies;
3866
3867        /* We need to round up when dividing by raid_disks to
3868         * get the stride size.
3869         */
3870        size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3871
3872        conf->dev_sectors = size << conf->geo.chunk_shift;
3873
3874        if (conf->geo.far_offset)
3875                conf->geo.stride = 1 << conf->geo.chunk_shift;
3876        else {
3877                sector_div(size, conf->geo.far_copies);
3878                conf->geo.stride = size << conf->geo.chunk_shift;
3879        }
3880}
3881
3882enum geo_type {geo_new, geo_old, geo_start};
3883static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3884{
3885        int nc, fc, fo;
3886        int layout, chunk, disks;
3887        switch (new) {
3888        case geo_old:
3889                layout = mddev->layout;
3890                chunk = mddev->chunk_sectors;
3891                disks = mddev->raid_disks - mddev->delta_disks;
3892                break;
3893        case geo_new:
3894                layout = mddev->new_layout;
3895                chunk = mddev->new_chunk_sectors;
3896                disks = mddev->raid_disks;
3897                break;
3898        default: /* avoid 'may be unused' warnings */
3899        case geo_start: /* new when starting reshape - raid_disks not
3900                         * updated yet. */
3901                layout = mddev->new_layout;
3902                chunk = mddev->new_chunk_sectors;
3903                disks = mddev->raid_disks + mddev->delta_disks;
3904                break;
3905        }
3906        if (layout >> 19)
3907                return -1;
3908        if (chunk < (PAGE_SIZE >> 9) ||
3909            !is_power_of_2(chunk))
3910                return -2;
3911        nc = layout & 255;
3912        fc = (layout >> 8) & 255;
3913        fo = layout & (1<<16);
3914        geo->raid_disks = disks;
3915        geo->near_copies = nc;
3916        geo->far_copies = fc;
3917        geo->far_offset = fo;
3918        switch (layout >> 17) {
3919        case 0: /* original layout.  simple but not always optimal */
3920                geo->far_set_size = disks;
3921                break;
3922        case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3923                 * actually using this, but leave code here just in case.*/
3924                geo->far_set_size = disks/fc;
3925                WARN(geo->far_set_size < fc,
3926                     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3927                break;
3928        case 2: /* "improved" layout fixed to match documentation */
3929                geo->far_set_size = fc * nc;
3930                break;
3931        default: /* Not a valid layout */
3932                return -1;
3933        }
3934        geo->chunk_mask = chunk - 1;
3935        geo->chunk_shift = ffz(~chunk);
3936        return nc*fc;
3937}
3938
3939static struct r10conf *setup_conf(struct mddev *mddev)
3940{
3941        struct r10conf *conf = NULL;
3942        int err = -EINVAL;
3943        struct geom geo;
3944        int copies;
3945
3946        copies = setup_geo(&geo, mddev, geo_new);
3947
3948        if (copies == -2) {
3949                pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3950                        mdname(mddev), PAGE_SIZE);
3951                goto out;
3952        }
3953
3954        if (copies < 2 || copies > mddev->raid_disks) {
3955                pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3956                        mdname(mddev), mddev->new_layout);
3957                goto out;
3958        }
3959
3960        err = -ENOMEM;
3961        conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3962        if (!conf)
3963                goto out;
3964
3965        /* FIXME calc properly */
3966        conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3967                                sizeof(struct raid10_info),
3968                                GFP_KERNEL);
3969        if (!conf->mirrors)
3970                goto out;
3971
3972        conf->tmppage = alloc_page(GFP_KERNEL);
3973        if (!conf->tmppage)
3974                goto out;
3975
3976        conf->geo = geo;
3977        conf->copies = copies;
3978        err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3979                           rbio_pool_free, conf);
3980        if (err)
3981                goto out;
3982
3983        err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3984        if (err)
3985                goto out;
3986
3987        calc_sectors(conf, mddev->dev_sectors);
3988        if (mddev->reshape_position == MaxSector) {
3989                conf->prev = conf->geo;
3990                conf->reshape_progress = MaxSector;
3991        } else {
3992                if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3993                        err = -EINVAL;
3994                        goto out;
3995                }
3996                conf->reshape_progress = mddev->reshape_position;
3997                if (conf->prev.far_offset)
3998                        conf->prev.stride = 1 << conf->prev.chunk_shift;
3999                else
4000                        /* far_copies must be 1 */
4001                        conf->prev.stride = conf->dev_sectors;
4002        }
4003        conf->reshape_safe = conf->reshape_progress;
4004        spin_lock_init(&conf->device_lock);
4005        INIT_LIST_HEAD(&conf->retry_list);
4006        INIT_LIST_HEAD(&conf->bio_end_io_list);
4007
4008        spin_lock_init(&conf->resync_lock);
4009        init_waitqueue_head(&conf->wait_barrier);
4010        atomic_set(&conf->nr_pending, 0);
4011
4012        err = -ENOMEM;
4013        conf->thread = md_register_thread(raid10d, mddev, "raid10");
4014        if (!conf->thread)
4015                goto out;
4016
4017        conf->mddev = mddev;
4018        return conf;
4019
4020 out:
4021        if (conf) {
4022                mempool_exit(&conf->r10bio_pool);
4023                kfree(conf->mirrors);
4024                safe_put_page(conf->tmppage);
4025                bioset_exit(&conf->bio_split);
4026                kfree(conf);
4027        }
4028        return ERR_PTR(err);
4029}
4030
4031static void raid10_set_io_opt(struct r10conf *conf)
4032{
4033        int raid_disks = conf->geo.raid_disks;
4034
4035        if (!(conf->geo.raid_disks % conf->geo.near_copies))
4036                raid_disks /= conf->geo.near_copies;
4037        blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
4038                         raid_disks);
4039}
4040
4041static int raid10_run(struct mddev *mddev)
4042{
4043        struct r10conf *conf;
4044        int i, disk_idx;
4045        struct raid10_info *disk;
4046        struct md_rdev *rdev;
4047        sector_t size;
4048        sector_t min_offset_diff = 0;
4049        int first = 1;
4050        bool discard_supported = false;
4051
4052        if (mddev_init_writes_pending(mddev) < 0)
4053                return -ENOMEM;
4054
4055        if (mddev->private == NULL) {
4056                conf = setup_conf(mddev);
4057                if (IS_ERR(conf))
4058                        return PTR_ERR(conf);
4059                mddev->private = conf;
4060        }
4061        conf = mddev->private;
4062        if (!conf)
4063                goto out;
4064
4065        if (mddev_is_clustered(conf->mddev)) {
4066                int fc, fo;
4067
4068                fc = (mddev->layout >> 8) & 255;
4069                fo = mddev->layout & (1<<16);
4070                if (fc > 1 || fo > 0) {
4071                        pr_err("only near layout is supported by clustered"
4072                                " raid10\n");
4073                        goto out_free_conf;
4074                }
4075        }
4076
4077        mddev->thread = conf->thread;
4078        conf->thread = NULL;
4079
4080        if (mddev->queue) {
4081                blk_queue_max_discard_sectors(mddev->queue,
4082                                              UINT_MAX);
4083                blk_queue_max_write_same_sectors(mddev->queue, 0);
4084                blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
4085                blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
4086                raid10_set_io_opt(conf);
4087        }
4088
4089        rdev_for_each(rdev, mddev) {
4090                long long diff;
4091
4092                disk_idx = rdev->raid_disk;
4093                if (disk_idx < 0)
4094                        continue;
4095                if (disk_idx >= conf->geo.raid_disks &&
4096                    disk_idx >= conf->prev.raid_disks)
4097                        continue;
4098                disk = conf->mirrors + disk_idx;
4099
4100                if (test_bit(Replacement, &rdev->flags)) {
4101                        if (disk->replacement)
4102                                goto out_free_conf;
4103                        disk->replacement = rdev;
4104                } else {
4105                        if (disk->rdev)
4106                                goto out_free_conf;
4107                        disk->rdev = rdev;
4108                }
4109                diff = (rdev->new_data_offset - rdev->data_offset);
4110                if (!mddev->reshape_backwards)
4111                        diff = -diff;
4112                if (diff < 0)
4113                        diff = 0;
4114                if (first || diff < min_offset_diff)
4115                        min_offset_diff = diff;
4116
4117                if (mddev->gendisk)
4118                        disk_stack_limits(mddev->gendisk, rdev->bdev,
4119                                          rdev->data_offset << 9);
4120
4121                disk->head_position = 0;
4122
4123                if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
4124                        discard_supported = true;
4125                first = 0;
4126        }
4127
4128        if (mddev->queue) {
4129                if (discard_supported)
4130                        blk_queue_flag_set(QUEUE_FLAG_DISCARD,
4131                                                mddev->queue);
4132                else
4133                        blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
4134                                                  mddev->queue);
4135        }
4136        /* need to check that every block has at least one working mirror */
4137        if (!enough(conf, -1)) {
4138                pr_err("md/raid10:%s: not enough operational mirrors.\n",
4139                       mdname(mddev));
4140                goto out_free_conf;
4141        }
4142
4143        if (conf->reshape_progress != MaxSector) {
4144                /* must ensure that shape change is supported */
4145                if (conf->geo.far_copies != 1 &&
4146                    conf->geo.far_offset == 0)
4147                        goto out_free_conf;
4148                if (conf->prev.far_copies != 1 &&
4149                    conf->prev.far_offset == 0)
4150                        goto out_free_conf;
4151        }
4152
4153        mddev->degraded = 0;
4154        for (i = 0;
4155             i < conf->geo.raid_disks
4156                     || i < conf->prev.raid_disks;
4157             i++) {
4158
4159                disk = conf->mirrors + i;
4160
4161                if (!disk->rdev && disk->replacement) {
4162                        /* The replacement is all we have - use it */
4163                        disk->rdev = disk->replacement;
4164                        disk->replacement = NULL;
4165                        clear_bit(Replacement, &disk->rdev->flags);
4166                }
4167
4168                if (!disk->rdev ||
4169                    !test_bit(In_sync, &disk->rdev->flags)) {
4170                        disk->head_position = 0;
4171                        mddev->degraded++;
4172                        if (disk->rdev &&
4173                            disk->rdev->saved_raid_disk < 0)
4174                                conf->fullsync = 1;
4175                }
4176
4177                if (disk->replacement &&
4178                    !test_bit(In_sync, &disk->replacement->flags) &&
4179                    disk->replacement->saved_raid_disk < 0) {
4180                        conf->fullsync = 1;
4181                }
4182
4183                disk->recovery_disabled = mddev->recovery_disabled - 1;
4184        }
4185
4186        if (mddev->recovery_cp != MaxSector)
4187                pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4188                          mdname(mddev));
4189        pr_info("md/raid10:%s: active with %d out of %d devices\n",
4190                mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4191                conf->geo.raid_disks);
4192        /*
4193         * Ok, everything is just fine now
4194         */
4195        mddev->dev_sectors = conf->dev_sectors;
4196        size = raid10_size(mddev, 0, 0);
4197        md_set_array_sectors(mddev, size);
4198        mddev->resync_max_sectors = size;
4199        set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4200
4201        if (md_integrity_register(mddev))
4202                goto out_free_conf;
4203
4204        if (conf->reshape_progress != MaxSector) {
4205                unsigned long before_length, after_length;
4206
4207                before_length = ((1 << conf->prev.chunk_shift) *
4208                                 conf->prev.far_copies);
4209                after_length = ((1 << conf->geo.chunk_shift) *
4210                                conf->geo.far_copies);
4211
4212                if (max(before_length, after_length) > min_offset_diff) {
4213                        /* This cannot work */
4214                        pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4215                        goto out_free_conf;
4216                }
4217                conf->offset_diff = min_offset_diff;
4218
4219                clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4220                clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4221                set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4222                set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4223                mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4224                                                        "reshape");
4225                if (!mddev->sync_thread)
4226                        goto out_free_conf;
4227        }
4228
4229        return 0;
4230
4231out_free_conf:
4232        md_unregister_thread(&mddev->thread);
4233        mempool_exit(&conf->r10bio_pool);
4234        safe_put_page(conf->tmppage);
4235        kfree(conf->mirrors);
4236        kfree(conf);
4237        mddev->private = NULL;
4238out:
4239        return -EIO;
4240}
4241
4242static void raid10_free(struct mddev *mddev, void *priv)
4243{
4244        struct r10conf *conf = priv;
4245
4246        mempool_exit(&conf->r10bio_pool);
4247        safe_put_page(conf->tmppage);
4248        kfree(conf->mirrors);
4249        kfree(conf->mirrors_old);
4250        kfree(conf->mirrors_new);
4251        bioset_exit(&conf->bio_split);
4252        kfree(conf);
4253}
4254
4255static void raid10_quiesce(struct mddev *mddev, int quiesce)
4256{
4257        struct r10conf *conf = mddev->private;
4258
4259        if (quiesce)
4260                raise_barrier(conf, 0);
4261        else
4262                lower_barrier(conf);
4263}
4264
4265static int raid10_resize(struct mddev *mddev, sector_t sectors)
4266{
4267        /* Resize of 'far' arrays is not supported.
4268         * For 'near' and 'offset' arrays we can set the
4269         * number of sectors used to be an appropriate multiple
4270         * of the chunk size.
4271         * For 'offset', this is far_copies*chunksize.
4272         * For 'near' the multiplier is the LCM of
4273         * near_copies and raid_disks.
4274         * So if far_copies > 1 && !far_offset, fail.
4275         * Else find LCM(raid_disks, near_copy)*far_copies and
4276         * multiply by chunk_size.  Then round to this number.
4277         * This is mostly done by raid10_size()
4278         */
4279        struct r10conf *conf = mddev->private;
4280        sector_t oldsize, size;
4281
4282        if (mddev->reshape_position != MaxSector)
4283                return -EBUSY;
4284
4285        if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4286                return -EINVAL;
4287
4288        oldsize = raid10_size(mddev, 0, 0);
4289        size = raid10_size(mddev, sectors, 0);
4290        if (mddev->external_size &&
4291            mddev->array_sectors > size)
4292                return -EINVAL;
4293        if (mddev->bitmap) {
4294                int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4295                if (ret)
4296                        return ret;
4297        }
4298        md_set_array_sectors(mddev, size);
4299        if (sectors > mddev->dev_sectors &&
4300            mddev->recovery_cp > oldsize) {
4301                mddev->recovery_cp = oldsize;
4302                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4303        }
4304        calc_sectors(conf, sectors);
4305        mddev->dev_sectors = conf->dev_sectors;
4306        mddev->resync_max_sectors = size;
4307        return 0;
4308}
4309
4310static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4311{
4312        struct md_rdev *rdev;
4313        struct r10conf *conf;
4314
4315        if (mddev->degraded > 0) {
4316                pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4317                        mdname(mddev));
4318                return ERR_PTR(-EINVAL);
4319        }
4320        sector_div(size, devs);
4321
4322        /* Set new parameters */
4323        mddev->new_level = 10;
4324        /* new layout: far_copies = 1, near_copies = 2 */
4325        mddev->new_layout = (1<<8) + 2;
4326        mddev->new_chunk_sectors = mddev->chunk_sectors;
4327        mddev->delta_disks = mddev->raid_disks;
4328        mddev->raid_disks *= 2;
4329        /* make sure it will be not marked as dirty */
4330        mddev->recovery_cp = MaxSector;
4331        mddev->dev_sectors = size;
4332
4333        conf = setup_conf(mddev);
4334        if (!IS_ERR(conf)) {
4335                rdev_for_each(rdev, mddev)
4336                        if (rdev->raid_disk >= 0) {
4337                                rdev->new_raid_disk = rdev->raid_disk * 2;
4338                                rdev->sectors = size;
4339                        }
4340                conf->barrier = 1;
4341        }
4342
4343        return conf;
4344}
4345
4346static void *raid10_takeover(struct mddev *mddev)
4347{
4348        struct r0conf *raid0_conf;
4349
4350        /* raid10 can take over:
4351         *  raid0 - providing it has only two drives
4352         */
4353        if (mddev->level == 0) {
4354                /* for raid0 takeover only one zone is supported */
4355                raid0_conf = mddev->private;
4356                if (raid0_conf->nr_strip_zones > 1) {
4357                        pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4358                                mdname(mddev));
4359                        return ERR_PTR(-EINVAL);
4360                }
4361                return raid10_takeover_raid0(mddev,
4362                        raid0_conf->strip_zone->zone_end,
4363                        raid0_conf->strip_zone->nb_dev);
4364        }
4365        return ERR_PTR(-EINVAL);
4366}
4367
4368static int raid10_check_reshape(struct mddev *mddev)
4369{
4370        /* Called when there is a request to change
4371         * - layout (to ->new_layout)
4372         * - chunk size (to ->new_chunk_sectors)
4373         * - raid_disks (by delta_disks)
4374         * or when trying to restart a reshape that was ongoing.
4375         *
4376         * We need to validate the request and possibly allocate
4377         * space if that might be an issue later.
4378         *
4379         * Currently we reject any reshape of a 'far' mode array,
4380         * allow chunk size to change if new is generally acceptable,
4381         * allow raid_disks to increase, and allow
4382         * a switch between 'near' mode and 'offset' mode.
4383         */
4384        struct r10conf *conf = mddev->private;
4385        struct geom geo;
4386
4387        if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4388                return -EINVAL;
4389
4390        if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4391                /* mustn't change number of copies */
4392                return -EINVAL;
4393        if (geo.far_copies > 1 && !geo.far_offset)
4394                /* Cannot switch to 'far' mode */
4395                return -EINVAL;
4396
4397        if (mddev->array_sectors & geo.chunk_mask)
4398                        /* not factor of array size */
4399                        return -EINVAL;
4400
4401        if (!enough(conf, -1))
4402                return -EINVAL;
4403
4404        kfree(conf->mirrors_new);
4405        conf->mirrors_new = NULL;
4406        if (mddev->delta_disks > 0) {
4407                /* allocate new 'mirrors' list */
4408                conf->mirrors_new =
4409                        kcalloc(mddev->raid_disks + mddev->delta_disks,
4410                                sizeof(struct raid10_info),
4411                                GFP_KERNEL);
4412                if (!conf->mirrors_new)
4413                        return -ENOMEM;
4414        }
4415        return 0;
4416}
4417
4418/*
4419 * Need to check if array has failed when deciding whether to:
4420 *  - start an array
4421 *  - remove non-faulty devices
4422 *  - add a spare
4423 *  - allow a reshape
4424 * This determination is simple when no reshape is happening.
4425 * However if there is a reshape, we need to carefully check
4426 * both the before and after sections.
4427 * This is because some failed devices may only affect one
4428 * of the two sections, and some non-in_sync devices may
4429 * be insync in the section most affected by failed devices.
4430 */
4431static int calc_degraded(struct r10conf *conf)
4432{
4433        int degraded, degraded2;
4434        int i;
4435
4436        rcu_read_lock();
4437        degraded = 0;
4438        /* 'prev' section first */
4439        for (i = 0; i < conf->prev.raid_disks; i++) {
4440                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4441                if (!rdev || test_bit(Faulty, &rdev->flags))
4442                        degraded++;
4443                else if (!test_bit(In_sync, &rdev->flags))
4444                        /* When we can reduce the number of devices in
4445                         * an array, this might not contribute to
4446                         * 'degraded'.  It does now.
4447                         */
4448                        degraded++;
4449        }
4450        rcu_read_unlock();
4451        if (conf->geo.raid_disks == conf->prev.raid_disks)
4452                return degraded;
4453        rcu_read_lock();
4454        degraded2 = 0;
4455        for (i = 0; i < conf->geo.raid_disks; i++) {
4456                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4457                if (!rdev || test_bit(Faulty, &rdev->flags))
4458                        degraded2++;
4459                else if (!test_bit(In_sync, &rdev->flags)) {
4460                        /* If reshape is increasing the number of devices,
4461                         * this section has already been recovered, so
4462                         * it doesn't contribute to degraded.
4463                         * else it does.
4464                         */
4465                        if (conf->geo.raid_disks <= conf->prev.raid_disks)
4466                                degraded2++;
4467                }
4468        }
4469        rcu_read_unlock();
4470        if (degraded2 > degraded)
4471                return degraded2;
4472        return degraded;
4473}
4474
4475static int raid10_start_reshape(struct mddev *mddev)
4476{
4477        /* A 'reshape' has been requested. This commits
4478         * the various 'new' fields and sets MD_RECOVER_RESHAPE
4479         * This also checks if there are enough spares and adds them
4480         * to the array.
4481         * We currently require enough spares to make the final
4482         * array non-degraded.  We also require that the difference
4483         * between old and new data_offset - on each device - is
4484         * enough that we never risk over-writing.
4485         */
4486
4487        unsigned long before_length, after_length;
4488        sector_t min_offset_diff = 0;
4489        int first = 1;
4490        struct geom new;
4491        struct r10conf *conf = mddev->private;
4492        struct md_rdev *rdev;
4493        int spares = 0;
4494        int ret;
4495
4496        if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4497                return -EBUSY;
4498
4499        if (setup_geo(&new, mddev, geo_start) != conf->copies)
4500                return -EINVAL;
4501
4502        before_length = ((1 << conf->prev.chunk_shift) *
4503                         conf->prev.far_copies);
4504        after_length = ((1 << conf->geo.chunk_shift) *
4505                        conf->geo.far_copies);
4506
4507        rdev_for_each(rdev, mddev) {
4508                if (!test_bit(In_sync, &rdev->flags)
4509                    && !test_bit(Faulty, &rdev->flags))
4510                        spares++;
4511                if (rdev->raid_disk >= 0) {
4512                        long long diff = (rdev->new_data_offset
4513                                          - rdev->data_offset);
4514                        if (!mddev->reshape_backwards)
4515                                diff = -diff;
4516                        if (diff < 0)
4517                                diff = 0;
4518                        if (first || diff < min_offset_diff)
4519                                min_offset_diff = diff;
4520                        first = 0;
4521                }
4522        }
4523
4524        if (max(before_length, after_length) > min_offset_diff)
4525                return -EINVAL;
4526
4527        if (spares < mddev->delta_disks)
4528                return -EINVAL;
4529
4530        conf->offset_diff = min_offset_diff;
4531        spin_lock_irq(&conf->device_lock);
4532        if (conf->mirrors_new) {
4533                memcpy(conf->mirrors_new, conf->mirrors,
4534                       sizeof(struct raid10_info)*conf->prev.raid_disks);
4535                smp_mb();
4536                kfree(conf->mirrors_old);
4537                conf->mirrors_old = conf->mirrors;
4538                conf->mirrors = conf->mirrors_new;
4539                conf->mirrors_new = NULL;
4540        }
4541        setup_geo(&conf->geo, mddev, geo_start);
4542        smp_mb();
4543        if (mddev->reshape_backwards) {
4544                sector_t size = raid10_size(mddev, 0, 0);
4545                if (size < mddev->array_sectors) {
4546                        spin_unlock_irq(&conf->device_lock);
4547                        pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4548                                mdname(mddev));
4549                        return -EINVAL;
4550                }
4551                mddev->resync_max_sectors = size;
4552                conf->reshape_progress = size;
4553        } else
4554                conf->reshape_progress = 0;
4555        conf->reshape_safe = conf->reshape_progress;
4556        spin_unlock_irq(&conf->device_lock);
4557
4558        if (mddev->delta_disks && mddev->bitmap) {
4559                struct mdp_superblock_1 *sb = NULL;
4560                sector_t oldsize, newsize;
4561
4562                oldsize = raid10_size(mddev, 0, 0);
4563                newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4564
4565                if (!mddev_is_clustered(mddev)) {
4566                        ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4567                        if (ret)
4568                                goto abort;
4569                        else
4570                                goto out;
4571                }
4572
4573                rdev_for_each(rdev, mddev) {
4574                        if (rdev->raid_disk > -1 &&
4575                            !test_bit(Faulty, &rdev->flags))
4576                                sb = page_address(rdev->sb_page);
4577                }
4578
4579                /*
4580                 * some node is already performing reshape, and no need to
4581                 * call md_bitmap_resize again since it should be called when
4582                 * receiving BITMAP_RESIZE msg
4583                 */
4584                if ((sb && (le32_to_cpu(sb->feature_map) &
4585                            MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4586                        goto out;
4587
4588                ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4589                if (ret)
4590                        goto abort;
4591
4592                ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4593                if (ret) {
4594                        md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4595                        goto abort;
4596                }
4597        }
4598out:
4599        if (mddev->delta_disks > 0) {
4600                rdev_for_each(rdev, mddev)
4601                        if (rdev->raid_disk < 0 &&
4602                            !test_bit(Faulty, &rdev->flags)) {
4603                                if (raid10_add_disk(mddev, rdev) == 0) {
4604                                        if (rdev->raid_disk >=
4605                                            conf->prev.raid_disks)
4606                                                set_bit(In_sync, &rdev->flags);
4607                                        else
4608                                                rdev->recovery_offset = 0;
4609
4610                                        /* Failure here is OK */
4611                                        sysfs_link_rdev(mddev, rdev);
4612                                }
4613                        } else if (rdev->raid_disk >= conf->prev.raid_disks
4614                                   && !test_bit(Faulty, &rdev->flags)) {
4615                                /* This is a spare that was manually added */
4616                                set_bit(In_sync, &rdev->flags);
4617                        }
4618        }
4619        /* When a reshape changes the number of devices,
4620         * ->degraded is measured against the larger of the
4621         * pre and  post numbers.
4622         */
4623        spin_lock_irq(&conf->device_lock);
4624        mddev->degraded = calc_degraded(conf);
4625        spin_unlock_irq(&conf->device_lock);
4626        mddev->raid_disks = conf->geo.raid_disks;
4627        mddev->reshape_position = conf->reshape_progress;
4628        set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4629
4630        clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4631        clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4632        clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4633        set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4634        set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4635
4636        mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4637                                                "reshape");
4638        if (!mddev->sync_thread) {
4639                ret = -EAGAIN;
4640                goto abort;
4641        }
4642        conf->reshape_checkpoint = jiffies;
4643        md_wakeup_thread(mddev->sync_thread);
4644        md_new_event(mddev);
4645        return 0;
4646
4647abort:
4648        mddev->recovery = 0;
4649        spin_lock_irq(&conf->device_lock);
4650        conf->geo = conf->prev;
4651        mddev->raid_disks = conf->geo.raid_disks;
4652        rdev_for_each(rdev, mddev)
4653                rdev->new_data_offset = rdev->data_offset;
4654        smp_wmb();
4655        conf->reshape_progress = MaxSector;
4656        conf->reshape_safe = MaxSector;
4657        mddev->reshape_position = MaxSector;
4658        spin_unlock_irq(&conf->device_lock);
4659        return ret;
4660}
4661
4662/* Calculate the last device-address that could contain
4663 * any block from the chunk that includes the array-address 's'
4664 * and report the next address.
4665 * i.e. the address returned will be chunk-aligned and after
4666 * any data that is in the chunk containing 's'.
4667 */
4668static sector_t last_dev_address(sector_t s, struct geom *geo)
4669{
4670        s = (s | geo->chunk_mask) + 1;
4671        s >>= geo->chunk_shift;
4672        s *= geo->near_copies;
4673        s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4674        s *= geo->far_copies;
4675        s <<= geo->chunk_shift;
4676        return s;
4677}
4678
4679/* Calculate the first device-address that could contain
4680 * any block from the chunk that includes the array-address 's'.
4681 * This too will be the start of a chunk
4682 */
4683static sector_t first_dev_address(sector_t s, struct geom *geo)
4684{
4685        s >>= geo->chunk_shift;
4686        s *= geo->near_copies;
4687        sector_div(s, geo->raid_disks);
4688        s *= geo->far_copies;
4689        s <<= geo->chunk_shift;
4690        return s;
4691}
4692
4693static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4694                                int *skipped)
4695{
4696        /* We simply copy at most one chunk (smallest of old and new)
4697         * at a time, possibly less if that exceeds RESYNC_PAGES,
4698         * or we hit a bad block or something.
4699         * This might mean we pause for normal IO in the middle of
4700         * a chunk, but that is not a problem as mddev->reshape_position
4701         * can record any location.
4702         *
4703         * If we will want to write to a location that isn't
4704         * yet recorded as 'safe' (i.e. in metadata on disk) then
4705         * we need to flush all reshape requests and update the metadata.
4706         *
4707         * When reshaping forwards (e.g. to more devices), we interpret
4708         * 'safe' as the earliest block which might not have been copied
4709         * down yet.  We divide this by previous stripe size and multiply
4710         * by previous stripe length to get lowest device offset that we
4711         * cannot write to yet.
4712         * We interpret 'sector_nr' as an address that we want to write to.
4713         * From this we use last_device_address() to find where we might
4714         * write to, and first_device_address on the  'safe' position.
4715         * If this 'next' write position is after the 'safe' position,
4716         * we must update the metadata to increase the 'safe' position.
4717         *
4718         * When reshaping backwards, we round in the opposite direction
4719         * and perform the reverse test:  next write position must not be
4720         * less than current safe position.
4721         *
4722         * In all this the minimum difference in data offsets
4723         * (conf->offset_diff - always positive) allows a bit of slack,
4724         * so next can be after 'safe', but not by more than offset_diff
4725         *
4726         * We need to prepare all the bios here before we start any IO
4727         * to ensure the size we choose is acceptable to all devices.
4728         * The means one for each copy for write-out and an extra one for
4729         * read-in.
4730         * We store the read-in bio in ->master_bio and the others in
4731         * ->devs[x].bio and ->devs[x].repl_bio.
4732         */
4733        struct r10conf *conf = mddev->private;
4734        struct r10bio *r10_bio;
4735        sector_t next, safe, last;
4736        int max_sectors;
4737        int nr_sectors;
4738        int s;
4739        struct md_rdev *rdev;
4740        int need_flush = 0;
4741        struct bio *blist;
4742        struct bio *bio, *read_bio;
4743        int sectors_done = 0;
4744        struct page **pages;
4745
4746        if (sector_nr == 0) {
4747                /* If restarting in the middle, skip the initial sectors */
4748                if (mddev->reshape_backwards &&
4749                    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4750                        sector_nr = (raid10_size(mddev, 0, 0)
4751                                     - conf->reshape_progress);
4752                } else if (!mddev->reshape_backwards &&
4753                           conf->reshape_progress > 0)
4754                        sector_nr = conf->reshape_progress;
4755                if (sector_nr) {
4756                        mddev->curr_resync_completed = sector_nr;
4757                        sysfs_notify_dirent_safe(mddev->sysfs_completed);
4758                        *skipped = 1;
4759                        return sector_nr;
4760                }
4761        }
4762
4763        /* We don't use sector_nr to track where we are up to
4764         * as that doesn't work well for ->reshape_backwards.
4765         * So just use ->reshape_progress.
4766         */
4767        if (mddev->reshape_backwards) {
4768                /* 'next' is the earliest device address that we might
4769                 * write to for this chunk in the new layout
4770                 */
4771                next = first_dev_address(conf->reshape_progress - 1,
4772                                         &conf->geo);
4773
4774                /* 'safe' is the last device address that we might read from
4775                 * in the old layout after a restart
4776                 */
4777                safe = last_dev_address(conf->reshape_safe - 1,
4778                                        &conf->prev);
4779
4780                if (next + conf->offset_diff < safe)
4781                        need_flush = 1;
4782
4783                last = conf->reshape_progress - 1;
4784                sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4785                                               & conf->prev.chunk_mask);
4786                if (sector_nr + RESYNC_SECTORS < last)
4787                        sector_nr = last + 1 - RESYNC_SECTORS;
4788        } else {
4789                /* 'next' is after the last device address that we
4790                 * might write to for this chunk in the new layout
4791                 */
4792                next = last_dev_address(conf->reshape_progress, &conf->geo);
4793
4794                /* 'safe' is the earliest device address that we might
4795                 * read from in the old layout after a restart
4796                 */
4797                safe = first_dev_address(conf->reshape_safe, &conf->prev);
4798
4799                /* Need to update metadata if 'next' might be beyond 'safe'
4800                 * as that would possibly corrupt data
4801                 */
4802                if (next > safe + conf->offset_diff)
4803                        need_flush = 1;
4804
4805                sector_nr = conf->reshape_progress;
4806                last  = sector_nr | (conf->geo.chunk_mask
4807                                     & conf->prev.chunk_mask);
4808
4809                if (sector_nr + RESYNC_SECTORS <= last)
4810                        last = sector_nr + RESYNC_SECTORS - 1;
4811        }
4812
4813        if (need_flush ||
4814            time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4815                /* Need to update reshape_position in metadata */
4816                wait_barrier(conf);
4817                mddev->reshape_position = conf->reshape_progress;
4818                if (mddev->reshape_backwards)
4819                        mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4820                                - conf->reshape_progress;
4821                else
4822                        mddev->curr_resync_completed = conf->reshape_progress;
4823                conf->reshape_checkpoint = jiffies;
4824                set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4825                md_wakeup_thread(mddev->thread);
4826                wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4827                           test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4828                if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4829                        allow_barrier(conf);
4830                        return sectors_done;
4831                }
4832                conf->reshape_safe = mddev->reshape_position;
4833                allow_barrier(conf);
4834        }
4835
4836        raise_barrier(conf, 0);
4837read_more:
4838        /* Now schedule reads for blocks from sector_nr to last */
4839        r10_bio = raid10_alloc_init_r10buf(conf);
4840        r10_bio->state = 0;
4841        raise_barrier(conf, 1);
4842        atomic_set(&r10_bio->remaining, 0);
4843        r10_bio->mddev = mddev;
4844        r10_bio->sector = sector_nr;
4845        set_bit(R10BIO_IsReshape, &r10_bio->state);
4846        r10_bio->sectors = last - sector_nr + 1;
4847        rdev = read_balance(conf, r10_bio, &max_sectors);
4848        BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4849
4850        if (!rdev) {
4851                /* Cannot read from here, so need to record bad blocks
4852                 * on all the target devices.
4853                 */
4854                // FIXME
4855                mempool_free(r10_bio, &conf->r10buf_pool);
4856                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4857                return sectors_done;
4858        }
4859
4860        read_bio = bio_alloc_bioset(GFP_KERNEL, RESYNC_PAGES, &mddev->bio_set);
4861
4862        bio_set_dev(read_bio, rdev->bdev);
4863        read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4864                               + rdev->data_offset);
4865        read_bio->bi_private = r10_bio;
4866        read_bio->bi_end_io = end_reshape_read;
4867        bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4868        r10_bio->master_bio = read_bio;
4869        r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4870
4871        /*
4872         * Broadcast RESYNC message to other nodes, so all nodes would not
4873         * write to the region to avoid conflict.
4874        */
4875        if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4876                struct mdp_superblock_1 *sb = NULL;
4877                int sb_reshape_pos = 0;
4878
4879                conf->cluster_sync_low = sector_nr;
4880                conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4881                sb = page_address(rdev->sb_page);
4882                if (sb) {
4883                        sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4884                        /*
4885                         * Set cluster_sync_low again if next address for array
4886                         * reshape is less than cluster_sync_low. Since we can't
4887                         * update cluster_sync_low until it has finished reshape.
4888                         */
4889                        if (sb_reshape_pos < conf->cluster_sync_low)
4890                                conf->cluster_sync_low = sb_reshape_pos;
4891                }
4892
4893                md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4894                                                          conf->cluster_sync_high);
4895        }
4896
4897        /* Now find the locations in the new layout */
4898        __raid10_find_phys(&conf->geo, r10_bio);
4899
4900        blist = read_bio;
4901        read_bio->bi_next = NULL;
4902
4903        rcu_read_lock();
4904        for (s = 0; s < conf->copies*2; s++) {
4905                struct bio *b;
4906                int d = r10_bio->devs[s/2].devnum;
4907                struct md_rdev *rdev2;
4908                if (s&1) {
4909                        rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4910                        b = r10_bio->devs[s/2].repl_bio;
4911                } else {
4912                        rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4913                        b = r10_bio->devs[s/2].bio;
4914                }
4915                if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4916                        continue;
4917
4918                bio_set_dev(b, rdev2->bdev);
4919                b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4920                        rdev2->new_data_offset;
4921                b->bi_end_io = end_reshape_write;
4922                bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4923                b->bi_next = blist;
4924                blist = b;
4925        }
4926
4927        /* Now add as many pages as possible to all of these bios. */
4928
4929        nr_sectors = 0;
4930        pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4931        for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4932                struct page *page = pages[s / (PAGE_SIZE >> 9)];
4933                int len = (max_sectors - s) << 9;
4934                if (len > PAGE_SIZE)
4935                        len = PAGE_SIZE;
4936                for (bio = blist; bio ; bio = bio->bi_next) {
4937                        /*
4938                         * won't fail because the vec table is big enough
4939                         * to hold all these pages
4940                         */
4941                        bio_add_page(bio, page, len, 0);
4942                }
4943                sector_nr += len >> 9;
4944                nr_sectors += len >> 9;
4945        }
4946        rcu_read_unlock();
4947        r10_bio->sectors = nr_sectors;
4948
4949        /* Now submit the read */
4950        md_sync_acct_bio(read_bio, r10_bio->sectors);
4951        atomic_inc(&r10_bio->remaining);
4952        read_bio->bi_next = NULL;
4953        submit_bio_noacct(read_bio);
4954        sectors_done += nr_sectors;
4955        if (sector_nr <= last)
4956                goto read_more;
4957
4958        lower_barrier(conf);
4959
4960        /* Now that we have done the whole section we can
4961         * update reshape_progress
4962         */
4963        if (mddev->reshape_backwards)
4964                conf->reshape_progress -= sectors_done;
4965        else
4966                conf->reshape_progress += sectors_done;
4967
4968        return sectors_done;
4969}
4970
4971static void end_reshape_request(struct r10bio *r10_bio);
4972static int handle_reshape_read_error(struct mddev *mddev,
4973                                     struct r10bio *r10_bio);
4974static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4975{
4976        /* Reshape read completed.  Hopefully we have a block
4977         * to write out.
4978         * If we got a read error then we do sync 1-page reads from
4979         * elsewhere until we find the data - or give up.
4980         */
4981        struct r10conf *conf = mddev->private;
4982        int s;
4983
4984        if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4985                if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4986                        /* Reshape has been aborted */
4987                        md_done_sync(mddev, r10_bio->sectors, 0);
4988                        return;
4989                }
4990
4991        /* We definitely have the data in the pages, schedule the
4992         * writes.
4993         */
4994        atomic_set(&r10_bio->remaining, 1);
4995        for (s = 0; s < conf->copies*2; s++) {
4996                struct bio *b;
4997                int d = r10_bio->devs[s/2].devnum;
4998                struct md_rdev *rdev;
4999                rcu_read_lock();
5000                if (s&1) {
5001                        rdev = rcu_dereference(conf->mirrors[d].replacement);
5002                        b = r10_bio->devs[s/2].repl_bio;
5003                } else {
5004                        rdev = rcu_dereference(conf->mirrors[d].rdev);
5005                        b = r10_bio->devs[s/2].bio;
5006                }
5007                if (!rdev || test_bit(Faulty, &rdev->flags)) {
5008                        rcu_read_unlock();
5009                        continue;
5010                }
5011                atomic_inc(&rdev->nr_pending);
5012                rcu_read_unlock();
5013                md_sync_acct_bio(b, r10_bio->sectors);
5014                atomic_inc(&r10_bio->remaining);
5015                b->bi_next = NULL;
5016                submit_bio_noacct(b);
5017        }
5018        end_reshape_request(r10_bio);
5019}
5020
5021static void end_reshape(struct r10conf *conf)
5022{
5023        if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
5024                return;
5025
5026        spin_lock_irq(&conf->device_lock);
5027        conf->prev = conf->geo;
5028        md_finish_reshape(conf->mddev);
5029        smp_wmb();
5030        conf->reshape_progress = MaxSector;
5031        conf->reshape_safe = MaxSector;
5032        spin_unlock_irq(&conf->device_lock);
5033
5034        if (conf->mddev->queue)
5035                raid10_set_io_opt(conf);
5036        conf->fullsync = 0;
5037}
5038
5039static void raid10_update_reshape_pos(struct mddev *mddev)
5040{
5041        struct r10conf *conf = mddev->private;
5042        sector_t lo, hi;
5043
5044        md_cluster_ops->resync_info_get(mddev, &lo, &hi);
5045        if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
5046            || mddev->reshape_position == MaxSector)
5047                conf->reshape_progress = mddev->reshape_position;
5048        else
5049                WARN_ON_ONCE(1);
5050}
5051
5052static int handle_reshape_read_error(struct mddev *mddev,
5053                                     struct r10bio *r10_bio)
5054{
5055        /* Use sync reads to get the blocks from somewhere else */
5056        int sectors = r10_bio->sectors;
5057        struct r10conf *conf = mddev->private;
5058        struct r10bio *r10b;
5059        int slot = 0;
5060        int idx = 0;
5061        struct page **pages;
5062
5063        r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
5064        if (!r10b) {
5065                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5066                return -ENOMEM;
5067        }
5068
5069        /* reshape IOs share pages from .devs[0].bio */
5070        pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5071
5072        r10b->sector = r10_bio->sector;
5073        __raid10_find_phys(&conf->prev, r10b);
5074
5075        while (sectors) {
5076                int s = sectors;
5077                int success = 0;
5078                int first_slot = slot;
5079
5080                if (s > (PAGE_SIZE >> 9))
5081                        s = PAGE_SIZE >> 9;
5082
5083                rcu_read_lock();
5084                while (!success) {
5085                        int d = r10b->devs[slot].devnum;
5086                        struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5087                        sector_t addr;
5088                        if (rdev == NULL ||
5089                            test_bit(Faulty, &rdev->flags) ||
5090                            !test_bit(In_sync, &rdev->flags))
5091                                goto failed;
5092
5093                        addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5094                        atomic_inc(&rdev->nr_pending);
5095                        rcu_read_unlock();
5096                        success = sync_page_io(rdev,
5097                                               addr,
5098                                               s << 9,
5099                                               pages[idx],
5100                                               REQ_OP_READ, 0, false);
5101                        rdev_dec_pending(rdev, mddev);
5102                        rcu_read_lock();
5103                        if (success)
5104                                break;
5105                failed:
5106                        slot++;
5107                        if (slot >= conf->copies)
5108                                slot = 0;
5109                        if (slot == first_slot)
5110                                break;
5111                }
5112                rcu_read_unlock();
5113                if (!success) {
5114                        /* couldn't read this block, must give up */
5115                        set_bit(MD_RECOVERY_INTR,
5116                                &mddev->recovery);
5117                        kfree(r10b);
5118                        return -EIO;
5119                }
5120                sectors -= s;
5121                idx++;
5122        }
5123        kfree(r10b);
5124        return 0;
5125}
5126
5127static void end_reshape_write(struct bio *bio)
5128{
5129        struct r10bio *r10_bio = get_resync_r10bio(bio);
5130        struct mddev *mddev = r10_bio->mddev;
5131        struct r10conf *conf = mddev->private;
5132        int d;
5133        int slot;
5134        int repl;
5135        struct md_rdev *rdev = NULL;
5136
5137        d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5138        if (repl)
5139                rdev = conf->mirrors[d].replacement;
5140        if (!rdev) {
5141                smp_mb();
5142                rdev = conf->mirrors[d].rdev;
5143        }
5144
5145        if (bio->bi_status) {
5146                /* FIXME should record badblock */
5147                md_error(mddev, rdev);
5148        }
5149
5150        rdev_dec_pending(rdev, mddev);
5151        end_reshape_request(r10_bio);
5152}
5153
5154static void end_reshape_request(struct r10bio *r10_bio)
5155{
5156        if (!atomic_dec_and_test(&r10_bio->remaining))
5157                return;
5158        md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5159        bio_put(r10_bio->master_bio);
5160        put_buf(r10_bio);
5161}
5162
5163static void raid10_finish_reshape(struct mddev *mddev)
5164{
5165        struct r10conf *conf = mddev->private;
5166
5167        if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5168                return;
5169
5170        if (mddev->delta_disks > 0) {
5171                if (mddev->recovery_cp > mddev->resync_max_sectors) {
5172                        mddev->recovery_cp = mddev->resync_max_sectors;
5173                        set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5174                }
5175                mddev->resync_max_sectors = mddev->array_sectors;
5176        } else {
5177                int d;
5178                rcu_read_lock();
5179                for (d = conf->geo.raid_disks ;
5180                     d < conf->geo.raid_disks - mddev->delta_disks;
5181                     d++) {
5182                        struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5183                        if (rdev)
5184                                clear_bit(In_sync, &rdev->flags);
5185                        rdev = rcu_dereference(conf->mirrors[d].replacement);
5186                        if (rdev)
5187                                clear_bit(In_sync, &rdev->flags);
5188                }
5189                rcu_read_unlock();
5190        }
5191        mddev->layout = mddev->new_layout;
5192        mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5193        mddev->reshape_position = MaxSector;
5194        mddev->delta_disks = 0;
5195        mddev->reshape_backwards = 0;
5196}
5197
5198static struct md_personality raid10_personality =
5199{
5200        .name           = "raid10",
5201        .level          = 10,
5202        .owner          = THIS_MODULE,
5203        .make_request   = raid10_make_request,
5204        .run            = raid10_run,
5205        .free           = raid10_free,
5206        .status         = raid10_status,
5207        .error_handler  = raid10_error,
5208        .hot_add_disk   = raid10_add_disk,
5209        .hot_remove_disk= raid10_remove_disk,
5210        .spare_active   = raid10_spare_active,
5211        .sync_request   = raid10_sync_request,
5212        .quiesce        = raid10_quiesce,
5213        .size           = raid10_size,
5214        .resize         = raid10_resize,
5215        .takeover       = raid10_takeover,
5216        .check_reshape  = raid10_check_reshape,
5217        .start_reshape  = raid10_start_reshape,
5218        .finish_reshape = raid10_finish_reshape,
5219        .update_reshape_pos = raid10_update_reshape_pos,
5220};
5221
5222static int __init raid_init(void)
5223{
5224        return register_md_personality(&raid10_personality);
5225}
5226
5227static void raid_exit(void)
5228{
5229        unregister_md_personality(&raid10_personality);
5230}
5231
5232module_init(raid_init);
5233module_exit(raid_exit);
5234MODULE_LICENSE("GPL");
5235MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5236MODULE_ALIAS("md-personality-9"); /* RAID10 */
5237MODULE_ALIAS("md-raid10");
5238MODULE_ALIAS("md-level-10");
5239
5240module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
5241