linux/drivers/net/ethernet/chelsio/cxgb3/l2t.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
   3 *
   4 * This software is available to you under a choice of one of two
   5 * licenses.  You may choose to be licensed under the terms of the GNU
   6 * General Public License (GPL) Version 2, available from the file
   7 * COPYING in the main directory of this source tree, or the
   8 * OpenIB.org BSD license below:
   9 *
  10 *     Redistribution and use in source and binary forms, with or
  11 *     without modification, are permitted provided that the following
  12 *     conditions are met:
  13 *
  14 *      - Redistributions of source code must retain the above
  15 *        copyright notice, this list of conditions and the following
  16 *        disclaimer.
  17 *
  18 *      - Redistributions in binary form must reproduce the above
  19 *        copyright notice, this list of conditions and the following
  20 *        disclaimer in the documentation and/or other materials
  21 *        provided with the distribution.
  22 *
  23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30 * SOFTWARE.
  31 */
  32#include <linux/skbuff.h>
  33#include <linux/netdevice.h>
  34#include <linux/if.h>
  35#include <linux/if_vlan.h>
  36#include <linux/jhash.h>
  37#include <linux/slab.h>
  38#include <linux/export.h>
  39#include <net/neighbour.h>
  40#include "common.h"
  41#include "t3cdev.h"
  42#include "cxgb3_defs.h"
  43#include "l2t.h"
  44#include "t3_cpl.h"
  45#include "firmware_exports.h"
  46
  47#define VLAN_NONE 0xfff
  48
  49/*
  50 * Module locking notes:  There is a RW lock protecting the L2 table as a
  51 * whole plus a spinlock per L2T entry.  Entry lookups and allocations happen
  52 * under the protection of the table lock, individual entry changes happen
  53 * while holding that entry's spinlock.  The table lock nests outside the
  54 * entry locks.  Allocations of new entries take the table lock as writers so
  55 * no other lookups can happen while allocating new entries.  Entry updates
  56 * take the table lock as readers so multiple entries can be updated in
  57 * parallel.  An L2T entry can be dropped by decrementing its reference count
  58 * and therefore can happen in parallel with entry allocation but no entry
  59 * can change state or increment its ref count during allocation as both of
  60 * these perform lookups.
  61 */
  62
  63static inline unsigned int vlan_prio(const struct l2t_entry *e)
  64{
  65        return e->vlan >> 13;
  66}
  67
  68static inline unsigned int arp_hash(u32 key, int ifindex,
  69                                    const struct l2t_data *d)
  70{
  71        return jhash_2words(key, ifindex, 0) & (d->nentries - 1);
  72}
  73
  74static inline void neigh_replace(struct l2t_entry *e, struct neighbour *n)
  75{
  76        neigh_hold(n);
  77        if (e->neigh)
  78                neigh_release(e->neigh);
  79        e->neigh = n;
  80}
  81
  82/*
  83 * Set up an L2T entry and send any packets waiting in the arp queue.  The
  84 * supplied skb is used for the CPL_L2T_WRITE_REQ.  Must be called with the
  85 * entry locked.
  86 */
  87static int setup_l2e_send_pending(struct t3cdev *dev, struct sk_buff *skb,
  88                                  struct l2t_entry *e)
  89{
  90        struct cpl_l2t_write_req *req;
  91        struct sk_buff *tmp;
  92
  93        if (!skb) {
  94                skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
  95                if (!skb)
  96                        return -ENOMEM;
  97        }
  98
  99        req = __skb_put(skb, sizeof(*req));
 100        req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
 101        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, e->idx));
 102        req->params = htonl(V_L2T_W_IDX(e->idx) | V_L2T_W_IFF(e->smt_idx) |
 103                            V_L2T_W_VLAN(e->vlan & VLAN_VID_MASK) |
 104                            V_L2T_W_PRIO(vlan_prio(e)));
 105        memcpy(e->dmac, e->neigh->ha, sizeof(e->dmac));
 106        memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac));
 107        skb->priority = CPL_PRIORITY_CONTROL;
 108        cxgb3_ofld_send(dev, skb);
 109
 110        skb_queue_walk_safe(&e->arpq, skb, tmp) {
 111                __skb_unlink(skb, &e->arpq);
 112                cxgb3_ofld_send(dev, skb);
 113        }
 114        e->state = L2T_STATE_VALID;
 115
 116        return 0;
 117}
 118
 119/*
 120 * Add a packet to the an L2T entry's queue of packets awaiting resolution.
 121 * Must be called with the entry's lock held.
 122 */
 123static inline void arpq_enqueue(struct l2t_entry *e, struct sk_buff *skb)
 124{
 125        __skb_queue_tail(&e->arpq, skb);
 126}
 127
 128int t3_l2t_send_slow(struct t3cdev *dev, struct sk_buff *skb,
 129                     struct l2t_entry *e)
 130{
 131again:
 132        switch (e->state) {
 133        case L2T_STATE_STALE:   /* entry is stale, kick off revalidation */
 134                neigh_event_send(e->neigh, NULL);
 135                spin_lock_bh(&e->lock);
 136                if (e->state == L2T_STATE_STALE)
 137                        e->state = L2T_STATE_VALID;
 138                spin_unlock_bh(&e->lock);
 139                fallthrough;
 140        case L2T_STATE_VALID:   /* fast-path, send the packet on */
 141                return cxgb3_ofld_send(dev, skb);
 142        case L2T_STATE_RESOLVING:
 143                spin_lock_bh(&e->lock);
 144                if (e->state != L2T_STATE_RESOLVING) {
 145                        /* ARP already completed */
 146                        spin_unlock_bh(&e->lock);
 147                        goto again;
 148                }
 149                arpq_enqueue(e, skb);
 150                spin_unlock_bh(&e->lock);
 151
 152                /*
 153                 * Only the first packet added to the arpq should kick off
 154                 * resolution.  However, because the alloc_skb below can fail,
 155                 * we allow each packet added to the arpq to retry resolution
 156                 * as a way of recovering from transient memory exhaustion.
 157                 * A better way would be to use a work request to retry L2T
 158                 * entries when there's no memory.
 159                 */
 160                if (!neigh_event_send(e->neigh, NULL)) {
 161                        skb = alloc_skb(sizeof(struct cpl_l2t_write_req),
 162                                        GFP_ATOMIC);
 163                        if (!skb)
 164                                break;
 165
 166                        spin_lock_bh(&e->lock);
 167                        if (!skb_queue_empty(&e->arpq))
 168                                setup_l2e_send_pending(dev, skb, e);
 169                        else    /* we lost the race */
 170                                __kfree_skb(skb);
 171                        spin_unlock_bh(&e->lock);
 172                }
 173        }
 174        return 0;
 175}
 176
 177EXPORT_SYMBOL(t3_l2t_send_slow);
 178
 179void t3_l2t_send_event(struct t3cdev *dev, struct l2t_entry *e)
 180{
 181again:
 182        switch (e->state) {
 183        case L2T_STATE_STALE:   /* entry is stale, kick off revalidation */
 184                neigh_event_send(e->neigh, NULL);
 185                spin_lock_bh(&e->lock);
 186                if (e->state == L2T_STATE_STALE) {
 187                        e->state = L2T_STATE_VALID;
 188                }
 189                spin_unlock_bh(&e->lock);
 190                return;
 191        case L2T_STATE_VALID:   /* fast-path, send the packet on */
 192                return;
 193        case L2T_STATE_RESOLVING:
 194                spin_lock_bh(&e->lock);
 195                if (e->state != L2T_STATE_RESOLVING) {
 196                        /* ARP already completed */
 197                        spin_unlock_bh(&e->lock);
 198                        goto again;
 199                }
 200                spin_unlock_bh(&e->lock);
 201
 202                /*
 203                 * Only the first packet added to the arpq should kick off
 204                 * resolution.  However, because the alloc_skb below can fail,
 205                 * we allow each packet added to the arpq to retry resolution
 206                 * as a way of recovering from transient memory exhaustion.
 207                 * A better way would be to use a work request to retry L2T
 208                 * entries when there's no memory.
 209                 */
 210                neigh_event_send(e->neigh, NULL);
 211        }
 212}
 213
 214EXPORT_SYMBOL(t3_l2t_send_event);
 215
 216/*
 217 * Allocate a free L2T entry.  Must be called with l2t_data.lock held.
 218 */
 219static struct l2t_entry *alloc_l2e(struct l2t_data *d)
 220{
 221        struct l2t_entry *end, *e, **p;
 222
 223        if (!atomic_read(&d->nfree))
 224                return NULL;
 225
 226        /* there's definitely a free entry */
 227        for (e = d->rover, end = &d->l2tab[d->nentries]; e != end; ++e)
 228                if (atomic_read(&e->refcnt) == 0)
 229                        goto found;
 230
 231        for (e = &d->l2tab[1]; atomic_read(&e->refcnt); ++e) ;
 232found:
 233        d->rover = e + 1;
 234        atomic_dec(&d->nfree);
 235
 236        /*
 237         * The entry we found may be an inactive entry that is
 238         * presently in the hash table.  We need to remove it.
 239         */
 240        if (e->state != L2T_STATE_UNUSED) {
 241                int hash = arp_hash(e->addr, e->ifindex, d);
 242
 243                for (p = &d->l2tab[hash].first; *p; p = &(*p)->next)
 244                        if (*p == e) {
 245                                *p = e->next;
 246                                break;
 247                        }
 248                e->state = L2T_STATE_UNUSED;
 249        }
 250        return e;
 251}
 252
 253/*
 254 * Called when an L2T entry has no more users.  The entry is left in the hash
 255 * table since it is likely to be reused but we also bump nfree to indicate
 256 * that the entry can be reallocated for a different neighbor.  We also drop
 257 * the existing neighbor reference in case the neighbor is going away and is
 258 * waiting on our reference.
 259 *
 260 * Because entries can be reallocated to other neighbors once their ref count
 261 * drops to 0 we need to take the entry's lock to avoid races with a new
 262 * incarnation.
 263 */
 264void t3_l2e_free(struct l2t_data *d, struct l2t_entry *e)
 265{
 266        spin_lock_bh(&e->lock);
 267        if (atomic_read(&e->refcnt) == 0) {     /* hasn't been recycled */
 268                if (e->neigh) {
 269                        neigh_release(e->neigh);
 270                        e->neigh = NULL;
 271                }
 272        }
 273        spin_unlock_bh(&e->lock);
 274        atomic_inc(&d->nfree);
 275}
 276
 277EXPORT_SYMBOL(t3_l2e_free);
 278
 279/*
 280 * Update an L2T entry that was previously used for the same next hop as neigh.
 281 * Must be called with softirqs disabled.
 282 */
 283static inline void reuse_entry(struct l2t_entry *e, struct neighbour *neigh)
 284{
 285        unsigned int nud_state;
 286
 287        spin_lock(&e->lock);    /* avoid race with t3_l2t_free */
 288
 289        if (neigh != e->neigh)
 290                neigh_replace(e, neigh);
 291        nud_state = neigh->nud_state;
 292        if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)) ||
 293            !(nud_state & NUD_VALID))
 294                e->state = L2T_STATE_RESOLVING;
 295        else if (nud_state & NUD_CONNECTED)
 296                e->state = L2T_STATE_VALID;
 297        else
 298                e->state = L2T_STATE_STALE;
 299        spin_unlock(&e->lock);
 300}
 301
 302struct l2t_entry *t3_l2t_get(struct t3cdev *cdev, struct dst_entry *dst,
 303                             struct net_device *dev, const void *daddr)
 304{
 305        struct l2t_entry *e = NULL;
 306        struct neighbour *neigh;
 307        struct port_info *p;
 308        struct l2t_data *d;
 309        int hash;
 310        u32 addr;
 311        int ifidx;
 312        int smt_idx;
 313
 314        rcu_read_lock();
 315        neigh = dst_neigh_lookup(dst, daddr);
 316        if (!neigh)
 317                goto done_rcu;
 318
 319        addr = *(u32 *) neigh->primary_key;
 320        ifidx = neigh->dev->ifindex;
 321
 322        if (!dev)
 323                dev = neigh->dev;
 324        p = netdev_priv(dev);
 325        smt_idx = p->port_id;
 326
 327        d = L2DATA(cdev);
 328        if (!d)
 329                goto done_rcu;
 330
 331        hash = arp_hash(addr, ifidx, d);
 332
 333        write_lock_bh(&d->lock);
 334        for (e = d->l2tab[hash].first; e; e = e->next)
 335                if (e->addr == addr && e->ifindex == ifidx &&
 336                    e->smt_idx == smt_idx) {
 337                        l2t_hold(d, e);
 338                        if (atomic_read(&e->refcnt) == 1)
 339                                reuse_entry(e, neigh);
 340                        goto done_unlock;
 341                }
 342
 343        /* Need to allocate a new entry */
 344        e = alloc_l2e(d);
 345        if (e) {
 346                spin_lock(&e->lock);    /* avoid race with t3_l2t_free */
 347                e->next = d->l2tab[hash].first;
 348                d->l2tab[hash].first = e;
 349                e->state = L2T_STATE_RESOLVING;
 350                e->addr = addr;
 351                e->ifindex = ifidx;
 352                e->smt_idx = smt_idx;
 353                atomic_set(&e->refcnt, 1);
 354                neigh_replace(e, neigh);
 355                if (is_vlan_dev(neigh->dev))
 356                        e->vlan = vlan_dev_vlan_id(neigh->dev);
 357                else
 358                        e->vlan = VLAN_NONE;
 359                spin_unlock(&e->lock);
 360        }
 361done_unlock:
 362        write_unlock_bh(&d->lock);
 363done_rcu:
 364        if (neigh)
 365                neigh_release(neigh);
 366        rcu_read_unlock();
 367        return e;
 368}
 369
 370EXPORT_SYMBOL(t3_l2t_get);
 371
 372/*
 373 * Called when address resolution fails for an L2T entry to handle packets
 374 * on the arpq head.  If a packet specifies a failure handler it is invoked,
 375 * otherwise the packets is sent to the offload device.
 376 *
 377 * XXX: maybe we should abandon the latter behavior and just require a failure
 378 * handler.
 379 */
 380static void handle_failed_resolution(struct t3cdev *dev, struct sk_buff_head *arpq)
 381{
 382        struct sk_buff *skb, *tmp;
 383
 384        skb_queue_walk_safe(arpq, skb, tmp) {
 385                struct l2t_skb_cb *cb = L2T_SKB_CB(skb);
 386
 387                __skb_unlink(skb, arpq);
 388                if (cb->arp_failure_handler)
 389                        cb->arp_failure_handler(dev, skb);
 390                else
 391                        cxgb3_ofld_send(dev, skb);
 392        }
 393}
 394
 395/*
 396 * Called when the host's ARP layer makes a change to some entry that is
 397 * loaded into the HW L2 table.
 398 */
 399void t3_l2t_update(struct t3cdev *dev, struct neighbour *neigh)
 400{
 401        struct sk_buff_head arpq;
 402        struct l2t_entry *e;
 403        struct l2t_data *d = L2DATA(dev);
 404        u32 addr = *(u32 *) neigh->primary_key;
 405        int ifidx = neigh->dev->ifindex;
 406        int hash = arp_hash(addr, ifidx, d);
 407
 408        read_lock_bh(&d->lock);
 409        for (e = d->l2tab[hash].first; e; e = e->next)
 410                if (e->addr == addr && e->ifindex == ifidx) {
 411                        spin_lock(&e->lock);
 412                        goto found;
 413                }
 414        read_unlock_bh(&d->lock);
 415        return;
 416
 417found:
 418        __skb_queue_head_init(&arpq);
 419
 420        read_unlock(&d->lock);
 421        if (atomic_read(&e->refcnt)) {
 422                if (neigh != e->neigh)
 423                        neigh_replace(e, neigh);
 424
 425                if (e->state == L2T_STATE_RESOLVING) {
 426                        if (neigh->nud_state & NUD_FAILED) {
 427                                skb_queue_splice_init(&e->arpq, &arpq);
 428                        } else if (neigh->nud_state & (NUD_CONNECTED|NUD_STALE))
 429                                setup_l2e_send_pending(dev, NULL, e);
 430                } else {
 431                        e->state = neigh->nud_state & NUD_CONNECTED ?
 432                            L2T_STATE_VALID : L2T_STATE_STALE;
 433                        if (!ether_addr_equal(e->dmac, neigh->ha))
 434                                setup_l2e_send_pending(dev, NULL, e);
 435                }
 436        }
 437        spin_unlock_bh(&e->lock);
 438
 439        if (!skb_queue_empty(&arpq))
 440                handle_failed_resolution(dev, &arpq);
 441}
 442
 443struct l2t_data *t3_init_l2t(unsigned int l2t_capacity)
 444{
 445        struct l2t_data *d;
 446        int i;
 447
 448        d = kvzalloc(struct_size(d, l2tab, l2t_capacity), GFP_KERNEL);
 449        if (!d)
 450                return NULL;
 451
 452        d->nentries = l2t_capacity;
 453        d->rover = &d->l2tab[1];        /* entry 0 is not used */
 454        atomic_set(&d->nfree, l2t_capacity - 1);
 455        rwlock_init(&d->lock);
 456
 457        for (i = 0; i < l2t_capacity; ++i) {
 458                d->l2tab[i].idx = i;
 459                d->l2tab[i].state = L2T_STATE_UNUSED;
 460                __skb_queue_head_init(&d->l2tab[i].arpq);
 461                spin_lock_init(&d->l2tab[i].lock);
 462                atomic_set(&d->l2tab[i].refcnt, 0);
 463        }
 464        return d;
 465}
 466