linux/drivers/mtd/nand/onenand/onenand_base.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright © 2005-2009 Samsung Electronics
   4 *  Copyright © 2007 Nokia Corporation
   5 *
   6 *  Kyungmin Park <kyungmin.park@samsung.com>
   7 *
   8 *  Credits:
   9 *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
  10 *      auto-placement support, read-while load support, various fixes
  11 *
  12 *      Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
  13 *      Flex-OneNAND support
  14 *      Amul Kumar Saha <amul.saha at samsung.com>
  15 *      OTP support
  16 */
  17
  18#include <linux/kernel.h>
  19#include <linux/module.h>
  20#include <linux/moduleparam.h>
  21#include <linux/slab.h>
  22#include <linux/sched.h>
  23#include <linux/delay.h>
  24#include <linux/interrupt.h>
  25#include <linux/jiffies.h>
  26#include <linux/mtd/mtd.h>
  27#include <linux/mtd/onenand.h>
  28#include <linux/mtd/partitions.h>
  29
  30#include <asm/io.h>
  31
  32/*
  33 * Multiblock erase if number of blocks to erase is 2 or more.
  34 * Maximum number of blocks for simultaneous erase is 64.
  35 */
  36#define MB_ERASE_MIN_BLK_COUNT 2
  37#define MB_ERASE_MAX_BLK_COUNT 64
  38
  39/* Default Flex-OneNAND boundary and lock respectively */
  40static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
  41
  42module_param_array(flex_bdry, int, NULL, 0400);
  43MODULE_PARM_DESC(flex_bdry,     "SLC Boundary information for Flex-OneNAND"
  44                                "Syntax:flex_bdry=DIE_BDRY,LOCK,..."
  45                                "DIE_BDRY: SLC boundary of the die"
  46                                "LOCK: Locking information for SLC boundary"
  47                                "    : 0->Set boundary in unlocked status"
  48                                "    : 1->Set boundary in locked status");
  49
  50/* Default OneNAND/Flex-OneNAND OTP options*/
  51static int otp;
  52
  53module_param(otp, int, 0400);
  54MODULE_PARM_DESC(otp,   "Corresponding behaviour of OneNAND in OTP"
  55                        "Syntax : otp=LOCK_TYPE"
  56                        "LOCK_TYPE : Keys issued, for specific OTP Lock type"
  57                        "          : 0 -> Default (No Blocks Locked)"
  58                        "          : 1 -> OTP Block lock"
  59                        "          : 2 -> 1st Block lock"
  60                        "          : 3 -> BOTH OTP Block and 1st Block lock");
  61
  62/*
  63 * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page
  64 * For now, we expose only 64 out of 80 ecc bytes
  65 */
  66static int flexonenand_ooblayout_ecc(struct mtd_info *mtd, int section,
  67                                     struct mtd_oob_region *oobregion)
  68{
  69        if (section > 7)
  70                return -ERANGE;
  71
  72        oobregion->offset = (section * 16) + 6;
  73        oobregion->length = 10;
  74
  75        return 0;
  76}
  77
  78static int flexonenand_ooblayout_free(struct mtd_info *mtd, int section,
  79                                      struct mtd_oob_region *oobregion)
  80{
  81        if (section > 7)
  82                return -ERANGE;
  83
  84        oobregion->offset = (section * 16) + 2;
  85        oobregion->length = 4;
  86
  87        return 0;
  88}
  89
  90static const struct mtd_ooblayout_ops flexonenand_ooblayout_ops = {
  91        .ecc = flexonenand_ooblayout_ecc,
  92        .free = flexonenand_ooblayout_free,
  93};
  94
  95/*
  96 * onenand_oob_128 - oob info for OneNAND with 4KB page
  97 *
  98 * Based on specification:
  99 * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010
 100 *
 101 */
 102static int onenand_ooblayout_128_ecc(struct mtd_info *mtd, int section,
 103                                     struct mtd_oob_region *oobregion)
 104{
 105        if (section > 7)
 106                return -ERANGE;
 107
 108        oobregion->offset = (section * 16) + 7;
 109        oobregion->length = 9;
 110
 111        return 0;
 112}
 113
 114static int onenand_ooblayout_128_free(struct mtd_info *mtd, int section,
 115                                      struct mtd_oob_region *oobregion)
 116{
 117        if (section >= 8)
 118                return -ERANGE;
 119
 120        /*
 121         * free bytes are using the spare area fields marked as
 122         * "Managed by internal ECC logic for Logical Sector Number area"
 123         */
 124        oobregion->offset = (section * 16) + 2;
 125        oobregion->length = 3;
 126
 127        return 0;
 128}
 129
 130static const struct mtd_ooblayout_ops onenand_oob_128_ooblayout_ops = {
 131        .ecc = onenand_ooblayout_128_ecc,
 132        .free = onenand_ooblayout_128_free,
 133};
 134
 135/*
 136 * onenand_oob_32_64 - oob info for large (2KB) page
 137 */
 138static int onenand_ooblayout_32_64_ecc(struct mtd_info *mtd, int section,
 139                                       struct mtd_oob_region *oobregion)
 140{
 141        if (section > 3)
 142                return -ERANGE;
 143
 144        oobregion->offset = (section * 16) + 8;
 145        oobregion->length = 5;
 146
 147        return 0;
 148}
 149
 150static int onenand_ooblayout_32_64_free(struct mtd_info *mtd, int section,
 151                                        struct mtd_oob_region *oobregion)
 152{
 153        int sections = (mtd->oobsize / 32) * 2;
 154
 155        if (section >= sections)
 156                return -ERANGE;
 157
 158        if (section & 1) {
 159                oobregion->offset = ((section - 1) * 16) + 14;
 160                oobregion->length = 2;
 161        } else  {
 162                oobregion->offset = (section * 16) + 2;
 163                oobregion->length = 3;
 164        }
 165
 166        return 0;
 167}
 168
 169static const struct mtd_ooblayout_ops onenand_oob_32_64_ooblayout_ops = {
 170        .ecc = onenand_ooblayout_32_64_ecc,
 171        .free = onenand_ooblayout_32_64_free,
 172};
 173
 174static const unsigned char ffchars[] = {
 175        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 176        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
 177        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 178        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
 179        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 180        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
 181        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 182        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
 183        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 184        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
 185        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 186        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
 187        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 188        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
 189        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 190        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
 191};
 192
 193/**
 194 * onenand_readw - [OneNAND Interface] Read OneNAND register
 195 * @addr:               address to read
 196 *
 197 * Read OneNAND register
 198 */
 199static unsigned short onenand_readw(void __iomem *addr)
 200{
 201        return readw(addr);
 202}
 203
 204/**
 205 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
 206 * @value:              value to write
 207 * @addr:               address to write
 208 *
 209 * Write OneNAND register with value
 210 */
 211static void onenand_writew(unsigned short value, void __iomem *addr)
 212{
 213        writew(value, addr);
 214}
 215
 216/**
 217 * onenand_block_address - [DEFAULT] Get block address
 218 * @this:               onenand chip data structure
 219 * @block:              the block
 220 * @return              translated block address if DDP, otherwise same
 221 *
 222 * Setup Start Address 1 Register (F100h)
 223 */
 224static int onenand_block_address(struct onenand_chip *this, int block)
 225{
 226        /* Device Flash Core select, NAND Flash Block Address */
 227        if (block & this->density_mask)
 228                return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
 229
 230        return block;
 231}
 232
 233/**
 234 * onenand_bufferram_address - [DEFAULT] Get bufferram address
 235 * @this:               onenand chip data structure
 236 * @block:              the block
 237 * @return              set DBS value if DDP, otherwise 0
 238 *
 239 * Setup Start Address 2 Register (F101h) for DDP
 240 */
 241static int onenand_bufferram_address(struct onenand_chip *this, int block)
 242{
 243        /* Device BufferRAM Select */
 244        if (block & this->density_mask)
 245                return ONENAND_DDP_CHIP1;
 246
 247        return ONENAND_DDP_CHIP0;
 248}
 249
 250/**
 251 * onenand_page_address - [DEFAULT] Get page address
 252 * @page:               the page address
 253 * @sector:     the sector address
 254 * @return              combined page and sector address
 255 *
 256 * Setup Start Address 8 Register (F107h)
 257 */
 258static int onenand_page_address(int page, int sector)
 259{
 260        /* Flash Page Address, Flash Sector Address */
 261        int fpa, fsa;
 262
 263        fpa = page & ONENAND_FPA_MASK;
 264        fsa = sector & ONENAND_FSA_MASK;
 265
 266        return ((fpa << ONENAND_FPA_SHIFT) | fsa);
 267}
 268
 269/**
 270 * onenand_buffer_address - [DEFAULT] Get buffer address
 271 * @dataram1:   DataRAM index
 272 * @sectors:    the sector address
 273 * @count:              the number of sectors
 274 * Return:              the start buffer value
 275 *
 276 * Setup Start Buffer Register (F200h)
 277 */
 278static int onenand_buffer_address(int dataram1, int sectors, int count)
 279{
 280        int bsa, bsc;
 281
 282        /* BufferRAM Sector Address */
 283        bsa = sectors & ONENAND_BSA_MASK;
 284
 285        if (dataram1)
 286                bsa |= ONENAND_BSA_DATARAM1;    /* DataRAM1 */
 287        else
 288                bsa |= ONENAND_BSA_DATARAM0;    /* DataRAM0 */
 289
 290        /* BufferRAM Sector Count */
 291        bsc = count & ONENAND_BSC_MASK;
 292
 293        return ((bsa << ONENAND_BSA_SHIFT) | bsc);
 294}
 295
 296/**
 297 * flexonenand_block- For given address return block number
 298 * @this:         - OneNAND device structure
 299 * @addr:               - Address for which block number is needed
 300 */
 301static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
 302{
 303        unsigned boundary, blk, die = 0;
 304
 305        if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
 306                die = 1;
 307                addr -= this->diesize[0];
 308        }
 309
 310        boundary = this->boundary[die];
 311
 312        blk = addr >> (this->erase_shift - 1);
 313        if (blk > boundary)
 314                blk = (blk + boundary + 1) >> 1;
 315
 316        blk += die ? this->density_mask : 0;
 317        return blk;
 318}
 319
 320inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
 321{
 322        if (!FLEXONENAND(this))
 323                return addr >> this->erase_shift;
 324        return flexonenand_block(this, addr);
 325}
 326
 327/**
 328 * flexonenand_addr - Return address of the block
 329 * @this:               OneNAND device structure
 330 * @block:              Block number on Flex-OneNAND
 331 *
 332 * Return address of the block
 333 */
 334static loff_t flexonenand_addr(struct onenand_chip *this, int block)
 335{
 336        loff_t ofs = 0;
 337        int die = 0, boundary;
 338
 339        if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
 340                block -= this->density_mask;
 341                die = 1;
 342                ofs = this->diesize[0];
 343        }
 344
 345        boundary = this->boundary[die];
 346        ofs += (loff_t)block << (this->erase_shift - 1);
 347        if (block > (boundary + 1))
 348                ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
 349        return ofs;
 350}
 351
 352loff_t onenand_addr(struct onenand_chip *this, int block)
 353{
 354        if (!FLEXONENAND(this))
 355                return (loff_t)block << this->erase_shift;
 356        return flexonenand_addr(this, block);
 357}
 358EXPORT_SYMBOL(onenand_addr);
 359
 360/**
 361 * onenand_get_density - [DEFAULT] Get OneNAND density
 362 * @dev_id:     OneNAND device ID
 363 *
 364 * Get OneNAND density from device ID
 365 */
 366static inline int onenand_get_density(int dev_id)
 367{
 368        int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
 369        return (density & ONENAND_DEVICE_DENSITY_MASK);
 370}
 371
 372/**
 373 * flexonenand_region - [Flex-OneNAND] Return erase region of addr
 374 * @mtd:                MTD device structure
 375 * @addr:               address whose erase region needs to be identified
 376 */
 377int flexonenand_region(struct mtd_info *mtd, loff_t addr)
 378{
 379        int i;
 380
 381        for (i = 0; i < mtd->numeraseregions; i++)
 382                if (addr < mtd->eraseregions[i].offset)
 383                        break;
 384        return i - 1;
 385}
 386EXPORT_SYMBOL(flexonenand_region);
 387
 388/**
 389 * onenand_command - [DEFAULT] Send command to OneNAND device
 390 * @mtd:                MTD device structure
 391 * @cmd:                the command to be sent
 392 * @addr:               offset to read from or write to
 393 * @len:                number of bytes to read or write
 394 *
 395 * Send command to OneNAND device. This function is used for middle/large page
 396 * devices (1KB/2KB Bytes per page)
 397 */
 398static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
 399{
 400        struct onenand_chip *this = mtd->priv;
 401        int value, block, page;
 402
 403        /* Address translation */
 404        switch (cmd) {
 405        case ONENAND_CMD_UNLOCK:
 406        case ONENAND_CMD_LOCK:
 407        case ONENAND_CMD_LOCK_TIGHT:
 408        case ONENAND_CMD_UNLOCK_ALL:
 409                block = -1;
 410                page = -1;
 411                break;
 412
 413        case FLEXONENAND_CMD_PI_ACCESS:
 414                /* addr contains die index */
 415                block = addr * this->density_mask;
 416                page = -1;
 417                break;
 418
 419        case ONENAND_CMD_ERASE:
 420        case ONENAND_CMD_MULTIBLOCK_ERASE:
 421        case ONENAND_CMD_ERASE_VERIFY:
 422        case ONENAND_CMD_BUFFERRAM:
 423        case ONENAND_CMD_OTP_ACCESS:
 424                block = onenand_block(this, addr);
 425                page = -1;
 426                break;
 427
 428        case FLEXONENAND_CMD_READ_PI:
 429                cmd = ONENAND_CMD_READ;
 430                block = addr * this->density_mask;
 431                page = 0;
 432                break;
 433
 434        default:
 435                block = onenand_block(this, addr);
 436                if (FLEXONENAND(this))
 437                        page = (int) (addr - onenand_addr(this, block))>>\
 438                                this->page_shift;
 439                else
 440                        page = (int) (addr >> this->page_shift);
 441                if (ONENAND_IS_2PLANE(this)) {
 442                        /* Make the even block number */
 443                        block &= ~1;
 444                        /* Is it the odd plane? */
 445                        if (addr & this->writesize)
 446                                block++;
 447                        page >>= 1;
 448                }
 449                page &= this->page_mask;
 450                break;
 451        }
 452
 453        /* NOTE: The setting order of the registers is very important! */
 454        if (cmd == ONENAND_CMD_BUFFERRAM) {
 455                /* Select DataRAM for DDP */
 456                value = onenand_bufferram_address(this, block);
 457                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
 458
 459                if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this))
 460                        /* It is always BufferRAM0 */
 461                        ONENAND_SET_BUFFERRAM0(this);
 462                else
 463                        /* Switch to the next data buffer */
 464                        ONENAND_SET_NEXT_BUFFERRAM(this);
 465
 466                return 0;
 467        }
 468
 469        if (block != -1) {
 470                /* Write 'DFS, FBA' of Flash */
 471                value = onenand_block_address(this, block);
 472                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
 473
 474                /* Select DataRAM for DDP */
 475                value = onenand_bufferram_address(this, block);
 476                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
 477        }
 478
 479        if (page != -1) {
 480                /* Now we use page size operation */
 481                int sectors = 0, count = 0;
 482                int dataram;
 483
 484                switch (cmd) {
 485                case FLEXONENAND_CMD_RECOVER_LSB:
 486                case ONENAND_CMD_READ:
 487                case ONENAND_CMD_READOOB:
 488                        if (ONENAND_IS_4KB_PAGE(this))
 489                                /* It is always BufferRAM0 */
 490                                dataram = ONENAND_SET_BUFFERRAM0(this);
 491                        else
 492                                dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
 493                        break;
 494
 495                default:
 496                        if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
 497                                cmd = ONENAND_CMD_2X_PROG;
 498                        dataram = ONENAND_CURRENT_BUFFERRAM(this);
 499                        break;
 500                }
 501
 502                /* Write 'FPA, FSA' of Flash */
 503                value = onenand_page_address(page, sectors);
 504                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
 505
 506                /* Write 'BSA, BSC' of DataRAM */
 507                value = onenand_buffer_address(dataram, sectors, count);
 508                this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
 509        }
 510
 511        /* Interrupt clear */
 512        this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
 513
 514        /* Write command */
 515        this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
 516
 517        return 0;
 518}
 519
 520/**
 521 * onenand_read_ecc - return ecc status
 522 * @this:               onenand chip structure
 523 */
 524static inline int onenand_read_ecc(struct onenand_chip *this)
 525{
 526        int ecc, i, result = 0;
 527
 528        if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
 529                return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
 530
 531        for (i = 0; i < 4; i++) {
 532                ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2);
 533                if (likely(!ecc))
 534                        continue;
 535                if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
 536                        return ONENAND_ECC_2BIT_ALL;
 537                else
 538                        result = ONENAND_ECC_1BIT_ALL;
 539        }
 540
 541        return result;
 542}
 543
 544/**
 545 * onenand_wait - [DEFAULT] wait until the command is done
 546 * @mtd:                MTD device structure
 547 * @state:              state to select the max. timeout value
 548 *
 549 * Wait for command done. This applies to all OneNAND command
 550 * Read can take up to 30us, erase up to 2ms and program up to 350us
 551 * according to general OneNAND specs
 552 */
 553static int onenand_wait(struct mtd_info *mtd, int state)
 554{
 555        struct onenand_chip * this = mtd->priv;
 556        unsigned long timeout;
 557        unsigned int flags = ONENAND_INT_MASTER;
 558        unsigned int interrupt = 0;
 559        unsigned int ctrl;
 560
 561        /* The 20 msec is enough */
 562        timeout = jiffies + msecs_to_jiffies(20);
 563        while (time_before(jiffies, timeout)) {
 564                interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
 565
 566                if (interrupt & flags)
 567                        break;
 568
 569                if (state != FL_READING && state != FL_PREPARING_ERASE)
 570                        cond_resched();
 571        }
 572        /* To get correct interrupt status in timeout case */
 573        interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
 574
 575        ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
 576
 577        /*
 578         * In the Spec. it checks the controller status first
 579         * However if you get the correct information in case of
 580         * power off recovery (POR) test, it should read ECC status first
 581         */
 582        if (interrupt & ONENAND_INT_READ) {
 583                int ecc = onenand_read_ecc(this);
 584                if (ecc) {
 585                        if (ecc & ONENAND_ECC_2BIT_ALL) {
 586                                printk(KERN_ERR "%s: ECC error = 0x%04x\n",
 587                                        __func__, ecc);
 588                                mtd->ecc_stats.failed++;
 589                                return -EBADMSG;
 590                        } else if (ecc & ONENAND_ECC_1BIT_ALL) {
 591                                printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n",
 592                                        __func__, ecc);
 593                                mtd->ecc_stats.corrected++;
 594                        }
 595                }
 596        } else if (state == FL_READING) {
 597                printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
 598                        __func__, ctrl, interrupt);
 599                return -EIO;
 600        }
 601
 602        if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) {
 603                printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
 604                       __func__, ctrl, interrupt);
 605                return -EIO;
 606        }
 607
 608        if (!(interrupt & ONENAND_INT_MASTER)) {
 609                printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n",
 610                       __func__, ctrl, interrupt);
 611                return -EIO;
 612        }
 613
 614        /* If there's controller error, it's a real error */
 615        if (ctrl & ONENAND_CTRL_ERROR) {
 616                printk(KERN_ERR "%s: controller error = 0x%04x\n",
 617                        __func__, ctrl);
 618                if (ctrl & ONENAND_CTRL_LOCK)
 619                        printk(KERN_ERR "%s: it's locked error.\n", __func__);
 620                return -EIO;
 621        }
 622
 623        return 0;
 624}
 625
 626/*
 627 * onenand_interrupt - [DEFAULT] onenand interrupt handler
 628 * @irq:                onenand interrupt number
 629 * @dev_id:     interrupt data
 630 *
 631 * complete the work
 632 */
 633static irqreturn_t onenand_interrupt(int irq, void *data)
 634{
 635        struct onenand_chip *this = data;
 636
 637        /* To handle shared interrupt */
 638        if (!this->complete.done)
 639                complete(&this->complete);
 640
 641        return IRQ_HANDLED;
 642}
 643
 644/*
 645 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
 646 * @mtd:                MTD device structure
 647 * @state:              state to select the max. timeout value
 648 *
 649 * Wait for command done.
 650 */
 651static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
 652{
 653        struct onenand_chip *this = mtd->priv;
 654
 655        wait_for_completion(&this->complete);
 656
 657        return onenand_wait(mtd, state);
 658}
 659
 660/*
 661 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
 662 * @mtd:                MTD device structure
 663 * @state:              state to select the max. timeout value
 664 *
 665 * Try interrupt based wait (It is used one-time)
 666 */
 667static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
 668{
 669        struct onenand_chip *this = mtd->priv;
 670        unsigned long remain, timeout;
 671
 672        /* We use interrupt wait first */
 673        this->wait = onenand_interrupt_wait;
 674
 675        timeout = msecs_to_jiffies(100);
 676        remain = wait_for_completion_timeout(&this->complete, timeout);
 677        if (!remain) {
 678                printk(KERN_INFO "OneNAND: There's no interrupt. "
 679                                "We use the normal wait\n");
 680
 681                /* Release the irq */
 682                free_irq(this->irq, this);
 683
 684                this->wait = onenand_wait;
 685        }
 686
 687        return onenand_wait(mtd, state);
 688}
 689
 690/*
 691 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
 692 * @mtd:                MTD device structure
 693 *
 694 * There's two method to wait onenand work
 695 * 1. polling - read interrupt status register
 696 * 2. interrupt - use the kernel interrupt method
 697 */
 698static void onenand_setup_wait(struct mtd_info *mtd)
 699{
 700        struct onenand_chip *this = mtd->priv;
 701        int syscfg;
 702
 703        init_completion(&this->complete);
 704
 705        if (this->irq <= 0) {
 706                this->wait = onenand_wait;
 707                return;
 708        }
 709
 710        if (request_irq(this->irq, &onenand_interrupt,
 711                                IRQF_SHARED, "onenand", this)) {
 712                /* If we can't get irq, use the normal wait */
 713                this->wait = onenand_wait;
 714                return;
 715        }
 716
 717        /* Enable interrupt */
 718        syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
 719        syscfg |= ONENAND_SYS_CFG1_IOBE;
 720        this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
 721
 722        this->wait = onenand_try_interrupt_wait;
 723}
 724
 725/**
 726 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
 727 * @mtd:                MTD data structure
 728 * @area:               BufferRAM area
 729 * @return              offset given area
 730 *
 731 * Return BufferRAM offset given area
 732 */
 733static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
 734{
 735        struct onenand_chip *this = mtd->priv;
 736
 737        if (ONENAND_CURRENT_BUFFERRAM(this)) {
 738                /* Note: the 'this->writesize' is a real page size */
 739                if (area == ONENAND_DATARAM)
 740                        return this->writesize;
 741                if (area == ONENAND_SPARERAM)
 742                        return mtd->oobsize;
 743        }
 744
 745        return 0;
 746}
 747
 748/**
 749 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
 750 * @mtd:                MTD data structure
 751 * @area:               BufferRAM area
 752 * @buffer:     the databuffer to put/get data
 753 * @offset:     offset to read from or write to
 754 * @count:              number of bytes to read/write
 755 *
 756 * Read the BufferRAM area
 757 */
 758static int onenand_read_bufferram(struct mtd_info *mtd, int area,
 759                unsigned char *buffer, int offset, size_t count)
 760{
 761        struct onenand_chip *this = mtd->priv;
 762        void __iomem *bufferram;
 763
 764        bufferram = this->base + area;
 765
 766        bufferram += onenand_bufferram_offset(mtd, area);
 767
 768        if (ONENAND_CHECK_BYTE_ACCESS(count)) {
 769                unsigned short word;
 770
 771                /* Align with word(16-bit) size */
 772                count--;
 773
 774                /* Read word and save byte */
 775                word = this->read_word(bufferram + offset + count);
 776                buffer[count] = (word & 0xff);
 777        }
 778
 779        memcpy(buffer, bufferram + offset, count);
 780
 781        return 0;
 782}
 783
 784/**
 785 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
 786 * @mtd:                MTD data structure
 787 * @area:               BufferRAM area
 788 * @buffer:     the databuffer to put/get data
 789 * @offset:     offset to read from or write to
 790 * @count:              number of bytes to read/write
 791 *
 792 * Read the BufferRAM area with Sync. Burst Mode
 793 */
 794static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
 795                unsigned char *buffer, int offset, size_t count)
 796{
 797        struct onenand_chip *this = mtd->priv;
 798        void __iomem *bufferram;
 799
 800        bufferram = this->base + area;
 801
 802        bufferram += onenand_bufferram_offset(mtd, area);
 803
 804        this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
 805
 806        if (ONENAND_CHECK_BYTE_ACCESS(count)) {
 807                unsigned short word;
 808
 809                /* Align with word(16-bit) size */
 810                count--;
 811
 812                /* Read word and save byte */
 813                word = this->read_word(bufferram + offset + count);
 814                buffer[count] = (word & 0xff);
 815        }
 816
 817        memcpy(buffer, bufferram + offset, count);
 818
 819        this->mmcontrol(mtd, 0);
 820
 821        return 0;
 822}
 823
 824/**
 825 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
 826 * @mtd:                MTD data structure
 827 * @area:               BufferRAM area
 828 * @buffer:     the databuffer to put/get data
 829 * @offset:     offset to read from or write to
 830 * @count:              number of bytes to read/write
 831 *
 832 * Write the BufferRAM area
 833 */
 834static int onenand_write_bufferram(struct mtd_info *mtd, int area,
 835                const unsigned char *buffer, int offset, size_t count)
 836{
 837        struct onenand_chip *this = mtd->priv;
 838        void __iomem *bufferram;
 839
 840        bufferram = this->base + area;
 841
 842        bufferram += onenand_bufferram_offset(mtd, area);
 843
 844        if (ONENAND_CHECK_BYTE_ACCESS(count)) {
 845                unsigned short word;
 846                int byte_offset;
 847
 848                /* Align with word(16-bit) size */
 849                count--;
 850
 851                /* Calculate byte access offset */
 852                byte_offset = offset + count;
 853
 854                /* Read word and save byte */
 855                word = this->read_word(bufferram + byte_offset);
 856                word = (word & ~0xff) | buffer[count];
 857                this->write_word(word, bufferram + byte_offset);
 858        }
 859
 860        memcpy(bufferram + offset, buffer, count);
 861
 862        return 0;
 863}
 864
 865/**
 866 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
 867 * @mtd:                MTD data structure
 868 * @addr:               address to check
 869 * @return              blockpage address
 870 *
 871 * Get blockpage address at 2x program mode
 872 */
 873static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
 874{
 875        struct onenand_chip *this = mtd->priv;
 876        int blockpage, block, page;
 877
 878        /* Calculate the even block number */
 879        block = (int) (addr >> this->erase_shift) & ~1;
 880        /* Is it the odd plane? */
 881        if (addr & this->writesize)
 882                block++;
 883        page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
 884        blockpage = (block << 7) | page;
 885
 886        return blockpage;
 887}
 888
 889/**
 890 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
 891 * @mtd:                MTD data structure
 892 * @addr:               address to check
 893 * @return              1 if there are valid data, otherwise 0
 894 *
 895 * Check bufferram if there is data we required
 896 */
 897static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
 898{
 899        struct onenand_chip *this = mtd->priv;
 900        int blockpage, found = 0;
 901        unsigned int i;
 902
 903        if (ONENAND_IS_2PLANE(this))
 904                blockpage = onenand_get_2x_blockpage(mtd, addr);
 905        else
 906                blockpage = (int) (addr >> this->page_shift);
 907
 908        /* Is there valid data? */
 909        i = ONENAND_CURRENT_BUFFERRAM(this);
 910        if (this->bufferram[i].blockpage == blockpage)
 911                found = 1;
 912        else {
 913                /* Check another BufferRAM */
 914                i = ONENAND_NEXT_BUFFERRAM(this);
 915                if (this->bufferram[i].blockpage == blockpage) {
 916                        ONENAND_SET_NEXT_BUFFERRAM(this);
 917                        found = 1;
 918                }
 919        }
 920
 921        if (found && ONENAND_IS_DDP(this)) {
 922                /* Select DataRAM for DDP */
 923                int block = onenand_block(this, addr);
 924                int value = onenand_bufferram_address(this, block);
 925                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
 926        }
 927
 928        return found;
 929}
 930
 931/**
 932 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
 933 * @mtd:                MTD data structure
 934 * @addr:               address to update
 935 * @valid:              valid flag
 936 *
 937 * Update BufferRAM information
 938 */
 939static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
 940                int valid)
 941{
 942        struct onenand_chip *this = mtd->priv;
 943        int blockpage;
 944        unsigned int i;
 945
 946        if (ONENAND_IS_2PLANE(this))
 947                blockpage = onenand_get_2x_blockpage(mtd, addr);
 948        else
 949                blockpage = (int) (addr >> this->page_shift);
 950
 951        /* Invalidate another BufferRAM */
 952        i = ONENAND_NEXT_BUFFERRAM(this);
 953        if (this->bufferram[i].blockpage == blockpage)
 954                this->bufferram[i].blockpage = -1;
 955
 956        /* Update BufferRAM */
 957        i = ONENAND_CURRENT_BUFFERRAM(this);
 958        if (valid)
 959                this->bufferram[i].blockpage = blockpage;
 960        else
 961                this->bufferram[i].blockpage = -1;
 962}
 963
 964/**
 965 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
 966 * @mtd:                MTD data structure
 967 * @addr:               start address to invalidate
 968 * @len:                length to invalidate
 969 *
 970 * Invalidate BufferRAM information
 971 */
 972static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
 973                unsigned int len)
 974{
 975        struct onenand_chip *this = mtd->priv;
 976        int i;
 977        loff_t end_addr = addr + len;
 978
 979        /* Invalidate BufferRAM */
 980        for (i = 0; i < MAX_BUFFERRAM; i++) {
 981                loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
 982                if (buf_addr >= addr && buf_addr < end_addr)
 983                        this->bufferram[i].blockpage = -1;
 984        }
 985}
 986
 987/**
 988 * onenand_get_device - [GENERIC] Get chip for selected access
 989 * @mtd:                MTD device structure
 990 * @new_state:  the state which is requested
 991 *
 992 * Get the device and lock it for exclusive access
 993 */
 994static int onenand_get_device(struct mtd_info *mtd, int new_state)
 995{
 996        struct onenand_chip *this = mtd->priv;
 997        DECLARE_WAITQUEUE(wait, current);
 998
 999        /*
1000         * Grab the lock and see if the device is available
1001         */
1002        while (1) {
1003                spin_lock(&this->chip_lock);
1004                if (this->state == FL_READY) {
1005                        this->state = new_state;
1006                        spin_unlock(&this->chip_lock);
1007                        if (new_state != FL_PM_SUSPENDED && this->enable)
1008                                this->enable(mtd);
1009                        break;
1010                }
1011                if (new_state == FL_PM_SUSPENDED) {
1012                        spin_unlock(&this->chip_lock);
1013                        return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
1014                }
1015                set_current_state(TASK_UNINTERRUPTIBLE);
1016                add_wait_queue(&this->wq, &wait);
1017                spin_unlock(&this->chip_lock);
1018                schedule();
1019                remove_wait_queue(&this->wq, &wait);
1020        }
1021
1022        return 0;
1023}
1024
1025/**
1026 * onenand_release_device - [GENERIC] release chip
1027 * @mtd:                MTD device structure
1028 *
1029 * Deselect, release chip lock and wake up anyone waiting on the device
1030 */
1031static void onenand_release_device(struct mtd_info *mtd)
1032{
1033        struct onenand_chip *this = mtd->priv;
1034
1035        if (this->state != FL_PM_SUSPENDED && this->disable)
1036                this->disable(mtd);
1037        /* Release the chip */
1038        spin_lock(&this->chip_lock);
1039        this->state = FL_READY;
1040        wake_up(&this->wq);
1041        spin_unlock(&this->chip_lock);
1042}
1043
1044/**
1045 * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
1046 * @mtd:                MTD device structure
1047 * @buf:                destination address
1048 * @column:     oob offset to read from
1049 * @thislen:    oob length to read
1050 */
1051static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
1052                                int thislen)
1053{
1054        struct onenand_chip *this = mtd->priv;
1055
1056        this->read_bufferram(mtd, ONENAND_SPARERAM, this->oob_buf, 0,
1057                             mtd->oobsize);
1058        return mtd_ooblayout_get_databytes(mtd, buf, this->oob_buf,
1059                                           column, thislen);
1060}
1061
1062/**
1063 * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
1064 * @mtd:                MTD device structure
1065 * @addr:               address to recover
1066 * @status:     return value from onenand_wait / onenand_bbt_wait
1067 *
1068 * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
1069 * lower page address and MSB page has higher page address in paired pages.
1070 * If power off occurs during MSB page program, the paired LSB page data can
1071 * become corrupt. LSB page recovery read is a way to read LSB page though page
1072 * data are corrupted. When uncorrectable error occurs as a result of LSB page
1073 * read after power up, issue LSB page recovery read.
1074 */
1075static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
1076{
1077        struct onenand_chip *this = mtd->priv;
1078        int i;
1079
1080        /* Recovery is only for Flex-OneNAND */
1081        if (!FLEXONENAND(this))
1082                return status;
1083
1084        /* check if we failed due to uncorrectable error */
1085        if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
1086                return status;
1087
1088        /* check if address lies in MLC region */
1089        i = flexonenand_region(mtd, addr);
1090        if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
1091                return status;
1092
1093        /* We are attempting to reread, so decrement stats.failed
1094         * which was incremented by onenand_wait due to read failure
1095         */
1096        printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n",
1097                __func__);
1098        mtd->ecc_stats.failed--;
1099
1100        /* Issue the LSB page recovery command */
1101        this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
1102        return this->wait(mtd, FL_READING);
1103}
1104
1105/**
1106 * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1107 * @mtd:                MTD device structure
1108 * @from:               offset to read from
1109 * @ops:                oob operation description structure
1110 *
1111 * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1112 * So, read-while-load is not present.
1113 */
1114static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1115                                struct mtd_oob_ops *ops)
1116{
1117        struct onenand_chip *this = mtd->priv;
1118        struct mtd_ecc_stats stats;
1119        size_t len = ops->len;
1120        size_t ooblen = ops->ooblen;
1121        u_char *buf = ops->datbuf;
1122        u_char *oobbuf = ops->oobbuf;
1123        int read = 0, column, thislen;
1124        int oobread = 0, oobcolumn, thisooblen, oobsize;
1125        int ret = 0;
1126        int writesize = this->writesize;
1127
1128        pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1129                        (int)len);
1130
1131        oobsize = mtd_oobavail(mtd, ops);
1132        oobcolumn = from & (mtd->oobsize - 1);
1133
1134        /* Do not allow reads past end of device */
1135        if (from + len > mtd->size) {
1136                printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1137                        __func__);
1138                ops->retlen = 0;
1139                ops->oobretlen = 0;
1140                return -EINVAL;
1141        }
1142
1143        stats = mtd->ecc_stats;
1144
1145        while (read < len) {
1146                cond_resched();
1147
1148                thislen = min_t(int, writesize, len - read);
1149
1150                column = from & (writesize - 1);
1151                if (column + thislen > writesize)
1152                        thislen = writesize - column;
1153
1154                if (!onenand_check_bufferram(mtd, from)) {
1155                        this->command(mtd, ONENAND_CMD_READ, from, writesize);
1156
1157                        ret = this->wait(mtd, FL_READING);
1158                        if (unlikely(ret))
1159                                ret = onenand_recover_lsb(mtd, from, ret);
1160                        onenand_update_bufferram(mtd, from, !ret);
1161                        if (mtd_is_eccerr(ret))
1162                                ret = 0;
1163                        if (ret)
1164                                break;
1165                }
1166
1167                this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1168                if (oobbuf) {
1169                        thisooblen = oobsize - oobcolumn;
1170                        thisooblen = min_t(int, thisooblen, ooblen - oobread);
1171
1172                        if (ops->mode == MTD_OPS_AUTO_OOB)
1173                                onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1174                        else
1175                                this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1176                        oobread += thisooblen;
1177                        oobbuf += thisooblen;
1178                        oobcolumn = 0;
1179                }
1180
1181                read += thislen;
1182                if (read == len)
1183                        break;
1184
1185                from += thislen;
1186                buf += thislen;
1187        }
1188
1189        /*
1190         * Return success, if no ECC failures, else -EBADMSG
1191         * fs driver will take care of that, because
1192         * retlen == desired len and result == -EBADMSG
1193         */
1194        ops->retlen = read;
1195        ops->oobretlen = oobread;
1196
1197        if (ret)
1198                return ret;
1199
1200        if (mtd->ecc_stats.failed - stats.failed)
1201                return -EBADMSG;
1202
1203        /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1204        return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
1205}
1206
1207/**
1208 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1209 * @mtd:                MTD device structure
1210 * @from:               offset to read from
1211 * @ops:                oob operation description structure
1212 *
1213 * OneNAND read main and/or out-of-band data
1214 */
1215static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1216                                struct mtd_oob_ops *ops)
1217{
1218        struct onenand_chip *this = mtd->priv;
1219        struct mtd_ecc_stats stats;
1220        size_t len = ops->len;
1221        size_t ooblen = ops->ooblen;
1222        u_char *buf = ops->datbuf;
1223        u_char *oobbuf = ops->oobbuf;
1224        int read = 0, column, thislen;
1225        int oobread = 0, oobcolumn, thisooblen, oobsize;
1226        int ret = 0, boundary = 0;
1227        int writesize = this->writesize;
1228
1229        pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1230                        (int)len);
1231
1232        oobsize = mtd_oobavail(mtd, ops);
1233        oobcolumn = from & (mtd->oobsize - 1);
1234
1235        /* Do not allow reads past end of device */
1236        if ((from + len) > mtd->size) {
1237                printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1238                        __func__);
1239                ops->retlen = 0;
1240                ops->oobretlen = 0;
1241                return -EINVAL;
1242        }
1243
1244        stats = mtd->ecc_stats;
1245
1246        /* Read-while-load method */
1247
1248        /* Do first load to bufferRAM */
1249        if (read < len) {
1250                if (!onenand_check_bufferram(mtd, from)) {
1251                        this->command(mtd, ONENAND_CMD_READ, from, writesize);
1252                        ret = this->wait(mtd, FL_READING);
1253                        onenand_update_bufferram(mtd, from, !ret);
1254                        if (mtd_is_eccerr(ret))
1255                                ret = 0;
1256                }
1257        }
1258
1259        thislen = min_t(int, writesize, len - read);
1260        column = from & (writesize - 1);
1261        if (column + thislen > writesize)
1262                thislen = writesize - column;
1263
1264        while (!ret) {
1265                /* If there is more to load then start next load */
1266                from += thislen;
1267                if (read + thislen < len) {
1268                        this->command(mtd, ONENAND_CMD_READ, from, writesize);
1269                        /*
1270                         * Chip boundary handling in DDP
1271                         * Now we issued chip 1 read and pointed chip 1
1272                         * bufferram so we have to point chip 0 bufferram.
1273                         */
1274                        if (ONENAND_IS_DDP(this) &&
1275                            unlikely(from == (this->chipsize >> 1))) {
1276                                this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
1277                                boundary = 1;
1278                        } else
1279                                boundary = 0;
1280                        ONENAND_SET_PREV_BUFFERRAM(this);
1281                }
1282                /* While load is going, read from last bufferRAM */
1283                this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1284
1285                /* Read oob area if needed */
1286                if (oobbuf) {
1287                        thisooblen = oobsize - oobcolumn;
1288                        thisooblen = min_t(int, thisooblen, ooblen - oobread);
1289
1290                        if (ops->mode == MTD_OPS_AUTO_OOB)
1291                                onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1292                        else
1293                                this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1294                        oobread += thisooblen;
1295                        oobbuf += thisooblen;
1296                        oobcolumn = 0;
1297                }
1298
1299                /* See if we are done */
1300                read += thislen;
1301                if (read == len)
1302                        break;
1303                /* Set up for next read from bufferRAM */
1304                if (unlikely(boundary))
1305                        this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
1306                ONENAND_SET_NEXT_BUFFERRAM(this);
1307                buf += thislen;
1308                thislen = min_t(int, writesize, len - read);
1309                column = 0;
1310                cond_resched();
1311                /* Now wait for load */
1312                ret = this->wait(mtd, FL_READING);
1313                onenand_update_bufferram(mtd, from, !ret);
1314                if (mtd_is_eccerr(ret))
1315                        ret = 0;
1316        }
1317
1318        /*
1319         * Return success, if no ECC failures, else -EBADMSG
1320         * fs driver will take care of that, because
1321         * retlen == desired len and result == -EBADMSG
1322         */
1323        ops->retlen = read;
1324        ops->oobretlen = oobread;
1325
1326        if (ret)
1327                return ret;
1328
1329        if (mtd->ecc_stats.failed - stats.failed)
1330                return -EBADMSG;
1331
1332        /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1333        return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
1334}
1335
1336/**
1337 * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1338 * @mtd:                MTD device structure
1339 * @from:               offset to read from
1340 * @ops:                oob operation description structure
1341 *
1342 * OneNAND read out-of-band data from the spare area
1343 */
1344static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
1345                        struct mtd_oob_ops *ops)
1346{
1347        struct onenand_chip *this = mtd->priv;
1348        struct mtd_ecc_stats stats;
1349        int read = 0, thislen, column, oobsize;
1350        size_t len = ops->ooblen;
1351        unsigned int mode = ops->mode;
1352        u_char *buf = ops->oobbuf;
1353        int ret = 0, readcmd;
1354
1355        from += ops->ooboffs;
1356
1357        pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1358                        (int)len);
1359
1360        /* Initialize return length value */
1361        ops->oobretlen = 0;
1362
1363        if (mode == MTD_OPS_AUTO_OOB)
1364                oobsize = mtd->oobavail;
1365        else
1366                oobsize = mtd->oobsize;
1367
1368        column = from & (mtd->oobsize - 1);
1369
1370        if (unlikely(column >= oobsize)) {
1371                printk(KERN_ERR "%s: Attempted to start read outside oob\n",
1372                        __func__);
1373                return -EINVAL;
1374        }
1375
1376        stats = mtd->ecc_stats;
1377
1378        readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1379
1380        while (read < len) {
1381                cond_resched();
1382
1383                thislen = oobsize - column;
1384                thislen = min_t(int, thislen, len);
1385
1386                this->command(mtd, readcmd, from, mtd->oobsize);
1387
1388                onenand_update_bufferram(mtd, from, 0);
1389
1390                ret = this->wait(mtd, FL_READING);
1391                if (unlikely(ret))
1392                        ret = onenand_recover_lsb(mtd, from, ret);
1393
1394                if (ret && !mtd_is_eccerr(ret)) {
1395                        printk(KERN_ERR "%s: read failed = 0x%x\n",
1396                                __func__, ret);
1397                        break;
1398                }
1399
1400                if (mode == MTD_OPS_AUTO_OOB)
1401                        onenand_transfer_auto_oob(mtd, buf, column, thislen);
1402                else
1403                        this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1404
1405                read += thislen;
1406
1407                if (read == len)
1408                        break;
1409
1410                buf += thislen;
1411
1412                /* Read more? */
1413                if (read < len) {
1414                        /* Page size */
1415                        from += mtd->writesize;
1416                        column = 0;
1417                }
1418        }
1419
1420        ops->oobretlen = read;
1421
1422        if (ret)
1423                return ret;
1424
1425        if (mtd->ecc_stats.failed - stats.failed)
1426                return -EBADMSG;
1427
1428        return 0;
1429}
1430
1431/**
1432 * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1433 * @mtd:                MTD device structure
1434 * @from:               offset to read from
1435 * @ops:                oob operation description structure
1436 *
1437 * Read main and/or out-of-band
1438 */
1439static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1440                            struct mtd_oob_ops *ops)
1441{
1442        struct onenand_chip *this = mtd->priv;
1443        int ret;
1444
1445        switch (ops->mode) {
1446        case MTD_OPS_PLACE_OOB:
1447        case MTD_OPS_AUTO_OOB:
1448                break;
1449        case MTD_OPS_RAW:
1450                /* Not implemented yet */
1451        default:
1452                return -EINVAL;
1453        }
1454
1455        onenand_get_device(mtd, FL_READING);
1456        if (ops->datbuf)
1457                ret = ONENAND_IS_4KB_PAGE(this) ?
1458                        onenand_mlc_read_ops_nolock(mtd, from, ops) :
1459                        onenand_read_ops_nolock(mtd, from, ops);
1460        else
1461                ret = onenand_read_oob_nolock(mtd, from, ops);
1462        onenand_release_device(mtd);
1463
1464        return ret;
1465}
1466
1467/**
1468 * onenand_bbt_wait - [DEFAULT] wait until the command is done
1469 * @mtd:                MTD device structure
1470 * @state:              state to select the max. timeout value
1471 *
1472 * Wait for command done.
1473 */
1474static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1475{
1476        struct onenand_chip *this = mtd->priv;
1477        unsigned long timeout;
1478        unsigned int interrupt, ctrl, ecc, addr1, addr8;
1479
1480        /* The 20 msec is enough */
1481        timeout = jiffies + msecs_to_jiffies(20);
1482        while (time_before(jiffies, timeout)) {
1483                interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1484                if (interrupt & ONENAND_INT_MASTER)
1485                        break;
1486        }
1487        /* To get correct interrupt status in timeout case */
1488        interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1489        ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1490        addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1);
1491        addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8);
1492
1493        if (interrupt & ONENAND_INT_READ) {
1494                ecc = onenand_read_ecc(this);
1495                if (ecc & ONENAND_ECC_2BIT_ALL) {
1496                        printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x "
1497                               "intr 0x%04x addr1 %#x addr8 %#x\n",
1498                               __func__, ecc, ctrl, interrupt, addr1, addr8);
1499                        return ONENAND_BBT_READ_ECC_ERROR;
1500                }
1501        } else {
1502                printk(KERN_ERR "%s: read timeout! ctrl 0x%04x "
1503                       "intr 0x%04x addr1 %#x addr8 %#x\n",
1504                       __func__, ctrl, interrupt, addr1, addr8);
1505                return ONENAND_BBT_READ_FATAL_ERROR;
1506        }
1507
1508        /* Initial bad block case: 0x2400 or 0x0400 */
1509        if (ctrl & ONENAND_CTRL_ERROR) {
1510                printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x "
1511                       "addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8);
1512                return ONENAND_BBT_READ_ERROR;
1513        }
1514
1515        return 0;
1516}
1517
1518/**
1519 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1520 * @mtd:                MTD device structure
1521 * @from:               offset to read from
1522 * @ops:                oob operation description structure
1523 *
1524 * OneNAND read out-of-band data from the spare area for bbt scan
1525 */
1526int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, 
1527                            struct mtd_oob_ops *ops)
1528{
1529        struct onenand_chip *this = mtd->priv;
1530        int read = 0, thislen, column;
1531        int ret = 0, readcmd;
1532        size_t len = ops->ooblen;
1533        u_char *buf = ops->oobbuf;
1534
1535        pr_debug("%s: from = 0x%08x, len = %zi\n", __func__, (unsigned int)from,
1536                        len);
1537
1538        /* Initialize return value */
1539        ops->oobretlen = 0;
1540
1541        /* Do not allow reads past end of device */
1542        if (unlikely((from + len) > mtd->size)) {
1543                printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1544                        __func__);
1545                return ONENAND_BBT_READ_FATAL_ERROR;
1546        }
1547
1548        /* Grab the lock and see if the device is available */
1549        onenand_get_device(mtd, FL_READING);
1550
1551        column = from & (mtd->oobsize - 1);
1552
1553        readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1554
1555        while (read < len) {
1556                cond_resched();
1557
1558                thislen = mtd->oobsize - column;
1559                thislen = min_t(int, thislen, len);
1560
1561                this->command(mtd, readcmd, from, mtd->oobsize);
1562
1563                onenand_update_bufferram(mtd, from, 0);
1564
1565                ret = this->bbt_wait(mtd, FL_READING);
1566                if (unlikely(ret))
1567                        ret = onenand_recover_lsb(mtd, from, ret);
1568
1569                if (ret)
1570                        break;
1571
1572                this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1573                read += thislen;
1574                if (read == len)
1575                        break;
1576
1577                buf += thislen;
1578
1579                /* Read more? */
1580                if (read < len) {
1581                        /* Update Page size */
1582                        from += this->writesize;
1583                        column = 0;
1584                }
1585        }
1586
1587        /* Deselect and wake up anyone waiting on the device */
1588        onenand_release_device(mtd);
1589
1590        ops->oobretlen = read;
1591        return ret;
1592}
1593
1594#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1595/**
1596 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1597 * @mtd:                MTD device structure
1598 * @buf:                the databuffer to verify
1599 * @to:         offset to read from
1600 */
1601static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1602{
1603        struct onenand_chip *this = mtd->priv;
1604        u_char *oob_buf = this->oob_buf;
1605        int status, i, readcmd;
1606
1607        readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1608
1609        this->command(mtd, readcmd, to, mtd->oobsize);
1610        onenand_update_bufferram(mtd, to, 0);
1611        status = this->wait(mtd, FL_READING);
1612        if (status)
1613                return status;
1614
1615        this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1616        for (i = 0; i < mtd->oobsize; i++)
1617                if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1618                        return -EBADMSG;
1619
1620        return 0;
1621}
1622
1623/**
1624 * onenand_verify - [GENERIC] verify the chip contents after a write
1625 * @mtd:          MTD device structure
1626 * @buf:          the databuffer to verify
1627 * @addr:         offset to read from
1628 * @len:          number of bytes to read and compare
1629 */
1630static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1631{
1632        struct onenand_chip *this = mtd->priv;
1633        int ret = 0;
1634        int thislen, column;
1635
1636        column = addr & (this->writesize - 1);
1637
1638        while (len != 0) {
1639                thislen = min_t(int, this->writesize - column, len);
1640
1641                this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1642
1643                onenand_update_bufferram(mtd, addr, 0);
1644
1645                ret = this->wait(mtd, FL_READING);
1646                if (ret)
1647                        return ret;
1648
1649                onenand_update_bufferram(mtd, addr, 1);
1650
1651                this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize);
1652
1653                if (memcmp(buf, this->verify_buf + column, thislen))
1654                        return -EBADMSG;
1655
1656                len -= thislen;
1657                buf += thislen;
1658                addr += thislen;
1659                column = 0;
1660        }
1661
1662        return 0;
1663}
1664#else
1665#define onenand_verify(...)             (0)
1666#define onenand_verify_oob(...)         (0)
1667#endif
1668
1669#define NOTALIGNED(x)   ((x & (this->subpagesize - 1)) != 0)
1670
1671static void onenand_panic_wait(struct mtd_info *mtd)
1672{
1673        struct onenand_chip *this = mtd->priv;
1674        unsigned int interrupt;
1675        int i;
1676        
1677        for (i = 0; i < 2000; i++) {
1678                interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1679                if (interrupt & ONENAND_INT_MASTER)
1680                        break;
1681                udelay(10);
1682        }
1683}
1684
1685/**
1686 * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1687 * @mtd:                MTD device structure
1688 * @to:         offset to write to
1689 * @len:                number of bytes to write
1690 * @retlen:     pointer to variable to store the number of written bytes
1691 * @buf:                the data to write
1692 *
1693 * Write with ECC
1694 */
1695static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1696                         size_t *retlen, const u_char *buf)
1697{
1698        struct onenand_chip *this = mtd->priv;
1699        int column, subpage;
1700        int written = 0;
1701
1702        if (this->state == FL_PM_SUSPENDED)
1703                return -EBUSY;
1704
1705        /* Wait for any existing operation to clear */
1706        onenand_panic_wait(mtd);
1707
1708        pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1709                        (int)len);
1710
1711        /* Reject writes, which are not page aligned */
1712        if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1713                printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1714                        __func__);
1715                return -EINVAL;
1716        }
1717
1718        column = to & (mtd->writesize - 1);
1719
1720        /* Loop until all data write */
1721        while (written < len) {
1722                int thislen = min_t(int, mtd->writesize - column, len - written);
1723                u_char *wbuf = (u_char *) buf;
1724
1725                this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1726
1727                /* Partial page write */
1728                subpage = thislen < mtd->writesize;
1729                if (subpage) {
1730                        memset(this->page_buf, 0xff, mtd->writesize);
1731                        memcpy(this->page_buf + column, buf, thislen);
1732                        wbuf = this->page_buf;
1733                }
1734
1735                this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1736                this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1737
1738                this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1739
1740                onenand_panic_wait(mtd);
1741
1742                /* In partial page write we don't update bufferram */
1743                onenand_update_bufferram(mtd, to, !subpage);
1744                if (ONENAND_IS_2PLANE(this)) {
1745                        ONENAND_SET_BUFFERRAM1(this);
1746                        onenand_update_bufferram(mtd, to + this->writesize, !subpage);
1747                }
1748
1749                written += thislen;
1750
1751                if (written == len)
1752                        break;
1753
1754                column = 0;
1755                to += thislen;
1756                buf += thislen;
1757        }
1758
1759        *retlen = written;
1760        return 0;
1761}
1762
1763/**
1764 * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1765 * @mtd:                MTD device structure
1766 * @oob_buf:    oob buffer
1767 * @buf:                source address
1768 * @column:     oob offset to write to
1769 * @thislen:    oob length to write
1770 */
1771static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1772                                  const u_char *buf, int column, int thislen)
1773{
1774        return mtd_ooblayout_set_databytes(mtd, buf, oob_buf, column, thislen);
1775}
1776
1777/**
1778 * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1779 * @mtd:                MTD device structure
1780 * @to:         offset to write to
1781 * @ops:                oob operation description structure
1782 *
1783 * Write main and/or oob with ECC
1784 */
1785static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1786                                struct mtd_oob_ops *ops)
1787{
1788        struct onenand_chip *this = mtd->priv;
1789        int written = 0, column, thislen = 0, subpage = 0;
1790        int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
1791        int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1792        size_t len = ops->len;
1793        size_t ooblen = ops->ooblen;
1794        const u_char *buf = ops->datbuf;
1795        const u_char *oob = ops->oobbuf;
1796        u_char *oobbuf;
1797        int ret = 0, cmd;
1798
1799        pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1800                        (int)len);
1801
1802        /* Initialize retlen, in case of early exit */
1803        ops->retlen = 0;
1804        ops->oobretlen = 0;
1805
1806        /* Reject writes, which are not page aligned */
1807        if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1808                printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1809                        __func__);
1810                return -EINVAL;
1811        }
1812
1813        /* Check zero length */
1814        if (!len)
1815                return 0;
1816        oobsize = mtd_oobavail(mtd, ops);
1817        oobcolumn = to & (mtd->oobsize - 1);
1818
1819        column = to & (mtd->writesize - 1);
1820
1821        /* Loop until all data write */
1822        while (1) {
1823                if (written < len) {
1824                        u_char *wbuf = (u_char *) buf;
1825
1826                        thislen = min_t(int, mtd->writesize - column, len - written);
1827                        thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1828
1829                        cond_resched();
1830
1831                        this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1832
1833                        /* Partial page write */
1834                        subpage = thislen < mtd->writesize;
1835                        if (subpage) {
1836                                memset(this->page_buf, 0xff, mtd->writesize);
1837                                memcpy(this->page_buf + column, buf, thislen);
1838                                wbuf = this->page_buf;
1839                        }
1840
1841                        this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1842
1843                        if (oob) {
1844                                oobbuf = this->oob_buf;
1845
1846                                /* We send data to spare ram with oobsize
1847                                 * to prevent byte access */
1848                                memset(oobbuf, 0xff, mtd->oobsize);
1849                                if (ops->mode == MTD_OPS_AUTO_OOB)
1850                                        onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1851                                else
1852                                        memcpy(oobbuf + oobcolumn, oob, thisooblen);
1853
1854                                oobwritten += thisooblen;
1855                                oob += thisooblen;
1856                                oobcolumn = 0;
1857                        } else
1858                                oobbuf = (u_char *) ffchars;
1859
1860                        this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1861                } else
1862                        ONENAND_SET_NEXT_BUFFERRAM(this);
1863
1864                /*
1865                 * 2 PLANE, MLC, and Flex-OneNAND do not support
1866                 * write-while-program feature.
1867                 */
1868                if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) {
1869                        ONENAND_SET_PREV_BUFFERRAM(this);
1870
1871                        ret = this->wait(mtd, FL_WRITING);
1872
1873                        /* In partial page write we don't update bufferram */
1874                        onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
1875                        if (ret) {
1876                                written -= prevlen;
1877                                printk(KERN_ERR "%s: write failed %d\n",
1878                                        __func__, ret);
1879                                break;
1880                        }
1881
1882                        if (written == len) {
1883                                /* Only check verify write turn on */
1884                                ret = onenand_verify(mtd, buf - len, to - len, len);
1885                                if (ret)
1886                                        printk(KERN_ERR "%s: verify failed %d\n",
1887                                                __func__, ret);
1888                                break;
1889                        }
1890
1891                        ONENAND_SET_NEXT_BUFFERRAM(this);
1892                }
1893
1894                this->ongoing = 0;
1895                cmd = ONENAND_CMD_PROG;
1896
1897                /* Exclude 1st OTP and OTP blocks for cache program feature */
1898                if (ONENAND_IS_CACHE_PROGRAM(this) &&
1899                    likely(onenand_block(this, to) != 0) &&
1900                    ONENAND_IS_4KB_PAGE(this) &&
1901                    ((written + thislen) < len)) {
1902                        cmd = ONENAND_CMD_2X_CACHE_PROG;
1903                        this->ongoing = 1;
1904                }
1905
1906                this->command(mtd, cmd, to, mtd->writesize);
1907
1908                /*
1909                 * 2 PLANE, MLC, and Flex-OneNAND wait here
1910                 */
1911                if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
1912                        ret = this->wait(mtd, FL_WRITING);
1913
1914                        /* In partial page write we don't update bufferram */
1915                        onenand_update_bufferram(mtd, to, !ret && !subpage);
1916                        if (ret) {
1917                                printk(KERN_ERR "%s: write failed %d\n",
1918                                        __func__, ret);
1919                                break;
1920                        }
1921
1922                        /* Only check verify write turn on */
1923                        ret = onenand_verify(mtd, buf, to, thislen);
1924                        if (ret) {
1925                                printk(KERN_ERR "%s: verify failed %d\n",
1926                                        __func__, ret);
1927                                break;
1928                        }
1929
1930                        written += thislen;
1931
1932                        if (written == len)
1933                                break;
1934
1935                } else
1936                        written += thislen;
1937
1938                column = 0;
1939                prev_subpage = subpage;
1940                prev = to;
1941                prevlen = thislen;
1942                to += thislen;
1943                buf += thislen;
1944                first = 0;
1945        }
1946
1947        /* In error case, clear all bufferrams */
1948        if (written != len)
1949                onenand_invalidate_bufferram(mtd, 0, -1);
1950
1951        ops->retlen = written;
1952        ops->oobretlen = oobwritten;
1953
1954        return ret;
1955}
1956
1957
1958/**
1959 * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
1960 * @mtd:                MTD device structure
1961 * @to:                 offset to write to
1962 * @ops:                oob operation description structure
1963 *
1964 * OneNAND write out-of-band
1965 */
1966static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1967                                    struct mtd_oob_ops *ops)
1968{
1969        struct onenand_chip *this = mtd->priv;
1970        int column, ret = 0, oobsize;
1971        int written = 0, oobcmd;
1972        u_char *oobbuf;
1973        size_t len = ops->ooblen;
1974        const u_char *buf = ops->oobbuf;
1975        unsigned int mode = ops->mode;
1976
1977        to += ops->ooboffs;
1978
1979        pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1980                        (int)len);
1981
1982        /* Initialize retlen, in case of early exit */
1983        ops->oobretlen = 0;
1984
1985        if (mode == MTD_OPS_AUTO_OOB)
1986                oobsize = mtd->oobavail;
1987        else
1988                oobsize = mtd->oobsize;
1989
1990        column = to & (mtd->oobsize - 1);
1991
1992        if (unlikely(column >= oobsize)) {
1993                printk(KERN_ERR "%s: Attempted to start write outside oob\n",
1994                        __func__);
1995                return -EINVAL;
1996        }
1997
1998        /* For compatibility with NAND: Do not allow write past end of page */
1999        if (unlikely(column + len > oobsize)) {
2000                printk(KERN_ERR "%s: Attempt to write past end of page\n",
2001                        __func__);
2002                return -EINVAL;
2003        }
2004
2005        oobbuf = this->oob_buf;
2006
2007        oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
2008
2009        /* Loop until all data write */
2010        while (written < len) {
2011                int thislen = min_t(int, oobsize, len - written);
2012
2013                cond_resched();
2014
2015                this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
2016
2017                /* We send data to spare ram with oobsize
2018                 * to prevent byte access */
2019                memset(oobbuf, 0xff, mtd->oobsize);
2020                if (mode == MTD_OPS_AUTO_OOB)
2021                        onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
2022                else
2023                        memcpy(oobbuf + column, buf, thislen);
2024                this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
2025
2026                if (ONENAND_IS_4KB_PAGE(this)) {
2027                        /* Set main area of DataRAM to 0xff*/
2028                        memset(this->page_buf, 0xff, mtd->writesize);
2029                        this->write_bufferram(mtd, ONENAND_DATARAM,
2030                                         this->page_buf, 0, mtd->writesize);
2031                }
2032
2033                this->command(mtd, oobcmd, to, mtd->oobsize);
2034
2035                onenand_update_bufferram(mtd, to, 0);
2036                if (ONENAND_IS_2PLANE(this)) {
2037                        ONENAND_SET_BUFFERRAM1(this);
2038                        onenand_update_bufferram(mtd, to + this->writesize, 0);
2039                }
2040
2041                ret = this->wait(mtd, FL_WRITING);
2042                if (ret) {
2043                        printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2044                        break;
2045                }
2046
2047                ret = onenand_verify_oob(mtd, oobbuf, to);
2048                if (ret) {
2049                        printk(KERN_ERR "%s: verify failed %d\n",
2050                                __func__, ret);
2051                        break;
2052                }
2053
2054                written += thislen;
2055                if (written == len)
2056                        break;
2057
2058                to += mtd->writesize;
2059                buf += thislen;
2060                column = 0;
2061        }
2062
2063        ops->oobretlen = written;
2064
2065        return ret;
2066}
2067
2068/**
2069 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2070 * @mtd:                MTD device structure
2071 * @to:                 offset to write
2072 * @ops:                oob operation description structure
2073 */
2074static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
2075                             struct mtd_oob_ops *ops)
2076{
2077        int ret;
2078
2079        switch (ops->mode) {
2080        case MTD_OPS_PLACE_OOB:
2081        case MTD_OPS_AUTO_OOB:
2082                break;
2083        case MTD_OPS_RAW:
2084                /* Not implemented yet */
2085        default:
2086                return -EINVAL;
2087        }
2088
2089        onenand_get_device(mtd, FL_WRITING);
2090        if (ops->datbuf)
2091                ret = onenand_write_ops_nolock(mtd, to, ops);
2092        else
2093                ret = onenand_write_oob_nolock(mtd, to, ops);
2094        onenand_release_device(mtd);
2095
2096        return ret;
2097}
2098
2099/**
2100 * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2101 * @mtd:                MTD device structure
2102 * @ofs:                offset from device start
2103 * @allowbbt:   1, if its allowed to access the bbt area
2104 *
2105 * Check, if the block is bad. Either by reading the bad block table or
2106 * calling of the scan function.
2107 */
2108static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
2109{
2110        struct onenand_chip *this = mtd->priv;
2111        struct bbm_info *bbm = this->bbm;
2112
2113        /* Return info from the table */
2114        return bbm->isbad_bbt(mtd, ofs, allowbbt);
2115}
2116
2117
2118static int onenand_multiblock_erase_verify(struct mtd_info *mtd,
2119                                           struct erase_info *instr)
2120{
2121        struct onenand_chip *this = mtd->priv;
2122        loff_t addr = instr->addr;
2123        int len = instr->len;
2124        unsigned int block_size = (1 << this->erase_shift);
2125        int ret = 0;
2126
2127        while (len) {
2128                this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size);
2129                ret = this->wait(mtd, FL_VERIFYING_ERASE);
2130                if (ret) {
2131                        printk(KERN_ERR "%s: Failed verify, block %d\n",
2132                               __func__, onenand_block(this, addr));
2133                        instr->fail_addr = addr;
2134                        return -1;
2135                }
2136                len -= block_size;
2137                addr += block_size;
2138        }
2139        return 0;
2140}
2141
2142/**
2143 * onenand_multiblock_erase - [INTERN] erase block(s) using multiblock erase
2144 * @mtd:                MTD device structure
2145 * @instr:              erase instruction
2146 * @block_size:         block size
2147 *
2148 * Erase one or more blocks up to 64 block at a time
2149 */
2150static int onenand_multiblock_erase(struct mtd_info *mtd,
2151                                    struct erase_info *instr,
2152                                    unsigned int block_size)
2153{
2154        struct onenand_chip *this = mtd->priv;
2155        loff_t addr = instr->addr;
2156        int len = instr->len;
2157        int eb_count = 0;
2158        int ret = 0;
2159        int bdry_block = 0;
2160
2161        if (ONENAND_IS_DDP(this)) {
2162                loff_t bdry_addr = this->chipsize >> 1;
2163                if (addr < bdry_addr && (addr + len) > bdry_addr)
2164                        bdry_block = bdry_addr >> this->erase_shift;
2165        }
2166
2167        /* Pre-check bbs */
2168        while (len) {
2169                /* Check if we have a bad block, we do not erase bad blocks */
2170                if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2171                        printk(KERN_WARNING "%s: attempt to erase a bad block "
2172                               "at addr 0x%012llx\n",
2173                               __func__, (unsigned long long) addr);
2174                        return -EIO;
2175                }
2176                len -= block_size;
2177                addr += block_size;
2178        }
2179
2180        len = instr->len;
2181        addr = instr->addr;
2182
2183        /* loop over 64 eb batches */
2184        while (len) {
2185                struct erase_info verify_instr = *instr;
2186                int max_eb_count = MB_ERASE_MAX_BLK_COUNT;
2187
2188                verify_instr.addr = addr;
2189                verify_instr.len = 0;
2190
2191                /* do not cross chip boundary */
2192                if (bdry_block) {
2193                        int this_block = (addr >> this->erase_shift);
2194
2195                        if (this_block < bdry_block) {
2196                                max_eb_count = min(max_eb_count,
2197                                                   (bdry_block - this_block));
2198                        }
2199                }
2200
2201                eb_count = 0;
2202
2203                while (len > block_size && eb_count < (max_eb_count - 1)) {
2204                        this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE,
2205                                      addr, block_size);
2206                        onenand_invalidate_bufferram(mtd, addr, block_size);
2207
2208                        ret = this->wait(mtd, FL_PREPARING_ERASE);
2209                        if (ret) {
2210                                printk(KERN_ERR "%s: Failed multiblock erase, "
2211                                       "block %d\n", __func__,
2212                                       onenand_block(this, addr));
2213                                instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2214                                return -EIO;
2215                        }
2216
2217                        len -= block_size;
2218                        addr += block_size;
2219                        eb_count++;
2220                }
2221
2222                /* last block of 64-eb series */
2223                cond_resched();
2224                this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2225                onenand_invalidate_bufferram(mtd, addr, block_size);
2226
2227                ret = this->wait(mtd, FL_ERASING);
2228                /* Check if it is write protected */
2229                if (ret) {
2230                        printk(KERN_ERR "%s: Failed erase, block %d\n",
2231                               __func__, onenand_block(this, addr));
2232                        instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2233                        return -EIO;
2234                }
2235
2236                len -= block_size;
2237                addr += block_size;
2238                eb_count++;
2239
2240                /* verify */
2241                verify_instr.len = eb_count * block_size;
2242                if (onenand_multiblock_erase_verify(mtd, &verify_instr)) {
2243                        instr->fail_addr = verify_instr.fail_addr;
2244                        return -EIO;
2245                }
2246
2247        }
2248        return 0;
2249}
2250
2251
2252/**
2253 * onenand_block_by_block_erase - [INTERN] erase block(s) using regular erase
2254 * @mtd:                MTD device structure
2255 * @instr:              erase instruction
2256 * @region:     erase region
2257 * @block_size: erase block size
2258 *
2259 * Erase one or more blocks one block at a time
2260 */
2261static int onenand_block_by_block_erase(struct mtd_info *mtd,
2262                                        struct erase_info *instr,
2263                                        struct mtd_erase_region_info *region,
2264                                        unsigned int block_size)
2265{
2266        struct onenand_chip *this = mtd->priv;
2267        loff_t addr = instr->addr;
2268        int len = instr->len;
2269        loff_t region_end = 0;
2270        int ret = 0;
2271
2272        if (region) {
2273                /* region is set for Flex-OneNAND */
2274                region_end = region->offset + region->erasesize * region->numblocks;
2275        }
2276
2277        /* Loop through the blocks */
2278        while (len) {
2279                cond_resched();
2280
2281                /* Check if we have a bad block, we do not erase bad blocks */
2282                if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2283                        printk(KERN_WARNING "%s: attempt to erase a bad block "
2284                                        "at addr 0x%012llx\n",
2285                                        __func__, (unsigned long long) addr);
2286                        return -EIO;
2287                }
2288
2289                this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2290
2291                onenand_invalidate_bufferram(mtd, addr, block_size);
2292
2293                ret = this->wait(mtd, FL_ERASING);
2294                /* Check, if it is write protected */
2295                if (ret) {
2296                        printk(KERN_ERR "%s: Failed erase, block %d\n",
2297                                __func__, onenand_block(this, addr));
2298                        instr->fail_addr = addr;
2299                        return -EIO;
2300                }
2301
2302                len -= block_size;
2303                addr += block_size;
2304
2305                if (region && addr == region_end) {
2306                        if (!len)
2307                                break;
2308                        region++;
2309
2310                        block_size = region->erasesize;
2311                        region_end = region->offset + region->erasesize * region->numblocks;
2312
2313                        if (len & (block_size - 1)) {
2314                                /* FIXME: This should be handled at MTD partitioning level. */
2315                                printk(KERN_ERR "%s: Unaligned address\n",
2316                                        __func__);
2317                                return -EIO;
2318                        }
2319                }
2320        }
2321        return 0;
2322}
2323
2324/**
2325 * onenand_erase - [MTD Interface] erase block(s)
2326 * @mtd:                MTD device structure
2327 * @instr:              erase instruction
2328 *
2329 * Erase one or more blocks
2330 */
2331static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
2332{
2333        struct onenand_chip *this = mtd->priv;
2334        unsigned int block_size;
2335        loff_t addr = instr->addr;
2336        loff_t len = instr->len;
2337        int ret = 0;
2338        struct mtd_erase_region_info *region = NULL;
2339        loff_t region_offset = 0;
2340
2341        pr_debug("%s: start=0x%012llx, len=%llu\n", __func__,
2342                        (unsigned long long)instr->addr,
2343                        (unsigned long long)instr->len);
2344
2345        if (FLEXONENAND(this)) {
2346                /* Find the eraseregion of this address */
2347                int i = flexonenand_region(mtd, addr);
2348
2349                region = &mtd->eraseregions[i];
2350                block_size = region->erasesize;
2351
2352                /* Start address within region must align on block boundary.
2353                 * Erase region's start offset is always block start address.
2354                 */
2355                region_offset = region->offset;
2356        } else
2357                block_size = 1 << this->erase_shift;
2358
2359        /* Start address must align on block boundary */
2360        if (unlikely((addr - region_offset) & (block_size - 1))) {
2361                printk(KERN_ERR "%s: Unaligned address\n", __func__);
2362                return -EINVAL;
2363        }
2364
2365        /* Length must align on block boundary */
2366        if (unlikely(len & (block_size - 1))) {
2367                printk(KERN_ERR "%s: Length not block aligned\n", __func__);
2368                return -EINVAL;
2369        }
2370
2371        /* Grab the lock and see if the device is available */
2372        onenand_get_device(mtd, FL_ERASING);
2373
2374        if (ONENAND_IS_4KB_PAGE(this) || region ||
2375            instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) {
2376                /* region is set for Flex-OneNAND (no mb erase) */
2377                ret = onenand_block_by_block_erase(mtd, instr,
2378                                                   region, block_size);
2379        } else {
2380                ret = onenand_multiblock_erase(mtd, instr, block_size);
2381        }
2382
2383        /* Deselect and wake up anyone waiting on the device */
2384        onenand_release_device(mtd);
2385
2386        return ret;
2387}
2388
2389/**
2390 * onenand_sync - [MTD Interface] sync
2391 * @mtd:                MTD device structure
2392 *
2393 * Sync is actually a wait for chip ready function
2394 */
2395static void onenand_sync(struct mtd_info *mtd)
2396{
2397        pr_debug("%s: called\n", __func__);
2398
2399        /* Grab the lock and see if the device is available */
2400        onenand_get_device(mtd, FL_SYNCING);
2401
2402        /* Release it and go back */
2403        onenand_release_device(mtd);
2404}
2405
2406/**
2407 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2408 * @mtd:                MTD device structure
2409 * @ofs:                offset relative to mtd start
2410 *
2411 * Check whether the block is bad
2412 */
2413static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
2414{
2415        int ret;
2416
2417        onenand_get_device(mtd, FL_READING);
2418        ret = onenand_block_isbad_nolock(mtd, ofs, 0);
2419        onenand_release_device(mtd);
2420        return ret;
2421}
2422
2423/**
2424 * onenand_default_block_markbad - [DEFAULT] mark a block bad
2425 * @mtd:                MTD device structure
2426 * @ofs:                offset from device start
2427 *
2428 * This is the default implementation, which can be overridden by
2429 * a hardware specific driver.
2430 */
2431static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
2432{
2433        struct onenand_chip *this = mtd->priv;
2434        struct bbm_info *bbm = this->bbm;
2435        u_char buf[2] = {0, 0};
2436        struct mtd_oob_ops ops = {
2437                .mode = MTD_OPS_PLACE_OOB,
2438                .ooblen = 2,
2439                .oobbuf = buf,
2440                .ooboffs = 0,
2441        };
2442        int block;
2443
2444        /* Get block number */
2445        block = onenand_block(this, ofs);
2446        if (bbm->bbt)
2447                bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
2448
2449        /* We write two bytes, so we don't have to mess with 16-bit access */
2450        ofs += mtd->oobsize + (this->badblockpos & ~0x01);
2451        /* FIXME : What to do when marking SLC block in partition
2452         *         with MLC erasesize? For now, it is not advisable to
2453         *         create partitions containing both SLC and MLC regions.
2454         */
2455        return onenand_write_oob_nolock(mtd, ofs, &ops);
2456}
2457
2458/**
2459 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2460 * @mtd:                MTD device structure
2461 * @ofs:                offset relative to mtd start
2462 *
2463 * Mark the block as bad
2464 */
2465static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2466{
2467        struct onenand_chip *this = mtd->priv;
2468        int ret;
2469
2470        ret = onenand_block_isbad(mtd, ofs);
2471        if (ret) {
2472                /* If it was bad already, return success and do nothing */
2473                if (ret > 0)
2474                        return 0;
2475                return ret;
2476        }
2477
2478        onenand_get_device(mtd, FL_WRITING);
2479        ret = this->block_markbad(mtd, ofs);
2480        onenand_release_device(mtd);
2481        return ret;
2482}
2483
2484/**
2485 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2486 * @mtd:                MTD device structure
2487 * @ofs:                offset relative to mtd start
2488 * @len:                number of bytes to lock or unlock
2489 * @cmd:                lock or unlock command
2490 *
2491 * Lock or unlock one or more blocks
2492 */
2493static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
2494{
2495        struct onenand_chip *this = mtd->priv;
2496        int start, end, block, value, status;
2497        int wp_status_mask;
2498
2499        start = onenand_block(this, ofs);
2500        end = onenand_block(this, ofs + len) - 1;
2501
2502        if (cmd == ONENAND_CMD_LOCK)
2503                wp_status_mask = ONENAND_WP_LS;
2504        else
2505                wp_status_mask = ONENAND_WP_US;
2506
2507        /* Continuous lock scheme */
2508        if (this->options & ONENAND_HAS_CONT_LOCK) {
2509                /* Set start block address */
2510                this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2511                /* Set end block address */
2512                this->write_word(end, this->base +  ONENAND_REG_END_BLOCK_ADDRESS);
2513                /* Write lock command */
2514                this->command(mtd, cmd, 0, 0);
2515
2516                /* There's no return value */
2517                this->wait(mtd, FL_LOCKING);
2518
2519                /* Sanity check */
2520                while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2521                    & ONENAND_CTRL_ONGO)
2522                        continue;
2523
2524                /* Check lock status */
2525                status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2526                if (!(status & wp_status_mask))
2527                        printk(KERN_ERR "%s: wp status = 0x%x\n",
2528                                __func__, status);
2529
2530                return 0;
2531        }
2532
2533        /* Block lock scheme */
2534        for (block = start; block < end + 1; block++) {
2535                /* Set block address */
2536                value = onenand_block_address(this, block);
2537                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2538                /* Select DataRAM for DDP */
2539                value = onenand_bufferram_address(this, block);
2540                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2541                /* Set start block address */
2542                this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2543                /* Write lock command */
2544                this->command(mtd, cmd, 0, 0);
2545
2546                /* There's no return value */
2547                this->wait(mtd, FL_LOCKING);
2548
2549                /* Sanity check */
2550                while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2551                    & ONENAND_CTRL_ONGO)
2552                        continue;
2553
2554                /* Check lock status */
2555                status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2556                if (!(status & wp_status_mask))
2557                        printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2558                                __func__, block, status);
2559        }
2560
2561        return 0;
2562}
2563
2564/**
2565 * onenand_lock - [MTD Interface] Lock block(s)
2566 * @mtd:                MTD device structure
2567 * @ofs:                offset relative to mtd start
2568 * @len:                number of bytes to unlock
2569 *
2570 * Lock one or more blocks
2571 */
2572static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2573{
2574        int ret;
2575
2576        onenand_get_device(mtd, FL_LOCKING);
2577        ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2578        onenand_release_device(mtd);
2579        return ret;
2580}
2581
2582/**
2583 * onenand_unlock - [MTD Interface] Unlock block(s)
2584 * @mtd:                MTD device structure
2585 * @ofs:                offset relative to mtd start
2586 * @len:                number of bytes to unlock
2587 *
2588 * Unlock one or more blocks
2589 */
2590static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2591{
2592        int ret;
2593
2594        onenand_get_device(mtd, FL_LOCKING);
2595        ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2596        onenand_release_device(mtd);
2597        return ret;
2598}
2599
2600/**
2601 * onenand_check_lock_status - [OneNAND Interface] Check lock status
2602 * @this:               onenand chip data structure
2603 *
2604 * Check lock status
2605 */
2606static int onenand_check_lock_status(struct onenand_chip *this)
2607{
2608        unsigned int value, block, status;
2609        unsigned int end;
2610
2611        end = this->chipsize >> this->erase_shift;
2612        for (block = 0; block < end; block++) {
2613                /* Set block address */
2614                value = onenand_block_address(this, block);
2615                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2616                /* Select DataRAM for DDP */
2617                value = onenand_bufferram_address(this, block);
2618                this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2619                /* Set start block address */
2620                this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2621
2622                /* Check lock status */
2623                status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2624                if (!(status & ONENAND_WP_US)) {
2625                        printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2626                                __func__, block, status);
2627                        return 0;
2628                }
2629        }
2630
2631        return 1;
2632}
2633
2634/**
2635 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2636 * @mtd:                MTD device structure
2637 *
2638 * Unlock all blocks
2639 */
2640static void onenand_unlock_all(struct mtd_info *mtd)
2641{
2642        struct onenand_chip *this = mtd->priv;
2643        loff_t ofs = 0;
2644        loff_t len = mtd->size;
2645
2646        if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2647                /* Set start block address */
2648                this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2649                /* Write unlock command */
2650                this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2651
2652                /* There's no return value */
2653                this->wait(mtd, FL_LOCKING);
2654
2655                /* Sanity check */
2656                while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2657                    & ONENAND_CTRL_ONGO)
2658                        continue;
2659
2660                /* Don't check lock status */
2661                if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
2662                        return;
2663
2664                /* Check lock status */
2665                if (onenand_check_lock_status(this))
2666                        return;
2667
2668                /* Workaround for all block unlock in DDP */
2669                if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2670                        /* All blocks on another chip */
2671                        ofs = this->chipsize >> 1;
2672                        len = this->chipsize >> 1;
2673                }
2674        }
2675
2676        onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2677}
2678
2679#ifdef CONFIG_MTD_ONENAND_OTP
2680
2681/**
2682 * onenand_otp_command - Send OTP specific command to OneNAND device
2683 * @mtd:         MTD device structure
2684 * @cmd:         the command to be sent
2685 * @addr:        offset to read from or write to
2686 * @len:         number of bytes to read or write
2687 */
2688static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr,
2689                                size_t len)
2690{
2691        struct onenand_chip *this = mtd->priv;
2692        int value, block, page;
2693
2694        /* Address translation */
2695        switch (cmd) {
2696        case ONENAND_CMD_OTP_ACCESS:
2697                block = (int) (addr >> this->erase_shift);
2698                page = -1;
2699                break;
2700
2701        default:
2702                block = (int) (addr >> this->erase_shift);
2703                page = (int) (addr >> this->page_shift);
2704
2705                if (ONENAND_IS_2PLANE(this)) {
2706                        /* Make the even block number */
2707                        block &= ~1;
2708                        /* Is it the odd plane? */
2709                        if (addr & this->writesize)
2710                                block++;
2711                        page >>= 1;
2712                }
2713                page &= this->page_mask;
2714                break;
2715        }
2716
2717        if (block != -1) {
2718                /* Write 'DFS, FBA' of Flash */
2719                value = onenand_block_address(this, block);
2720                this->write_word(value, this->base +
2721                                ONENAND_REG_START_ADDRESS1);
2722        }
2723
2724        if (page != -1) {
2725                /* Now we use page size operation */
2726                int sectors = 4, count = 4;
2727                int dataram;
2728
2729                switch (cmd) {
2730                default:
2731                        if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
2732                                cmd = ONENAND_CMD_2X_PROG;
2733                        dataram = ONENAND_CURRENT_BUFFERRAM(this);
2734                        break;
2735                }
2736
2737                /* Write 'FPA, FSA' of Flash */
2738                value = onenand_page_address(page, sectors);
2739                this->write_word(value, this->base +
2740                                ONENAND_REG_START_ADDRESS8);
2741
2742                /* Write 'BSA, BSC' of DataRAM */
2743                value = onenand_buffer_address(dataram, sectors, count);
2744                this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
2745        }
2746
2747        /* Interrupt clear */
2748        this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
2749
2750        /* Write command */
2751        this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
2752
2753        return 0;
2754}
2755
2756/**
2757 * onenand_otp_write_oob_nolock - [INTERN] OneNAND write out-of-band, specific to OTP
2758 * @mtd:                MTD device structure
2759 * @to:                 offset to write to
2760 * @ops:                oob operation description structure
2761 *
2762 * OneNAND write out-of-band only for OTP
2763 */
2764static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2765                                    struct mtd_oob_ops *ops)
2766{
2767        struct onenand_chip *this = mtd->priv;
2768        int column, ret = 0, oobsize;
2769        int written = 0;
2770        u_char *oobbuf;
2771        size_t len = ops->ooblen;
2772        const u_char *buf = ops->oobbuf;
2773        int block, value, status;
2774
2775        to += ops->ooboffs;
2776
2777        /* Initialize retlen, in case of early exit */
2778        ops->oobretlen = 0;
2779
2780        oobsize = mtd->oobsize;
2781
2782        column = to & (mtd->oobsize - 1);
2783
2784        oobbuf = this->oob_buf;
2785
2786        /* Loop until all data write */
2787        while (written < len) {
2788                int thislen = min_t(int, oobsize, len - written);
2789
2790                cond_resched();
2791
2792                block = (int) (to >> this->erase_shift);
2793                /*
2794                 * Write 'DFS, FBA' of Flash
2795                 * Add: F100h DQ=DFS, FBA
2796                 */
2797
2798                value = onenand_block_address(this, block);
2799                this->write_word(value, this->base +
2800                                ONENAND_REG_START_ADDRESS1);
2801
2802                /*
2803                 * Select DataRAM for DDP
2804                 * Add: F101h DQ=DBS
2805                 */
2806
2807                value = onenand_bufferram_address(this, block);
2808                this->write_word(value, this->base +
2809                                ONENAND_REG_START_ADDRESS2);
2810                ONENAND_SET_NEXT_BUFFERRAM(this);
2811
2812                /*
2813                 * Enter OTP access mode
2814                 */
2815                this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2816                this->wait(mtd, FL_OTPING);
2817
2818                /* We send data to spare ram with oobsize
2819                 * to prevent byte access */
2820                memcpy(oobbuf + column, buf, thislen);
2821
2822                /*
2823                 * Write Data into DataRAM
2824                 * Add: 8th Word
2825                 * in sector0/spare/page0
2826                 * DQ=XXFCh
2827                 */
2828                this->write_bufferram(mtd, ONENAND_SPARERAM,
2829                                        oobbuf, 0, mtd->oobsize);
2830
2831                onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
2832                onenand_update_bufferram(mtd, to, 0);
2833                if (ONENAND_IS_2PLANE(this)) {
2834                        ONENAND_SET_BUFFERRAM1(this);
2835                        onenand_update_bufferram(mtd, to + this->writesize, 0);
2836                }
2837
2838                ret = this->wait(mtd, FL_WRITING);
2839                if (ret) {
2840                        printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2841                        break;
2842                }
2843
2844                /* Exit OTP access mode */
2845                this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2846                this->wait(mtd, FL_RESETTING);
2847
2848                status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
2849                status &= 0x60;
2850
2851                if (status == 0x60) {
2852                        printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2853                        printk(KERN_DEBUG "1st Block\tLOCKED\n");
2854                        printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2855                } else if (status == 0x20) {
2856                        printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2857                        printk(KERN_DEBUG "1st Block\tLOCKED\n");
2858                        printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n");
2859                } else if (status == 0x40) {
2860                        printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2861                        printk(KERN_DEBUG "1st Block\tUN-LOCKED\n");
2862                        printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2863                } else {
2864                        printk(KERN_DEBUG "Reboot to check\n");
2865                }
2866
2867                written += thislen;
2868                if (written == len)
2869                        break;
2870
2871                to += mtd->writesize;
2872                buf += thislen;
2873                column = 0;
2874        }
2875
2876        ops->oobretlen = written;
2877
2878        return ret;
2879}
2880
2881/* Internal OTP operation */
2882typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
2883                size_t *retlen, u_char *buf);
2884
2885/**
2886 * do_otp_read - [DEFAULT] Read OTP block area
2887 * @mtd:                MTD device structure
2888 * @from:               The offset to read
2889 * @len:                number of bytes to read
2890 * @retlen:     pointer to variable to store the number of readbytes
2891 * @buf:                the databuffer to put/get data
2892 *
2893 * Read OTP block area.
2894 */
2895static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
2896                size_t *retlen, u_char *buf)
2897{
2898        struct onenand_chip *this = mtd->priv;
2899        struct mtd_oob_ops ops = {
2900                .len    = len,
2901                .ooblen = 0,
2902                .datbuf = buf,
2903                .oobbuf = NULL,
2904        };
2905        int ret;
2906
2907        /* Enter OTP access mode */
2908        this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2909        this->wait(mtd, FL_OTPING);
2910
2911        ret = ONENAND_IS_4KB_PAGE(this) ?
2912                onenand_mlc_read_ops_nolock(mtd, from, &ops) :
2913                onenand_read_ops_nolock(mtd, from, &ops);
2914
2915        /* Exit OTP access mode */
2916        this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2917        this->wait(mtd, FL_RESETTING);
2918
2919        return ret;
2920}
2921
2922/**
2923 * do_otp_write - [DEFAULT] Write OTP block area
2924 * @mtd:                MTD device structure
2925 * @to:         The offset to write
2926 * @len:                number of bytes to write
2927 * @retlen:     pointer to variable to store the number of write bytes
2928 * @buf:                the databuffer to put/get data
2929 *
2930 * Write OTP block area.
2931 */
2932static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
2933                size_t *retlen, u_char *buf)
2934{
2935        struct onenand_chip *this = mtd->priv;
2936        unsigned char *pbuf = buf;
2937        int ret;
2938        struct mtd_oob_ops ops;
2939
2940        /* Force buffer page aligned */
2941        if (len < mtd->writesize) {
2942                memcpy(this->page_buf, buf, len);
2943                memset(this->page_buf + len, 0xff, mtd->writesize - len);
2944                pbuf = this->page_buf;
2945                len = mtd->writesize;
2946        }
2947
2948        /* Enter OTP access mode */
2949        this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2950        this->wait(mtd, FL_OTPING);
2951
2952        ops.len = len;
2953        ops.ooblen = 0;
2954        ops.datbuf = pbuf;
2955        ops.oobbuf = NULL;
2956        ret = onenand_write_ops_nolock(mtd, to, &ops);
2957        *retlen = ops.retlen;
2958
2959        /* Exit OTP access mode */
2960        this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2961        this->wait(mtd, FL_RESETTING);
2962
2963        return ret;
2964}
2965
2966/**
2967 * do_otp_lock - [DEFAULT] Lock OTP block area
2968 * @mtd:                MTD device structure
2969 * @from:               The offset to lock
2970 * @len:                number of bytes to lock
2971 * @retlen:     pointer to variable to store the number of lock bytes
2972 * @buf:                the databuffer to put/get data
2973 *
2974 * Lock OTP block area.
2975 */
2976static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
2977                size_t *retlen, u_char *buf)
2978{
2979        struct onenand_chip *this = mtd->priv;
2980        struct mtd_oob_ops ops;
2981        int ret;
2982
2983        if (FLEXONENAND(this)) {
2984
2985                /* Enter OTP access mode */
2986                this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2987                this->wait(mtd, FL_OTPING);
2988                /*
2989                 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
2990                 * main area of page 49.
2991                 */
2992                ops.len = mtd->writesize;
2993                ops.ooblen = 0;
2994                ops.datbuf = buf;
2995                ops.oobbuf = NULL;
2996                ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
2997                *retlen = ops.retlen;
2998
2999                /* Exit OTP access mode */
3000                this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3001                this->wait(mtd, FL_RESETTING);
3002        } else {
3003                ops.mode = MTD_OPS_PLACE_OOB;
3004                ops.ooblen = len;
3005                ops.oobbuf = buf;
3006                ops.ooboffs = 0;
3007                ret = onenand_otp_write_oob_nolock(mtd, from, &ops);
3008                *retlen = ops.oobretlen;
3009        }
3010
3011        return ret;
3012}
3013
3014/**
3015 * onenand_otp_walk - [DEFAULT] Handle OTP operation
3016 * @mtd:                MTD device structure
3017 * @from:               The offset to read/write
3018 * @len:                number of bytes to read/write
3019 * @retlen:     pointer to variable to store the number of read bytes
3020 * @buf:                the databuffer to put/get data
3021 * @action:     do given action
3022 * @mode:               specify user and factory
3023 *
3024 * Handle OTP operation.
3025 */
3026static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
3027                        size_t *retlen, u_char *buf,
3028                        otp_op_t action, int mode)
3029{
3030        struct onenand_chip *this = mtd->priv;
3031        int otp_pages;
3032        int density;
3033        int ret = 0;
3034
3035        *retlen = 0;
3036
3037        density = onenand_get_density(this->device_id);
3038        if (density < ONENAND_DEVICE_DENSITY_512Mb)
3039                otp_pages = 20;
3040        else
3041                otp_pages = 50;
3042
3043        if (mode == MTD_OTP_FACTORY) {
3044                from += mtd->writesize * otp_pages;
3045                otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages;
3046        }
3047
3048        /* Check User/Factory boundary */
3049        if (mode == MTD_OTP_USER) {
3050                if (mtd->writesize * otp_pages < from + len)
3051                        return 0;
3052        } else {
3053                if (mtd->writesize * otp_pages <  len)
3054                        return 0;
3055        }
3056
3057        onenand_get_device(mtd, FL_OTPING);
3058        while (len > 0 && otp_pages > 0) {
3059                if (!action) {  /* OTP Info functions */
3060                        struct otp_info *otpinfo;
3061
3062                        len -= sizeof(struct otp_info);
3063                        if (len <= 0) {
3064                                ret = -ENOSPC;
3065                                break;
3066                        }
3067
3068                        otpinfo = (struct otp_info *) buf;
3069                        otpinfo->start = from;
3070                        otpinfo->length = mtd->writesize;
3071                        otpinfo->locked = 0;
3072
3073                        from += mtd->writesize;
3074                        buf += sizeof(struct otp_info);
3075                        *retlen += sizeof(struct otp_info);
3076                } else {
3077                        size_t tmp_retlen;
3078
3079                        ret = action(mtd, from, len, &tmp_retlen, buf);
3080                        if (ret)
3081                                break;
3082
3083                        buf += tmp_retlen;
3084                        len -= tmp_retlen;
3085                        *retlen += tmp_retlen;
3086
3087                }
3088                otp_pages--;
3089        }
3090        onenand_release_device(mtd);
3091
3092        return ret;
3093}
3094
3095/**
3096 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
3097 * @mtd:                MTD device structure
3098 * @len:                number of bytes to read
3099 * @retlen:     pointer to variable to store the number of read bytes
3100 * @buf:                the databuffer to put/get data
3101 *
3102 * Read factory OTP info.
3103 */
3104static int onenand_get_fact_prot_info(struct mtd_info *mtd, size_t len,
3105                                      size_t *retlen, struct otp_info *buf)
3106{
3107        return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
3108                                MTD_OTP_FACTORY);
3109}
3110
3111/**
3112 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
3113 * @mtd:                MTD device structure
3114 * @from:               The offset to read
3115 * @len:                number of bytes to read
3116 * @retlen:     pointer to variable to store the number of read bytes
3117 * @buf:                the databuffer to put/get data
3118 *
3119 * Read factory OTP area.
3120 */
3121static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
3122                        size_t len, size_t *retlen, u_char *buf)
3123{
3124        return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
3125}
3126
3127/**
3128 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
3129 * @mtd:                MTD device structure
3130 * @retlen:     pointer to variable to store the number of read bytes
3131 * @len:                number of bytes to read
3132 * @buf:                the databuffer to put/get data
3133 *
3134 * Read user OTP info.
3135 */
3136static int onenand_get_user_prot_info(struct mtd_info *mtd, size_t len,
3137                                      size_t *retlen, struct otp_info *buf)
3138{
3139        return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
3140                                MTD_OTP_USER);
3141}
3142
3143/**
3144 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
3145 * @mtd:                MTD device structure
3146 * @from:               The offset to read
3147 * @len:                number of bytes to read
3148 * @retlen:     pointer to variable to store the number of read bytes
3149 * @buf:                the databuffer to put/get data
3150 *
3151 * Read user OTP area.
3152 */
3153static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
3154                        size_t len, size_t *retlen, u_char *buf)
3155{
3156        return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
3157}
3158
3159/**
3160 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
3161 * @mtd:                MTD device structure
3162 * @from:               The offset to write
3163 * @len:                number of bytes to write
3164 * @retlen:     pointer to variable to store the number of write bytes
3165 * @buf:                the databuffer to put/get data
3166 *
3167 * Write user OTP area.
3168 */
3169static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
3170                        size_t len, size_t *retlen, const u_char *buf)
3171{
3172        return onenand_otp_walk(mtd, from, len, retlen, (u_char *)buf,
3173                                do_otp_write, MTD_OTP_USER);
3174}
3175
3176/**
3177 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
3178 * @mtd:                MTD device structure
3179 * @from:               The offset to lock
3180 * @len:                number of bytes to unlock
3181 *
3182 * Write lock mark on spare area in page 0 in OTP block
3183 */
3184static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
3185                        size_t len)
3186{
3187        struct onenand_chip *this = mtd->priv;
3188        u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
3189        size_t retlen;
3190        int ret;
3191        unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET;
3192
3193        memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
3194                                                 : mtd->oobsize);
3195        /*
3196         * Write lock mark to 8th word of sector0 of page0 of the spare0.
3197         * We write 16 bytes spare area instead of 2 bytes.
3198         * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3199         * main area of page 49.
3200         */
3201
3202        from = 0;
3203        len = FLEXONENAND(this) ? mtd->writesize : 16;
3204
3205        /*
3206         * Note: OTP lock operation
3207         *       OTP block : 0xXXFC                     XX 1111 1100
3208         *       1st block : 0xXXF3 (If chip support)   XX 1111 0011
3209         *       Both      : 0xXXF0 (If chip support)   XX 1111 0000
3210         */
3211        if (FLEXONENAND(this))
3212                otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET;
3213
3214        /* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
3215        if (otp == 1)
3216                buf[otp_lock_offset] = 0xFC;
3217        else if (otp == 2)
3218                buf[otp_lock_offset] = 0xF3;
3219        else if (otp == 3)
3220                buf[otp_lock_offset] = 0xF0;
3221        else if (otp != 0)
3222                printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n");
3223
3224        ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
3225
3226        return ret ? : retlen;
3227}
3228
3229#endif  /* CONFIG_MTD_ONENAND_OTP */
3230
3231/**
3232 * onenand_check_features - Check and set OneNAND features
3233 * @mtd:                MTD data structure
3234 *
3235 * Check and set OneNAND features
3236 * - lock scheme
3237 * - two plane
3238 */
3239static void onenand_check_features(struct mtd_info *mtd)
3240{
3241        struct onenand_chip *this = mtd->priv;
3242        unsigned int density, process, numbufs;
3243
3244        /* Lock scheme depends on density and process */
3245        density = onenand_get_density(this->device_id);
3246        process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
3247        numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8;
3248
3249        /* Lock scheme */
3250        switch (density) {
3251        case ONENAND_DEVICE_DENSITY_8Gb:
3252                this->options |= ONENAND_HAS_NOP_1;
3253                fallthrough;
3254        case ONENAND_DEVICE_DENSITY_4Gb:
3255                if (ONENAND_IS_DDP(this))
3256                        this->options |= ONENAND_HAS_2PLANE;
3257                else if (numbufs == 1) {
3258                        this->options |= ONENAND_HAS_4KB_PAGE;
3259                        this->options |= ONENAND_HAS_CACHE_PROGRAM;
3260                        /*
3261                         * There are two different 4KiB pagesize chips
3262                         * and no way to detect it by H/W config values.
3263                         *
3264                         * To detect the correct NOP for each chips,
3265                         * It should check the version ID as workaround.
3266                         *
3267                         * Now it has as following
3268                         * KFM4G16Q4M has NOP 4 with version ID 0x0131
3269                         * KFM4G16Q5M has NOP 1 with versoin ID 0x013e
3270                         */
3271                        if ((this->version_id & 0xf) == 0xe)
3272                                this->options |= ONENAND_HAS_NOP_1;
3273                }
3274                this->options |= ONENAND_HAS_UNLOCK_ALL;
3275                break;
3276
3277        case ONENAND_DEVICE_DENSITY_2Gb:
3278                /* 2Gb DDP does not have 2 plane */
3279                if (!ONENAND_IS_DDP(this))
3280                        this->options |= ONENAND_HAS_2PLANE;
3281                this->options |= ONENAND_HAS_UNLOCK_ALL;
3282                break;
3283
3284        case ONENAND_DEVICE_DENSITY_1Gb:
3285                /* A-Die has all block unlock */
3286                if (process)
3287                        this->options |= ONENAND_HAS_UNLOCK_ALL;
3288                break;
3289
3290        default:
3291                /* Some OneNAND has continuous lock scheme */
3292                if (!process)
3293                        this->options |= ONENAND_HAS_CONT_LOCK;
3294                break;
3295        }
3296
3297        /* The MLC has 4KiB pagesize. */
3298        if (ONENAND_IS_MLC(this))
3299                this->options |= ONENAND_HAS_4KB_PAGE;
3300
3301        if (ONENAND_IS_4KB_PAGE(this))
3302                this->options &= ~ONENAND_HAS_2PLANE;
3303
3304        if (FLEXONENAND(this)) {
3305                this->options &= ~ONENAND_HAS_CONT_LOCK;
3306                this->options |= ONENAND_HAS_UNLOCK_ALL;
3307        }
3308
3309        if (this->options & ONENAND_HAS_CONT_LOCK)
3310                printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
3311        if (this->options & ONENAND_HAS_UNLOCK_ALL)
3312                printk(KERN_DEBUG "Chip support all block unlock\n");
3313        if (this->options & ONENAND_HAS_2PLANE)
3314                printk(KERN_DEBUG "Chip has 2 plane\n");
3315        if (this->options & ONENAND_HAS_4KB_PAGE)
3316                printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
3317        if (this->options & ONENAND_HAS_CACHE_PROGRAM)
3318                printk(KERN_DEBUG "Chip has cache program feature\n");
3319}
3320
3321/**
3322 * onenand_print_device_info - Print device & version ID
3323 * @device:        device ID
3324 * @version:    version ID
3325 *
3326 * Print device & version ID
3327 */
3328static void onenand_print_device_info(int device, int version)
3329{
3330        int vcc, demuxed, ddp, density, flexonenand;
3331
3332        vcc = device & ONENAND_DEVICE_VCC_MASK;
3333        demuxed = device & ONENAND_DEVICE_IS_DEMUX;
3334        ddp = device & ONENAND_DEVICE_IS_DDP;
3335        density = onenand_get_density(device);
3336        flexonenand = device & DEVICE_IS_FLEXONENAND;
3337        printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
3338                demuxed ? "" : "Muxed ",
3339                flexonenand ? "Flex-" : "",
3340                ddp ? "(DDP)" : "",
3341                (16 << density),
3342                vcc ? "2.65/3.3" : "1.8",
3343                device);
3344        printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
3345}
3346
3347static const struct onenand_manufacturers onenand_manuf_ids[] = {
3348        {ONENAND_MFR_SAMSUNG, "Samsung"},
3349        {ONENAND_MFR_NUMONYX, "Numonyx"},
3350};
3351
3352/**
3353 * onenand_check_maf - Check manufacturer ID
3354 * @manuf:         manufacturer ID
3355 *
3356 * Check manufacturer ID
3357 */
3358static int onenand_check_maf(int manuf)
3359{
3360        int size = ARRAY_SIZE(onenand_manuf_ids);
3361        char *name;
3362        int i;
3363
3364        for (i = 0; i < size; i++)
3365                if (manuf == onenand_manuf_ids[i].id)
3366                        break;
3367
3368        if (i < size)
3369                name = onenand_manuf_ids[i].name;
3370        else
3371                name = "Unknown";
3372
3373        printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
3374
3375        return (i == size);
3376}
3377
3378/**
3379 * flexonenand_get_boundary     - Reads the SLC boundary
3380 * @mtd:                MTD data structure
3381 */
3382static int flexonenand_get_boundary(struct mtd_info *mtd)
3383{
3384        struct onenand_chip *this = mtd->priv;
3385        unsigned die, bdry;
3386        int syscfg, locked;
3387
3388        /* Disable ECC */
3389        syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3390        this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
3391
3392        for (die = 0; die < this->dies; die++) {
3393                this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3394                this->wait(mtd, FL_SYNCING);
3395
3396                this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3397                this->wait(mtd, FL_READING);
3398
3399                bdry = this->read_word(this->base + ONENAND_DATARAM);
3400                if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
3401                        locked = 0;
3402                else
3403                        locked = 1;
3404                this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
3405
3406                this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3407                this->wait(mtd, FL_RESETTING);
3408
3409                printk(KERN_INFO "Die %d boundary: %d%s\n", die,
3410                       this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
3411        }
3412
3413        /* Enable ECC */
3414        this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3415        return 0;
3416}
3417
3418/**
3419 * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3420 *                        boundary[], diesize[], mtd->size, mtd->erasesize
3421 * @mtd:                - MTD device structure
3422 */
3423static void flexonenand_get_size(struct mtd_info *mtd)
3424{
3425        struct onenand_chip *this = mtd->priv;
3426        int die, i, eraseshift, density;
3427        int blksperdie, maxbdry;
3428        loff_t ofs;
3429
3430        density = onenand_get_density(this->device_id);
3431        blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
3432        blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3433        maxbdry = blksperdie - 1;
3434        eraseshift = this->erase_shift - 1;
3435
3436        mtd->numeraseregions = this->dies << 1;
3437
3438        /* This fills up the device boundary */
3439        flexonenand_get_boundary(mtd);
3440        die = ofs = 0;
3441        i = -1;
3442        for (; die < this->dies; die++) {
3443                if (!die || this->boundary[die-1] != maxbdry) {
3444                        i++;
3445                        mtd->eraseregions[i].offset = ofs;
3446                        mtd->eraseregions[i].erasesize = 1 << eraseshift;
3447                        mtd->eraseregions[i].numblocks =
3448                                                        this->boundary[die] + 1;
3449                        ofs += mtd->eraseregions[i].numblocks << eraseshift;
3450                        eraseshift++;
3451                } else {
3452                        mtd->numeraseregions -= 1;
3453                        mtd->eraseregions[i].numblocks +=
3454                                                        this->boundary[die] + 1;
3455                        ofs += (this->boundary[die] + 1) << (eraseshift - 1);
3456                }
3457                if (this->boundary[die] != maxbdry) {
3458                        i++;
3459                        mtd->eraseregions[i].offset = ofs;
3460                        mtd->eraseregions[i].erasesize = 1 << eraseshift;
3461                        mtd->eraseregions[i].numblocks = maxbdry ^
3462                                                         this->boundary[die];
3463                        ofs += mtd->eraseregions[i].numblocks << eraseshift;
3464                        eraseshift--;
3465                } else
3466                        mtd->numeraseregions -= 1;
3467        }
3468
3469        /* Expose MLC erase size except when all blocks are SLC */
3470        mtd->erasesize = 1 << this->erase_shift;
3471        if (mtd->numeraseregions == 1)
3472                mtd->erasesize >>= 1;
3473
3474        printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
3475        for (i = 0; i < mtd->numeraseregions; i++)
3476                printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
3477                        " numblocks: %04u]\n",
3478                        (unsigned int) mtd->eraseregions[i].offset,
3479                        mtd->eraseregions[i].erasesize,
3480                        mtd->eraseregions[i].numblocks);
3481
3482        for (die = 0, mtd->size = 0; die < this->dies; die++) {
3483                this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
3484                this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
3485                                                 << (this->erase_shift - 1);
3486                mtd->size += this->diesize[die];
3487        }
3488}
3489
3490/**
3491 * flexonenand_check_blocks_erased - Check if blocks are erased
3492 * @mtd:        mtd info structure
3493 * @start:      first erase block to check
3494 * @end:        last erase block to check
3495 *
3496 * Converting an unerased block from MLC to SLC
3497 * causes byte values to change. Since both data and its ECC
3498 * have changed, reads on the block give uncorrectable error.
3499 * This might lead to the block being detected as bad.
3500 *
3501 * Avoid this by ensuring that the block to be converted is
3502 * erased.
3503 */
3504static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
3505{
3506        struct onenand_chip *this = mtd->priv;
3507        int i, ret;
3508        int block;
3509        struct mtd_oob_ops ops = {
3510                .mode = MTD_OPS_PLACE_OOB,
3511                .ooboffs = 0,
3512                .ooblen = mtd->oobsize,
3513                .datbuf = NULL,
3514                .oobbuf = this->oob_buf,
3515        };
3516        loff_t addr;
3517
3518        printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
3519
3520        for (block = start; block <= end; block++) {
3521                addr = flexonenand_addr(this, block);
3522                if (onenand_block_isbad_nolock(mtd, addr, 0))
3523                        continue;
3524
3525                /*
3526                 * Since main area write results in ECC write to spare,
3527                 * it is sufficient to check only ECC bytes for change.
3528                 */
3529                ret = onenand_read_oob_nolock(mtd, addr, &ops);
3530                if (ret)
3531                        return ret;
3532
3533                for (i = 0; i < mtd->oobsize; i++)
3534                        if (this->oob_buf[i] != 0xff)
3535                                break;
3536
3537                if (i != mtd->oobsize) {
3538                        printk(KERN_WARNING "%s: Block %d not erased.\n",
3539                                __func__, block);
3540                        return 1;
3541                }
3542        }
3543
3544        return 0;
3545}
3546
3547/*
3548 * flexonenand_set_boundary     - Writes the SLC boundary
3549 */
3550static int flexonenand_set_boundary(struct mtd_info *mtd, int die,
3551                                    int boundary, int lock)
3552{
3553        struct onenand_chip *this = mtd->priv;
3554        int ret, density, blksperdie, old, new, thisboundary;
3555        loff_t addr;
3556
3557        /* Change only once for SDP Flex-OneNAND */
3558        if (die && (!ONENAND_IS_DDP(this)))
3559                return 0;
3560
3561        /* boundary value of -1 indicates no required change */
3562        if (boundary < 0 || boundary == this->boundary[die])
3563                return 0;
3564
3565        density = onenand_get_density(this->device_id);
3566        blksperdie = ((16 << density) << 20) >> this->erase_shift;
3567        blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3568
3569        if (boundary >= blksperdie) {
3570                printk(KERN_ERR "%s: Invalid boundary value. "
3571                                "Boundary not changed.\n", __func__);
3572                return -EINVAL;
3573        }
3574
3575        /* Check if converting blocks are erased */
3576        old = this->boundary[die] + (die * this->density_mask);
3577        new = boundary + (die * this->density_mask);
3578        ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
3579        if (ret) {
3580                printk(KERN_ERR "%s: Please erase blocks "
3581                                "before boundary change\n", __func__);
3582                return ret;
3583        }
3584
3585        this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3586        this->wait(mtd, FL_SYNCING);
3587
3588        /* Check is boundary is locked */
3589        this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3590        this->wait(mtd, FL_READING);
3591
3592        thisboundary = this->read_word(this->base + ONENAND_DATARAM);
3593        if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
3594                printk(KERN_ERR "%s: boundary locked\n", __func__);
3595                ret = 1;
3596                goto out;
3597        }
3598
3599        printk(KERN_INFO "Changing die %d boundary: %d%s\n",
3600                        die, boundary, lock ? "(Locked)" : "(Unlocked)");
3601
3602        addr = die ? this->diesize[0] : 0;
3603
3604        boundary &= FLEXONENAND_PI_MASK;
3605        boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
3606
3607        this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
3608        ret = this->wait(mtd, FL_ERASING);
3609        if (ret) {
3610                printk(KERN_ERR "%s: Failed PI erase for Die %d\n",
3611                       __func__, die);
3612                goto out;
3613        }
3614
3615        this->write_word(boundary, this->base + ONENAND_DATARAM);
3616        this->command(mtd, ONENAND_CMD_PROG, addr, 0);
3617        ret = this->wait(mtd, FL_WRITING);
3618        if (ret) {
3619                printk(KERN_ERR "%s: Failed PI write for Die %d\n",
3620                        __func__, die);
3621                goto out;
3622        }
3623
3624        this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
3625        ret = this->wait(mtd, FL_WRITING);
3626out:
3627        this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
3628        this->wait(mtd, FL_RESETTING);
3629        if (!ret)
3630                /* Recalculate device size on boundary change*/
3631                flexonenand_get_size(mtd);
3632
3633        return ret;
3634}
3635
3636/**
3637 * onenand_chip_probe - [OneNAND Interface] The generic chip probe
3638 * @mtd:                MTD device structure
3639 *
3640 * OneNAND detection method:
3641 *   Compare the values from command with ones from register
3642 */
3643static int onenand_chip_probe(struct mtd_info *mtd)
3644{
3645        struct onenand_chip *this = mtd->priv;
3646        int bram_maf_id, bram_dev_id, maf_id, dev_id;
3647        int syscfg;
3648
3649        /* Save system configuration 1 */
3650        syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3651        /* Clear Sync. Burst Read mode to read BootRAM */
3652        this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
3653
3654        /* Send the command for reading device ID from BootRAM */
3655        this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
3656
3657        /* Read manufacturer and device IDs from BootRAM */
3658        bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
3659        bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
3660
3661        /* Reset OneNAND to read default register values */
3662        this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
3663        /* Wait reset */
3664        this->wait(mtd, FL_RESETTING);
3665
3666        /* Restore system configuration 1 */
3667        this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3668
3669        /* Check manufacturer ID */
3670        if (onenand_check_maf(bram_maf_id))
3671                return -ENXIO;
3672
3673        /* Read manufacturer and device IDs from Register */
3674        maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3675        dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3676
3677        /* Check OneNAND device */
3678        if (maf_id != bram_maf_id || dev_id != bram_dev_id)
3679                return -ENXIO;
3680
3681        return 0;
3682}
3683
3684/**
3685 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3686 * @mtd:                MTD device structure
3687 */
3688static int onenand_probe(struct mtd_info *mtd)
3689{
3690        struct onenand_chip *this = mtd->priv;
3691        int dev_id, ver_id;
3692        int density;
3693        int ret;
3694
3695        ret = this->chip_probe(mtd);
3696        if (ret)
3697                return ret;
3698
3699        /* Device and version IDs from Register */
3700        dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3701        ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
3702        this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
3703
3704        /* Flash device information */
3705        onenand_print_device_info(dev_id, ver_id);
3706        this->device_id = dev_id;
3707        this->version_id = ver_id;
3708
3709        /* Check OneNAND features */
3710        onenand_check_features(mtd);
3711
3712        density = onenand_get_density(dev_id);
3713        if (FLEXONENAND(this)) {
3714                this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
3715                /* Maximum possible erase regions */
3716                mtd->numeraseregions = this->dies << 1;
3717                mtd->eraseregions =
3718                        kcalloc(this->dies << 1,
3719                                sizeof(struct mtd_erase_region_info),
3720                                GFP_KERNEL);
3721                if (!mtd->eraseregions)
3722                        return -ENOMEM;
3723        }
3724
3725        /*
3726         * For Flex-OneNAND, chipsize represents maximum possible device size.
3727         * mtd->size represents the actual device size.
3728         */
3729        this->chipsize = (16 << density) << 20;
3730
3731        /* OneNAND page size & block size */
3732        /* The data buffer size is equal to page size */
3733        mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
3734        /* We use the full BufferRAM */
3735        if (ONENAND_IS_4KB_PAGE(this))
3736                mtd->writesize <<= 1;
3737
3738        mtd->oobsize = mtd->writesize >> 5;
3739        /* Pages per a block are always 64 in OneNAND */
3740        mtd->erasesize = mtd->writesize << 6;
3741        /*
3742         * Flex-OneNAND SLC area has 64 pages per block.
3743         * Flex-OneNAND MLC area has 128 pages per block.
3744         * Expose MLC erase size to find erase_shift and page_mask.
3745         */
3746        if (FLEXONENAND(this))
3747                mtd->erasesize <<= 1;
3748
3749        this->erase_shift = ffs(mtd->erasesize) - 1;
3750        this->page_shift = ffs(mtd->writesize) - 1;
3751        this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
3752        /* Set density mask. it is used for DDP */
3753        if (ONENAND_IS_DDP(this))
3754                this->density_mask = this->chipsize >> (this->erase_shift + 1);
3755        /* It's real page size */
3756        this->writesize = mtd->writesize;
3757
3758        /* REVISIT: Multichip handling */
3759
3760        if (FLEXONENAND(this))
3761                flexonenand_get_size(mtd);
3762        else
3763                mtd->size = this->chipsize;
3764
3765        /*
3766         * We emulate the 4KiB page and 256KiB erase block size
3767         * But oobsize is still 64 bytes.
3768         * It is only valid if you turn on 2X program support,
3769         * Otherwise it will be ignored by compiler.
3770         */
3771        if (ONENAND_IS_2PLANE(this)) {
3772                mtd->writesize <<= 1;
3773                mtd->erasesize <<= 1;
3774        }
3775
3776        return 0;
3777}
3778
3779/**
3780 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3781 * @mtd:                MTD device structure
3782 */
3783static int onenand_suspend(struct mtd_info *mtd)
3784{
3785        return onenand_get_device(mtd, FL_PM_SUSPENDED);
3786}
3787
3788/**
3789 * onenand_resume - [MTD Interface] Resume the OneNAND flash
3790 * @mtd:                MTD device structure
3791 */
3792static void onenand_resume(struct mtd_info *mtd)
3793{
3794        struct onenand_chip *this = mtd->priv;
3795
3796        if (this->state == FL_PM_SUSPENDED)
3797                onenand_release_device(mtd);
3798        else
3799                printk(KERN_ERR "%s: resume() called for the chip which is not "
3800                                "in suspended state\n", __func__);
3801}
3802
3803/**
3804 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3805 * @mtd:                MTD device structure
3806 * @maxchips:   Number of chips to scan for
3807 *
3808 * This fills out all the not initialized function pointers
3809 * with the defaults.
3810 * The flash ID is read and the mtd/chip structures are
3811 * filled with the appropriate values.
3812 */
3813int onenand_scan(struct mtd_info *mtd, int maxchips)
3814{
3815        int i, ret;
3816        struct onenand_chip *this = mtd->priv;
3817
3818        if (!this->read_word)
3819                this->read_word = onenand_readw;
3820        if (!this->write_word)
3821                this->write_word = onenand_writew;
3822
3823        if (!this->command)
3824                this->command = onenand_command;
3825        if (!this->wait)
3826                onenand_setup_wait(mtd);
3827        if (!this->bbt_wait)
3828                this->bbt_wait = onenand_bbt_wait;
3829        if (!this->unlock_all)
3830                this->unlock_all = onenand_unlock_all;
3831
3832        if (!this->chip_probe)
3833                this->chip_probe = onenand_chip_probe;
3834
3835        if (!this->read_bufferram)
3836                this->read_bufferram = onenand_read_bufferram;
3837        if (!this->write_bufferram)
3838                this->write_bufferram = onenand_write_bufferram;
3839
3840        if (!this->block_markbad)
3841                this->block_markbad = onenand_default_block_markbad;
3842        if (!this->scan_bbt)
3843                this->scan_bbt = onenand_default_bbt;
3844
3845        if (onenand_probe(mtd))
3846                return -ENXIO;
3847
3848        /* Set Sync. Burst Read after probing */
3849        if (this->mmcontrol) {
3850                printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
3851                this->read_bufferram = onenand_sync_read_bufferram;
3852        }
3853
3854        /* Allocate buffers, if necessary */
3855        if (!this->page_buf) {
3856                this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3857                if (!this->page_buf)
3858                        return -ENOMEM;
3859#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3860                this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3861                if (!this->verify_buf) {
3862                        kfree(this->page_buf);
3863                        return -ENOMEM;
3864                }
3865#endif
3866                this->options |= ONENAND_PAGEBUF_ALLOC;
3867        }
3868        if (!this->oob_buf) {
3869                this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
3870                if (!this->oob_buf) {
3871                        if (this->options & ONENAND_PAGEBUF_ALLOC) {
3872                                this->options &= ~ONENAND_PAGEBUF_ALLOC;
3873#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3874                                kfree(this->verify_buf);
3875#endif
3876                                kfree(this->page_buf);
3877                        }
3878                        return -ENOMEM;
3879                }
3880                this->options |= ONENAND_OOBBUF_ALLOC;
3881        }
3882
3883        this->state = FL_READY;
3884        init_waitqueue_head(&this->wq);
3885        spin_lock_init(&this->chip_lock);
3886
3887        /*
3888         * Allow subpage writes up to oobsize.
3889         */
3890        switch (mtd->oobsize) {
3891        case 128:
3892                if (FLEXONENAND(this)) {
3893                        mtd_set_ooblayout(mtd, &flexonenand_ooblayout_ops);
3894                        mtd->subpage_sft = 0;
3895                } else {
3896                        mtd_set_ooblayout(mtd, &onenand_oob_128_ooblayout_ops);
3897                        mtd->subpage_sft = 2;
3898                }
3899                if (ONENAND_IS_NOP_1(this))
3900                        mtd->subpage_sft = 0;
3901                break;
3902        case 64:
3903                mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3904                mtd->subpage_sft = 2;
3905                break;
3906
3907        case 32:
3908                mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3909                mtd->subpage_sft = 1;
3910                break;
3911
3912        default:
3913                printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n",
3914                        __func__, mtd->oobsize);
3915                mtd->subpage_sft = 0;
3916                /* To prevent kernel oops */
3917                mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3918                break;
3919        }
3920
3921        this->subpagesize = mtd->writesize >> mtd->subpage_sft;
3922
3923        /*
3924         * The number of bytes available for a client to place data into
3925         * the out of band area
3926         */
3927        ret = mtd_ooblayout_count_freebytes(mtd);
3928        if (ret < 0)
3929                ret = 0;
3930
3931        mtd->oobavail = ret;
3932
3933        mtd->ecc_strength = 1;
3934
3935        /* Fill in remaining MTD driver data */
3936        mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH;
3937        mtd->flags = MTD_CAP_NANDFLASH;
3938        mtd->_erase = onenand_erase;
3939        mtd->_point = NULL;
3940        mtd->_unpoint = NULL;
3941        mtd->_read_oob = onenand_read_oob;
3942        mtd->_write_oob = onenand_write_oob;
3943        mtd->_panic_write = onenand_panic_write;
3944#ifdef CONFIG_MTD_ONENAND_OTP
3945        mtd->_get_fact_prot_info = onenand_get_fact_prot_info;
3946        mtd->_read_fact_prot_reg = onenand_read_fact_prot_reg;
3947        mtd->_get_user_prot_info = onenand_get_user_prot_info;
3948        mtd->_read_user_prot_reg = onenand_read_user_prot_reg;
3949        mtd->_write_user_prot_reg = onenand_write_user_prot_reg;
3950        mtd->_lock_user_prot_reg = onenand_lock_user_prot_reg;
3951#endif
3952        mtd->_sync = onenand_sync;
3953        mtd->_lock = onenand_lock;
3954        mtd->_unlock = onenand_unlock;
3955        mtd->_suspend = onenand_suspend;
3956        mtd->_resume = onenand_resume;
3957        mtd->_block_isbad = onenand_block_isbad;
3958        mtd->_block_markbad = onenand_block_markbad;
3959        mtd->owner = THIS_MODULE;
3960        mtd->writebufsize = mtd->writesize;
3961
3962        /* Unlock whole block */
3963        if (!(this->options & ONENAND_SKIP_INITIAL_UNLOCKING))
3964                this->unlock_all(mtd);
3965
3966        /* Set the bad block marker position */
3967        this->badblockpos = ONENAND_BADBLOCK_POS;
3968
3969        ret = this->scan_bbt(mtd);
3970        if ((!FLEXONENAND(this)) || ret)
3971                return ret;
3972
3973        /* Change Flex-OneNAND boundaries if required */
3974        for (i = 0; i < MAX_DIES; i++)
3975                flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
3976                                                 flex_bdry[(2 * i) + 1]);
3977
3978        return 0;
3979}
3980
3981/**
3982 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
3983 * @mtd:                MTD device structure
3984 */
3985void onenand_release(struct mtd_info *mtd)
3986{
3987        struct onenand_chip *this = mtd->priv;
3988
3989        /* Deregister partitions */
3990        mtd_device_unregister(mtd);
3991
3992        /* Free bad block table memory, if allocated */
3993        if (this->bbm) {
3994                struct bbm_info *bbm = this->bbm;
3995                kfree(bbm->bbt);
3996                kfree(this->bbm);
3997        }
3998        /* Buffers allocated by onenand_scan */
3999        if (this->options & ONENAND_PAGEBUF_ALLOC) {
4000                kfree(this->page_buf);
4001#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
4002                kfree(this->verify_buf);
4003#endif
4004        }
4005        if (this->options & ONENAND_OOBBUF_ALLOC)
4006                kfree(this->oob_buf);
4007        kfree(mtd->eraseregions);
4008}
4009
4010EXPORT_SYMBOL_GPL(onenand_scan);
4011EXPORT_SYMBOL_GPL(onenand_release);
4012
4013MODULE_LICENSE("GPL");
4014MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
4015MODULE_DESCRIPTION("Generic OneNAND flash driver code");
4016