linux/drivers/mtd/nand/spi/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2016-2017 Micron Technology, Inc.
   4 *
   5 * Authors:
   6 *      Peter Pan <peterpandong@micron.com>
   7 *      Boris Brezillon <boris.brezillon@bootlin.com>
   8 */
   9
  10#define pr_fmt(fmt)     "spi-nand: " fmt
  11
  12#include <linux/device.h>
  13#include <linux/jiffies.h>
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/mtd/spinand.h>
  17#include <linux/of.h>
  18#include <linux/slab.h>
  19#include <linux/string.h>
  20#include <linux/spi/spi.h>
  21#include <linux/spi/spi-mem.h>
  22
  23static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val)
  24{
  25        struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg,
  26                                                      spinand->scratchbuf);
  27        int ret;
  28
  29        ret = spi_mem_exec_op(spinand->spimem, &op);
  30        if (ret)
  31                return ret;
  32
  33        *val = *spinand->scratchbuf;
  34        return 0;
  35}
  36
  37static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val)
  38{
  39        struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg,
  40                                                      spinand->scratchbuf);
  41
  42        *spinand->scratchbuf = val;
  43        return spi_mem_exec_op(spinand->spimem, &op);
  44}
  45
  46static int spinand_read_status(struct spinand_device *spinand, u8 *status)
  47{
  48        return spinand_read_reg_op(spinand, REG_STATUS, status);
  49}
  50
  51static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg)
  52{
  53        struct nand_device *nand = spinand_to_nand(spinand);
  54
  55        if (WARN_ON(spinand->cur_target < 0 ||
  56                    spinand->cur_target >= nand->memorg.ntargets))
  57                return -EINVAL;
  58
  59        *cfg = spinand->cfg_cache[spinand->cur_target];
  60        return 0;
  61}
  62
  63static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg)
  64{
  65        struct nand_device *nand = spinand_to_nand(spinand);
  66        int ret;
  67
  68        if (WARN_ON(spinand->cur_target < 0 ||
  69                    spinand->cur_target >= nand->memorg.ntargets))
  70                return -EINVAL;
  71
  72        if (spinand->cfg_cache[spinand->cur_target] == cfg)
  73                return 0;
  74
  75        ret = spinand_write_reg_op(spinand, REG_CFG, cfg);
  76        if (ret)
  77                return ret;
  78
  79        spinand->cfg_cache[spinand->cur_target] = cfg;
  80        return 0;
  81}
  82
  83/**
  84 * spinand_upd_cfg() - Update the configuration register
  85 * @spinand: the spinand device
  86 * @mask: the mask encoding the bits to update in the config reg
  87 * @val: the new value to apply
  88 *
  89 * Update the configuration register.
  90 *
  91 * Return: 0 on success, a negative error code otherwise.
  92 */
  93int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val)
  94{
  95        int ret;
  96        u8 cfg;
  97
  98        ret = spinand_get_cfg(spinand, &cfg);
  99        if (ret)
 100                return ret;
 101
 102        cfg &= ~mask;
 103        cfg |= val;
 104
 105        return spinand_set_cfg(spinand, cfg);
 106}
 107
 108/**
 109 * spinand_select_target() - Select a specific NAND target/die
 110 * @spinand: the spinand device
 111 * @target: the target/die to select
 112 *
 113 * Select a new target/die. If chip only has one die, this function is a NOOP.
 114 *
 115 * Return: 0 on success, a negative error code otherwise.
 116 */
 117int spinand_select_target(struct spinand_device *spinand, unsigned int target)
 118{
 119        struct nand_device *nand = spinand_to_nand(spinand);
 120        int ret;
 121
 122        if (WARN_ON(target >= nand->memorg.ntargets))
 123                return -EINVAL;
 124
 125        if (spinand->cur_target == target)
 126                return 0;
 127
 128        if (nand->memorg.ntargets == 1) {
 129                spinand->cur_target = target;
 130                return 0;
 131        }
 132
 133        ret = spinand->select_target(spinand, target);
 134        if (ret)
 135                return ret;
 136
 137        spinand->cur_target = target;
 138        return 0;
 139}
 140
 141static int spinand_read_cfg(struct spinand_device *spinand)
 142{
 143        struct nand_device *nand = spinand_to_nand(spinand);
 144        unsigned int target;
 145        int ret;
 146
 147        for (target = 0; target < nand->memorg.ntargets; target++) {
 148                ret = spinand_select_target(spinand, target);
 149                if (ret)
 150                        return ret;
 151
 152                /*
 153                 * We use spinand_read_reg_op() instead of spinand_get_cfg()
 154                 * here to bypass the config cache.
 155                 */
 156                ret = spinand_read_reg_op(spinand, REG_CFG,
 157                                          &spinand->cfg_cache[target]);
 158                if (ret)
 159                        return ret;
 160        }
 161
 162        return 0;
 163}
 164
 165static int spinand_init_cfg_cache(struct spinand_device *spinand)
 166{
 167        struct nand_device *nand = spinand_to_nand(spinand);
 168        struct device *dev = &spinand->spimem->spi->dev;
 169
 170        spinand->cfg_cache = devm_kcalloc(dev,
 171                                          nand->memorg.ntargets,
 172                                          sizeof(*spinand->cfg_cache),
 173                                          GFP_KERNEL);
 174        if (!spinand->cfg_cache)
 175                return -ENOMEM;
 176
 177        return 0;
 178}
 179
 180static int spinand_init_quad_enable(struct spinand_device *spinand)
 181{
 182        bool enable = false;
 183
 184        if (!(spinand->flags & SPINAND_HAS_QE_BIT))
 185                return 0;
 186
 187        if (spinand->op_templates.read_cache->data.buswidth == 4 ||
 188            spinand->op_templates.write_cache->data.buswidth == 4 ||
 189            spinand->op_templates.update_cache->data.buswidth == 4)
 190                enable = true;
 191
 192        return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE,
 193                               enable ? CFG_QUAD_ENABLE : 0);
 194}
 195
 196static int spinand_ecc_enable(struct spinand_device *spinand,
 197                              bool enable)
 198{
 199        return spinand_upd_cfg(spinand, CFG_ECC_ENABLE,
 200                               enable ? CFG_ECC_ENABLE : 0);
 201}
 202
 203static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status)
 204{
 205        struct nand_device *nand = spinand_to_nand(spinand);
 206
 207        if (spinand->eccinfo.get_status)
 208                return spinand->eccinfo.get_status(spinand, status);
 209
 210        switch (status & STATUS_ECC_MASK) {
 211        case STATUS_ECC_NO_BITFLIPS:
 212                return 0;
 213
 214        case STATUS_ECC_HAS_BITFLIPS:
 215                /*
 216                 * We have no way to know exactly how many bitflips have been
 217                 * fixed, so let's return the maximum possible value so that
 218                 * wear-leveling layers move the data immediately.
 219                 */
 220                return nanddev_get_ecc_conf(nand)->strength;
 221
 222        case STATUS_ECC_UNCOR_ERROR:
 223                return -EBADMSG;
 224
 225        default:
 226                break;
 227        }
 228
 229        return -EINVAL;
 230}
 231
 232static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section,
 233                                       struct mtd_oob_region *region)
 234{
 235        return -ERANGE;
 236}
 237
 238static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section,
 239                                        struct mtd_oob_region *region)
 240{
 241        if (section)
 242                return -ERANGE;
 243
 244        /* Reserve 2 bytes for the BBM. */
 245        region->offset = 2;
 246        region->length = 62;
 247
 248        return 0;
 249}
 250
 251static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = {
 252        .ecc = spinand_noecc_ooblayout_ecc,
 253        .free = spinand_noecc_ooblayout_free,
 254};
 255
 256static int spinand_ondie_ecc_init_ctx(struct nand_device *nand)
 257{
 258        struct spinand_device *spinand = nand_to_spinand(nand);
 259        struct mtd_info *mtd = nanddev_to_mtd(nand);
 260        struct spinand_ondie_ecc_conf *engine_conf;
 261
 262        nand->ecc.ctx.conf.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE;
 263        nand->ecc.ctx.conf.step_size = nand->ecc.requirements.step_size;
 264        nand->ecc.ctx.conf.strength = nand->ecc.requirements.strength;
 265
 266        engine_conf = kzalloc(sizeof(*engine_conf), GFP_KERNEL);
 267        if (!engine_conf)
 268                return -ENOMEM;
 269
 270        nand->ecc.ctx.priv = engine_conf;
 271
 272        if (spinand->eccinfo.ooblayout)
 273                mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout);
 274        else
 275                mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout);
 276
 277        return 0;
 278}
 279
 280static void spinand_ondie_ecc_cleanup_ctx(struct nand_device *nand)
 281{
 282        kfree(nand->ecc.ctx.priv);
 283}
 284
 285static int spinand_ondie_ecc_prepare_io_req(struct nand_device *nand,
 286                                            struct nand_page_io_req *req)
 287{
 288        struct spinand_device *spinand = nand_to_spinand(nand);
 289        bool enable = (req->mode != MTD_OPS_RAW);
 290
 291        /* Only enable or disable the engine */
 292        return spinand_ecc_enable(spinand, enable);
 293}
 294
 295static int spinand_ondie_ecc_finish_io_req(struct nand_device *nand,
 296                                           struct nand_page_io_req *req)
 297{
 298        struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv;
 299        struct spinand_device *spinand = nand_to_spinand(nand);
 300        struct mtd_info *mtd = spinand_to_mtd(spinand);
 301        int ret;
 302
 303        if (req->mode == MTD_OPS_RAW)
 304                return 0;
 305
 306        /* Nothing to do when finishing a page write */
 307        if (req->type == NAND_PAGE_WRITE)
 308                return 0;
 309
 310        /* Finish a page write: check the status, report errors/bitflips */
 311        ret = spinand_check_ecc_status(spinand, engine_conf->status);
 312        if (ret == -EBADMSG)
 313                mtd->ecc_stats.failed++;
 314        else if (ret > 0)
 315                mtd->ecc_stats.corrected += ret;
 316
 317        return ret;
 318}
 319
 320static struct nand_ecc_engine_ops spinand_ondie_ecc_engine_ops = {
 321        .init_ctx = spinand_ondie_ecc_init_ctx,
 322        .cleanup_ctx = spinand_ondie_ecc_cleanup_ctx,
 323        .prepare_io_req = spinand_ondie_ecc_prepare_io_req,
 324        .finish_io_req = spinand_ondie_ecc_finish_io_req,
 325};
 326
 327static struct nand_ecc_engine spinand_ondie_ecc_engine = {
 328        .ops = &spinand_ondie_ecc_engine_ops,
 329};
 330
 331static void spinand_ondie_ecc_save_status(struct nand_device *nand, u8 status)
 332{
 333        struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv;
 334
 335        if (nand->ecc.ctx.conf.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE &&
 336            engine_conf)
 337                engine_conf->status = status;
 338}
 339
 340static int spinand_write_enable_op(struct spinand_device *spinand)
 341{
 342        struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true);
 343
 344        return spi_mem_exec_op(spinand->spimem, &op);
 345}
 346
 347static int spinand_load_page_op(struct spinand_device *spinand,
 348                                const struct nand_page_io_req *req)
 349{
 350        struct nand_device *nand = spinand_to_nand(spinand);
 351        unsigned int row = nanddev_pos_to_row(nand, &req->pos);
 352        struct spi_mem_op op = SPINAND_PAGE_READ_OP(row);
 353
 354        return spi_mem_exec_op(spinand->spimem, &op);
 355}
 356
 357static int spinand_read_from_cache_op(struct spinand_device *spinand,
 358                                      const struct nand_page_io_req *req)
 359{
 360        struct nand_device *nand = spinand_to_nand(spinand);
 361        struct mtd_info *mtd = spinand_to_mtd(spinand);
 362        struct spi_mem_dirmap_desc *rdesc;
 363        unsigned int nbytes = 0;
 364        void *buf = NULL;
 365        u16 column = 0;
 366        ssize_t ret;
 367
 368        if (req->datalen) {
 369                buf = spinand->databuf;
 370                nbytes = nanddev_page_size(nand);
 371                column = 0;
 372        }
 373
 374        if (req->ooblen) {
 375                nbytes += nanddev_per_page_oobsize(nand);
 376                if (!buf) {
 377                        buf = spinand->oobbuf;
 378                        column = nanddev_page_size(nand);
 379                }
 380        }
 381
 382        rdesc = spinand->dirmaps[req->pos.plane].rdesc;
 383
 384        while (nbytes) {
 385                ret = spi_mem_dirmap_read(rdesc, column, nbytes, buf);
 386                if (ret < 0)
 387                        return ret;
 388
 389                if (!ret || ret > nbytes)
 390                        return -EIO;
 391
 392                nbytes -= ret;
 393                column += ret;
 394                buf += ret;
 395        }
 396
 397        if (req->datalen)
 398                memcpy(req->databuf.in, spinand->databuf + req->dataoffs,
 399                       req->datalen);
 400
 401        if (req->ooblen) {
 402                if (req->mode == MTD_OPS_AUTO_OOB)
 403                        mtd_ooblayout_get_databytes(mtd, req->oobbuf.in,
 404                                                    spinand->oobbuf,
 405                                                    req->ooboffs,
 406                                                    req->ooblen);
 407                else
 408                        memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs,
 409                               req->ooblen);
 410        }
 411
 412        return 0;
 413}
 414
 415static int spinand_write_to_cache_op(struct spinand_device *spinand,
 416                                     const struct nand_page_io_req *req)
 417{
 418        struct nand_device *nand = spinand_to_nand(spinand);
 419        struct mtd_info *mtd = spinand_to_mtd(spinand);
 420        struct spi_mem_dirmap_desc *wdesc;
 421        unsigned int nbytes, column = 0;
 422        void *buf = spinand->databuf;
 423        ssize_t ret;
 424
 425        /*
 426         * Looks like PROGRAM LOAD (AKA write cache) does not necessarily reset
 427         * the cache content to 0xFF (depends on vendor implementation), so we
 428         * must fill the page cache entirely even if we only want to program
 429         * the data portion of the page, otherwise we might corrupt the BBM or
 430         * user data previously programmed in OOB area.
 431         *
 432         * Only reset the data buffer manually, the OOB buffer is prepared by
 433         * ECC engines ->prepare_io_req() callback.
 434         */
 435        nbytes = nanddev_page_size(nand) + nanddev_per_page_oobsize(nand);
 436        memset(spinand->databuf, 0xff, nanddev_page_size(nand));
 437
 438        if (req->datalen)
 439                memcpy(spinand->databuf + req->dataoffs, req->databuf.out,
 440                       req->datalen);
 441
 442        if (req->ooblen) {
 443                if (req->mode == MTD_OPS_AUTO_OOB)
 444                        mtd_ooblayout_set_databytes(mtd, req->oobbuf.out,
 445                                                    spinand->oobbuf,
 446                                                    req->ooboffs,
 447                                                    req->ooblen);
 448                else
 449                        memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out,
 450                               req->ooblen);
 451        }
 452
 453        wdesc = spinand->dirmaps[req->pos.plane].wdesc;
 454
 455        while (nbytes) {
 456                ret = spi_mem_dirmap_write(wdesc, column, nbytes, buf);
 457                if (ret < 0)
 458                        return ret;
 459
 460                if (!ret || ret > nbytes)
 461                        return -EIO;
 462
 463                nbytes -= ret;
 464                column += ret;
 465                buf += ret;
 466        }
 467
 468        return 0;
 469}
 470
 471static int spinand_program_op(struct spinand_device *spinand,
 472                              const struct nand_page_io_req *req)
 473{
 474        struct nand_device *nand = spinand_to_nand(spinand);
 475        unsigned int row = nanddev_pos_to_row(nand, &req->pos);
 476        struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row);
 477
 478        return spi_mem_exec_op(spinand->spimem, &op);
 479}
 480
 481static int spinand_erase_op(struct spinand_device *spinand,
 482                            const struct nand_pos *pos)
 483{
 484        struct nand_device *nand = spinand_to_nand(spinand);
 485        unsigned int row = nanddev_pos_to_row(nand, pos);
 486        struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row);
 487
 488        return spi_mem_exec_op(spinand->spimem, &op);
 489}
 490
 491static int spinand_wait(struct spinand_device *spinand,
 492                        unsigned long initial_delay_us,
 493                        unsigned long poll_delay_us,
 494                        u8 *s)
 495{
 496        struct spi_mem_op op = SPINAND_GET_FEATURE_OP(REG_STATUS,
 497                                                      spinand->scratchbuf);
 498        u8 status;
 499        int ret;
 500
 501        ret = spi_mem_poll_status(spinand->spimem, &op, STATUS_BUSY, 0,
 502                                  initial_delay_us,
 503                                  poll_delay_us,
 504                                  SPINAND_WAITRDY_TIMEOUT_MS);
 505        if (ret)
 506                return ret;
 507
 508        status = *spinand->scratchbuf;
 509        if (!(status & STATUS_BUSY))
 510                goto out;
 511
 512        /*
 513         * Extra read, just in case the STATUS_READY bit has changed
 514         * since our last check
 515         */
 516        ret = spinand_read_status(spinand, &status);
 517        if (ret)
 518                return ret;
 519
 520out:
 521        if (s)
 522                *s = status;
 523
 524        return status & STATUS_BUSY ? -ETIMEDOUT : 0;
 525}
 526
 527static int spinand_read_id_op(struct spinand_device *spinand, u8 naddr,
 528                              u8 ndummy, u8 *buf)
 529{
 530        struct spi_mem_op op = SPINAND_READID_OP(
 531                naddr, ndummy, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
 532        int ret;
 533
 534        ret = spi_mem_exec_op(spinand->spimem, &op);
 535        if (!ret)
 536                memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
 537
 538        return ret;
 539}
 540
 541static int spinand_reset_op(struct spinand_device *spinand)
 542{
 543        struct spi_mem_op op = SPINAND_RESET_OP;
 544        int ret;
 545
 546        ret = spi_mem_exec_op(spinand->spimem, &op);
 547        if (ret)
 548                return ret;
 549
 550        return spinand_wait(spinand,
 551                            SPINAND_RESET_INITIAL_DELAY_US,
 552                            SPINAND_RESET_POLL_DELAY_US,
 553                            NULL);
 554}
 555
 556static int spinand_lock_block(struct spinand_device *spinand, u8 lock)
 557{
 558        return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock);
 559}
 560
 561static int spinand_read_page(struct spinand_device *spinand,
 562                             const struct nand_page_io_req *req)
 563{
 564        struct nand_device *nand = spinand_to_nand(spinand);
 565        u8 status;
 566        int ret;
 567
 568        ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req);
 569        if (ret)
 570                return ret;
 571
 572        ret = spinand_load_page_op(spinand, req);
 573        if (ret)
 574                return ret;
 575
 576        ret = spinand_wait(spinand,
 577                           SPINAND_READ_INITIAL_DELAY_US,
 578                           SPINAND_READ_POLL_DELAY_US,
 579                           &status);
 580        if (ret < 0)
 581                return ret;
 582
 583        spinand_ondie_ecc_save_status(nand, status);
 584
 585        ret = spinand_read_from_cache_op(spinand, req);
 586        if (ret)
 587                return ret;
 588
 589        return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req);
 590}
 591
 592static int spinand_write_page(struct spinand_device *spinand,
 593                              const struct nand_page_io_req *req)
 594{
 595        struct nand_device *nand = spinand_to_nand(spinand);
 596        u8 status;
 597        int ret;
 598
 599        ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req);
 600        if (ret)
 601                return ret;
 602
 603        ret = spinand_write_enable_op(spinand);
 604        if (ret)
 605                return ret;
 606
 607        ret = spinand_write_to_cache_op(spinand, req);
 608        if (ret)
 609                return ret;
 610
 611        ret = spinand_program_op(spinand, req);
 612        if (ret)
 613                return ret;
 614
 615        ret = spinand_wait(spinand,
 616                           SPINAND_WRITE_INITIAL_DELAY_US,
 617                           SPINAND_WRITE_POLL_DELAY_US,
 618                           &status);
 619        if (!ret && (status & STATUS_PROG_FAILED))
 620                return -EIO;
 621
 622        return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req);
 623}
 624
 625static int spinand_mtd_read(struct mtd_info *mtd, loff_t from,
 626                            struct mtd_oob_ops *ops)
 627{
 628        struct spinand_device *spinand = mtd_to_spinand(mtd);
 629        struct nand_device *nand = mtd_to_nanddev(mtd);
 630        unsigned int max_bitflips = 0;
 631        struct nand_io_iter iter;
 632        bool disable_ecc = false;
 633        bool ecc_failed = false;
 634        int ret = 0;
 635
 636        if (ops->mode == MTD_OPS_RAW || !spinand->eccinfo.ooblayout)
 637                disable_ecc = true;
 638
 639        mutex_lock(&spinand->lock);
 640
 641        nanddev_io_for_each_page(nand, NAND_PAGE_READ, from, ops, &iter) {
 642                if (disable_ecc)
 643                        iter.req.mode = MTD_OPS_RAW;
 644
 645                ret = spinand_select_target(spinand, iter.req.pos.target);
 646                if (ret)
 647                        break;
 648
 649                ret = spinand_read_page(spinand, &iter.req);
 650                if (ret < 0 && ret != -EBADMSG)
 651                        break;
 652
 653                if (ret == -EBADMSG)
 654                        ecc_failed = true;
 655                else
 656                        max_bitflips = max_t(unsigned int, max_bitflips, ret);
 657
 658                ret = 0;
 659                ops->retlen += iter.req.datalen;
 660                ops->oobretlen += iter.req.ooblen;
 661        }
 662
 663        mutex_unlock(&spinand->lock);
 664
 665        if (ecc_failed && !ret)
 666                ret = -EBADMSG;
 667
 668        return ret ? ret : max_bitflips;
 669}
 670
 671static int spinand_mtd_write(struct mtd_info *mtd, loff_t to,
 672                             struct mtd_oob_ops *ops)
 673{
 674        struct spinand_device *spinand = mtd_to_spinand(mtd);
 675        struct nand_device *nand = mtd_to_nanddev(mtd);
 676        struct nand_io_iter iter;
 677        bool disable_ecc = false;
 678        int ret = 0;
 679
 680        if (ops->mode == MTD_OPS_RAW || !mtd->ooblayout)
 681                disable_ecc = true;
 682
 683        mutex_lock(&spinand->lock);
 684
 685        nanddev_io_for_each_page(nand, NAND_PAGE_WRITE, to, ops, &iter) {
 686                if (disable_ecc)
 687                        iter.req.mode = MTD_OPS_RAW;
 688
 689                ret = spinand_select_target(spinand, iter.req.pos.target);
 690                if (ret)
 691                        break;
 692
 693                ret = spinand_write_page(spinand, &iter.req);
 694                if (ret)
 695                        break;
 696
 697                ops->retlen += iter.req.datalen;
 698                ops->oobretlen += iter.req.ooblen;
 699        }
 700
 701        mutex_unlock(&spinand->lock);
 702
 703        return ret;
 704}
 705
 706static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos)
 707{
 708        struct spinand_device *spinand = nand_to_spinand(nand);
 709        u8 marker[2] = { };
 710        struct nand_page_io_req req = {
 711                .pos = *pos,
 712                .ooblen = sizeof(marker),
 713                .ooboffs = 0,
 714                .oobbuf.in = marker,
 715                .mode = MTD_OPS_RAW,
 716        };
 717
 718        spinand_select_target(spinand, pos->target);
 719        spinand_read_page(spinand, &req);
 720        if (marker[0] != 0xff || marker[1] != 0xff)
 721                return true;
 722
 723        return false;
 724}
 725
 726static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs)
 727{
 728        struct nand_device *nand = mtd_to_nanddev(mtd);
 729        struct spinand_device *spinand = nand_to_spinand(nand);
 730        struct nand_pos pos;
 731        int ret;
 732
 733        nanddev_offs_to_pos(nand, offs, &pos);
 734        mutex_lock(&spinand->lock);
 735        ret = nanddev_isbad(nand, &pos);
 736        mutex_unlock(&spinand->lock);
 737
 738        return ret;
 739}
 740
 741static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos)
 742{
 743        struct spinand_device *spinand = nand_to_spinand(nand);
 744        u8 marker[2] = { };
 745        struct nand_page_io_req req = {
 746                .pos = *pos,
 747                .ooboffs = 0,
 748                .ooblen = sizeof(marker),
 749                .oobbuf.out = marker,
 750                .mode = MTD_OPS_RAW,
 751        };
 752        int ret;
 753
 754        ret = spinand_select_target(spinand, pos->target);
 755        if (ret)
 756                return ret;
 757
 758        ret = spinand_write_enable_op(spinand);
 759        if (ret)
 760                return ret;
 761
 762        return spinand_write_page(spinand, &req);
 763}
 764
 765static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs)
 766{
 767        struct nand_device *nand = mtd_to_nanddev(mtd);
 768        struct spinand_device *spinand = nand_to_spinand(nand);
 769        struct nand_pos pos;
 770        int ret;
 771
 772        nanddev_offs_to_pos(nand, offs, &pos);
 773        mutex_lock(&spinand->lock);
 774        ret = nanddev_markbad(nand, &pos);
 775        mutex_unlock(&spinand->lock);
 776
 777        return ret;
 778}
 779
 780static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos)
 781{
 782        struct spinand_device *spinand = nand_to_spinand(nand);
 783        u8 status;
 784        int ret;
 785
 786        ret = spinand_select_target(spinand, pos->target);
 787        if (ret)
 788                return ret;
 789
 790        ret = spinand_write_enable_op(spinand);
 791        if (ret)
 792                return ret;
 793
 794        ret = spinand_erase_op(spinand, pos);
 795        if (ret)
 796                return ret;
 797
 798        ret = spinand_wait(spinand,
 799                           SPINAND_ERASE_INITIAL_DELAY_US,
 800                           SPINAND_ERASE_POLL_DELAY_US,
 801                           &status);
 802
 803        if (!ret && (status & STATUS_ERASE_FAILED))
 804                ret = -EIO;
 805
 806        return ret;
 807}
 808
 809static int spinand_mtd_erase(struct mtd_info *mtd,
 810                             struct erase_info *einfo)
 811{
 812        struct spinand_device *spinand = mtd_to_spinand(mtd);
 813        int ret;
 814
 815        mutex_lock(&spinand->lock);
 816        ret = nanddev_mtd_erase(mtd, einfo);
 817        mutex_unlock(&spinand->lock);
 818
 819        return ret;
 820}
 821
 822static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs)
 823{
 824        struct spinand_device *spinand = mtd_to_spinand(mtd);
 825        struct nand_device *nand = mtd_to_nanddev(mtd);
 826        struct nand_pos pos;
 827        int ret;
 828
 829        nanddev_offs_to_pos(nand, offs, &pos);
 830        mutex_lock(&spinand->lock);
 831        ret = nanddev_isreserved(nand, &pos);
 832        mutex_unlock(&spinand->lock);
 833
 834        return ret;
 835}
 836
 837static int spinand_create_dirmap(struct spinand_device *spinand,
 838                                 unsigned int plane)
 839{
 840        struct nand_device *nand = spinand_to_nand(spinand);
 841        struct spi_mem_dirmap_info info = {
 842                .length = nanddev_page_size(nand) +
 843                          nanddev_per_page_oobsize(nand),
 844        };
 845        struct spi_mem_dirmap_desc *desc;
 846
 847        /* The plane number is passed in MSB just above the column address */
 848        info.offset = plane << fls(nand->memorg.pagesize);
 849
 850        info.op_tmpl = *spinand->op_templates.update_cache;
 851        desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
 852                                          spinand->spimem, &info);
 853        if (IS_ERR(desc))
 854                return PTR_ERR(desc);
 855
 856        spinand->dirmaps[plane].wdesc = desc;
 857
 858        info.op_tmpl = *spinand->op_templates.read_cache;
 859        desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
 860                                          spinand->spimem, &info);
 861        if (IS_ERR(desc))
 862                return PTR_ERR(desc);
 863
 864        spinand->dirmaps[plane].rdesc = desc;
 865
 866        return 0;
 867}
 868
 869static int spinand_create_dirmaps(struct spinand_device *spinand)
 870{
 871        struct nand_device *nand = spinand_to_nand(spinand);
 872        int i, ret;
 873
 874        spinand->dirmaps = devm_kzalloc(&spinand->spimem->spi->dev,
 875                                        sizeof(*spinand->dirmaps) *
 876                                        nand->memorg.planes_per_lun,
 877                                        GFP_KERNEL);
 878        if (!spinand->dirmaps)
 879                return -ENOMEM;
 880
 881        for (i = 0; i < nand->memorg.planes_per_lun; i++) {
 882                ret = spinand_create_dirmap(spinand, i);
 883                if (ret)
 884                        return ret;
 885        }
 886
 887        return 0;
 888}
 889
 890static const struct nand_ops spinand_ops = {
 891        .erase = spinand_erase,
 892        .markbad = spinand_markbad,
 893        .isbad = spinand_isbad,
 894};
 895
 896static const struct spinand_manufacturer *spinand_manufacturers[] = {
 897        &gigadevice_spinand_manufacturer,
 898        &macronix_spinand_manufacturer,
 899        &micron_spinand_manufacturer,
 900        &paragon_spinand_manufacturer,
 901        &toshiba_spinand_manufacturer,
 902        &winbond_spinand_manufacturer,
 903};
 904
 905static int spinand_manufacturer_match(struct spinand_device *spinand,
 906                                      enum spinand_readid_method rdid_method)
 907{
 908        u8 *id = spinand->id.data;
 909        unsigned int i;
 910        int ret;
 911
 912        for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) {
 913                const struct spinand_manufacturer *manufacturer =
 914                        spinand_manufacturers[i];
 915
 916                if (id[0] != manufacturer->id)
 917                        continue;
 918
 919                ret = spinand_match_and_init(spinand,
 920                                             manufacturer->chips,
 921                                             manufacturer->nchips,
 922                                             rdid_method);
 923                if (ret < 0)
 924                        continue;
 925
 926                spinand->manufacturer = manufacturer;
 927                return 0;
 928        }
 929        return -ENOTSUPP;
 930}
 931
 932static int spinand_id_detect(struct spinand_device *spinand)
 933{
 934        u8 *id = spinand->id.data;
 935        int ret;
 936
 937        ret = spinand_read_id_op(spinand, 0, 0, id);
 938        if (ret)
 939                return ret;
 940        ret = spinand_manufacturer_match(spinand, SPINAND_READID_METHOD_OPCODE);
 941        if (!ret)
 942                return 0;
 943
 944        ret = spinand_read_id_op(spinand, 1, 0, id);
 945        if (ret)
 946                return ret;
 947        ret = spinand_manufacturer_match(spinand,
 948                                         SPINAND_READID_METHOD_OPCODE_ADDR);
 949        if (!ret)
 950                return 0;
 951
 952        ret = spinand_read_id_op(spinand, 0, 1, id);
 953        if (ret)
 954                return ret;
 955        ret = spinand_manufacturer_match(spinand,
 956                                         SPINAND_READID_METHOD_OPCODE_DUMMY);
 957
 958        return ret;
 959}
 960
 961static int spinand_manufacturer_init(struct spinand_device *spinand)
 962{
 963        if (spinand->manufacturer->ops->init)
 964                return spinand->manufacturer->ops->init(spinand);
 965
 966        return 0;
 967}
 968
 969static void spinand_manufacturer_cleanup(struct spinand_device *spinand)
 970{
 971        /* Release manufacturer private data */
 972        if (spinand->manufacturer->ops->cleanup)
 973                return spinand->manufacturer->ops->cleanup(spinand);
 974}
 975
 976static const struct spi_mem_op *
 977spinand_select_op_variant(struct spinand_device *spinand,
 978                          const struct spinand_op_variants *variants)
 979{
 980        struct nand_device *nand = spinand_to_nand(spinand);
 981        unsigned int i;
 982
 983        for (i = 0; i < variants->nops; i++) {
 984                struct spi_mem_op op = variants->ops[i];
 985                unsigned int nbytes;
 986                int ret;
 987
 988                nbytes = nanddev_per_page_oobsize(nand) +
 989                         nanddev_page_size(nand);
 990
 991                while (nbytes) {
 992                        op.data.nbytes = nbytes;
 993                        ret = spi_mem_adjust_op_size(spinand->spimem, &op);
 994                        if (ret)
 995                                break;
 996
 997                        if (!spi_mem_supports_op(spinand->spimem, &op))
 998                                break;
 999
1000                        nbytes -= op.data.nbytes;
1001                }
1002
1003                if (!nbytes)
1004                        return &variants->ops[i];
1005        }
1006
1007        return NULL;
1008}
1009
1010/**
1011 * spinand_match_and_init() - Try to find a match between a device ID and an
1012 *                            entry in a spinand_info table
1013 * @spinand: SPI NAND object
1014 * @table: SPI NAND device description table
1015 * @table_size: size of the device description table
1016 * @rdid_method: read id method to match
1017 *
1018 * Match between a device ID retrieved through the READ_ID command and an
1019 * entry in the SPI NAND description table. If a match is found, the spinand
1020 * object will be initialized with information provided by the matching
1021 * spinand_info entry.
1022 *
1023 * Return: 0 on success, a negative error code otherwise.
1024 */
1025int spinand_match_and_init(struct spinand_device *spinand,
1026                           const struct spinand_info *table,
1027                           unsigned int table_size,
1028                           enum spinand_readid_method rdid_method)
1029{
1030        u8 *id = spinand->id.data;
1031        struct nand_device *nand = spinand_to_nand(spinand);
1032        unsigned int i;
1033
1034        for (i = 0; i < table_size; i++) {
1035                const struct spinand_info *info = &table[i];
1036                const struct spi_mem_op *op;
1037
1038                if (rdid_method != info->devid.method)
1039                        continue;
1040
1041                if (memcmp(id + 1, info->devid.id, info->devid.len))
1042                        continue;
1043
1044                nand->memorg = table[i].memorg;
1045                nanddev_set_ecc_requirements(nand, &table[i].eccreq);
1046                spinand->eccinfo = table[i].eccinfo;
1047                spinand->flags = table[i].flags;
1048                spinand->id.len = 1 + table[i].devid.len;
1049                spinand->select_target = table[i].select_target;
1050
1051                op = spinand_select_op_variant(spinand,
1052                                               info->op_variants.read_cache);
1053                if (!op)
1054                        return -ENOTSUPP;
1055
1056                spinand->op_templates.read_cache = op;
1057
1058                op = spinand_select_op_variant(spinand,
1059                                               info->op_variants.write_cache);
1060                if (!op)
1061                        return -ENOTSUPP;
1062
1063                spinand->op_templates.write_cache = op;
1064
1065                op = spinand_select_op_variant(spinand,
1066                                               info->op_variants.update_cache);
1067                spinand->op_templates.update_cache = op;
1068
1069                return 0;
1070        }
1071
1072        return -ENOTSUPP;
1073}
1074
1075static int spinand_detect(struct spinand_device *spinand)
1076{
1077        struct device *dev = &spinand->spimem->spi->dev;
1078        struct nand_device *nand = spinand_to_nand(spinand);
1079        int ret;
1080
1081        ret = spinand_reset_op(spinand);
1082        if (ret)
1083                return ret;
1084
1085        ret = spinand_id_detect(spinand);
1086        if (ret) {
1087                dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN,
1088                        spinand->id.data);
1089                return ret;
1090        }
1091
1092        if (nand->memorg.ntargets > 1 && !spinand->select_target) {
1093                dev_err(dev,
1094                        "SPI NANDs with more than one die must implement ->select_target()\n");
1095                return -EINVAL;
1096        }
1097
1098        dev_info(&spinand->spimem->spi->dev,
1099                 "%s SPI NAND was found.\n", spinand->manufacturer->name);
1100        dev_info(&spinand->spimem->spi->dev,
1101                 "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n",
1102                 nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10,
1103                 nanddev_page_size(nand), nanddev_per_page_oobsize(nand));
1104
1105        return 0;
1106}
1107
1108static int spinand_init_flash(struct spinand_device *spinand)
1109{
1110        struct device *dev = &spinand->spimem->spi->dev;
1111        struct nand_device *nand = spinand_to_nand(spinand);
1112        int ret, i;
1113
1114        ret = spinand_read_cfg(spinand);
1115        if (ret)
1116                return ret;
1117
1118        ret = spinand_init_quad_enable(spinand);
1119        if (ret)
1120                return ret;
1121
1122        ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0);
1123        if (ret)
1124                return ret;
1125
1126        ret = spinand_manufacturer_init(spinand);
1127        if (ret) {
1128                dev_err(dev,
1129                "Failed to initialize the SPI NAND chip (err = %d)\n",
1130                ret);
1131                return ret;
1132        }
1133
1134        /* After power up, all blocks are locked, so unlock them here. */
1135        for (i = 0; i < nand->memorg.ntargets; i++) {
1136                ret = spinand_select_target(spinand, i);
1137                if (ret)
1138                        break;
1139
1140                ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED);
1141                if (ret)
1142                        break;
1143        }
1144
1145        if (ret)
1146                spinand_manufacturer_cleanup(spinand);
1147
1148        return ret;
1149}
1150
1151static void spinand_mtd_resume(struct mtd_info *mtd)
1152{
1153        struct spinand_device *spinand = mtd_to_spinand(mtd);
1154        int ret;
1155
1156        ret = spinand_reset_op(spinand);
1157        if (ret)
1158                return;
1159
1160        ret = spinand_init_flash(spinand);
1161        if (ret)
1162                return;
1163
1164        spinand_ecc_enable(spinand, false);
1165}
1166
1167static int spinand_init(struct spinand_device *spinand)
1168{
1169        struct device *dev = &spinand->spimem->spi->dev;
1170        struct mtd_info *mtd = spinand_to_mtd(spinand);
1171        struct nand_device *nand = mtd_to_nanddev(mtd);
1172        int ret;
1173
1174        /*
1175         * We need a scratch buffer because the spi_mem interface requires that
1176         * buf passed in spi_mem_op->data.buf be DMA-able.
1177         */
1178        spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL);
1179        if (!spinand->scratchbuf)
1180                return -ENOMEM;
1181
1182        ret = spinand_detect(spinand);
1183        if (ret)
1184                goto err_free_bufs;
1185
1186        /*
1187         * Use kzalloc() instead of devm_kzalloc() here, because some drivers
1188         * may use this buffer for DMA access.
1189         * Memory allocated by devm_ does not guarantee DMA-safe alignment.
1190         */
1191        spinand->databuf = kzalloc(nanddev_page_size(nand) +
1192                               nanddev_per_page_oobsize(nand),
1193                               GFP_KERNEL);
1194        if (!spinand->databuf) {
1195                ret = -ENOMEM;
1196                goto err_free_bufs;
1197        }
1198
1199        spinand->oobbuf = spinand->databuf + nanddev_page_size(nand);
1200
1201        ret = spinand_init_cfg_cache(spinand);
1202        if (ret)
1203                goto err_free_bufs;
1204
1205        ret = spinand_init_flash(spinand);
1206        if (ret)
1207                goto err_free_bufs;
1208
1209        ret = spinand_create_dirmaps(spinand);
1210        if (ret) {
1211                dev_err(dev,
1212                        "Failed to create direct mappings for read/write operations (err = %d)\n",
1213                        ret);
1214                goto err_manuf_cleanup;
1215        }
1216
1217        ret = nanddev_init(nand, &spinand_ops, THIS_MODULE);
1218        if (ret)
1219                goto err_manuf_cleanup;
1220
1221        /* SPI-NAND default ECC engine is on-die */
1222        nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE;
1223        nand->ecc.ondie_engine = &spinand_ondie_ecc_engine;
1224
1225        spinand_ecc_enable(spinand, false);
1226        ret = nanddev_ecc_engine_init(nand);
1227        if (ret)
1228                goto err_cleanup_nanddev;
1229
1230        mtd->_read_oob = spinand_mtd_read;
1231        mtd->_write_oob = spinand_mtd_write;
1232        mtd->_block_isbad = spinand_mtd_block_isbad;
1233        mtd->_block_markbad = spinand_mtd_block_markbad;
1234        mtd->_block_isreserved = spinand_mtd_block_isreserved;
1235        mtd->_erase = spinand_mtd_erase;
1236        mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
1237        mtd->_resume = spinand_mtd_resume;
1238
1239        if (nand->ecc.engine) {
1240                ret = mtd_ooblayout_count_freebytes(mtd);
1241                if (ret < 0)
1242                        goto err_cleanup_ecc_engine;
1243        }
1244
1245        mtd->oobavail = ret;
1246
1247        /* Propagate ECC information to mtd_info */
1248        mtd->ecc_strength = nanddev_get_ecc_conf(nand)->strength;
1249        mtd->ecc_step_size = nanddev_get_ecc_conf(nand)->step_size;
1250
1251        return 0;
1252
1253err_cleanup_ecc_engine:
1254        nanddev_ecc_engine_cleanup(nand);
1255
1256err_cleanup_nanddev:
1257        nanddev_cleanup(nand);
1258
1259err_manuf_cleanup:
1260        spinand_manufacturer_cleanup(spinand);
1261
1262err_free_bufs:
1263        kfree(spinand->databuf);
1264        kfree(spinand->scratchbuf);
1265        return ret;
1266}
1267
1268static void spinand_cleanup(struct spinand_device *spinand)
1269{
1270        struct nand_device *nand = spinand_to_nand(spinand);
1271
1272        nanddev_cleanup(nand);
1273        spinand_manufacturer_cleanup(spinand);
1274        kfree(spinand->databuf);
1275        kfree(spinand->scratchbuf);
1276}
1277
1278static int spinand_probe(struct spi_mem *mem)
1279{
1280        struct spinand_device *spinand;
1281        struct mtd_info *mtd;
1282        int ret;
1283
1284        spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand),
1285                               GFP_KERNEL);
1286        if (!spinand)
1287                return -ENOMEM;
1288
1289        spinand->spimem = mem;
1290        spi_mem_set_drvdata(mem, spinand);
1291        spinand_set_of_node(spinand, mem->spi->dev.of_node);
1292        mutex_init(&spinand->lock);
1293        mtd = spinand_to_mtd(spinand);
1294        mtd->dev.parent = &mem->spi->dev;
1295
1296        ret = spinand_init(spinand);
1297        if (ret)
1298                return ret;
1299
1300        ret = mtd_device_register(mtd, NULL, 0);
1301        if (ret)
1302                goto err_spinand_cleanup;
1303
1304        return 0;
1305
1306err_spinand_cleanup:
1307        spinand_cleanup(spinand);
1308
1309        return ret;
1310}
1311
1312static int spinand_remove(struct spi_mem *mem)
1313{
1314        struct spinand_device *spinand;
1315        struct mtd_info *mtd;
1316        int ret;
1317
1318        spinand = spi_mem_get_drvdata(mem);
1319        mtd = spinand_to_mtd(spinand);
1320
1321        ret = mtd_device_unregister(mtd);
1322        if (ret)
1323                return ret;
1324
1325        spinand_cleanup(spinand);
1326
1327        return 0;
1328}
1329
1330static const struct spi_device_id spinand_ids[] = {
1331        { .name = "spi-nand" },
1332        { /* sentinel */ },
1333};
1334MODULE_DEVICE_TABLE(spi, spinand_ids);
1335
1336#ifdef CONFIG_OF
1337static const struct of_device_id spinand_of_ids[] = {
1338        { .compatible = "spi-nand" },
1339        { /* sentinel */ },
1340};
1341MODULE_DEVICE_TABLE(of, spinand_of_ids);
1342#endif
1343
1344static struct spi_mem_driver spinand_drv = {
1345        .spidrv = {
1346                .id_table = spinand_ids,
1347                .driver = {
1348                        .name = "spi-nand",
1349                        .of_match_table = of_match_ptr(spinand_of_ids),
1350                },
1351        },
1352        .probe = spinand_probe,
1353        .remove = spinand_remove,
1354};
1355module_spi_mem_driver(spinand_drv);
1356
1357MODULE_DESCRIPTION("SPI NAND framework");
1358MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>");
1359MODULE_LICENSE("GPL v2");
1360