linux/drivers/net/ethernet/chelsio/cxgb3/sge.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
   3 *
   4 * This software is available to you under a choice of one of two
   5 * licenses.  You may choose to be licensed under the terms of the GNU
   6 * General Public License (GPL) Version 2, available from the file
   7 * COPYING in the main directory of this source tree, or the
   8 * OpenIB.org BSD license below:
   9 *
  10 *     Redistribution and use in source and binary forms, with or
  11 *     without modification, are permitted provided that the following
  12 *     conditions are met:
  13 *
  14 *      - Redistributions of source code must retain the above
  15 *        copyright notice, this list of conditions and the following
  16 *        disclaimer.
  17 *
  18 *      - Redistributions in binary form must reproduce the above
  19 *        copyright notice, this list of conditions and the following
  20 *        disclaimer in the documentation and/or other materials
  21 *        provided with the distribution.
  22 *
  23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30 * SOFTWARE.
  31 */
  32#include <linux/skbuff.h>
  33#include <linux/netdevice.h>
  34#include <linux/etherdevice.h>
  35#include <linux/if_vlan.h>
  36#include <linux/ip.h>
  37#include <linux/tcp.h>
  38#include <linux/dma-mapping.h>
  39#include <linux/slab.h>
  40#include <linux/prefetch.h>
  41#include <net/arp.h>
  42#include "common.h"
  43#include "regs.h"
  44#include "sge_defs.h"
  45#include "t3_cpl.h"
  46#include "firmware_exports.h"
  47#include "cxgb3_offload.h"
  48
  49#define USE_GTS 0
  50
  51#define SGE_RX_SM_BUF_SIZE 1536
  52
  53#define SGE_RX_COPY_THRES  256
  54#define SGE_RX_PULL_LEN    128
  55
  56#define SGE_PG_RSVD SMP_CACHE_BYTES
  57/*
  58 * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
  59 * It must be a divisor of PAGE_SIZE.  If set to 0 FL0 will use sk_buffs
  60 * directly.
  61 */
  62#define FL0_PG_CHUNK_SIZE  2048
  63#define FL0_PG_ORDER 0
  64#define FL0_PG_ALLOC_SIZE (PAGE_SIZE << FL0_PG_ORDER)
  65#define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192)
  66#define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1)
  67#define FL1_PG_ALLOC_SIZE (PAGE_SIZE << FL1_PG_ORDER)
  68
  69#define SGE_RX_DROP_THRES 16
  70#define RX_RECLAIM_PERIOD (HZ/4)
  71
  72/*
  73 * Max number of Rx buffers we replenish at a time.
  74 */
  75#define MAX_RX_REFILL 16U
  76/*
  77 * Period of the Tx buffer reclaim timer.  This timer does not need to run
  78 * frequently as Tx buffers are usually reclaimed by new Tx packets.
  79 */
  80#define TX_RECLAIM_PERIOD (HZ / 4)
  81#define TX_RECLAIM_TIMER_CHUNK 64U
  82#define TX_RECLAIM_CHUNK 16U
  83
  84/* WR size in bytes */
  85#define WR_LEN (WR_FLITS * 8)
  86
  87/*
  88 * Types of Tx queues in each queue set.  Order here matters, do not change.
  89 */
  90enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
  91
  92/* Values for sge_txq.flags */
  93enum {
  94        TXQ_RUNNING = 1 << 0,   /* fetch engine is running */
  95        TXQ_LAST_PKT_DB = 1 << 1,       /* last packet rang the doorbell */
  96};
  97
  98struct tx_desc {
  99        __be64 flit[TX_DESC_FLITS];
 100};
 101
 102struct rx_desc {
 103        __be32 addr_lo;
 104        __be32 len_gen;
 105        __be32 gen2;
 106        __be32 addr_hi;
 107};
 108
 109struct tx_sw_desc {             /* SW state per Tx descriptor */
 110        struct sk_buff *skb;
 111        u8 eop;       /* set if last descriptor for packet */
 112        u8 addr_idx;  /* buffer index of first SGL entry in descriptor */
 113        u8 fragidx;   /* first page fragment associated with descriptor */
 114        s8 sflit;     /* start flit of first SGL entry in descriptor */
 115};
 116
 117struct rx_sw_desc {                /* SW state per Rx descriptor */
 118        union {
 119                struct sk_buff *skb;
 120                struct fl_pg_chunk pg_chunk;
 121        };
 122        DEFINE_DMA_UNMAP_ADDR(dma_addr);
 123};
 124
 125struct rsp_desc {               /* response queue descriptor */
 126        struct rss_header rss_hdr;
 127        __be32 flags;
 128        __be32 len_cq;
 129        u8 imm_data[47];
 130        u8 intr_gen;
 131};
 132
 133/*
 134 * Holds unmapping information for Tx packets that need deferred unmapping.
 135 * This structure lives at skb->head and must be allocated by callers.
 136 */
 137struct deferred_unmap_info {
 138        struct pci_dev *pdev;
 139        dma_addr_t addr[MAX_SKB_FRAGS + 1];
 140};
 141
 142/*
 143 * Maps a number of flits to the number of Tx descriptors that can hold them.
 144 * The formula is
 145 *
 146 * desc = 1 + (flits - 2) / (WR_FLITS - 1).
 147 *
 148 * HW allows up to 4 descriptors to be combined into a WR.
 149 */
 150static u8 flit_desc_map[] = {
 151        0,
 152#if SGE_NUM_GENBITS == 1
 153        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 154        2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
 155        3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
 156        4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
 157#elif SGE_NUM_GENBITS == 2
 158        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 159        2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
 160        3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
 161        4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
 162#else
 163# error "SGE_NUM_GENBITS must be 1 or 2"
 164#endif
 165};
 166
 167static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
 168{
 169        return container_of(q, struct sge_qset, fl[qidx]);
 170}
 171
 172static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
 173{
 174        return container_of(q, struct sge_qset, rspq);
 175}
 176
 177static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
 178{
 179        return container_of(q, struct sge_qset, txq[qidx]);
 180}
 181
 182/**
 183 *      refill_rspq - replenish an SGE response queue
 184 *      @adapter: the adapter
 185 *      @q: the response queue to replenish
 186 *      @credits: how many new responses to make available
 187 *
 188 *      Replenishes a response queue by making the supplied number of responses
 189 *      available to HW.
 190 */
 191static inline void refill_rspq(struct adapter *adapter,
 192                               const struct sge_rspq *q, unsigned int credits)
 193{
 194        rmb();
 195        t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
 196                     V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
 197}
 198
 199/**
 200 *      need_skb_unmap - does the platform need unmapping of sk_buffs?
 201 *
 202 *      Returns true if the platform needs sk_buff unmapping.  The compiler
 203 *      optimizes away unnecessary code if this returns true.
 204 */
 205static inline int need_skb_unmap(void)
 206{
 207#ifdef CONFIG_NEED_DMA_MAP_STATE
 208        return 1;
 209#else
 210        return 0;
 211#endif
 212}
 213
 214/**
 215 *      unmap_skb - unmap a packet main body and its page fragments
 216 *      @skb: the packet
 217 *      @q: the Tx queue containing Tx descriptors for the packet
 218 *      @cidx: index of Tx descriptor
 219 *      @pdev: the PCI device
 220 *
 221 *      Unmap the main body of an sk_buff and its page fragments, if any.
 222 *      Because of the fairly complicated structure of our SGLs and the desire
 223 *      to conserve space for metadata, the information necessary to unmap an
 224 *      sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
 225 *      descriptors (the physical addresses of the various data buffers), and
 226 *      the SW descriptor state (assorted indices).  The send functions
 227 *      initialize the indices for the first packet descriptor so we can unmap
 228 *      the buffers held in the first Tx descriptor here, and we have enough
 229 *      information at this point to set the state for the next Tx descriptor.
 230 *
 231 *      Note that it is possible to clean up the first descriptor of a packet
 232 *      before the send routines have written the next descriptors, but this
 233 *      race does not cause any problem.  We just end up writing the unmapping
 234 *      info for the descriptor first.
 235 */
 236static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
 237                             unsigned int cidx, struct pci_dev *pdev)
 238{
 239        const struct sg_ent *sgp;
 240        struct tx_sw_desc *d = &q->sdesc[cidx];
 241        int nfrags, frag_idx, curflit, j = d->addr_idx;
 242
 243        sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
 244        frag_idx = d->fragidx;
 245
 246        if (frag_idx == 0 && skb_headlen(skb)) {
 247                pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]),
 248                                 skb_headlen(skb), PCI_DMA_TODEVICE);
 249                j = 1;
 250        }
 251
 252        curflit = d->sflit + 1 + j;
 253        nfrags = skb_shinfo(skb)->nr_frags;
 254
 255        while (frag_idx < nfrags && curflit < WR_FLITS) {
 256                pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
 257                               skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]),
 258                               PCI_DMA_TODEVICE);
 259                j ^= 1;
 260                if (j == 0) {
 261                        sgp++;
 262                        curflit++;
 263                }
 264                curflit++;
 265                frag_idx++;
 266        }
 267
 268        if (frag_idx < nfrags) {   /* SGL continues into next Tx descriptor */
 269                d = cidx + 1 == q->size ? q->sdesc : d + 1;
 270                d->fragidx = frag_idx;
 271                d->addr_idx = j;
 272                d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
 273        }
 274}
 275
 276/**
 277 *      free_tx_desc - reclaims Tx descriptors and their buffers
 278 *      @adapter: the adapter
 279 *      @q: the Tx queue to reclaim descriptors from
 280 *      @n: the number of descriptors to reclaim
 281 *
 282 *      Reclaims Tx descriptors from an SGE Tx queue and frees the associated
 283 *      Tx buffers.  Called with the Tx queue lock held.
 284 */
 285static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
 286                         unsigned int n)
 287{
 288        struct tx_sw_desc *d;
 289        struct pci_dev *pdev = adapter->pdev;
 290        unsigned int cidx = q->cidx;
 291
 292        const int need_unmap = need_skb_unmap() &&
 293                               q->cntxt_id >= FW_TUNNEL_SGEEC_START;
 294
 295        d = &q->sdesc[cidx];
 296        while (n--) {
 297                if (d->skb) {   /* an SGL is present */
 298                        if (need_unmap)
 299                                unmap_skb(d->skb, q, cidx, pdev);
 300                        if (d->eop) {
 301                                dev_consume_skb_any(d->skb);
 302                                d->skb = NULL;
 303                        }
 304                }
 305                ++d;
 306                if (++cidx == q->size) {
 307                        cidx = 0;
 308                        d = q->sdesc;
 309                }
 310        }
 311        q->cidx = cidx;
 312}
 313
 314/**
 315 *      reclaim_completed_tx - reclaims completed Tx descriptors
 316 *      @adapter: the adapter
 317 *      @q: the Tx queue to reclaim completed descriptors from
 318 *      @chunk: maximum number of descriptors to reclaim
 319 *
 320 *      Reclaims Tx descriptors that the SGE has indicated it has processed,
 321 *      and frees the associated buffers if possible.  Called with the Tx
 322 *      queue's lock held.
 323 */
 324static inline unsigned int reclaim_completed_tx(struct adapter *adapter,
 325                                                struct sge_txq *q,
 326                                                unsigned int chunk)
 327{
 328        unsigned int reclaim = q->processed - q->cleaned;
 329
 330        reclaim = min(chunk, reclaim);
 331        if (reclaim) {
 332                free_tx_desc(adapter, q, reclaim);
 333                q->cleaned += reclaim;
 334                q->in_use -= reclaim;
 335        }
 336        return q->processed - q->cleaned;
 337}
 338
 339/**
 340 *      should_restart_tx - are there enough resources to restart a Tx queue?
 341 *      @q: the Tx queue
 342 *
 343 *      Checks if there are enough descriptors to restart a suspended Tx queue.
 344 */
 345static inline int should_restart_tx(const struct sge_txq *q)
 346{
 347        unsigned int r = q->processed - q->cleaned;
 348
 349        return q->in_use - r < (q->size >> 1);
 350}
 351
 352static void clear_rx_desc(struct pci_dev *pdev, const struct sge_fl *q,
 353                          struct rx_sw_desc *d)
 354{
 355        if (q->use_pages && d->pg_chunk.page) {
 356                (*d->pg_chunk.p_cnt)--;
 357                if (!*d->pg_chunk.p_cnt)
 358                        pci_unmap_page(pdev,
 359                                       d->pg_chunk.mapping,
 360                                       q->alloc_size, PCI_DMA_FROMDEVICE);
 361
 362                put_page(d->pg_chunk.page);
 363                d->pg_chunk.page = NULL;
 364        } else {
 365                pci_unmap_single(pdev, dma_unmap_addr(d, dma_addr),
 366                                 q->buf_size, PCI_DMA_FROMDEVICE);
 367                kfree_skb(d->skb);
 368                d->skb = NULL;
 369        }
 370}
 371
 372/**
 373 *      free_rx_bufs - free the Rx buffers on an SGE free list
 374 *      @pdev: the PCI device associated with the adapter
 375 *      @q: the SGE free list to clean up
 376 *
 377 *      Release the buffers on an SGE free-buffer Rx queue.  HW fetching from
 378 *      this queue should be stopped before calling this function.
 379 */
 380static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
 381{
 382        unsigned int cidx = q->cidx;
 383
 384        while (q->credits--) {
 385                struct rx_sw_desc *d = &q->sdesc[cidx];
 386
 387
 388                clear_rx_desc(pdev, q, d);
 389                if (++cidx == q->size)
 390                        cidx = 0;
 391        }
 392
 393        if (q->pg_chunk.page) {
 394                __free_pages(q->pg_chunk.page, q->order);
 395                q->pg_chunk.page = NULL;
 396        }
 397}
 398
 399/**
 400 *      add_one_rx_buf - add a packet buffer to a free-buffer list
 401 *      @va:  buffer start VA
 402 *      @len: the buffer length
 403 *      @d: the HW Rx descriptor to write
 404 *      @sd: the SW Rx descriptor to write
 405 *      @gen: the generation bit value
 406 *      @pdev: the PCI device associated with the adapter
 407 *
 408 *      Add a buffer of the given length to the supplied HW and SW Rx
 409 *      descriptors.
 410 */
 411static inline int add_one_rx_buf(void *va, unsigned int len,
 412                                 struct rx_desc *d, struct rx_sw_desc *sd,
 413                                 unsigned int gen, struct pci_dev *pdev)
 414{
 415        dma_addr_t mapping;
 416
 417        mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
 418        if (unlikely(pci_dma_mapping_error(pdev, mapping)))
 419                return -ENOMEM;
 420
 421        dma_unmap_addr_set(sd, dma_addr, mapping);
 422
 423        d->addr_lo = cpu_to_be32(mapping);
 424        d->addr_hi = cpu_to_be32((u64) mapping >> 32);
 425        dma_wmb();
 426        d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
 427        d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
 428        return 0;
 429}
 430
 431static inline int add_one_rx_chunk(dma_addr_t mapping, struct rx_desc *d,
 432                                   unsigned int gen)
 433{
 434        d->addr_lo = cpu_to_be32(mapping);
 435        d->addr_hi = cpu_to_be32((u64) mapping >> 32);
 436        dma_wmb();
 437        d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
 438        d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
 439        return 0;
 440}
 441
 442static int alloc_pg_chunk(struct adapter *adapter, struct sge_fl *q,
 443                          struct rx_sw_desc *sd, gfp_t gfp,
 444                          unsigned int order)
 445{
 446        if (!q->pg_chunk.page) {
 447                dma_addr_t mapping;
 448
 449                q->pg_chunk.page = alloc_pages(gfp, order);
 450                if (unlikely(!q->pg_chunk.page))
 451                        return -ENOMEM;
 452                q->pg_chunk.va = page_address(q->pg_chunk.page);
 453                q->pg_chunk.p_cnt = q->pg_chunk.va + (PAGE_SIZE << order) -
 454                                    SGE_PG_RSVD;
 455                q->pg_chunk.offset = 0;
 456                mapping = pci_map_page(adapter->pdev, q->pg_chunk.page,
 457                                       0, q->alloc_size, PCI_DMA_FROMDEVICE);
 458                if (unlikely(pci_dma_mapping_error(adapter->pdev, mapping))) {
 459                        __free_pages(q->pg_chunk.page, order);
 460                        q->pg_chunk.page = NULL;
 461                        return -EIO;
 462                }
 463                q->pg_chunk.mapping = mapping;
 464        }
 465        sd->pg_chunk = q->pg_chunk;
 466
 467        prefetch(sd->pg_chunk.p_cnt);
 468
 469        q->pg_chunk.offset += q->buf_size;
 470        if (q->pg_chunk.offset == (PAGE_SIZE << order))
 471                q->pg_chunk.page = NULL;
 472        else {
 473                q->pg_chunk.va += q->buf_size;
 474                get_page(q->pg_chunk.page);
 475        }
 476
 477        if (sd->pg_chunk.offset == 0)
 478                *sd->pg_chunk.p_cnt = 1;
 479        else
 480                *sd->pg_chunk.p_cnt += 1;
 481
 482        return 0;
 483}
 484
 485static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
 486{
 487        if (q->pend_cred >= q->credits / 4) {
 488                q->pend_cred = 0;
 489                wmb();
 490                t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
 491        }
 492}
 493
 494/**
 495 *      refill_fl - refill an SGE free-buffer list
 496 *      @adap: the adapter
 497 *      @q: the free-list to refill
 498 *      @n: the number of new buffers to allocate
 499 *      @gfp: the gfp flags for allocating new buffers
 500 *
 501 *      (Re)populate an SGE free-buffer list with up to @n new packet buffers,
 502 *      allocated with the supplied gfp flags.  The caller must assure that
 503 *      @n does not exceed the queue's capacity.
 504 */
 505static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
 506{
 507        struct rx_sw_desc *sd = &q->sdesc[q->pidx];
 508        struct rx_desc *d = &q->desc[q->pidx];
 509        unsigned int count = 0;
 510
 511        while (n--) {
 512                dma_addr_t mapping;
 513                int err;
 514
 515                if (q->use_pages) {
 516                        if (unlikely(alloc_pg_chunk(adap, q, sd, gfp,
 517                                                    q->order))) {
 518nomem:                          q->alloc_failed++;
 519                                break;
 520                        }
 521                        mapping = sd->pg_chunk.mapping + sd->pg_chunk.offset;
 522                        dma_unmap_addr_set(sd, dma_addr, mapping);
 523
 524                        add_one_rx_chunk(mapping, d, q->gen);
 525                        pci_dma_sync_single_for_device(adap->pdev, mapping,
 526                                                q->buf_size - SGE_PG_RSVD,
 527                                                PCI_DMA_FROMDEVICE);
 528                } else {
 529                        void *buf_start;
 530
 531                        struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
 532                        if (!skb)
 533                                goto nomem;
 534
 535                        sd->skb = skb;
 536                        buf_start = skb->data;
 537                        err = add_one_rx_buf(buf_start, q->buf_size, d, sd,
 538                                             q->gen, adap->pdev);
 539                        if (unlikely(err)) {
 540                                clear_rx_desc(adap->pdev, q, sd);
 541                                break;
 542                        }
 543                }
 544
 545                d++;
 546                sd++;
 547                if (++q->pidx == q->size) {
 548                        q->pidx = 0;
 549                        q->gen ^= 1;
 550                        sd = q->sdesc;
 551                        d = q->desc;
 552                }
 553                count++;
 554        }
 555
 556        q->credits += count;
 557        q->pend_cred += count;
 558        ring_fl_db(adap, q);
 559
 560        return count;
 561}
 562
 563static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
 564{
 565        refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits),
 566                  GFP_ATOMIC | __GFP_COMP);
 567}
 568
 569/**
 570 *      recycle_rx_buf - recycle a receive buffer
 571 *      @adap: the adapter
 572 *      @q: the SGE free list
 573 *      @idx: index of buffer to recycle
 574 *
 575 *      Recycles the specified buffer on the given free list by adding it at
 576 *      the next available slot on the list.
 577 */
 578static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
 579                           unsigned int idx)
 580{
 581        struct rx_desc *from = &q->desc[idx];
 582        struct rx_desc *to = &q->desc[q->pidx];
 583
 584        q->sdesc[q->pidx] = q->sdesc[idx];
 585        to->addr_lo = from->addr_lo;    /* already big endian */
 586        to->addr_hi = from->addr_hi;    /* likewise */
 587        dma_wmb();
 588        to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
 589        to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
 590
 591        if (++q->pidx == q->size) {
 592                q->pidx = 0;
 593                q->gen ^= 1;
 594        }
 595
 596        q->credits++;
 597        q->pend_cred++;
 598        ring_fl_db(adap, q);
 599}
 600
 601/**
 602 *      alloc_ring - allocate resources for an SGE descriptor ring
 603 *      @pdev: the PCI device
 604 *      @nelem: the number of descriptors
 605 *      @elem_size: the size of each descriptor
 606 *      @sw_size: the size of the SW state associated with each ring element
 607 *      @phys: the physical address of the allocated ring
 608 *      @metadata: address of the array holding the SW state for the ring
 609 *
 610 *      Allocates resources for an SGE descriptor ring, such as Tx queues,
 611 *      free buffer lists, or response queues.  Each SGE ring requires
 612 *      space for its HW descriptors plus, optionally, space for the SW state
 613 *      associated with each HW entry (the metadata).  The function returns
 614 *      three values: the virtual address for the HW ring (the return value
 615 *      of the function), the physical address of the HW ring, and the address
 616 *      of the SW ring.
 617 */
 618static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
 619                        size_t sw_size, dma_addr_t * phys, void *metadata)
 620{
 621        size_t len = nelem * elem_size;
 622        void *s = NULL;
 623        void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
 624
 625        if (!p)
 626                return NULL;
 627        if (sw_size && metadata) {
 628                s = kcalloc(nelem, sw_size, GFP_KERNEL);
 629
 630                if (!s) {
 631                        dma_free_coherent(&pdev->dev, len, p, *phys);
 632                        return NULL;
 633                }
 634                *(void **)metadata = s;
 635        }
 636        return p;
 637}
 638
 639/**
 640 *      t3_reset_qset - reset a sge qset
 641 *      @q: the queue set
 642 *
 643 *      Reset the qset structure.
 644 *      the NAPI structure is preserved in the event of
 645 *      the qset's reincarnation, for example during EEH recovery.
 646 */
 647static void t3_reset_qset(struct sge_qset *q)
 648{
 649        if (q->adap &&
 650            !(q->adap->flags & NAPI_INIT)) {
 651                memset(q, 0, sizeof(*q));
 652                return;
 653        }
 654
 655        q->adap = NULL;
 656        memset(&q->rspq, 0, sizeof(q->rspq));
 657        memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET);
 658        memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET);
 659        q->txq_stopped = 0;
 660        q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */
 661        q->rx_reclaim_timer.function = NULL;
 662        q->nomem = 0;
 663        napi_free_frags(&q->napi);
 664}
 665
 666
 667/**
 668 *      t3_free_qset - free the resources of an SGE queue set
 669 *      @adapter: the adapter owning the queue set
 670 *      @q: the queue set
 671 *
 672 *      Release the HW and SW resources associated with an SGE queue set, such
 673 *      as HW contexts, packet buffers, and descriptor rings.  Traffic to the
 674 *      queue set must be quiesced prior to calling this.
 675 */
 676static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
 677{
 678        int i;
 679        struct pci_dev *pdev = adapter->pdev;
 680
 681        for (i = 0; i < SGE_RXQ_PER_SET; ++i)
 682                if (q->fl[i].desc) {
 683                        spin_lock_irq(&adapter->sge.reg_lock);
 684                        t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
 685                        spin_unlock_irq(&adapter->sge.reg_lock);
 686                        free_rx_bufs(pdev, &q->fl[i]);
 687                        kfree(q->fl[i].sdesc);
 688                        dma_free_coherent(&pdev->dev,
 689                                          q->fl[i].size *
 690                                          sizeof(struct rx_desc), q->fl[i].desc,
 691                                          q->fl[i].phys_addr);
 692                }
 693
 694        for (i = 0; i < SGE_TXQ_PER_SET; ++i)
 695                if (q->txq[i].desc) {
 696                        spin_lock_irq(&adapter->sge.reg_lock);
 697                        t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
 698                        spin_unlock_irq(&adapter->sge.reg_lock);
 699                        if (q->txq[i].sdesc) {
 700                                free_tx_desc(adapter, &q->txq[i],
 701                                             q->txq[i].in_use);
 702                                kfree(q->txq[i].sdesc);
 703                        }
 704                        dma_free_coherent(&pdev->dev,
 705                                          q->txq[i].size *
 706                                          sizeof(struct tx_desc),
 707                                          q->txq[i].desc, q->txq[i].phys_addr);
 708                        __skb_queue_purge(&q->txq[i].sendq);
 709                }
 710
 711        if (q->rspq.desc) {
 712                spin_lock_irq(&adapter->sge.reg_lock);
 713                t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
 714                spin_unlock_irq(&adapter->sge.reg_lock);
 715                dma_free_coherent(&pdev->dev,
 716                                  q->rspq.size * sizeof(struct rsp_desc),
 717                                  q->rspq.desc, q->rspq.phys_addr);
 718        }
 719
 720        t3_reset_qset(q);
 721}
 722
 723/**
 724 *      init_qset_cntxt - initialize an SGE queue set context info
 725 *      @qs: the queue set
 726 *      @id: the queue set id
 727 *
 728 *      Initializes the TIDs and context ids for the queues of a queue set.
 729 */
 730static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
 731{
 732        qs->rspq.cntxt_id = id;
 733        qs->fl[0].cntxt_id = 2 * id;
 734        qs->fl[1].cntxt_id = 2 * id + 1;
 735        qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
 736        qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
 737        qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
 738        qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
 739        qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
 740}
 741
 742/**
 743 *      sgl_len - calculates the size of an SGL of the given capacity
 744 *      @n: the number of SGL entries
 745 *
 746 *      Calculates the number of flits needed for a scatter/gather list that
 747 *      can hold the given number of entries.
 748 */
 749static inline unsigned int sgl_len(unsigned int n)
 750{
 751        /* alternatively: 3 * (n / 2) + 2 * (n & 1) */
 752        return (3 * n) / 2 + (n & 1);
 753}
 754
 755/**
 756 *      flits_to_desc - returns the num of Tx descriptors for the given flits
 757 *      @n: the number of flits
 758 *
 759 *      Calculates the number of Tx descriptors needed for the supplied number
 760 *      of flits.
 761 */
 762static inline unsigned int flits_to_desc(unsigned int n)
 763{
 764        BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
 765        return flit_desc_map[n];
 766}
 767
 768/**
 769 *      get_packet - return the next ingress packet buffer from a free list
 770 *      @adap: the adapter that received the packet
 771 *      @fl: the SGE free list holding the packet
 772 *      @len: the packet length including any SGE padding
 773 *      @drop_thres: # of remaining buffers before we start dropping packets
 774 *
 775 *      Get the next packet from a free list and complete setup of the
 776 *      sk_buff.  If the packet is small we make a copy and recycle the
 777 *      original buffer, otherwise we use the original buffer itself.  If a
 778 *      positive drop threshold is supplied packets are dropped and their
 779 *      buffers recycled if (a) the number of remaining buffers is under the
 780 *      threshold and the packet is too big to copy, or (b) the packet should
 781 *      be copied but there is no memory for the copy.
 782 */
 783static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
 784                                  unsigned int len, unsigned int drop_thres)
 785{
 786        struct sk_buff *skb = NULL;
 787        struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
 788
 789        prefetch(sd->skb->data);
 790        fl->credits--;
 791
 792        if (len <= SGE_RX_COPY_THRES) {
 793                skb = alloc_skb(len, GFP_ATOMIC);
 794                if (likely(skb != NULL)) {
 795                        __skb_put(skb, len);
 796                        pci_dma_sync_single_for_cpu(adap->pdev,
 797                                            dma_unmap_addr(sd, dma_addr), len,
 798                                            PCI_DMA_FROMDEVICE);
 799                        memcpy(skb->data, sd->skb->data, len);
 800                        pci_dma_sync_single_for_device(adap->pdev,
 801                                            dma_unmap_addr(sd, dma_addr), len,
 802                                            PCI_DMA_FROMDEVICE);
 803                } else if (!drop_thres)
 804                        goto use_orig_buf;
 805recycle:
 806                recycle_rx_buf(adap, fl, fl->cidx);
 807                return skb;
 808        }
 809
 810        if (unlikely(fl->credits < drop_thres) &&
 811            refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits - 1),
 812                      GFP_ATOMIC | __GFP_COMP) == 0)
 813                goto recycle;
 814
 815use_orig_buf:
 816        pci_unmap_single(adap->pdev, dma_unmap_addr(sd, dma_addr),
 817                         fl->buf_size, PCI_DMA_FROMDEVICE);
 818        skb = sd->skb;
 819        skb_put(skb, len);
 820        __refill_fl(adap, fl);
 821        return skb;
 822}
 823
 824/**
 825 *      get_packet_pg - return the next ingress packet buffer from a free list
 826 *      @adap: the adapter that received the packet
 827 *      @fl: the SGE free list holding the packet
 828 *      @q: the queue
 829 *      @len: the packet length including any SGE padding
 830 *      @drop_thres: # of remaining buffers before we start dropping packets
 831 *
 832 *      Get the next packet from a free list populated with page chunks.
 833 *      If the packet is small we make a copy and recycle the original buffer,
 834 *      otherwise we attach the original buffer as a page fragment to a fresh
 835 *      sk_buff.  If a positive drop threshold is supplied packets are dropped
 836 *      and their buffers recycled if (a) the number of remaining buffers is
 837 *      under the threshold and the packet is too big to copy, or (b) there's
 838 *      no system memory.
 839 *
 840 *      Note: this function is similar to @get_packet but deals with Rx buffers
 841 *      that are page chunks rather than sk_buffs.
 842 */
 843static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
 844                                     struct sge_rspq *q, unsigned int len,
 845                                     unsigned int drop_thres)
 846{
 847        struct sk_buff *newskb, *skb;
 848        struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
 849
 850        dma_addr_t dma_addr = dma_unmap_addr(sd, dma_addr);
 851
 852        newskb = skb = q->pg_skb;
 853        if (!skb && (len <= SGE_RX_COPY_THRES)) {
 854                newskb = alloc_skb(len, GFP_ATOMIC);
 855                if (likely(newskb != NULL)) {
 856                        __skb_put(newskb, len);
 857                        pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
 858                                            PCI_DMA_FROMDEVICE);
 859                        memcpy(newskb->data, sd->pg_chunk.va, len);
 860                        pci_dma_sync_single_for_device(adap->pdev, dma_addr,
 861                                                       len,
 862                                                       PCI_DMA_FROMDEVICE);
 863                } else if (!drop_thres)
 864                        return NULL;
 865recycle:
 866                fl->credits--;
 867                recycle_rx_buf(adap, fl, fl->cidx);
 868                q->rx_recycle_buf++;
 869                return newskb;
 870        }
 871
 872        if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres)))
 873                goto recycle;
 874
 875        prefetch(sd->pg_chunk.p_cnt);
 876
 877        if (!skb)
 878                newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
 879
 880        if (unlikely(!newskb)) {
 881                if (!drop_thres)
 882                        return NULL;
 883                goto recycle;
 884        }
 885
 886        pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
 887                                    PCI_DMA_FROMDEVICE);
 888        (*sd->pg_chunk.p_cnt)--;
 889        if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
 890                pci_unmap_page(adap->pdev,
 891                               sd->pg_chunk.mapping,
 892                               fl->alloc_size,
 893                               PCI_DMA_FROMDEVICE);
 894        if (!skb) {
 895                __skb_put(newskb, SGE_RX_PULL_LEN);
 896                memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
 897                skb_fill_page_desc(newskb, 0, sd->pg_chunk.page,
 898                                   sd->pg_chunk.offset + SGE_RX_PULL_LEN,
 899                                   len - SGE_RX_PULL_LEN);
 900                newskb->len = len;
 901                newskb->data_len = len - SGE_RX_PULL_LEN;
 902                newskb->truesize += newskb->data_len;
 903        } else {
 904                skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags,
 905                                   sd->pg_chunk.page,
 906                                   sd->pg_chunk.offset, len);
 907                newskb->len += len;
 908                newskb->data_len += len;
 909                newskb->truesize += len;
 910        }
 911
 912        fl->credits--;
 913        /*
 914         * We do not refill FLs here, we let the caller do it to overlap a
 915         * prefetch.
 916         */
 917        return newskb;
 918}
 919
 920/**
 921 *      get_imm_packet - return the next ingress packet buffer from a response
 922 *      @resp: the response descriptor containing the packet data
 923 *
 924 *      Return a packet containing the immediate data of the given response.
 925 */
 926static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
 927{
 928        struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
 929
 930        if (skb) {
 931                __skb_put(skb, IMMED_PKT_SIZE);
 932                skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE);
 933        }
 934        return skb;
 935}
 936
 937/**
 938 *      calc_tx_descs - calculate the number of Tx descriptors for a packet
 939 *      @skb: the packet
 940 *
 941 *      Returns the number of Tx descriptors needed for the given Ethernet
 942 *      packet.  Ethernet packets require addition of WR and CPL headers.
 943 */
 944static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
 945{
 946        unsigned int flits;
 947
 948        if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
 949                return 1;
 950
 951        flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
 952        if (skb_shinfo(skb)->gso_size)
 953                flits++;
 954        return flits_to_desc(flits);
 955}
 956
 957/*      map_skb - map a packet main body and its page fragments
 958 *      @pdev: the PCI device
 959 *      @skb: the packet
 960 *      @addr: placeholder to save the mapped addresses
 961 *
 962 *      map the main body of an sk_buff and its page fragments, if any.
 963 */
 964static int map_skb(struct pci_dev *pdev, const struct sk_buff *skb,
 965                   dma_addr_t *addr)
 966{
 967        const skb_frag_t *fp, *end;
 968        const struct skb_shared_info *si;
 969
 970        if (skb_headlen(skb)) {
 971                *addr = pci_map_single(pdev, skb->data, skb_headlen(skb),
 972                                       PCI_DMA_TODEVICE);
 973                if (pci_dma_mapping_error(pdev, *addr))
 974                        goto out_err;
 975                addr++;
 976        }
 977
 978        si = skb_shinfo(skb);
 979        end = &si->frags[si->nr_frags];
 980
 981        for (fp = si->frags; fp < end; fp++) {
 982                *addr = skb_frag_dma_map(&pdev->dev, fp, 0, skb_frag_size(fp),
 983                                         DMA_TO_DEVICE);
 984                if (pci_dma_mapping_error(pdev, *addr))
 985                        goto unwind;
 986                addr++;
 987        }
 988        return 0;
 989
 990unwind:
 991        while (fp-- > si->frags)
 992                dma_unmap_page(&pdev->dev, *--addr, skb_frag_size(fp),
 993                               DMA_TO_DEVICE);
 994
 995        pci_unmap_single(pdev, addr[-1], skb_headlen(skb), PCI_DMA_TODEVICE);
 996out_err:
 997        return -ENOMEM;
 998}
 999
1000/**
1001 *      write_sgl - populate a scatter/gather list for a packet
1002 *      @skb: the packet
1003 *      @sgp: the SGL to populate
1004 *      @start: start address of skb main body data to include in the SGL
1005 *      @len: length of skb main body data to include in the SGL
1006 *      @addr: the list of the mapped addresses
1007 *
1008 *      Copies the scatter/gather list for the buffers that make up a packet
1009 *      and returns the SGL size in 8-byte words.  The caller must size the SGL
1010 *      appropriately.
1011 */
1012static inline unsigned int write_sgl(const struct sk_buff *skb,
1013                                     struct sg_ent *sgp, unsigned char *start,
1014                                     unsigned int len, const dma_addr_t *addr)
1015{
1016        unsigned int i, j = 0, k = 0, nfrags;
1017
1018        if (len) {
1019                sgp->len[0] = cpu_to_be32(len);
1020                sgp->addr[j++] = cpu_to_be64(addr[k++]);
1021        }
1022
1023        nfrags = skb_shinfo(skb)->nr_frags;
1024        for (i = 0; i < nfrags; i++) {
1025                const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1026
1027                sgp->len[j] = cpu_to_be32(skb_frag_size(frag));
1028                sgp->addr[j] = cpu_to_be64(addr[k++]);
1029                j ^= 1;
1030                if (j == 0)
1031                        ++sgp;
1032        }
1033        if (j)
1034                sgp->len[j] = 0;
1035        return ((nfrags + (len != 0)) * 3) / 2 + j;
1036}
1037
1038/**
1039 *      check_ring_tx_db - check and potentially ring a Tx queue's doorbell
1040 *      @adap: the adapter
1041 *      @q: the Tx queue
1042 *
1043 *      Ring the doorbel if a Tx queue is asleep.  There is a natural race,
1044 *      where the HW is going to sleep just after we checked, however,
1045 *      then the interrupt handler will detect the outstanding TX packet
1046 *      and ring the doorbell for us.
1047 *
1048 *      When GTS is disabled we unconditionally ring the doorbell.
1049 */
1050static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
1051{
1052#if USE_GTS
1053        clear_bit(TXQ_LAST_PKT_DB, &q->flags);
1054        if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
1055                set_bit(TXQ_LAST_PKT_DB, &q->flags);
1056                t3_write_reg(adap, A_SG_KDOORBELL,
1057                             F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1058        }
1059#else
1060        wmb();                  /* write descriptors before telling HW */
1061        t3_write_reg(adap, A_SG_KDOORBELL,
1062                     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1063#endif
1064}
1065
1066static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
1067{
1068#if SGE_NUM_GENBITS == 2
1069        d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
1070#endif
1071}
1072
1073/**
1074 *      write_wr_hdr_sgl - write a WR header and, optionally, SGL
1075 *      @ndesc: number of Tx descriptors spanned by the SGL
1076 *      @skb: the packet corresponding to the WR
1077 *      @d: first Tx descriptor to be written
1078 *      @pidx: index of above descriptors
1079 *      @q: the SGE Tx queue
1080 *      @sgl: the SGL
1081 *      @flits: number of flits to the start of the SGL in the first descriptor
1082 *      @sgl_flits: the SGL size in flits
1083 *      @gen: the Tx descriptor generation
1084 *      @wr_hi: top 32 bits of WR header based on WR type (big endian)
1085 *      @wr_lo: low 32 bits of WR header based on WR type (big endian)
1086 *
1087 *      Write a work request header and an associated SGL.  If the SGL is
1088 *      small enough to fit into one Tx descriptor it has already been written
1089 *      and we just need to write the WR header.  Otherwise we distribute the
1090 *      SGL across the number of descriptors it spans.
1091 */
1092static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
1093                             struct tx_desc *d, unsigned int pidx,
1094                             const struct sge_txq *q,
1095                             const struct sg_ent *sgl,
1096                             unsigned int flits, unsigned int sgl_flits,
1097                             unsigned int gen, __be32 wr_hi,
1098                             __be32 wr_lo)
1099{
1100        struct work_request_hdr *wrp = (struct work_request_hdr *)d;
1101        struct tx_sw_desc *sd = &q->sdesc[pidx];
1102
1103        sd->skb = skb;
1104        if (need_skb_unmap()) {
1105                sd->fragidx = 0;
1106                sd->addr_idx = 0;
1107                sd->sflit = flits;
1108        }
1109
1110        if (likely(ndesc == 1)) {
1111                sd->eop = 1;
1112                wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
1113                                   V_WR_SGLSFLT(flits)) | wr_hi;
1114                dma_wmb();
1115                wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
1116                                   V_WR_GEN(gen)) | wr_lo;
1117                wr_gen2(d, gen);
1118        } else {
1119                unsigned int ogen = gen;
1120                const u64 *fp = (const u64 *)sgl;
1121                struct work_request_hdr *wp = wrp;
1122
1123                wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
1124                                   V_WR_SGLSFLT(flits)) | wr_hi;
1125
1126                while (sgl_flits) {
1127                        unsigned int avail = WR_FLITS - flits;
1128
1129                        if (avail > sgl_flits)
1130                                avail = sgl_flits;
1131                        memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
1132                        sgl_flits -= avail;
1133                        ndesc--;
1134                        if (!sgl_flits)
1135                                break;
1136
1137                        fp += avail;
1138                        d++;
1139                        sd->eop = 0;
1140                        sd++;
1141                        if (++pidx == q->size) {
1142                                pidx = 0;
1143                                gen ^= 1;
1144                                d = q->desc;
1145                                sd = q->sdesc;
1146                        }
1147
1148                        sd->skb = skb;
1149                        wrp = (struct work_request_hdr *)d;
1150                        wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
1151                                           V_WR_SGLSFLT(1)) | wr_hi;
1152                        wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
1153                                                        sgl_flits + 1)) |
1154                                           V_WR_GEN(gen)) | wr_lo;
1155                        wr_gen2(d, gen);
1156                        flits = 1;
1157                }
1158                sd->eop = 1;
1159                wrp->wr_hi |= htonl(F_WR_EOP);
1160                dma_wmb();
1161                wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
1162                wr_gen2((struct tx_desc *)wp, ogen);
1163                WARN_ON(ndesc != 0);
1164        }
1165}
1166
1167/**
1168 *      write_tx_pkt_wr - write a TX_PKT work request
1169 *      @adap: the adapter
1170 *      @skb: the packet to send
1171 *      @pi: the egress interface
1172 *      @pidx: index of the first Tx descriptor to write
1173 *      @gen: the generation value to use
1174 *      @q: the Tx queue
1175 *      @ndesc: number of descriptors the packet will occupy
1176 *      @compl: the value of the COMPL bit to use
1177 *      @addr: address
1178 *
1179 *      Generate a TX_PKT work request to send the supplied packet.
1180 */
1181static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
1182                            const struct port_info *pi,
1183                            unsigned int pidx, unsigned int gen,
1184                            struct sge_txq *q, unsigned int ndesc,
1185                            unsigned int compl, const dma_addr_t *addr)
1186{
1187        unsigned int flits, sgl_flits, cntrl, tso_info;
1188        struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1189        struct tx_desc *d = &q->desc[pidx];
1190        struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
1191
1192        cpl->len = htonl(skb->len);
1193        cntrl = V_TXPKT_INTF(pi->port_id);
1194
1195        if (skb_vlan_tag_present(skb))
1196                cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(skb_vlan_tag_get(skb));
1197
1198        tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
1199        if (tso_info) {
1200                int eth_type;
1201                struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
1202
1203                d->flit[2] = 0;
1204                cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1205                hdr->cntrl = htonl(cntrl);
1206                eth_type = skb_network_offset(skb) == ETH_HLEN ?
1207                    CPL_ETH_II : CPL_ETH_II_VLAN;
1208                tso_info |= V_LSO_ETH_TYPE(eth_type) |
1209                    V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
1210                    V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
1211                hdr->lso_info = htonl(tso_info);
1212                flits = 3;
1213        } else {
1214                cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1215                cntrl |= F_TXPKT_IPCSUM_DIS;    /* SW calculates IP csum */
1216                cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
1217                cpl->cntrl = htonl(cntrl);
1218
1219                if (skb->len <= WR_LEN - sizeof(*cpl)) {
1220                        q->sdesc[pidx].skb = NULL;
1221                        if (!skb->data_len)
1222                                skb_copy_from_linear_data(skb, &d->flit[2],
1223                                                          skb->len);
1224                        else
1225                                skb_copy_bits(skb, 0, &d->flit[2], skb->len);
1226
1227                        flits = (skb->len + 7) / 8 + 2;
1228                        cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
1229                                              V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
1230                                              | F_WR_SOP | F_WR_EOP | compl);
1231                        dma_wmb();
1232                        cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
1233                                              V_WR_TID(q->token));
1234                        wr_gen2(d, gen);
1235                        dev_consume_skb_any(skb);
1236                        return;
1237                }
1238
1239                flits = 2;
1240        }
1241
1242        sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1243        sgl_flits = write_sgl(skb, sgp, skb->data, skb_headlen(skb), addr);
1244
1245        write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
1246                         htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
1247                         htonl(V_WR_TID(q->token)));
1248}
1249
1250static inline void t3_stop_tx_queue(struct netdev_queue *txq,
1251                                    struct sge_qset *qs, struct sge_txq *q)
1252{
1253        netif_tx_stop_queue(txq);
1254        set_bit(TXQ_ETH, &qs->txq_stopped);
1255        q->stops++;
1256}
1257
1258/**
1259 *      t3_eth_xmit - add a packet to the Ethernet Tx queue
1260 *      @skb: the packet
1261 *      @dev: the egress net device
1262 *
1263 *      Add a packet to an SGE Tx queue.  Runs with softirqs disabled.
1264 */
1265netdev_tx_t t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1266{
1267        int qidx;
1268        unsigned int ndesc, pidx, credits, gen, compl;
1269        const struct port_info *pi = netdev_priv(dev);
1270        struct adapter *adap = pi->adapter;
1271        struct netdev_queue *txq;
1272        struct sge_qset *qs;
1273        struct sge_txq *q;
1274        dma_addr_t addr[MAX_SKB_FRAGS + 1];
1275
1276        /*
1277         * The chip min packet length is 9 octets but play safe and reject
1278         * anything shorter than an Ethernet header.
1279         */
1280        if (unlikely(skb->len < ETH_HLEN)) {
1281                dev_kfree_skb_any(skb);
1282                return NETDEV_TX_OK;
1283        }
1284
1285        qidx = skb_get_queue_mapping(skb);
1286        qs = &pi->qs[qidx];
1287        q = &qs->txq[TXQ_ETH];
1288        txq = netdev_get_tx_queue(dev, qidx);
1289
1290        reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1291
1292        credits = q->size - q->in_use;
1293        ndesc = calc_tx_descs(skb);
1294
1295        if (unlikely(credits < ndesc)) {
1296                t3_stop_tx_queue(txq, qs, q);
1297                dev_err(&adap->pdev->dev,
1298                        "%s: Tx ring %u full while queue awake!\n",
1299                        dev->name, q->cntxt_id & 7);
1300                return NETDEV_TX_BUSY;
1301        }
1302
1303        /* Check if ethernet packet can't be sent as immediate data */
1304        if (skb->len > (WR_LEN - sizeof(struct cpl_tx_pkt))) {
1305                if (unlikely(map_skb(adap->pdev, skb, addr) < 0)) {
1306                        dev_kfree_skb(skb);
1307                        return NETDEV_TX_OK;
1308                }
1309        }
1310
1311        q->in_use += ndesc;
1312        if (unlikely(credits - ndesc < q->stop_thres)) {
1313                t3_stop_tx_queue(txq, qs, q);
1314
1315                if (should_restart_tx(q) &&
1316                    test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1317                        q->restarts++;
1318                        netif_tx_start_queue(txq);
1319                }
1320        }
1321
1322        gen = q->gen;
1323        q->unacked += ndesc;
1324        compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1325        q->unacked &= 7;
1326        pidx = q->pidx;
1327        q->pidx += ndesc;
1328        if (q->pidx >= q->size) {
1329                q->pidx -= q->size;
1330                q->gen ^= 1;
1331        }
1332
1333        /* update port statistics */
1334        if (skb->ip_summed == CHECKSUM_PARTIAL)
1335                qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1336        if (skb_shinfo(skb)->gso_size)
1337                qs->port_stats[SGE_PSTAT_TSO]++;
1338        if (skb_vlan_tag_present(skb))
1339                qs->port_stats[SGE_PSTAT_VLANINS]++;
1340
1341        /*
1342         * We do not use Tx completion interrupts to free DMAd Tx packets.
1343         * This is good for performance but means that we rely on new Tx
1344         * packets arriving to run the destructors of completed packets,
1345         * which open up space in their sockets' send queues.  Sometimes
1346         * we do not get such new packets causing Tx to stall.  A single
1347         * UDP transmitter is a good example of this situation.  We have
1348         * a clean up timer that periodically reclaims completed packets
1349         * but it doesn't run often enough (nor do we want it to) to prevent
1350         * lengthy stalls.  A solution to this problem is to run the
1351         * destructor early, after the packet is queued but before it's DMAd.
1352         * A cons is that we lie to socket memory accounting, but the amount
1353         * of extra memory is reasonable (limited by the number of Tx
1354         * descriptors), the packets do actually get freed quickly by new
1355         * packets almost always, and for protocols like TCP that wait for
1356         * acks to really free up the data the extra memory is even less.
1357         * On the positive side we run the destructors on the sending CPU
1358         * rather than on a potentially different completing CPU, usually a
1359         * good thing.  We also run them without holding our Tx queue lock,
1360         * unlike what reclaim_completed_tx() would otherwise do.
1361         *
1362         * Run the destructor before telling the DMA engine about the packet
1363         * to make sure it doesn't complete and get freed prematurely.
1364         */
1365        if (likely(!skb_shared(skb)))
1366                skb_orphan(skb);
1367
1368        write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl, addr);
1369        check_ring_tx_db(adap, q);
1370        return NETDEV_TX_OK;
1371}
1372
1373/**
1374 *      write_imm - write a packet into a Tx descriptor as immediate data
1375 *      @d: the Tx descriptor to write
1376 *      @skb: the packet
1377 *      @len: the length of packet data to write as immediate data
1378 *      @gen: the generation bit value to write
1379 *
1380 *      Writes a packet as immediate data into a Tx descriptor.  The packet
1381 *      contains a work request at its beginning.  We must write the packet
1382 *      carefully so the SGE doesn't read it accidentally before it's written
1383 *      in its entirety.
1384 */
1385static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1386                             unsigned int len, unsigned int gen)
1387{
1388        struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1389        struct work_request_hdr *to = (struct work_request_hdr *)d;
1390
1391        if (likely(!skb->data_len))
1392                memcpy(&to[1], &from[1], len - sizeof(*from));
1393        else
1394                skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
1395
1396        to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1397                                        V_WR_BCNTLFLT(len & 7));
1398        dma_wmb();
1399        to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1400                                        V_WR_LEN((len + 7) / 8));
1401        wr_gen2(d, gen);
1402        kfree_skb(skb);
1403}
1404
1405/**
1406 *      check_desc_avail - check descriptor availability on a send queue
1407 *      @adap: the adapter
1408 *      @q: the send queue
1409 *      @skb: the packet needing the descriptors
1410 *      @ndesc: the number of Tx descriptors needed
1411 *      @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1412 *
1413 *      Checks if the requested number of Tx descriptors is available on an
1414 *      SGE send queue.  If the queue is already suspended or not enough
1415 *      descriptors are available the packet is queued for later transmission.
1416 *      Must be called with the Tx queue locked.
1417 *
1418 *      Returns 0 if enough descriptors are available, 1 if there aren't
1419 *      enough descriptors and the packet has been queued, and 2 if the caller
1420 *      needs to retry because there weren't enough descriptors at the
1421 *      beginning of the call but some freed up in the mean time.
1422 */
1423static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1424                                   struct sk_buff *skb, unsigned int ndesc,
1425                                   unsigned int qid)
1426{
1427        if (unlikely(!skb_queue_empty(&q->sendq))) {
1428              addq_exit:__skb_queue_tail(&q->sendq, skb);
1429                return 1;
1430        }
1431        if (unlikely(q->size - q->in_use < ndesc)) {
1432                struct sge_qset *qs = txq_to_qset(q, qid);
1433
1434                set_bit(qid, &qs->txq_stopped);
1435                smp_mb__after_atomic();
1436
1437                if (should_restart_tx(q) &&
1438                    test_and_clear_bit(qid, &qs->txq_stopped))
1439                        return 2;
1440
1441                q->stops++;
1442                goto addq_exit;
1443        }
1444        return 0;
1445}
1446
1447/**
1448 *      reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1449 *      @q: the SGE control Tx queue
1450 *
1451 *      This is a variant of reclaim_completed_tx() that is used for Tx queues
1452 *      that send only immediate data (presently just the control queues) and
1453 *      thus do not have any sk_buffs to release.
1454 */
1455static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1456{
1457        unsigned int reclaim = q->processed - q->cleaned;
1458
1459        q->in_use -= reclaim;
1460        q->cleaned += reclaim;
1461}
1462
1463static inline int immediate(const struct sk_buff *skb)
1464{
1465        return skb->len <= WR_LEN;
1466}
1467
1468/**
1469 *      ctrl_xmit - send a packet through an SGE control Tx queue
1470 *      @adap: the adapter
1471 *      @q: the control queue
1472 *      @skb: the packet
1473 *
1474 *      Send a packet through an SGE control Tx queue.  Packets sent through
1475 *      a control queue must fit entirely as immediate data in a single Tx
1476 *      descriptor and have no page fragments.
1477 */
1478static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1479                     struct sk_buff *skb)
1480{
1481        int ret;
1482        struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1483
1484        if (unlikely(!immediate(skb))) {
1485                WARN_ON(1);
1486                dev_kfree_skb(skb);
1487                return NET_XMIT_SUCCESS;
1488        }
1489
1490        wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1491        wrp->wr_lo = htonl(V_WR_TID(q->token));
1492
1493        spin_lock(&q->lock);
1494      again:reclaim_completed_tx_imm(q);
1495
1496        ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1497        if (unlikely(ret)) {
1498                if (ret == 1) {
1499                        spin_unlock(&q->lock);
1500                        return NET_XMIT_CN;
1501                }
1502                goto again;
1503        }
1504
1505        write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1506
1507        q->in_use++;
1508        if (++q->pidx >= q->size) {
1509                q->pidx = 0;
1510                q->gen ^= 1;
1511        }
1512        spin_unlock(&q->lock);
1513        wmb();
1514        t3_write_reg(adap, A_SG_KDOORBELL,
1515                     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1516        return NET_XMIT_SUCCESS;
1517}
1518
1519/**
1520 *      restart_ctrlq - restart a suspended control queue
1521 *      @w: pointer to the work associated with this handler
1522 *
1523 *      Resumes transmission on a suspended Tx control queue.
1524 */
1525static void restart_ctrlq(struct work_struct *w)
1526{
1527        struct sk_buff *skb;
1528        struct sge_qset *qs = container_of(w, struct sge_qset,
1529                                           txq[TXQ_CTRL].qresume_task);
1530        struct sge_txq *q = &qs->txq[TXQ_CTRL];
1531
1532        spin_lock(&q->lock);
1533      again:reclaim_completed_tx_imm(q);
1534
1535        while (q->in_use < q->size &&
1536               (skb = __skb_dequeue(&q->sendq)) != NULL) {
1537
1538                write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1539
1540                if (++q->pidx >= q->size) {
1541                        q->pidx = 0;
1542                        q->gen ^= 1;
1543                }
1544                q->in_use++;
1545        }
1546
1547        if (!skb_queue_empty(&q->sendq)) {
1548                set_bit(TXQ_CTRL, &qs->txq_stopped);
1549                smp_mb__after_atomic();
1550
1551                if (should_restart_tx(q) &&
1552                    test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1553                        goto again;
1554                q->stops++;
1555        }
1556
1557        spin_unlock(&q->lock);
1558        wmb();
1559        t3_write_reg(qs->adap, A_SG_KDOORBELL,
1560                     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1561}
1562
1563/*
1564 * Send a management message through control queue 0
1565 */
1566int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1567{
1568        int ret;
1569        local_bh_disable();
1570        ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1571        local_bh_enable();
1572
1573        return ret;
1574}
1575
1576/**
1577 *      deferred_unmap_destructor - unmap a packet when it is freed
1578 *      @skb: the packet
1579 *
1580 *      This is the packet destructor used for Tx packets that need to remain
1581 *      mapped until they are freed rather than until their Tx descriptors are
1582 *      freed.
1583 */
1584static void deferred_unmap_destructor(struct sk_buff *skb)
1585{
1586        int i;
1587        const dma_addr_t *p;
1588        const struct skb_shared_info *si;
1589        const struct deferred_unmap_info *dui;
1590
1591        dui = (struct deferred_unmap_info *)skb->head;
1592        p = dui->addr;
1593
1594        if (skb_tail_pointer(skb) - skb_transport_header(skb))
1595                pci_unmap_single(dui->pdev, *p++, skb_tail_pointer(skb) -
1596                                 skb_transport_header(skb), PCI_DMA_TODEVICE);
1597
1598        si = skb_shinfo(skb);
1599        for (i = 0; i < si->nr_frags; i++)
1600                pci_unmap_page(dui->pdev, *p++, skb_frag_size(&si->frags[i]),
1601                               PCI_DMA_TODEVICE);
1602}
1603
1604static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1605                                     const struct sg_ent *sgl, int sgl_flits)
1606{
1607        dma_addr_t *p;
1608        struct deferred_unmap_info *dui;
1609
1610        dui = (struct deferred_unmap_info *)skb->head;
1611        dui->pdev = pdev;
1612        for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1613                *p++ = be64_to_cpu(sgl->addr[0]);
1614                *p++ = be64_to_cpu(sgl->addr[1]);
1615        }
1616        if (sgl_flits)
1617                *p = be64_to_cpu(sgl->addr[0]);
1618}
1619
1620/**
1621 *      write_ofld_wr - write an offload work request
1622 *      @adap: the adapter
1623 *      @skb: the packet to send
1624 *      @q: the Tx queue
1625 *      @pidx: index of the first Tx descriptor to write
1626 *      @gen: the generation value to use
1627 *      @ndesc: number of descriptors the packet will occupy
1628 *      @addr: the address
1629 *
1630 *      Write an offload work request to send the supplied packet.  The packet
1631 *      data already carry the work request with most fields populated.
1632 */
1633static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1634                          struct sge_txq *q, unsigned int pidx,
1635                          unsigned int gen, unsigned int ndesc,
1636                          const dma_addr_t *addr)
1637{
1638        unsigned int sgl_flits, flits;
1639        struct work_request_hdr *from;
1640        struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1641        struct tx_desc *d = &q->desc[pidx];
1642
1643        if (immediate(skb)) {
1644                q->sdesc[pidx].skb = NULL;
1645                write_imm(d, skb, skb->len, gen);
1646                return;
1647        }
1648
1649        /* Only TX_DATA builds SGLs */
1650
1651        from = (struct work_request_hdr *)skb->data;
1652        memcpy(&d->flit[1], &from[1],
1653               skb_transport_offset(skb) - sizeof(*from));
1654
1655        flits = skb_transport_offset(skb) / 8;
1656        sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1657        sgl_flits = write_sgl(skb, sgp, skb_transport_header(skb),
1658                              skb_tail_pointer(skb) - skb_transport_header(skb),
1659                              addr);
1660        if (need_skb_unmap()) {
1661                setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1662                skb->destructor = deferred_unmap_destructor;
1663        }
1664
1665        write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1666                         gen, from->wr_hi, from->wr_lo);
1667}
1668
1669/**
1670 *      calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1671 *      @skb: the packet
1672 *
1673 *      Returns the number of Tx descriptors needed for the given offload
1674 *      packet.  These packets are already fully constructed.
1675 */
1676static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1677{
1678        unsigned int flits, cnt;
1679
1680        if (skb->len <= WR_LEN)
1681                return 1;       /* packet fits as immediate data */
1682
1683        flits = skb_transport_offset(skb) / 8;  /* headers */
1684        cnt = skb_shinfo(skb)->nr_frags;
1685        if (skb_tail_pointer(skb) != skb_transport_header(skb))
1686                cnt++;
1687        return flits_to_desc(flits + sgl_len(cnt));
1688}
1689
1690/**
1691 *      ofld_xmit - send a packet through an offload queue
1692 *      @adap: the adapter
1693 *      @q: the Tx offload queue
1694 *      @skb: the packet
1695 *
1696 *      Send an offload packet through an SGE offload queue.
1697 */
1698static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1699                     struct sk_buff *skb)
1700{
1701        int ret;
1702        unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1703
1704        spin_lock(&q->lock);
1705again:  reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1706
1707        ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1708        if (unlikely(ret)) {
1709                if (ret == 1) {
1710                        skb->priority = ndesc;  /* save for restart */
1711                        spin_unlock(&q->lock);
1712                        return NET_XMIT_CN;
1713                }
1714                goto again;
1715        }
1716
1717        if (!immediate(skb) &&
1718            map_skb(adap->pdev, skb, (dma_addr_t *)skb->head)) {
1719                spin_unlock(&q->lock);
1720                return NET_XMIT_SUCCESS;
1721        }
1722
1723        gen = q->gen;
1724        q->in_use += ndesc;
1725        pidx = q->pidx;
1726        q->pidx += ndesc;
1727        if (q->pidx >= q->size) {
1728                q->pidx -= q->size;
1729                q->gen ^= 1;
1730        }
1731        spin_unlock(&q->lock);
1732
1733        write_ofld_wr(adap, skb, q, pidx, gen, ndesc, (dma_addr_t *)skb->head);
1734        check_ring_tx_db(adap, q);
1735        return NET_XMIT_SUCCESS;
1736}
1737
1738/**
1739 *      restart_offloadq - restart a suspended offload queue
1740 *      @w: pointer to the work associated with this handler
1741 *
1742 *      Resumes transmission on a suspended Tx offload queue.
1743 */
1744static void restart_offloadq(struct work_struct *w)
1745{
1746        struct sk_buff *skb;
1747        struct sge_qset *qs = container_of(w, struct sge_qset,
1748                                           txq[TXQ_OFLD].qresume_task);
1749        struct sge_txq *q = &qs->txq[TXQ_OFLD];
1750        const struct port_info *pi = netdev_priv(qs->netdev);
1751        struct adapter *adap = pi->adapter;
1752        unsigned int written = 0;
1753
1754        spin_lock(&q->lock);
1755again:  reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1756
1757        while ((skb = skb_peek(&q->sendq)) != NULL) {
1758                unsigned int gen, pidx;
1759                unsigned int ndesc = skb->priority;
1760
1761                if (unlikely(q->size - q->in_use < ndesc)) {
1762                        set_bit(TXQ_OFLD, &qs->txq_stopped);
1763                        smp_mb__after_atomic();
1764
1765                        if (should_restart_tx(q) &&
1766                            test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1767                                goto again;
1768                        q->stops++;
1769                        break;
1770                }
1771
1772                if (!immediate(skb) &&
1773                    map_skb(adap->pdev, skb, (dma_addr_t *)skb->head))
1774                        break;
1775
1776                gen = q->gen;
1777                q->in_use += ndesc;
1778                pidx = q->pidx;
1779                q->pidx += ndesc;
1780                written += ndesc;
1781                if (q->pidx >= q->size) {
1782                        q->pidx -= q->size;
1783                        q->gen ^= 1;
1784                }
1785                __skb_unlink(skb, &q->sendq);
1786                spin_unlock(&q->lock);
1787
1788                write_ofld_wr(adap, skb, q, pidx, gen, ndesc,
1789                              (dma_addr_t *)skb->head);
1790                spin_lock(&q->lock);
1791        }
1792        spin_unlock(&q->lock);
1793
1794#if USE_GTS
1795        set_bit(TXQ_RUNNING, &q->flags);
1796        set_bit(TXQ_LAST_PKT_DB, &q->flags);
1797#endif
1798        wmb();
1799        if (likely(written))
1800                t3_write_reg(adap, A_SG_KDOORBELL,
1801                             F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1802}
1803
1804/**
1805 *      queue_set - return the queue set a packet should use
1806 *      @skb: the packet
1807 *
1808 *      Maps a packet to the SGE queue set it should use.  The desired queue
1809 *      set is carried in bits 1-3 in the packet's priority.
1810 */
1811static inline int queue_set(const struct sk_buff *skb)
1812{
1813        return skb->priority >> 1;
1814}
1815
1816/**
1817 *      is_ctrl_pkt - return whether an offload packet is a control packet
1818 *      @skb: the packet
1819 *
1820 *      Determines whether an offload packet should use an OFLD or a CTRL
1821 *      Tx queue.  This is indicated by bit 0 in the packet's priority.
1822 */
1823static inline int is_ctrl_pkt(const struct sk_buff *skb)
1824{
1825        return skb->priority & 1;
1826}
1827
1828/**
1829 *      t3_offload_tx - send an offload packet
1830 *      @tdev: the offload device to send to
1831 *      @skb: the packet
1832 *
1833 *      Sends an offload packet.  We use the packet priority to select the
1834 *      appropriate Tx queue as follows: bit 0 indicates whether the packet
1835 *      should be sent as regular or control, bits 1-3 select the queue set.
1836 */
1837int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1838{
1839        struct adapter *adap = tdev2adap(tdev);
1840        struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1841
1842        if (unlikely(is_ctrl_pkt(skb)))
1843                return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1844
1845        return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1846}
1847
1848/**
1849 *      offload_enqueue - add an offload packet to an SGE offload receive queue
1850 *      @q: the SGE response queue
1851 *      @skb: the packet
1852 *
1853 *      Add a new offload packet to an SGE response queue's offload packet
1854 *      queue.  If the packet is the first on the queue it schedules the RX
1855 *      softirq to process the queue.
1856 */
1857static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1858{
1859        int was_empty = skb_queue_empty(&q->rx_queue);
1860
1861        __skb_queue_tail(&q->rx_queue, skb);
1862
1863        if (was_empty) {
1864                struct sge_qset *qs = rspq_to_qset(q);
1865
1866                napi_schedule(&qs->napi);
1867        }
1868}
1869
1870/**
1871 *      deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1872 *      @tdev: the offload device that will be receiving the packets
1873 *      @q: the SGE response queue that assembled the bundle
1874 *      @skbs: the partial bundle
1875 *      @n: the number of packets in the bundle
1876 *
1877 *      Delivers a (partial) bundle of Rx offload packets to an offload device.
1878 */
1879static inline void deliver_partial_bundle(struct t3cdev *tdev,
1880                                          struct sge_rspq *q,
1881                                          struct sk_buff *skbs[], int n)
1882{
1883        if (n) {
1884                q->offload_bundles++;
1885                tdev->recv(tdev, skbs, n);
1886        }
1887}
1888
1889/**
1890 *      ofld_poll - NAPI handler for offload packets in interrupt mode
1891 *      @napi: the network device doing the polling
1892 *      @budget: polling budget
1893 *
1894 *      The NAPI handler for offload packets when a response queue is serviced
1895 *      by the hard interrupt handler, i.e., when it's operating in non-polling
1896 *      mode.  Creates small packet batches and sends them through the offload
1897 *      receive handler.  Batches need to be of modest size as we do prefetches
1898 *      on the packets in each.
1899 */
1900static int ofld_poll(struct napi_struct *napi, int budget)
1901{
1902        struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
1903        struct sge_rspq *q = &qs->rspq;
1904        struct adapter *adapter = qs->adap;
1905        int work_done = 0;
1906
1907        while (work_done < budget) {
1908                struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE];
1909                struct sk_buff_head queue;
1910                int ngathered;
1911
1912                spin_lock_irq(&q->lock);
1913                __skb_queue_head_init(&queue);
1914                skb_queue_splice_init(&q->rx_queue, &queue);
1915                if (skb_queue_empty(&queue)) {
1916                        napi_complete_done(napi, work_done);
1917                        spin_unlock_irq(&q->lock);
1918                        return work_done;
1919                }
1920                spin_unlock_irq(&q->lock);
1921
1922                ngathered = 0;
1923                skb_queue_walk_safe(&queue, skb, tmp) {
1924                        if (work_done >= budget)
1925                                break;
1926                        work_done++;
1927
1928                        __skb_unlink(skb, &queue);
1929                        prefetch(skb->data);
1930                        skbs[ngathered] = skb;
1931                        if (++ngathered == RX_BUNDLE_SIZE) {
1932                                q->offload_bundles++;
1933                                adapter->tdev.recv(&adapter->tdev, skbs,
1934                                                   ngathered);
1935                                ngathered = 0;
1936                        }
1937                }
1938                if (!skb_queue_empty(&queue)) {
1939                        /* splice remaining packets back onto Rx queue */
1940                        spin_lock_irq(&q->lock);
1941                        skb_queue_splice(&queue, &q->rx_queue);
1942                        spin_unlock_irq(&q->lock);
1943                }
1944                deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1945        }
1946
1947        return work_done;
1948}
1949
1950/**
1951 *      rx_offload - process a received offload packet
1952 *      @tdev: the offload device receiving the packet
1953 *      @rq: the response queue that received the packet
1954 *      @skb: the packet
1955 *      @rx_gather: a gather list of packets if we are building a bundle
1956 *      @gather_idx: index of the next available slot in the bundle
1957 *
1958 *      Process an ingress offload pakcet and add it to the offload ingress
1959 *      queue.  Returns the index of the next available slot in the bundle.
1960 */
1961static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1962                             struct sk_buff *skb, struct sk_buff *rx_gather[],
1963                             unsigned int gather_idx)
1964{
1965        skb_reset_mac_header(skb);
1966        skb_reset_network_header(skb);
1967        skb_reset_transport_header(skb);
1968
1969        if (rq->polling) {
1970                rx_gather[gather_idx++] = skb;
1971                if (gather_idx == RX_BUNDLE_SIZE) {
1972                        tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1973                        gather_idx = 0;
1974                        rq->offload_bundles++;
1975                }
1976        } else
1977                offload_enqueue(rq, skb);
1978
1979        return gather_idx;
1980}
1981
1982/**
1983 *      restart_tx - check whether to restart suspended Tx queues
1984 *      @qs: the queue set to resume
1985 *
1986 *      Restarts suspended Tx queues of an SGE queue set if they have enough
1987 *      free resources to resume operation.
1988 */
1989static void restart_tx(struct sge_qset *qs)
1990{
1991        if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1992            should_restart_tx(&qs->txq[TXQ_ETH]) &&
1993            test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1994                qs->txq[TXQ_ETH].restarts++;
1995                if (netif_running(qs->netdev))
1996                        netif_tx_wake_queue(qs->tx_q);
1997        }
1998
1999        if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
2000            should_restart_tx(&qs->txq[TXQ_OFLD]) &&
2001            test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
2002                qs->txq[TXQ_OFLD].restarts++;
2003
2004                /* The work can be quite lengthy so we use driver's own queue */
2005                queue_work(cxgb3_wq, &qs->txq[TXQ_OFLD].qresume_task);
2006        }
2007        if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
2008            should_restart_tx(&qs->txq[TXQ_CTRL]) &&
2009            test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
2010                qs->txq[TXQ_CTRL].restarts++;
2011
2012                /* The work can be quite lengthy so we use driver's own queue */
2013                queue_work(cxgb3_wq, &qs->txq[TXQ_CTRL].qresume_task);
2014        }
2015}
2016
2017/**
2018 *      cxgb3_arp_process - process an ARP request probing a private IP address
2019 *      @pi: the port info
2020 *      @skb: the skbuff containing the ARP request
2021 *
2022 *      Check if the ARP request is probing the private IP address
2023 *      dedicated to iSCSI, generate an ARP reply if so.
2024 */
2025static void cxgb3_arp_process(struct port_info *pi, struct sk_buff *skb)
2026{
2027        struct net_device *dev = skb->dev;
2028        struct arphdr *arp;
2029        unsigned char *arp_ptr;
2030        unsigned char *sha;
2031        __be32 sip, tip;
2032
2033        if (!dev)
2034                return;
2035
2036        skb_reset_network_header(skb);
2037        arp = arp_hdr(skb);
2038
2039        if (arp->ar_op != htons(ARPOP_REQUEST))
2040                return;
2041
2042        arp_ptr = (unsigned char *)(arp + 1);
2043        sha = arp_ptr;
2044        arp_ptr += dev->addr_len;
2045        memcpy(&sip, arp_ptr, sizeof(sip));
2046        arp_ptr += sizeof(sip);
2047        arp_ptr += dev->addr_len;
2048        memcpy(&tip, arp_ptr, sizeof(tip));
2049
2050        if (tip != pi->iscsi_ipv4addr)
2051                return;
2052
2053        arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
2054                 pi->iscsic.mac_addr, sha);
2055
2056}
2057
2058static inline int is_arp(struct sk_buff *skb)
2059{
2060        return skb->protocol == htons(ETH_P_ARP);
2061}
2062
2063static void cxgb3_process_iscsi_prov_pack(struct port_info *pi,
2064                                        struct sk_buff *skb)
2065{
2066        if (is_arp(skb)) {
2067                cxgb3_arp_process(pi, skb);
2068                return;
2069        }
2070
2071        if (pi->iscsic.recv)
2072                pi->iscsic.recv(pi, skb);
2073
2074}
2075
2076/**
2077 *      rx_eth - process an ingress ethernet packet
2078 *      @adap: the adapter
2079 *      @rq: the response queue that received the packet
2080 *      @skb: the packet
2081 *      @pad: padding
2082 *      @lro: large receive offload
2083 *
2084 *      Process an ingress ethernet pakcet and deliver it to the stack.
2085 *      The padding is 2 if the packet was delivered in an Rx buffer and 0
2086 *      if it was immediate data in a response.
2087 */
2088static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
2089                   struct sk_buff *skb, int pad, int lro)
2090{
2091        struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
2092        struct sge_qset *qs = rspq_to_qset(rq);
2093        struct port_info *pi;
2094
2095        skb_pull(skb, sizeof(*p) + pad);
2096        skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
2097        pi = netdev_priv(skb->dev);
2098        if ((skb->dev->features & NETIF_F_RXCSUM) && p->csum_valid &&
2099            p->csum == htons(0xffff) && !p->fragment) {
2100                qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2101                skb->ip_summed = CHECKSUM_UNNECESSARY;
2102        } else
2103                skb_checksum_none_assert(skb);
2104        skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]);
2105
2106        if (p->vlan_valid) {
2107                qs->port_stats[SGE_PSTAT_VLANEX]++;
2108                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(p->vlan));
2109        }
2110        if (rq->polling) {
2111                if (lro)
2112                        napi_gro_receive(&qs->napi, skb);
2113                else {
2114                        if (unlikely(pi->iscsic.flags))
2115                                cxgb3_process_iscsi_prov_pack(pi, skb);
2116                        netif_receive_skb(skb);
2117                }
2118        } else
2119                netif_rx(skb);
2120}
2121
2122static inline int is_eth_tcp(u32 rss)
2123{
2124        return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE;
2125}
2126
2127/**
2128 *      lro_add_page - add a page chunk to an LRO session
2129 *      @adap: the adapter
2130 *      @qs: the associated queue set
2131 *      @fl: the free list containing the page chunk to add
2132 *      @len: packet length
2133 *      @complete: Indicates the last fragment of a frame
2134 *
2135 *      Add a received packet contained in a page chunk to an existing LRO
2136 *      session.
2137 */
2138static void lro_add_page(struct adapter *adap, struct sge_qset *qs,
2139                         struct sge_fl *fl, int len, int complete)
2140{
2141        struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
2142        struct port_info *pi = netdev_priv(qs->netdev);
2143        struct sk_buff *skb = NULL;
2144        struct cpl_rx_pkt *cpl;
2145        skb_frag_t *rx_frag;
2146        int nr_frags;
2147        int offset = 0;
2148
2149        if (!qs->nomem) {
2150                skb = napi_get_frags(&qs->napi);
2151                qs->nomem = !skb;
2152        }
2153
2154        fl->credits--;
2155
2156        pci_dma_sync_single_for_cpu(adap->pdev,
2157                                    dma_unmap_addr(sd, dma_addr),
2158                                    fl->buf_size - SGE_PG_RSVD,
2159                                    PCI_DMA_FROMDEVICE);
2160
2161        (*sd->pg_chunk.p_cnt)--;
2162        if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
2163                pci_unmap_page(adap->pdev,
2164                               sd->pg_chunk.mapping,
2165                               fl->alloc_size,
2166                               PCI_DMA_FROMDEVICE);
2167
2168        if (!skb) {
2169                put_page(sd->pg_chunk.page);
2170                if (complete)
2171                        qs->nomem = 0;
2172                return;
2173        }
2174
2175        rx_frag = skb_shinfo(skb)->frags;
2176        nr_frags = skb_shinfo(skb)->nr_frags;
2177
2178        if (!nr_frags) {
2179                offset = 2 + sizeof(struct cpl_rx_pkt);
2180                cpl = qs->lro_va = sd->pg_chunk.va + 2;
2181
2182                if ((qs->netdev->features & NETIF_F_RXCSUM) &&
2183                     cpl->csum_valid && cpl->csum == htons(0xffff)) {
2184                        skb->ip_summed = CHECKSUM_UNNECESSARY;
2185                        qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2186                } else
2187                        skb->ip_summed = CHECKSUM_NONE;
2188        } else
2189                cpl = qs->lro_va;
2190
2191        len -= offset;
2192
2193        rx_frag += nr_frags;
2194        __skb_frag_set_page(rx_frag, sd->pg_chunk.page);
2195        skb_frag_off_set(rx_frag, sd->pg_chunk.offset + offset);
2196        skb_frag_size_set(rx_frag, len);
2197
2198        skb->len += len;
2199        skb->data_len += len;
2200        skb->truesize += len;
2201        skb_shinfo(skb)->nr_frags++;
2202
2203        if (!complete)
2204                return;
2205
2206        skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]);
2207
2208        if (cpl->vlan_valid) {
2209                qs->port_stats[SGE_PSTAT_VLANEX]++;
2210                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cpl->vlan));
2211        }
2212        napi_gro_frags(&qs->napi);
2213}
2214
2215/**
2216 *      handle_rsp_cntrl_info - handles control information in a response
2217 *      @qs: the queue set corresponding to the response
2218 *      @flags: the response control flags
2219 *
2220 *      Handles the control information of an SGE response, such as GTS
2221 *      indications and completion credits for the queue set's Tx queues.
2222 *      HW coalesces credits, we don't do any extra SW coalescing.
2223 */
2224static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
2225{
2226        unsigned int credits;
2227
2228#if USE_GTS
2229        if (flags & F_RSPD_TXQ0_GTS)
2230                clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
2231#endif
2232
2233        credits = G_RSPD_TXQ0_CR(flags);
2234        if (credits)
2235                qs->txq[TXQ_ETH].processed += credits;
2236
2237        credits = G_RSPD_TXQ2_CR(flags);
2238        if (credits)
2239                qs->txq[TXQ_CTRL].processed += credits;
2240
2241# if USE_GTS
2242        if (flags & F_RSPD_TXQ1_GTS)
2243                clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
2244# endif
2245        credits = G_RSPD_TXQ1_CR(flags);
2246        if (credits)
2247                qs->txq[TXQ_OFLD].processed += credits;
2248}
2249
2250/**
2251 *      check_ring_db - check if we need to ring any doorbells
2252 *      @adap: the adapter
2253 *      @qs: the queue set whose Tx queues are to be examined
2254 *      @sleeping: indicates which Tx queue sent GTS
2255 *
2256 *      Checks if some of a queue set's Tx queues need to ring their doorbells
2257 *      to resume transmission after idling while they still have unprocessed
2258 *      descriptors.
2259 */
2260static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
2261                          unsigned int sleeping)
2262{
2263        if (sleeping & F_RSPD_TXQ0_GTS) {
2264                struct sge_txq *txq = &qs->txq[TXQ_ETH];
2265
2266                if (txq->cleaned + txq->in_use != txq->processed &&
2267                    !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2268                        set_bit(TXQ_RUNNING, &txq->flags);
2269                        t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2270                                     V_EGRCNTX(txq->cntxt_id));
2271                }
2272        }
2273
2274        if (sleeping & F_RSPD_TXQ1_GTS) {
2275                struct sge_txq *txq = &qs->txq[TXQ_OFLD];
2276
2277                if (txq->cleaned + txq->in_use != txq->processed &&
2278                    !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2279                        set_bit(TXQ_RUNNING, &txq->flags);
2280                        t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2281                                     V_EGRCNTX(txq->cntxt_id));
2282                }
2283        }
2284}
2285
2286/**
2287 *      is_new_response - check if a response is newly written
2288 *      @r: the response descriptor
2289 *      @q: the response queue
2290 *
2291 *      Returns true if a response descriptor contains a yet unprocessed
2292 *      response.
2293 */
2294static inline int is_new_response(const struct rsp_desc *r,
2295                                  const struct sge_rspq *q)
2296{
2297        return (r->intr_gen & F_RSPD_GEN2) == q->gen;
2298}
2299
2300static inline void clear_rspq_bufstate(struct sge_rspq * const q)
2301{
2302        q->pg_skb = NULL;
2303        q->rx_recycle_buf = 0;
2304}
2305
2306#define RSPD_GTS_MASK  (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
2307#define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
2308                        V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
2309                        V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
2310                        V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
2311
2312/* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
2313#define NOMEM_INTR_DELAY 2500
2314
2315/**
2316 *      process_responses - process responses from an SGE response queue
2317 *      @adap: the adapter
2318 *      @qs: the queue set to which the response queue belongs
2319 *      @budget: how many responses can be processed in this round
2320 *
2321 *      Process responses from an SGE response queue up to the supplied budget.
2322 *      Responses include received packets as well as credits and other events
2323 *      for the queues that belong to the response queue's queue set.
2324 *      A negative budget is effectively unlimited.
2325 *
2326 *      Additionally choose the interrupt holdoff time for the next interrupt
2327 *      on this queue.  If the system is under memory shortage use a fairly
2328 *      long delay to help recovery.
2329 */
2330static int process_responses(struct adapter *adap, struct sge_qset *qs,
2331                             int budget)
2332{
2333        struct sge_rspq *q = &qs->rspq;
2334        struct rsp_desc *r = &q->desc[q->cidx];
2335        int budget_left = budget;
2336        unsigned int sleeping = 0;
2337        struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
2338        int ngathered = 0;
2339
2340        q->next_holdoff = q->holdoff_tmr;
2341
2342        while (likely(budget_left && is_new_response(r, q))) {
2343                int packet_complete, eth, ethpad = 2;
2344                int lro = !!(qs->netdev->features & NETIF_F_GRO);
2345                struct sk_buff *skb = NULL;
2346                u32 len, flags;
2347                __be32 rss_hi, rss_lo;
2348
2349                dma_rmb();
2350                eth = r->rss_hdr.opcode == CPL_RX_PKT;
2351                rss_hi = *(const __be32 *)r;
2352                rss_lo = r->rss_hdr.rss_hash_val;
2353                flags = ntohl(r->flags);
2354
2355                if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
2356                        skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
2357                        if (!skb)
2358                                goto no_mem;
2359
2360                        __skb_put_data(skb, r, AN_PKT_SIZE);
2361                        skb->data[0] = CPL_ASYNC_NOTIF;
2362                        rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
2363                        q->async_notif++;
2364                } else if (flags & F_RSPD_IMM_DATA_VALID) {
2365                        skb = get_imm_packet(r);
2366                        if (unlikely(!skb)) {
2367no_mem:
2368                                q->next_holdoff = NOMEM_INTR_DELAY;
2369                                q->nomem++;
2370                                /* consume one credit since we tried */
2371                                budget_left--;
2372                                break;
2373                        }
2374                        q->imm_data++;
2375                        ethpad = 0;
2376                } else if ((len = ntohl(r->len_cq)) != 0) {
2377                        struct sge_fl *fl;
2378
2379                        lro &= eth && is_eth_tcp(rss_hi);
2380
2381                        fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
2382                        if (fl->use_pages) {
2383                                void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
2384
2385                                net_prefetch(addr);
2386                                __refill_fl(adap, fl);
2387                                if (lro > 0) {
2388                                        lro_add_page(adap, qs, fl,
2389                                                     G_RSPD_LEN(len),
2390                                                     flags & F_RSPD_EOP);
2391                                        goto next_fl;
2392                                }
2393
2394                                skb = get_packet_pg(adap, fl, q,
2395                                                    G_RSPD_LEN(len),
2396                                                    eth ?
2397                                                    SGE_RX_DROP_THRES : 0);
2398                                q->pg_skb = skb;
2399                        } else
2400                                skb = get_packet(adap, fl, G_RSPD_LEN(len),
2401                                                 eth ? SGE_RX_DROP_THRES : 0);
2402                        if (unlikely(!skb)) {
2403                                if (!eth)
2404                                        goto no_mem;
2405                                q->rx_drops++;
2406                        } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
2407                                __skb_pull(skb, 2);
2408next_fl:
2409                        if (++fl->cidx == fl->size)
2410                                fl->cidx = 0;
2411                } else
2412                        q->pure_rsps++;
2413
2414                if (flags & RSPD_CTRL_MASK) {
2415                        sleeping |= flags & RSPD_GTS_MASK;
2416                        handle_rsp_cntrl_info(qs, flags);
2417                }
2418
2419                r++;
2420                if (unlikely(++q->cidx == q->size)) {
2421                        q->cidx = 0;
2422                        q->gen ^= 1;
2423                        r = q->desc;
2424                }
2425                prefetch(r);
2426
2427                if (++q->credits >= (q->size / 4)) {
2428                        refill_rspq(adap, q, q->credits);
2429                        q->credits = 0;
2430                }
2431
2432                packet_complete = flags &
2433                                  (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID |
2434                                   F_RSPD_ASYNC_NOTIF);
2435
2436                if (skb != NULL && packet_complete) {
2437                        if (eth)
2438                                rx_eth(adap, q, skb, ethpad, lro);
2439                        else {
2440                                q->offload_pkts++;
2441                                /* Preserve the RSS info in csum & priority */
2442                                skb->csum = rss_hi;
2443                                skb->priority = rss_lo;
2444                                ngathered = rx_offload(&adap->tdev, q, skb,
2445                                                       offload_skbs,
2446                                                       ngathered);
2447                        }
2448
2449                        if (flags & F_RSPD_EOP)
2450                                clear_rspq_bufstate(q);
2451                }
2452                --budget_left;
2453        }
2454
2455        deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
2456
2457        if (sleeping)
2458                check_ring_db(adap, qs, sleeping);
2459
2460        smp_mb();               /* commit Tx queue .processed updates */
2461        if (unlikely(qs->txq_stopped != 0))
2462                restart_tx(qs);
2463
2464        budget -= budget_left;
2465        return budget;
2466}
2467
2468static inline int is_pure_response(const struct rsp_desc *r)
2469{
2470        __be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
2471
2472        return (n | r->len_cq) == 0;
2473}
2474
2475/**
2476 *      napi_rx_handler - the NAPI handler for Rx processing
2477 *      @napi: the napi instance
2478 *      @budget: how many packets we can process in this round
2479 *
2480 *      Handler for new data events when using NAPI.
2481 */
2482static int napi_rx_handler(struct napi_struct *napi, int budget)
2483{
2484        struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
2485        struct adapter *adap = qs->adap;
2486        int work_done = process_responses(adap, qs, budget);
2487
2488        if (likely(work_done < budget)) {
2489                napi_complete_done(napi, work_done);
2490
2491                /*
2492                 * Because we don't atomically flush the following
2493                 * write it is possible that in very rare cases it can
2494                 * reach the device in a way that races with a new
2495                 * response being written plus an error interrupt
2496                 * causing the NAPI interrupt handler below to return
2497                 * unhandled status to the OS.  To protect against
2498                 * this would require flushing the write and doing
2499                 * both the write and the flush with interrupts off.
2500                 * Way too expensive and unjustifiable given the
2501                 * rarity of the race.
2502                 *
2503                 * The race cannot happen at all with MSI-X.
2504                 */
2505                t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2506                             V_NEWTIMER(qs->rspq.next_holdoff) |
2507                             V_NEWINDEX(qs->rspq.cidx));
2508        }
2509        return work_done;
2510}
2511
2512/*
2513 * Returns true if the device is already scheduled for polling.
2514 */
2515static inline int napi_is_scheduled(struct napi_struct *napi)
2516{
2517        return test_bit(NAPI_STATE_SCHED, &napi->state);
2518}
2519
2520/**
2521 *      process_pure_responses - process pure responses from a response queue
2522 *      @adap: the adapter
2523 *      @qs: the queue set owning the response queue
2524 *      @r: the first pure response to process
2525 *
2526 *      A simpler version of process_responses() that handles only pure (i.e.,
2527 *      non data-carrying) responses.  Such respones are too light-weight to
2528 *      justify calling a softirq under NAPI, so we handle them specially in
2529 *      the interrupt handler.  The function is called with a pointer to a
2530 *      response, which the caller must ensure is a valid pure response.
2531 *
2532 *      Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2533 */
2534static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2535                                  struct rsp_desc *r)
2536{
2537        struct sge_rspq *q = &qs->rspq;
2538        unsigned int sleeping = 0;
2539
2540        do {
2541                u32 flags = ntohl(r->flags);
2542
2543                r++;
2544                if (unlikely(++q->cidx == q->size)) {
2545                        q->cidx = 0;
2546                        q->gen ^= 1;
2547                        r = q->desc;
2548                }
2549                prefetch(r);
2550
2551                if (flags & RSPD_CTRL_MASK) {
2552                        sleeping |= flags & RSPD_GTS_MASK;
2553                        handle_rsp_cntrl_info(qs, flags);
2554                }
2555
2556                q->pure_rsps++;
2557                if (++q->credits >= (q->size / 4)) {
2558                        refill_rspq(adap, q, q->credits);
2559                        q->credits = 0;
2560                }
2561                if (!is_new_response(r, q))
2562                        break;
2563                dma_rmb();
2564        } while (is_pure_response(r));
2565
2566        if (sleeping)
2567                check_ring_db(adap, qs, sleeping);
2568
2569        smp_mb();               /* commit Tx queue .processed updates */
2570        if (unlikely(qs->txq_stopped != 0))
2571                restart_tx(qs);
2572
2573        return is_new_response(r, q);
2574}
2575
2576/**
2577 *      handle_responses - decide what to do with new responses in NAPI mode
2578 *      @adap: the adapter
2579 *      @q: the response queue
2580 *
2581 *      This is used by the NAPI interrupt handlers to decide what to do with
2582 *      new SGE responses.  If there are no new responses it returns -1.  If
2583 *      there are new responses and they are pure (i.e., non-data carrying)
2584 *      it handles them straight in hard interrupt context as they are very
2585 *      cheap and don't deliver any packets.  Finally, if there are any data
2586 *      signaling responses it schedules the NAPI handler.  Returns 1 if it
2587 *      schedules NAPI, 0 if all new responses were pure.
2588 *
2589 *      The caller must ascertain NAPI is not already running.
2590 */
2591static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2592{
2593        struct sge_qset *qs = rspq_to_qset(q);
2594        struct rsp_desc *r = &q->desc[q->cidx];
2595
2596        if (!is_new_response(r, q))
2597                return -1;
2598        dma_rmb();
2599        if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2600                t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2601                             V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2602                return 0;
2603        }
2604        napi_schedule(&qs->napi);
2605        return 1;
2606}
2607
2608/*
2609 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2610 * (i.e., response queue serviced in hard interrupt).
2611 */
2612static irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2613{
2614        struct sge_qset *qs = cookie;
2615        struct adapter *adap = qs->adap;
2616        struct sge_rspq *q = &qs->rspq;
2617
2618        spin_lock(&q->lock);
2619        if (process_responses(adap, qs, -1) == 0)
2620                q->unhandled_irqs++;
2621        t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2622                     V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2623        spin_unlock(&q->lock);
2624        return IRQ_HANDLED;
2625}
2626
2627/*
2628 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2629 * (i.e., response queue serviced by NAPI polling).
2630 */
2631static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
2632{
2633        struct sge_qset *qs = cookie;
2634        struct sge_rspq *q = &qs->rspq;
2635
2636        spin_lock(&q->lock);
2637
2638        if (handle_responses(qs->adap, q) < 0)
2639                q->unhandled_irqs++;
2640        spin_unlock(&q->lock);
2641        return IRQ_HANDLED;
2642}
2643
2644/*
2645 * The non-NAPI MSI interrupt handler.  This needs to handle data events from
2646 * SGE response queues as well as error and other async events as they all use
2647 * the same MSI vector.  We use one SGE response queue per port in this mode
2648 * and protect all response queues with queue 0's lock.
2649 */
2650static irqreturn_t t3_intr_msi(int irq, void *cookie)
2651{
2652        int new_packets = 0;
2653        struct adapter *adap = cookie;
2654        struct sge_rspq *q = &adap->sge.qs[0].rspq;
2655
2656        spin_lock(&q->lock);
2657
2658        if (process_responses(adap, &adap->sge.qs[0], -1)) {
2659                t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2660                             V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2661                new_packets = 1;
2662        }
2663
2664        if (adap->params.nports == 2 &&
2665            process_responses(adap, &adap->sge.qs[1], -1)) {
2666                struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2667
2668                t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2669                             V_NEWTIMER(q1->next_holdoff) |
2670                             V_NEWINDEX(q1->cidx));
2671                new_packets = 1;
2672        }
2673
2674        if (!new_packets && t3_slow_intr_handler(adap) == 0)
2675                q->unhandled_irqs++;
2676
2677        spin_unlock(&q->lock);
2678        return IRQ_HANDLED;
2679}
2680
2681static int rspq_check_napi(struct sge_qset *qs)
2682{
2683        struct sge_rspq *q = &qs->rspq;
2684
2685        if (!napi_is_scheduled(&qs->napi) &&
2686            is_new_response(&q->desc[q->cidx], q)) {
2687                napi_schedule(&qs->napi);
2688                return 1;
2689        }
2690        return 0;
2691}
2692
2693/*
2694 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2695 * by NAPI polling).  Handles data events from SGE response queues as well as
2696 * error and other async events as they all use the same MSI vector.  We use
2697 * one SGE response queue per port in this mode and protect all response
2698 * queues with queue 0's lock.
2699 */
2700static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
2701{
2702        int new_packets;
2703        struct adapter *adap = cookie;
2704        struct sge_rspq *q = &adap->sge.qs[0].rspq;
2705
2706        spin_lock(&q->lock);
2707
2708        new_packets = rspq_check_napi(&adap->sge.qs[0]);
2709        if (adap->params.nports == 2)
2710                new_packets += rspq_check_napi(&adap->sge.qs[1]);
2711        if (!new_packets && t3_slow_intr_handler(adap) == 0)
2712                q->unhandled_irqs++;
2713
2714        spin_unlock(&q->lock);
2715        return IRQ_HANDLED;
2716}
2717
2718/*
2719 * A helper function that processes responses and issues GTS.
2720 */
2721static inline int process_responses_gts(struct adapter *adap,
2722                                        struct sge_rspq *rq)
2723{
2724        int work;
2725
2726        work = process_responses(adap, rspq_to_qset(rq), -1);
2727        t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2728                     V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2729        return work;
2730}
2731
2732/*
2733 * The legacy INTx interrupt handler.  This needs to handle data events from
2734 * SGE response queues as well as error and other async events as they all use
2735 * the same interrupt pin.  We use one SGE response queue per port in this mode
2736 * and protect all response queues with queue 0's lock.
2737 */
2738static irqreturn_t t3_intr(int irq, void *cookie)
2739{
2740        int work_done, w0, w1;
2741        struct adapter *adap = cookie;
2742        struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2743        struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2744
2745        spin_lock(&q0->lock);
2746
2747        w0 = is_new_response(&q0->desc[q0->cidx], q0);
2748        w1 = adap->params.nports == 2 &&
2749            is_new_response(&q1->desc[q1->cidx], q1);
2750
2751        if (likely(w0 | w1)) {
2752                t3_write_reg(adap, A_PL_CLI, 0);
2753                t3_read_reg(adap, A_PL_CLI);    /* flush */
2754
2755                if (likely(w0))
2756                        process_responses_gts(adap, q0);
2757
2758                if (w1)
2759                        process_responses_gts(adap, q1);
2760
2761                work_done = w0 | w1;
2762        } else
2763                work_done = t3_slow_intr_handler(adap);
2764
2765        spin_unlock(&q0->lock);
2766        return IRQ_RETVAL(work_done != 0);
2767}
2768
2769/*
2770 * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2771 * Handles data events from SGE response queues as well as error and other
2772 * async events as they all use the same interrupt pin.  We use one SGE
2773 * response queue per port in this mode and protect all response queues with
2774 * queue 0's lock.
2775 */
2776static irqreturn_t t3b_intr(int irq, void *cookie)
2777{
2778        u32 map;
2779        struct adapter *adap = cookie;
2780        struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2781
2782        t3_write_reg(adap, A_PL_CLI, 0);
2783        map = t3_read_reg(adap, A_SG_DATA_INTR);
2784
2785        if (unlikely(!map))     /* shared interrupt, most likely */
2786                return IRQ_NONE;
2787
2788        spin_lock(&q0->lock);
2789
2790        if (unlikely(map & F_ERRINTR))
2791                t3_slow_intr_handler(adap);
2792
2793        if (likely(map & 1))
2794                process_responses_gts(adap, q0);
2795
2796        if (map & 2)
2797                process_responses_gts(adap, &adap->sge.qs[1].rspq);
2798
2799        spin_unlock(&q0->lock);
2800        return IRQ_HANDLED;
2801}
2802
2803/*
2804 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2805 * Handles data events from SGE response queues as well as error and other
2806 * async events as they all use the same interrupt pin.  We use one SGE
2807 * response queue per port in this mode and protect all response queues with
2808 * queue 0's lock.
2809 */
2810static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2811{
2812        u32 map;
2813        struct adapter *adap = cookie;
2814        struct sge_qset *qs0 = &adap->sge.qs[0];
2815        struct sge_rspq *q0 = &qs0->rspq;
2816
2817        t3_write_reg(adap, A_PL_CLI, 0);
2818        map = t3_read_reg(adap, A_SG_DATA_INTR);
2819
2820        if (unlikely(!map))     /* shared interrupt, most likely */
2821                return IRQ_NONE;
2822
2823        spin_lock(&q0->lock);
2824
2825        if (unlikely(map & F_ERRINTR))
2826                t3_slow_intr_handler(adap);
2827
2828        if (likely(map & 1))
2829                napi_schedule(&qs0->napi);
2830
2831        if (map & 2)
2832                napi_schedule(&adap->sge.qs[1].napi);
2833
2834        spin_unlock(&q0->lock);
2835        return IRQ_HANDLED;
2836}
2837
2838/**
2839 *      t3_intr_handler - select the top-level interrupt handler
2840 *      @adap: the adapter
2841 *      @polling: whether using NAPI to service response queues
2842 *
2843 *      Selects the top-level interrupt handler based on the type of interrupts
2844 *      (MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2845 *      response queues.
2846 */
2847irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
2848{
2849        if (adap->flags & USING_MSIX)
2850                return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2851        if (adap->flags & USING_MSI)
2852                return polling ? t3_intr_msi_napi : t3_intr_msi;
2853        if (adap->params.rev > 0)
2854                return polling ? t3b_intr_napi : t3b_intr;
2855        return t3_intr;
2856}
2857
2858#define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2859                    F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2860                    V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2861                    F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2862                    F_HIRCQPARITYERROR)
2863#define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2864#define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2865                      F_RSPQDISABLED)
2866
2867/**
2868 *      t3_sge_err_intr_handler - SGE async event interrupt handler
2869 *      @adapter: the adapter
2870 *
2871 *      Interrupt handler for SGE asynchronous (non-data) events.
2872 */
2873void t3_sge_err_intr_handler(struct adapter *adapter)
2874{
2875        unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE) &
2876                                 ~F_FLEMPTY;
2877
2878        if (status & SGE_PARERR)
2879                CH_ALERT(adapter, "SGE parity error (0x%x)\n",
2880                         status & SGE_PARERR);
2881        if (status & SGE_FRAMINGERR)
2882                CH_ALERT(adapter, "SGE framing error (0x%x)\n",
2883                         status & SGE_FRAMINGERR);
2884
2885        if (status & F_RSPQCREDITOVERFOW)
2886                CH_ALERT(adapter, "SGE response queue credit overflow\n");
2887
2888        if (status & F_RSPQDISABLED) {
2889                v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2890
2891                CH_ALERT(adapter,
2892                         "packet delivered to disabled response queue "
2893                         "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2894        }
2895
2896        if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
2897                queue_work(cxgb3_wq, &adapter->db_drop_task);
2898
2899        if (status & (F_HIPRIORITYDBFULL | F_LOPRIORITYDBFULL))
2900                queue_work(cxgb3_wq, &adapter->db_full_task);
2901
2902        if (status & (F_HIPRIORITYDBEMPTY | F_LOPRIORITYDBEMPTY))
2903                queue_work(cxgb3_wq, &adapter->db_empty_task);
2904
2905        t3_write_reg(adapter, A_SG_INT_CAUSE, status);
2906        if (status &  SGE_FATALERR)
2907                t3_fatal_err(adapter);
2908}
2909
2910/**
2911 *      sge_timer_tx - perform periodic maintenance of an SGE qset
2912 *      @t: a timer list containing the SGE queue set to maintain
2913 *
2914 *      Runs periodically from a timer to perform maintenance of an SGE queue
2915 *      set.  It performs two tasks:
2916 *
2917 *      Cleans up any completed Tx descriptors that may still be pending.
2918 *      Normal descriptor cleanup happens when new packets are added to a Tx
2919 *      queue so this timer is relatively infrequent and does any cleanup only
2920 *      if the Tx queue has not seen any new packets in a while.  We make a
2921 *      best effort attempt to reclaim descriptors, in that we don't wait
2922 *      around if we cannot get a queue's lock (which most likely is because
2923 *      someone else is queueing new packets and so will also handle the clean
2924 *      up).  Since control queues use immediate data exclusively we don't
2925 *      bother cleaning them up here.
2926 *
2927 */
2928static void sge_timer_tx(struct timer_list *t)
2929{
2930        struct sge_qset *qs = from_timer(qs, t, tx_reclaim_timer);
2931        struct port_info *pi = netdev_priv(qs->netdev);
2932        struct adapter *adap = pi->adapter;
2933        unsigned int tbd[SGE_TXQ_PER_SET] = {0, 0};
2934        unsigned long next_period;
2935
2936        if (__netif_tx_trylock(qs->tx_q)) {
2937                tbd[TXQ_ETH] = reclaim_completed_tx(adap, &qs->txq[TXQ_ETH],
2938                                                     TX_RECLAIM_TIMER_CHUNK);
2939                __netif_tx_unlock(qs->tx_q);
2940        }
2941
2942        if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
2943                tbd[TXQ_OFLD] = reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD],
2944                                                     TX_RECLAIM_TIMER_CHUNK);
2945                spin_unlock(&qs->txq[TXQ_OFLD].lock);
2946        }
2947
2948        next_period = TX_RECLAIM_PERIOD >>
2949                      (max(tbd[TXQ_ETH], tbd[TXQ_OFLD]) /
2950                      TX_RECLAIM_TIMER_CHUNK);
2951        mod_timer(&qs->tx_reclaim_timer, jiffies + next_period);
2952}
2953
2954/**
2955 *      sge_timer_rx - perform periodic maintenance of an SGE qset
2956 *      @t: the timer list containing the SGE queue set to maintain
2957 *
2958 *      a) Replenishes Rx queues that have run out due to memory shortage.
2959 *      Normally new Rx buffers are added when existing ones are consumed but
2960 *      when out of memory a queue can become empty.  We try to add only a few
2961 *      buffers here, the queue will be replenished fully as these new buffers
2962 *      are used up if memory shortage has subsided.
2963 *
2964 *      b) Return coalesced response queue credits in case a response queue is
2965 *      starved.
2966 *
2967 */
2968static void sge_timer_rx(struct timer_list *t)
2969{
2970        spinlock_t *lock;
2971        struct sge_qset *qs = from_timer(qs, t, rx_reclaim_timer);
2972        struct port_info *pi = netdev_priv(qs->netdev);
2973        struct adapter *adap = pi->adapter;
2974        u32 status;
2975
2976        lock = adap->params.rev > 0 ?
2977               &qs->rspq.lock : &adap->sge.qs[0].rspq.lock;
2978
2979        if (!spin_trylock_irq(lock))
2980                goto out;
2981
2982        if (napi_is_scheduled(&qs->napi))
2983                goto unlock;
2984
2985        if (adap->params.rev < 4) {
2986                status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2987
2988                if (status & (1 << qs->rspq.cntxt_id)) {
2989                        qs->rspq.starved++;
2990                        if (qs->rspq.credits) {
2991                                qs->rspq.credits--;
2992                                refill_rspq(adap, &qs->rspq, 1);
2993                                qs->rspq.restarted++;
2994                                t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
2995                                             1 << qs->rspq.cntxt_id);
2996                        }
2997                }
2998        }
2999
3000        if (qs->fl[0].credits < qs->fl[0].size)
3001                __refill_fl(adap, &qs->fl[0]);
3002        if (qs->fl[1].credits < qs->fl[1].size)
3003                __refill_fl(adap, &qs->fl[1]);
3004
3005unlock:
3006        spin_unlock_irq(lock);
3007out:
3008        mod_timer(&qs->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
3009}
3010
3011/**
3012 *      t3_update_qset_coalesce - update coalescing settings for a queue set
3013 *      @qs: the SGE queue set
3014 *      @p: new queue set parameters
3015 *
3016 *      Update the coalescing settings for an SGE queue set.  Nothing is done
3017 *      if the queue set is not initialized yet.
3018 */
3019void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
3020{
3021        qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
3022        qs->rspq.polling = p->polling;
3023        qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
3024}
3025
3026/**
3027 *      t3_sge_alloc_qset - initialize an SGE queue set
3028 *      @adapter: the adapter
3029 *      @id: the queue set id
3030 *      @nports: how many Ethernet ports will be using this queue set
3031 *      @irq_vec_idx: the IRQ vector index for response queue interrupts
3032 *      @p: configuration parameters for this queue set
3033 *      @ntxq: number of Tx queues for the queue set
3034 *      @dev: net device associated with this queue set
3035 *      @netdevq: net device TX queue associated with this queue set
3036 *
3037 *      Allocate resources and initialize an SGE queue set.  A queue set
3038 *      comprises a response queue, two Rx free-buffer queues, and up to 3
3039 *      Tx queues.  The Tx queues are assigned roles in the order Ethernet
3040 *      queue, offload queue, and control queue.
3041 */
3042int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
3043                      int irq_vec_idx, const struct qset_params *p,
3044                      int ntxq, struct net_device *dev,
3045                      struct netdev_queue *netdevq)
3046{
3047        int i, avail, ret = -ENOMEM;
3048        struct sge_qset *q = &adapter->sge.qs[id];
3049
3050        init_qset_cntxt(q, id);
3051        timer_setup(&q->tx_reclaim_timer, sge_timer_tx, 0);
3052        timer_setup(&q->rx_reclaim_timer, sge_timer_rx, 0);
3053
3054        q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
3055                                   sizeof(struct rx_desc),
3056                                   sizeof(struct rx_sw_desc),
3057                                   &q->fl[0].phys_addr, &q->fl[0].sdesc);
3058        if (!q->fl[0].desc)
3059                goto err;
3060
3061        q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
3062                                   sizeof(struct rx_desc),
3063                                   sizeof(struct rx_sw_desc),
3064                                   &q->fl[1].phys_addr, &q->fl[1].sdesc);
3065        if (!q->fl[1].desc)
3066                goto err;
3067
3068        q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
3069                                  sizeof(struct rsp_desc), 0,
3070                                  &q->rspq.phys_addr, NULL);
3071        if (!q->rspq.desc)
3072                goto err;
3073
3074        for (i = 0; i < ntxq; ++i) {
3075                /*
3076                 * The control queue always uses immediate data so does not
3077                 * need to keep track of any sk_buffs.
3078                 */
3079                size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
3080
3081                q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
3082                                            sizeof(struct tx_desc), sz,
3083                                            &q->txq[i].phys_addr,
3084                                            &q->txq[i].sdesc);
3085                if (!q->txq[i].desc)
3086                        goto err;
3087
3088                q->txq[i].gen = 1;
3089                q->txq[i].size = p->txq_size[i];
3090                spin_lock_init(&q->txq[i].lock);
3091                skb_queue_head_init(&q->txq[i].sendq);
3092        }
3093
3094        INIT_WORK(&q->txq[TXQ_OFLD].qresume_task, restart_offloadq);
3095        INIT_WORK(&q->txq[TXQ_CTRL].qresume_task, restart_ctrlq);
3096
3097        q->fl[0].gen = q->fl[1].gen = 1;
3098        q->fl[0].size = p->fl_size;
3099        q->fl[1].size = p->jumbo_size;
3100
3101        q->rspq.gen = 1;
3102        q->rspq.size = p->rspq_size;
3103        spin_lock_init(&q->rspq.lock);
3104        skb_queue_head_init(&q->rspq.rx_queue);
3105
3106        q->txq[TXQ_ETH].stop_thres = nports *
3107            flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
3108
3109#if FL0_PG_CHUNK_SIZE > 0
3110        q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
3111#else
3112        q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
3113#endif
3114#if FL1_PG_CHUNK_SIZE > 0
3115        q->fl[1].buf_size = FL1_PG_CHUNK_SIZE;
3116#else
3117        q->fl[1].buf_size = is_offload(adapter) ?
3118                (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
3119                MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
3120#endif
3121
3122        q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
3123        q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0;
3124        q->fl[0].order = FL0_PG_ORDER;
3125        q->fl[1].order = FL1_PG_ORDER;
3126        q->fl[0].alloc_size = FL0_PG_ALLOC_SIZE;
3127        q->fl[1].alloc_size = FL1_PG_ALLOC_SIZE;
3128
3129        spin_lock_irq(&adapter->sge.reg_lock);
3130
3131        /* FL threshold comparison uses < */
3132        ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
3133                                   q->rspq.phys_addr, q->rspq.size,
3134                                   q->fl[0].buf_size - SGE_PG_RSVD, 1, 0);
3135        if (ret)
3136                goto err_unlock;
3137
3138        for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
3139                ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
3140                                          q->fl[i].phys_addr, q->fl[i].size,
3141                                          q->fl[i].buf_size - SGE_PG_RSVD,
3142                                          p->cong_thres, 1, 0);
3143                if (ret)
3144                        goto err_unlock;
3145        }
3146
3147        ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
3148                                 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
3149                                 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
3150                                 1, 0);
3151        if (ret)
3152                goto err_unlock;
3153
3154        if (ntxq > 1) {
3155                ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
3156                                         USE_GTS, SGE_CNTXT_OFLD, id,
3157                                         q->txq[TXQ_OFLD].phys_addr,
3158                                         q->txq[TXQ_OFLD].size, 0, 1, 0);
3159                if (ret)
3160                        goto err_unlock;
3161        }
3162
3163        if (ntxq > 2) {
3164                ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
3165                                         SGE_CNTXT_CTRL, id,
3166                                         q->txq[TXQ_CTRL].phys_addr,
3167                                         q->txq[TXQ_CTRL].size,
3168                                         q->txq[TXQ_CTRL].token, 1, 0);
3169                if (ret)
3170                        goto err_unlock;
3171        }
3172
3173        spin_unlock_irq(&adapter->sge.reg_lock);
3174
3175        q->adap = adapter;
3176        q->netdev = dev;
3177        q->tx_q = netdevq;
3178        t3_update_qset_coalesce(q, p);
3179
3180        avail = refill_fl(adapter, &q->fl[0], q->fl[0].size,
3181                          GFP_KERNEL | __GFP_COMP);
3182        if (!avail) {
3183                CH_ALERT(adapter, "free list queue 0 initialization failed\n");
3184                ret = -ENOMEM;
3185                goto err;
3186        }
3187        if (avail < q->fl[0].size)
3188                CH_WARN(adapter, "free list queue 0 enabled with %d credits\n",
3189                        avail);
3190
3191        avail = refill_fl(adapter, &q->fl[1], q->fl[1].size,
3192                          GFP_KERNEL | __GFP_COMP);
3193        if (avail < q->fl[1].size)
3194                CH_WARN(adapter, "free list queue 1 enabled with %d credits\n",
3195                        avail);
3196        refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
3197
3198        t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
3199                     V_NEWTIMER(q->rspq.holdoff_tmr));
3200
3201        return 0;
3202
3203err_unlock:
3204        spin_unlock_irq(&adapter->sge.reg_lock);
3205err:
3206        t3_free_qset(adapter, q);
3207        return ret;
3208}
3209
3210/**
3211 *      t3_start_sge_timers - start SGE timer call backs
3212 *      @adap: the adapter
3213 *
3214 *      Starts each SGE queue set's timer call back
3215 */
3216void t3_start_sge_timers(struct adapter *adap)
3217{
3218        int i;
3219
3220        for (i = 0; i < SGE_QSETS; ++i) {
3221                struct sge_qset *q = &adap->sge.qs[i];
3222
3223                if (q->tx_reclaim_timer.function)
3224                        mod_timer(&q->tx_reclaim_timer,
3225                                  jiffies + TX_RECLAIM_PERIOD);
3226
3227                if (q->rx_reclaim_timer.function)
3228                        mod_timer(&q->rx_reclaim_timer,
3229                                  jiffies + RX_RECLAIM_PERIOD);
3230        }
3231}
3232
3233/**
3234 *      t3_stop_sge_timers - stop SGE timer call backs
3235 *      @adap: the adapter
3236 *
3237 *      Stops each SGE queue set's timer call back
3238 */
3239void t3_stop_sge_timers(struct adapter *adap)
3240{
3241        int i;
3242
3243        for (i = 0; i < SGE_QSETS; ++i) {
3244                struct sge_qset *q = &adap->sge.qs[i];
3245
3246                if (q->tx_reclaim_timer.function)
3247                        del_timer_sync(&q->tx_reclaim_timer);
3248                if (q->rx_reclaim_timer.function)
3249                        del_timer_sync(&q->rx_reclaim_timer);
3250        }
3251}
3252
3253/**
3254 *      t3_free_sge_resources - free SGE resources
3255 *      @adap: the adapter
3256 *
3257 *      Frees resources used by the SGE queue sets.
3258 */
3259void t3_free_sge_resources(struct adapter *adap)
3260{
3261        int i;
3262
3263        for (i = 0; i < SGE_QSETS; ++i)
3264                t3_free_qset(adap, &adap->sge.qs[i]);
3265}
3266
3267/**
3268 *      t3_sge_start - enable SGE
3269 *      @adap: the adapter
3270 *
3271 *      Enables the SGE for DMAs.  This is the last step in starting packet
3272 *      transfers.
3273 */
3274void t3_sge_start(struct adapter *adap)
3275{
3276        t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
3277}
3278
3279/**
3280 *      t3_sge_stop_dma - Disable SGE DMA engine operation
3281 *      @adap: the adapter
3282 *
3283 *      Can be invoked from interrupt context e.g.  error handler.
3284 *
3285 *      Note that this function cannot disable the restart of works as
3286 *      it cannot wait if called from interrupt context, however the
3287 *      works will have no effect since the doorbells are disabled. The
3288 *      driver will call tg3_sge_stop() later from process context, at
3289 *      which time the works will be stopped if they are still running.
3290 */
3291void t3_sge_stop_dma(struct adapter *adap)
3292{
3293        t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
3294}
3295
3296/**
3297 *      t3_sge_stop - disable SGE operation completly
3298 *      @adap: the adapter
3299 *
3300 *      Called from process context. Disables the DMA engine and any
3301 *      pending queue restart works.
3302 */
3303void t3_sge_stop(struct adapter *adap)
3304{
3305        int i;
3306
3307        t3_sge_stop_dma(adap);
3308
3309        for (i = 0; i < SGE_QSETS; ++i) {
3310                struct sge_qset *qs = &adap->sge.qs[i];
3311
3312                cancel_work_sync(&qs->txq[TXQ_OFLD].qresume_task);
3313                cancel_work_sync(&qs->txq[TXQ_CTRL].qresume_task);
3314        }
3315}
3316
3317/**
3318 *      t3_sge_init - initialize SGE
3319 *      @adap: the adapter
3320 *      @p: the SGE parameters
3321 *
3322 *      Performs SGE initialization needed every time after a chip reset.
3323 *      We do not initialize any of the queue sets here, instead the driver
3324 *      top-level must request those individually.  We also do not enable DMA
3325 *      here, that should be done after the queues have been set up.
3326 */
3327void t3_sge_init(struct adapter *adap, struct sge_params *p)
3328{
3329        unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
3330
3331        ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
3332            F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
3333            V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
3334            V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
3335#if SGE_NUM_GENBITS == 1
3336        ctrl |= F_EGRGENCTRL;
3337#endif
3338        if (adap->params.rev > 0) {
3339                if (!(adap->flags & (USING_MSIX | USING_MSI)))
3340                        ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
3341        }
3342        t3_write_reg(adap, A_SG_CONTROL, ctrl);
3343        t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
3344                     V_LORCQDRBTHRSH(512));
3345        t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
3346        t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
3347                     V_TIMEOUT(200 * core_ticks_per_usec(adap)));
3348        t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
3349                     adap->params.rev < T3_REV_C ? 1000 : 500);
3350        t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
3351        t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
3352        t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
3353        t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
3354        t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
3355}
3356
3357/**
3358 *      t3_sge_prep - one-time SGE initialization
3359 *      @adap: the associated adapter
3360 *      @p: SGE parameters
3361 *
3362 *      Performs one-time initialization of SGE SW state.  Includes determining
3363 *      defaults for the assorted SGE parameters, which admins can change until
3364 *      they are used to initialize the SGE.
3365 */
3366void t3_sge_prep(struct adapter *adap, struct sge_params *p)
3367{
3368        int i;
3369
3370        p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
3371            SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3372
3373        for (i = 0; i < SGE_QSETS; ++i) {
3374                struct qset_params *q = p->qset + i;
3375
3376                q->polling = adap->params.rev > 0;
3377                q->coalesce_usecs = 5;
3378                q->rspq_size = 1024;
3379                q->fl_size = 1024;
3380                q->jumbo_size = 512;
3381                q->txq_size[TXQ_ETH] = 1024;
3382                q->txq_size[TXQ_OFLD] = 1024;
3383                q->txq_size[TXQ_CTRL] = 256;
3384                q->cong_thres = 0;
3385        }
3386
3387        spin_lock_init(&adap->sge.reg_lock);
3388}
3389