linux/drivers/md/raid5.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * raid5.c : Multiple Devices driver for Linux
   4 *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   5 *         Copyright (C) 1999, 2000 Ingo Molnar
   6 *         Copyright (C) 2002, 2003 H. Peter Anvin
   7 *
   8 * RAID-4/5/6 management functions.
   9 * Thanks to Penguin Computing for making the RAID-6 development possible
  10 * by donating a test server!
  11 */
  12
  13/*
  14 * BITMAP UNPLUGGING:
  15 *
  16 * The sequencing for updating the bitmap reliably is a little
  17 * subtle (and I got it wrong the first time) so it deserves some
  18 * explanation.
  19 *
  20 * We group bitmap updates into batches.  Each batch has a number.
  21 * We may write out several batches at once, but that isn't very important.
  22 * conf->seq_write is the number of the last batch successfully written.
  23 * conf->seq_flush is the number of the last batch that was closed to
  24 *    new additions.
  25 * When we discover that we will need to write to any block in a stripe
  26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
  27 * the number of the batch it will be in. This is seq_flush+1.
  28 * When we are ready to do a write, if that batch hasn't been written yet,
  29 *   we plug the array and queue the stripe for later.
  30 * When an unplug happens, we increment bm_flush, thus closing the current
  31 *   batch.
  32 * When we notice that bm_flush > bm_write, we write out all pending updates
  33 * to the bitmap, and advance bm_write to where bm_flush was.
  34 * This may occasionally write a bit out twice, but is sure never to
  35 * miss any bits.
  36 */
  37
  38#include <linux/blkdev.h>
  39#include <linux/kthread.h>
  40#include <linux/raid/pq.h>
  41#include <linux/async_tx.h>
  42#include <linux/module.h>
  43#include <linux/async.h>
  44#include <linux/seq_file.h>
  45#include <linux/cpu.h>
  46#include <linux/slab.h>
  47#include <linux/ratelimit.h>
  48#include <linux/nodemask.h>
  49
  50#include <trace/events/block.h>
  51#include <linux/list_sort.h>
  52
  53#include "md.h"
  54#include "raid5.h"
  55#include "raid0.h"
  56#include "md-bitmap.h"
  57#include "raid5-log.h"
  58
  59#define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
  60
  61#define cpu_to_group(cpu) cpu_to_node(cpu)
  62#define ANY_GROUP NUMA_NO_NODE
  63
  64static bool devices_handle_discard_safely = false;
  65module_param(devices_handle_discard_safely, bool, 0644);
  66MODULE_PARM_DESC(devices_handle_discard_safely,
  67                 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
  68static struct workqueue_struct *raid5_wq;
  69
  70static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
  71{
  72        int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
  73        return &conf->stripe_hashtbl[hash];
  74}
  75
  76static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
  77{
  78        return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
  79}
  80
  81static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
  82{
  83        spin_lock_irq(conf->hash_locks + hash);
  84        spin_lock(&conf->device_lock);
  85}
  86
  87static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
  88{
  89        spin_unlock(&conf->device_lock);
  90        spin_unlock_irq(conf->hash_locks + hash);
  91}
  92
  93static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
  94{
  95        int i;
  96        spin_lock_irq(conf->hash_locks);
  97        for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
  98                spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
  99        spin_lock(&conf->device_lock);
 100}
 101
 102static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
 103{
 104        int i;
 105        spin_unlock(&conf->device_lock);
 106        for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
 107                spin_unlock(conf->hash_locks + i);
 108        spin_unlock_irq(conf->hash_locks);
 109}
 110
 111/* Find first data disk in a raid6 stripe */
 112static inline int raid6_d0(struct stripe_head *sh)
 113{
 114        if (sh->ddf_layout)
 115                /* ddf always start from first device */
 116                return 0;
 117        /* md starts just after Q block */
 118        if (sh->qd_idx == sh->disks - 1)
 119                return 0;
 120        else
 121                return sh->qd_idx + 1;
 122}
 123static inline int raid6_next_disk(int disk, int raid_disks)
 124{
 125        disk++;
 126        return (disk < raid_disks) ? disk : 0;
 127}
 128
 129/* When walking through the disks in a raid5, starting at raid6_d0,
 130 * We need to map each disk to a 'slot', where the data disks are slot
 131 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 132 * is raid_disks-1.  This help does that mapping.
 133 */
 134static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
 135                             int *count, int syndrome_disks)
 136{
 137        int slot = *count;
 138
 139        if (sh->ddf_layout)
 140                (*count)++;
 141        if (idx == sh->pd_idx)
 142                return syndrome_disks;
 143        if (idx == sh->qd_idx)
 144                return syndrome_disks + 1;
 145        if (!sh->ddf_layout)
 146                (*count)++;
 147        return slot;
 148}
 149
 150static void print_raid5_conf (struct r5conf *conf);
 151
 152static int stripe_operations_active(struct stripe_head *sh)
 153{
 154        return sh->check_state || sh->reconstruct_state ||
 155               test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
 156               test_bit(STRIPE_COMPUTE_RUN, &sh->state);
 157}
 158
 159static bool stripe_is_lowprio(struct stripe_head *sh)
 160{
 161        return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
 162                test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
 163               !test_bit(STRIPE_R5C_CACHING, &sh->state);
 164}
 165
 166static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
 167{
 168        struct r5conf *conf = sh->raid_conf;
 169        struct r5worker_group *group;
 170        int thread_cnt;
 171        int i, cpu = sh->cpu;
 172
 173        if (!cpu_online(cpu)) {
 174                cpu = cpumask_any(cpu_online_mask);
 175                sh->cpu = cpu;
 176        }
 177
 178        if (list_empty(&sh->lru)) {
 179                struct r5worker_group *group;
 180                group = conf->worker_groups + cpu_to_group(cpu);
 181                if (stripe_is_lowprio(sh))
 182                        list_add_tail(&sh->lru, &group->loprio_list);
 183                else
 184                        list_add_tail(&sh->lru, &group->handle_list);
 185                group->stripes_cnt++;
 186                sh->group = group;
 187        }
 188
 189        if (conf->worker_cnt_per_group == 0) {
 190                md_wakeup_thread(conf->mddev->thread);
 191                return;
 192        }
 193
 194        group = conf->worker_groups + cpu_to_group(sh->cpu);
 195
 196        group->workers[0].working = true;
 197        /* at least one worker should run to avoid race */
 198        queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
 199
 200        thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
 201        /* wakeup more workers */
 202        for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
 203                if (group->workers[i].working == false) {
 204                        group->workers[i].working = true;
 205                        queue_work_on(sh->cpu, raid5_wq,
 206                                      &group->workers[i].work);
 207                        thread_cnt--;
 208                }
 209        }
 210}
 211
 212static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
 213                              struct list_head *temp_inactive_list)
 214{
 215        int i;
 216        int injournal = 0;      /* number of date pages with R5_InJournal */
 217
 218        BUG_ON(!list_empty(&sh->lru));
 219        BUG_ON(atomic_read(&conf->active_stripes)==0);
 220
 221        if (r5c_is_writeback(conf->log))
 222                for (i = sh->disks; i--; )
 223                        if (test_bit(R5_InJournal, &sh->dev[i].flags))
 224                                injournal++;
 225        /*
 226         * In the following cases, the stripe cannot be released to cached
 227         * lists. Therefore, we make the stripe write out and set
 228         * STRIPE_HANDLE:
 229         *   1. when quiesce in r5c write back;
 230         *   2. when resync is requested fot the stripe.
 231         */
 232        if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
 233            (conf->quiesce && r5c_is_writeback(conf->log) &&
 234             !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
 235                if (test_bit(STRIPE_R5C_CACHING, &sh->state))
 236                        r5c_make_stripe_write_out(sh);
 237                set_bit(STRIPE_HANDLE, &sh->state);
 238        }
 239
 240        if (test_bit(STRIPE_HANDLE, &sh->state)) {
 241                if (test_bit(STRIPE_DELAYED, &sh->state) &&
 242                    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 243                        list_add_tail(&sh->lru, &conf->delayed_list);
 244                else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
 245                           sh->bm_seq - conf->seq_write > 0)
 246                        list_add_tail(&sh->lru, &conf->bitmap_list);
 247                else {
 248                        clear_bit(STRIPE_DELAYED, &sh->state);
 249                        clear_bit(STRIPE_BIT_DELAY, &sh->state);
 250                        if (conf->worker_cnt_per_group == 0) {
 251                                if (stripe_is_lowprio(sh))
 252                                        list_add_tail(&sh->lru,
 253                                                        &conf->loprio_list);
 254                                else
 255                                        list_add_tail(&sh->lru,
 256                                                        &conf->handle_list);
 257                        } else {
 258                                raid5_wakeup_stripe_thread(sh);
 259                                return;
 260                        }
 261                }
 262                md_wakeup_thread(conf->mddev->thread);
 263        } else {
 264                BUG_ON(stripe_operations_active(sh));
 265                if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 266                        if (atomic_dec_return(&conf->preread_active_stripes)
 267                            < IO_THRESHOLD)
 268                                md_wakeup_thread(conf->mddev->thread);
 269                atomic_dec(&conf->active_stripes);
 270                if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
 271                        if (!r5c_is_writeback(conf->log))
 272                                list_add_tail(&sh->lru, temp_inactive_list);
 273                        else {
 274                                WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
 275                                if (injournal == 0)
 276                                        list_add_tail(&sh->lru, temp_inactive_list);
 277                                else if (injournal == conf->raid_disks - conf->max_degraded) {
 278                                        /* full stripe */
 279                                        if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
 280                                                atomic_inc(&conf->r5c_cached_full_stripes);
 281                                        if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
 282                                                atomic_dec(&conf->r5c_cached_partial_stripes);
 283                                        list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
 284                                        r5c_check_cached_full_stripe(conf);
 285                                } else
 286                                        /*
 287                                         * STRIPE_R5C_PARTIAL_STRIPE is set in
 288                                         * r5c_try_caching_write(). No need to
 289                                         * set it again.
 290                                         */
 291                                        list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
 292                        }
 293                }
 294        }
 295}
 296
 297static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
 298                             struct list_head *temp_inactive_list)
 299{
 300        if (atomic_dec_and_test(&sh->count))
 301                do_release_stripe(conf, sh, temp_inactive_list);
 302}
 303
 304/*
 305 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
 306 *
 307 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
 308 * given time. Adding stripes only takes device lock, while deleting stripes
 309 * only takes hash lock.
 310 */
 311static void release_inactive_stripe_list(struct r5conf *conf,
 312                                         struct list_head *temp_inactive_list,
 313                                         int hash)
 314{
 315        int size;
 316        bool do_wakeup = false;
 317        unsigned long flags;
 318
 319        if (hash == NR_STRIPE_HASH_LOCKS) {
 320                size = NR_STRIPE_HASH_LOCKS;
 321                hash = NR_STRIPE_HASH_LOCKS - 1;
 322        } else
 323                size = 1;
 324        while (size) {
 325                struct list_head *list = &temp_inactive_list[size - 1];
 326
 327                /*
 328                 * We don't hold any lock here yet, raid5_get_active_stripe() might
 329                 * remove stripes from the list
 330                 */
 331                if (!list_empty_careful(list)) {
 332                        spin_lock_irqsave(conf->hash_locks + hash, flags);
 333                        if (list_empty(conf->inactive_list + hash) &&
 334                            !list_empty(list))
 335                                atomic_dec(&conf->empty_inactive_list_nr);
 336                        list_splice_tail_init(list, conf->inactive_list + hash);
 337                        do_wakeup = true;
 338                        spin_unlock_irqrestore(conf->hash_locks + hash, flags);
 339                }
 340                size--;
 341                hash--;
 342        }
 343
 344        if (do_wakeup) {
 345                wake_up(&conf->wait_for_stripe);
 346                if (atomic_read(&conf->active_stripes) == 0)
 347                        wake_up(&conf->wait_for_quiescent);
 348                if (conf->retry_read_aligned)
 349                        md_wakeup_thread(conf->mddev->thread);
 350        }
 351}
 352
 353/* should hold conf->device_lock already */
 354static int release_stripe_list(struct r5conf *conf,
 355                               struct list_head *temp_inactive_list)
 356{
 357        struct stripe_head *sh, *t;
 358        int count = 0;
 359        struct llist_node *head;
 360
 361        head = llist_del_all(&conf->released_stripes);
 362        head = llist_reverse_order(head);
 363        llist_for_each_entry_safe(sh, t, head, release_list) {
 364                int hash;
 365
 366                /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
 367                smp_mb();
 368                clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
 369                /*
 370                 * Don't worry the bit is set here, because if the bit is set
 371                 * again, the count is always > 1. This is true for
 372                 * STRIPE_ON_UNPLUG_LIST bit too.
 373                 */
 374                hash = sh->hash_lock_index;
 375                __release_stripe(conf, sh, &temp_inactive_list[hash]);
 376                count++;
 377        }
 378
 379        return count;
 380}
 381
 382void raid5_release_stripe(struct stripe_head *sh)
 383{
 384        struct r5conf *conf = sh->raid_conf;
 385        unsigned long flags;
 386        struct list_head list;
 387        int hash;
 388        bool wakeup;
 389
 390        /* Avoid release_list until the last reference.
 391         */
 392        if (atomic_add_unless(&sh->count, -1, 1))
 393                return;
 394
 395        if (unlikely(!conf->mddev->thread) ||
 396                test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
 397                goto slow_path;
 398        wakeup = llist_add(&sh->release_list, &conf->released_stripes);
 399        if (wakeup)
 400                md_wakeup_thread(conf->mddev->thread);
 401        return;
 402slow_path:
 403        /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
 404        if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
 405                INIT_LIST_HEAD(&list);
 406                hash = sh->hash_lock_index;
 407                do_release_stripe(conf, sh, &list);
 408                spin_unlock_irqrestore(&conf->device_lock, flags);
 409                release_inactive_stripe_list(conf, &list, hash);
 410        }
 411}
 412
 413static inline void remove_hash(struct stripe_head *sh)
 414{
 415        pr_debug("remove_hash(), stripe %llu\n",
 416                (unsigned long long)sh->sector);
 417
 418        hlist_del_init(&sh->hash);
 419}
 420
 421static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
 422{
 423        struct hlist_head *hp = stripe_hash(conf, sh->sector);
 424
 425        pr_debug("insert_hash(), stripe %llu\n",
 426                (unsigned long long)sh->sector);
 427
 428        hlist_add_head(&sh->hash, hp);
 429}
 430
 431/* find an idle stripe, make sure it is unhashed, and return it. */
 432static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
 433{
 434        struct stripe_head *sh = NULL;
 435        struct list_head *first;
 436
 437        if (list_empty(conf->inactive_list + hash))
 438                goto out;
 439        first = (conf->inactive_list + hash)->next;
 440        sh = list_entry(first, struct stripe_head, lru);
 441        list_del_init(first);
 442        remove_hash(sh);
 443        atomic_inc(&conf->active_stripes);
 444        BUG_ON(hash != sh->hash_lock_index);
 445        if (list_empty(conf->inactive_list + hash))
 446                atomic_inc(&conf->empty_inactive_list_nr);
 447out:
 448        return sh;
 449}
 450
 451#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
 452static void free_stripe_pages(struct stripe_head *sh)
 453{
 454        int i;
 455        struct page *p;
 456
 457        /* Have not allocate page pool */
 458        if (!sh->pages)
 459                return;
 460
 461        for (i = 0; i < sh->nr_pages; i++) {
 462                p = sh->pages[i];
 463                if (p)
 464                        put_page(p);
 465                sh->pages[i] = NULL;
 466        }
 467}
 468
 469static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp)
 470{
 471        int i;
 472        struct page *p;
 473
 474        for (i = 0; i < sh->nr_pages; i++) {
 475                /* The page have allocated. */
 476                if (sh->pages[i])
 477                        continue;
 478
 479                p = alloc_page(gfp);
 480                if (!p) {
 481                        free_stripe_pages(sh);
 482                        return -ENOMEM;
 483                }
 484                sh->pages[i] = p;
 485        }
 486        return 0;
 487}
 488
 489static int
 490init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks)
 491{
 492        int nr_pages, cnt;
 493
 494        if (sh->pages)
 495                return 0;
 496
 497        /* Each of the sh->dev[i] need one conf->stripe_size */
 498        cnt = PAGE_SIZE / conf->stripe_size;
 499        nr_pages = (disks + cnt - 1) / cnt;
 500
 501        sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
 502        if (!sh->pages)
 503                return -ENOMEM;
 504        sh->nr_pages = nr_pages;
 505        sh->stripes_per_page = cnt;
 506        return 0;
 507}
 508#endif
 509
 510static void shrink_buffers(struct stripe_head *sh)
 511{
 512        int i;
 513        int num = sh->raid_conf->pool_size;
 514
 515#if PAGE_SIZE == DEFAULT_STRIPE_SIZE
 516        for (i = 0; i < num ; i++) {
 517                struct page *p;
 518
 519                WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
 520                p = sh->dev[i].page;
 521                if (!p)
 522                        continue;
 523                sh->dev[i].page = NULL;
 524                put_page(p);
 525        }
 526#else
 527        for (i = 0; i < num; i++)
 528                sh->dev[i].page = NULL;
 529        free_stripe_pages(sh); /* Free pages */
 530#endif
 531}
 532
 533static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
 534{
 535        int i;
 536        int num = sh->raid_conf->pool_size;
 537
 538#if PAGE_SIZE == DEFAULT_STRIPE_SIZE
 539        for (i = 0; i < num; i++) {
 540                struct page *page;
 541
 542                if (!(page = alloc_page(gfp))) {
 543                        return 1;
 544                }
 545                sh->dev[i].page = page;
 546                sh->dev[i].orig_page = page;
 547                sh->dev[i].offset = 0;
 548        }
 549#else
 550        if (alloc_stripe_pages(sh, gfp))
 551                return -ENOMEM;
 552
 553        for (i = 0; i < num; i++) {
 554                sh->dev[i].page = raid5_get_dev_page(sh, i);
 555                sh->dev[i].orig_page = sh->dev[i].page;
 556                sh->dev[i].offset = raid5_get_page_offset(sh, i);
 557        }
 558#endif
 559        return 0;
 560}
 561
 562static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
 563                            struct stripe_head *sh);
 564
 565static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
 566{
 567        struct r5conf *conf = sh->raid_conf;
 568        int i, seq;
 569
 570        BUG_ON(atomic_read(&sh->count) != 0);
 571        BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
 572        BUG_ON(stripe_operations_active(sh));
 573        BUG_ON(sh->batch_head);
 574
 575        pr_debug("init_stripe called, stripe %llu\n",
 576                (unsigned long long)sector);
 577retry:
 578        seq = read_seqcount_begin(&conf->gen_lock);
 579        sh->generation = conf->generation - previous;
 580        sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
 581        sh->sector = sector;
 582        stripe_set_idx(sector, conf, previous, sh);
 583        sh->state = 0;
 584
 585        for (i = sh->disks; i--; ) {
 586                struct r5dev *dev = &sh->dev[i];
 587
 588                if (dev->toread || dev->read || dev->towrite || dev->written ||
 589                    test_bit(R5_LOCKED, &dev->flags)) {
 590                        pr_err("sector=%llx i=%d %p %p %p %p %d\n",
 591                               (unsigned long long)sh->sector, i, dev->toread,
 592                               dev->read, dev->towrite, dev->written,
 593                               test_bit(R5_LOCKED, &dev->flags));
 594                        WARN_ON(1);
 595                }
 596                dev->flags = 0;
 597                dev->sector = raid5_compute_blocknr(sh, i, previous);
 598        }
 599        if (read_seqcount_retry(&conf->gen_lock, seq))
 600                goto retry;
 601        sh->overwrite_disks = 0;
 602        insert_hash(conf, sh);
 603        sh->cpu = smp_processor_id();
 604        set_bit(STRIPE_BATCH_READY, &sh->state);
 605}
 606
 607static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
 608                                         short generation)
 609{
 610        struct stripe_head *sh;
 611
 612        pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
 613        hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
 614                if (sh->sector == sector && sh->generation == generation)
 615                        return sh;
 616        pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
 617        return NULL;
 618}
 619
 620/*
 621 * Need to check if array has failed when deciding whether to:
 622 *  - start an array
 623 *  - remove non-faulty devices
 624 *  - add a spare
 625 *  - allow a reshape
 626 * This determination is simple when no reshape is happening.
 627 * However if there is a reshape, we need to carefully check
 628 * both the before and after sections.
 629 * This is because some failed devices may only affect one
 630 * of the two sections, and some non-in_sync devices may
 631 * be insync in the section most affected by failed devices.
 632 */
 633int raid5_calc_degraded(struct r5conf *conf)
 634{
 635        int degraded, degraded2;
 636        int i;
 637
 638        rcu_read_lock();
 639        degraded = 0;
 640        for (i = 0; i < conf->previous_raid_disks; i++) {
 641                struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
 642                if (rdev && test_bit(Faulty, &rdev->flags))
 643                        rdev = rcu_dereference(conf->disks[i].replacement);
 644                if (!rdev || test_bit(Faulty, &rdev->flags))
 645                        degraded++;
 646                else if (test_bit(In_sync, &rdev->flags))
 647                        ;
 648                else
 649                        /* not in-sync or faulty.
 650                         * If the reshape increases the number of devices,
 651                         * this is being recovered by the reshape, so
 652                         * this 'previous' section is not in_sync.
 653                         * If the number of devices is being reduced however,
 654                         * the device can only be part of the array if
 655                         * we are reverting a reshape, so this section will
 656                         * be in-sync.
 657                         */
 658                        if (conf->raid_disks >= conf->previous_raid_disks)
 659                                degraded++;
 660        }
 661        rcu_read_unlock();
 662        if (conf->raid_disks == conf->previous_raid_disks)
 663                return degraded;
 664        rcu_read_lock();
 665        degraded2 = 0;
 666        for (i = 0; i < conf->raid_disks; i++) {
 667                struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
 668                if (rdev && test_bit(Faulty, &rdev->flags))
 669                        rdev = rcu_dereference(conf->disks[i].replacement);
 670                if (!rdev || test_bit(Faulty, &rdev->flags))
 671                        degraded2++;
 672                else if (test_bit(In_sync, &rdev->flags))
 673                        ;
 674                else
 675                        /* not in-sync or faulty.
 676                         * If reshape increases the number of devices, this
 677                         * section has already been recovered, else it
 678                         * almost certainly hasn't.
 679                         */
 680                        if (conf->raid_disks <= conf->previous_raid_disks)
 681                                degraded2++;
 682        }
 683        rcu_read_unlock();
 684        if (degraded2 > degraded)
 685                return degraded2;
 686        return degraded;
 687}
 688
 689static int has_failed(struct r5conf *conf)
 690{
 691        int degraded;
 692
 693        if (conf->mddev->reshape_position == MaxSector)
 694                return conf->mddev->degraded > conf->max_degraded;
 695
 696        degraded = raid5_calc_degraded(conf);
 697        if (degraded > conf->max_degraded)
 698                return 1;
 699        return 0;
 700}
 701
 702struct stripe_head *
 703raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
 704                        int previous, int noblock, int noquiesce)
 705{
 706        struct stripe_head *sh;
 707        int hash = stripe_hash_locks_hash(conf, sector);
 708        int inc_empty_inactive_list_flag;
 709
 710        pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
 711
 712        spin_lock_irq(conf->hash_locks + hash);
 713
 714        do {
 715                wait_event_lock_irq(conf->wait_for_quiescent,
 716                                    conf->quiesce == 0 || noquiesce,
 717                                    *(conf->hash_locks + hash));
 718                sh = __find_stripe(conf, sector, conf->generation - previous);
 719                if (!sh) {
 720                        if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
 721                                sh = get_free_stripe(conf, hash);
 722                                if (!sh && !test_bit(R5_DID_ALLOC,
 723                                                     &conf->cache_state))
 724                                        set_bit(R5_ALLOC_MORE,
 725                                                &conf->cache_state);
 726                        }
 727                        if (noblock && sh == NULL)
 728                                break;
 729
 730                        r5c_check_stripe_cache_usage(conf);
 731                        if (!sh) {
 732                                set_bit(R5_INACTIVE_BLOCKED,
 733                                        &conf->cache_state);
 734                                r5l_wake_reclaim(conf->log, 0);
 735                                wait_event_lock_irq(
 736                                        conf->wait_for_stripe,
 737                                        !list_empty(conf->inactive_list + hash) &&
 738                                        (atomic_read(&conf->active_stripes)
 739                                         < (conf->max_nr_stripes * 3 / 4)
 740                                         || !test_bit(R5_INACTIVE_BLOCKED,
 741                                                      &conf->cache_state)),
 742                                        *(conf->hash_locks + hash));
 743                                clear_bit(R5_INACTIVE_BLOCKED,
 744                                          &conf->cache_state);
 745                        } else {
 746                                init_stripe(sh, sector, previous);
 747                                atomic_inc(&sh->count);
 748                        }
 749                } else if (!atomic_inc_not_zero(&sh->count)) {
 750                        spin_lock(&conf->device_lock);
 751                        if (!atomic_read(&sh->count)) {
 752                                if (!test_bit(STRIPE_HANDLE, &sh->state))
 753                                        atomic_inc(&conf->active_stripes);
 754                                BUG_ON(list_empty(&sh->lru) &&
 755                                       !test_bit(STRIPE_EXPANDING, &sh->state));
 756                                inc_empty_inactive_list_flag = 0;
 757                                if (!list_empty(conf->inactive_list + hash))
 758                                        inc_empty_inactive_list_flag = 1;
 759                                list_del_init(&sh->lru);
 760                                if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
 761                                        atomic_inc(&conf->empty_inactive_list_nr);
 762                                if (sh->group) {
 763                                        sh->group->stripes_cnt--;
 764                                        sh->group = NULL;
 765                                }
 766                        }
 767                        atomic_inc(&sh->count);
 768                        spin_unlock(&conf->device_lock);
 769                }
 770        } while (sh == NULL);
 771
 772        spin_unlock_irq(conf->hash_locks + hash);
 773        return sh;
 774}
 775
 776static bool is_full_stripe_write(struct stripe_head *sh)
 777{
 778        BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
 779        return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
 780}
 781
 782static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
 783                __acquires(&sh1->stripe_lock)
 784                __acquires(&sh2->stripe_lock)
 785{
 786        if (sh1 > sh2) {
 787                spin_lock_irq(&sh2->stripe_lock);
 788                spin_lock_nested(&sh1->stripe_lock, 1);
 789        } else {
 790                spin_lock_irq(&sh1->stripe_lock);
 791                spin_lock_nested(&sh2->stripe_lock, 1);
 792        }
 793}
 794
 795static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
 796                __releases(&sh1->stripe_lock)
 797                __releases(&sh2->stripe_lock)
 798{
 799        spin_unlock(&sh1->stripe_lock);
 800        spin_unlock_irq(&sh2->stripe_lock);
 801}
 802
 803/* Only freshly new full stripe normal write stripe can be added to a batch list */
 804static bool stripe_can_batch(struct stripe_head *sh)
 805{
 806        struct r5conf *conf = sh->raid_conf;
 807
 808        if (raid5_has_log(conf) || raid5_has_ppl(conf))
 809                return false;
 810        return test_bit(STRIPE_BATCH_READY, &sh->state) &&
 811                !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
 812                is_full_stripe_write(sh);
 813}
 814
 815/* we only do back search */
 816static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
 817{
 818        struct stripe_head *head;
 819        sector_t head_sector, tmp_sec;
 820        int hash;
 821        int dd_idx;
 822        int inc_empty_inactive_list_flag;
 823
 824        /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
 825        tmp_sec = sh->sector;
 826        if (!sector_div(tmp_sec, conf->chunk_sectors))
 827                return;
 828        head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
 829
 830        hash = stripe_hash_locks_hash(conf, head_sector);
 831        spin_lock_irq(conf->hash_locks + hash);
 832        head = __find_stripe(conf, head_sector, conf->generation);
 833        if (head && !atomic_inc_not_zero(&head->count)) {
 834                spin_lock(&conf->device_lock);
 835                if (!atomic_read(&head->count)) {
 836                        if (!test_bit(STRIPE_HANDLE, &head->state))
 837                                atomic_inc(&conf->active_stripes);
 838                        BUG_ON(list_empty(&head->lru) &&
 839                               !test_bit(STRIPE_EXPANDING, &head->state));
 840                        inc_empty_inactive_list_flag = 0;
 841                        if (!list_empty(conf->inactive_list + hash))
 842                                inc_empty_inactive_list_flag = 1;
 843                        list_del_init(&head->lru);
 844                        if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
 845                                atomic_inc(&conf->empty_inactive_list_nr);
 846                        if (head->group) {
 847                                head->group->stripes_cnt--;
 848                                head->group = NULL;
 849                        }
 850                }
 851                atomic_inc(&head->count);
 852                spin_unlock(&conf->device_lock);
 853        }
 854        spin_unlock_irq(conf->hash_locks + hash);
 855
 856        if (!head)
 857                return;
 858        if (!stripe_can_batch(head))
 859                goto out;
 860
 861        lock_two_stripes(head, sh);
 862        /* clear_batch_ready clear the flag */
 863        if (!stripe_can_batch(head) || !stripe_can_batch(sh))
 864                goto unlock_out;
 865
 866        if (sh->batch_head)
 867                goto unlock_out;
 868
 869        dd_idx = 0;
 870        while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
 871                dd_idx++;
 872        if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
 873            bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
 874                goto unlock_out;
 875
 876        if (head->batch_head) {
 877                spin_lock(&head->batch_head->batch_lock);
 878                /* This batch list is already running */
 879                if (!stripe_can_batch(head)) {
 880                        spin_unlock(&head->batch_head->batch_lock);
 881                        goto unlock_out;
 882                }
 883                /*
 884                 * We must assign batch_head of this stripe within the
 885                 * batch_lock, otherwise clear_batch_ready of batch head
 886                 * stripe could clear BATCH_READY bit of this stripe and
 887                 * this stripe->batch_head doesn't get assigned, which
 888                 * could confuse clear_batch_ready for this stripe
 889                 */
 890                sh->batch_head = head->batch_head;
 891
 892                /*
 893                 * at this point, head's BATCH_READY could be cleared, but we
 894                 * can still add the stripe to batch list
 895                 */
 896                list_add(&sh->batch_list, &head->batch_list);
 897                spin_unlock(&head->batch_head->batch_lock);
 898        } else {
 899                head->batch_head = head;
 900                sh->batch_head = head->batch_head;
 901                spin_lock(&head->batch_lock);
 902                list_add_tail(&sh->batch_list, &head->batch_list);
 903                spin_unlock(&head->batch_lock);
 904        }
 905
 906        if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 907                if (atomic_dec_return(&conf->preread_active_stripes)
 908                    < IO_THRESHOLD)
 909                        md_wakeup_thread(conf->mddev->thread);
 910
 911        if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
 912                int seq = sh->bm_seq;
 913                if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
 914                    sh->batch_head->bm_seq > seq)
 915                        seq = sh->batch_head->bm_seq;
 916                set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
 917                sh->batch_head->bm_seq = seq;
 918        }
 919
 920        atomic_inc(&sh->count);
 921unlock_out:
 922        unlock_two_stripes(head, sh);
 923out:
 924        raid5_release_stripe(head);
 925}
 926
 927/* Determine if 'data_offset' or 'new_data_offset' should be used
 928 * in this stripe_head.
 929 */
 930static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
 931{
 932        sector_t progress = conf->reshape_progress;
 933        /* Need a memory barrier to make sure we see the value
 934         * of conf->generation, or ->data_offset that was set before
 935         * reshape_progress was updated.
 936         */
 937        smp_rmb();
 938        if (progress == MaxSector)
 939                return 0;
 940        if (sh->generation == conf->generation - 1)
 941                return 0;
 942        /* We are in a reshape, and this is a new-generation stripe,
 943         * so use new_data_offset.
 944         */
 945        return 1;
 946}
 947
 948static void dispatch_bio_list(struct bio_list *tmp)
 949{
 950        struct bio *bio;
 951
 952        while ((bio = bio_list_pop(tmp)))
 953                submit_bio_noacct(bio);
 954}
 955
 956static int cmp_stripe(void *priv, const struct list_head *a,
 957                      const struct list_head *b)
 958{
 959        const struct r5pending_data *da = list_entry(a,
 960                                struct r5pending_data, sibling);
 961        const struct r5pending_data *db = list_entry(b,
 962                                struct r5pending_data, sibling);
 963        if (da->sector > db->sector)
 964                return 1;
 965        if (da->sector < db->sector)
 966                return -1;
 967        return 0;
 968}
 969
 970static void dispatch_defer_bios(struct r5conf *conf, int target,
 971                                struct bio_list *list)
 972{
 973        struct r5pending_data *data;
 974        struct list_head *first, *next = NULL;
 975        int cnt = 0;
 976
 977        if (conf->pending_data_cnt == 0)
 978                return;
 979
 980        list_sort(NULL, &conf->pending_list, cmp_stripe);
 981
 982        first = conf->pending_list.next;
 983
 984        /* temporarily move the head */
 985        if (conf->next_pending_data)
 986                list_move_tail(&conf->pending_list,
 987                                &conf->next_pending_data->sibling);
 988
 989        while (!list_empty(&conf->pending_list)) {
 990                data = list_first_entry(&conf->pending_list,
 991                        struct r5pending_data, sibling);
 992                if (&data->sibling == first)
 993                        first = data->sibling.next;
 994                next = data->sibling.next;
 995
 996                bio_list_merge(list, &data->bios);
 997                list_move(&data->sibling, &conf->free_list);
 998                cnt++;
 999                if (cnt >= target)
1000                        break;
1001        }
1002        conf->pending_data_cnt -= cnt;
1003        BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
1004
1005        if (next != &conf->pending_list)
1006                conf->next_pending_data = list_entry(next,
1007                                struct r5pending_data, sibling);
1008        else
1009                conf->next_pending_data = NULL;
1010        /* list isn't empty */
1011        if (first != &conf->pending_list)
1012                list_move_tail(&conf->pending_list, first);
1013}
1014
1015static void flush_deferred_bios(struct r5conf *conf)
1016{
1017        struct bio_list tmp = BIO_EMPTY_LIST;
1018
1019        if (conf->pending_data_cnt == 0)
1020                return;
1021
1022        spin_lock(&conf->pending_bios_lock);
1023        dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
1024        BUG_ON(conf->pending_data_cnt != 0);
1025        spin_unlock(&conf->pending_bios_lock);
1026
1027        dispatch_bio_list(&tmp);
1028}
1029
1030static void defer_issue_bios(struct r5conf *conf, sector_t sector,
1031                                struct bio_list *bios)
1032{
1033        struct bio_list tmp = BIO_EMPTY_LIST;
1034        struct r5pending_data *ent;
1035
1036        spin_lock(&conf->pending_bios_lock);
1037        ent = list_first_entry(&conf->free_list, struct r5pending_data,
1038                                                        sibling);
1039        list_move_tail(&ent->sibling, &conf->pending_list);
1040        ent->sector = sector;
1041        bio_list_init(&ent->bios);
1042        bio_list_merge(&ent->bios, bios);
1043        conf->pending_data_cnt++;
1044        if (conf->pending_data_cnt >= PENDING_IO_MAX)
1045                dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
1046
1047        spin_unlock(&conf->pending_bios_lock);
1048
1049        dispatch_bio_list(&tmp);
1050}
1051
1052static void
1053raid5_end_read_request(struct bio *bi);
1054static void
1055raid5_end_write_request(struct bio *bi);
1056
1057static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
1058{
1059        struct r5conf *conf = sh->raid_conf;
1060        int i, disks = sh->disks;
1061        struct stripe_head *head_sh = sh;
1062        struct bio_list pending_bios = BIO_EMPTY_LIST;
1063        bool should_defer;
1064
1065        might_sleep();
1066
1067        if (log_stripe(sh, s) == 0)
1068                return;
1069
1070        should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1071
1072        for (i = disks; i--; ) {
1073                int op, op_flags = 0;
1074                int replace_only = 0;
1075                struct bio *bi, *rbi;
1076                struct md_rdev *rdev, *rrdev = NULL;
1077
1078                sh = head_sh;
1079                if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1080                        op = REQ_OP_WRITE;
1081                        if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1082                                op_flags = REQ_FUA;
1083                        if (test_bit(R5_Discard, &sh->dev[i].flags))
1084                                op = REQ_OP_DISCARD;
1085                } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1086                        op = REQ_OP_READ;
1087                else if (test_and_clear_bit(R5_WantReplace,
1088                                            &sh->dev[i].flags)) {
1089                        op = REQ_OP_WRITE;
1090                        replace_only = 1;
1091                } else
1092                        continue;
1093                if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1094                        op_flags |= REQ_SYNC;
1095
1096again:
1097                bi = &sh->dev[i].req;
1098                rbi = &sh->dev[i].rreq; /* For writing to replacement */
1099
1100                rcu_read_lock();
1101                rrdev = rcu_dereference(conf->disks[i].replacement);
1102                smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1103                rdev = rcu_dereference(conf->disks[i].rdev);
1104                if (!rdev) {
1105                        rdev = rrdev;
1106                        rrdev = NULL;
1107                }
1108                if (op_is_write(op)) {
1109                        if (replace_only)
1110                                rdev = NULL;
1111                        if (rdev == rrdev)
1112                                /* We raced and saw duplicates */
1113                                rrdev = NULL;
1114                } else {
1115                        if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1116                                rdev = rrdev;
1117                        rrdev = NULL;
1118                }
1119
1120                if (rdev && test_bit(Faulty, &rdev->flags))
1121                        rdev = NULL;
1122                if (rdev)
1123                        atomic_inc(&rdev->nr_pending);
1124                if (rrdev && test_bit(Faulty, &rrdev->flags))
1125                        rrdev = NULL;
1126                if (rrdev)
1127                        atomic_inc(&rrdev->nr_pending);
1128                rcu_read_unlock();
1129
1130                /* We have already checked bad blocks for reads.  Now
1131                 * need to check for writes.  We never accept write errors
1132                 * on the replacement, so we don't to check rrdev.
1133                 */
1134                while (op_is_write(op) && rdev &&
1135                       test_bit(WriteErrorSeen, &rdev->flags)) {
1136                        sector_t first_bad;
1137                        int bad_sectors;
1138                        int bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
1139                                              &first_bad, &bad_sectors);
1140                        if (!bad)
1141                                break;
1142
1143                        if (bad < 0) {
1144                                set_bit(BlockedBadBlocks, &rdev->flags);
1145                                if (!conf->mddev->external &&
1146                                    conf->mddev->sb_flags) {
1147                                        /* It is very unlikely, but we might
1148                                         * still need to write out the
1149                                         * bad block log - better give it
1150                                         * a chance*/
1151                                        md_check_recovery(conf->mddev);
1152                                }
1153                                /*
1154                                 * Because md_wait_for_blocked_rdev
1155                                 * will dec nr_pending, we must
1156                                 * increment it first.
1157                                 */
1158                                atomic_inc(&rdev->nr_pending);
1159                                md_wait_for_blocked_rdev(rdev, conf->mddev);
1160                        } else {
1161                                /* Acknowledged bad block - skip the write */
1162                                rdev_dec_pending(rdev, conf->mddev);
1163                                rdev = NULL;
1164                        }
1165                }
1166
1167                if (rdev) {
1168                        if (s->syncing || s->expanding || s->expanded
1169                            || s->replacing)
1170                                md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf));
1171
1172                        set_bit(STRIPE_IO_STARTED, &sh->state);
1173
1174                        bio_set_dev(bi, rdev->bdev);
1175                        bio_set_op_attrs(bi, op, op_flags);
1176                        bi->bi_end_io = op_is_write(op)
1177                                ? raid5_end_write_request
1178                                : raid5_end_read_request;
1179                        bi->bi_private = sh;
1180
1181                        pr_debug("%s: for %llu schedule op %d on disc %d\n",
1182                                __func__, (unsigned long long)sh->sector,
1183                                bi->bi_opf, i);
1184                        atomic_inc(&sh->count);
1185                        if (sh != head_sh)
1186                                atomic_inc(&head_sh->count);
1187                        if (use_new_offset(conf, sh))
1188                                bi->bi_iter.bi_sector = (sh->sector
1189                                                 + rdev->new_data_offset);
1190                        else
1191                                bi->bi_iter.bi_sector = (sh->sector
1192                                                 + rdev->data_offset);
1193                        if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1194                                bi->bi_opf |= REQ_NOMERGE;
1195
1196                        if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1197                                WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1198
1199                        if (!op_is_write(op) &&
1200                            test_bit(R5_InJournal, &sh->dev[i].flags))
1201                                /*
1202                                 * issuing read for a page in journal, this
1203                                 * must be preparing for prexor in rmw; read
1204                                 * the data into orig_page
1205                                 */
1206                                sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1207                        else
1208                                sh->dev[i].vec.bv_page = sh->dev[i].page;
1209                        bi->bi_vcnt = 1;
1210                        bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1211                        bi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1212                        bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1213                        bi->bi_write_hint = sh->dev[i].write_hint;
1214                        if (!rrdev)
1215                                sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET;
1216                        /*
1217                         * If this is discard request, set bi_vcnt 0. We don't
1218                         * want to confuse SCSI because SCSI will replace payload
1219                         */
1220                        if (op == REQ_OP_DISCARD)
1221                                bi->bi_vcnt = 0;
1222                        if (rrdev)
1223                                set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1224
1225                        if (conf->mddev->gendisk)
1226                                trace_block_bio_remap(bi,
1227                                                disk_devt(conf->mddev->gendisk),
1228                                                sh->dev[i].sector);
1229                        if (should_defer && op_is_write(op))
1230                                bio_list_add(&pending_bios, bi);
1231                        else
1232                                submit_bio_noacct(bi);
1233                }
1234                if (rrdev) {
1235                        if (s->syncing || s->expanding || s->expanded
1236                            || s->replacing)
1237                                md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf));
1238
1239                        set_bit(STRIPE_IO_STARTED, &sh->state);
1240
1241                        bio_set_dev(rbi, rrdev->bdev);
1242                        bio_set_op_attrs(rbi, op, op_flags);
1243                        BUG_ON(!op_is_write(op));
1244                        rbi->bi_end_io = raid5_end_write_request;
1245                        rbi->bi_private = sh;
1246
1247                        pr_debug("%s: for %llu schedule op %d on "
1248                                 "replacement disc %d\n",
1249                                __func__, (unsigned long long)sh->sector,
1250                                rbi->bi_opf, i);
1251                        atomic_inc(&sh->count);
1252                        if (sh != head_sh)
1253                                atomic_inc(&head_sh->count);
1254                        if (use_new_offset(conf, sh))
1255                                rbi->bi_iter.bi_sector = (sh->sector
1256                                                  + rrdev->new_data_offset);
1257                        else
1258                                rbi->bi_iter.bi_sector = (sh->sector
1259                                                  + rrdev->data_offset);
1260                        if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1261                                WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1262                        sh->dev[i].rvec.bv_page = sh->dev[i].page;
1263                        rbi->bi_vcnt = 1;
1264                        rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1265                        rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1266                        rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1267                        rbi->bi_write_hint = sh->dev[i].write_hint;
1268                        sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET;
1269                        /*
1270                         * If this is discard request, set bi_vcnt 0. We don't
1271                         * want to confuse SCSI because SCSI will replace payload
1272                         */
1273                        if (op == REQ_OP_DISCARD)
1274                                rbi->bi_vcnt = 0;
1275                        if (conf->mddev->gendisk)
1276                                trace_block_bio_remap(rbi,
1277                                                disk_devt(conf->mddev->gendisk),
1278                                                sh->dev[i].sector);
1279                        if (should_defer && op_is_write(op))
1280                                bio_list_add(&pending_bios, rbi);
1281                        else
1282                                submit_bio_noacct(rbi);
1283                }
1284                if (!rdev && !rrdev) {
1285                        if (op_is_write(op))
1286                                set_bit(STRIPE_DEGRADED, &sh->state);
1287                        pr_debug("skip op %d on disc %d for sector %llu\n",
1288                                bi->bi_opf, i, (unsigned long long)sh->sector);
1289                        clear_bit(R5_LOCKED, &sh->dev[i].flags);
1290                        set_bit(STRIPE_HANDLE, &sh->state);
1291                }
1292
1293                if (!head_sh->batch_head)
1294                        continue;
1295                sh = list_first_entry(&sh->batch_list, struct stripe_head,
1296                                      batch_list);
1297                if (sh != head_sh)
1298                        goto again;
1299        }
1300
1301        if (should_defer && !bio_list_empty(&pending_bios))
1302                defer_issue_bios(conf, head_sh->sector, &pending_bios);
1303}
1304
1305static struct dma_async_tx_descriptor *
1306async_copy_data(int frombio, struct bio *bio, struct page **page,
1307        unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx,
1308        struct stripe_head *sh, int no_skipcopy)
1309{
1310        struct bio_vec bvl;
1311        struct bvec_iter iter;
1312        struct page *bio_page;
1313        int page_offset;
1314        struct async_submit_ctl submit;
1315        enum async_tx_flags flags = 0;
1316        struct r5conf *conf = sh->raid_conf;
1317
1318        if (bio->bi_iter.bi_sector >= sector)
1319                page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1320        else
1321                page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1322
1323        if (frombio)
1324                flags |= ASYNC_TX_FENCE;
1325        init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1326
1327        bio_for_each_segment(bvl, bio, iter) {
1328                int len = bvl.bv_len;
1329                int clen;
1330                int b_offset = 0;
1331
1332                if (page_offset < 0) {
1333                        b_offset = -page_offset;
1334                        page_offset += b_offset;
1335                        len -= b_offset;
1336                }
1337
1338                if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1339                        clen = RAID5_STRIPE_SIZE(conf) - page_offset;
1340                else
1341                        clen = len;
1342
1343                if (clen > 0) {
1344                        b_offset += bvl.bv_offset;
1345                        bio_page = bvl.bv_page;
1346                        if (frombio) {
1347                                if (conf->skip_copy &&
1348                                    b_offset == 0 && page_offset == 0 &&
1349                                    clen == RAID5_STRIPE_SIZE(conf) &&
1350                                    !no_skipcopy)
1351                                        *page = bio_page;
1352                                else
1353                                        tx = async_memcpy(*page, bio_page, page_offset + poff,
1354                                                  b_offset, clen, &submit);
1355                        } else
1356                                tx = async_memcpy(bio_page, *page, b_offset,
1357                                                  page_offset + poff, clen, &submit);
1358                }
1359                /* chain the operations */
1360                submit.depend_tx = tx;
1361
1362                if (clen < len) /* hit end of page */
1363                        break;
1364                page_offset +=  len;
1365        }
1366
1367        return tx;
1368}
1369
1370static void ops_complete_biofill(void *stripe_head_ref)
1371{
1372        struct stripe_head *sh = stripe_head_ref;
1373        int i;
1374        struct r5conf *conf = sh->raid_conf;
1375
1376        pr_debug("%s: stripe %llu\n", __func__,
1377                (unsigned long long)sh->sector);
1378
1379        /* clear completed biofills */
1380        for (i = sh->disks; i--; ) {
1381                struct r5dev *dev = &sh->dev[i];
1382
1383                /* acknowledge completion of a biofill operation */
1384                /* and check if we need to reply to a read request,
1385                 * new R5_Wantfill requests are held off until
1386                 * !STRIPE_BIOFILL_RUN
1387                 */
1388                if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1389                        struct bio *rbi, *rbi2;
1390
1391                        BUG_ON(!dev->read);
1392                        rbi = dev->read;
1393                        dev->read = NULL;
1394                        while (rbi && rbi->bi_iter.bi_sector <
1395                                dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1396                                rbi2 = r5_next_bio(conf, rbi, dev->sector);
1397                                bio_endio(rbi);
1398                                rbi = rbi2;
1399                        }
1400                }
1401        }
1402        clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1403
1404        set_bit(STRIPE_HANDLE, &sh->state);
1405        raid5_release_stripe(sh);
1406}
1407
1408static void ops_run_biofill(struct stripe_head *sh)
1409{
1410        struct dma_async_tx_descriptor *tx = NULL;
1411        struct async_submit_ctl submit;
1412        int i;
1413        struct r5conf *conf = sh->raid_conf;
1414
1415        BUG_ON(sh->batch_head);
1416        pr_debug("%s: stripe %llu\n", __func__,
1417                (unsigned long long)sh->sector);
1418
1419        for (i = sh->disks; i--; ) {
1420                struct r5dev *dev = &sh->dev[i];
1421                if (test_bit(R5_Wantfill, &dev->flags)) {
1422                        struct bio *rbi;
1423                        spin_lock_irq(&sh->stripe_lock);
1424                        dev->read = rbi = dev->toread;
1425                        dev->toread = NULL;
1426                        spin_unlock_irq(&sh->stripe_lock);
1427                        while (rbi && rbi->bi_iter.bi_sector <
1428                                dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1429                                tx = async_copy_data(0, rbi, &dev->page,
1430                                                     dev->offset,
1431                                                     dev->sector, tx, sh, 0);
1432                                rbi = r5_next_bio(conf, rbi, dev->sector);
1433                        }
1434                }
1435        }
1436
1437        atomic_inc(&sh->count);
1438        init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1439        async_trigger_callback(&submit);
1440}
1441
1442static void mark_target_uptodate(struct stripe_head *sh, int target)
1443{
1444        struct r5dev *tgt;
1445
1446        if (target < 0)
1447                return;
1448
1449        tgt = &sh->dev[target];
1450        set_bit(R5_UPTODATE, &tgt->flags);
1451        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1452        clear_bit(R5_Wantcompute, &tgt->flags);
1453}
1454
1455static void ops_complete_compute(void *stripe_head_ref)
1456{
1457        struct stripe_head *sh = stripe_head_ref;
1458
1459        pr_debug("%s: stripe %llu\n", __func__,
1460                (unsigned long long)sh->sector);
1461
1462        /* mark the computed target(s) as uptodate */
1463        mark_target_uptodate(sh, sh->ops.target);
1464        mark_target_uptodate(sh, sh->ops.target2);
1465
1466        clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1467        if (sh->check_state == check_state_compute_run)
1468                sh->check_state = check_state_compute_result;
1469        set_bit(STRIPE_HANDLE, &sh->state);
1470        raid5_release_stripe(sh);
1471}
1472
1473/* return a pointer to the address conversion region of the scribble buffer */
1474static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1475{
1476        return percpu->scribble + i * percpu->scribble_obj_size;
1477}
1478
1479/* return a pointer to the address conversion region of the scribble buffer */
1480static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1481                                 struct raid5_percpu *percpu, int i)
1482{
1483        return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1484}
1485
1486/*
1487 * Return a pointer to record offset address.
1488 */
1489static unsigned int *
1490to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu)
1491{
1492        return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2);
1493}
1494
1495static struct dma_async_tx_descriptor *
1496ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1497{
1498        int disks = sh->disks;
1499        struct page **xor_srcs = to_addr_page(percpu, 0);
1500        unsigned int *off_srcs = to_addr_offs(sh, percpu);
1501        int target = sh->ops.target;
1502        struct r5dev *tgt = &sh->dev[target];
1503        struct page *xor_dest = tgt->page;
1504        unsigned int off_dest = tgt->offset;
1505        int count = 0;
1506        struct dma_async_tx_descriptor *tx;
1507        struct async_submit_ctl submit;
1508        int i;
1509
1510        BUG_ON(sh->batch_head);
1511
1512        pr_debug("%s: stripe %llu block: %d\n",
1513                __func__, (unsigned long long)sh->sector, target);
1514        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1515
1516        for (i = disks; i--; ) {
1517                if (i != target) {
1518                        off_srcs[count] = sh->dev[i].offset;
1519                        xor_srcs[count++] = sh->dev[i].page;
1520                }
1521        }
1522
1523        atomic_inc(&sh->count);
1524
1525        init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1526                          ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1527        if (unlikely(count == 1))
1528                tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
1529                                RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1530        else
1531                tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1532                                RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1533
1534        return tx;
1535}
1536
1537/* set_syndrome_sources - populate source buffers for gen_syndrome
1538 * @srcs - (struct page *) array of size sh->disks
1539 * @offs - (unsigned int) array of offset for each page
1540 * @sh - stripe_head to parse
1541 *
1542 * Populates srcs in proper layout order for the stripe and returns the
1543 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1544 * destination buffer is recorded in srcs[count] and the Q destination
1545 * is recorded in srcs[count+1]].
1546 */
1547static int set_syndrome_sources(struct page **srcs,
1548                                unsigned int *offs,
1549                                struct stripe_head *sh,
1550                                int srctype)
1551{
1552        int disks = sh->disks;
1553        int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1554        int d0_idx = raid6_d0(sh);
1555        int count;
1556        int i;
1557
1558        for (i = 0; i < disks; i++)
1559                srcs[i] = NULL;
1560
1561        count = 0;
1562        i = d0_idx;
1563        do {
1564                int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1565                struct r5dev *dev = &sh->dev[i];
1566
1567                if (i == sh->qd_idx || i == sh->pd_idx ||
1568                    (srctype == SYNDROME_SRC_ALL) ||
1569                    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1570                     (test_bit(R5_Wantdrain, &dev->flags) ||
1571                      test_bit(R5_InJournal, &dev->flags))) ||
1572                    (srctype == SYNDROME_SRC_WRITTEN &&
1573                     (dev->written ||
1574                      test_bit(R5_InJournal, &dev->flags)))) {
1575                        if (test_bit(R5_InJournal, &dev->flags))
1576                                srcs[slot] = sh->dev[i].orig_page;
1577                        else
1578                                srcs[slot] = sh->dev[i].page;
1579                        /*
1580                         * For R5_InJournal, PAGE_SIZE must be 4KB and will
1581                         * not shared page. In that case, dev[i].offset
1582                         * is 0.
1583                         */
1584                        offs[slot] = sh->dev[i].offset;
1585                }
1586                i = raid6_next_disk(i, disks);
1587        } while (i != d0_idx);
1588
1589        return syndrome_disks;
1590}
1591
1592static struct dma_async_tx_descriptor *
1593ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1594{
1595        int disks = sh->disks;
1596        struct page **blocks = to_addr_page(percpu, 0);
1597        unsigned int *offs = to_addr_offs(sh, percpu);
1598        int target;
1599        int qd_idx = sh->qd_idx;
1600        struct dma_async_tx_descriptor *tx;
1601        struct async_submit_ctl submit;
1602        struct r5dev *tgt;
1603        struct page *dest;
1604        unsigned int dest_off;
1605        int i;
1606        int count;
1607
1608        BUG_ON(sh->batch_head);
1609        if (sh->ops.target < 0)
1610                target = sh->ops.target2;
1611        else if (sh->ops.target2 < 0)
1612                target = sh->ops.target;
1613        else
1614                /* we should only have one valid target */
1615                BUG();
1616        BUG_ON(target < 0);
1617        pr_debug("%s: stripe %llu block: %d\n",
1618                __func__, (unsigned long long)sh->sector, target);
1619
1620        tgt = &sh->dev[target];
1621        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1622        dest = tgt->page;
1623        dest_off = tgt->offset;
1624
1625        atomic_inc(&sh->count);
1626
1627        if (target == qd_idx) {
1628                count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1629                blocks[count] = NULL; /* regenerating p is not necessary */
1630                BUG_ON(blocks[count+1] != dest); /* q should already be set */
1631                init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1632                                  ops_complete_compute, sh,
1633                                  to_addr_conv(sh, percpu, 0));
1634                tx = async_gen_syndrome(blocks, offs, count+2,
1635                                RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1636        } else {
1637                /* Compute any data- or p-drive using XOR */
1638                count = 0;
1639                for (i = disks; i-- ; ) {
1640                        if (i == target || i == qd_idx)
1641                                continue;
1642                        offs[count] = sh->dev[i].offset;
1643                        blocks[count++] = sh->dev[i].page;
1644                }
1645
1646                init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1647                                  NULL, ops_complete_compute, sh,
1648                                  to_addr_conv(sh, percpu, 0));
1649                tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1650                                RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1651        }
1652
1653        return tx;
1654}
1655
1656static struct dma_async_tx_descriptor *
1657ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1658{
1659        int i, count, disks = sh->disks;
1660        int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1661        int d0_idx = raid6_d0(sh);
1662        int faila = -1, failb = -1;
1663        int target = sh->ops.target;
1664        int target2 = sh->ops.target2;
1665        struct r5dev *tgt = &sh->dev[target];
1666        struct r5dev *tgt2 = &sh->dev[target2];
1667        struct dma_async_tx_descriptor *tx;
1668        struct page **blocks = to_addr_page(percpu, 0);
1669        unsigned int *offs = to_addr_offs(sh, percpu);
1670        struct async_submit_ctl submit;
1671
1672        BUG_ON(sh->batch_head);
1673        pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1674                 __func__, (unsigned long long)sh->sector, target, target2);
1675        BUG_ON(target < 0 || target2 < 0);
1676        BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1677        BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1678
1679        /* we need to open-code set_syndrome_sources to handle the
1680         * slot number conversion for 'faila' and 'failb'
1681         */
1682        for (i = 0; i < disks ; i++) {
1683                offs[i] = 0;
1684                blocks[i] = NULL;
1685        }
1686        count = 0;
1687        i = d0_idx;
1688        do {
1689                int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1690
1691                offs[slot] = sh->dev[i].offset;
1692                blocks[slot] = sh->dev[i].page;
1693
1694                if (i == target)
1695                        faila = slot;
1696                if (i == target2)
1697                        failb = slot;
1698                i = raid6_next_disk(i, disks);
1699        } while (i != d0_idx);
1700
1701        BUG_ON(faila == failb);
1702        if (failb < faila)
1703                swap(faila, failb);
1704        pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1705                 __func__, (unsigned long long)sh->sector, faila, failb);
1706
1707        atomic_inc(&sh->count);
1708
1709        if (failb == syndrome_disks+1) {
1710                /* Q disk is one of the missing disks */
1711                if (faila == syndrome_disks) {
1712                        /* Missing P+Q, just recompute */
1713                        init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1714                                          ops_complete_compute, sh,
1715                                          to_addr_conv(sh, percpu, 0));
1716                        return async_gen_syndrome(blocks, offs, syndrome_disks+2,
1717                                                  RAID5_STRIPE_SIZE(sh->raid_conf),
1718                                                  &submit);
1719                } else {
1720                        struct page *dest;
1721                        unsigned int dest_off;
1722                        int data_target;
1723                        int qd_idx = sh->qd_idx;
1724
1725                        /* Missing D+Q: recompute D from P, then recompute Q */
1726                        if (target == qd_idx)
1727                                data_target = target2;
1728                        else
1729                                data_target = target;
1730
1731                        count = 0;
1732                        for (i = disks; i-- ; ) {
1733                                if (i == data_target || i == qd_idx)
1734                                        continue;
1735                                offs[count] = sh->dev[i].offset;
1736                                blocks[count++] = sh->dev[i].page;
1737                        }
1738                        dest = sh->dev[data_target].page;
1739                        dest_off = sh->dev[data_target].offset;
1740                        init_async_submit(&submit,
1741                                          ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1742                                          NULL, NULL, NULL,
1743                                          to_addr_conv(sh, percpu, 0));
1744                        tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1745                                       RAID5_STRIPE_SIZE(sh->raid_conf),
1746                                       &submit);
1747
1748                        count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1749                        init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1750                                          ops_complete_compute, sh,
1751                                          to_addr_conv(sh, percpu, 0));
1752                        return async_gen_syndrome(blocks, offs, count+2,
1753                                                  RAID5_STRIPE_SIZE(sh->raid_conf),
1754                                                  &submit);
1755                }
1756        } else {
1757                init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1758                                  ops_complete_compute, sh,
1759                                  to_addr_conv(sh, percpu, 0));
1760                if (failb == syndrome_disks) {
1761                        /* We're missing D+P. */
1762                        return async_raid6_datap_recov(syndrome_disks+2,
1763                                                RAID5_STRIPE_SIZE(sh->raid_conf),
1764                                                faila,
1765                                                blocks, offs, &submit);
1766                } else {
1767                        /* We're missing D+D. */
1768                        return async_raid6_2data_recov(syndrome_disks+2,
1769                                                RAID5_STRIPE_SIZE(sh->raid_conf),
1770                                                faila, failb,
1771                                                blocks, offs, &submit);
1772                }
1773        }
1774}
1775
1776static void ops_complete_prexor(void *stripe_head_ref)
1777{
1778        struct stripe_head *sh = stripe_head_ref;
1779
1780        pr_debug("%s: stripe %llu\n", __func__,
1781                (unsigned long long)sh->sector);
1782
1783        if (r5c_is_writeback(sh->raid_conf->log))
1784                /*
1785                 * raid5-cache write back uses orig_page during prexor.
1786                 * After prexor, it is time to free orig_page
1787                 */
1788                r5c_release_extra_page(sh);
1789}
1790
1791static struct dma_async_tx_descriptor *
1792ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1793                struct dma_async_tx_descriptor *tx)
1794{
1795        int disks = sh->disks;
1796        struct page **xor_srcs = to_addr_page(percpu, 0);
1797        unsigned int *off_srcs = to_addr_offs(sh, percpu);
1798        int count = 0, pd_idx = sh->pd_idx, i;
1799        struct async_submit_ctl submit;
1800
1801        /* existing parity data subtracted */
1802        unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
1803        struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1804
1805        BUG_ON(sh->batch_head);
1806        pr_debug("%s: stripe %llu\n", __func__,
1807                (unsigned long long)sh->sector);
1808
1809        for (i = disks; i--; ) {
1810                struct r5dev *dev = &sh->dev[i];
1811                /* Only process blocks that are known to be uptodate */
1812                if (test_bit(R5_InJournal, &dev->flags)) {
1813                        /*
1814                         * For this case, PAGE_SIZE must be equal to 4KB and
1815                         * page offset is zero.
1816                         */
1817                        off_srcs[count] = dev->offset;
1818                        xor_srcs[count++] = dev->orig_page;
1819                } else if (test_bit(R5_Wantdrain, &dev->flags)) {
1820                        off_srcs[count] = dev->offset;
1821                        xor_srcs[count++] = dev->page;
1822                }
1823        }
1824
1825        init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1826                          ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1827        tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1828                        RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1829
1830        return tx;
1831}
1832
1833static struct dma_async_tx_descriptor *
1834ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1835                struct dma_async_tx_descriptor *tx)
1836{
1837        struct page **blocks = to_addr_page(percpu, 0);
1838        unsigned int *offs = to_addr_offs(sh, percpu);
1839        int count;
1840        struct async_submit_ctl submit;
1841
1842        pr_debug("%s: stripe %llu\n", __func__,
1843                (unsigned long long)sh->sector);
1844
1845        count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN);
1846
1847        init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1848                          ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1849        tx = async_gen_syndrome(blocks, offs, count+2,
1850                        RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1851
1852        return tx;
1853}
1854
1855static struct dma_async_tx_descriptor *
1856ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1857{
1858        struct r5conf *conf = sh->raid_conf;
1859        int disks = sh->disks;
1860        int i;
1861        struct stripe_head *head_sh = sh;
1862
1863        pr_debug("%s: stripe %llu\n", __func__,
1864                (unsigned long long)sh->sector);
1865
1866        for (i = disks; i--; ) {
1867                struct r5dev *dev;
1868                struct bio *chosen;
1869
1870                sh = head_sh;
1871                if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1872                        struct bio *wbi;
1873
1874again:
1875                        dev = &sh->dev[i];
1876                        /*
1877                         * clear R5_InJournal, so when rewriting a page in
1878                         * journal, it is not skipped by r5l_log_stripe()
1879                         */
1880                        clear_bit(R5_InJournal, &dev->flags);
1881                        spin_lock_irq(&sh->stripe_lock);
1882                        chosen = dev->towrite;
1883                        dev->towrite = NULL;
1884                        sh->overwrite_disks = 0;
1885                        BUG_ON(dev->written);
1886                        wbi = dev->written = chosen;
1887                        spin_unlock_irq(&sh->stripe_lock);
1888                        WARN_ON(dev->page != dev->orig_page);
1889
1890                        while (wbi && wbi->bi_iter.bi_sector <
1891                                dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1892                                if (wbi->bi_opf & REQ_FUA)
1893                                        set_bit(R5_WantFUA, &dev->flags);
1894                                if (wbi->bi_opf & REQ_SYNC)
1895                                        set_bit(R5_SyncIO, &dev->flags);
1896                                if (bio_op(wbi) == REQ_OP_DISCARD)
1897                                        set_bit(R5_Discard, &dev->flags);
1898                                else {
1899                                        tx = async_copy_data(1, wbi, &dev->page,
1900                                                             dev->offset,
1901                                                             dev->sector, tx, sh,
1902                                                             r5c_is_writeback(conf->log));
1903                                        if (dev->page != dev->orig_page &&
1904                                            !r5c_is_writeback(conf->log)) {
1905                                                set_bit(R5_SkipCopy, &dev->flags);
1906                                                clear_bit(R5_UPTODATE, &dev->flags);
1907                                                clear_bit(R5_OVERWRITE, &dev->flags);
1908                                        }
1909                                }
1910                                wbi = r5_next_bio(conf, wbi, dev->sector);
1911                        }
1912
1913                        if (head_sh->batch_head) {
1914                                sh = list_first_entry(&sh->batch_list,
1915                                                      struct stripe_head,
1916                                                      batch_list);
1917                                if (sh == head_sh)
1918                                        continue;
1919                                goto again;
1920                        }
1921                }
1922        }
1923
1924        return tx;
1925}
1926
1927static void ops_complete_reconstruct(void *stripe_head_ref)
1928{
1929        struct stripe_head *sh = stripe_head_ref;
1930        int disks = sh->disks;
1931        int pd_idx = sh->pd_idx;
1932        int qd_idx = sh->qd_idx;
1933        int i;
1934        bool fua = false, sync = false, discard = false;
1935
1936        pr_debug("%s: stripe %llu\n", __func__,
1937                (unsigned long long)sh->sector);
1938
1939        for (i = disks; i--; ) {
1940                fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1941                sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1942                discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1943        }
1944
1945        for (i = disks; i--; ) {
1946                struct r5dev *dev = &sh->dev[i];
1947
1948                if (dev->written || i == pd_idx || i == qd_idx) {
1949                        if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1950                                set_bit(R5_UPTODATE, &dev->flags);
1951                                if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1952                                        set_bit(R5_Expanded, &dev->flags);
1953                        }
1954                        if (fua)
1955                                set_bit(R5_WantFUA, &dev->flags);
1956                        if (sync)
1957                                set_bit(R5_SyncIO, &dev->flags);
1958                }
1959        }
1960
1961        if (sh->reconstruct_state == reconstruct_state_drain_run)
1962                sh->reconstruct_state = reconstruct_state_drain_result;
1963        else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1964                sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1965        else {
1966                BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1967                sh->reconstruct_state = reconstruct_state_result;
1968        }
1969
1970        set_bit(STRIPE_HANDLE, &sh->state);
1971        raid5_release_stripe(sh);
1972}
1973
1974static void
1975ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1976                     struct dma_async_tx_descriptor *tx)
1977{
1978        int disks = sh->disks;
1979        struct page **xor_srcs;
1980        unsigned int *off_srcs;
1981        struct async_submit_ctl submit;
1982        int count, pd_idx = sh->pd_idx, i;
1983        struct page *xor_dest;
1984        unsigned int off_dest;
1985        int prexor = 0;
1986        unsigned long flags;
1987        int j = 0;
1988        struct stripe_head *head_sh = sh;
1989        int last_stripe;
1990
1991        pr_debug("%s: stripe %llu\n", __func__,
1992                (unsigned long long)sh->sector);
1993
1994        for (i = 0; i < sh->disks; i++) {
1995                if (pd_idx == i)
1996                        continue;
1997                if (!test_bit(R5_Discard, &sh->dev[i].flags))
1998                        break;
1999        }
2000        if (i >= sh->disks) {
2001                atomic_inc(&sh->count);
2002                set_bit(R5_Discard, &sh->dev[pd_idx].flags);
2003                ops_complete_reconstruct(sh);
2004                return;
2005        }
2006again:
2007        count = 0;
2008        xor_srcs = to_addr_page(percpu, j);
2009        off_srcs = to_addr_offs(sh, percpu);
2010        /* check if prexor is active which means only process blocks
2011         * that are part of a read-modify-write (written)
2012         */
2013        if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2014                prexor = 1;
2015                off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
2016                xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
2017                for (i = disks; i--; ) {
2018                        struct r5dev *dev = &sh->dev[i];
2019                        if (head_sh->dev[i].written ||
2020                            test_bit(R5_InJournal, &head_sh->dev[i].flags)) {
2021                                off_srcs[count] = dev->offset;
2022                                xor_srcs[count++] = dev->page;
2023                        }
2024                }
2025        } else {
2026                xor_dest = sh->dev[pd_idx].page;
2027                off_dest = sh->dev[pd_idx].offset;
2028                for (i = disks; i--; ) {
2029                        struct r5dev *dev = &sh->dev[i];
2030                        if (i != pd_idx) {
2031                                off_srcs[count] = dev->offset;
2032                                xor_srcs[count++] = dev->page;
2033                        }
2034                }
2035        }
2036
2037        /* 1/ if we prexor'd then the dest is reused as a source
2038         * 2/ if we did not prexor then we are redoing the parity
2039         * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
2040         * for the synchronous xor case
2041         */
2042        last_stripe = !head_sh->batch_head ||
2043                list_first_entry(&sh->batch_list,
2044                                 struct stripe_head, batch_list) == head_sh;
2045        if (last_stripe) {
2046                flags = ASYNC_TX_ACK |
2047                        (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
2048
2049                atomic_inc(&head_sh->count);
2050                init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
2051                                  to_addr_conv(sh, percpu, j));
2052        } else {
2053                flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
2054                init_async_submit(&submit, flags, tx, NULL, NULL,
2055                                  to_addr_conv(sh, percpu, j));
2056        }
2057
2058        if (unlikely(count == 1))
2059                tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
2060                                RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2061        else
2062                tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2063                                RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2064        if (!last_stripe) {
2065                j++;
2066                sh = list_first_entry(&sh->batch_list, struct stripe_head,
2067                                      batch_list);
2068                goto again;
2069        }
2070}
2071
2072static void
2073ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
2074                     struct dma_async_tx_descriptor *tx)
2075{
2076        struct async_submit_ctl submit;
2077        struct page **blocks;
2078        unsigned int *offs;
2079        int count, i, j = 0;
2080        struct stripe_head *head_sh = sh;
2081        int last_stripe;
2082        int synflags;
2083        unsigned long txflags;
2084
2085        pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
2086
2087        for (i = 0; i < sh->disks; i++) {
2088                if (sh->pd_idx == i || sh->qd_idx == i)
2089                        continue;
2090                if (!test_bit(R5_Discard, &sh->dev[i].flags))
2091                        break;
2092        }
2093        if (i >= sh->disks) {
2094                atomic_inc(&sh->count);
2095                set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2096                set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2097                ops_complete_reconstruct(sh);
2098                return;
2099        }
2100
2101again:
2102        blocks = to_addr_page(percpu, j);
2103        offs = to_addr_offs(sh, percpu);
2104
2105        if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2106                synflags = SYNDROME_SRC_WRITTEN;
2107                txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
2108        } else {
2109                synflags = SYNDROME_SRC_ALL;
2110                txflags = ASYNC_TX_ACK;
2111        }
2112
2113        count = set_syndrome_sources(blocks, offs, sh, synflags);
2114        last_stripe = !head_sh->batch_head ||
2115                list_first_entry(&sh->batch_list,
2116                                 struct stripe_head, batch_list) == head_sh;
2117
2118        if (last_stripe) {
2119                atomic_inc(&head_sh->count);
2120                init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
2121                                  head_sh, to_addr_conv(sh, percpu, j));
2122        } else
2123                init_async_submit(&submit, 0, tx, NULL, NULL,
2124                                  to_addr_conv(sh, percpu, j));
2125        tx = async_gen_syndrome(blocks, offs, count+2,
2126                        RAID5_STRIPE_SIZE(sh->raid_conf),  &submit);
2127        if (!last_stripe) {
2128                j++;
2129                sh = list_first_entry(&sh->batch_list, struct stripe_head,
2130                                      batch_list);
2131                goto again;
2132        }
2133}
2134
2135static void ops_complete_check(void *stripe_head_ref)
2136{
2137        struct stripe_head *sh = stripe_head_ref;
2138
2139        pr_debug("%s: stripe %llu\n", __func__,
2140                (unsigned long long)sh->sector);
2141
2142        sh->check_state = check_state_check_result;
2143        set_bit(STRIPE_HANDLE, &sh->state);
2144        raid5_release_stripe(sh);
2145}
2146
2147static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2148{
2149        int disks = sh->disks;
2150        int pd_idx = sh->pd_idx;
2151        int qd_idx = sh->qd_idx;
2152        struct page *xor_dest;
2153        unsigned int off_dest;
2154        struct page **xor_srcs = to_addr_page(percpu, 0);
2155        unsigned int *off_srcs = to_addr_offs(sh, percpu);
2156        struct dma_async_tx_descriptor *tx;
2157        struct async_submit_ctl submit;
2158        int count;
2159        int i;
2160
2161        pr_debug("%s: stripe %llu\n", __func__,
2162                (unsigned long long)sh->sector);
2163
2164        BUG_ON(sh->batch_head);
2165        count = 0;
2166        xor_dest = sh->dev[pd_idx].page;
2167        off_dest = sh->dev[pd_idx].offset;
2168        off_srcs[count] = off_dest;
2169        xor_srcs[count++] = xor_dest;
2170        for (i = disks; i--; ) {
2171                if (i == pd_idx || i == qd_idx)
2172                        continue;
2173                off_srcs[count] = sh->dev[i].offset;
2174                xor_srcs[count++] = sh->dev[i].page;
2175        }
2176
2177        init_async_submit(&submit, 0, NULL, NULL, NULL,
2178                          to_addr_conv(sh, percpu, 0));
2179        tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2180                           RAID5_STRIPE_SIZE(sh->raid_conf),
2181                           &sh->ops.zero_sum_result, &submit);
2182
2183        atomic_inc(&sh->count);
2184        init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2185        tx = async_trigger_callback(&submit);
2186}
2187
2188static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2189{
2190        struct page **srcs = to_addr_page(percpu, 0);
2191        unsigned int *offs = to_addr_offs(sh, percpu);
2192        struct async_submit_ctl submit;
2193        int count;
2194
2195        pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2196                (unsigned long long)sh->sector, checkp);
2197
2198        BUG_ON(sh->batch_head);
2199        count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL);
2200        if (!checkp)
2201                srcs[count] = NULL;
2202
2203        atomic_inc(&sh->count);
2204        init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2205                          sh, to_addr_conv(sh, percpu, 0));
2206        async_syndrome_val(srcs, offs, count+2,
2207                           RAID5_STRIPE_SIZE(sh->raid_conf),
2208                           &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit);
2209}
2210
2211static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2212{
2213        int overlap_clear = 0, i, disks = sh->disks;
2214        struct dma_async_tx_descriptor *tx = NULL;
2215        struct r5conf *conf = sh->raid_conf;
2216        int level = conf->level;
2217        struct raid5_percpu *percpu;
2218        unsigned long cpu;
2219
2220        cpu = get_cpu();
2221        percpu = per_cpu_ptr(conf->percpu, cpu);
2222        if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2223                ops_run_biofill(sh);
2224                overlap_clear++;
2225        }
2226
2227        if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2228                if (level < 6)
2229                        tx = ops_run_compute5(sh, percpu);
2230                else {
2231                        if (sh->ops.target2 < 0 || sh->ops.target < 0)
2232                                tx = ops_run_compute6_1(sh, percpu);
2233                        else
2234                                tx = ops_run_compute6_2(sh, percpu);
2235                }
2236                /* terminate the chain if reconstruct is not set to be run */
2237                if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2238                        async_tx_ack(tx);
2239        }
2240
2241        if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2242                if (level < 6)
2243                        tx = ops_run_prexor5(sh, percpu, tx);
2244                else
2245                        tx = ops_run_prexor6(sh, percpu, tx);
2246        }
2247
2248        if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2249                tx = ops_run_partial_parity(sh, percpu, tx);
2250
2251        if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2252                tx = ops_run_biodrain(sh, tx);
2253                overlap_clear++;
2254        }
2255
2256        if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2257                if (level < 6)
2258                        ops_run_reconstruct5(sh, percpu, tx);
2259                else
2260                        ops_run_reconstruct6(sh, percpu, tx);
2261        }
2262
2263        if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2264                if (sh->check_state == check_state_run)
2265                        ops_run_check_p(sh, percpu);
2266                else if (sh->check_state == check_state_run_q)
2267                        ops_run_check_pq(sh, percpu, 0);
2268                else if (sh->check_state == check_state_run_pq)
2269                        ops_run_check_pq(sh, percpu, 1);
2270                else
2271                        BUG();
2272        }
2273
2274        if (overlap_clear && !sh->batch_head)
2275                for (i = disks; i--; ) {
2276                        struct r5dev *dev = &sh->dev[i];
2277                        if (test_and_clear_bit(R5_Overlap, &dev->flags))
2278                                wake_up(&sh->raid_conf->wait_for_overlap);
2279                }
2280        put_cpu();
2281}
2282
2283static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2284{
2285#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2286        kfree(sh->pages);
2287#endif
2288        if (sh->ppl_page)
2289                __free_page(sh->ppl_page);
2290        kmem_cache_free(sc, sh);
2291}
2292
2293static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2294        int disks, struct r5conf *conf)
2295{
2296        struct stripe_head *sh;
2297        int i;
2298
2299        sh = kmem_cache_zalloc(sc, gfp);
2300        if (sh) {
2301                spin_lock_init(&sh->stripe_lock);
2302                spin_lock_init(&sh->batch_lock);
2303                INIT_LIST_HEAD(&sh->batch_list);
2304                INIT_LIST_HEAD(&sh->lru);
2305                INIT_LIST_HEAD(&sh->r5c);
2306                INIT_LIST_HEAD(&sh->log_list);
2307                atomic_set(&sh->count, 1);
2308                sh->raid_conf = conf;
2309                sh->log_start = MaxSector;
2310                for (i = 0; i < disks; i++) {
2311                        struct r5dev *dev = &sh->dev[i];
2312
2313                        bio_init(&dev->req, &dev->vec, 1);
2314                        bio_init(&dev->rreq, &dev->rvec, 1);
2315                }
2316
2317                if (raid5_has_ppl(conf)) {
2318                        sh->ppl_page = alloc_page(gfp);
2319                        if (!sh->ppl_page) {
2320                                free_stripe(sc, sh);
2321                                return NULL;
2322                        }
2323                }
2324#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2325                if (init_stripe_shared_pages(sh, conf, disks)) {
2326                        free_stripe(sc, sh);
2327                        return NULL;
2328                }
2329#endif
2330        }
2331        return sh;
2332}
2333static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2334{
2335        struct stripe_head *sh;
2336
2337        sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2338        if (!sh)
2339                return 0;
2340
2341        if (grow_buffers(sh, gfp)) {
2342                shrink_buffers(sh);
2343                free_stripe(conf->slab_cache, sh);
2344                return 0;
2345        }
2346        sh->hash_lock_index =
2347                conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2348        /* we just created an active stripe so... */
2349        atomic_inc(&conf->active_stripes);
2350
2351        raid5_release_stripe(sh);
2352        conf->max_nr_stripes++;
2353        return 1;
2354}
2355
2356static int grow_stripes(struct r5conf *conf, int num)
2357{
2358        struct kmem_cache *sc;
2359        size_t namelen = sizeof(conf->cache_name[0]);
2360        int devs = max(conf->raid_disks, conf->previous_raid_disks);
2361
2362        if (conf->mddev->gendisk)
2363                snprintf(conf->cache_name[0], namelen,
2364                        "raid%d-%s", conf->level, mdname(conf->mddev));
2365        else
2366                snprintf(conf->cache_name[0], namelen,
2367                        "raid%d-%p", conf->level, conf->mddev);
2368        snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2369
2370        conf->active_name = 0;
2371        sc = kmem_cache_create(conf->cache_name[conf->active_name],
2372                               sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2373                               0, 0, NULL);
2374        if (!sc)
2375                return 1;
2376        conf->slab_cache = sc;
2377        conf->pool_size = devs;
2378        while (num--)
2379                if (!grow_one_stripe(conf, GFP_KERNEL))
2380                        return 1;
2381
2382        return 0;
2383}
2384
2385/**
2386 * scribble_alloc - allocate percpu scribble buffer for required size
2387 *                  of the scribble region
2388 * @percpu: from for_each_present_cpu() of the caller
2389 * @num: total number of disks in the array
2390 * @cnt: scribble objs count for required size of the scribble region
2391 *
2392 * The scribble buffer size must be enough to contain:
2393 * 1/ a struct page pointer for each device in the array +2
2394 * 2/ room to convert each entry in (1) to its corresponding dma
2395 *    (dma_map_page()) or page (page_address()) address.
2396 *
2397 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2398 * calculate over all devices (not just the data blocks), using zeros in place
2399 * of the P and Q blocks.
2400 */
2401static int scribble_alloc(struct raid5_percpu *percpu,
2402                          int num, int cnt)
2403{
2404        size_t obj_size =
2405                sizeof(struct page *) * (num + 2) +
2406                sizeof(addr_conv_t) * (num + 2) +
2407                sizeof(unsigned int) * (num + 2);
2408        void *scribble;
2409
2410        /*
2411         * If here is in raid array suspend context, it is in memalloc noio
2412         * context as well, there is no potential recursive memory reclaim
2413         * I/Os with the GFP_KERNEL flag.
2414         */
2415        scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2416        if (!scribble)
2417                return -ENOMEM;
2418
2419        kvfree(percpu->scribble);
2420
2421        percpu->scribble = scribble;
2422        percpu->scribble_obj_size = obj_size;
2423        return 0;
2424}
2425
2426static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2427{
2428        unsigned long cpu;
2429        int err = 0;
2430
2431        /*
2432         * Never shrink. And mddev_suspend() could deadlock if this is called
2433         * from raid5d. In that case, scribble_disks and scribble_sectors
2434         * should equal to new_disks and new_sectors
2435         */
2436        if (conf->scribble_disks >= new_disks &&
2437            conf->scribble_sectors >= new_sectors)
2438                return 0;
2439        mddev_suspend(conf->mddev);
2440        get_online_cpus();
2441
2442        for_each_present_cpu(cpu) {
2443                struct raid5_percpu *percpu;
2444
2445                percpu = per_cpu_ptr(conf->percpu, cpu);
2446                err = scribble_alloc(percpu, new_disks,
2447                                     new_sectors / RAID5_STRIPE_SECTORS(conf));
2448                if (err)
2449                        break;
2450        }
2451
2452        put_online_cpus();
2453        mddev_resume(conf->mddev);
2454        if (!err) {
2455                conf->scribble_disks = new_disks;
2456                conf->scribble_sectors = new_sectors;
2457        }
2458        return err;
2459}
2460
2461static int resize_stripes(struct r5conf *conf, int newsize)
2462{
2463        /* Make all the stripes able to hold 'newsize' devices.
2464         * New slots in each stripe get 'page' set to a new page.
2465         *
2466         * This happens in stages:
2467         * 1/ create a new kmem_cache and allocate the required number of
2468         *    stripe_heads.
2469         * 2/ gather all the old stripe_heads and transfer the pages across
2470         *    to the new stripe_heads.  This will have the side effect of
2471         *    freezing the array as once all stripe_heads have been collected,
2472         *    no IO will be possible.  Old stripe heads are freed once their
2473         *    pages have been transferred over, and the old kmem_cache is
2474         *    freed when all stripes are done.
2475         * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2476         *    we simple return a failure status - no need to clean anything up.
2477         * 4/ allocate new pages for the new slots in the new stripe_heads.
2478         *    If this fails, we don't bother trying the shrink the
2479         *    stripe_heads down again, we just leave them as they are.
2480         *    As each stripe_head is processed the new one is released into
2481         *    active service.
2482         *
2483         * Once step2 is started, we cannot afford to wait for a write,
2484         * so we use GFP_NOIO allocations.
2485         */
2486        struct stripe_head *osh, *nsh;
2487        LIST_HEAD(newstripes);
2488        struct disk_info *ndisks;
2489        int err = 0;
2490        struct kmem_cache *sc;
2491        int i;
2492        int hash, cnt;
2493
2494        md_allow_write(conf->mddev);
2495
2496        /* Step 1 */
2497        sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2498                               sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2499                               0, 0, NULL);
2500        if (!sc)
2501                return -ENOMEM;
2502
2503        /* Need to ensure auto-resizing doesn't interfere */
2504        mutex_lock(&conf->cache_size_mutex);
2505
2506        for (i = conf->max_nr_stripes; i; i--) {
2507                nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2508                if (!nsh)
2509                        break;
2510
2511                list_add(&nsh->lru, &newstripes);
2512        }
2513        if (i) {
2514                /* didn't get enough, give up */
2515                while (!list_empty(&newstripes)) {
2516                        nsh = list_entry(newstripes.next, struct stripe_head, lru);
2517                        list_del(&nsh->lru);
2518                        free_stripe(sc, nsh);
2519                }
2520                kmem_cache_destroy(sc);
2521                mutex_unlock(&conf->cache_size_mutex);
2522                return -ENOMEM;
2523        }
2524        /* Step 2 - Must use GFP_NOIO now.
2525         * OK, we have enough stripes, start collecting inactive
2526         * stripes and copying them over
2527         */
2528        hash = 0;
2529        cnt = 0;
2530        list_for_each_entry(nsh, &newstripes, lru) {
2531                lock_device_hash_lock(conf, hash);
2532                wait_event_cmd(conf->wait_for_stripe,
2533                                    !list_empty(conf->inactive_list + hash),
2534                                    unlock_device_hash_lock(conf, hash),
2535                                    lock_device_hash_lock(conf, hash));
2536                osh = get_free_stripe(conf, hash);
2537                unlock_device_hash_lock(conf, hash);
2538
2539#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2540        for (i = 0; i < osh->nr_pages; i++) {
2541                nsh->pages[i] = osh->pages[i];
2542                osh->pages[i] = NULL;
2543        }
2544#endif
2545                for(i=0; i<conf->pool_size; i++) {
2546                        nsh->dev[i].page = osh->dev[i].page;
2547                        nsh->dev[i].orig_page = osh->dev[i].page;
2548                        nsh->dev[i].offset = osh->dev[i].offset;
2549                }
2550                nsh->hash_lock_index = hash;
2551                free_stripe(conf->slab_cache, osh);
2552                cnt++;
2553                if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2554                    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2555                        hash++;
2556                        cnt = 0;
2557                }
2558        }
2559        kmem_cache_destroy(conf->slab_cache);
2560
2561        /* Step 3.
2562         * At this point, we are holding all the stripes so the array
2563         * is completely stalled, so now is a good time to resize
2564         * conf->disks and the scribble region
2565         */
2566        ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2567        if (ndisks) {
2568                for (i = 0; i < conf->pool_size; i++)
2569                        ndisks[i] = conf->disks[i];
2570
2571                for (i = conf->pool_size; i < newsize; i++) {
2572                        ndisks[i].extra_page = alloc_page(GFP_NOIO);
2573                        if (!ndisks[i].extra_page)
2574                                err = -ENOMEM;
2575                }
2576
2577                if (err) {
2578                        for (i = conf->pool_size; i < newsize; i++)
2579                                if (ndisks[i].extra_page)
2580                                        put_page(ndisks[i].extra_page);
2581                        kfree(ndisks);
2582                } else {
2583                        kfree(conf->disks);
2584                        conf->disks = ndisks;
2585                }
2586        } else
2587                err = -ENOMEM;
2588
2589        conf->slab_cache = sc;
2590        conf->active_name = 1-conf->active_name;
2591
2592        /* Step 4, return new stripes to service */
2593        while(!list_empty(&newstripes)) {
2594                nsh = list_entry(newstripes.next, struct stripe_head, lru);
2595                list_del_init(&nsh->lru);
2596
2597#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2598                for (i = 0; i < nsh->nr_pages; i++) {
2599                        if (nsh->pages[i])
2600                                continue;
2601                        nsh->pages[i] = alloc_page(GFP_NOIO);
2602                        if (!nsh->pages[i])
2603                                err = -ENOMEM;
2604                }
2605
2606                for (i = conf->raid_disks; i < newsize; i++) {
2607                        if (nsh->dev[i].page)
2608                                continue;
2609                        nsh->dev[i].page = raid5_get_dev_page(nsh, i);
2610                        nsh->dev[i].orig_page = nsh->dev[i].page;
2611                        nsh->dev[i].offset = raid5_get_page_offset(nsh, i);
2612                }
2613#else
2614                for (i=conf->raid_disks; i < newsize; i++)
2615                        if (nsh->dev[i].page == NULL) {
2616                                struct page *p = alloc_page(GFP_NOIO);
2617                                nsh->dev[i].page = p;
2618                                nsh->dev[i].orig_page = p;
2619                                nsh->dev[i].offset = 0;
2620                                if (!p)
2621                                        err = -ENOMEM;
2622                        }
2623#endif
2624                raid5_release_stripe(nsh);
2625        }
2626        /* critical section pass, GFP_NOIO no longer needed */
2627
2628        if (!err)
2629                conf->pool_size = newsize;
2630        mutex_unlock(&conf->cache_size_mutex);
2631
2632        return err;
2633}
2634
2635static int drop_one_stripe(struct r5conf *conf)
2636{
2637        struct stripe_head *sh;
2638        int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2639
2640        spin_lock_irq(conf->hash_locks + hash);
2641        sh = get_free_stripe(conf, hash);
2642        spin_unlock_irq(conf->hash_locks + hash);
2643        if (!sh)
2644                return 0;
2645        BUG_ON(atomic_read(&sh->count));
2646        shrink_buffers(sh);
2647        free_stripe(conf->slab_cache, sh);
2648        atomic_dec(&conf->active_stripes);
2649        conf->max_nr_stripes--;
2650        return 1;
2651}
2652
2653static void shrink_stripes(struct r5conf *conf)
2654{
2655        while (conf->max_nr_stripes &&
2656               drop_one_stripe(conf))
2657                ;
2658
2659        kmem_cache_destroy(conf->slab_cache);
2660        conf->slab_cache = NULL;
2661}
2662
2663static void raid5_end_read_request(struct bio * bi)
2664{
2665        struct stripe_head *sh = bi->bi_private;
2666        struct r5conf *conf = sh->raid_conf;
2667        int disks = sh->disks, i;
2668        char b[BDEVNAME_SIZE];
2669        struct md_rdev *rdev = NULL;
2670        sector_t s;
2671
2672        for (i=0 ; i<disks; i++)
2673                if (bi == &sh->dev[i].req)
2674                        break;
2675
2676        pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2677                (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2678                bi->bi_status);
2679        if (i == disks) {
2680                bio_reset(bi);
2681                BUG();
2682                return;
2683        }
2684        if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2685                /* If replacement finished while this request was outstanding,
2686                 * 'replacement' might be NULL already.
2687                 * In that case it moved down to 'rdev'.
2688                 * rdev is not removed until all requests are finished.
2689                 */
2690                rdev = conf->disks[i].replacement;
2691        if (!rdev)
2692                rdev = conf->disks[i].rdev;
2693
2694        if (use_new_offset(conf, sh))
2695                s = sh->sector + rdev->new_data_offset;
2696        else
2697                s = sh->sector + rdev->data_offset;
2698        if (!bi->bi_status) {
2699                set_bit(R5_UPTODATE, &sh->dev[i].flags);
2700                if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2701                        /* Note that this cannot happen on a
2702                         * replacement device.  We just fail those on
2703                         * any error
2704                         */
2705                        pr_info_ratelimited(
2706                                "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2707                                mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
2708                                (unsigned long long)s,
2709                                bdevname(rdev->bdev, b));
2710                        atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
2711                        clear_bit(R5_ReadError, &sh->dev[i].flags);
2712                        clear_bit(R5_ReWrite, &sh->dev[i].flags);
2713                } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2714                        clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2715
2716                if (test_bit(R5_InJournal, &sh->dev[i].flags))
2717                        /*
2718                         * end read for a page in journal, this
2719                         * must be preparing for prexor in rmw
2720                         */
2721                        set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2722
2723                if (atomic_read(&rdev->read_errors))
2724                        atomic_set(&rdev->read_errors, 0);
2725        } else {
2726                const char *bdn = bdevname(rdev->bdev, b);
2727                int retry = 0;
2728                int set_bad = 0;
2729
2730                clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2731                if (!(bi->bi_status == BLK_STS_PROTECTION))
2732                        atomic_inc(&rdev->read_errors);
2733                if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2734                        pr_warn_ratelimited(
2735                                "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2736                                mdname(conf->mddev),
2737                                (unsigned long long)s,
2738                                bdn);
2739                else if (conf->mddev->degraded >= conf->max_degraded) {
2740                        set_bad = 1;
2741                        pr_warn_ratelimited(
2742                                "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2743                                mdname(conf->mddev),
2744                                (unsigned long long)s,
2745                                bdn);
2746                } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2747                        /* Oh, no!!! */
2748                        set_bad = 1;
2749                        pr_warn_ratelimited(
2750                                "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2751                                mdname(conf->mddev),
2752                                (unsigned long long)s,
2753                                bdn);
2754                } else if (atomic_read(&rdev->read_errors)
2755                         > conf->max_nr_stripes) {
2756                        if (!test_bit(Faulty, &rdev->flags)) {
2757                                pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2758                                    mdname(conf->mddev),
2759                                    atomic_read(&rdev->read_errors),
2760                                    conf->max_nr_stripes);
2761                                pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2762                                    mdname(conf->mddev), bdn);
2763                        }
2764                } else
2765                        retry = 1;
2766                if (set_bad && test_bit(In_sync, &rdev->flags)
2767                    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2768                        retry = 1;
2769                if (retry)
2770                        if (sh->qd_idx >= 0 && sh->pd_idx == i)
2771                                set_bit(R5_ReadError, &sh->dev[i].flags);
2772                        else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2773                                set_bit(R5_ReadError, &sh->dev[i].flags);
2774                                clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2775                        } else
2776                                set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2777                else {
2778                        clear_bit(R5_ReadError, &sh->dev[i].flags);
2779                        clear_bit(R5_ReWrite, &sh->dev[i].flags);
2780                        if (!(set_bad
2781                              && test_bit(In_sync, &rdev->flags)
2782                              && rdev_set_badblocks(
2783                                      rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
2784                                md_error(conf->mddev, rdev);
2785                }
2786        }
2787        rdev_dec_pending(rdev, conf->mddev);
2788        bio_reset(bi);
2789        clear_bit(R5_LOCKED, &sh->dev[i].flags);
2790        set_bit(STRIPE_HANDLE, &sh->state);
2791        raid5_release_stripe(sh);
2792}
2793
2794static void raid5_end_write_request(struct bio *bi)
2795{
2796        struct stripe_head *sh = bi->bi_private;
2797        struct r5conf *conf = sh->raid_conf;
2798        int disks = sh->disks, i;
2799        struct md_rdev *rdev;
2800        sector_t first_bad;
2801        int bad_sectors;
2802        int replacement = 0;
2803
2804        for (i = 0 ; i < disks; i++) {
2805                if (bi == &sh->dev[i].req) {
2806                        rdev = conf->disks[i].rdev;
2807                        break;
2808                }
2809                if (bi == &sh->dev[i].rreq) {
2810                        rdev = conf->disks[i].replacement;
2811                        if (rdev)
2812                                replacement = 1;
2813                        else
2814                                /* rdev was removed and 'replacement'
2815                                 * replaced it.  rdev is not removed
2816                                 * until all requests are finished.
2817                                 */
2818                                rdev = conf->disks[i].rdev;
2819                        break;
2820                }
2821        }
2822        pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2823                (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2824                bi->bi_status);
2825        if (i == disks) {
2826                bio_reset(bi);
2827                BUG();
2828                return;
2829        }
2830
2831        if (replacement) {
2832                if (bi->bi_status)
2833                        md_error(conf->mddev, rdev);
2834                else if (is_badblock(rdev, sh->sector,
2835                                     RAID5_STRIPE_SECTORS(conf),
2836                                     &first_bad, &bad_sectors))
2837                        set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2838        } else {
2839                if (bi->bi_status) {
2840                        set_bit(STRIPE_DEGRADED, &sh->state);
2841                        set_bit(WriteErrorSeen, &rdev->flags);
2842                        set_bit(R5_WriteError, &sh->dev[i].flags);
2843                        if (!test_and_set_bit(WantReplacement, &rdev->flags))
2844                                set_bit(MD_RECOVERY_NEEDED,
2845                                        &rdev->mddev->recovery);
2846                } else if (is_badblock(rdev, sh->sector,
2847                                       RAID5_STRIPE_SECTORS(conf),
2848                                       &first_bad, &bad_sectors)) {
2849                        set_bit(R5_MadeGood, &sh->dev[i].flags);
2850                        if (test_bit(R5_ReadError, &sh->dev[i].flags))
2851                                /* That was a successful write so make
2852                                 * sure it looks like we already did
2853                                 * a re-write.
2854                                 */
2855                                set_bit(R5_ReWrite, &sh->dev[i].flags);
2856                }
2857        }
2858        rdev_dec_pending(rdev, conf->mddev);
2859
2860        if (sh->batch_head && bi->bi_status && !replacement)
2861                set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2862
2863        bio_reset(bi);
2864        if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2865                clear_bit(R5_LOCKED, &sh->dev[i].flags);
2866        set_bit(STRIPE_HANDLE, &sh->state);
2867        raid5_release_stripe(sh);
2868
2869        if (sh->batch_head && sh != sh->batch_head)
2870                raid5_release_stripe(sh->batch_head);
2871}
2872
2873static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2874{
2875        char b[BDEVNAME_SIZE];
2876        struct r5conf *conf = mddev->private;
2877        unsigned long flags;
2878        pr_debug("raid456: error called\n");
2879
2880        spin_lock_irqsave(&conf->device_lock, flags);
2881
2882        if (test_bit(In_sync, &rdev->flags) &&
2883            mddev->degraded == conf->max_degraded) {
2884                /*
2885                 * Don't allow to achieve failed state
2886                 * Don't try to recover this device
2887                 */
2888                conf->recovery_disabled = mddev->recovery_disabled;
2889                spin_unlock_irqrestore(&conf->device_lock, flags);
2890                return;
2891        }
2892
2893        set_bit(Faulty, &rdev->flags);
2894        clear_bit(In_sync, &rdev->flags);
2895        mddev->degraded = raid5_calc_degraded(conf);
2896        spin_unlock_irqrestore(&conf->device_lock, flags);
2897        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2898
2899        set_bit(Blocked, &rdev->flags);
2900        set_mask_bits(&mddev->sb_flags, 0,
2901                      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2902        pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2903                "md/raid:%s: Operation continuing on %d devices.\n",
2904                mdname(mddev),
2905                bdevname(rdev->bdev, b),
2906                mdname(mddev),
2907                conf->raid_disks - mddev->degraded);
2908        r5c_update_on_rdev_error(mddev, rdev);
2909}
2910
2911/*
2912 * Input: a 'big' sector number,
2913 * Output: index of the data and parity disk, and the sector # in them.
2914 */
2915sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2916                              int previous, int *dd_idx,
2917                              struct stripe_head *sh)
2918{
2919        sector_t stripe, stripe2;
2920        sector_t chunk_number;
2921        unsigned int chunk_offset;
2922        int pd_idx, qd_idx;
2923        int ddf_layout = 0;
2924        sector_t new_sector;
2925        int algorithm = previous ? conf->prev_algo
2926                                 : conf->algorithm;
2927        int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2928                                         : conf->chunk_sectors;
2929        int raid_disks = previous ? conf->previous_raid_disks
2930                                  : conf->raid_disks;
2931        int data_disks = raid_disks - conf->max_degraded;
2932
2933        /* First compute the information on this sector */
2934
2935        /*
2936         * Compute the chunk number and the sector offset inside the chunk
2937         */
2938        chunk_offset = sector_div(r_sector, sectors_per_chunk);
2939        chunk_number = r_sector;
2940
2941        /*
2942         * Compute the stripe number
2943         */
2944        stripe = chunk_number;
2945        *dd_idx = sector_div(stripe, data_disks);
2946        stripe2 = stripe;
2947        /*
2948         * Select the parity disk based on the user selected algorithm.
2949         */
2950        pd_idx = qd_idx = -1;
2951        switch(conf->level) {
2952        case 4:
2953                pd_idx = data_disks;
2954                break;
2955        case 5:
2956                switch (algorithm) {
2957                case ALGORITHM_LEFT_ASYMMETRIC:
2958                        pd_idx = data_disks - sector_div(stripe2, raid_disks);
2959                        if (*dd_idx >= pd_idx)
2960                                (*dd_idx)++;
2961                        break;
2962                case ALGORITHM_RIGHT_ASYMMETRIC:
2963                        pd_idx = sector_div(stripe2, raid_disks);
2964                        if (*dd_idx >= pd_idx)
2965                                (*dd_idx)++;
2966                        break;
2967                case ALGORITHM_LEFT_SYMMETRIC:
2968                        pd_idx = data_disks - sector_div(stripe2, raid_disks);
2969                        *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2970                        break;
2971                case ALGORITHM_RIGHT_SYMMETRIC:
2972                        pd_idx = sector_div(stripe2, raid_disks);
2973                        *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2974                        break;
2975                case ALGORITHM_PARITY_0:
2976                        pd_idx = 0;
2977                        (*dd_idx)++;
2978                        break;
2979                case ALGORITHM_PARITY_N:
2980                        pd_idx = data_disks;
2981                        break;
2982                default:
2983                        BUG();
2984                }
2985                break;
2986        case 6:
2987
2988                switch (algorithm) {
2989                case ALGORITHM_LEFT_ASYMMETRIC:
2990                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2991                        qd_idx = pd_idx + 1;
2992                        if (pd_idx == raid_disks-1) {
2993                                (*dd_idx)++;    /* Q D D D P */
2994                                qd_idx = 0;
2995                        } else if (*dd_idx >= pd_idx)
2996                                (*dd_idx) += 2; /* D D P Q D */
2997                        break;
2998                case ALGORITHM_RIGHT_ASYMMETRIC:
2999                        pd_idx = sector_div(stripe2, raid_disks);
3000                        qd_idx = pd_idx + 1;
3001                        if (pd_idx == raid_disks-1) {
3002                                (*dd_idx)++;    /* Q D D D P */
3003                                qd_idx = 0;
3004                        } else if (*dd_idx >= pd_idx)
3005                                (*dd_idx) += 2; /* D D P Q D */
3006                        break;
3007                case ALGORITHM_LEFT_SYMMETRIC:
3008                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3009                        qd_idx = (pd_idx + 1) % raid_disks;
3010                        *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3011                        break;
3012                case ALGORITHM_RIGHT_SYMMETRIC:
3013                        pd_idx = sector_div(stripe2, raid_disks);
3014                        qd_idx = (pd_idx + 1) % raid_disks;
3015                        *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3016                        break;
3017
3018                case ALGORITHM_PARITY_0:
3019                        pd_idx = 0;
3020                        qd_idx = 1;
3021                        (*dd_idx) += 2;
3022                        break;
3023                case ALGORITHM_PARITY_N:
3024                        pd_idx = data_disks;
3025                        qd_idx = data_disks + 1;
3026                        break;
3027
3028                case ALGORITHM_ROTATING_ZERO_RESTART:
3029                        /* Exactly the same as RIGHT_ASYMMETRIC, but or
3030                         * of blocks for computing Q is different.
3031                         */
3032                        pd_idx = sector_div(stripe2, raid_disks);
3033                        qd_idx = pd_idx + 1;
3034                        if (pd_idx == raid_disks-1) {
3035                                (*dd_idx)++;    /* Q D D D P */
3036                                qd_idx = 0;
3037                        } else if (*dd_idx >= pd_idx)
3038                                (*dd_idx) += 2; /* D D P Q D */
3039                        ddf_layout = 1;
3040                        break;
3041
3042                case ALGORITHM_ROTATING_N_RESTART:
3043                        /* Same a left_asymmetric, by first stripe is
3044                         * D D D P Q  rather than
3045                         * Q D D D P
3046                         */
3047                        stripe2 += 1;
3048                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3049                        qd_idx = pd_idx + 1;
3050                        if (pd_idx == raid_disks-1) {
3051                                (*dd_idx)++;    /* Q D D D P */
3052                                qd_idx = 0;
3053                        } else if (*dd_idx >= pd_idx)
3054                                (*dd_idx) += 2; /* D D P Q D */
3055                        ddf_layout = 1;
3056                        break;
3057
3058                case ALGORITHM_ROTATING_N_CONTINUE:
3059                        /* Same as left_symmetric but Q is before P */
3060                        pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3061                        qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
3062                        *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3063                        ddf_layout = 1;
3064                        break;
3065
3066                case ALGORITHM_LEFT_ASYMMETRIC_6:
3067                        /* RAID5 left_asymmetric, with Q on last device */
3068                        pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3069                        if (*dd_idx >= pd_idx)
3070                                (*dd_idx)++;
3071                        qd_idx = raid_disks - 1;
3072                        break;
3073
3074                case ALGORITHM_RIGHT_ASYMMETRIC_6:
3075                        pd_idx = sector_div(stripe2, raid_disks-1);
3076                        if (*dd_idx >= pd_idx)
3077                                (*dd_idx)++;
3078                        qd_idx = raid_disks - 1;
3079                        break;
3080
3081                case ALGORITHM_LEFT_SYMMETRIC_6:
3082                        pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3083                        *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3084                        qd_idx = raid_disks - 1;
3085                        break;
3086
3087                case ALGORITHM_RIGHT_SYMMETRIC_6:
3088                        pd_idx = sector_div(stripe2, raid_disks-1);
3089                        *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3090                        qd_idx = raid_disks - 1;
3091                        break;
3092
3093                case ALGORITHM_PARITY_0_6:
3094                        pd_idx = 0;
3095                        (*dd_idx)++;
3096                        qd_idx = raid_disks - 1;
3097                        break;
3098
3099                default:
3100                        BUG();
3101                }
3102                break;
3103        }
3104
3105        if (sh) {
3106                sh->pd_idx = pd_idx;
3107                sh->qd_idx = qd_idx;
3108                sh->ddf_layout = ddf_layout;
3109        }
3110        /*
3111         * Finally, compute the new sector number
3112         */
3113        new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
3114        return new_sector;
3115}
3116
3117sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
3118{
3119        struct r5conf *conf = sh->raid_conf;
3120        int raid_disks = sh->disks;
3121        int data_disks = raid_disks - conf->max_degraded;
3122        sector_t new_sector = sh->sector, check;
3123        int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3124                                         : conf->chunk_sectors;
3125        int algorithm = previous ? conf->prev_algo
3126                                 : conf->algorithm;
3127        sector_t stripe;
3128        int chunk_offset;
3129        sector_t chunk_number;
3130        int dummy1, dd_idx = i;
3131        sector_t r_sector;
3132        struct stripe_head sh2;
3133
3134        chunk_offset = sector_div(new_sector, sectors_per_chunk);
3135        stripe = new_sector;
3136
3137        if (i == sh->pd_idx)
3138                return 0;
3139        switch(conf->level) {
3140        case 4: break;
3141        case 5:
3142                switch (algorithm) {
3143                case ALGORITHM_LEFT_ASYMMETRIC:
3144                case ALGORITHM_RIGHT_ASYMMETRIC:
3145                        if (i > sh->pd_idx)
3146                                i--;
3147                        break;
3148                case ALGORITHM_LEFT_SYMMETRIC:
3149                case ALGORITHM_RIGHT_SYMMETRIC:
3150                        if (i < sh->pd_idx)
3151                                i += raid_disks;
3152                        i -= (sh->pd_idx + 1);
3153                        break;
3154                case ALGORITHM_PARITY_0:
3155                        i -= 1;
3156                        break;
3157                case ALGORITHM_PARITY_N:
3158                        break;
3159                default:
3160                        BUG();
3161                }
3162                break;
3163        case 6:
3164                if (i == sh->qd_idx)
3165                        return 0; /* It is the Q disk */
3166                switch (algorithm) {
3167                case ALGORITHM_LEFT_ASYMMETRIC:
3168                case ALGORITHM_RIGHT_ASYMMETRIC:
3169                case ALGORITHM_ROTATING_ZERO_RESTART:
3170                case ALGORITHM_ROTATING_N_RESTART:
3171                        if (sh->pd_idx == raid_disks-1)
3172                                i--;    /* Q D D D P */
3173                        else if (i > sh->pd_idx)
3174                                i -= 2; /* D D P Q D */
3175                        break;
3176                case ALGORITHM_LEFT_SYMMETRIC:
3177                case ALGORITHM_RIGHT_SYMMETRIC:
3178                        if (sh->pd_idx == raid_disks-1)
3179                                i--; /* Q D D D P */
3180                        else {
3181                                /* D D P Q D */
3182                                if (i < sh->pd_idx)
3183                                        i += raid_disks;
3184                                i -= (sh->pd_idx + 2);
3185                        }
3186                        break;
3187                case ALGORITHM_PARITY_0:
3188                        i -= 2;
3189                        break;
3190                case ALGORITHM_PARITY_N:
3191                        break;
3192                case ALGORITHM_ROTATING_N_CONTINUE:
3193                        /* Like left_symmetric, but P is before Q */
3194                        if (sh->pd_idx == 0)
3195                                i--;    /* P D D D Q */
3196                        else {
3197                                /* D D Q P D */
3198                                if (i < sh->pd_idx)
3199                                        i += raid_disks;
3200                                i -= (sh->pd_idx + 1);
3201                        }
3202                        break;
3203                case ALGORITHM_LEFT_ASYMMETRIC_6:
3204                case ALGORITHM_RIGHT_ASYMMETRIC_6:
3205                        if (i > sh->pd_idx)
3206                                i--;
3207                        break;
3208                case ALGORITHM_LEFT_SYMMETRIC_6:
3209                case ALGORITHM_RIGHT_SYMMETRIC_6:
3210                        if (i < sh->pd_idx)
3211                                i += data_disks + 1;
3212                        i -= (sh->pd_idx + 1);
3213                        break;
3214                case ALGORITHM_PARITY_0_6:
3215                        i -= 1;
3216                        break;
3217                default:
3218                        BUG();
3219                }
3220                break;
3221        }
3222
3223        chunk_number = stripe * data_disks + i;
3224        r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3225
3226        check = raid5_compute_sector(conf, r_sector,
3227                                     previous, &dummy1, &sh2);
3228        if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3229                || sh2.qd_idx != sh->qd_idx) {
3230                pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3231                        mdname(conf->mddev));
3232                return 0;
3233        }
3234        return r_sector;
3235}
3236
3237/*
3238 * There are cases where we want handle_stripe_dirtying() and
3239 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3240 *
3241 * This function checks whether we want to delay the towrite. Specifically,
3242 * we delay the towrite when:
3243 *
3244 *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3245 *      stripe has data in journal (for other devices).
3246 *
3247 *      In this case, when reading data for the non-overwrite dev, it is
3248 *      necessary to handle complex rmw of write back cache (prexor with
3249 *      orig_page, and xor with page). To keep read path simple, we would
3250 *      like to flush data in journal to RAID disks first, so complex rmw
3251 *      is handled in the write patch (handle_stripe_dirtying).
3252 *
3253 *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3254 *
3255 *      It is important to be able to flush all stripes in raid5-cache.
3256 *      Therefore, we need reserve some space on the journal device for
3257 *      these flushes. If flush operation includes pending writes to the
3258 *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3259 *      for the flush out. If we exclude these pending writes from flush
3260 *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3261 *      Therefore, excluding pending writes in these cases enables more
3262 *      efficient use of the journal device.
3263 *
3264 *      Note: To make sure the stripe makes progress, we only delay
3265 *      towrite for stripes with data already in journal (injournal > 0).
3266 *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3267 *      no_space_stripes list.
3268 *
3269 *   3. during journal failure
3270 *      In journal failure, we try to flush all cached data to raid disks
3271 *      based on data in stripe cache. The array is read-only to upper
3272 *      layers, so we would skip all pending writes.
3273 *
3274 */
3275static inline bool delay_towrite(struct r5conf *conf,
3276                                 struct r5dev *dev,
3277                                 struct stripe_head_state *s)
3278{
3279        /* case 1 above */
3280        if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3281            !test_bit(R5_Insync, &dev->flags) && s->injournal)
3282                return true;
3283        /* case 2 above */
3284        if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3285            s->injournal > 0)
3286                return true;
3287        /* case 3 above */
3288        if (s->log_failed && s->injournal)
3289                return true;
3290        return false;
3291}
3292
3293static void
3294schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3295                         int rcw, int expand)
3296{
3297        int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3298        struct r5conf *conf = sh->raid_conf;
3299        int level = conf->level;
3300
3301        if (rcw) {
3302                /*
3303                 * In some cases, handle_stripe_dirtying initially decided to
3304                 * run rmw and allocates extra page for prexor. However, rcw is
3305                 * cheaper later on. We need to free the extra page now,
3306                 * because we won't be able to do that in ops_complete_prexor().
3307                 */
3308                r5c_release_extra_page(sh);
3309
3310                for (i = disks; i--; ) {
3311                        struct r5dev *dev = &sh->dev[i];
3312
3313                        if (dev->towrite && !delay_towrite(conf, dev, s)) {
3314                                set_bit(R5_LOCKED, &dev->flags);
3315                                set_bit(R5_Wantdrain, &dev->flags);
3316                                if (!expand)
3317                                        clear_bit(R5_UPTODATE, &dev->flags);
3318                                s->locked++;
3319                        } else if (test_bit(R5_InJournal, &dev->flags)) {
3320                                set_bit(R5_LOCKED, &dev->flags);
3321                                s->locked++;
3322                        }
3323                }
3324                /* if we are not expanding this is a proper write request, and
3325                 * there will be bios with new data to be drained into the
3326                 * stripe cache
3327                 */
3328                if (!expand) {
3329                        if (!s->locked)
3330                                /* False alarm, nothing to do */
3331                                return;
3332                        sh->reconstruct_state = reconstruct_state_drain_run;
3333                        set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3334                } else
3335                        sh->reconstruct_state = reconstruct_state_run;
3336
3337                set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3338
3339                if (s->locked + conf->max_degraded == disks)
3340                        if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3341                                atomic_inc(&conf->pending_full_writes);
3342        } else {
3343                BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3344                        test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3345                BUG_ON(level == 6 &&
3346                        (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3347                           test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3348
3349                for (i = disks; i--; ) {
3350                        struct r5dev *dev = &sh->dev[i];
3351                        if (i == pd_idx || i == qd_idx)
3352                                continue;
3353
3354                        if (dev->towrite &&
3355                            (test_bit(R5_UPTODATE, &dev->flags) ||
3356                             test_bit(R5_Wantcompute, &dev->flags))) {
3357                                set_bit(R5_Wantdrain, &dev->flags);
3358                                set_bit(R5_LOCKED, &dev->flags);
3359                                clear_bit(R5_UPTODATE, &dev->flags);
3360                                s->locked++;
3361                        } else if (test_bit(R5_InJournal, &dev->flags)) {
3362                                set_bit(R5_LOCKED, &dev->flags);
3363                                s->locked++;
3364                        }
3365                }
3366                if (!s->locked)
3367                        /* False alarm - nothing to do */
3368                        return;
3369                sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3370                set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3371                set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3372                set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3373        }
3374
3375        /* keep the parity disk(s) locked while asynchronous operations
3376         * are in flight
3377         */
3378        set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3379        clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3380        s->locked++;
3381
3382        if (level == 6) {
3383                int qd_idx = sh->qd_idx;
3384                struct r5dev *dev = &sh->dev[qd_idx];
3385
3386                set_bit(R5_LOCKED, &dev->flags);
3387                clear_bit(R5_UPTODATE, &dev->flags);
3388                s->locked++;
3389        }
3390
3391        if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3392            test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3393            !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3394            test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3395                set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3396
3397        pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3398                __func__, (unsigned long long)sh->sector,
3399                s->locked, s->ops_request);
3400}
3401
3402/*
3403 * Each stripe/dev can have one or more bion attached.
3404 * toread/towrite point to the first in a chain.
3405 * The bi_next chain must be in order.
3406 */
3407static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3408                          int forwrite, int previous)
3409{
3410        struct bio **bip;
3411        struct r5conf *conf = sh->raid_conf;
3412        int firstwrite=0;
3413
3414        pr_debug("adding bi b#%llu to stripe s#%llu\n",
3415                (unsigned long long)bi->bi_iter.bi_sector,
3416                (unsigned long long)sh->sector);
3417
3418        spin_lock_irq(&sh->stripe_lock);
3419        sh->dev[dd_idx].write_hint = bi->bi_write_hint;
3420        /* Don't allow new IO added to stripes in batch list */
3421        if (sh->batch_head)
3422                goto overlap;
3423        if (forwrite) {
3424                bip = &sh->dev[dd_idx].towrite;
3425                if (*bip == NULL)
3426                        firstwrite = 1;
3427        } else
3428                bip = &sh->dev[dd_idx].toread;
3429        while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3430                if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3431                        goto overlap;
3432                bip = & (*bip)->bi_next;
3433        }
3434        if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3435                goto overlap;
3436
3437        if (forwrite && raid5_has_ppl(conf)) {
3438                /*
3439                 * With PPL only writes to consecutive data chunks within a
3440                 * stripe are allowed because for a single stripe_head we can
3441                 * only have one PPL entry at a time, which describes one data
3442                 * range. Not really an overlap, but wait_for_overlap can be
3443                 * used to handle this.
3444                 */
3445                sector_t sector;
3446                sector_t first = 0;
3447                sector_t last = 0;
3448                int count = 0;
3449                int i;
3450
3451                for (i = 0; i < sh->disks; i++) {
3452                        if (i != sh->pd_idx &&
3453                            (i == dd_idx || sh->dev[i].towrite)) {
3454                                sector = sh->dev[i].sector;
3455                                if (count == 0 || sector < first)
3456                                        first = sector;
3457                                if (sector > last)
3458                                        last = sector;
3459                                count++;
3460                        }
3461                }
3462
3463                if (first + conf->chunk_sectors * (count - 1) != last)
3464                        goto overlap;
3465        }
3466
3467        if (!forwrite || previous)
3468                clear_bit(STRIPE_BATCH_READY, &sh->state);
3469
3470        BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3471        if (*bip)
3472                bi->bi_next = *bip;
3473        *bip = bi;
3474        bio_inc_remaining(bi);
3475        md_write_inc(conf->mddev, bi);
3476
3477        if (forwrite) {
3478                /* check if page is covered */
3479                sector_t sector = sh->dev[dd_idx].sector;
3480                for (bi=sh->dev[dd_idx].towrite;
3481                     sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
3482                             bi && bi->bi_iter.bi_sector <= sector;
3483                     bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
3484                        if (bio_end_sector(bi) >= sector)
3485                                sector = bio_end_sector(bi);
3486                }
3487                if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
3488                        if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3489                                sh->overwrite_disks++;
3490        }
3491
3492        pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3493                (unsigned long long)(*bip)->bi_iter.bi_sector,
3494                (unsigned long long)sh->sector, dd_idx);
3495
3496        if (conf->mddev->bitmap && firstwrite) {
3497                /* Cannot hold spinlock over bitmap_startwrite,
3498                 * but must ensure this isn't added to a batch until
3499                 * we have added to the bitmap and set bm_seq.
3500                 * So set STRIPE_BITMAP_PENDING to prevent
3501                 * batching.
3502                 * If multiple add_stripe_bio() calls race here they
3503                 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3504                 * to complete "bitmap_startwrite" gets to set
3505                 * STRIPE_BIT_DELAY.  This is important as once a stripe
3506                 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3507                 * any more.
3508                 */
3509                set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3510                spin_unlock_irq(&sh->stripe_lock);
3511                md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3512                                     RAID5_STRIPE_SECTORS(conf), 0);
3513                spin_lock_irq(&sh->stripe_lock);
3514                clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3515                if (!sh->batch_head) {
3516                        sh->bm_seq = conf->seq_flush+1;
3517                        set_bit(STRIPE_BIT_DELAY, &sh->state);
3518                }
3519        }
3520        spin_unlock_irq(&sh->stripe_lock);
3521
3522        if (stripe_can_batch(sh))
3523                stripe_add_to_batch_list(conf, sh);
3524        return 1;
3525
3526 overlap:
3527        set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3528        spin_unlock_irq(&sh->stripe_lock);
3529        return 0;
3530}
3531
3532static void end_reshape(struct r5conf *conf);
3533
3534static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3535                            struct stripe_head *sh)
3536{
3537        int sectors_per_chunk =
3538                previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3539        int dd_idx;
3540        int chunk_offset = sector_div(stripe, sectors_per_chunk);
3541        int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3542
3543        raid5_compute_sector(conf,
3544                             stripe * (disks - conf->max_degraded)
3545                             *sectors_per_chunk + chunk_offset,
3546                             previous,
3547                             &dd_idx, sh);
3548}
3549
3550static void
3551handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3552                     struct stripe_head_state *s, int disks)
3553{
3554        int i;
3555        BUG_ON(sh->batch_head);
3556        for (i = disks; i--; ) {
3557                struct bio *bi;
3558                int bitmap_end = 0;
3559
3560                if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3561                        struct md_rdev *rdev;
3562                        rcu_read_lock();
3563                        rdev = rcu_dereference(conf->disks[i].rdev);
3564                        if (rdev && test_bit(In_sync, &rdev->flags) &&
3565                            !test_bit(Faulty, &rdev->flags))
3566                                atomic_inc(&rdev->nr_pending);
3567                        else
3568                                rdev = NULL;
3569                        rcu_read_unlock();
3570                        if (rdev) {
3571                                if (!rdev_set_badblocks(
3572                                            rdev,
3573                                            sh->sector,
3574                                            RAID5_STRIPE_SECTORS(conf), 0))
3575                                        md_error(conf->mddev, rdev);
3576                                rdev_dec_pending(rdev, conf->mddev);
3577                        }
3578                }
3579                spin_lock_irq(&sh->stripe_lock);
3580                /* fail all writes first */
3581                bi = sh->dev[i].towrite;
3582                sh->dev[i].towrite = NULL;
3583                sh->overwrite_disks = 0;
3584                spin_unlock_irq(&sh->stripe_lock);
3585                if (bi)
3586                        bitmap_end = 1;
3587
3588                log_stripe_write_finished(sh);
3589
3590                if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3591                        wake_up(&conf->wait_for_overlap);
3592
3593                while (bi && bi->bi_iter.bi_sector <
3594                        sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3595                        struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
3596
3597                        md_write_end(conf->mddev);
3598                        bio_io_error(bi);
3599                        bi = nextbi;
3600                }
3601                if (bitmap_end)
3602                        md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3603                                           RAID5_STRIPE_SECTORS(conf), 0, 0);
3604                bitmap_end = 0;
3605                /* and fail all 'written' */
3606                bi = sh->dev[i].written;
3607                sh->dev[i].written = NULL;
3608                if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3609                        WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3610                        sh->dev[i].page = sh->dev[i].orig_page;
3611                }
3612
3613                if (bi) bitmap_end = 1;
3614                while (bi && bi->bi_iter.bi_sector <
3615                       sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3616                        struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
3617
3618                        md_write_end(conf->mddev);
3619                        bio_io_error(bi);
3620                        bi = bi2;
3621                }
3622
3623                /* fail any reads if this device is non-operational and
3624                 * the data has not reached the cache yet.
3625                 */
3626                if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3627                    s->failed > conf->max_degraded &&
3628                    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3629                      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3630                        spin_lock_irq(&sh->stripe_lock);
3631                        bi = sh->dev[i].toread;
3632                        sh->dev[i].toread = NULL;
3633                        spin_unlock_irq(&sh->stripe_lock);
3634                        if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3635                                wake_up(&conf->wait_for_overlap);
3636                        if (bi)
3637                                s->to_read--;
3638                        while (bi && bi->bi_iter.bi_sector <
3639                               sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3640                                struct bio *nextbi =
3641                                        r5_next_bio(conf, bi, sh->dev[i].sector);
3642
3643                                bio_io_error(bi);
3644                                bi = nextbi;
3645                        }
3646                }
3647                if (bitmap_end)
3648                        md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3649                                           RAID5_STRIPE_SECTORS(conf), 0, 0);
3650                /* If we were in the middle of a write the parity block might
3651                 * still be locked - so just clear all R5_LOCKED flags
3652                 */
3653                clear_bit(R5_LOCKED, &sh->dev[i].flags);
3654        }
3655        s->to_write = 0;
3656        s->written = 0;
3657
3658        if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3659                if (atomic_dec_and_test(&conf->pending_full_writes))
3660                        md_wakeup_thread(conf->mddev->thread);
3661}
3662
3663static void
3664handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3665                   struct stripe_head_state *s)
3666{
3667        int abort = 0;
3668        int i;
3669
3670        BUG_ON(sh->batch_head);
3671        clear_bit(STRIPE_SYNCING, &sh->state);
3672        if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3673                wake_up(&conf->wait_for_overlap);
3674        s->syncing = 0;
3675        s->replacing = 0;
3676        /* There is nothing more to do for sync/check/repair.
3677         * Don't even need to abort as that is handled elsewhere
3678         * if needed, and not always wanted e.g. if there is a known
3679         * bad block here.
3680         * For recover/replace we need to record a bad block on all
3681         * non-sync devices, or abort the recovery
3682         */
3683        if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3684                /* During recovery devices cannot be removed, so
3685                 * locking and refcounting of rdevs is not needed
3686                 */
3687                rcu_read_lock();
3688                for (i = 0; i < conf->raid_disks; i++) {
3689                        struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3690                        if (rdev
3691                            && !test_bit(Faulty, &rdev->flags)
3692                            && !test_bit(In_sync, &rdev->flags)
3693                            && !rdev_set_badblocks(rdev, sh->sector,
3694                                                   RAID5_STRIPE_SECTORS(conf), 0))
3695                                abort = 1;
3696                        rdev = rcu_dereference(conf->disks[i].replacement);
3697                        if (rdev
3698                            && !test_bit(Faulty, &rdev->flags)
3699                            && !test_bit(In_sync, &rdev->flags)
3700                            && !rdev_set_badblocks(rdev, sh->sector,
3701                                                   RAID5_STRIPE_SECTORS(conf), 0))
3702                                abort = 1;
3703                }
3704                rcu_read_unlock();
3705                if (abort)
3706                        conf->recovery_disabled =
3707                                conf->mddev->recovery_disabled;
3708        }
3709        md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
3710}
3711
3712static int want_replace(struct stripe_head *sh, int disk_idx)
3713{
3714        struct md_rdev *rdev;
3715        int rv = 0;
3716
3717        rcu_read_lock();
3718        rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3719        if (rdev
3720            && !test_bit(Faulty, &rdev->flags)
3721            && !test_bit(In_sync, &rdev->flags)
3722            && (rdev->recovery_offset <= sh->sector
3723                || rdev->mddev->recovery_cp <= sh->sector))
3724                rv = 1;
3725        rcu_read_unlock();
3726        return rv;
3727}
3728
3729static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3730                           int disk_idx, int disks)
3731{
3732        struct r5dev *dev = &sh->dev[disk_idx];
3733        struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3734                                  &sh->dev[s->failed_num[1]] };
3735        int i;
3736        bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
3737
3738
3739        if (test_bit(R5_LOCKED, &dev->flags) ||
3740            test_bit(R5_UPTODATE, &dev->flags))
3741                /* No point reading this as we already have it or have
3742                 * decided to get it.
3743                 */
3744                return 0;
3745
3746        if (dev->toread ||
3747            (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3748                /* We need this block to directly satisfy a request */
3749                return 1;
3750
3751        if (s->syncing || s->expanding ||
3752            (s->replacing && want_replace(sh, disk_idx)))
3753                /* When syncing, or expanding we read everything.
3754                 * When replacing, we need the replaced block.
3755                 */
3756                return 1;
3757
3758        if ((s->failed >= 1 && fdev[0]->toread) ||
3759            (s->failed >= 2 && fdev[1]->toread))
3760                /* If we want to read from a failed device, then
3761                 * we need to actually read every other device.
3762                 */
3763                return 1;
3764
3765        /* Sometimes neither read-modify-write nor reconstruct-write
3766         * cycles can work.  In those cases we read every block we
3767         * can.  Then the parity-update is certain to have enough to
3768         * work with.
3769         * This can only be a problem when we need to write something,
3770         * and some device has failed.  If either of those tests
3771         * fail we need look no further.
3772         */
3773        if (!s->failed || !s->to_write)
3774                return 0;
3775
3776        if (test_bit(R5_Insync, &dev->flags) &&
3777            !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3778                /* Pre-reads at not permitted until after short delay
3779                 * to gather multiple requests.  However if this
3780                 * device is no Insync, the block could only be computed
3781                 * and there is no need to delay that.
3782                 */
3783                return 0;
3784
3785        for (i = 0; i < s->failed && i < 2; i++) {
3786                if (fdev[i]->towrite &&
3787                    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3788                    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3789                        /* If we have a partial write to a failed
3790                         * device, then we will need to reconstruct
3791                         * the content of that device, so all other
3792                         * devices must be read.
3793                         */
3794                        return 1;
3795
3796                if (s->failed >= 2 &&
3797                    (fdev[i]->towrite ||
3798                     s->failed_num[i] == sh->pd_idx ||
3799                     s->failed_num[i] == sh->qd_idx) &&
3800                    !test_bit(R5_UPTODATE, &fdev[i]->flags))
3801                        /* In max degraded raid6, If the failed disk is P, Q,
3802                         * or we want to read the failed disk, we need to do
3803                         * reconstruct-write.
3804                         */
3805                        force_rcw = true;
3806        }
3807
3808        /* If we are forced to do a reconstruct-write, because parity
3809         * cannot be trusted and we are currently recovering it, there
3810         * is extra need to be careful.
3811         * If one of the devices that we would need to read, because
3812         * it is not being overwritten (and maybe not written at all)
3813         * is missing/faulty, then we need to read everything we can.
3814         */
3815        if (!force_rcw &&
3816            sh->sector < sh->raid_conf->mddev->recovery_cp)
3817                /* reconstruct-write isn't being forced */
3818                return 0;
3819        for (i = 0; i < s->failed && i < 2; i++) {
3820                if (s->failed_num[i] != sh->pd_idx &&
3821                    s->failed_num[i] != sh->qd_idx &&
3822                    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3823                    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3824                        return 1;
3825        }
3826
3827        return 0;
3828}
3829
3830/* fetch_block - checks the given member device to see if its data needs
3831 * to be read or computed to satisfy a request.
3832 *
3833 * Returns 1 when no more member devices need to be checked, otherwise returns
3834 * 0 to tell the loop in handle_stripe_fill to continue
3835 */
3836static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3837                       int disk_idx, int disks)
3838{
3839        struct r5dev *dev = &sh->dev[disk_idx];
3840
3841        /* is the data in this block needed, and can we get it? */
3842        if (need_this_block(sh, s, disk_idx, disks)) {
3843                /* we would like to get this block, possibly by computing it,
3844                 * otherwise read it if the backing disk is insync
3845                 */
3846                BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3847                BUG_ON(test_bit(R5_Wantread, &dev->flags));
3848                BUG_ON(sh->batch_head);
3849
3850                /*
3851                 * In the raid6 case if the only non-uptodate disk is P
3852                 * then we already trusted P to compute the other failed
3853                 * drives. It is safe to compute rather than re-read P.
3854                 * In other cases we only compute blocks from failed
3855                 * devices, otherwise check/repair might fail to detect
3856                 * a real inconsistency.
3857                 */
3858
3859                if ((s->uptodate == disks - 1) &&
3860                    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3861                    (s->failed && (disk_idx == s->failed_num[0] ||
3862                                   disk_idx == s->failed_num[1])))) {
3863                        /* have disk failed, and we're requested to fetch it;
3864                         * do compute it
3865                         */
3866                        pr_debug("Computing stripe %llu block %d\n",
3867                               (unsigned long long)sh->sector, disk_idx);
3868                        set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3869                        set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3870                        set_bit(R5_Wantcompute, &dev->flags);
3871                        sh->ops.target = disk_idx;
3872                        sh->ops.target2 = -1; /* no 2nd target */
3873                        s->req_compute = 1;
3874                        /* Careful: from this point on 'uptodate' is in the eye
3875                         * of raid_run_ops which services 'compute' operations
3876                         * before writes. R5_Wantcompute flags a block that will
3877                         * be R5_UPTODATE by the time it is needed for a
3878                         * subsequent operation.
3879                         */
3880                        s->uptodate++;
3881                        return 1;
3882                } else if (s->uptodate == disks-2 && s->failed >= 2) {
3883                        /* Computing 2-failure is *very* expensive; only
3884                         * do it if failed >= 2
3885                         */
3886                        int other;
3887                        for (other = disks; other--; ) {
3888                                if (other == disk_idx)
3889                                        continue;
3890                                if (!test_bit(R5_UPTODATE,
3891                                      &sh->dev[other].flags))
3892                                        break;
3893                        }
3894                        BUG_ON(other < 0);
3895                        pr_debug("Computing stripe %llu blocks %d,%d\n",
3896                               (unsigned long long)sh->sector,
3897                               disk_idx, other);
3898                        set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3899                        set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3900                        set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3901                        set_bit(R5_Wantcompute, &sh->dev[other].flags);
3902                        sh->ops.target = disk_idx;
3903                        sh->ops.target2 = other;
3904                        s->uptodate += 2;
3905                        s->req_compute = 1;
3906                        return 1;
3907                } else if (test_bit(R5_Insync, &dev->flags)) {
3908                        set_bit(R5_LOCKED, &dev->flags);
3909                        set_bit(R5_Wantread, &dev->flags);
3910                        s->locked++;
3911                        pr_debug("Reading block %d (sync=%d)\n",
3912                                disk_idx, s->syncing);
3913                }
3914        }
3915
3916        return 0;
3917}
3918
3919/*
3920 * handle_stripe_fill - read or compute data to satisfy pending requests.
3921 */
3922static void handle_stripe_fill(struct stripe_head *sh,
3923                               struct stripe_head_state *s,
3924                               int disks)
3925{
3926        int i;
3927
3928        /* look for blocks to read/compute, skip this if a compute
3929         * is already in flight, or if the stripe contents are in the
3930         * midst of changing due to a write
3931         */
3932        if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3933            !sh->reconstruct_state) {
3934
3935                /*
3936                 * For degraded stripe with data in journal, do not handle
3937                 * read requests yet, instead, flush the stripe to raid
3938                 * disks first, this avoids handling complex rmw of write
3939                 * back cache (prexor with orig_page, and then xor with
3940                 * page) in the read path
3941                 */
3942                if (s->injournal && s->failed) {
3943                        if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3944                                r5c_make_stripe_write_out(sh);
3945                        goto out;
3946                }
3947
3948                for (i = disks; i--; )
3949                        if (fetch_block(sh, s, i, disks))
3950                                break;
3951        }
3952out:
3953        set_bit(STRIPE_HANDLE, &sh->state);
3954}
3955
3956static void break_stripe_batch_list(struct stripe_head *head_sh,
3957                                    unsigned long handle_flags);
3958/* handle_stripe_clean_event
3959 * any written block on an uptodate or failed drive can be returned.
3960 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3961 * never LOCKED, so we don't need to test 'failed' directly.
3962 */
3963static void handle_stripe_clean_event(struct r5conf *conf,
3964        struct stripe_head *sh, int disks)
3965{
3966        int i;
3967        struct r5dev *dev;
3968        int discard_pending = 0;
3969        struct stripe_head *head_sh = sh;
3970        bool do_endio = false;
3971
3972        for (i = disks; i--; )
3973                if (sh->dev[i].written) {
3974                        dev = &sh->dev[i];
3975                        if (!test_bit(R5_LOCKED, &dev->flags) &&
3976                            (test_bit(R5_UPTODATE, &dev->flags) ||
3977                             test_bit(R5_Discard, &dev->flags) ||
3978                             test_bit(R5_SkipCopy, &dev->flags))) {
3979                                /* We can return any write requests */
3980                                struct bio *wbi, *wbi2;
3981                                pr_debug("Return write for disc %d\n", i);
3982                                if (test_and_clear_bit(R5_Discard, &dev->flags))
3983                                        clear_bit(R5_UPTODATE, &dev->flags);
3984                                if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3985                                        WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3986                                }
3987                                do_endio = true;
3988
3989returnbi:
3990                                dev->page = dev->orig_page;
3991                                wbi = dev->written;
3992                                dev->written = NULL;
3993                                while (wbi && wbi->bi_iter.bi_sector <
3994                                        dev->sector + RAID5_STRIPE_SECTORS(conf)) {
3995                                        wbi2 = r5_next_bio(conf, wbi, dev->sector);
3996                                        md_write_end(conf->mddev);
3997                                        bio_endio(wbi);
3998                                        wbi = wbi2;
3999                                }
4000                                md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
4001                                                   RAID5_STRIPE_SECTORS(conf),
4002                                                   !test_bit(STRIPE_DEGRADED, &sh->state),
4003                                                   0);
4004                                if (head_sh->batch_head) {
4005                                        sh = list_first_entry(&sh->batch_list,
4006                                                              struct stripe_head,
4007                                                              batch_list);
4008                                        if (sh != head_sh) {
4009                                                dev = &sh->dev[i];
4010                                                goto returnbi;
4011                                        }
4012                                }
4013                                sh = head_sh;
4014                                dev = &sh->dev[i];
4015                        } else if (test_bit(R5_Discard, &dev->flags))
4016                                discard_pending = 1;
4017                }
4018
4019        log_stripe_write_finished(sh);
4020
4021        if (!discard_pending &&
4022            test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
4023                int hash;
4024                clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
4025                clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4026                if (sh->qd_idx >= 0) {
4027                        clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
4028                        clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
4029                }
4030                /* now that discard is done we can proceed with any sync */
4031                clear_bit(STRIPE_DISCARD, &sh->state);
4032                /*
4033                 * SCSI discard will change some bio fields and the stripe has
4034                 * no updated data, so remove it from hash list and the stripe
4035                 * will be reinitialized
4036                 */
4037unhash:
4038                hash = sh->hash_lock_index;
4039                spin_lock_irq(conf->hash_locks + hash);
4040                remove_hash(sh);
4041                spin_unlock_irq(conf->hash_locks + hash);
4042                if (head_sh->batch_head) {
4043                        sh = list_first_entry(&sh->batch_list,
4044                                              struct stripe_head, batch_list);
4045                        if (sh != head_sh)
4046                                        goto unhash;
4047                }
4048                sh = head_sh;
4049
4050                if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
4051                        set_bit(STRIPE_HANDLE, &sh->state);
4052
4053        }
4054
4055        if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
4056                if (atomic_dec_and_test(&conf->pending_full_writes))
4057                        md_wakeup_thread(conf->mddev->thread);
4058
4059        if (head_sh->batch_head && do_endio)
4060                break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
4061}
4062
4063/*
4064 * For RMW in write back cache, we need extra page in prexor to store the
4065 * old data. This page is stored in dev->orig_page.
4066 *
4067 * This function checks whether we have data for prexor. The exact logic
4068 * is:
4069 *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
4070 */
4071static inline bool uptodate_for_rmw(struct r5dev *dev)
4072{
4073        return (test_bit(R5_UPTODATE, &dev->flags)) &&
4074                (!test_bit(R5_InJournal, &dev->flags) ||
4075                 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
4076}
4077
4078static int handle_stripe_dirtying(struct r5conf *conf,
4079                                  struct stripe_head *sh,
4080                                  struct stripe_head_state *s,
4081                                  int disks)
4082{
4083        int rmw = 0, rcw = 0, i;
4084        sector_t recovery_cp = conf->mddev->recovery_cp;
4085
4086        /* Check whether resync is now happening or should start.
4087         * If yes, then the array is dirty (after unclean shutdown or
4088         * initial creation), so parity in some stripes might be inconsistent.
4089         * In this case, we need to always do reconstruct-write, to ensure
4090         * that in case of drive failure or read-error correction, we
4091         * generate correct data from the parity.
4092         */
4093        if (conf->rmw_level == PARITY_DISABLE_RMW ||
4094            (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
4095             s->failed == 0)) {
4096                /* Calculate the real rcw later - for now make it
4097                 * look like rcw is cheaper
4098                 */
4099                rcw = 1; rmw = 2;
4100                pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
4101                         conf->rmw_level, (unsigned long long)recovery_cp,
4102                         (unsigned long long)sh->sector);
4103        } else for (i = disks; i--; ) {
4104                /* would I have to read this buffer for read_modify_write */
4105                struct r5dev *dev = &sh->dev[i];
4106                if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4107                     i == sh->pd_idx || i == sh->qd_idx ||
4108                     test_bit(R5_InJournal, &dev->flags)) &&
4109                    !test_bit(R5_LOCKED, &dev->flags) &&
4110                    !(uptodate_for_rmw(dev) ||
4111                      test_bit(R5_Wantcompute, &dev->flags))) {
4112                        if (test_bit(R5_Insync, &dev->flags))
4113                                rmw++;
4114                        else
4115                                rmw += 2*disks;  /* cannot read it */
4116                }
4117                /* Would I have to read this buffer for reconstruct_write */
4118                if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4119                    i != sh->pd_idx && i != sh->qd_idx &&
4120                    !test_bit(R5_LOCKED, &dev->flags) &&
4121                    !(test_bit(R5_UPTODATE, &dev->flags) ||
4122                      test_bit(R5_Wantcompute, &dev->flags))) {
4123                        if (test_bit(R5_Insync, &dev->flags))
4124                                rcw++;
4125                        else
4126                                rcw += 2*disks;
4127                }
4128        }
4129
4130        pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
4131                 (unsigned long long)sh->sector, sh->state, rmw, rcw);
4132        set_bit(STRIPE_HANDLE, &sh->state);
4133        if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
4134                /* prefer read-modify-write, but need to get some data */
4135                if (conf->mddev->queue)
4136                        blk_add_trace_msg(conf->mddev->queue,
4137                                          "raid5 rmw %llu %d",
4138                                          (unsigned long long)sh->sector, rmw);
4139                for (i = disks; i--; ) {
4140                        struct r5dev *dev = &sh->dev[i];
4141                        if (test_bit(R5_InJournal, &dev->flags) &&
4142                            dev->page == dev->orig_page &&
4143                            !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
4144                                /* alloc page for prexor */
4145                                struct page *p = alloc_page(GFP_NOIO);
4146
4147                                if (p) {
4148                                        dev->orig_page = p;
4149                                        continue;
4150                                }
4151
4152                                /*
4153                                 * alloc_page() failed, try use
4154                                 * disk_info->extra_page
4155                                 */
4156                                if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
4157                                                      &conf->cache_state)) {
4158                                        r5c_use_extra_page(sh);
4159                                        break;
4160                                }
4161
4162                                /* extra_page in use, add to delayed_list */
4163                                set_bit(STRIPE_DELAYED, &sh->state);
4164                                s->waiting_extra_page = 1;
4165                                return -EAGAIN;
4166                        }
4167                }
4168
4169                for (i = disks; i--; ) {
4170                        struct r5dev *dev = &sh->dev[i];
4171                        if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4172                             i == sh->pd_idx || i == sh->qd_idx ||
4173                             test_bit(R5_InJournal, &dev->flags)) &&
4174                            !test_bit(R5_LOCKED, &dev->flags) &&
4175                            !(uptodate_for_rmw(dev) ||
4176                              test_bit(R5_Wantcompute, &dev->flags)) &&
4177                            test_bit(R5_Insync, &dev->flags)) {
4178                                if (test_bit(STRIPE_PREREAD_ACTIVE,
4179                                             &sh->state)) {
4180                                        pr_debug("Read_old block %d for r-m-w\n",
4181                                                 i);
4182                                        set_bit(R5_LOCKED, &dev->flags);
4183                                        set_bit(R5_Wantread, &dev->flags);
4184                                        s->locked++;
4185                                } else
4186                                        set_bit(STRIPE_DELAYED, &sh->state);
4187                        }
4188                }
4189        }
4190        if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
4191                /* want reconstruct write, but need to get some data */
4192                int qread =0;
4193                rcw = 0;
4194                for (i = disks; i--; ) {
4195                        struct r5dev *dev = &sh->dev[i];
4196                        if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4197                            i != sh->pd_idx && i != sh->qd_idx &&
4198                            !test_bit(R5_LOCKED, &dev->flags) &&
4199                            !(test_bit(R5_UPTODATE, &dev->flags) ||
4200                              test_bit(R5_Wantcompute, &dev->flags))) {
4201                                rcw++;
4202                                if (test_bit(R5_Insync, &dev->flags) &&
4203                                    test_bit(STRIPE_PREREAD_ACTIVE,
4204                                             &sh->state)) {
4205                                        pr_debug("Read_old block "
4206                                                "%d for Reconstruct\n", i);
4207                                        set_bit(R5_LOCKED, &dev->flags);
4208                                        set_bit(R5_Wantread, &dev->flags);
4209                                        s->locked++;
4210                                        qread++;
4211                                } else
4212                                        set_bit(STRIPE_DELAYED, &sh->state);
4213                        }
4214                }
4215                if (rcw && conf->mddev->queue)
4216                        blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4217                                          (unsigned long long)sh->sector,
4218                                          rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4219        }
4220
4221        if (rcw > disks && rmw > disks &&
4222            !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4223                set_bit(STRIPE_DELAYED, &sh->state);
4224
4225        /* now if nothing is locked, and if we have enough data,
4226         * we can start a write request
4227         */
4228        /* since handle_stripe can be called at any time we need to handle the
4229         * case where a compute block operation has been submitted and then a
4230         * subsequent call wants to start a write request.  raid_run_ops only
4231         * handles the case where compute block and reconstruct are requested
4232         * simultaneously.  If this is not the case then new writes need to be
4233         * held off until the compute completes.
4234         */
4235        if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4236            (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4237             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4238                schedule_reconstruction(sh, s, rcw == 0, 0);
4239        return 0;
4240}
4241
4242static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4243                                struct stripe_head_state *s, int disks)
4244{
4245        struct r5dev *dev = NULL;
4246
4247        BUG_ON(sh->batch_head);
4248        set_bit(STRIPE_HANDLE, &sh->state);
4249
4250        switch (sh->check_state) {
4251        case check_state_idle:
4252                /* start a new check operation if there are no failures */
4253                if (s->failed == 0) {
4254                        BUG_ON(s->uptodate != disks);
4255                        sh->check_state = check_state_run;
4256                        set_bit(STRIPE_OP_CHECK, &s->ops_request);
4257                        clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4258                        s->uptodate--;
4259                        break;
4260                }
4261                dev = &sh->dev[s->failed_num[0]];
4262                fallthrough;
4263        case check_state_compute_result:
4264                sh->check_state = check_state_idle;
4265                if (!dev)
4266                        dev = &sh->dev[sh->pd_idx];
4267
4268                /* check that a write has not made the stripe insync */
4269                if (test_bit(STRIPE_INSYNC, &sh->state))
4270                        break;
4271
4272                /* either failed parity check, or recovery is happening */
4273                BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4274                BUG_ON(s->uptodate != disks);
4275
4276                set_bit(R5_LOCKED, &dev->flags);
4277                s->locked++;
4278                set_bit(R5_Wantwrite, &dev->flags);
4279
4280                clear_bit(STRIPE_DEGRADED, &sh->state);
4281                set_bit(STRIPE_INSYNC, &sh->state);
4282                break;
4283        case check_state_run:
4284                break; /* we will be called again upon completion */
4285        case check_state_check_result:
4286                sh->check_state = check_state_idle;
4287
4288                /* if a failure occurred during the check operation, leave
4289                 * STRIPE_INSYNC not set and let the stripe be handled again
4290                 */
4291                if (s->failed)
4292                        break;
4293
4294                /* handle a successful check operation, if parity is correct
4295                 * we are done.  Otherwise update the mismatch count and repair
4296                 * parity if !MD_RECOVERY_CHECK
4297                 */
4298                if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4299                        /* parity is correct (on disc,
4300                         * not in buffer any more)
4301                         */
4302                        set_bit(STRIPE_INSYNC, &sh->state);
4303                else {
4304                        atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4305                        if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4306                                /* don't try to repair!! */
4307                                set_bit(STRIPE_INSYNC, &sh->state);
4308                                pr_warn_ratelimited("%s: mismatch sector in range "
4309                                                    "%llu-%llu\n", mdname(conf->mddev),
4310                                                    (unsigned long long) sh->sector,
4311                                                    (unsigned long long) sh->sector +
4312                                                    RAID5_STRIPE_SECTORS(conf));
4313                        } else {
4314                                sh->check_state = check_state_compute_run;
4315                                set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4316                                set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4317                                set_bit(R5_Wantcompute,
4318                                        &sh->dev[sh->pd_idx].flags);
4319                                sh->ops.target = sh->pd_idx;
4320                                sh->ops.target2 = -1;
4321                                s->uptodate++;
4322                        }
4323                }
4324                break;
4325        case check_state_compute_run:
4326                break;
4327        default:
4328                pr_err("%s: unknown check_state: %d sector: %llu\n",
4329                       __func__, sh->check_state,
4330                       (unsigned long long) sh->sector);
4331                BUG();
4332        }
4333}
4334
4335static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4336                                  struct stripe_head_state *s,
4337                                  int disks)
4338{
4339        int pd_idx = sh->pd_idx;
4340        int qd_idx = sh->qd_idx;
4341        struct r5dev *dev;
4342
4343        BUG_ON(sh->batch_head);
4344        set_bit(STRIPE_HANDLE, &sh->state);
4345
4346        BUG_ON(s->failed > 2);
4347
4348        /* Want to check and possibly repair P and Q.
4349         * However there could be one 'failed' device, in which
4350         * case we can only check one of them, possibly using the
4351         * other to generate missing data
4352         */
4353
4354        switch (sh->check_state) {
4355        case check_state_idle:
4356                /* start a new check operation if there are < 2 failures */
4357                if (s->failed == s->q_failed) {
4358                        /* The only possible failed device holds Q, so it
4359                         * makes sense to check P (If anything else were failed,
4360                         * we would have used P to recreate it).
4361                         */
4362                        sh->check_state = check_state_run;
4363                }
4364                if (!s->q_failed && s->failed < 2) {
4365                        /* Q is not failed, and we didn't use it to generate
4366                         * anything, so it makes sense to check it
4367                         */
4368                        if (sh->check_state == check_state_run)
4369                                sh->check_state = check_state_run_pq;
4370                        else
4371                                sh->check_state = check_state_run_q;
4372                }
4373
4374                /* discard potentially stale zero_sum_result */
4375                sh->ops.zero_sum_result = 0;
4376
4377                if (sh->check_state == check_state_run) {
4378                        /* async_xor_zero_sum destroys the contents of P */
4379                        clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4380                        s->uptodate--;
4381                }
4382                if (sh->check_state >= check_state_run &&
4383                    sh->check_state <= check_state_run_pq) {
4384                        /* async_syndrome_zero_sum preserves P and Q, so
4385                         * no need to mark them !uptodate here
4386                         */
4387                        set_bit(STRIPE_OP_CHECK, &s->ops_request);
4388                        break;
4389                }
4390
4391                /* we have 2-disk failure */
4392                BUG_ON(s->failed != 2);
4393                fallthrough;
4394        case check_state_compute_result:
4395                sh->check_state = check_state_idle;
4396
4397                /* check that a write has not made the stripe insync */
4398                if (test_bit(STRIPE_INSYNC, &sh->state))
4399                        break;
4400
4401                /* now write out any block on a failed drive,
4402                 * or P or Q if they were recomputed
4403                 */
4404                dev = NULL;
4405                if (s->failed == 2) {
4406                        dev = &sh->dev[s->failed_num[1]];
4407                        s->locked++;
4408                        set_bit(R5_LOCKED, &dev->flags);
4409                        set_bit(R5_Wantwrite, &dev->flags);
4410                }
4411                if (s->failed >= 1) {
4412                        dev = &sh->dev[s->failed_num[0]];
4413                        s->locked++;
4414                        set_bit(R5_LOCKED, &dev->flags);
4415                        set_bit(R5_Wantwrite, &dev->flags);
4416                }
4417                if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4418                        dev = &sh->dev[pd_idx];
4419                        s->locked++;
4420                        set_bit(R5_LOCKED, &dev->flags);
4421                        set_bit(R5_Wantwrite, &dev->flags);
4422                }
4423                if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4424                        dev = &sh->dev[qd_idx];
4425                        s->locked++;
4426                        set_bit(R5_LOCKED, &dev->flags);
4427                        set_bit(R5_Wantwrite, &dev->flags);
4428                }
4429                if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4430                              "%s: disk%td not up to date\n",
4431                              mdname(conf->mddev),
4432                              dev - (struct r5dev *) &sh->dev)) {
4433                        clear_bit(R5_LOCKED, &dev->flags);
4434                        clear_bit(R5_Wantwrite, &dev->flags);
4435                        s->locked--;
4436                }
4437                clear_bit(STRIPE_DEGRADED, &sh->state);
4438
4439                set_bit(STRIPE_INSYNC, &sh->state);
4440                break;
4441        case check_state_run:
4442        case check_state_run_q:
4443        case check_state_run_pq:
4444                break; /* we will be called again upon completion */
4445        case check_state_check_result:
4446                sh->check_state = check_state_idle;
4447
4448                /* handle a successful check operation, if parity is correct
4449                 * we are done.  Otherwise update the mismatch count and repair
4450                 * parity if !MD_RECOVERY_CHECK
4451                 */
4452                if (sh->ops.zero_sum_result == 0) {
4453                        /* both parities are correct */
4454                        if (!s->failed)
4455                                set_bit(STRIPE_INSYNC, &sh->state);
4456                        else {
4457                                /* in contrast to the raid5 case we can validate
4458                                 * parity, but still have a failure to write
4459                                 * back
4460                                 */
4461                                sh->check_state = check_state_compute_result;
4462                                /* Returning at this point means that we may go
4463                                 * off and bring p and/or q uptodate again so
4464                                 * we make sure to check zero_sum_result again
4465                                 * to verify if p or q need writeback
4466                                 */
4467                        }
4468                } else {
4469                        atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4470                        if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4471                                /* don't try to repair!! */
4472                                set_bit(STRIPE_INSYNC, &sh->state);
4473                                pr_warn_ratelimited("%s: mismatch sector in range "
4474                                                    "%llu-%llu\n", mdname(conf->mddev),
4475                                                    (unsigned long long) sh->sector,
4476                                                    (unsigned long long) sh->sector +
4477                                                    RAID5_STRIPE_SECTORS(conf));
4478                        } else {
4479                                int *target = &sh->ops.target;
4480
4481                                sh->ops.target = -1;
4482                                sh->ops.target2 = -1;
4483                                sh->check_state = check_state_compute_run;
4484                                set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4485                                set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4486                                if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4487                                        set_bit(R5_Wantcompute,
4488                                                &sh->dev[pd_idx].flags);
4489                                        *target = pd_idx;
4490                                        target = &sh->ops.target2;
4491                                        s->uptodate++;
4492                                }
4493                                if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4494                                        set_bit(R5_Wantcompute,
4495                                                &sh->dev[qd_idx].flags);
4496                                        *target = qd_idx;
4497                                        s->uptodate++;
4498                                }
4499                        }
4500                }
4501                break;
4502        case check_state_compute_run:
4503                break;
4504        default:
4505                pr_warn("%s: unknown check_state: %d sector: %llu\n",
4506                        __func__, sh->check_state,
4507                        (unsigned long long) sh->sector);
4508                BUG();
4509        }
4510}
4511
4512static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4513{
4514        int i;
4515
4516        /* We have read all the blocks in this stripe and now we need to
4517         * copy some of them into a target stripe for expand.
4518         */
4519        struct dma_async_tx_descriptor *tx = NULL;
4520        BUG_ON(sh->batch_head);
4521        clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4522        for (i = 0; i < sh->disks; i++)
4523                if (i != sh->pd_idx && i != sh->qd_idx) {
4524                        int dd_idx, j;
4525                        struct stripe_head *sh2;
4526                        struct async_submit_ctl submit;
4527
4528                        sector_t bn = raid5_compute_blocknr(sh, i, 1);
4529                        sector_t s = raid5_compute_sector(conf, bn, 0,
4530                                                          &dd_idx, NULL);
4531                        sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4532                        if (sh2 == NULL)
4533                                /* so far only the early blocks of this stripe
4534                                 * have been requested.  When later blocks
4535                                 * get requested, we will try again
4536                                 */
4537                                continue;
4538                        if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4539                           test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4540                                /* must have already done this block */
4541                                raid5_release_stripe(sh2);
4542                                continue;
4543                        }
4544
4545                        /* place all the copies on one channel */
4546                        init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4547                        tx = async_memcpy(sh2->dev[dd_idx].page,
4548                                          sh->dev[i].page, sh2->dev[dd_idx].offset,
4549                                          sh->dev[i].offset, RAID5_STRIPE_SIZE(conf),
4550                                          &submit);
4551
4552                        set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4553                        set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4554                        for (j = 0; j < conf->raid_disks; j++)
4555                                if (j != sh2->pd_idx &&
4556                                    j != sh2->qd_idx &&
4557                                    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4558                                        break;
4559                        if (j == conf->raid_disks) {
4560                                set_bit(STRIPE_EXPAND_READY, &sh2->state);
4561                                set_bit(STRIPE_HANDLE, &sh2->state);
4562                        }
4563                        raid5_release_stripe(sh2);
4564
4565                }
4566        /* done submitting copies, wait for them to complete */
4567        async_tx_quiesce(&tx);
4568}
4569
4570/*
4571 * handle_stripe - do things to a stripe.
4572 *
4573 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4574 * state of various bits to see what needs to be done.
4575 * Possible results:
4576 *    return some read requests which now have data
4577 *    return some write requests which are safely on storage
4578 *    schedule a read on some buffers
4579 *    schedule a write of some buffers
4580 *    return confirmation of parity correctness
4581 *
4582 */
4583
4584static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4585{
4586        struct r5conf *conf = sh->raid_conf;
4587        int disks = sh->disks;
4588        struct r5dev *dev;
4589        int i;
4590        int do_recovery = 0;
4591
4592        memset(s, 0, sizeof(*s));
4593
4594        s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4595        s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4596        s->failed_num[0] = -1;
4597        s->failed_num[1] = -1;
4598        s->log_failed = r5l_log_disk_error(conf);
4599
4600        /* Now to look around and see what can be done */
4601        rcu_read_lock();
4602        for (i=disks; i--; ) {
4603                struct md_rdev *rdev;
4604                sector_t first_bad;
4605                int bad_sectors;
4606                int is_bad = 0;
4607
4608                dev = &sh->dev[i];
4609
4610                pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4611                         i, dev->flags,
4612                         dev->toread, dev->towrite, dev->written);
4613                /* maybe we can reply to a read
4614                 *
4615                 * new wantfill requests are only permitted while
4616                 * ops_complete_biofill is guaranteed to be inactive
4617                 */
4618                if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4619                    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4620                        set_bit(R5_Wantfill, &dev->flags);
4621
4622                /* now count some things */
4623                if (test_bit(R5_LOCKED, &dev->flags))
4624                        s->locked++;
4625                if (test_bit(R5_UPTODATE, &dev->flags))
4626                        s->uptodate++;
4627                if (test_bit(R5_Wantcompute, &dev->flags)) {
4628                        s->compute++;
4629                        BUG_ON(s->compute > 2);
4630                }
4631
4632                if (test_bit(R5_Wantfill, &dev->flags))
4633                        s->to_fill++;
4634                else if (dev->toread)
4635                        s->to_read++;
4636                if (dev->towrite) {
4637                        s->to_write++;
4638                        if (!test_bit(R5_OVERWRITE, &dev->flags))
4639                                s->non_overwrite++;
4640                }
4641                if (dev->written)
4642                        s->written++;
4643                /* Prefer to use the replacement for reads, but only
4644                 * if it is recovered enough and has no bad blocks.
4645                 */
4646                rdev = rcu_dereference(conf->disks[i].replacement);
4647                if (rdev && !test_bit(Faulty, &rdev->flags) &&
4648                    rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4649                    !is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4650                                 &first_bad, &bad_sectors))
4651                        set_bit(R5_ReadRepl, &dev->flags);
4652                else {
4653                        if (rdev && !test_bit(Faulty, &rdev->flags))
4654                                set_bit(R5_NeedReplace, &dev->flags);
4655                        else
4656                                clear_bit(R5_NeedReplace, &dev->flags);
4657                        rdev = rcu_dereference(conf->disks[i].rdev);
4658                        clear_bit(R5_ReadRepl, &dev->flags);
4659                }
4660                if (rdev && test_bit(Faulty, &rdev->flags))
4661                        rdev = NULL;
4662                if (rdev) {
4663                        is_bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4664                                             &first_bad, &bad_sectors);
4665                        if (s->blocked_rdev == NULL
4666                            && (test_bit(Blocked, &rdev->flags)
4667                                || is_bad < 0)) {
4668                                if (is_bad < 0)
4669                                        set_bit(BlockedBadBlocks,
4670                                                &rdev->flags);
4671                                s->blocked_rdev = rdev;
4672                                atomic_inc(&rdev->nr_pending);
4673                        }
4674                }
4675                clear_bit(R5_Insync, &dev->flags);
4676                if (!rdev)
4677                        /* Not in-sync */;
4678                else if (is_bad) {
4679                        /* also not in-sync */
4680                        if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4681                            test_bit(R5_UPTODATE, &dev->flags)) {
4682                                /* treat as in-sync, but with a read error
4683                                 * which we can now try to correct
4684                                 */
4685                                set_bit(R5_Insync, &dev->flags);
4686                                set_bit(R5_ReadError, &dev->flags);
4687                        }
4688                } else if (test_bit(In_sync, &rdev->flags))
4689                        set_bit(R5_Insync, &dev->flags);
4690                else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
4691                        /* in sync if before recovery_offset */
4692                        set_bit(R5_Insync, &dev->flags);
4693                else if (test_bit(R5_UPTODATE, &dev->flags) &&
4694                         test_bit(R5_Expanded, &dev->flags))
4695                        /* If we've reshaped into here, we assume it is Insync.
4696                         * We will shortly update recovery_offset to make
4697                         * it official.
4698                         */
4699                        set_bit(R5_Insync, &dev->flags);
4700
4701                if (test_bit(R5_WriteError, &dev->flags)) {
4702                        /* This flag does not apply to '.replacement'
4703                         * only to .rdev, so make sure to check that*/
4704                        struct md_rdev *rdev2 = rcu_dereference(
4705                                conf->disks[i].rdev);
4706                        if (rdev2 == rdev)
4707                                clear_bit(R5_Insync, &dev->flags);
4708                        if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4709                                s->handle_bad_blocks = 1;
4710                                atomic_inc(&rdev2->nr_pending);
4711                        } else
4712                                clear_bit(R5_WriteError, &dev->flags);
4713                }
4714                if (test_bit(R5_MadeGood, &dev->flags)) {
4715                        /* This flag does not apply to '.replacement'
4716                         * only to .rdev, so make sure to check that*/
4717                        struct md_rdev *rdev2 = rcu_dereference(
4718                                conf->disks[i].rdev);
4719                        if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4720                                s->handle_bad_blocks = 1;
4721                                atomic_inc(&rdev2->nr_pending);
4722                        } else
4723                                clear_bit(R5_MadeGood, &dev->flags);
4724                }
4725                if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4726                        struct md_rdev *rdev2 = rcu_dereference(
4727                                conf->disks[i].replacement);
4728                        if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4729                                s->handle_bad_blocks = 1;
4730                                atomic_inc(&rdev2->nr_pending);
4731                        } else
4732                                clear_bit(R5_MadeGoodRepl, &dev->flags);
4733                }
4734                if (!test_bit(R5_Insync, &dev->flags)) {
4735                        /* The ReadError flag will just be confusing now */
4736                        clear_bit(R5_ReadError, &dev->flags);
4737                        clear_bit(R5_ReWrite, &dev->flags);
4738                }
4739                if (test_bit(R5_ReadError, &dev->flags))
4740                        clear_bit(R5_Insync, &dev->flags);
4741                if (!test_bit(R5_Insync, &dev->flags)) {
4742                        if (s->failed < 2)
4743                                s->failed_num[s->failed] = i;
4744                        s->failed++;
4745                        if (rdev && !test_bit(Faulty, &rdev->flags))
4746                                do_recovery = 1;
4747                        else if (!rdev) {
4748                                rdev = rcu_dereference(
4749                                    conf->disks[i].replacement);
4750                                if (rdev && !test_bit(Faulty, &rdev->flags))
4751                                        do_recovery = 1;
4752                        }
4753                }
4754
4755                if (test_bit(R5_InJournal, &dev->flags))
4756                        s->injournal++;
4757                if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4758                        s->just_cached++;
4759        }
4760        if (test_bit(STRIPE_SYNCING, &sh->state)) {
4761                /* If there is a failed device being replaced,
4762                 *     we must be recovering.
4763                 * else if we are after recovery_cp, we must be syncing
4764                 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4765                 * else we can only be replacing
4766                 * sync and recovery both need to read all devices, and so
4767                 * use the same flag.
4768                 */
4769                if (do_recovery ||
4770                    sh->sector >= conf->mddev->recovery_cp ||
4771                    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4772                        s->syncing = 1;
4773                else
4774                        s->replacing = 1;
4775        }
4776        rcu_read_unlock();
4777}
4778
4779/*
4780 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4781 * a head which can now be handled.
4782 */
4783static int clear_batch_ready(struct stripe_head *sh)
4784{
4785        struct stripe_head *tmp;
4786        if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4787                return (sh->batch_head && sh->batch_head != sh);
4788        spin_lock(&sh->stripe_lock);
4789        if (!sh->batch_head) {
4790                spin_unlock(&sh->stripe_lock);
4791                return 0;
4792        }
4793
4794        /*
4795         * this stripe could be added to a batch list before we check
4796         * BATCH_READY, skips it
4797         */
4798        if (sh->batch_head != sh) {
4799                spin_unlock(&sh->stripe_lock);
4800                return 1;
4801        }
4802        spin_lock(&sh->batch_lock);
4803        list_for_each_entry(tmp, &sh->batch_list, batch_list)
4804                clear_bit(STRIPE_BATCH_READY, &tmp->state);
4805        spin_unlock(&sh->batch_lock);
4806        spin_unlock(&sh->stripe_lock);
4807
4808        /*
4809         * BATCH_READY is cleared, no new stripes can be added.
4810         * batch_list can be accessed without lock
4811         */
4812        return 0;
4813}
4814
4815static void break_stripe_batch_list(struct stripe_head *head_sh,
4816                                    unsigned long handle_flags)
4817{
4818        struct stripe_head *sh, *next;
4819        int i;
4820        int do_wakeup = 0;
4821
4822        list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4823
4824                list_del_init(&sh->batch_list);
4825
4826                WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4827                                          (1 << STRIPE_SYNCING) |
4828                                          (1 << STRIPE_REPLACED) |
4829                                          (1 << STRIPE_DELAYED) |
4830                                          (1 << STRIPE_BIT_DELAY) |
4831                                          (1 << STRIPE_FULL_WRITE) |
4832                                          (1 << STRIPE_BIOFILL_RUN) |
4833                                          (1 << STRIPE_COMPUTE_RUN)  |
4834                                          (1 << STRIPE_DISCARD) |
4835                                          (1 << STRIPE_BATCH_READY) |
4836                                          (1 << STRIPE_BATCH_ERR) |
4837                                          (1 << STRIPE_BITMAP_PENDING)),
4838                        "stripe state: %lx\n", sh->state);
4839                WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4840                                              (1 << STRIPE_REPLACED)),
4841                        "head stripe state: %lx\n", head_sh->state);
4842
4843                set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4844                                            (1 << STRIPE_PREREAD_ACTIVE) |
4845                                            (1 << STRIPE_DEGRADED) |
4846                                            (1 << STRIPE_ON_UNPLUG_LIST)),
4847                              head_sh->state & (1 << STRIPE_INSYNC));
4848
4849                sh->check_state = head_sh->check_state;
4850                sh->reconstruct_state = head_sh->reconstruct_state;
4851                spin_lock_irq(&sh->stripe_lock);
4852                sh->batch_head = NULL;
4853                spin_unlock_irq(&sh->stripe_lock);
4854                for (i = 0; i < sh->disks; i++) {
4855                        if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4856                                do_wakeup = 1;
4857                        sh->dev[i].flags = head_sh->dev[i].flags &
4858                                (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4859                }
4860                if (handle_flags == 0 ||
4861                    sh->state & handle_flags)
4862                        set_bit(STRIPE_HANDLE, &sh->state);
4863                raid5_release_stripe(sh);
4864        }
4865        spin_lock_irq(&head_sh->stripe_lock);
4866        head_sh->batch_head = NULL;
4867        spin_unlock_irq(&head_sh->stripe_lock);
4868        for (i = 0; i < head_sh->disks; i++)
4869                if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4870                        do_wakeup = 1;
4871        if (head_sh->state & handle_flags)
4872                set_bit(STRIPE_HANDLE, &head_sh->state);
4873
4874        if (do_wakeup)
4875                wake_up(&head_sh->raid_conf->wait_for_overlap);
4876}
4877
4878static void handle_stripe(struct stripe_head *sh)
4879{
4880        struct stripe_head_state s;
4881        struct r5conf *conf = sh->raid_conf;
4882        int i;
4883        int prexor;
4884        int disks = sh->disks;
4885        struct r5dev *pdev, *qdev;
4886
4887        clear_bit(STRIPE_HANDLE, &sh->state);
4888
4889        /*
4890         * handle_stripe should not continue handle the batched stripe, only
4891         * the head of batch list or lone stripe can continue. Otherwise we
4892         * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4893         * is set for the batched stripe.
4894         */
4895        if (clear_batch_ready(sh))
4896                return;
4897
4898        if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4899                /* already being handled, ensure it gets handled
4900                 * again when current action finishes */
4901                set_bit(STRIPE_HANDLE, &sh->state);
4902                return;
4903        }
4904
4905        if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4906                break_stripe_batch_list(sh, 0);
4907
4908        if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4909                spin_lock(&sh->stripe_lock);
4910                /*
4911                 * Cannot process 'sync' concurrently with 'discard'.
4912                 * Flush data in r5cache before 'sync'.
4913                 */
4914                if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4915                    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4916                    !test_bit(STRIPE_DISCARD, &sh->state) &&
4917                    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4918                        set_bit(STRIPE_SYNCING, &sh->state);
4919                        clear_bit(STRIPE_INSYNC, &sh->state);
4920                        clear_bit(STRIPE_REPLACED, &sh->state);
4921                }
4922                spin_unlock(&sh->stripe_lock);
4923        }
4924        clear_bit(STRIPE_DELAYED, &sh->state);
4925
4926        pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4927                "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4928               (unsigned long long)sh->sector, sh->state,
4929               atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4930               sh->check_state, sh->reconstruct_state);
4931
4932        analyse_stripe(sh, &s);
4933
4934        if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4935                goto finish;
4936
4937        if (s.handle_bad_blocks ||
4938            test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4939                set_bit(STRIPE_HANDLE, &sh->state);
4940                goto finish;
4941        }
4942
4943        if (unlikely(s.blocked_rdev)) {
4944                if (s.syncing || s.expanding || s.expanded ||
4945                    s.replacing || s.to_write || s.written) {
4946                        set_bit(STRIPE_HANDLE, &sh->state);
4947                        goto finish;
4948                }
4949                /* There is nothing for the blocked_rdev to block */
4950                rdev_dec_pending(s.blocked_rdev, conf->mddev);
4951                s.blocked_rdev = NULL;
4952        }
4953
4954        if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4955                set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4956                set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4957        }
4958
4959        pr_debug("locked=%d uptodate=%d to_read=%d"
4960               " to_write=%d failed=%d failed_num=%d,%d\n",
4961               s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4962               s.failed_num[0], s.failed_num[1]);
4963        /*
4964         * check if the array has lost more than max_degraded devices and,
4965         * if so, some requests might need to be failed.
4966         *
4967         * When journal device failed (log_failed), we will only process
4968         * the stripe if there is data need write to raid disks
4969         */
4970        if (s.failed > conf->max_degraded ||
4971            (s.log_failed && s.injournal == 0)) {
4972                sh->check_state = 0;
4973                sh->reconstruct_state = 0;
4974                break_stripe_batch_list(sh, 0);
4975                if (s.to_read+s.to_write+s.written)
4976                        handle_failed_stripe(conf, sh, &s, disks);
4977                if (s.syncing + s.replacing)
4978                        handle_failed_sync(conf, sh, &s);
4979        }
4980
4981        /* Now we check to see if any write operations have recently
4982         * completed
4983         */
4984        prexor = 0;
4985        if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4986                prexor = 1;
4987        if (sh->reconstruct_state == reconstruct_state_drain_result ||
4988            sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4989                sh->reconstruct_state = reconstruct_state_idle;
4990
4991                /* All the 'written' buffers and the parity block are ready to
4992                 * be written back to disk
4993                 */
4994                BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4995                       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4996                BUG_ON(sh->qd_idx >= 0 &&
4997                       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4998                       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4999                for (i = disks; i--; ) {
5000                        struct r5dev *dev = &sh->dev[i];
5001                        if (test_bit(R5_LOCKED, &dev->flags) &&
5002                                (i == sh->pd_idx || i == sh->qd_idx ||
5003                                 dev->written || test_bit(R5_InJournal,
5004                                                          &dev->flags))) {
5005                                pr_debug("Writing block %d\n", i);
5006                                set_bit(R5_Wantwrite, &dev->flags);
5007                                if (prexor)
5008                                        continue;
5009                                if (s.failed > 1)
5010                                        continue;
5011                                if (!test_bit(R5_Insync, &dev->flags) ||
5012                                    ((i == sh->pd_idx || i == sh->qd_idx)  &&
5013                                     s.failed == 0))
5014                                        set_bit(STRIPE_INSYNC, &sh->state);
5015                        }
5016                }
5017                if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5018                        s.dec_preread_active = 1;
5019        }
5020
5021        /*
5022         * might be able to return some write requests if the parity blocks
5023         * are safe, or on a failed drive
5024         */
5025        pdev = &sh->dev[sh->pd_idx];
5026        s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
5027                || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
5028        qdev = &sh->dev[sh->qd_idx];
5029        s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
5030                || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
5031                || conf->level < 6;
5032
5033        if (s.written &&
5034            (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
5035                             && !test_bit(R5_LOCKED, &pdev->flags)
5036                             && (test_bit(R5_UPTODATE, &pdev->flags) ||
5037                                 test_bit(R5_Discard, &pdev->flags))))) &&
5038            (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
5039                             && !test_bit(R5_LOCKED, &qdev->flags)
5040                             && (test_bit(R5_UPTODATE, &qdev->flags) ||
5041                                 test_bit(R5_Discard, &qdev->flags))))))
5042                handle_stripe_clean_event(conf, sh, disks);
5043
5044        if (s.just_cached)
5045                r5c_handle_cached_data_endio(conf, sh, disks);
5046        log_stripe_write_finished(sh);
5047
5048        /* Now we might consider reading some blocks, either to check/generate
5049         * parity, or to satisfy requests
5050         * or to load a block that is being partially written.
5051         */
5052        if (s.to_read || s.non_overwrite
5053            || (s.to_write && s.failed)
5054            || (s.syncing && (s.uptodate + s.compute < disks))
5055            || s.replacing
5056            || s.expanding)
5057                handle_stripe_fill(sh, &s, disks);
5058
5059        /*
5060         * When the stripe finishes full journal write cycle (write to journal
5061         * and raid disk), this is the clean up procedure so it is ready for
5062         * next operation.
5063         */
5064        r5c_finish_stripe_write_out(conf, sh, &s);
5065
5066        /*
5067         * Now to consider new write requests, cache write back and what else,
5068         * if anything should be read.  We do not handle new writes when:
5069         * 1/ A 'write' operation (copy+xor) is already in flight.
5070         * 2/ A 'check' operation is in flight, as it may clobber the parity
5071         *    block.
5072         * 3/ A r5c cache log write is in flight.
5073         */
5074
5075        if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
5076                if (!r5c_is_writeback(conf->log)) {
5077                        if (s.to_write)
5078                                handle_stripe_dirtying(conf, sh, &s, disks);
5079                } else { /* write back cache */
5080                        int ret = 0;
5081
5082                        /* First, try handle writes in caching phase */
5083                        if (s.to_write)
5084                                ret = r5c_try_caching_write(conf, sh, &s,
5085                                                            disks);
5086                        /*
5087                         * If caching phase failed: ret == -EAGAIN
5088                         *    OR
5089                         * stripe under reclaim: !caching && injournal
5090                         *
5091                         * fall back to handle_stripe_dirtying()
5092                         */
5093                        if (ret == -EAGAIN ||
5094                            /* stripe under reclaim: !caching && injournal */
5095                            (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
5096                             s.injournal > 0)) {
5097                                ret = handle_stripe_dirtying(conf, sh, &s,
5098                                                             disks);
5099                                if (ret == -EAGAIN)
5100                                        goto finish;
5101                        }
5102                }
5103        }
5104
5105        /* maybe we need to check and possibly fix the parity for this stripe
5106         * Any reads will already have been scheduled, so we just see if enough
5107         * data is available.  The parity check is held off while parity
5108         * dependent operations are in flight.
5109         */
5110        if (sh->check_state ||
5111            (s.syncing && s.locked == 0 &&
5112             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5113             !test_bit(STRIPE_INSYNC, &sh->state))) {
5114                if (conf->level == 6)
5115                        handle_parity_checks6(conf, sh, &s, disks);
5116                else
5117                        handle_parity_checks5(conf, sh, &s, disks);
5118        }
5119
5120        if ((s.replacing || s.syncing) && s.locked == 0
5121            && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
5122            && !test_bit(STRIPE_REPLACED, &sh->state)) {
5123                /* Write out to replacement devices where possible */
5124                for (i = 0; i < conf->raid_disks; i++)
5125                        if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
5126                                WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
5127                                set_bit(R5_WantReplace, &sh->dev[i].flags);
5128                                set_bit(R5_LOCKED, &sh->dev[i].flags);
5129                                s.locked++;
5130                        }
5131                if (s.replacing)
5132                        set_bit(STRIPE_INSYNC, &sh->state);
5133                set_bit(STRIPE_REPLACED, &sh->state);
5134        }
5135        if ((s.syncing || s.replacing) && s.locked == 0 &&
5136            !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5137            test_bit(STRIPE_INSYNC, &sh->state)) {
5138                md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5139                clear_bit(STRIPE_SYNCING, &sh->state);
5140                if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
5141                        wake_up(&conf->wait_for_overlap);
5142        }
5143
5144        /* If the failed drives are just a ReadError, then we might need
5145         * to progress the repair/check process
5146         */
5147        if (s.failed <= conf->max_degraded && !conf->mddev->ro)
5148                for (i = 0; i < s.failed; i++) {
5149                        struct r5dev *dev = &sh->dev[s.failed_num[i]];
5150                        if (test_bit(R5_ReadError, &dev->flags)
5151                            && !test_bit(R5_LOCKED, &dev->flags)
5152                            && test_bit(R5_UPTODATE, &dev->flags)
5153                                ) {
5154                                if (!test_bit(R5_ReWrite, &dev->flags)) {
5155                                        set_bit(R5_Wantwrite, &dev->flags);
5156                                        set_bit(R5_ReWrite, &dev->flags);
5157                                } else
5158                                        /* let's read it back */
5159                                        set_bit(R5_Wantread, &dev->flags);
5160                                set_bit(R5_LOCKED, &dev->flags);
5161                                s.locked++;
5162                        }
5163                }
5164
5165        /* Finish reconstruct operations initiated by the expansion process */
5166        if (sh->reconstruct_state == reconstruct_state_result) {
5167                struct stripe_head *sh_src
5168                        = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
5169                if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
5170                        /* sh cannot be written until sh_src has been read.
5171                         * so arrange for sh to be delayed a little
5172                         */
5173                        set_bit(STRIPE_DELAYED, &sh->state);
5174                        set_bit(STRIPE_HANDLE, &sh->state);
5175                        if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
5176                                              &sh_src->state))
5177                                atomic_inc(&conf->preread_active_stripes);
5178                        raid5_release_stripe(sh_src);
5179                        goto finish;
5180                }
5181                if (sh_src)
5182                        raid5_release_stripe(sh_src);
5183
5184                sh->reconstruct_state = reconstruct_state_idle;
5185                clear_bit(STRIPE_EXPANDING, &sh->state);
5186                for (i = conf->raid_disks; i--; ) {
5187                        set_bit(R5_Wantwrite, &sh->dev[i].flags);
5188                        set_bit(R5_LOCKED, &sh->dev[i].flags);
5189                        s.locked++;
5190                }
5191        }
5192
5193        if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5194            !sh->reconstruct_state) {
5195                /* Need to write out all blocks after computing parity */
5196                sh->disks = conf->raid_disks;
5197                stripe_set_idx(sh->sector, conf, 0, sh);
5198                schedule_reconstruction(sh, &s, 1, 1);
5199        } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5200                clear_bit(STRIPE_EXPAND_READY, &sh->state);
5201                atomic_dec(&conf->reshape_stripes);
5202                wake_up(&conf->wait_for_overlap);
5203                md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5204        }
5205
5206        if (s.expanding && s.locked == 0 &&
5207            !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5208                handle_stripe_expansion(conf, sh);
5209
5210finish:
5211        /* wait for this device to become unblocked */
5212        if (unlikely(s.blocked_rdev)) {
5213                if (conf->mddev->external)
5214                        md_wait_for_blocked_rdev(s.blocked_rdev,
5215                                                 conf->mddev);
5216                else
5217                        /* Internal metadata will immediately
5218                         * be written by raid5d, so we don't
5219                         * need to wait here.
5220                         */
5221                        rdev_dec_pending(s.blocked_rdev,
5222                                         conf->mddev);
5223        }
5224
5225        if (s.handle_bad_blocks)
5226                for (i = disks; i--; ) {
5227                        struct md_rdev *rdev;
5228                        struct r5dev *dev = &sh->dev[i];
5229                        if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5230                                /* We own a safe reference to the rdev */
5231                                rdev = conf->disks[i].rdev;
5232                                if (!rdev_set_badblocks(rdev, sh->sector,
5233                                                        RAID5_STRIPE_SECTORS(conf), 0))
5234                                        md_error(conf->mddev, rdev);
5235                                rdev_dec_pending(rdev, conf->mddev);
5236                        }
5237                        if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5238                                rdev = conf->disks[i].rdev;
5239                                rdev_clear_badblocks(rdev, sh->sector,
5240                                                     RAID5_STRIPE_SECTORS(conf), 0);
5241                                rdev_dec_pending(rdev, conf->mddev);
5242                        }
5243                        if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5244                                rdev = conf->disks[i].replacement;
5245                                if (!rdev)
5246                                        /* rdev have been moved down */
5247                                        rdev = conf->disks[i].rdev;
5248                                rdev_clear_badblocks(rdev, sh->sector,
5249                                                     RAID5_STRIPE_SECTORS(conf), 0);
5250                                rdev_dec_pending(rdev, conf->mddev);
5251                        }
5252                }
5253
5254        if (s.ops_request)
5255                raid_run_ops(sh, s.ops_request);
5256
5257        ops_run_io(sh, &s);
5258
5259        if (s.dec_preread_active) {
5260                /* We delay this until after ops_run_io so that if make_request
5261                 * is waiting on a flush, it won't continue until the writes
5262                 * have actually been submitted.
5263                 */
5264                atomic_dec(&conf->preread_active_stripes);
5265                if (atomic_read(&conf->preread_active_stripes) <
5266                    IO_THRESHOLD)
5267                        md_wakeup_thread(conf->mddev->thread);
5268        }
5269
5270        clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5271}
5272
5273static void raid5_activate_delayed(struct r5conf *conf)
5274{
5275        if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5276                while (!list_empty(&conf->delayed_list)) {
5277                        struct list_head *l = conf->delayed_list.next;
5278                        struct stripe_head *sh;
5279                        sh = list_entry(l, struct stripe_head, lru);
5280                        list_del_init(l);
5281                        clear_bit(STRIPE_DELAYED, &sh->state);
5282                        if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5283                                atomic_inc(&conf->preread_active_stripes);
5284                        list_add_tail(&sh->lru, &conf->hold_list);
5285                        raid5_wakeup_stripe_thread(sh);
5286                }
5287        }
5288}
5289
5290static void activate_bit_delay(struct r5conf *conf,
5291        struct list_head *temp_inactive_list)
5292{
5293        /* device_lock is held */
5294        struct list_head head;
5295        list_add(&head, &conf->bitmap_list);
5296        list_del_init(&conf->bitmap_list);
5297        while (!list_empty(&head)) {
5298                struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5299                int hash;
5300                list_del_init(&sh->lru);
5301                atomic_inc(&sh->count);
5302                hash = sh->hash_lock_index;
5303                __release_stripe(conf, sh, &temp_inactive_list[hash]);
5304        }
5305}
5306
5307static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5308{
5309        struct r5conf *conf = mddev->private;
5310        sector_t sector = bio->bi_iter.bi_sector;
5311        unsigned int chunk_sectors;
5312        unsigned int bio_sectors = bio_sectors(bio);
5313
5314        chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5315        return  chunk_sectors >=
5316                ((sector & (chunk_sectors - 1)) + bio_sectors);
5317}
5318
5319/*
5320 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5321 *  later sampled by raid5d.
5322 */
5323static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5324{
5325        unsigned long flags;
5326
5327        spin_lock_irqsave(&conf->device_lock, flags);
5328
5329        bi->bi_next = conf->retry_read_aligned_list;
5330        conf->retry_read_aligned_list = bi;
5331
5332        spin_unlock_irqrestore(&conf->device_lock, flags);
5333        md_wakeup_thread(conf->mddev->thread);
5334}
5335
5336static struct bio *remove_bio_from_retry(struct r5conf *conf,
5337                                         unsigned int *offset)
5338{
5339        struct bio *bi;
5340
5341        bi = conf->retry_read_aligned;
5342        if (bi) {
5343                *offset = conf->retry_read_offset;
5344                conf->retry_read_aligned = NULL;
5345                return bi;
5346        }
5347        bi = conf->retry_read_aligned_list;
5348        if(bi) {
5349                conf->retry_read_aligned_list = bi->bi_next;
5350                bi->bi_next = NULL;
5351                *offset = 0;
5352        }
5353
5354        return bi;
5355}
5356
5357/*
5358 *  The "raid5_align_endio" should check if the read succeeded and if it
5359 *  did, call bio_endio on the original bio (having bio_put the new bio
5360 *  first).
5361 *  If the read failed..
5362 */
5363static void raid5_align_endio(struct bio *bi)
5364{
5365        struct md_io_acct *md_io_acct = bi->bi_private;
5366        struct bio *raid_bi = md_io_acct->orig_bio;
5367        struct mddev *mddev;
5368        struct r5conf *conf;
5369        struct md_rdev *rdev;
5370        blk_status_t error = bi->bi_status;
5371        unsigned long start_time = md_io_acct->start_time;
5372
5373        bio_put(bi);
5374
5375        rdev = (void*)raid_bi->bi_next;
5376        raid_bi->bi_next = NULL;
5377        mddev = rdev->mddev;
5378        conf = mddev->private;
5379
5380        rdev_dec_pending(rdev, conf->mddev);
5381
5382        if (!error) {
5383                if (blk_queue_io_stat(raid_bi->bi_bdev->bd_disk->queue))
5384                        bio_end_io_acct(raid_bi, start_time);
5385                bio_endio(raid_bi);
5386                if (atomic_dec_and_test(&conf->active_aligned_reads))
5387                        wake_up(&conf->wait_for_quiescent);
5388                return;
5389        }
5390
5391        pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5392
5393        add_bio_to_retry(raid_bi, conf);
5394}
5395
5396static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5397{
5398        struct r5conf *conf = mddev->private;
5399        struct bio *align_bio;
5400        struct md_rdev *rdev;
5401        sector_t sector, end_sector, first_bad;
5402        int bad_sectors, dd_idx;
5403        struct md_io_acct *md_io_acct;
5404        bool did_inc;
5405
5406        if (!in_chunk_boundary(mddev, raid_bio)) {
5407                pr_debug("%s: non aligned\n", __func__);
5408                return 0;
5409        }
5410
5411        sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0,
5412                                      &dd_idx, NULL);
5413        end_sector = bio_end_sector(raid_bio);
5414
5415        rcu_read_lock();
5416        if (r5c_big_stripe_cached(conf, sector))
5417                goto out_rcu_unlock;
5418
5419        rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5420        if (!rdev || test_bit(Faulty, &rdev->flags) ||
5421            rdev->recovery_offset < end_sector) {
5422                rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5423                if (!rdev)
5424                        goto out_rcu_unlock;
5425                if (test_bit(Faulty, &rdev->flags) ||
5426                    !(test_bit(In_sync, &rdev->flags) ||
5427                      rdev->recovery_offset >= end_sector))
5428                        goto out_rcu_unlock;
5429        }
5430
5431        atomic_inc(&rdev->nr_pending);
5432        rcu_read_unlock();
5433
5434        if (is_badblock(rdev, sector, bio_sectors(raid_bio), &first_bad,
5435                        &bad_sectors)) {
5436                bio_put(raid_bio);
5437                rdev_dec_pending(rdev, mddev);
5438                return 0;
5439        }
5440
5441        align_bio = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->io_acct_set);
5442        md_io_acct = container_of(align_bio, struct md_io_acct, bio_clone);
5443        raid_bio->bi_next = (void *)rdev;
5444        if (blk_queue_io_stat(raid_bio->bi_bdev->bd_disk->queue))
5445                md_io_acct->start_time = bio_start_io_acct(raid_bio);
5446        md_io_acct->orig_bio = raid_bio;
5447
5448        bio_set_dev(align_bio, rdev->bdev);
5449        align_bio->bi_end_io = raid5_align_endio;
5450        align_bio->bi_private = md_io_acct;
5451        align_bio->bi_iter.bi_sector = sector;
5452
5453        /* No reshape active, so we can trust rdev->data_offset */
5454        align_bio->bi_iter.bi_sector += rdev->data_offset;
5455
5456        did_inc = false;
5457        if (conf->quiesce == 0) {
5458                atomic_inc(&conf->active_aligned_reads);
5459                did_inc = true;
5460        }
5461        /* need a memory barrier to detect the race with raid5_quiesce() */
5462        if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) {
5463                /* quiesce is in progress, so we need to undo io activation and wait
5464                 * for it to finish
5465                 */
5466                if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads))
5467                        wake_up(&conf->wait_for_quiescent);
5468                spin_lock_irq(&conf->device_lock);
5469                wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0,
5470                                    conf->device_lock);
5471                atomic_inc(&conf->active_aligned_reads);
5472                spin_unlock_irq(&conf->device_lock);
5473        }
5474
5475        if (mddev->gendisk)
5476                trace_block_bio_remap(align_bio, disk_devt(mddev->gendisk),
5477                                      raid_bio->bi_iter.bi_sector);
5478        submit_bio_noacct(align_bio);
5479        return 1;
5480
5481out_rcu_unlock:
5482        rcu_read_unlock();
5483        return 0;
5484}
5485
5486static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5487{
5488        struct bio *split;
5489        sector_t sector = raid_bio->bi_iter.bi_sector;
5490        unsigned chunk_sects = mddev->chunk_sectors;
5491        unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5492
5493        if (sectors < bio_sectors(raid_bio)) {
5494                struct r5conf *conf = mddev->private;
5495                split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5496                bio_chain(split, raid_bio);
5497                submit_bio_noacct(raid_bio);
5498                raid_bio = split;
5499        }
5500
5501        if (!raid5_read_one_chunk(mddev, raid_bio))
5502                return raid_bio;
5503
5504        return NULL;
5505}
5506
5507/* __get_priority_stripe - get the next stripe to process
5508 *
5509 * Full stripe writes are allowed to pass preread active stripes up until
5510 * the bypass_threshold is exceeded.  In general the bypass_count
5511 * increments when the handle_list is handled before the hold_list; however, it
5512 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5513 * stripe with in flight i/o.  The bypass_count will be reset when the
5514 * head of the hold_list has changed, i.e. the head was promoted to the
5515 * handle_list.
5516 */
5517static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5518{
5519        struct stripe_head *sh, *tmp;
5520        struct list_head *handle_list = NULL;
5521        struct r5worker_group *wg;
5522        bool second_try = !r5c_is_writeback(conf->log) &&
5523                !r5l_log_disk_error(conf);
5524        bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5525                r5l_log_disk_error(conf);
5526
5527again:
5528        wg = NULL;
5529        sh = NULL;
5530        if (conf->worker_cnt_per_group == 0) {
5531                handle_list = try_loprio ? &conf->loprio_list :
5532                                        &conf->handle_list;
5533        } else if (group != ANY_GROUP) {
5534                handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5535                                &conf->worker_groups[group].handle_list;
5536                wg = &conf->worker_groups[group];
5537        } else {
5538                int i;
5539                for (i = 0; i < conf->group_cnt; i++) {
5540                        handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5541                                &conf->worker_groups[i].handle_list;
5542                        wg = &conf->worker_groups[i];
5543                        if (!list_empty(handle_list))
5544                                break;
5545                }
5546        }
5547
5548        pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5549                  __func__,
5550                  list_empty(handle_list) ? "empty" : "busy",
5551                  list_empty(&conf->hold_list) ? "empty" : "busy",
5552                  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5553
5554        if (!list_empty(handle_list)) {
5555                sh = list_entry(handle_list->next, typeof(*sh), lru);
5556
5557                if (list_empty(&conf->hold_list))
5558                        conf->bypass_count = 0;
5559                else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5560                        if (conf->hold_list.next == conf->last_hold)
5561                                conf->bypass_count++;
5562                        else {
5563                                conf->last_hold = conf->hold_list.next;
5564                                conf->bypass_count -= conf->bypass_threshold;
5565                                if (conf->bypass_count < 0)
5566                                        conf->bypass_count = 0;
5567                        }
5568                }
5569        } else if (!list_empty(&conf->hold_list) &&
5570                   ((conf->bypass_threshold &&
5571                     conf->bypass_count > conf->bypass_threshold) ||
5572                    atomic_read(&conf->pending_full_writes) == 0)) {
5573
5574                list_for_each_entry(tmp, &conf->hold_list,  lru) {
5575                        if (conf->worker_cnt_per_group == 0 ||
5576                            group == ANY_GROUP ||
5577                            !cpu_online(tmp->cpu) ||
5578                            cpu_to_group(tmp->cpu) == group) {
5579                                sh = tmp;
5580                                break;
5581                        }
5582                }
5583
5584                if (sh) {
5585                        conf->bypass_count -= conf->bypass_threshold;
5586                        if (conf->bypass_count < 0)
5587                                conf->bypass_count = 0;
5588                }
5589                wg = NULL;
5590        }
5591
5592        if (!sh) {
5593                if (second_try)
5594                        return NULL;
5595                second_try = true;
5596                try_loprio = !try_loprio;
5597                goto again;
5598        }
5599
5600        if (wg) {
5601                wg->stripes_cnt--;
5602                sh->group = NULL;
5603        }
5604        list_del_init(&sh->lru);
5605        BUG_ON(atomic_inc_return(&sh->count) != 1);
5606        return sh;
5607}
5608
5609struct raid5_plug_cb {
5610        struct blk_plug_cb      cb;
5611        struct list_head        list;
5612        struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5613};
5614
5615static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5616{
5617        struct raid5_plug_cb *cb = container_of(
5618                blk_cb, struct raid5_plug_cb, cb);
5619        struct stripe_head *sh;
5620        struct mddev *mddev = cb->cb.data;
5621        struct r5conf *conf = mddev->private;
5622        int cnt = 0;
5623        int hash;
5624
5625        if (cb->list.next && !list_empty(&cb->list)) {
5626                spin_lock_irq(&conf->device_lock);
5627                while (!list_empty(&cb->list)) {
5628                        sh = list_first_entry(&cb->list, struct stripe_head, lru);
5629                        list_del_init(&sh->lru);
5630                        /*
5631                         * avoid race release_stripe_plug() sees
5632                         * STRIPE_ON_UNPLUG_LIST clear but the stripe
5633                         * is still in our list
5634                         */
5635                        smp_mb__before_atomic();
5636                        clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5637                        /*
5638                         * STRIPE_ON_RELEASE_LIST could be set here. In that
5639                         * case, the count is always > 1 here
5640                         */
5641                        hash = sh->hash_lock_index;
5642                        __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5643                        cnt++;
5644                }
5645                spin_unlock_irq(&conf->device_lock);
5646        }
5647        release_inactive_stripe_list(conf, cb->temp_inactive_list,
5648                                     NR_STRIPE_HASH_LOCKS);
5649        if (mddev->queue)
5650                trace_block_unplug(mddev->queue, cnt, !from_schedule);
5651        kfree(cb);
5652}
5653
5654static void release_stripe_plug(struct mddev *mddev,
5655                                struct stripe_head *sh)
5656{
5657        struct blk_plug_cb *blk_cb = blk_check_plugged(
5658                raid5_unplug, mddev,
5659                sizeof(struct raid5_plug_cb));
5660        struct raid5_plug_cb *cb;
5661
5662        if (!blk_cb) {
5663                raid5_release_stripe(sh);
5664                return;
5665        }
5666
5667        cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5668
5669        if (cb->list.next == NULL) {
5670                int i;
5671                INIT_LIST_HEAD(&cb->list);
5672                for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5673                        INIT_LIST_HEAD(cb->temp_inactive_list + i);
5674        }
5675
5676        if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5677                list_add_tail(&sh->lru, &cb->list);
5678        else
5679                raid5_release_stripe(sh);
5680}
5681
5682static void make_discard_request(struct mddev *mddev, struct bio *bi)
5683{
5684        struct r5conf *conf = mddev->private;
5685        sector_t logical_sector, last_sector;
5686        struct stripe_head *sh;
5687        int stripe_sectors;
5688
5689        if (mddev->reshape_position != MaxSector)
5690                /* Skip discard while reshape is happening */
5691                return;
5692
5693        logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5694        last_sector = bio_end_sector(bi);
5695
5696        bi->bi_next = NULL;
5697
5698        stripe_sectors = conf->chunk_sectors *
5699                (conf->raid_disks - conf->max_degraded);
5700        logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5701                                               stripe_sectors);
5702        sector_div(last_sector, stripe_sectors);
5703
5704        logical_sector *= conf->chunk_sectors;
5705        last_sector *= conf->chunk_sectors;
5706
5707        for (; logical_sector < last_sector;
5708             logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5709                DEFINE_WAIT(w);
5710                int d;
5711        again:
5712                sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5713                prepare_to_wait(&conf->wait_for_overlap, &w,
5714                                TASK_UNINTERRUPTIBLE);
5715                set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5716                if (test_bit(STRIPE_SYNCING, &sh->state)) {
5717                        raid5_release_stripe(sh);
5718                        schedule();
5719                        goto again;
5720                }
5721                clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5722                spin_lock_irq(&sh->stripe_lock);
5723                for (d = 0; d < conf->raid_disks; d++) {
5724                        if (d == sh->pd_idx || d == sh->qd_idx)
5725                                continue;
5726                        if (sh->dev[d].towrite || sh->dev[d].toread) {
5727                                set_bit(R5_Overlap, &sh->dev[d].flags);
5728                                spin_unlock_irq(&sh->stripe_lock);
5729                                raid5_release_stripe(sh);
5730                                schedule();
5731                                goto again;
5732                        }
5733                }
5734                set_bit(STRIPE_DISCARD, &sh->state);
5735                finish_wait(&conf->wait_for_overlap, &w);
5736                sh->overwrite_disks = 0;
5737                for (d = 0; d < conf->raid_disks; d++) {
5738                        if (d == sh->pd_idx || d == sh->qd_idx)
5739                                continue;
5740                        sh->dev[d].towrite = bi;
5741                        set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5742                        bio_inc_remaining(bi);
5743                        md_write_inc(mddev, bi);
5744                        sh->overwrite_disks++;
5745                }
5746                spin_unlock_irq(&sh->stripe_lock);
5747                if (conf->mddev->bitmap) {
5748                        for (d = 0;
5749                             d < conf->raid_disks - conf->max_degraded;
5750                             d++)
5751                                md_bitmap_startwrite(mddev->bitmap,
5752                                                     sh->sector,
5753                                                     RAID5_STRIPE_SECTORS(conf),
5754                                                     0);
5755                        sh->bm_seq = conf->seq_flush + 1;
5756                        set_bit(STRIPE_BIT_DELAY, &sh->state);
5757                }
5758
5759                set_bit(STRIPE_HANDLE, &sh->state);
5760                clear_bit(STRIPE_DELAYED, &sh->state);
5761                if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5762                        atomic_inc(&conf->preread_active_stripes);
5763                release_stripe_plug(mddev, sh);
5764        }
5765
5766        bio_endio(bi);
5767}
5768
5769static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5770{
5771        struct r5conf *conf = mddev->private;
5772        int dd_idx;
5773        sector_t new_sector;
5774        sector_t logical_sector, last_sector;
5775        struct stripe_head *sh;
5776        const int rw = bio_data_dir(bi);
5777        DEFINE_WAIT(w);
5778        bool do_prepare;
5779        bool do_flush = false;
5780
5781        if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5782                int ret = log_handle_flush_request(conf, bi);
5783
5784                if (ret == 0)
5785                        return true;
5786                if (ret == -ENODEV) {
5787                        if (md_flush_request(mddev, bi))
5788                                return true;
5789                }
5790                /* ret == -EAGAIN, fallback */
5791                /*
5792                 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5793                 * we need to flush journal device
5794                 */
5795                do_flush = bi->bi_opf & REQ_PREFLUSH;
5796        }
5797
5798        if (!md_write_start(mddev, bi))
5799                return false;
5800        /*
5801         * If array is degraded, better not do chunk aligned read because
5802         * later we might have to read it again in order to reconstruct
5803         * data on failed drives.
5804         */
5805        if (rw == READ && mddev->degraded == 0 &&
5806            mddev->reshape_position == MaxSector) {
5807                bi = chunk_aligned_read(mddev, bi);
5808                if (!bi)
5809                        return true;
5810        }
5811
5812        if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5813                make_discard_request(mddev, bi);
5814                md_write_end(mddev);
5815                return true;
5816        }
5817
5818        logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5819        last_sector = bio_end_sector(bi);
5820        bi->bi_next = NULL;
5821
5822        md_account_bio(mddev, &bi);
5823        prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5824        for (; logical_sector < last_sector; logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5825                int previous;
5826                int seq;
5827
5828                do_prepare = false;
5829        retry:
5830                seq = read_seqcount_begin(&conf->gen_lock);
5831                previous = 0;
5832                if (do_prepare)
5833                        prepare_to_wait(&conf->wait_for_overlap, &w,
5834                                TASK_UNINTERRUPTIBLE);
5835                if (unlikely(conf->reshape_progress != MaxSector)) {
5836                        /* spinlock is needed as reshape_progress may be
5837                         * 64bit on a 32bit platform, and so it might be
5838                         * possible to see a half-updated value
5839                         * Of course reshape_progress could change after
5840                         * the lock is dropped, so once we get a reference
5841                         * to the stripe that we think it is, we will have
5842                         * to check again.
5843                         */
5844                        spin_lock_irq(&conf->device_lock);
5845                        if (mddev->reshape_backwards
5846                            ? logical_sector < conf->reshape_progress
5847                            : logical_sector >= conf->reshape_progress) {
5848                                previous = 1;
5849                        } else {
5850                                if (mddev->reshape_backwards
5851                                    ? logical_sector < conf->reshape_safe
5852                                    : logical_sector >= conf->reshape_safe) {
5853                                        spin_unlock_irq(&conf->device_lock);
5854                                        schedule();
5855                                        do_prepare = true;
5856                                        goto retry;
5857                                }
5858                        }
5859                        spin_unlock_irq(&conf->device_lock);
5860                }
5861
5862                new_sector = raid5_compute_sector(conf, logical_sector,
5863                                                  previous,
5864                                                  &dd_idx, NULL);
5865                pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5866                        (unsigned long long)new_sector,
5867                        (unsigned long long)logical_sector);
5868
5869                sh = raid5_get_active_stripe(conf, new_sector, previous,
5870                                       (bi->bi_opf & REQ_RAHEAD), 0);
5871                if (sh) {
5872                        if (unlikely(previous)) {
5873                                /* expansion might have moved on while waiting for a
5874                                 * stripe, so we must do the range check again.
5875                                 * Expansion could still move past after this
5876                                 * test, but as we are holding a reference to
5877                                 * 'sh', we know that if that happens,
5878                                 *  STRIPE_EXPANDING will get set and the expansion
5879                                 * won't proceed until we finish with the stripe.
5880                                 */
5881                                int must_retry = 0;
5882                                spin_lock_irq(&conf->device_lock);
5883                                if (mddev->reshape_backwards
5884                                    ? logical_sector >= conf->reshape_progress
5885                                    : logical_sector < conf->reshape_progress)
5886                                        /* mismatch, need to try again */
5887                                        must_retry = 1;
5888                                spin_unlock_irq(&conf->device_lock);
5889                                if (must_retry) {
5890                                        raid5_release_stripe(sh);
5891                                        schedule();
5892                                        do_prepare = true;
5893                                        goto retry;
5894                                }
5895                        }
5896                        if (read_seqcount_retry(&conf->gen_lock, seq)) {
5897                                /* Might have got the wrong stripe_head
5898                                 * by accident
5899                                 */
5900                                raid5_release_stripe(sh);
5901                                goto retry;
5902                        }
5903
5904                        if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5905                            !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5906                                /* Stripe is busy expanding or
5907                                 * add failed due to overlap.  Flush everything
5908                                 * and wait a while
5909                                 */
5910                                md_wakeup_thread(mddev->thread);
5911                                raid5_release_stripe(sh);
5912                                schedule();
5913                                do_prepare = true;
5914                                goto retry;
5915                        }
5916                        if (do_flush) {
5917                                set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5918                                /* we only need flush for one stripe */
5919                                do_flush = false;
5920                        }
5921
5922                        set_bit(STRIPE_HANDLE, &sh->state);
5923                        clear_bit(STRIPE_DELAYED, &sh->state);
5924                        if ((!sh->batch_head || sh == sh->batch_head) &&
5925                            (bi->bi_opf & REQ_SYNC) &&
5926                            !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5927                                atomic_inc(&conf->preread_active_stripes);
5928                        release_stripe_plug(mddev, sh);
5929                } else {
5930                        /* cannot get stripe for read-ahead, just give-up */
5931                        bi->bi_status = BLK_STS_IOERR;
5932                        break;
5933                }
5934        }
5935        finish_wait(&conf->wait_for_overlap, &w);
5936
5937        if (rw == WRITE)
5938                md_write_end(mddev);
5939        bio_endio(bi);
5940        return true;
5941}
5942
5943static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5944
5945static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5946{
5947        /* reshaping is quite different to recovery/resync so it is
5948         * handled quite separately ... here.
5949         *
5950         * On each call to sync_request, we gather one chunk worth of
5951         * destination stripes and flag them as expanding.
5952         * Then we find all the source stripes and request reads.
5953         * As the reads complete, handle_stripe will copy the data
5954         * into the destination stripe and release that stripe.
5955         */
5956        struct r5conf *conf = mddev->private;
5957        struct stripe_head *sh;
5958        struct md_rdev *rdev;
5959        sector_t first_sector, last_sector;
5960        int raid_disks = conf->previous_raid_disks;
5961        int data_disks = raid_disks - conf->max_degraded;
5962        int new_data_disks = conf->raid_disks - conf->max_degraded;
5963        int i;
5964        int dd_idx;
5965        sector_t writepos, readpos, safepos;
5966        sector_t stripe_addr;
5967        int reshape_sectors;
5968        struct list_head stripes;
5969        sector_t retn;
5970
5971        if (sector_nr == 0) {
5972                /* If restarting in the middle, skip the initial sectors */
5973                if (mddev->reshape_backwards &&
5974                    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5975                        sector_nr = raid5_size(mddev, 0, 0)
5976                                - conf->reshape_progress;
5977                } else if (mddev->reshape_backwards &&
5978                           conf->reshape_progress == MaxSector) {
5979                        /* shouldn't happen, but just in case, finish up.*/
5980                        sector_nr = MaxSector;
5981                } else if (!mddev->reshape_backwards &&
5982                           conf->reshape_progress > 0)
5983                        sector_nr = conf->reshape_progress;
5984                sector_div(sector_nr, new_data_disks);
5985                if (sector_nr) {
5986                        mddev->curr_resync_completed = sector_nr;
5987                        sysfs_notify_dirent_safe(mddev->sysfs_completed);
5988                        *skipped = 1;
5989                        retn = sector_nr;
5990                        goto finish;
5991                }
5992        }
5993
5994        /* We need to process a full chunk at a time.
5995         * If old and new chunk sizes differ, we need to process the
5996         * largest of these
5997         */
5998
5999        reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
6000
6001        /* We update the metadata at least every 10 seconds, or when
6002         * the data about to be copied would over-write the source of
6003         * the data at the front of the range.  i.e. one new_stripe
6004         * along from reshape_progress new_maps to after where
6005         * reshape_safe old_maps to
6006         */
6007        writepos = conf->reshape_progress;
6008        sector_div(writepos, new_data_disks);
6009        readpos = conf->reshape_progress;
6010        sector_div(readpos, data_disks);
6011        safepos = conf->reshape_safe;
6012        sector_div(safepos, data_disks);
6013        if (mddev->reshape_backwards) {
6014                BUG_ON(writepos < reshape_sectors);
6015                writepos -= reshape_sectors;
6016                readpos += reshape_sectors;
6017                safepos += reshape_sectors;
6018        } else {
6019                writepos += reshape_sectors;
6020                /* readpos and safepos are worst-case calculations.
6021                 * A negative number is overly pessimistic, and causes
6022                 * obvious problems for unsigned storage.  So clip to 0.
6023                 */
6024                readpos -= min_t(sector_t, reshape_sectors, readpos);
6025                safepos -= min_t(sector_t, reshape_sectors, safepos);
6026        }
6027
6028        /* Having calculated the 'writepos' possibly use it
6029         * to set 'stripe_addr' which is where we will write to.
6030         */
6031        if (mddev->reshape_backwards) {
6032                BUG_ON(conf->reshape_progress == 0);
6033                stripe_addr = writepos;
6034                BUG_ON((mddev->dev_sectors &
6035                        ~((sector_t)reshape_sectors - 1))
6036                       - reshape_sectors - stripe_addr
6037                       != sector_nr);
6038        } else {
6039                BUG_ON(writepos != sector_nr + reshape_sectors);
6040                stripe_addr = sector_nr;
6041        }
6042
6043        /* 'writepos' is the most advanced device address we might write.
6044         * 'readpos' is the least advanced device address we might read.
6045         * 'safepos' is the least address recorded in the metadata as having
6046         *     been reshaped.
6047         * If there is a min_offset_diff, these are adjusted either by
6048         * increasing the safepos/readpos if diff is negative, or
6049         * increasing writepos if diff is positive.
6050         * If 'readpos' is then behind 'writepos', there is no way that we can
6051         * ensure safety in the face of a crash - that must be done by userspace
6052         * making a backup of the data.  So in that case there is no particular
6053         * rush to update metadata.
6054         * Otherwise if 'safepos' is behind 'writepos', then we really need to
6055         * update the metadata to advance 'safepos' to match 'readpos' so that
6056         * we can be safe in the event of a crash.
6057         * So we insist on updating metadata if safepos is behind writepos and
6058         * readpos is beyond writepos.
6059         * In any case, update the metadata every 10 seconds.
6060         * Maybe that number should be configurable, but I'm not sure it is
6061         * worth it.... maybe it could be a multiple of safemode_delay???
6062         */
6063        if (conf->min_offset_diff < 0) {
6064                safepos += -conf->min_offset_diff;
6065                readpos += -conf->min_offset_diff;
6066        } else
6067                writepos += conf->min_offset_diff;
6068
6069        if ((mddev->reshape_backwards
6070             ? (safepos > writepos && readpos < writepos)
6071             : (safepos < writepos && readpos > writepos)) ||
6072            time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
6073                /* Cannot proceed until we've updated the superblock... */
6074                wait_event(conf->wait_for_overlap,
6075                           atomic_read(&conf->reshape_stripes)==0
6076                           || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6077                if (atomic_read(&conf->reshape_stripes) != 0)
6078                        return 0;
6079                mddev->reshape_position = conf->reshape_progress;
6080                mddev->curr_resync_completed = sector_nr;
6081                if (!mddev->reshape_backwards)
6082                        /* Can update recovery_offset */
6083                        rdev_for_each(rdev, mddev)
6084                                if (rdev->raid_disk >= 0 &&
6085                                    !test_bit(Journal, &rdev->flags) &&
6086                                    !test_bit(In_sync, &rdev->flags) &&
6087                                    rdev->recovery_offset < sector_nr)
6088                                        rdev->recovery_offset = sector_nr;
6089
6090                conf->reshape_checkpoint = jiffies;
6091                set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6092                md_wakeup_thread(mddev->thread);
6093                wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
6094                           test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6095                if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6096                        return 0;
6097                spin_lock_irq(&conf->device_lock);
6098                conf->reshape_safe = mddev->reshape_position;
6099                spin_unlock_irq(&conf->device_lock);
6100                wake_up(&conf->wait_for_overlap);
6101                sysfs_notify_dirent_safe(mddev->sysfs_completed);
6102        }
6103
6104        INIT_LIST_HEAD(&stripes);
6105        for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
6106                int j;
6107                int skipped_disk = 0;
6108                sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
6109                set_bit(STRIPE_EXPANDING, &sh->state);
6110                atomic_inc(&conf->reshape_stripes);
6111                /* If any of this stripe is beyond the end of the old
6112                 * array, then we need to zero those blocks
6113                 */
6114                for (j=sh->disks; j--;) {
6115                        sector_t s;
6116                        if (j == sh->pd_idx)
6117                                continue;
6118                        if (conf->level == 6 &&
6119                            j == sh->qd_idx)
6120                                continue;
6121                        s = raid5_compute_blocknr(sh, j, 0);
6122                        if (s < raid5_size(mddev, 0, 0)) {
6123                                skipped_disk = 1;
6124                                continue;
6125                        }
6126                        memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
6127                        set_bit(R5_Expanded, &sh->dev[j].flags);
6128                        set_bit(R5_UPTODATE, &sh->dev[j].flags);
6129                }
6130                if (!skipped_disk) {
6131                        set_bit(STRIPE_EXPAND_READY, &sh->state);
6132                        set_bit(STRIPE_HANDLE, &sh->state);
6133                }
6134                list_add(&sh->lru, &stripes);
6135        }
6136        spin_lock_irq(&conf->device_lock);
6137        if (mddev->reshape_backwards)
6138                conf->reshape_progress -= reshape_sectors * new_data_disks;
6139        else
6140                conf->reshape_progress += reshape_sectors * new_data_disks;
6141        spin_unlock_irq(&conf->device_lock);
6142        /* Ok, those stripe are ready. We can start scheduling
6143         * reads on the source stripes.
6144         * The source stripes are determined by mapping the first and last
6145         * block on the destination stripes.
6146         */
6147        first_sector =
6148                raid5_compute_sector(conf, stripe_addr*(new_data_disks),
6149                                     1, &dd_idx, NULL);
6150        last_sector =
6151                raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
6152                                            * new_data_disks - 1),
6153                                     1, &dd_idx, NULL);
6154        if (last_sector >= mddev->dev_sectors)
6155                last_sector = mddev->dev_sectors - 1;
6156        while (first_sector <= last_sector) {
6157                sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
6158                set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
6159                set_bit(STRIPE_HANDLE, &sh->state);
6160                raid5_release_stripe(sh);
6161                first_sector += RAID5_STRIPE_SECTORS(conf);
6162        }
6163        /* Now that the sources are clearly marked, we can release
6164         * the destination stripes
6165         */
6166        while (!list_empty(&stripes)) {
6167                sh = list_entry(stripes.next, struct stripe_head, lru);
6168                list_del_init(&sh->lru);
6169                raid5_release_stripe(sh);
6170        }
6171        /* If this takes us to the resync_max point where we have to pause,
6172         * then we need to write out the superblock.
6173         */
6174        sector_nr += reshape_sectors;
6175        retn = reshape_sectors;
6176finish:
6177        if (mddev->curr_resync_completed > mddev->resync_max ||
6178            (sector_nr - mddev->curr_resync_completed) * 2
6179            >= mddev->resync_max - mddev->curr_resync_completed) {
6180                /* Cannot proceed until we've updated the superblock... */
6181                wait_event(conf->wait_for_overlap,
6182                           atomic_read(&conf->reshape_stripes) == 0
6183                           || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6184                if (atomic_read(&conf->reshape_stripes) != 0)
6185                        goto ret;
6186                mddev->reshape_position = conf->reshape_progress;
6187                mddev->curr_resync_completed = sector_nr;
6188                if (!mddev->reshape_backwards)
6189                        /* Can update recovery_offset */
6190                        rdev_for_each(rdev, mddev)
6191                                if (rdev->raid_disk >= 0 &&
6192                                    !test_bit(Journal, &rdev->flags) &&
6193                                    !test_bit(In_sync, &rdev->flags) &&
6194                                    rdev->recovery_offset < sector_nr)
6195                                        rdev->recovery_offset = sector_nr;
6196                conf->reshape_checkpoint = jiffies;
6197                set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6198                md_wakeup_thread(mddev->thread);
6199                wait_event(mddev->sb_wait,
6200                           !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6201                           || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6202                if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6203                        goto ret;
6204                spin_lock_irq(&conf->device_lock);
6205                conf->reshape_safe = mddev->reshape_position;
6206                spin_unlock_irq(&conf->device_lock);
6207                wake_up(&conf->wait_for_overlap);
6208                sysfs_notify_dirent_safe(mddev->sysfs_completed);
6209        }
6210ret:
6211        return retn;
6212}
6213
6214static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6215                                          int *skipped)
6216{
6217        struct r5conf *conf = mddev->private;
6218        struct stripe_head *sh;
6219        sector_t max_sector = mddev->dev_sectors;
6220        sector_t sync_blocks;
6221        int still_degraded = 0;
6222        int i;
6223
6224        if (sector_nr >= max_sector) {
6225                /* just being told to finish up .. nothing much to do */
6226
6227                if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6228                        end_reshape(conf);
6229                        return 0;
6230                }
6231
6232                if (mddev->curr_resync < max_sector) /* aborted */
6233                        md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6234                                           &sync_blocks, 1);
6235                else /* completed sync */
6236                        conf->fullsync = 0;
6237                md_bitmap_close_sync(mddev->bitmap);
6238
6239                return 0;
6240        }
6241
6242        /* Allow raid5_quiesce to complete */
6243        wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6244
6245        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6246                return reshape_request(mddev, sector_nr, skipped);
6247
6248        /* No need to check resync_max as we never do more than one
6249         * stripe, and as resync_max will always be on a chunk boundary,
6250         * if the check in md_do_sync didn't fire, there is no chance
6251         * of overstepping resync_max here
6252         */
6253
6254        /* if there is too many failed drives and we are trying
6255         * to resync, then assert that we are finished, because there is
6256         * nothing we can do.
6257         */
6258        if (mddev->degraded >= conf->max_degraded &&
6259            test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6260                sector_t rv = mddev->dev_sectors - sector_nr;
6261                *skipped = 1;
6262                return rv;
6263        }
6264        if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6265            !conf->fullsync &&
6266            !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6267            sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
6268                /* we can skip this block, and probably more */
6269                do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
6270                *skipped = 1;
6271                /* keep things rounded to whole stripes */
6272                return sync_blocks * RAID5_STRIPE_SECTORS(conf);
6273        }
6274
6275        md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6276
6277        sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6278        if (sh == NULL) {
6279                sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6280                /* make sure we don't swamp the stripe cache if someone else
6281                 * is trying to get access
6282                 */
6283                schedule_timeout_uninterruptible(1);
6284        }
6285        /* Need to check if array will still be degraded after recovery/resync
6286         * Note in case of > 1 drive failures it's possible we're rebuilding
6287         * one drive while leaving another faulty drive in array.
6288         */
6289        rcu_read_lock();
6290        for (i = 0; i < conf->raid_disks; i++) {
6291                struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
6292
6293                if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6294                        still_degraded = 1;
6295        }
6296        rcu_read_unlock();
6297
6298        md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6299
6300        set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6301        set_bit(STRIPE_HANDLE, &sh->state);
6302
6303        raid5_release_stripe(sh);
6304
6305        return RAID5_STRIPE_SECTORS(conf);
6306}
6307
6308static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6309                               unsigned int offset)
6310{
6311        /* We may not be able to submit a whole bio at once as there
6312         * may not be enough stripe_heads available.
6313         * We cannot pre-allocate enough stripe_heads as we may need
6314         * more than exist in the cache (if we allow ever large chunks).
6315         * So we do one stripe head at a time and record in
6316         * ->bi_hw_segments how many have been done.
6317         *
6318         * We *know* that this entire raid_bio is in one chunk, so
6319         * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6320         */
6321        struct stripe_head *sh;
6322        int dd_idx;
6323        sector_t sector, logical_sector, last_sector;
6324        int scnt = 0;
6325        int handled = 0;
6326
6327        logical_sector = raid_bio->bi_iter.bi_sector &
6328                ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6329        sector = raid5_compute_sector(conf, logical_sector,
6330                                      0, &dd_idx, NULL);
6331        last_sector = bio_end_sector(raid_bio);
6332
6333        for (; logical_sector < last_sector;
6334             logical_sector += RAID5_STRIPE_SECTORS(conf),
6335                     sector += RAID5_STRIPE_SECTORS(conf),
6336                     scnt++) {
6337
6338                if (scnt < offset)
6339                        /* already done this stripe */
6340                        continue;
6341
6342                sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6343
6344                if (!sh) {
6345                        /* failed to get a stripe - must wait */
6346                        conf->retry_read_aligned = raid_bio;
6347                        conf->retry_read_offset = scnt;
6348                        return handled;
6349                }
6350
6351                if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6352                        raid5_release_stripe(sh);
6353                        conf->retry_read_aligned = raid_bio;
6354                        conf->retry_read_offset = scnt;
6355                        return handled;
6356                }
6357
6358                set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6359                handle_stripe(sh);
6360                raid5_release_stripe(sh);
6361                handled++;
6362        }
6363
6364        bio_endio(raid_bio);
6365
6366        if (atomic_dec_and_test(&conf->active_aligned_reads))
6367                wake_up(&conf->wait_for_quiescent);
6368        return handled;
6369}
6370
6371static int handle_active_stripes(struct r5conf *conf, int group,
6372                                 struct r5worker *worker,
6373                                 struct list_head *temp_inactive_list)
6374                __releases(&conf->device_lock)
6375                __acquires(&conf->device_lock)
6376{
6377        struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6378        int i, batch_size = 0, hash;
6379        bool release_inactive = false;
6380
6381        while (batch_size < MAX_STRIPE_BATCH &&
6382                        (sh = __get_priority_stripe(conf, group)) != NULL)
6383                batch[batch_size++] = sh;
6384
6385        if (batch_size == 0) {
6386                for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6387                        if (!list_empty(temp_inactive_list + i))
6388                                break;
6389                if (i == NR_STRIPE_HASH_LOCKS) {
6390                        spin_unlock_irq(&conf->device_lock);
6391                        log_flush_stripe_to_raid(conf);
6392                        spin_lock_irq(&conf->device_lock);
6393                        return batch_size;
6394                }
6395                release_inactive = true;
6396        }
6397        spin_unlock_irq(&conf->device_lock);
6398
6399        release_inactive_stripe_list(conf, temp_inactive_list,
6400                                     NR_STRIPE_HASH_LOCKS);
6401
6402        r5l_flush_stripe_to_raid(conf->log);
6403        if (release_inactive) {
6404                spin_lock_irq(&conf->device_lock);
6405                return 0;
6406        }
6407
6408        for (i = 0; i < batch_size; i++)
6409                handle_stripe(batch[i]);
6410        log_write_stripe_run(conf);
6411
6412        cond_resched();
6413
6414        spin_lock_irq(&conf->device_lock);
6415        for (i = 0; i < batch_size; i++) {
6416                hash = batch[i]->hash_lock_index;
6417                __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6418        }
6419        return batch_size;
6420}
6421
6422static void raid5_do_work(struct work_struct *work)
6423{
6424        struct r5worker *worker = container_of(work, struct r5worker, work);
6425        struct r5worker_group *group = worker->group;
6426        struct r5conf *conf = group->conf;
6427        struct mddev *mddev = conf->mddev;
6428        int group_id = group - conf->worker_groups;
6429        int handled;
6430        struct blk_plug plug;
6431
6432        pr_debug("+++ raid5worker active\n");
6433
6434        blk_start_plug(&plug);
6435        handled = 0;
6436        spin_lock_irq(&conf->device_lock);
6437        while (1) {
6438                int batch_size, released;
6439
6440                released = release_stripe_list(conf, worker->temp_inactive_list);
6441
6442                batch_size = handle_active_stripes(conf, group_id, worker,
6443                                                   worker->temp_inactive_list);
6444                worker->working = false;
6445                if (!batch_size && !released)
6446                        break;
6447                handled += batch_size;
6448                wait_event_lock_irq(mddev->sb_wait,
6449                        !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6450                        conf->device_lock);
6451        }
6452        pr_debug("%d stripes handled\n", handled);
6453
6454        spin_unlock_irq(&conf->device_lock);
6455
6456        flush_deferred_bios(conf);
6457
6458        r5l_flush_stripe_to_raid(conf->log);
6459
6460        async_tx_issue_pending_all();
6461        blk_finish_plug(&plug);
6462
6463        pr_debug("--- raid5worker inactive\n");
6464}
6465
6466/*
6467 * This is our raid5 kernel thread.
6468 *
6469 * We scan the hash table for stripes which can be handled now.
6470 * During the scan, completed stripes are saved for us by the interrupt
6471 * handler, so that they will not have to wait for our next wakeup.
6472 */
6473static void raid5d(struct md_thread *thread)
6474{
6475        struct mddev *mddev = thread->mddev;
6476        struct r5conf *conf = mddev->private;
6477        int handled;
6478        struct blk_plug plug;
6479
6480        pr_debug("+++ raid5d active\n");
6481
6482        md_check_recovery(mddev);
6483
6484        blk_start_plug(&plug);
6485        handled = 0;
6486        spin_lock_irq(&conf->device_lock);
6487        while (1) {
6488                struct bio *bio;
6489                int batch_size, released;
6490                unsigned int offset;
6491
6492                released = release_stripe_list(conf, conf->temp_inactive_list);
6493                if (released)
6494                        clear_bit(R5_DID_ALLOC, &conf->cache_state);
6495
6496                if (
6497                    !list_empty(&conf->bitmap_list)) {
6498                        /* Now is a good time to flush some bitmap updates */
6499                        conf->seq_flush++;
6500                        spin_unlock_irq(&conf->device_lock);
6501                        md_bitmap_unplug(mddev->bitmap);
6502                        spin_lock_irq(&conf->device_lock);
6503                        conf->seq_write = conf->seq_flush;
6504                        activate_bit_delay(conf, conf->temp_inactive_list);
6505                }
6506                raid5_activate_delayed(conf);
6507
6508                while ((bio = remove_bio_from_retry(conf, &offset))) {
6509                        int ok;
6510                        spin_unlock_irq(&conf->device_lock);
6511                        ok = retry_aligned_read(conf, bio, offset);
6512                        spin_lock_irq(&conf->device_lock);
6513                        if (!ok)
6514                                break;
6515                        handled++;
6516                }
6517
6518                batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6519                                                   conf->temp_inactive_list);
6520                if (!batch_size && !released)
6521                        break;
6522                handled += batch_size;
6523
6524                if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6525                        spin_unlock_irq(&conf->device_lock);
6526                        md_check_recovery(mddev);
6527                        spin_lock_irq(&conf->device_lock);
6528                }
6529        }
6530        pr_debug("%d stripes handled\n", handled);
6531
6532        spin_unlock_irq(&conf->device_lock);
6533        if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6534            mutex_trylock(&conf->cache_size_mutex)) {
6535                grow_one_stripe(conf, __GFP_NOWARN);
6536                /* Set flag even if allocation failed.  This helps
6537                 * slow down allocation requests when mem is short
6538                 */
6539                set_bit(R5_DID_ALLOC, &conf->cache_state);
6540                mutex_unlock(&conf->cache_size_mutex);
6541        }
6542
6543        flush_deferred_bios(conf);
6544
6545        r5l_flush_stripe_to_raid(conf->log);
6546
6547        async_tx_issue_pending_all();
6548        blk_finish_plug(&plug);
6549
6550        pr_debug("--- raid5d inactive\n");
6551}
6552
6553static ssize_t
6554raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6555{
6556        struct r5conf *conf;
6557        int ret = 0;
6558        spin_lock(&mddev->lock);
6559        conf = mddev->private;
6560        if (conf)
6561                ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6562        spin_unlock(&mddev->lock);
6563        return ret;
6564}
6565
6566int
6567raid5_set_cache_size(struct mddev *mddev, int size)
6568{
6569        int result = 0;
6570        struct r5conf *conf = mddev->private;
6571
6572        if (size <= 16 || size > 32768)
6573                return -EINVAL;
6574
6575        conf->min_nr_stripes = size;
6576        mutex_lock(&conf->cache_size_mutex);
6577        while (size < conf->max_nr_stripes &&
6578               drop_one_stripe(conf))
6579                ;
6580        mutex_unlock(&conf->cache_size_mutex);
6581
6582        md_allow_write(mddev);
6583
6584        mutex_lock(&conf->cache_size_mutex);
6585        while (size > conf->max_nr_stripes)
6586                if (!grow_one_stripe(conf, GFP_KERNEL)) {
6587                        conf->min_nr_stripes = conf->max_nr_stripes;
6588                        result = -ENOMEM;
6589                        break;
6590                }
6591        mutex_unlock(&conf->cache_size_mutex);
6592
6593        return result;
6594}
6595EXPORT_SYMBOL(raid5_set_cache_size);
6596
6597static ssize_t
6598raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6599{
6600        struct r5conf *conf;
6601        unsigned long new;
6602        int err;
6603
6604        if (len >= PAGE_SIZE)
6605                return -EINVAL;
6606        if (kstrtoul(page, 10, &new))
6607                return -EINVAL;
6608        err = mddev_lock(mddev);
6609        if (err)
6610                return err;
6611        conf = mddev->private;
6612        if (!conf)
6613                err = -ENODEV;
6614        else
6615                err = raid5_set_cache_size(mddev, new);
6616        mddev_unlock(mddev);
6617
6618        return err ?: len;
6619}
6620
6621static struct md_sysfs_entry
6622raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6623                                raid5_show_stripe_cache_size,
6624                                raid5_store_stripe_cache_size);
6625
6626static ssize_t
6627raid5_show_rmw_level(struct mddev  *mddev, char *page)
6628{
6629        struct r5conf *conf = mddev->private;
6630        if (conf)
6631                return sprintf(page, "%d\n", conf->rmw_level);
6632        else
6633                return 0;
6634}
6635
6636static ssize_t
6637raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6638{
6639        struct r5conf *conf = mddev->private;
6640        unsigned long new;
6641
6642        if (!conf)
6643                return -ENODEV;
6644
6645        if (len >= PAGE_SIZE)
6646                return -EINVAL;
6647
6648        if (kstrtoul(page, 10, &new))
6649                return -EINVAL;
6650
6651        if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6652                return -EINVAL;
6653
6654        if (new != PARITY_DISABLE_RMW &&
6655            new != PARITY_ENABLE_RMW &&
6656            new != PARITY_PREFER_RMW)
6657                return -EINVAL;
6658
6659        conf->rmw_level = new;
6660        return len;
6661}
6662
6663static struct md_sysfs_entry
6664raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6665                         raid5_show_rmw_level,
6666                         raid5_store_rmw_level);
6667
6668static ssize_t
6669raid5_show_stripe_size(struct mddev  *mddev, char *page)
6670{
6671        struct r5conf *conf;
6672        int ret = 0;
6673
6674        spin_lock(&mddev->lock);
6675        conf = mddev->private;
6676        if (conf)
6677                ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
6678        spin_unlock(&mddev->lock);
6679        return ret;
6680}
6681
6682#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6683static ssize_t
6684raid5_store_stripe_size(struct mddev  *mddev, const char *page, size_t len)
6685{
6686        struct r5conf *conf;
6687        unsigned long new;
6688        int err;
6689        int size;
6690
6691        if (len >= PAGE_SIZE)
6692                return -EINVAL;
6693        if (kstrtoul(page, 10, &new))
6694                return -EINVAL;
6695
6696        /*
6697         * The value should not be bigger than PAGE_SIZE. It requires to
6698         * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
6699         * of two.
6700         */
6701        if (new % DEFAULT_STRIPE_SIZE != 0 ||
6702                        new > PAGE_SIZE || new == 0 ||
6703                        new != roundup_pow_of_two(new))
6704                return -EINVAL;
6705
6706        err = mddev_lock(mddev);
6707        if (err)
6708                return err;
6709
6710        conf = mddev->private;
6711        if (!conf) {
6712                err = -ENODEV;
6713                goto out_unlock;
6714        }
6715
6716        if (new == conf->stripe_size)
6717                goto out_unlock;
6718
6719        pr_debug("md/raid: change stripe_size from %lu to %lu\n",
6720                        conf->stripe_size, new);
6721
6722        if (mddev->sync_thread ||
6723                test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6724                mddev->reshape_position != MaxSector ||
6725                mddev->sysfs_active) {
6726                err = -EBUSY;
6727                goto out_unlock;
6728        }
6729
6730        mddev_suspend(mddev);
6731        mutex_lock(&conf->cache_size_mutex);
6732        size = conf->max_nr_stripes;
6733
6734        shrink_stripes(conf);
6735
6736        conf->stripe_size = new;
6737        conf->stripe_shift = ilog2(new) - 9;
6738        conf->stripe_sectors = new >> 9;
6739        if (grow_stripes(conf, size)) {
6740                pr_warn("md/raid:%s: couldn't allocate buffers\n",
6741                                mdname(mddev));
6742                err = -ENOMEM;
6743        }
6744        mutex_unlock(&conf->cache_size_mutex);
6745        mddev_resume(mddev);
6746
6747out_unlock:
6748        mddev_unlock(mddev);
6749        return err ?: len;
6750}
6751
6752static struct md_sysfs_entry
6753raid5_stripe_size = __ATTR(stripe_size, 0644,
6754                         raid5_show_stripe_size,
6755                         raid5_store_stripe_size);
6756#else
6757static struct md_sysfs_entry
6758raid5_stripe_size = __ATTR(stripe_size, 0444,
6759                         raid5_show_stripe_size,
6760                         NULL);
6761#endif
6762
6763static ssize_t
6764raid5_show_preread_threshold(struct mddev *mddev, char *page)
6765{
6766        struct r5conf *conf;
6767        int ret = 0;
6768        spin_lock(&mddev->lock);
6769        conf = mddev->private;
6770        if (conf)
6771                ret = sprintf(page, "%d\n", conf->bypass_threshold);
6772        spin_unlock(&mddev->lock);
6773        return ret;
6774}
6775
6776static ssize_t
6777raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6778{
6779        struct r5conf *conf;
6780        unsigned long new;
6781        int err;
6782
6783        if (len >= PAGE_SIZE)
6784                return -EINVAL;
6785        if (kstrtoul(page, 10, &new))
6786                return -EINVAL;
6787
6788        err = mddev_lock(mddev);
6789        if (err)
6790                return err;
6791        conf = mddev->private;
6792        if (!conf)
6793                err = -ENODEV;
6794        else if (new > conf->min_nr_stripes)
6795                err = -EINVAL;
6796        else
6797                conf->bypass_threshold = new;
6798        mddev_unlock(mddev);
6799        return err ?: len;
6800}
6801
6802static struct md_sysfs_entry
6803raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6804                                        S_IRUGO | S_IWUSR,
6805                                        raid5_show_preread_threshold,
6806                                        raid5_store_preread_threshold);
6807
6808static ssize_t
6809raid5_show_skip_copy(struct mddev *mddev, char *page)
6810{
6811        struct r5conf *conf;
6812        int ret = 0;
6813        spin_lock(&mddev->lock);
6814        conf = mddev->private;
6815        if (conf)
6816                ret = sprintf(page, "%d\n", conf->skip_copy);
6817        spin_unlock(&mddev->lock);
6818        return ret;
6819}
6820
6821static ssize_t
6822raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6823{
6824        struct r5conf *conf;
6825        unsigned long new;
6826        int err;
6827
6828        if (len >= PAGE_SIZE)
6829                return -EINVAL;
6830        if (kstrtoul(page, 10, &new))
6831                return -EINVAL;
6832        new = !!new;
6833
6834        err = mddev_lock(mddev);
6835        if (err)
6836                return err;
6837        conf = mddev->private;
6838        if (!conf)
6839                err = -ENODEV;
6840        else if (new != conf->skip_copy) {
6841                struct request_queue *q = mddev->queue;
6842
6843                mddev_suspend(mddev);
6844                conf->skip_copy = new;
6845                if (new)
6846                        blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
6847                else
6848                        blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
6849                mddev_resume(mddev);
6850        }
6851        mddev_unlock(mddev);
6852        return err ?: len;
6853}
6854
6855static struct md_sysfs_entry
6856raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6857                                        raid5_show_skip_copy,
6858                                        raid5_store_skip_copy);
6859
6860static ssize_t
6861stripe_cache_active_show(struct mddev *mddev, char *page)
6862{
6863        struct r5conf *conf = mddev->private;
6864        if (conf)
6865                return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6866        else
6867                return 0;
6868}
6869
6870static struct md_sysfs_entry
6871raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6872
6873static ssize_t
6874raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6875{
6876        struct r5conf *conf;
6877        int ret = 0;
6878        spin_lock(&mddev->lock);
6879        conf = mddev->private;
6880        if (conf)
6881                ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6882        spin_unlock(&mddev->lock);
6883        return ret;
6884}
6885
6886static int alloc_thread_groups(struct r5conf *conf, int cnt,
6887                               int *group_cnt,
6888                               struct r5worker_group **worker_groups);
6889static ssize_t
6890raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6891{
6892        struct r5conf *conf;
6893        unsigned int new;
6894        int err;
6895        struct r5worker_group *new_groups, *old_groups;
6896        int group_cnt;
6897
6898        if (len >= PAGE_SIZE)
6899                return -EINVAL;
6900        if (kstrtouint(page, 10, &new))
6901                return -EINVAL;
6902        /* 8192 should be big enough */
6903        if (new > 8192)
6904                return -EINVAL;
6905
6906        err = mddev_lock(mddev);
6907        if (err)
6908                return err;
6909        conf = mddev->private;
6910        if (!conf)
6911                err = -ENODEV;
6912        else if (new != conf->worker_cnt_per_group) {
6913                mddev_suspend(mddev);
6914
6915                old_groups = conf->worker_groups;
6916                if (old_groups)
6917                        flush_workqueue(raid5_wq);
6918
6919                err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
6920                if (!err) {
6921                        spin_lock_irq(&conf->device_lock);
6922                        conf->group_cnt = group_cnt;
6923                        conf->worker_cnt_per_group = new;
6924                        conf->worker_groups = new_groups;
6925                        spin_unlock_irq(&conf->device_lock);
6926
6927                        if (old_groups)
6928                                kfree(old_groups[0].workers);
6929                        kfree(old_groups);
6930                }
6931                mddev_resume(mddev);
6932        }
6933        mddev_unlock(mddev);
6934
6935        return err ?: len;
6936}
6937
6938static struct md_sysfs_entry
6939raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6940                                raid5_show_group_thread_cnt,
6941                                raid5_store_group_thread_cnt);
6942
6943static struct attribute *raid5_attrs[] =  {
6944        &raid5_stripecache_size.attr,
6945        &raid5_stripecache_active.attr,
6946        &raid5_preread_bypass_threshold.attr,
6947        &raid5_group_thread_cnt.attr,
6948        &raid5_skip_copy.attr,
6949        &raid5_rmw_level.attr,
6950        &raid5_stripe_size.attr,
6951        &r5c_journal_mode.attr,
6952        &ppl_write_hint.attr,
6953        NULL,
6954};
6955static const struct attribute_group raid5_attrs_group = {
6956        .name = NULL,
6957        .attrs = raid5_attrs,
6958};
6959
6960static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
6961                               struct r5worker_group **worker_groups)
6962{
6963        int i, j, k;
6964        ssize_t size;
6965        struct r5worker *workers;
6966
6967        if (cnt == 0) {
6968                *group_cnt = 0;
6969                *worker_groups = NULL;
6970                return 0;
6971        }
6972        *group_cnt = num_possible_nodes();
6973        size = sizeof(struct r5worker) * cnt;
6974        workers = kcalloc(size, *group_cnt, GFP_NOIO);
6975        *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
6976                                 GFP_NOIO);
6977        if (!*worker_groups || !workers) {
6978                kfree(workers);
6979                kfree(*worker_groups);
6980                return -ENOMEM;
6981        }
6982
6983        for (i = 0; i < *group_cnt; i++) {
6984                struct r5worker_group *group;
6985
6986                group = &(*worker_groups)[i];
6987                INIT_LIST_HEAD(&group->handle_list);
6988                INIT_LIST_HEAD(&group->loprio_list);
6989                group->conf = conf;
6990                group->workers = workers + i * cnt;
6991
6992                for (j = 0; j < cnt; j++) {
6993                        struct r5worker *worker = group->workers + j;
6994                        worker->group = group;
6995                        INIT_WORK(&worker->work, raid5_do_work);
6996
6997                        for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6998                                INIT_LIST_HEAD(worker->temp_inactive_list + k);
6999                }
7000        }
7001
7002        return 0;
7003}
7004
7005static void free_thread_groups(struct r5conf *conf)
7006{
7007        if (conf->worker_groups)
7008                kfree(conf->worker_groups[0].workers);
7009        kfree(conf->worker_groups);
7010        conf->worker_groups = NULL;
7011}
7012
7013static sector_t
7014raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
7015{
7016        struct r5conf *conf = mddev->private;
7017
7018        if (!sectors)
7019                sectors = mddev->dev_sectors;
7020        if (!raid_disks)
7021                /* size is defined by the smallest of previous and new size */
7022                raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
7023
7024        sectors &= ~((sector_t)conf->chunk_sectors - 1);
7025        sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
7026        return sectors * (raid_disks - conf->max_degraded);
7027}
7028
7029static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7030{
7031        safe_put_page(percpu->spare_page);
7032        percpu->spare_page = NULL;
7033        kvfree(percpu->scribble);
7034        percpu->scribble = NULL;
7035}
7036
7037static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7038{
7039        if (conf->level == 6 && !percpu->spare_page) {
7040                percpu->spare_page = alloc_page(GFP_KERNEL);
7041                if (!percpu->spare_page)
7042                        return -ENOMEM;
7043        }
7044
7045        if (scribble_alloc(percpu,
7046                           max(conf->raid_disks,
7047                               conf->previous_raid_disks),
7048                           max(conf->chunk_sectors,
7049                               conf->prev_chunk_sectors)
7050                           / RAID5_STRIPE_SECTORS(conf))) {
7051                free_scratch_buffer(conf, percpu);
7052                return -ENOMEM;
7053        }
7054
7055        return 0;
7056}
7057
7058static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
7059{
7060        struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7061
7062        free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
7063        return 0;
7064}
7065
7066static void raid5_free_percpu(struct r5conf *conf)
7067{
7068        if (!conf->percpu)
7069                return;
7070
7071        cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7072        free_percpu(conf->percpu);
7073}
7074
7075static void free_conf(struct r5conf *conf)
7076{
7077        int i;
7078
7079        log_exit(conf);
7080
7081        unregister_shrinker(&conf->shrinker);
7082        free_thread_groups(conf);
7083        shrink_stripes(conf);
7084        raid5_free_percpu(conf);
7085        for (i = 0; i < conf->pool_size; i++)
7086                if (conf->disks[i].extra_page)
7087                        put_page(conf->disks[i].extra_page);
7088        kfree(conf->disks);
7089        bioset_exit(&conf->bio_split);
7090        kfree(conf->stripe_hashtbl);
7091        kfree(conf->pending_data);
7092        kfree(conf);
7093}
7094
7095static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
7096{
7097        struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7098        struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
7099
7100        if (alloc_scratch_buffer(conf, percpu)) {
7101                pr_warn("%s: failed memory allocation for cpu%u\n",
7102                        __func__, cpu);
7103                return -ENOMEM;
7104        }
7105        return 0;
7106}
7107
7108static int raid5_alloc_percpu(struct r5conf *conf)
7109{
7110        int err = 0;
7111
7112        conf->percpu = alloc_percpu(struct raid5_percpu);
7113        if (!conf->percpu)
7114                return -ENOMEM;
7115
7116        err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7117        if (!err) {
7118                conf->scribble_disks = max(conf->raid_disks,
7119                        conf->previous_raid_disks);
7120                conf->scribble_sectors = max(conf->chunk_sectors,
7121                        conf->prev_chunk_sectors);
7122        }
7123        return err;
7124}
7125
7126static unsigned long raid5_cache_scan(struct shrinker *shrink,
7127                                      struct shrink_control *sc)
7128{
7129        struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
7130        unsigned long ret = SHRINK_STOP;
7131
7132        if (mutex_trylock(&conf->cache_size_mutex)) {
7133                ret= 0;
7134                while (ret < sc->nr_to_scan &&
7135                       conf->max_nr_stripes > conf->min_nr_stripes) {
7136                        if (drop_one_stripe(conf) == 0) {
7137                                ret = SHRINK_STOP;
7138                                break;
7139                        }
7140                        ret++;
7141                }
7142                mutex_unlock(&conf->cache_size_mutex);
7143        }
7144        return ret;
7145}
7146
7147static unsigned long raid5_cache_count(struct shrinker *shrink,
7148                                       struct shrink_control *sc)
7149{
7150        struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
7151
7152        if (conf->max_nr_stripes < conf->min_nr_stripes)
7153                /* unlikely, but not impossible */
7154                return 0;
7155        return conf->max_nr_stripes - conf->min_nr_stripes;
7156}
7157
7158static struct r5conf *setup_conf(struct mddev *mddev)
7159{
7160        struct r5conf *conf;
7161        int raid_disk, memory, max_disks;
7162        struct md_rdev *rdev;
7163        struct disk_info *disk;
7164        char pers_name[6];
7165        int i;
7166        int group_cnt;
7167        struct r5worker_group *new_group;
7168        int ret;
7169
7170        if (mddev->new_level != 5
7171            && mddev->new_level != 4
7172            && mddev->new_level != 6) {
7173                pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
7174                        mdname(mddev), mddev->new_level);
7175                return ERR_PTR(-EIO);
7176        }
7177        if ((mddev->new_level == 5
7178             && !algorithm_valid_raid5(mddev->new_layout)) ||
7179            (mddev->new_level == 6
7180             && !algorithm_valid_raid6(mddev->new_layout))) {
7181                pr_warn("md/raid:%s: layout %d not supported\n",
7182                        mdname(mddev), mddev->new_layout);
7183                return ERR_PTR(-EIO);
7184        }
7185        if (mddev->new_level == 6 && mddev->raid_disks < 4) {
7186                pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
7187                        mdname(mddev), mddev->raid_disks);
7188                return ERR_PTR(-EINVAL);
7189        }
7190
7191        if (!mddev->new_chunk_sectors ||
7192            (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
7193            !is_power_of_2(mddev->new_chunk_sectors)) {
7194                pr_warn("md/raid:%s: invalid chunk size %d\n",
7195                        mdname(mddev), mddev->new_chunk_sectors << 9);
7196                return ERR_PTR(-EINVAL);
7197        }
7198
7199        conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
7200        if (conf == NULL)
7201                goto abort;
7202
7203#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7204        conf->stripe_size = DEFAULT_STRIPE_SIZE;
7205        conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7206        conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7207#endif
7208        INIT_LIST_HEAD(&conf->free_list);
7209        INIT_LIST_HEAD(&conf->pending_list);
7210        conf->pending_data = kcalloc(PENDING_IO_MAX,
7211                                     sizeof(struct r5pending_data),
7212                                     GFP_KERNEL);
7213        if (!conf->pending_data)
7214                goto abort;
7215        for (i = 0; i < PENDING_IO_MAX; i++)
7216                list_add(&conf->pending_data[i].sibling, &conf->free_list);
7217        /* Don't enable multi-threading by default*/
7218        if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
7219                conf->group_cnt = group_cnt;
7220                conf->worker_cnt_per_group = 0;
7221                conf->worker_groups = new_group;
7222        } else
7223                goto abort;
7224        spin_lock_init(&conf->device_lock);
7225        seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
7226        mutex_init(&conf->cache_size_mutex);
7227        init_waitqueue_head(&conf->wait_for_quiescent);
7228        init_waitqueue_head(&conf->wait_for_stripe);
7229        init_waitqueue_head(&conf->wait_for_overlap);
7230        INIT_LIST_HEAD(&conf->handle_list);
7231        INIT_LIST_HEAD(&conf->loprio_list);
7232        INIT_LIST_HEAD(&conf->hold_list);
7233        INIT_LIST_HEAD(&conf->delayed_list);
7234        INIT_LIST_HEAD(&conf->bitmap_list);
7235        init_llist_head(&conf->released_stripes);
7236        atomic_set(&conf->active_stripes, 0);
7237        atomic_set(&conf->preread_active_stripes, 0);
7238        atomic_set(&conf->active_aligned_reads, 0);
7239        spin_lock_init(&conf->pending_bios_lock);
7240        conf->batch_bio_dispatch = true;
7241        rdev_for_each(rdev, mddev) {
7242                if (test_bit(Journal, &rdev->flags))
7243                        continue;
7244                if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
7245                        conf->batch_bio_dispatch = false;
7246                        break;
7247                }
7248        }
7249
7250        conf->bypass_threshold = BYPASS_THRESHOLD;
7251        conf->recovery_disabled = mddev->recovery_disabled - 1;
7252
7253        conf->raid_disks = mddev->raid_disks;
7254        if (mddev->reshape_position == MaxSector)
7255                conf->previous_raid_disks = mddev->raid_disks;
7256        else
7257                conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
7258        max_disks = max(conf->raid_disks, conf->previous_raid_disks);
7259
7260        conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
7261                              GFP_KERNEL);
7262
7263        if (!conf->disks)
7264                goto abort;
7265
7266        for (i = 0; i < max_disks; i++) {
7267                conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7268                if (!conf->disks[i].extra_page)
7269                        goto abort;
7270        }
7271
7272        ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7273        if (ret)
7274                goto abort;
7275        conf->mddev = mddev;
7276
7277        if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
7278                goto abort;
7279
7280        /* We init hash_locks[0] separately to that it can be used
7281         * as the reference lock in the spin_lock_nest_lock() call
7282         * in lock_all_device_hash_locks_irq in order to convince
7283         * lockdep that we know what we are doing.
7284         */
7285        spin_lock_init(conf->hash_locks);
7286        for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7287                spin_lock_init(conf->hash_locks + i);
7288
7289        for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7290                INIT_LIST_HEAD(conf->inactive_list + i);
7291
7292        for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7293                INIT_LIST_HEAD(conf->temp_inactive_list + i);
7294
7295        atomic_set(&conf->r5c_cached_full_stripes, 0);
7296        INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7297        atomic_set(&conf->r5c_cached_partial_stripes, 0);
7298        INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7299        atomic_set(&conf->r5c_flushing_full_stripes, 0);
7300        atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7301
7302        conf->level = mddev->new_level;
7303        conf->chunk_sectors = mddev->new_chunk_sectors;
7304        if (raid5_alloc_percpu(conf) != 0)
7305                goto abort;
7306
7307        pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7308
7309        rdev_for_each(rdev, mddev) {
7310                raid_disk = rdev->raid_disk;
7311                if (raid_disk >= max_disks
7312                    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7313                        continue;
7314                disk = conf->disks + raid_disk;
7315
7316                if (test_bit(Replacement, &rdev->flags)) {
7317                        if (disk->replacement)
7318                                goto abort;
7319                        disk->replacement = rdev;
7320                } else {
7321                        if (disk->rdev)
7322                                goto abort;
7323                        disk->rdev = rdev;
7324                }
7325
7326                if (test_bit(In_sync, &rdev->flags)) {
7327                        char b[BDEVNAME_SIZE];
7328                        pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7329                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7330                } else if (rdev->saved_raid_disk != raid_disk)
7331                        /* Cannot rely on bitmap to complete recovery */
7332                        conf->fullsync = 1;
7333        }
7334
7335        conf->level = mddev->new_level;
7336        if (conf->level == 6) {
7337                conf->max_degraded = 2;
7338                if (raid6_call.xor_syndrome)
7339                        conf->rmw_level = PARITY_ENABLE_RMW;
7340                else
7341                        conf->rmw_level = PARITY_DISABLE_RMW;
7342        } else {
7343                conf->max_degraded = 1;
7344                conf->rmw_level = PARITY_ENABLE_RMW;
7345        }
7346        conf->algorithm = mddev->new_layout;
7347        conf->reshape_progress = mddev->reshape_position;
7348        if (conf->reshape_progress != MaxSector) {
7349                conf->prev_chunk_sectors = mddev->chunk_sectors;
7350                conf->prev_algo = mddev->layout;
7351        } else {
7352                conf->prev_chunk_sectors = conf->chunk_sectors;
7353                conf->prev_algo = conf->algorithm;
7354        }
7355
7356        conf->min_nr_stripes = NR_STRIPES;
7357        if (mddev->reshape_position != MaxSector) {
7358                int stripes = max_t(int,
7359                        ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7360                        ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
7361                conf->min_nr_stripes = max(NR_STRIPES, stripes);
7362                if (conf->min_nr_stripes != NR_STRIPES)
7363                        pr_info("md/raid:%s: force stripe size %d for reshape\n",
7364                                mdname(mddev), conf->min_nr_stripes);
7365        }
7366        memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7367                 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7368        atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7369        if (grow_stripes(conf, conf->min_nr_stripes)) {
7370                pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7371                        mdname(mddev), memory);
7372                goto abort;
7373        } else
7374                pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7375        /*
7376         * Losing a stripe head costs more than the time to refill it,
7377         * it reduces the queue depth and so can hurt throughput.
7378         * So set it rather large, scaled by number of devices.
7379         */
7380        conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7381        conf->shrinker.scan_objects = raid5_cache_scan;
7382        conf->shrinker.count_objects = raid5_cache_count;
7383        conf->shrinker.batch = 128;
7384        conf->shrinker.flags = 0;
7385        if (register_shrinker(&conf->shrinker)) {
7386                pr_warn("md/raid:%s: couldn't register shrinker.\n",
7387                        mdname(mddev));
7388                goto abort;
7389        }
7390
7391        sprintf(pers_name, "raid%d", mddev->new_level);
7392        conf->thread = md_register_thread(raid5d, mddev, pers_name);
7393        if (!conf->thread) {
7394                pr_warn("md/raid:%s: couldn't allocate thread.\n",
7395                        mdname(mddev));
7396                goto abort;
7397        }
7398
7399        return conf;
7400
7401 abort:
7402        if (conf) {
7403                free_conf(conf);
7404                return ERR_PTR(-EIO);
7405        } else
7406                return ERR_PTR(-ENOMEM);
7407}
7408
7409static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7410{
7411        switch (algo) {
7412        case ALGORITHM_PARITY_0:
7413                if (raid_disk < max_degraded)
7414                        return 1;
7415                break;
7416        case ALGORITHM_PARITY_N:
7417                if (raid_disk >= raid_disks - max_degraded)
7418                        return 1;
7419                break;
7420        case ALGORITHM_PARITY_0_6:
7421                if (raid_disk == 0 ||
7422                    raid_disk == raid_disks - 1)
7423                        return 1;
7424                break;
7425        case ALGORITHM_LEFT_ASYMMETRIC_6:
7426        case ALGORITHM_RIGHT_ASYMMETRIC_6:
7427        case ALGORITHM_LEFT_SYMMETRIC_6:
7428        case ALGORITHM_RIGHT_SYMMETRIC_6:
7429                if (raid_disk == raid_disks - 1)
7430                        return 1;
7431        }
7432        return 0;
7433}
7434
7435static void raid5_set_io_opt(struct r5conf *conf)
7436{
7437        blk_queue_io_opt(conf->mddev->queue, (conf->chunk_sectors << 9) *
7438                         (conf->raid_disks - conf->max_degraded));
7439}
7440
7441static int raid5_run(struct mddev *mddev)
7442{
7443        struct r5conf *conf;
7444        int working_disks = 0;
7445        int dirty_parity_disks = 0;
7446        struct md_rdev *rdev;
7447        struct md_rdev *journal_dev = NULL;
7448        sector_t reshape_offset = 0;
7449        int i;
7450        long long min_offset_diff = 0;
7451        int first = 1;
7452
7453        if (mddev_init_writes_pending(mddev) < 0)
7454                return -ENOMEM;
7455
7456        if (mddev->recovery_cp != MaxSector)
7457                pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7458                          mdname(mddev));
7459
7460        rdev_for_each(rdev, mddev) {
7461                long long diff;
7462
7463                if (test_bit(Journal, &rdev->flags)) {
7464                        journal_dev = rdev;
7465                        continue;
7466                }
7467                if (rdev->raid_disk < 0)
7468                        continue;
7469                diff = (rdev->new_data_offset - rdev->data_offset);
7470                if (first) {
7471                        min_offset_diff = diff;
7472                        first = 0;
7473                } else if (mddev->reshape_backwards &&
7474                         diff < min_offset_diff)
7475                        min_offset_diff = diff;
7476                else if (!mddev->reshape_backwards &&
7477                         diff > min_offset_diff)
7478                        min_offset_diff = diff;
7479        }
7480
7481        if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7482            (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7483                pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7484                          mdname(mddev));
7485                return -EINVAL;
7486        }
7487
7488        if (mddev->reshape_position != MaxSector) {
7489                /* Check that we can continue the reshape.
7490                 * Difficulties arise if the stripe we would write to
7491                 * next is at or after the stripe we would read from next.
7492                 * For a reshape that changes the number of devices, this
7493                 * is only possible for a very short time, and mdadm makes
7494                 * sure that time appears to have past before assembling
7495                 * the array.  So we fail if that time hasn't passed.
7496                 * For a reshape that keeps the number of devices the same
7497                 * mdadm must be monitoring the reshape can keeping the
7498                 * critical areas read-only and backed up.  It will start
7499                 * the array in read-only mode, so we check for that.
7500                 */
7501                sector_t here_new, here_old;
7502                int old_disks;
7503                int max_degraded = (mddev->level == 6 ? 2 : 1);
7504                int chunk_sectors;
7505                int new_data_disks;
7506
7507                if (journal_dev) {
7508                        pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7509                                mdname(mddev));
7510                        return -EINVAL;
7511                }
7512
7513                if (mddev->new_level != mddev->level) {
7514                        pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7515                                mdname(mddev));
7516                        return -EINVAL;
7517                }
7518                old_disks = mddev->raid_disks - mddev->delta_disks;
7519                /* reshape_position must be on a new-stripe boundary, and one
7520                 * further up in new geometry must map after here in old
7521                 * geometry.
7522                 * If the chunk sizes are different, then as we perform reshape
7523                 * in units of the largest of the two, reshape_position needs
7524                 * be a multiple of the largest chunk size times new data disks.
7525                 */
7526                here_new = mddev->reshape_position;
7527                chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7528                new_data_disks = mddev->raid_disks - max_degraded;
7529                if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7530                        pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7531                                mdname(mddev));
7532                        return -EINVAL;
7533                }
7534                reshape_offset = here_new * chunk_sectors;
7535                /* here_new is the stripe we will write to */
7536                here_old = mddev->reshape_position;
7537                sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7538                /* here_old is the first stripe that we might need to read
7539                 * from */
7540                if (mddev->delta_disks == 0) {
7541                        /* We cannot be sure it is safe to start an in-place
7542                         * reshape.  It is only safe if user-space is monitoring
7543                         * and taking constant backups.
7544                         * mdadm always starts a situation like this in
7545                         * readonly mode so it can take control before
7546                         * allowing any writes.  So just check for that.
7547                         */
7548                        if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7549                            abs(min_offset_diff) >= mddev->new_chunk_sectors)
7550                                /* not really in-place - so OK */;
7551                        else if (mddev->ro == 0) {
7552                                pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7553                                        mdname(mddev));
7554                                return -EINVAL;
7555                        }
7556                } else if (mddev->reshape_backwards
7557                    ? (here_new * chunk_sectors + min_offset_diff <=
7558                       here_old * chunk_sectors)
7559                    : (here_new * chunk_sectors >=
7560                       here_old * chunk_sectors + (-min_offset_diff))) {
7561                        /* Reading from the same stripe as writing to - bad */
7562                        pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7563                                mdname(mddev));
7564                        return -EINVAL;
7565                }
7566                pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7567                /* OK, we should be able to continue; */
7568        } else {
7569                BUG_ON(mddev->level != mddev->new_level);
7570                BUG_ON(mddev->layout != mddev->new_layout);
7571                BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7572                BUG_ON(mddev->delta_disks != 0);
7573        }
7574
7575        if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7576            test_bit(MD_HAS_PPL, &mddev->flags)) {
7577                pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7578                        mdname(mddev));
7579                clear_bit(MD_HAS_PPL, &mddev->flags);
7580                clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7581        }
7582
7583        if (mddev->private == NULL)
7584                conf = setup_conf(mddev);
7585        else
7586                conf = mddev->private;
7587
7588        if (IS_ERR(conf))
7589                return PTR_ERR(conf);
7590
7591        if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7592                if (!journal_dev) {
7593                        pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7594                                mdname(mddev));
7595                        mddev->ro = 1;
7596                        set_disk_ro(mddev->gendisk, 1);
7597                } else if (mddev->recovery_cp == MaxSector)
7598                        set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7599        }
7600
7601        conf->min_offset_diff = min_offset_diff;
7602        mddev->thread = conf->thread;
7603        conf->thread = NULL;
7604        mddev->private = conf;
7605
7606        for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7607             i++) {
7608                rdev = conf->disks[i].rdev;
7609                if (!rdev && conf->disks[i].replacement) {
7610                        /* The replacement is all we have yet */
7611                        rdev = conf->disks[i].replacement;
7612                        conf->disks[i].replacement = NULL;
7613                        clear_bit(Replacement, &rdev->flags);
7614                        conf->disks[i].rdev = rdev;
7615                }
7616                if (!rdev)
7617                        continue;
7618                if (conf->disks[i].replacement &&
7619                    conf->reshape_progress != MaxSector) {
7620                        /* replacements and reshape simply do not mix. */
7621                        pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7622                        goto abort;
7623                }
7624                if (test_bit(In_sync, &rdev->flags)) {
7625                        working_disks++;
7626                        continue;
7627                }
7628                /* This disc is not fully in-sync.  However if it
7629                 * just stored parity (beyond the recovery_offset),
7630                 * when we don't need to be concerned about the
7631                 * array being dirty.
7632                 * When reshape goes 'backwards', we never have
7633                 * partially completed devices, so we only need
7634                 * to worry about reshape going forwards.
7635                 */
7636                /* Hack because v0.91 doesn't store recovery_offset properly. */
7637                if (mddev->major_version == 0 &&
7638                    mddev->minor_version > 90)
7639                        rdev->recovery_offset = reshape_offset;
7640
7641                if (rdev->recovery_offset < reshape_offset) {
7642                        /* We need to check old and new layout */
7643                        if (!only_parity(rdev->raid_disk,
7644                                         conf->algorithm,
7645                                         conf->raid_disks,
7646                                         conf->max_degraded))
7647                                continue;
7648                }
7649                if (!only_parity(rdev->raid_disk,
7650                                 conf->prev_algo,
7651                                 conf->previous_raid_disks,
7652                                 conf->max_degraded))
7653                        continue;
7654                dirty_parity_disks++;
7655        }
7656
7657        /*
7658         * 0 for a fully functional array, 1 or 2 for a degraded array.
7659         */
7660        mddev->degraded = raid5_calc_degraded(conf);
7661
7662        if (has_failed(conf)) {
7663                pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7664                        mdname(mddev), mddev->degraded, conf->raid_disks);
7665                goto abort;
7666        }
7667
7668        /* device size must be a multiple of chunk size */
7669        mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7670        mddev->resync_max_sectors = mddev->dev_sectors;
7671
7672        if (mddev->degraded > dirty_parity_disks &&
7673            mddev->recovery_cp != MaxSector) {
7674                if (test_bit(MD_HAS_PPL, &mddev->flags))
7675                        pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7676                                mdname(mddev));
7677                else if (mddev->ok_start_degraded)
7678                        pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7679                                mdname(mddev));
7680                else {
7681                        pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7682                                mdname(mddev));
7683                        goto abort;
7684                }
7685        }
7686
7687        pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7688                mdname(mddev), conf->level,
7689                mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7690                mddev->new_layout);
7691
7692        print_raid5_conf(conf);
7693
7694        if (conf->reshape_progress != MaxSector) {
7695                conf->reshape_safe = conf->reshape_progress;
7696                atomic_set(&conf->reshape_stripes, 0);
7697                clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7698                clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7699                set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7700                set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7701                mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7702                                                        "reshape");
7703                if (!mddev->sync_thread)
7704                        goto abort;
7705        }
7706
7707        /* Ok, everything is just fine now */
7708        if (mddev->to_remove == &raid5_attrs_group)
7709                mddev->to_remove = NULL;
7710        else if (mddev->kobj.sd &&
7711            sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7712                pr_warn("raid5: failed to create sysfs attributes for %s\n",
7713                        mdname(mddev));
7714        md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7715
7716        if (mddev->queue) {
7717                int chunk_size;
7718                /* read-ahead size must cover two whole stripes, which
7719                 * is 2 * (datadisks) * chunksize where 'n' is the
7720                 * number of raid devices
7721                 */
7722                int data_disks = conf->previous_raid_disks - conf->max_degraded;
7723                int stripe = data_disks *
7724                        ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7725
7726                chunk_size = mddev->chunk_sectors << 9;
7727                blk_queue_io_min(mddev->queue, chunk_size);
7728                raid5_set_io_opt(conf);
7729                mddev->queue->limits.raid_partial_stripes_expensive = 1;
7730                /*
7731                 * We can only discard a whole stripe. It doesn't make sense to
7732                 * discard data disk but write parity disk
7733                 */
7734                stripe = stripe * PAGE_SIZE;
7735                /* Round up to power of 2, as discard handling
7736                 * currently assumes that */
7737                while ((stripe-1) & stripe)
7738                        stripe = (stripe | (stripe-1)) + 1;
7739                mddev->queue->limits.discard_alignment = stripe;
7740                mddev->queue->limits.discard_granularity = stripe;
7741
7742                blk_queue_max_write_same_sectors(mddev->queue, 0);
7743                blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7744
7745                rdev_for_each(rdev, mddev) {
7746                        disk_stack_limits(mddev->gendisk, rdev->bdev,
7747                                          rdev->data_offset << 9);
7748                        disk_stack_limits(mddev->gendisk, rdev->bdev,
7749                                          rdev->new_data_offset << 9);
7750                }
7751
7752                /*
7753                 * zeroing is required, otherwise data
7754                 * could be lost. Consider a scenario: discard a stripe
7755                 * (the stripe could be inconsistent if
7756                 * discard_zeroes_data is 0); write one disk of the
7757                 * stripe (the stripe could be inconsistent again
7758                 * depending on which disks are used to calculate
7759                 * parity); the disk is broken; The stripe data of this
7760                 * disk is lost.
7761                 *
7762                 * We only allow DISCARD if the sysadmin has confirmed that
7763                 * only safe devices are in use by setting a module parameter.
7764                 * A better idea might be to turn DISCARD into WRITE_ZEROES
7765                 * requests, as that is required to be safe.
7766                 */
7767                if (devices_handle_discard_safely &&
7768                    mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7769                    mddev->queue->limits.discard_granularity >= stripe)
7770                        blk_queue_flag_set(QUEUE_FLAG_DISCARD,
7771                                                mddev->queue);
7772                else
7773                        blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
7774                                                mddev->queue);
7775
7776                blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7777        }
7778
7779        if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7780                goto abort;
7781
7782        return 0;
7783abort:
7784        md_unregister_thread(&mddev->thread);
7785        print_raid5_conf(conf);
7786        free_conf(conf);
7787        mddev->private = NULL;
7788        pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7789        return -EIO;
7790}
7791
7792static void raid5_free(struct mddev *mddev, void *priv)
7793{
7794        struct r5conf *conf = priv;
7795
7796        free_conf(conf);
7797        mddev->to_remove = &raid5_attrs_group;
7798}
7799
7800static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7801{
7802        struct r5conf *conf = mddev->private;
7803        int i;
7804
7805        seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7806                conf->chunk_sectors / 2, mddev->layout);
7807        seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7808        rcu_read_lock();
7809        for (i = 0; i < conf->raid_disks; i++) {
7810                struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7811                seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7812        }
7813        rcu_read_unlock();
7814        seq_printf (seq, "]");
7815}
7816
7817static void print_raid5_conf (struct r5conf *conf)
7818{
7819        int i;
7820        struct disk_info *tmp;
7821
7822        pr_debug("RAID conf printout:\n");
7823        if (!conf) {
7824                pr_debug("(conf==NULL)\n");
7825                return;
7826        }
7827        pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7828               conf->raid_disks,
7829               conf->raid_disks - conf->mddev->degraded);
7830
7831        for (i = 0; i < conf->raid_disks; i++) {
7832                char b[BDEVNAME_SIZE];
7833                tmp = conf->disks + i;
7834                if (tmp->rdev)
7835                        pr_debug(" disk %d, o:%d, dev:%s\n",
7836                               i, !test_bit(Faulty, &tmp->rdev->flags),
7837                               bdevname(tmp->rdev->bdev, b));
7838        }
7839}
7840
7841static int raid5_spare_active(struct mddev *mddev)
7842{
7843        int i;
7844        struct r5conf *conf = mddev->private;
7845        struct disk_info *tmp;
7846        int count = 0;
7847        unsigned long flags;
7848
7849        for (i = 0; i < conf->raid_disks; i++) {
7850                tmp = conf->disks + i;
7851                if (tmp->replacement
7852                    && tmp->replacement->recovery_offset == MaxSector
7853                    && !test_bit(Faulty, &tmp->replacement->flags)
7854                    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7855                        /* Replacement has just become active. */
7856                        if (!tmp->rdev
7857                            || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7858                                count++;
7859                        if (tmp->rdev) {
7860                                /* Replaced device not technically faulty,
7861                                 * but we need to be sure it gets removed
7862                                 * and never re-added.
7863                                 */
7864                                set_bit(Faulty, &tmp->rdev->flags);
7865                                sysfs_notify_dirent_safe(
7866                                        tmp->rdev->sysfs_state);
7867                        }
7868                        sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7869                } else if (tmp->rdev
7870                    && tmp->rdev->recovery_offset == MaxSector
7871                    && !test_bit(Faulty, &tmp->rdev->flags)
7872                    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7873                        count++;
7874                        sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7875                }
7876        }
7877        spin_lock_irqsave(&conf->device_lock, flags);
7878        mddev->degraded = raid5_calc_degraded(conf);
7879        spin_unlock_irqrestore(&conf->device_lock, flags);
7880        print_raid5_conf(conf);
7881        return count;
7882}
7883
7884static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7885{
7886        struct r5conf *conf = mddev->private;
7887        int err = 0;
7888        int number = rdev->raid_disk;
7889        struct md_rdev **rdevp;
7890        struct disk_info *p = conf->disks + number;
7891
7892        print_raid5_conf(conf);
7893        if (test_bit(Journal, &rdev->flags) && conf->log) {
7894                /*
7895                 * we can't wait pending write here, as this is called in
7896                 * raid5d, wait will deadlock.
7897                 * neilb: there is no locking about new writes here,
7898                 * so this cannot be safe.
7899                 */
7900                if (atomic_read(&conf->active_stripes) ||
7901                    atomic_read(&conf->r5c_cached_full_stripes) ||
7902                    atomic_read(&conf->r5c_cached_partial_stripes)) {
7903                        return -EBUSY;
7904                }
7905                log_exit(conf);
7906                return 0;
7907        }
7908        if (rdev == p->rdev)
7909                rdevp = &p->rdev;
7910        else if (rdev == p->replacement)
7911                rdevp = &p->replacement;
7912        else
7913                return 0;
7914
7915        if (number >= conf->raid_disks &&
7916            conf->reshape_progress == MaxSector)
7917                clear_bit(In_sync, &rdev->flags);
7918
7919        if (test_bit(In_sync, &rdev->flags) ||
7920            atomic_read(&rdev->nr_pending)) {
7921                err = -EBUSY;
7922                goto abort;
7923        }
7924        /* Only remove non-faulty devices if recovery
7925         * isn't possible.
7926         */
7927        if (!test_bit(Faulty, &rdev->flags) &&
7928            mddev->recovery_disabled != conf->recovery_disabled &&
7929            !has_failed(conf) &&
7930            (!p->replacement || p->replacement == rdev) &&
7931            number < conf->raid_disks) {
7932                err = -EBUSY;
7933                goto abort;
7934        }
7935        *rdevp = NULL;
7936        if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7937                synchronize_rcu();
7938                if (atomic_read(&rdev->nr_pending)) {
7939                        /* lost the race, try later */
7940                        err = -EBUSY;
7941                        *rdevp = rdev;
7942                }
7943        }
7944        if (!err) {
7945                err = log_modify(conf, rdev, false);
7946                if (err)
7947                        goto abort;
7948        }
7949        if (p->replacement) {
7950                /* We must have just cleared 'rdev' */
7951                p->rdev = p->replacement;
7952                clear_bit(Replacement, &p->replacement->flags);
7953                smp_mb(); /* Make sure other CPUs may see both as identical
7954                           * but will never see neither - if they are careful
7955                           */
7956                p->replacement = NULL;
7957
7958                if (!err)
7959                        err = log_modify(conf, p->rdev, true);
7960        }
7961
7962        clear_bit(WantReplacement, &rdev->flags);
7963abort:
7964
7965        print_raid5_conf(conf);
7966        return err;
7967}
7968
7969static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7970{
7971        struct r5conf *conf = mddev->private;
7972        int ret, err = -EEXIST;
7973        int disk;
7974        struct disk_info *p;
7975        int first = 0;
7976        int last = conf->raid_disks - 1;
7977
7978        if (test_bit(Journal, &rdev->flags)) {
7979                if (conf->log)
7980                        return -EBUSY;
7981
7982                rdev->raid_disk = 0;
7983                /*
7984                 * The array is in readonly mode if journal is missing, so no
7985                 * write requests running. We should be safe
7986                 */
7987                ret = log_init(conf, rdev, false);
7988                if (ret)
7989                        return ret;
7990
7991                ret = r5l_start(conf->log);
7992                if (ret)
7993                        return ret;
7994
7995                return 0;
7996        }
7997        if (mddev->recovery_disabled == conf->recovery_disabled)
7998                return -EBUSY;
7999
8000        if (rdev->saved_raid_disk < 0 && has_failed(conf))
8001                /* no point adding a device */
8002                return -EINVAL;
8003
8004        if (rdev->raid_disk >= 0)
8005                first = last = rdev->raid_disk;
8006
8007        /*
8008         * find the disk ... but prefer rdev->saved_raid_disk
8009         * if possible.
8010         */
8011        if (rdev->saved_raid_disk >= 0 &&
8012            rdev->saved_raid_disk >= first &&
8013            conf->disks[rdev->saved_raid_disk].rdev == NULL)
8014                first = rdev->saved_raid_disk;
8015
8016        for (disk = first; disk <= last; disk++) {
8017                p = conf->disks + disk;
8018                if (p->rdev == NULL) {
8019                        clear_bit(In_sync, &rdev->flags);
8020                        rdev->raid_disk = disk;
8021                        if (rdev->saved_raid_disk != disk)
8022                                conf->fullsync = 1;
8023                        rcu_assign_pointer(p->rdev, rdev);
8024
8025                        err = log_modify(conf, rdev, true);
8026
8027                        goto out;
8028                }
8029        }
8030        for (disk = first; disk <= last; disk++) {
8031                p = conf->disks + disk;
8032                if (test_bit(WantReplacement, &p->rdev->flags) &&
8033                    p->replacement == NULL) {
8034                        clear_bit(In_sync, &rdev->flags);
8035                        set_bit(Replacement, &rdev->flags);
8036                        rdev->raid_disk = disk;
8037                        err = 0;
8038                        conf->fullsync = 1;
8039                        rcu_assign_pointer(p->replacement, rdev);
8040                        break;
8041                }
8042        }
8043out:
8044        print_raid5_conf(conf);
8045        return err;
8046}
8047
8048static int raid5_resize(struct mddev *mddev, sector_t sectors)
8049{
8050        /* no resync is happening, and there is enough space
8051         * on all devices, so we can resize.
8052         * We need to make sure resync covers any new space.
8053         * If the array is shrinking we should possibly wait until
8054         * any io in the removed space completes, but it hardly seems
8055         * worth it.
8056         */
8057        sector_t newsize;
8058        struct r5conf *conf = mddev->private;
8059
8060        if (raid5_has_log(conf) || raid5_has_ppl(conf))
8061                return -EINVAL;
8062        sectors &= ~((sector_t)conf->chunk_sectors - 1);
8063        newsize = raid5_size(mddev, sectors, mddev->raid_disks);
8064        if (mddev->external_size &&
8065            mddev->array_sectors > newsize)
8066                return -EINVAL;
8067        if (mddev->bitmap) {
8068                int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
8069                if (ret)
8070                        return ret;
8071        }
8072        md_set_array_sectors(mddev, newsize);
8073        if (sectors > mddev->dev_sectors &&
8074            mddev->recovery_cp > mddev->dev_sectors) {
8075                mddev->recovery_cp = mddev->dev_sectors;
8076                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8077        }
8078        mddev->dev_sectors = sectors;
8079        mddev->resync_max_sectors = sectors;
8080        return 0;
8081}
8082
8083static int check_stripe_cache(struct mddev *mddev)
8084{
8085        /* Can only proceed if there are plenty of stripe_heads.
8086         * We need a minimum of one full stripe,, and for sensible progress
8087         * it is best to have about 4 times that.
8088         * If we require 4 times, then the default 256 4K stripe_heads will
8089         * allow for chunk sizes up to 256K, which is probably OK.
8090         * If the chunk size is greater, user-space should request more
8091         * stripe_heads first.
8092         */
8093        struct r5conf *conf = mddev->private;
8094        if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8095            > conf->min_nr_stripes ||
8096            ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8097            > conf->min_nr_stripes) {
8098                pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
8099                        mdname(mddev),
8100                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
8101                         / RAID5_STRIPE_SIZE(conf))*4);
8102                return 0;
8103        }
8104        return 1;
8105}
8106
8107static int check_reshape(struct mddev *mddev)
8108{
8109        struct r5conf *conf = mddev->private;
8110
8111        if (raid5_has_log(conf) || raid5_has_ppl(conf))
8112                return -EINVAL;
8113        if (mddev->delta_disks == 0 &&
8114            mddev->new_layout == mddev->layout &&
8115            mddev->new_chunk_sectors == mddev->chunk_sectors)
8116                return 0; /* nothing to do */
8117        if (has_failed(conf))
8118                return -EINVAL;
8119        if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
8120                /* We might be able to shrink, but the devices must
8121                 * be made bigger first.
8122                 * For raid6, 4 is the minimum size.
8123                 * Otherwise 2 is the minimum
8124                 */
8125                int min = 2;
8126                if (mddev->level == 6)
8127                        min = 4;
8128                if (mddev->raid_disks + mddev->delta_disks < min)
8129                        return -EINVAL;
8130        }
8131
8132        if (!check_stripe_cache(mddev))
8133                return -ENOSPC;
8134
8135        if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
8136            mddev->delta_disks > 0)
8137                if (resize_chunks(conf,
8138                                  conf->previous_raid_disks
8139                                  + max(0, mddev->delta_disks),
8140                                  max(mddev->new_chunk_sectors,
8141                                      mddev->chunk_sectors)
8142                            ) < 0)
8143                        return -ENOMEM;
8144
8145        if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
8146                return 0; /* never bother to shrink */
8147        return resize_stripes(conf, (conf->previous_raid_disks
8148                                     + mddev->delta_disks));
8149}
8150
8151static int raid5_start_reshape(struct mddev *mddev)
8152{
8153        struct r5conf *conf = mddev->private;
8154        struct md_rdev *rdev;
8155        int spares = 0;
8156        unsigned long flags;
8157
8158        if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
8159                return -EBUSY;
8160
8161        if (!check_stripe_cache(mddev))
8162                return -ENOSPC;
8163
8164        if (has_failed(conf))
8165                return -EINVAL;
8166
8167        rdev_for_each(rdev, mddev) {
8168                if (!test_bit(In_sync, &rdev->flags)
8169                    && !test_bit(Faulty, &rdev->flags))
8170                        spares++;
8171        }
8172
8173        if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
8174                /* Not enough devices even to make a degraded array
8175                 * of that size
8176                 */
8177                return -EINVAL;
8178
8179        /* Refuse to reduce size of the array.  Any reductions in
8180         * array size must be through explicit setting of array_size
8181         * attribute.
8182         */
8183        if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
8184            < mddev->array_sectors) {
8185                pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
8186                        mdname(mddev));
8187                return -EINVAL;
8188        }
8189
8190        atomic_set(&conf->reshape_stripes, 0);
8191        spin_lock_irq(&conf->device_lock);
8192        write_seqcount_begin(&conf->gen_lock);
8193        conf->previous_raid_disks = conf->raid_disks;
8194        conf->raid_disks += mddev->delta_disks;
8195        conf->prev_chunk_sectors = conf->chunk_sectors;
8196        conf->chunk_sectors = mddev->new_chunk_sectors;
8197        conf->prev_algo = conf->algorithm;
8198        conf->algorithm = mddev->new_layout;
8199        conf->generation++;
8200        /* Code that selects data_offset needs to see the generation update
8201         * if reshape_progress has been set - so a memory barrier needed.
8202         */
8203        smp_mb();
8204        if (mddev->reshape_backwards)
8205                conf->reshape_progress = raid5_size(mddev, 0, 0);
8206        else
8207                conf->reshape_progress = 0;
8208        conf->reshape_safe = conf->reshape_progress;
8209        write_seqcount_end(&conf->gen_lock);
8210        spin_unlock_irq(&conf->device_lock);
8211
8212        /* Now make sure any requests that proceeded on the assumption
8213         * the reshape wasn't running - like Discard or Read - have
8214         * completed.
8215         */
8216        mddev_suspend(mddev);
8217        mddev_resume(mddev);
8218
8219        /* Add some new drives, as many as will fit.
8220         * We know there are enough to make the newly sized array work.
8221         * Don't add devices if we are reducing the number of
8222         * devices in the array.  This is because it is not possible
8223         * to correctly record the "partially reconstructed" state of
8224         * such devices during the reshape and confusion could result.
8225         */
8226        if (mddev->delta_disks >= 0) {
8227                rdev_for_each(rdev, mddev)
8228                        if (rdev->raid_disk < 0 &&
8229                            !test_bit(Faulty, &rdev->flags)) {
8230                                if (raid5_add_disk(mddev, rdev) == 0) {
8231                                        if (rdev->raid_disk
8232                                            >= conf->previous_raid_disks)
8233                                                set_bit(In_sync, &rdev->flags);
8234                                        else
8235                                                rdev->recovery_offset = 0;
8236
8237                                        /* Failure here is OK */
8238                                        sysfs_link_rdev(mddev, rdev);
8239                                }
8240                        } else if (rdev->raid_disk >= conf->previous_raid_disks
8241                                   && !test_bit(Faulty, &rdev->flags)) {
8242                                /* This is a spare that was manually added */
8243                                set_bit(In_sync, &rdev->flags);
8244                        }
8245
8246                /* When a reshape changes the number of devices,
8247                 * ->degraded is measured against the larger of the
8248                 * pre and post number of devices.
8249                 */
8250                spin_lock_irqsave(&conf->device_lock, flags);
8251                mddev->degraded = raid5_calc_degraded(conf);
8252                spin_unlock_irqrestore(&conf->device_lock, flags);
8253        }
8254        mddev->raid_disks = conf->raid_disks;
8255        mddev->reshape_position = conf->reshape_progress;
8256        set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8257
8258        clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8259        clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8260        clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8261        set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8262        set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8263        mddev->sync_thread = md_register_thread(md_do_sync, mddev,
8264                                                "reshape");
8265        if (!mddev->sync_thread) {
8266                mddev->recovery = 0;
8267                spin_lock_irq(&conf->device_lock);
8268                write_seqcount_begin(&conf->gen_lock);
8269                mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
8270                mddev->new_chunk_sectors =
8271                        conf->chunk_sectors = conf->prev_chunk_sectors;
8272                mddev->new_layout = conf->algorithm = conf->prev_algo;
8273                rdev_for_each(rdev, mddev)
8274                        rdev->new_data_offset = rdev->data_offset;
8275                smp_wmb();
8276                conf->generation --;
8277                conf->reshape_progress = MaxSector;
8278                mddev->reshape_position = MaxSector;
8279                write_seqcount_end(&conf->gen_lock);
8280                spin_unlock_irq(&conf->device_lock);
8281                return -EAGAIN;
8282        }
8283        conf->reshape_checkpoint = jiffies;
8284        md_wakeup_thread(mddev->sync_thread);
8285        md_new_event(mddev);
8286        return 0;
8287}
8288
8289/* This is called from the reshape thread and should make any
8290 * changes needed in 'conf'
8291 */
8292static void end_reshape(struct r5conf *conf)
8293{
8294
8295        if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8296                struct md_rdev *rdev;
8297
8298                spin_lock_irq(&conf->device_lock);
8299                conf->previous_raid_disks = conf->raid_disks;
8300                md_finish_reshape(conf->mddev);
8301                smp_wmb();
8302                conf->reshape_progress = MaxSector;
8303                conf->mddev->reshape_position = MaxSector;
8304                rdev_for_each(rdev, conf->mddev)
8305                        if (rdev->raid_disk >= 0 &&
8306                            !test_bit(Journal, &rdev->flags) &&
8307                            !test_bit(In_sync, &rdev->flags))
8308                                rdev->recovery_offset = MaxSector;
8309                spin_unlock_irq(&conf->device_lock);
8310                wake_up(&conf->wait_for_overlap);
8311
8312                if (conf->mddev->queue)
8313                        raid5_set_io_opt(conf);
8314        }
8315}
8316
8317/* This is called from the raid5d thread with mddev_lock held.
8318 * It makes config changes to the device.
8319 */
8320static void raid5_finish_reshape(struct mddev *mddev)
8321{
8322        struct r5conf *conf = mddev->private;
8323
8324        if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8325
8326                if (mddev->delta_disks <= 0) {
8327                        int d;
8328                        spin_lock_irq(&conf->device_lock);
8329                        mddev->degraded = raid5_calc_degraded(conf);
8330                        spin_unlock_irq(&conf->device_lock);
8331                        for (d = conf->raid_disks ;
8332                             d < conf->raid_disks - mddev->delta_disks;
8333                             d++) {
8334                                struct md_rdev *rdev = conf->disks[d].rdev;
8335                                if (rdev)
8336                                        clear_bit(In_sync, &rdev->flags);
8337                                rdev = conf->disks[d].replacement;
8338                                if (rdev)
8339                                        clear_bit(In_sync, &rdev->flags);
8340                        }
8341                }
8342                mddev->layout = conf->algorithm;
8343                mddev->chunk_sectors = conf->chunk_sectors;
8344                mddev->reshape_position = MaxSector;
8345                mddev->delta_disks = 0;
8346                mddev->reshape_backwards = 0;
8347        }
8348}
8349
8350static void raid5_quiesce(struct mddev *mddev, int quiesce)
8351{
8352        struct r5conf *conf = mddev->private;
8353
8354        if (quiesce) {
8355                /* stop all writes */
8356                lock_all_device_hash_locks_irq(conf);
8357                /* '2' tells resync/reshape to pause so that all
8358                 * active stripes can drain
8359                 */
8360                r5c_flush_cache(conf, INT_MAX);
8361                /* need a memory barrier to make sure read_one_chunk() sees
8362                 * quiesce started and reverts to slow (locked) path.
8363                 */
8364                smp_store_release(&conf->quiesce, 2);
8365                wait_event_cmd(conf->wait_for_quiescent,
8366                                    atomic_read(&conf->active_stripes) == 0 &&
8367                                    atomic_read(&conf->active_aligned_reads) == 0,
8368                                    unlock_all_device_hash_locks_irq(conf),
8369                                    lock_all_device_hash_locks_irq(conf));
8370                conf->quiesce = 1;
8371                unlock_all_device_hash_locks_irq(conf);
8372                /* allow reshape to continue */
8373                wake_up(&conf->wait_for_overlap);
8374        } else {
8375                /* re-enable writes */
8376                lock_all_device_hash_locks_irq(conf);
8377                conf->quiesce = 0;
8378                wake_up(&conf->wait_for_quiescent);
8379                wake_up(&conf->wait_for_overlap);
8380                unlock_all_device_hash_locks_irq(conf);
8381        }
8382        log_quiesce(conf, quiesce);
8383}
8384
8385static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8386{
8387        struct r0conf *raid0_conf = mddev->private;
8388        sector_t sectors;
8389
8390        /* for raid0 takeover only one zone is supported */
8391        if (raid0_conf->nr_strip_zones > 1) {
8392                pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8393                        mdname(mddev));
8394                return ERR_PTR(-EINVAL);
8395        }
8396
8397        sectors = raid0_conf->strip_zone[0].zone_end;
8398        sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8399        mddev->dev_sectors = sectors;
8400        mddev->new_level = level;
8401        mddev->new_layout = ALGORITHM_PARITY_N;
8402        mddev->new_chunk_sectors = mddev->chunk_sectors;
8403        mddev->raid_disks += 1;
8404        mddev->delta_disks = 1;
8405        /* make sure it will be not marked as dirty */
8406        mddev->recovery_cp = MaxSector;
8407
8408        return setup_conf(mddev);
8409}
8410
8411static void *raid5_takeover_raid1(struct mddev *mddev)
8412{
8413        int chunksect;
8414        void *ret;
8415
8416        if (mddev->raid_disks != 2 ||
8417            mddev->degraded > 1)
8418                return ERR_PTR(-EINVAL);
8419
8420        /* Should check if there are write-behind devices? */
8421
8422        chunksect = 64*2; /* 64K by default */
8423
8424        /* The array must be an exact multiple of chunksize */
8425        while (chunksect && (mddev->array_sectors & (chunksect-1)))
8426                chunksect >>= 1;
8427
8428        if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
8429                /* array size does not allow a suitable chunk size */
8430                return ERR_PTR(-EINVAL);
8431
8432        mddev->new_level = 5;
8433        mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8434        mddev->new_chunk_sectors = chunksect;
8435
8436        ret = setup_conf(mddev);
8437        if (!IS_ERR(ret))
8438                mddev_clear_unsupported_flags(mddev,
8439                        UNSUPPORTED_MDDEV_FLAGS);
8440        return ret;
8441}
8442
8443static void *raid5_takeover_raid6(struct mddev *mddev)
8444{
8445        int new_layout;
8446
8447        switch (mddev->layout) {
8448        case ALGORITHM_LEFT_ASYMMETRIC_6:
8449                new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8450                break;
8451        case ALGORITHM_RIGHT_ASYMMETRIC_6:
8452                new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8453                break;
8454        case ALGORITHM_LEFT_SYMMETRIC_6:
8455                new_layout = ALGORITHM_LEFT_SYMMETRIC;
8456                break;
8457        case ALGORITHM_RIGHT_SYMMETRIC_6:
8458                new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8459                break;
8460        case ALGORITHM_PARITY_0_6:
8461                new_layout = ALGORITHM_PARITY_0;
8462                break;
8463        case ALGORITHM_PARITY_N:
8464                new_layout = ALGORITHM_PARITY_N;
8465                break;
8466        default:
8467                return ERR_PTR(-EINVAL);
8468        }
8469        mddev->new_level = 5;
8470        mddev->new_layout = new_layout;
8471        mddev->delta_disks = -1;
8472        mddev->raid_disks -= 1;
8473        return setup_conf(mddev);
8474}
8475
8476static int raid5_check_reshape(struct mddev *mddev)
8477{
8478        /* For a 2-drive array, the layout and chunk size can be changed
8479         * immediately as not restriping is needed.
8480         * For larger arrays we record the new value - after validation
8481         * to be used by a reshape pass.
8482         */
8483        struct r5conf *conf = mddev->private;
8484        int new_chunk = mddev->new_chunk_sectors;
8485
8486        if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8487                return -EINVAL;
8488        if (new_chunk > 0) {
8489                if (!is_power_of_2(new_chunk))
8490                        return -EINVAL;
8491                if (new_chunk < (PAGE_SIZE>>9))
8492                        return -EINVAL;
8493                if (mddev->array_sectors & (new_chunk-1))
8494                        /* not factor of array size */
8495                        return -EINVAL;
8496        }
8497
8498        /* They look valid */
8499
8500        if (mddev->raid_disks == 2) {
8501                /* can make the change immediately */
8502                if (mddev->new_layout >= 0) {
8503                        conf->algorithm = mddev->new_layout;
8504                        mddev->layout = mddev->new_layout;
8505                }
8506                if (new_chunk > 0) {
8507                        conf->chunk_sectors = new_chunk ;
8508                        mddev->chunk_sectors = new_chunk;
8509                }
8510                set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8511                md_wakeup_thread(mddev->thread);
8512        }
8513        return check_reshape(mddev);
8514}
8515
8516static int raid6_check_reshape(struct mddev *mddev)
8517{
8518        int new_chunk = mddev->new_chunk_sectors;
8519
8520        if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8521                return -EINVAL;
8522        if (new_chunk > 0) {
8523                if (!is_power_of_2(new_chunk))
8524                        return -EINVAL;
8525                if (new_chunk < (PAGE_SIZE >> 9))
8526                        return -EINVAL;
8527                if (mddev->array_sectors & (new_chunk-1))
8528                        /* not factor of array size */
8529                        return -EINVAL;
8530        }
8531
8532        /* They look valid */
8533        return check_reshape(mddev);
8534}
8535
8536static void *raid5_takeover(struct mddev *mddev)
8537{
8538        /* raid5 can take over:
8539         *  raid0 - if there is only one strip zone - make it a raid4 layout
8540         *  raid1 - if there are two drives.  We need to know the chunk size
8541         *  raid4 - trivial - just use a raid4 layout.
8542         *  raid6 - Providing it is a *_6 layout
8543         */
8544        if (mddev->level == 0)
8545                return raid45_takeover_raid0(mddev, 5);
8546        if (mddev->level == 1)
8547                return raid5_takeover_raid1(mddev);
8548        if (mddev->level == 4) {
8549                mddev->new_layout = ALGORITHM_PARITY_N;
8550                mddev->new_level = 5;
8551                return setup_conf(mddev);
8552        }
8553        if (mddev->level == 6)
8554                return raid5_takeover_raid6(mddev);
8555
8556        return ERR_PTR(-EINVAL);
8557}
8558
8559static void *raid4_takeover(struct mddev *mddev)
8560{
8561        /* raid4 can take over:
8562         *  raid0 - if there is only one strip zone
8563         *  raid5 - if layout is right
8564         */
8565        if (mddev->level == 0)
8566                return raid45_takeover_raid0(mddev, 4);
8567        if (mddev->level == 5 &&
8568            mddev->layout == ALGORITHM_PARITY_N) {
8569                mddev->new_layout = 0;
8570                mddev->new_level = 4;
8571                return setup_conf(mddev);
8572        }
8573        return ERR_PTR(-EINVAL);
8574}
8575
8576static struct md_personality raid5_personality;
8577
8578static void *raid6_takeover(struct mddev *mddev)
8579{
8580        /* Currently can only take over a raid5.  We map the
8581         * personality to an equivalent raid6 personality
8582         * with the Q block at the end.
8583         */
8584        int new_layout;
8585
8586        if (mddev->pers != &raid5_personality)
8587                return ERR_PTR(-EINVAL);
8588        if (mddev->degraded > 1)
8589                return ERR_PTR(-EINVAL);
8590        if (mddev->raid_disks > 253)
8591                return ERR_PTR(-EINVAL);
8592        if (mddev->raid_disks < 3)
8593                return ERR_PTR(-EINVAL);
8594
8595        switch (mddev->layout) {
8596        case ALGORITHM_LEFT_ASYMMETRIC:
8597                new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8598                break;
8599        case ALGORITHM_RIGHT_ASYMMETRIC:
8600                new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8601                break;
8602        case ALGORITHM_LEFT_SYMMETRIC:
8603                new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8604                break;
8605        case ALGORITHM_RIGHT_SYMMETRIC:
8606                new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8607                break;
8608        case ALGORITHM_PARITY_0:
8609                new_layout = ALGORITHM_PARITY_0_6;
8610                break;
8611        case ALGORITHM_PARITY_N:
8612                new_layout = ALGORITHM_PARITY_N;
8613                break;
8614        default:
8615                return ERR_PTR(-EINVAL);
8616        }
8617        mddev->new_level = 6;
8618        mddev->new_layout = new_layout;
8619        mddev->delta_disks = 1;
8620        mddev->raid_disks += 1;
8621        return setup_conf(mddev);
8622}
8623
8624static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8625{
8626        struct r5conf *conf;
8627        int err;
8628
8629        err = mddev_lock(mddev);
8630        if (err)
8631                return err;
8632        conf = mddev->private;
8633        if (!conf) {
8634                mddev_unlock(mddev);
8635                return -ENODEV;
8636        }
8637
8638        if (strncmp(buf, "ppl", 3) == 0) {
8639                /* ppl only works with RAID 5 */
8640                if (!raid5_has_ppl(conf) && conf->level == 5) {
8641                        err = log_init(conf, NULL, true);
8642                        if (!err) {
8643                                err = resize_stripes(conf, conf->pool_size);
8644                                if (err)
8645                                        log_exit(conf);
8646                        }
8647                } else
8648                        err = -EINVAL;
8649        } else if (strncmp(buf, "resync", 6) == 0) {
8650                if (raid5_has_ppl(conf)) {
8651                        mddev_suspend(mddev);
8652                        log_exit(conf);
8653                        mddev_resume(mddev);
8654                        err = resize_stripes(conf, conf->pool_size);
8655                } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8656                           r5l_log_disk_error(conf)) {
8657                        bool journal_dev_exists = false;
8658                        struct md_rdev *rdev;
8659
8660                        rdev_for_each(rdev, mddev)
8661                                if (test_bit(Journal, &rdev->flags)) {
8662                                        journal_dev_exists = true;
8663                                        break;
8664                                }
8665
8666                        if (!journal_dev_exists) {
8667                                mddev_suspend(mddev);
8668                                clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8669                                mddev_resume(mddev);
8670                        } else  /* need remove journal device first */
8671                                err = -EBUSY;
8672                } else
8673                        err = -EINVAL;
8674        } else {
8675                err = -EINVAL;
8676        }
8677
8678        if (!err)
8679                md_update_sb(mddev, 1);
8680
8681        mddev_unlock(mddev);
8682
8683        return err;
8684}
8685
8686static int raid5_start(struct mddev *mddev)
8687{
8688        struct r5conf *conf = mddev->private;
8689
8690        return r5l_start(conf->log);
8691}
8692
8693static struct md_personality raid6_personality =
8694{
8695        .name           = "raid6",
8696        .level          = 6,
8697        .owner          = THIS_MODULE,
8698        .make_request   = raid5_make_request,
8699        .run            = raid5_run,
8700        .start          = raid5_start,
8701        .free           = raid5_free,
8702        .status         = raid5_status,
8703        .error_handler  = raid5_error,
8704        .hot_add_disk   = raid5_add_disk,
8705        .hot_remove_disk= raid5_remove_disk,
8706        .spare_active   = raid5_spare_active,
8707        .sync_request   = raid5_sync_request,
8708        .resize         = raid5_resize,
8709        .size           = raid5_size,
8710        .check_reshape  = raid6_check_reshape,
8711        .start_reshape  = raid5_start_reshape,
8712        .finish_reshape = raid5_finish_reshape,
8713        .quiesce        = raid5_quiesce,
8714        .takeover       = raid6_takeover,
8715        .change_consistency_policy = raid5_change_consistency_policy,
8716};
8717static struct md_personality raid5_personality =
8718{
8719        .name           = "raid5",
8720        .level          = 5,
8721        .owner          = THIS_MODULE,
8722        .make_request   = raid5_make_request,
8723        .run            = raid5_run,
8724        .start          = raid5_start,
8725        .free           = raid5_free,
8726        .status         = raid5_status,
8727        .error_handler  = raid5_error,
8728        .hot_add_disk   = raid5_add_disk,
8729        .hot_remove_disk= raid5_remove_disk,
8730        .spare_active   = raid5_spare_active,
8731        .sync_request   = raid5_sync_request,
8732        .resize         = raid5_resize,
8733        .size           = raid5_size,
8734        .check_reshape  = raid5_check_reshape,
8735        .start_reshape  = raid5_start_reshape,
8736        .finish_reshape = raid5_finish_reshape,
8737        .quiesce        = raid5_quiesce,
8738        .takeover       = raid5_takeover,
8739        .change_consistency_policy = raid5_change_consistency_policy,
8740};
8741
8742static struct md_personality raid4_personality =
8743{
8744        .name           = "raid4",
8745        .level          = 4,
8746        .owner          = THIS_MODULE,
8747        .make_request   = raid5_make_request,
8748        .run            = raid5_run,
8749        .start          = raid5_start,
8750        .free           = raid5_free,
8751        .status         = raid5_status,
8752        .error_handler  = raid5_error,
8753        .hot_add_disk   = raid5_add_disk,
8754        .hot_remove_disk= raid5_remove_disk,
8755        .spare_active   = raid5_spare_active,
8756        .sync_request   = raid5_sync_request,
8757        .resize         = raid5_resize,
8758        .size           = raid5_size,
8759        .check_reshape  = raid5_check_reshape,
8760        .start_reshape  = raid5_start_reshape,
8761        .finish_reshape = raid5_finish_reshape,
8762        .quiesce        = raid5_quiesce,
8763        .takeover       = raid4_takeover,
8764        .change_consistency_policy = raid5_change_consistency_policy,
8765};
8766
8767static int __init raid5_init(void)
8768{
8769        int ret;
8770
8771        raid5_wq = alloc_workqueue("raid5wq",
8772                WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8773        if (!raid5_wq)
8774                return -ENOMEM;
8775
8776        ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8777                                      "md/raid5:prepare",
8778                                      raid456_cpu_up_prepare,
8779                                      raid456_cpu_dead);
8780        if (ret) {
8781                destroy_workqueue(raid5_wq);
8782                return ret;
8783        }
8784        register_md_personality(&raid6_personality);
8785        register_md_personality(&raid5_personality);
8786        register_md_personality(&raid4_personality);
8787        return 0;
8788}
8789
8790static void raid5_exit(void)
8791{
8792        unregister_md_personality(&raid6_personality);
8793        unregister_md_personality(&raid5_personality);
8794        unregister_md_personality(&raid4_personality);
8795        cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8796        destroy_workqueue(raid5_wq);
8797}
8798
8799module_init(raid5_init);
8800module_exit(raid5_exit);
8801MODULE_LICENSE("GPL");
8802MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8803MODULE_ALIAS("md-personality-4"); /* RAID5 */
8804MODULE_ALIAS("md-raid5");
8805MODULE_ALIAS("md-raid4");
8806MODULE_ALIAS("md-level-5");
8807MODULE_ALIAS("md-level-4");
8808MODULE_ALIAS("md-personality-8"); /* RAID6 */
8809MODULE_ALIAS("md-raid6");
8810MODULE_ALIAS("md-level-6");
8811
8812/* This used to be two separate modules, they were: */
8813MODULE_ALIAS("raid5");
8814MODULE_ALIAS("raid6");
8815