linux/drivers/misc/mei/hw-txe.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2013-2020, Intel Corporation. All rights reserved.
   4 * Intel Management Engine Interface (Intel MEI) Linux driver
   5 */
   6
   7#include <linux/pci.h>
   8#include <linux/jiffies.h>
   9#include <linux/ktime.h>
  10#include <linux/delay.h>
  11#include <linux/kthread.h>
  12#include <linux/interrupt.h>
  13#include <linux/pm_runtime.h>
  14
  15#include <linux/mei.h>
  16
  17#include "mei_dev.h"
  18#include "hw-txe.h"
  19#include "client.h"
  20#include "hbm.h"
  21
  22#include "mei-trace.h"
  23
  24#define TXE_HBUF_DEPTH (PAYLOAD_SIZE / MEI_SLOT_SIZE)
  25
  26/**
  27 * mei_txe_reg_read - Reads 32bit data from the txe device
  28 *
  29 * @base_addr: registers base address
  30 * @offset: register offset
  31 *
  32 * Return: register value
  33 */
  34static inline u32 mei_txe_reg_read(void __iomem *base_addr,
  35                                        unsigned long offset)
  36{
  37        return ioread32(base_addr + offset);
  38}
  39
  40/**
  41 * mei_txe_reg_write - Writes 32bit data to the txe device
  42 *
  43 * @base_addr: registers base address
  44 * @offset: register offset
  45 * @value: the value to write
  46 */
  47static inline void mei_txe_reg_write(void __iomem *base_addr,
  48                                unsigned long offset, u32 value)
  49{
  50        iowrite32(value, base_addr + offset);
  51}
  52
  53/**
  54 * mei_txe_sec_reg_read_silent - Reads 32bit data from the SeC BAR
  55 *
  56 * @hw: the txe hardware structure
  57 * @offset: register offset
  58 *
  59 * Doesn't check for aliveness while Reads 32bit data from the SeC BAR
  60 *
  61 * Return: register value
  62 */
  63static inline u32 mei_txe_sec_reg_read_silent(struct mei_txe_hw *hw,
  64                                unsigned long offset)
  65{
  66        return mei_txe_reg_read(hw->mem_addr[SEC_BAR], offset);
  67}
  68
  69/**
  70 * mei_txe_sec_reg_read - Reads 32bit data from the SeC BAR
  71 *
  72 * @hw: the txe hardware structure
  73 * @offset: register offset
  74 *
  75 * Reads 32bit data from the SeC BAR and shout loud if aliveness is not set
  76 *
  77 * Return: register value
  78 */
  79static inline u32 mei_txe_sec_reg_read(struct mei_txe_hw *hw,
  80                                unsigned long offset)
  81{
  82        WARN(!hw->aliveness, "sec read: aliveness not asserted\n");
  83        return mei_txe_sec_reg_read_silent(hw, offset);
  84}
  85/**
  86 * mei_txe_sec_reg_write_silent - Writes 32bit data to the SeC BAR
  87 *   doesn't check for aliveness
  88 *
  89 * @hw: the txe hardware structure
  90 * @offset: register offset
  91 * @value: value to write
  92 *
  93 * Doesn't check for aliveness while writes 32bit data from to the SeC BAR
  94 */
  95static inline void mei_txe_sec_reg_write_silent(struct mei_txe_hw *hw,
  96                                unsigned long offset, u32 value)
  97{
  98        mei_txe_reg_write(hw->mem_addr[SEC_BAR], offset, value);
  99}
 100
 101/**
 102 * mei_txe_sec_reg_write - Writes 32bit data to the SeC BAR
 103 *
 104 * @hw: the txe hardware structure
 105 * @offset: register offset
 106 * @value: value to write
 107 *
 108 * Writes 32bit data from the SeC BAR and shout loud if aliveness is not set
 109 */
 110static inline void mei_txe_sec_reg_write(struct mei_txe_hw *hw,
 111                                unsigned long offset, u32 value)
 112{
 113        WARN(!hw->aliveness, "sec write: aliveness not asserted\n");
 114        mei_txe_sec_reg_write_silent(hw, offset, value);
 115}
 116/**
 117 * mei_txe_br_reg_read - Reads 32bit data from the Bridge BAR
 118 *
 119 * @hw: the txe hardware structure
 120 * @offset: offset from which to read the data
 121 *
 122 * Return: the byte read.
 123 */
 124static inline u32 mei_txe_br_reg_read(struct mei_txe_hw *hw,
 125                                unsigned long offset)
 126{
 127        return mei_txe_reg_read(hw->mem_addr[BRIDGE_BAR], offset);
 128}
 129
 130/**
 131 * mei_txe_br_reg_write - Writes 32bit data to the Bridge BAR
 132 *
 133 * @hw: the txe hardware structure
 134 * @offset: offset from which to write the data
 135 * @value: the byte to write
 136 */
 137static inline void mei_txe_br_reg_write(struct mei_txe_hw *hw,
 138                                unsigned long offset, u32 value)
 139{
 140        mei_txe_reg_write(hw->mem_addr[BRIDGE_BAR], offset, value);
 141}
 142
 143/**
 144 * mei_txe_aliveness_set - request for aliveness change
 145 *
 146 * @dev: the device structure
 147 * @req: requested aliveness value
 148 *
 149 * Request for aliveness change and returns true if the change is
 150 *   really needed and false if aliveness is already
 151 *   in the requested state
 152 *
 153 * Locking: called under "dev->device_lock" lock
 154 *
 155 * Return: true if request was send
 156 */
 157static bool mei_txe_aliveness_set(struct mei_device *dev, u32 req)
 158{
 159
 160        struct mei_txe_hw *hw = to_txe_hw(dev);
 161        bool do_req = hw->aliveness != req;
 162
 163        dev_dbg(dev->dev, "Aliveness current=%d request=%d\n",
 164                                hw->aliveness, req);
 165        if (do_req) {
 166                dev->pg_event = MEI_PG_EVENT_WAIT;
 167                mei_txe_br_reg_write(hw, SICR_HOST_ALIVENESS_REQ_REG, req);
 168        }
 169        return do_req;
 170}
 171
 172
 173/**
 174 * mei_txe_aliveness_req_get - get aliveness requested register value
 175 *
 176 * @dev: the device structure
 177 *
 178 * Extract HICR_HOST_ALIVENESS_RESP_ACK bit from
 179 * from HICR_HOST_ALIVENESS_REQ register value
 180 *
 181 * Return: SICR_HOST_ALIVENESS_REQ_REQUESTED bit value
 182 */
 183static u32 mei_txe_aliveness_req_get(struct mei_device *dev)
 184{
 185        struct mei_txe_hw *hw = to_txe_hw(dev);
 186        u32 reg;
 187
 188        reg = mei_txe_br_reg_read(hw, SICR_HOST_ALIVENESS_REQ_REG);
 189        return reg & SICR_HOST_ALIVENESS_REQ_REQUESTED;
 190}
 191
 192/**
 193 * mei_txe_aliveness_get - get aliveness response register value
 194 *
 195 * @dev: the device structure
 196 *
 197 * Return: HICR_HOST_ALIVENESS_RESP_ACK bit from HICR_HOST_ALIVENESS_RESP
 198 *         register
 199 */
 200static u32 mei_txe_aliveness_get(struct mei_device *dev)
 201{
 202        struct mei_txe_hw *hw = to_txe_hw(dev);
 203        u32 reg;
 204
 205        reg = mei_txe_br_reg_read(hw, HICR_HOST_ALIVENESS_RESP_REG);
 206        return reg & HICR_HOST_ALIVENESS_RESP_ACK;
 207}
 208
 209/**
 210 * mei_txe_aliveness_poll - waits for aliveness to settle
 211 *
 212 * @dev: the device structure
 213 * @expected: expected aliveness value
 214 *
 215 * Polls for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
 216 *
 217 * Return: 0 if the expected value was received, -ETIME otherwise
 218 */
 219static int mei_txe_aliveness_poll(struct mei_device *dev, u32 expected)
 220{
 221        struct mei_txe_hw *hw = to_txe_hw(dev);
 222        ktime_t stop, start;
 223
 224        start = ktime_get();
 225        stop = ktime_add(start, ms_to_ktime(SEC_ALIVENESS_WAIT_TIMEOUT));
 226        do {
 227                hw->aliveness = mei_txe_aliveness_get(dev);
 228                if (hw->aliveness == expected) {
 229                        dev->pg_event = MEI_PG_EVENT_IDLE;
 230                        dev_dbg(dev->dev, "aliveness settled after %lld usecs\n",
 231                                ktime_to_us(ktime_sub(ktime_get(), start)));
 232                        return 0;
 233                }
 234                usleep_range(20, 50);
 235        } while (ktime_before(ktime_get(), stop));
 236
 237        dev->pg_event = MEI_PG_EVENT_IDLE;
 238        dev_err(dev->dev, "aliveness timed out\n");
 239        return -ETIME;
 240}
 241
 242/**
 243 * mei_txe_aliveness_wait - waits for aliveness to settle
 244 *
 245 * @dev: the device structure
 246 * @expected: expected aliveness value
 247 *
 248 * Waits for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
 249 *
 250 * Return: 0 on success and < 0 otherwise
 251 */
 252static int mei_txe_aliveness_wait(struct mei_device *dev, u32 expected)
 253{
 254        struct mei_txe_hw *hw = to_txe_hw(dev);
 255        const unsigned long timeout =
 256                        msecs_to_jiffies(SEC_ALIVENESS_WAIT_TIMEOUT);
 257        long err;
 258        int ret;
 259
 260        hw->aliveness = mei_txe_aliveness_get(dev);
 261        if (hw->aliveness == expected)
 262                return 0;
 263
 264        mutex_unlock(&dev->device_lock);
 265        err = wait_event_timeout(hw->wait_aliveness_resp,
 266                        dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
 267        mutex_lock(&dev->device_lock);
 268
 269        hw->aliveness = mei_txe_aliveness_get(dev);
 270        ret = hw->aliveness == expected ? 0 : -ETIME;
 271
 272        if (ret)
 273                dev_warn(dev->dev, "aliveness timed out = %ld aliveness = %d event = %d\n",
 274                        err, hw->aliveness, dev->pg_event);
 275        else
 276                dev_dbg(dev->dev, "aliveness settled after = %d msec aliveness = %d event = %d\n",
 277                        jiffies_to_msecs(timeout - err),
 278                        hw->aliveness, dev->pg_event);
 279
 280        dev->pg_event = MEI_PG_EVENT_IDLE;
 281        return ret;
 282}
 283
 284/**
 285 * mei_txe_aliveness_set_sync - sets an wait for aliveness to complete
 286 *
 287 * @dev: the device structure
 288 * @req: requested aliveness value
 289 *
 290 * Return: 0 on success and < 0 otherwise
 291 */
 292int mei_txe_aliveness_set_sync(struct mei_device *dev, u32 req)
 293{
 294        if (mei_txe_aliveness_set(dev, req))
 295                return mei_txe_aliveness_wait(dev, req);
 296        return 0;
 297}
 298
 299/**
 300 * mei_txe_pg_in_transition - is device now in pg transition
 301 *
 302 * @dev: the device structure
 303 *
 304 * Return: true if in pg transition, false otherwise
 305 */
 306static bool mei_txe_pg_in_transition(struct mei_device *dev)
 307{
 308        return dev->pg_event == MEI_PG_EVENT_WAIT;
 309}
 310
 311/**
 312 * mei_txe_pg_is_enabled - detect if PG is supported by HW
 313 *
 314 * @dev: the device structure
 315 *
 316 * Return: true is pg supported, false otherwise
 317 */
 318static bool mei_txe_pg_is_enabled(struct mei_device *dev)
 319{
 320        return true;
 321}
 322
 323/**
 324 * mei_txe_pg_state  - translate aliveness register value
 325 *   to the mei power gating state
 326 *
 327 * @dev: the device structure
 328 *
 329 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
 330 */
 331static inline enum mei_pg_state mei_txe_pg_state(struct mei_device *dev)
 332{
 333        struct mei_txe_hw *hw = to_txe_hw(dev);
 334
 335        return hw->aliveness ? MEI_PG_OFF : MEI_PG_ON;
 336}
 337
 338/**
 339 * mei_txe_input_ready_interrupt_enable - sets the Input Ready Interrupt
 340 *
 341 * @dev: the device structure
 342 */
 343static void mei_txe_input_ready_interrupt_enable(struct mei_device *dev)
 344{
 345        struct mei_txe_hw *hw = to_txe_hw(dev);
 346        u32 hintmsk;
 347        /* Enable the SEC_IPC_HOST_INT_MASK_IN_RDY interrupt */
 348        hintmsk = mei_txe_sec_reg_read(hw, SEC_IPC_HOST_INT_MASK_REG);
 349        hintmsk |= SEC_IPC_HOST_INT_MASK_IN_RDY;
 350        mei_txe_sec_reg_write(hw, SEC_IPC_HOST_INT_MASK_REG, hintmsk);
 351}
 352
 353/**
 354 * mei_txe_input_doorbell_set - sets bit 0 in
 355 *    SEC_IPC_INPUT_DOORBELL.IPC_INPUT_DOORBELL.
 356 *
 357 * @hw: the txe hardware structure
 358 */
 359static void mei_txe_input_doorbell_set(struct mei_txe_hw *hw)
 360{
 361        /* Clear the interrupt cause */
 362        clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause);
 363        mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_DOORBELL_REG, 1);
 364}
 365
 366/**
 367 * mei_txe_output_ready_set - Sets the SICR_SEC_IPC_OUTPUT_STATUS bit to 1
 368 *
 369 * @hw: the txe hardware structure
 370 */
 371static void mei_txe_output_ready_set(struct mei_txe_hw *hw)
 372{
 373        mei_txe_br_reg_write(hw,
 374                        SICR_SEC_IPC_OUTPUT_STATUS_REG,
 375                        SEC_IPC_OUTPUT_STATUS_RDY);
 376}
 377
 378/**
 379 * mei_txe_is_input_ready - check if TXE is ready for receiving data
 380 *
 381 * @dev: the device structure
 382 *
 383 * Return: true if INPUT STATUS READY bit is set
 384 */
 385static bool mei_txe_is_input_ready(struct mei_device *dev)
 386{
 387        struct mei_txe_hw *hw = to_txe_hw(dev);
 388        u32 status;
 389
 390        status = mei_txe_sec_reg_read(hw, SEC_IPC_INPUT_STATUS_REG);
 391        return !!(SEC_IPC_INPUT_STATUS_RDY & status);
 392}
 393
 394/**
 395 * mei_txe_intr_clear - clear all interrupts
 396 *
 397 * @dev: the device structure
 398 */
 399static inline void mei_txe_intr_clear(struct mei_device *dev)
 400{
 401        struct mei_txe_hw *hw = to_txe_hw(dev);
 402
 403        mei_txe_sec_reg_write_silent(hw, SEC_IPC_HOST_INT_STATUS_REG,
 404                SEC_IPC_HOST_INT_STATUS_PENDING);
 405        mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_STS_MSK);
 406        mei_txe_br_reg_write(hw, HHISR_REG, IPC_HHIER_MSK);
 407}
 408
 409/**
 410 * mei_txe_intr_disable - disable all interrupts
 411 *
 412 * @dev: the device structure
 413 */
 414static void mei_txe_intr_disable(struct mei_device *dev)
 415{
 416        struct mei_txe_hw *hw = to_txe_hw(dev);
 417
 418        mei_txe_br_reg_write(hw, HHIER_REG, 0);
 419        mei_txe_br_reg_write(hw, HIER_REG, 0);
 420}
 421/**
 422 * mei_txe_intr_enable - enable all interrupts
 423 *
 424 * @dev: the device structure
 425 */
 426static void mei_txe_intr_enable(struct mei_device *dev)
 427{
 428        struct mei_txe_hw *hw = to_txe_hw(dev);
 429
 430        mei_txe_br_reg_write(hw, HHIER_REG, IPC_HHIER_MSK);
 431        mei_txe_br_reg_write(hw, HIER_REG, HIER_INT_EN_MSK);
 432}
 433
 434/**
 435 * mei_txe_synchronize_irq - wait for pending IRQ handlers
 436 *
 437 * @dev: the device structure
 438 */
 439static void mei_txe_synchronize_irq(struct mei_device *dev)
 440{
 441        struct pci_dev *pdev = to_pci_dev(dev->dev);
 442
 443        synchronize_irq(pdev->irq);
 444}
 445
 446/**
 447 * mei_txe_pending_interrupts - check if there are pending interrupts
 448 *      only Aliveness, Input ready, and output doorbell are of relevance
 449 *
 450 * @dev: the device structure
 451 *
 452 * Checks if there are pending interrupts
 453 * only Aliveness, Readiness, Input ready, and Output doorbell are relevant
 454 *
 455 * Return: true if there are pending interrupts
 456 */
 457static bool mei_txe_pending_interrupts(struct mei_device *dev)
 458{
 459
 460        struct mei_txe_hw *hw = to_txe_hw(dev);
 461        bool ret = (hw->intr_cause & (TXE_INTR_READINESS |
 462                                      TXE_INTR_ALIVENESS |
 463                                      TXE_INTR_IN_READY  |
 464                                      TXE_INTR_OUT_DB));
 465
 466        if (ret) {
 467                dev_dbg(dev->dev,
 468                        "Pending Interrupts InReady=%01d Readiness=%01d, Aliveness=%01d, OutDoor=%01d\n",
 469                        !!(hw->intr_cause & TXE_INTR_IN_READY),
 470                        !!(hw->intr_cause & TXE_INTR_READINESS),
 471                        !!(hw->intr_cause & TXE_INTR_ALIVENESS),
 472                        !!(hw->intr_cause & TXE_INTR_OUT_DB));
 473        }
 474        return ret;
 475}
 476
 477/**
 478 * mei_txe_input_payload_write - write a dword to the host buffer
 479 *      at offset idx
 480 *
 481 * @dev: the device structure
 482 * @idx: index in the host buffer
 483 * @value: value
 484 */
 485static void mei_txe_input_payload_write(struct mei_device *dev,
 486                        unsigned long idx, u32 value)
 487{
 488        struct mei_txe_hw *hw = to_txe_hw(dev);
 489
 490        mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_PAYLOAD_REG +
 491                        (idx * sizeof(u32)), value);
 492}
 493
 494/**
 495 * mei_txe_out_data_read - read dword from the device buffer
 496 *      at offset idx
 497 *
 498 * @dev: the device structure
 499 * @idx: index in the device buffer
 500 *
 501 * Return: register value at index
 502 */
 503static u32 mei_txe_out_data_read(const struct mei_device *dev,
 504                                        unsigned long idx)
 505{
 506        struct mei_txe_hw *hw = to_txe_hw(dev);
 507
 508        return mei_txe_br_reg_read(hw,
 509                BRIDGE_IPC_OUTPUT_PAYLOAD_REG + (idx * sizeof(u32)));
 510}
 511
 512/* Readiness */
 513
 514/**
 515 * mei_txe_readiness_set_host_rdy - set host readiness bit
 516 *
 517 * @dev: the device structure
 518 */
 519static void mei_txe_readiness_set_host_rdy(struct mei_device *dev)
 520{
 521        struct mei_txe_hw *hw = to_txe_hw(dev);
 522
 523        mei_txe_br_reg_write(hw,
 524                SICR_HOST_IPC_READINESS_REQ_REG,
 525                SICR_HOST_IPC_READINESS_HOST_RDY);
 526}
 527
 528/**
 529 * mei_txe_readiness_clear - clear host readiness bit
 530 *
 531 * @dev: the device structure
 532 */
 533static void mei_txe_readiness_clear(struct mei_device *dev)
 534{
 535        struct mei_txe_hw *hw = to_txe_hw(dev);
 536
 537        mei_txe_br_reg_write(hw, SICR_HOST_IPC_READINESS_REQ_REG,
 538                                SICR_HOST_IPC_READINESS_RDY_CLR);
 539}
 540/**
 541 * mei_txe_readiness_get - Reads and returns
 542 *      the HICR_SEC_IPC_READINESS register value
 543 *
 544 * @dev: the device structure
 545 *
 546 * Return: the HICR_SEC_IPC_READINESS register value
 547 */
 548static u32 mei_txe_readiness_get(struct mei_device *dev)
 549{
 550        struct mei_txe_hw *hw = to_txe_hw(dev);
 551
 552        return mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
 553}
 554
 555
 556/**
 557 * mei_txe_readiness_is_sec_rdy - check readiness
 558 *  for HICR_SEC_IPC_READINESS_SEC_RDY
 559 *
 560 * @readiness: cached readiness state
 561 *
 562 * Return: true if readiness bit is set
 563 */
 564static inline bool mei_txe_readiness_is_sec_rdy(u32 readiness)
 565{
 566        return !!(readiness & HICR_SEC_IPC_READINESS_SEC_RDY);
 567}
 568
 569/**
 570 * mei_txe_hw_is_ready - check if the hw is ready
 571 *
 572 * @dev: the device structure
 573 *
 574 * Return: true if sec is ready
 575 */
 576static bool mei_txe_hw_is_ready(struct mei_device *dev)
 577{
 578        u32 readiness =  mei_txe_readiness_get(dev);
 579
 580        return mei_txe_readiness_is_sec_rdy(readiness);
 581}
 582
 583/**
 584 * mei_txe_host_is_ready - check if the host is ready
 585 *
 586 * @dev: the device structure
 587 *
 588 * Return: true if host is ready
 589 */
 590static inline bool mei_txe_host_is_ready(struct mei_device *dev)
 591{
 592        struct mei_txe_hw *hw = to_txe_hw(dev);
 593        u32 reg = mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
 594
 595        return !!(reg & HICR_SEC_IPC_READINESS_HOST_RDY);
 596}
 597
 598/**
 599 * mei_txe_readiness_wait - wait till readiness settles
 600 *
 601 * @dev: the device structure
 602 *
 603 * Return: 0 on success and -ETIME on timeout
 604 */
 605static int mei_txe_readiness_wait(struct mei_device *dev)
 606{
 607        if (mei_txe_hw_is_ready(dev))
 608                return 0;
 609
 610        mutex_unlock(&dev->device_lock);
 611        wait_event_timeout(dev->wait_hw_ready, dev->recvd_hw_ready,
 612                        msecs_to_jiffies(SEC_RESET_WAIT_TIMEOUT));
 613        mutex_lock(&dev->device_lock);
 614        if (!dev->recvd_hw_ready) {
 615                dev_err(dev->dev, "wait for readiness failed\n");
 616                return -ETIME;
 617        }
 618
 619        dev->recvd_hw_ready = false;
 620        return 0;
 621}
 622
 623static const struct mei_fw_status mei_txe_fw_sts = {
 624        .count = 2,
 625        .status[0] = PCI_CFG_TXE_FW_STS0,
 626        .status[1] = PCI_CFG_TXE_FW_STS1
 627};
 628
 629/**
 630 * mei_txe_fw_status - read fw status register from pci config space
 631 *
 632 * @dev: mei device
 633 * @fw_status: fw status register values
 634 *
 635 * Return: 0 on success, error otherwise
 636 */
 637static int mei_txe_fw_status(struct mei_device *dev,
 638                             struct mei_fw_status *fw_status)
 639{
 640        const struct mei_fw_status *fw_src = &mei_txe_fw_sts;
 641        struct pci_dev *pdev = to_pci_dev(dev->dev);
 642        int ret;
 643        int i;
 644
 645        if (!fw_status)
 646                return -EINVAL;
 647
 648        fw_status->count = fw_src->count;
 649        for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
 650                ret = pci_read_config_dword(pdev, fw_src->status[i],
 651                                            &fw_status->status[i]);
 652                trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HSF_X",
 653                                       fw_src->status[i],
 654                                       fw_status->status[i]);
 655                if (ret)
 656                        return ret;
 657        }
 658
 659        return 0;
 660}
 661
 662/**
 663 * mei_txe_hw_config - configure hardware at the start of the devices
 664 *
 665 * @dev: the device structure
 666 *
 667 * Configure hardware at the start of the device should be done only
 668 *   once at the device probe time
 669 *
 670 * Return: always 0
 671 */
 672static int mei_txe_hw_config(struct mei_device *dev)
 673{
 674
 675        struct mei_txe_hw *hw = to_txe_hw(dev);
 676
 677        hw->aliveness = mei_txe_aliveness_get(dev);
 678        hw->readiness = mei_txe_readiness_get(dev);
 679
 680        dev_dbg(dev->dev, "aliveness_resp = 0x%08x, readiness = 0x%08x.\n",
 681                hw->aliveness, hw->readiness);
 682
 683        return 0;
 684}
 685
 686/**
 687 * mei_txe_write - writes a message to device.
 688 *
 689 * @dev: the device structure
 690 * @hdr: header of message
 691 * @hdr_len: header length in bytes - must multiplication of a slot (4bytes)
 692 * @data: payload
 693 * @data_len: paylead length in bytes
 694 *
 695 * Return: 0 if success, < 0 - otherwise.
 696 */
 697static int mei_txe_write(struct mei_device *dev,
 698                         const void *hdr, size_t hdr_len,
 699                         const void *data, size_t data_len)
 700{
 701        struct mei_txe_hw *hw = to_txe_hw(dev);
 702        unsigned long rem;
 703        const u32 *reg_buf;
 704        u32 slots = TXE_HBUF_DEPTH;
 705        u32 dw_cnt;
 706        unsigned long i, j;
 707
 708        if (WARN_ON(!hdr || !data || hdr_len & 0x3))
 709                return -EINVAL;
 710
 711        dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM((struct mei_msg_hdr *)hdr));
 712
 713        dw_cnt = mei_data2slots(hdr_len + data_len);
 714        if (dw_cnt > slots)
 715                return -EMSGSIZE;
 716
 717        if (WARN(!hw->aliveness, "txe write: aliveness not asserted\n"))
 718                return -EAGAIN;
 719
 720        /* Enable Input Ready Interrupt. */
 721        mei_txe_input_ready_interrupt_enable(dev);
 722
 723        if (!mei_txe_is_input_ready(dev)) {
 724                char fw_sts_str[MEI_FW_STATUS_STR_SZ];
 725
 726                mei_fw_status_str(dev, fw_sts_str, MEI_FW_STATUS_STR_SZ);
 727                dev_err(dev->dev, "Input is not ready %s\n", fw_sts_str);
 728                return -EAGAIN;
 729        }
 730
 731        reg_buf = hdr;
 732        for (i = 0; i < hdr_len / MEI_SLOT_SIZE; i++)
 733                mei_txe_input_payload_write(dev, i, reg_buf[i]);
 734
 735        reg_buf = data;
 736        for (j = 0; j < data_len / MEI_SLOT_SIZE; j++)
 737                mei_txe_input_payload_write(dev, i + j, reg_buf[j]);
 738
 739        rem = data_len & 0x3;
 740        if (rem > 0) {
 741                u32 reg = 0;
 742
 743                memcpy(&reg, (const u8 *)data + data_len - rem, rem);
 744                mei_txe_input_payload_write(dev, i + j, reg);
 745        }
 746
 747        /* after each write the whole buffer is consumed */
 748        hw->slots = 0;
 749
 750        /* Set Input-Doorbell */
 751        mei_txe_input_doorbell_set(hw);
 752
 753        return 0;
 754}
 755
 756/**
 757 * mei_txe_hbuf_depth - mimics the me hbuf circular buffer
 758 *
 759 * @dev: the device structure
 760 *
 761 * Return: the TXE_HBUF_DEPTH
 762 */
 763static u32 mei_txe_hbuf_depth(const struct mei_device *dev)
 764{
 765        return TXE_HBUF_DEPTH;
 766}
 767
 768/**
 769 * mei_txe_hbuf_empty_slots - mimics the me hbuf circular buffer
 770 *
 771 * @dev: the device structure
 772 *
 773 * Return: always TXE_HBUF_DEPTH
 774 */
 775static int mei_txe_hbuf_empty_slots(struct mei_device *dev)
 776{
 777        struct mei_txe_hw *hw = to_txe_hw(dev);
 778
 779        return hw->slots;
 780}
 781
 782/**
 783 * mei_txe_count_full_read_slots - mimics the me device circular buffer
 784 *
 785 * @dev: the device structure
 786 *
 787 * Return: always buffer size in dwords count
 788 */
 789static int mei_txe_count_full_read_slots(struct mei_device *dev)
 790{
 791        /* read buffers has static size */
 792        return TXE_HBUF_DEPTH;
 793}
 794
 795/**
 796 * mei_txe_read_hdr - read message header which is always in 4 first bytes
 797 *
 798 * @dev: the device structure
 799 *
 800 * Return: mei message header
 801 */
 802
 803static u32 mei_txe_read_hdr(const struct mei_device *dev)
 804{
 805        return mei_txe_out_data_read(dev, 0);
 806}
 807/**
 808 * mei_txe_read - reads a message from the txe device.
 809 *
 810 * @dev: the device structure
 811 * @buf: message buffer will be written
 812 * @len: message size will be read
 813 *
 814 * Return: -EINVAL on error wrong argument and 0 on success
 815 */
 816static int mei_txe_read(struct mei_device *dev,
 817                unsigned char *buf, unsigned long len)
 818{
 819
 820        struct mei_txe_hw *hw = to_txe_hw(dev);
 821        u32 *reg_buf, reg;
 822        u32 rem;
 823        u32 i;
 824
 825        if (WARN_ON(!buf || !len))
 826                return -EINVAL;
 827
 828        reg_buf = (u32 *)buf;
 829        rem = len & 0x3;
 830
 831        dev_dbg(dev->dev, "buffer-length = %lu buf[0]0x%08X\n",
 832                len, mei_txe_out_data_read(dev, 0));
 833
 834        for (i = 0; i < len / MEI_SLOT_SIZE; i++) {
 835                /* skip header: index starts from 1 */
 836                reg = mei_txe_out_data_read(dev, i + 1);
 837                dev_dbg(dev->dev, "buf[%d] = 0x%08X\n", i, reg);
 838                *reg_buf++ = reg;
 839        }
 840
 841        if (rem) {
 842                reg = mei_txe_out_data_read(dev, i + 1);
 843                memcpy(reg_buf, &reg, rem);
 844        }
 845
 846        mei_txe_output_ready_set(hw);
 847        return 0;
 848}
 849
 850/**
 851 * mei_txe_hw_reset - resets host and fw.
 852 *
 853 * @dev: the device structure
 854 * @intr_enable: if interrupt should be enabled after reset.
 855 *
 856 * Return: 0 on success and < 0 in case of error
 857 */
 858static int mei_txe_hw_reset(struct mei_device *dev, bool intr_enable)
 859{
 860        struct mei_txe_hw *hw = to_txe_hw(dev);
 861
 862        u32 aliveness_req;
 863        /*
 864         * read input doorbell to ensure consistency between  Bridge and SeC
 865         * return value might be garbage return
 866         */
 867        (void)mei_txe_sec_reg_read_silent(hw, SEC_IPC_INPUT_DOORBELL_REG);
 868
 869        aliveness_req = mei_txe_aliveness_req_get(dev);
 870        hw->aliveness = mei_txe_aliveness_get(dev);
 871
 872        /* Disable interrupts in this stage we will poll */
 873        mei_txe_intr_disable(dev);
 874
 875        /*
 876         * If Aliveness Request and Aliveness Response are not equal then
 877         * wait for them to be equal
 878         * Since we might have interrupts disabled - poll for it
 879         */
 880        if (aliveness_req != hw->aliveness)
 881                if (mei_txe_aliveness_poll(dev, aliveness_req) < 0) {
 882                        dev_err(dev->dev, "wait for aliveness settle failed ... bailing out\n");
 883                        return -EIO;
 884                }
 885
 886        /*
 887         * If Aliveness Request and Aliveness Response are set then clear them
 888         */
 889        if (aliveness_req) {
 890                mei_txe_aliveness_set(dev, 0);
 891                if (mei_txe_aliveness_poll(dev, 0) < 0) {
 892                        dev_err(dev->dev, "wait for aliveness failed ... bailing out\n");
 893                        return -EIO;
 894                }
 895        }
 896
 897        /*
 898         * Set readiness RDY_CLR bit
 899         */
 900        mei_txe_readiness_clear(dev);
 901
 902        return 0;
 903}
 904
 905/**
 906 * mei_txe_hw_start - start the hardware after reset
 907 *
 908 * @dev: the device structure
 909 *
 910 * Return: 0 on success an error code otherwise
 911 */
 912static int mei_txe_hw_start(struct mei_device *dev)
 913{
 914        struct mei_txe_hw *hw = to_txe_hw(dev);
 915        int ret;
 916
 917        u32 hisr;
 918
 919        /* bring back interrupts */
 920        mei_txe_intr_enable(dev);
 921
 922        ret = mei_txe_readiness_wait(dev);
 923        if (ret < 0) {
 924                dev_err(dev->dev, "waiting for readiness failed\n");
 925                return ret;
 926        }
 927
 928        /*
 929         * If HISR.INT2_STS interrupt status bit is set then clear it.
 930         */
 931        hisr = mei_txe_br_reg_read(hw, HISR_REG);
 932        if (hisr & HISR_INT_2_STS)
 933                mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_2_STS);
 934
 935        /* Clear the interrupt cause of OutputDoorbell */
 936        clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause);
 937
 938        ret = mei_txe_aliveness_set_sync(dev, 1);
 939        if (ret < 0) {
 940                dev_err(dev->dev, "wait for aliveness failed ... bailing out\n");
 941                return ret;
 942        }
 943
 944        pm_runtime_set_active(dev->dev);
 945
 946        /* enable input ready interrupts:
 947         * SEC_IPC_HOST_INT_MASK.IPC_INPUT_READY_INT_MASK
 948         */
 949        mei_txe_input_ready_interrupt_enable(dev);
 950
 951
 952        /*  Set the SICR_SEC_IPC_OUTPUT_STATUS.IPC_OUTPUT_READY bit */
 953        mei_txe_output_ready_set(hw);
 954
 955        /* Set bit SICR_HOST_IPC_READINESS.HOST_RDY
 956         */
 957        mei_txe_readiness_set_host_rdy(dev);
 958
 959        return 0;
 960}
 961
 962/**
 963 * mei_txe_check_and_ack_intrs - translate multi BAR interrupt into
 964 *  single bit mask and acknowledge the interrupts
 965 *
 966 * @dev: the device structure
 967 * @do_ack: acknowledge interrupts
 968 *
 969 * Return: true if found interrupts to process.
 970 */
 971static bool mei_txe_check_and_ack_intrs(struct mei_device *dev, bool do_ack)
 972{
 973        struct mei_txe_hw *hw = to_txe_hw(dev);
 974        u32 hisr;
 975        u32 hhisr;
 976        u32 ipc_isr;
 977        u32 aliveness;
 978        bool generated;
 979
 980        /* read interrupt registers */
 981        hhisr = mei_txe_br_reg_read(hw, HHISR_REG);
 982        generated = (hhisr & IPC_HHIER_MSK);
 983        if (!generated)
 984                goto out;
 985
 986        hisr = mei_txe_br_reg_read(hw, HISR_REG);
 987
 988        aliveness = mei_txe_aliveness_get(dev);
 989        if (hhisr & IPC_HHIER_SEC && aliveness) {
 990                ipc_isr = mei_txe_sec_reg_read_silent(hw,
 991                                SEC_IPC_HOST_INT_STATUS_REG);
 992        } else {
 993                ipc_isr = 0;
 994                hhisr &= ~IPC_HHIER_SEC;
 995        }
 996
 997        generated = generated ||
 998                (hisr & HISR_INT_STS_MSK) ||
 999                (ipc_isr & SEC_IPC_HOST_INT_STATUS_PENDING);
1000
1001        if (generated && do_ack) {
1002                /* Save the interrupt causes */
1003                hw->intr_cause |= hisr & HISR_INT_STS_MSK;
1004                if (ipc_isr & SEC_IPC_HOST_INT_STATUS_IN_RDY)
1005                        hw->intr_cause |= TXE_INTR_IN_READY;
1006
1007
1008                mei_txe_intr_disable(dev);
1009                /* Clear the interrupts in hierarchy:
1010                 * IPC and Bridge, than the High Level */
1011                mei_txe_sec_reg_write_silent(hw,
1012                        SEC_IPC_HOST_INT_STATUS_REG, ipc_isr);
1013                mei_txe_br_reg_write(hw, HISR_REG, hisr);
1014                mei_txe_br_reg_write(hw, HHISR_REG, hhisr);
1015        }
1016
1017out:
1018        return generated;
1019}
1020
1021/**
1022 * mei_txe_irq_quick_handler - The ISR of the MEI device
1023 *
1024 * @irq: The irq number
1025 * @dev_id: pointer to the device structure
1026 *
1027 * Return: IRQ_WAKE_THREAD if interrupt is designed for the device
1028 *         IRQ_NONE otherwise
1029 */
1030irqreturn_t mei_txe_irq_quick_handler(int irq, void *dev_id)
1031{
1032        struct mei_device *dev = dev_id;
1033
1034        if (mei_txe_check_and_ack_intrs(dev, true))
1035                return IRQ_WAKE_THREAD;
1036        return IRQ_NONE;
1037}
1038
1039
1040/**
1041 * mei_txe_irq_thread_handler - txe interrupt thread
1042 *
1043 * @irq: The irq number
1044 * @dev_id: pointer to the device structure
1045 *
1046 * Return: IRQ_HANDLED
1047 */
1048irqreturn_t mei_txe_irq_thread_handler(int irq, void *dev_id)
1049{
1050        struct mei_device *dev = (struct mei_device *) dev_id;
1051        struct mei_txe_hw *hw = to_txe_hw(dev);
1052        struct list_head cmpl_list;
1053        s32 slots;
1054        int rets = 0;
1055
1056        dev_dbg(dev->dev, "irq thread: Interrupt Registers HHISR|HISR|SEC=%02X|%04X|%02X\n",
1057                mei_txe_br_reg_read(hw, HHISR_REG),
1058                mei_txe_br_reg_read(hw, HISR_REG),
1059                mei_txe_sec_reg_read_silent(hw, SEC_IPC_HOST_INT_STATUS_REG));
1060
1061
1062        /* initialize our complete list */
1063        mutex_lock(&dev->device_lock);
1064        INIT_LIST_HEAD(&cmpl_list);
1065
1066        if (pci_dev_msi_enabled(to_pci_dev(dev->dev)))
1067                mei_txe_check_and_ack_intrs(dev, true);
1068
1069        /* show irq events */
1070        mei_txe_pending_interrupts(dev);
1071
1072        hw->aliveness = mei_txe_aliveness_get(dev);
1073        hw->readiness = mei_txe_readiness_get(dev);
1074
1075        /* Readiness:
1076         * Detection of TXE driver going through reset
1077         * or TXE driver resetting the HECI interface.
1078         */
1079        if (test_and_clear_bit(TXE_INTR_READINESS_BIT, &hw->intr_cause)) {
1080                dev_dbg(dev->dev, "Readiness Interrupt was received...\n");
1081
1082                /* Check if SeC is going through reset */
1083                if (mei_txe_readiness_is_sec_rdy(hw->readiness)) {
1084                        dev_dbg(dev->dev, "we need to start the dev.\n");
1085                        dev->recvd_hw_ready = true;
1086                } else {
1087                        dev->recvd_hw_ready = false;
1088                        if (dev->dev_state != MEI_DEV_RESETTING) {
1089
1090                                dev_warn(dev->dev, "FW not ready: resetting.\n");
1091                                schedule_work(&dev->reset_work);
1092                                goto end;
1093
1094                        }
1095                }
1096                wake_up(&dev->wait_hw_ready);
1097        }
1098
1099        /************************************************************/
1100        /* Check interrupt cause:
1101         * Aliveness: Detection of SeC acknowledge of host request that
1102         * it remain alive or host cancellation of that request.
1103         */
1104
1105        if (test_and_clear_bit(TXE_INTR_ALIVENESS_BIT, &hw->intr_cause)) {
1106                /* Clear the interrupt cause */
1107                dev_dbg(dev->dev,
1108                        "Aliveness Interrupt: Status: %d\n", hw->aliveness);
1109                dev->pg_event = MEI_PG_EVENT_RECEIVED;
1110                if (waitqueue_active(&hw->wait_aliveness_resp))
1111                        wake_up(&hw->wait_aliveness_resp);
1112        }
1113
1114
1115        /* Output Doorbell:
1116         * Detection of SeC having sent output to host
1117         */
1118        slots = mei_count_full_read_slots(dev);
1119        if (test_and_clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause)) {
1120                /* Read from TXE */
1121                rets = mei_irq_read_handler(dev, &cmpl_list, &slots);
1122                if (rets &&
1123                    (dev->dev_state != MEI_DEV_RESETTING &&
1124                     dev->dev_state != MEI_DEV_POWER_DOWN)) {
1125                        dev_err(dev->dev,
1126                                "mei_irq_read_handler ret = %d.\n", rets);
1127
1128                        schedule_work(&dev->reset_work);
1129                        goto end;
1130                }
1131        }
1132        /* Input Ready: Detection if host can write to SeC */
1133        if (test_and_clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause)) {
1134                dev->hbuf_is_ready = true;
1135                hw->slots = TXE_HBUF_DEPTH;
1136        }
1137
1138        if (hw->aliveness && dev->hbuf_is_ready) {
1139                /* get the real register value */
1140                dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1141                rets = mei_irq_write_handler(dev, &cmpl_list);
1142                if (rets && rets != -EMSGSIZE)
1143                        dev_err(dev->dev, "mei_irq_write_handler ret = %d.\n",
1144                                rets);
1145                dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1146        }
1147
1148        mei_irq_compl_handler(dev, &cmpl_list);
1149
1150end:
1151        dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
1152
1153        mutex_unlock(&dev->device_lock);
1154
1155        mei_enable_interrupts(dev);
1156        return IRQ_HANDLED;
1157}
1158
1159static const struct mei_hw_ops mei_txe_hw_ops = {
1160
1161        .host_is_ready = mei_txe_host_is_ready,
1162
1163        .fw_status = mei_txe_fw_status,
1164        .pg_state = mei_txe_pg_state,
1165
1166        .hw_is_ready = mei_txe_hw_is_ready,
1167        .hw_reset = mei_txe_hw_reset,
1168        .hw_config = mei_txe_hw_config,
1169        .hw_start = mei_txe_hw_start,
1170
1171        .pg_in_transition = mei_txe_pg_in_transition,
1172        .pg_is_enabled = mei_txe_pg_is_enabled,
1173
1174        .intr_clear = mei_txe_intr_clear,
1175        .intr_enable = mei_txe_intr_enable,
1176        .intr_disable = mei_txe_intr_disable,
1177        .synchronize_irq = mei_txe_synchronize_irq,
1178
1179        .hbuf_free_slots = mei_txe_hbuf_empty_slots,
1180        .hbuf_is_ready = mei_txe_is_input_ready,
1181        .hbuf_depth = mei_txe_hbuf_depth,
1182
1183        .write = mei_txe_write,
1184
1185        .rdbuf_full_slots = mei_txe_count_full_read_slots,
1186        .read_hdr = mei_txe_read_hdr,
1187
1188        .read = mei_txe_read,
1189
1190};
1191
1192/**
1193 * mei_txe_dev_init - allocates and initializes txe hardware specific structure
1194 *
1195 * @pdev: pci device
1196 *
1197 * Return: struct mei_device * on success or NULL
1198 */
1199struct mei_device *mei_txe_dev_init(struct pci_dev *pdev)
1200{
1201        struct mei_device *dev;
1202        struct mei_txe_hw *hw;
1203
1204        dev = devm_kzalloc(&pdev->dev, sizeof(*dev) + sizeof(*hw), GFP_KERNEL);
1205        if (!dev)
1206                return NULL;
1207
1208        mei_device_init(dev, &pdev->dev, &mei_txe_hw_ops);
1209
1210        hw = to_txe_hw(dev);
1211
1212        init_waitqueue_head(&hw->wait_aliveness_resp);
1213
1214        return dev;
1215}
1216
1217/**
1218 * mei_txe_setup_satt2 - SATT2 configuration for DMA support.
1219 *
1220 * @dev:   the device structure
1221 * @addr:  physical address start of the range
1222 * @range: physical range size
1223 *
1224 * Return: 0 on success an error code otherwise
1225 */
1226int mei_txe_setup_satt2(struct mei_device *dev, phys_addr_t addr, u32 range)
1227{
1228        struct mei_txe_hw *hw = to_txe_hw(dev);
1229
1230        u32 lo32 = lower_32_bits(addr);
1231        u32 hi32 = upper_32_bits(addr);
1232        u32 ctrl;
1233
1234        /* SATT is limited to 36 Bits */
1235        if (hi32 & ~0xF)
1236                return -EINVAL;
1237
1238        /* SATT has to be 16Byte aligned */
1239        if (lo32 & 0xF)
1240                return -EINVAL;
1241
1242        /* SATT range has to be 4Bytes aligned */
1243        if (range & 0x4)
1244                return -EINVAL;
1245
1246        /* SATT is limited to 32 MB range*/
1247        if (range > SATT_RANGE_MAX)
1248                return -EINVAL;
1249
1250        ctrl = SATT2_CTRL_VALID_MSK;
1251        ctrl |= hi32  << SATT2_CTRL_BR_BASE_ADDR_REG_SHIFT;
1252
1253        mei_txe_br_reg_write(hw, SATT2_SAP_SIZE_REG, range);
1254        mei_txe_br_reg_write(hw, SATT2_BRG_BA_LSB_REG, lo32);
1255        mei_txe_br_reg_write(hw, SATT2_CTRL_REG, ctrl);
1256        dev_dbg(dev->dev, "SATT2: SAP_SIZE_OFFSET=0x%08X, BRG_BA_LSB_OFFSET=0x%08X, CTRL_OFFSET=0x%08X\n",
1257                range, lo32, ctrl);
1258
1259        return 0;
1260}
1261