linux/drivers/net/ethernet/dec/tulip/winbond-840.c
<<
>>
Prefs
   1/* winbond-840.c: A Linux PCI network adapter device driver. */
   2/*
   3        Written 1998-2001 by Donald Becker.
   4
   5        This software may be used and distributed according to the terms of
   6        the GNU General Public License (GPL), incorporated herein by reference.
   7        Drivers based on or derived from this code fall under the GPL and must
   8        retain the authorship, copyright and license notice.  This file is not
   9        a complete program and may only be used when the entire operating
  10        system is licensed under the GPL.
  11
  12        The author may be reached as becker@scyld.com, or C/O
  13        Scyld Computing Corporation
  14        410 Severn Ave., Suite 210
  15        Annapolis MD 21403
  16
  17        Support and updates available at
  18        http://www.scyld.com/network/drivers.html
  19
  20        Do not remove the copyright information.
  21        Do not change the version information unless an improvement has been made.
  22        Merely removing my name, as Compex has done in the past, does not count
  23        as an improvement.
  24
  25        Changelog:
  26        * ported to 2.4
  27                ???
  28        * spin lock update, memory barriers, new style dma mappings
  29                limit each tx buffer to < 1024 bytes
  30                remove DescIntr from Rx descriptors (that's an Tx flag)
  31                remove next pointer from Tx descriptors
  32                synchronize tx_q_bytes
  33                software reset in tx_timeout
  34                        Copyright (C) 2000 Manfred Spraul
  35        * further cleanups
  36                power management.
  37                support for big endian descriptors
  38                        Copyright (C) 2001 Manfred Spraul
  39        * ethtool support (jgarzik)
  40        * Replace some MII-related magic numbers with constants (jgarzik)
  41
  42        TODO:
  43        * enable pci_power_off
  44        * Wake-On-LAN
  45*/
  46
  47#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  48
  49#define DRV_NAME        "winbond-840"
  50
  51/* Automatically extracted configuration info:
  52probe-func: winbond840_probe
  53config-in: tristate 'Winbond W89c840 Ethernet support' CONFIG_WINBOND_840
  54
  55c-help-name: Winbond W89c840 PCI Ethernet support
  56c-help-symbol: CONFIG_WINBOND_840
  57c-help: This driver is for the Winbond W89c840 chip.  It also works with
  58c-help: the TX9882 chip on the Compex RL100-ATX board.
  59c-help: More specific information and updates are available from
  60c-help: http://www.scyld.com/network/drivers.html
  61*/
  62
  63/* The user-configurable values.
  64   These may be modified when a driver module is loaded.*/
  65
  66static int debug = 1;                   /* 1 normal messages, 0 quiet .. 7 verbose. */
  67static int max_interrupt_work = 20;
  68/* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
  69   The '840 uses a 64 element hash table based on the Ethernet CRC.  */
  70static int multicast_filter_limit = 32;
  71
  72/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
  73   Setting to > 1518 effectively disables this feature. */
  74static int rx_copybreak;
  75
  76/* Used to pass the media type, etc.
  77   Both 'options[]' and 'full_duplex[]' should exist for driver
  78   interoperability.
  79   The media type is usually passed in 'options[]'.
  80*/
  81#define MAX_UNITS 8             /* More are supported, limit only on options */
  82static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
  83static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
  84
  85/* Operational parameters that are set at compile time. */
  86
  87/* Keep the ring sizes a power of two for compile efficiency.
  88   The compiler will convert <unsigned>'%'<2^N> into a bit mask.
  89   Making the Tx ring too large decreases the effectiveness of channel
  90   bonding and packet priority.
  91   There are no ill effects from too-large receive rings. */
  92#define TX_QUEUE_LEN    10              /* Limit ring entries actually used.  */
  93#define TX_QUEUE_LEN_RESTART    5
  94
  95#define TX_BUFLIMIT     (1024-128)
  96
  97/* The presumed FIFO size for working around the Tx-FIFO-overflow bug.
  98   To avoid overflowing we don't queue again until we have room for a
  99   full-size packet.
 100 */
 101#define TX_FIFO_SIZE (2048)
 102#define TX_BUG_FIFO_LIMIT (TX_FIFO_SIZE-1514-16)
 103
 104
 105/* Operational parameters that usually are not changed. */
 106/* Time in jiffies before concluding the transmitter is hung. */
 107#define TX_TIMEOUT  (2*HZ)
 108
 109/* Include files, designed to support most kernel versions 2.0.0 and later. */
 110#include <linux/module.h>
 111#include <linux/kernel.h>
 112#include <linux/string.h>
 113#include <linux/timer.h>
 114#include <linux/errno.h>
 115#include <linux/ioport.h>
 116#include <linux/interrupt.h>
 117#include <linux/pci.h>
 118#include <linux/dma-mapping.h>
 119#include <linux/netdevice.h>
 120#include <linux/etherdevice.h>
 121#include <linux/skbuff.h>
 122#include <linux/init.h>
 123#include <linux/delay.h>
 124#include <linux/ethtool.h>
 125#include <linux/mii.h>
 126#include <linux/rtnetlink.h>
 127#include <linux/crc32.h>
 128#include <linux/bitops.h>
 129#include <linux/uaccess.h>
 130#include <asm/processor.h>              /* Processor type for cache alignment. */
 131#include <asm/io.h>
 132#include <asm/irq.h>
 133
 134#include "tulip.h"
 135
 136#undef PKT_BUF_SZ                       /* tulip.h also defines this */
 137#define PKT_BUF_SZ              1536    /* Size of each temporary Rx buffer.*/
 138
 139MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
 140MODULE_DESCRIPTION("Winbond W89c840 Ethernet driver");
 141MODULE_LICENSE("GPL");
 142
 143module_param(max_interrupt_work, int, 0);
 144module_param(debug, int, 0);
 145module_param(rx_copybreak, int, 0);
 146module_param(multicast_filter_limit, int, 0);
 147module_param_array(options, int, NULL, 0);
 148module_param_array(full_duplex, int, NULL, 0);
 149MODULE_PARM_DESC(max_interrupt_work, "winbond-840 maximum events handled per interrupt");
 150MODULE_PARM_DESC(debug, "winbond-840 debug level (0-6)");
 151MODULE_PARM_DESC(rx_copybreak, "winbond-840 copy breakpoint for copy-only-tiny-frames");
 152MODULE_PARM_DESC(multicast_filter_limit, "winbond-840 maximum number of filtered multicast addresses");
 153MODULE_PARM_DESC(options, "winbond-840: Bits 0-3: media type, bit 17: full duplex");
 154MODULE_PARM_DESC(full_duplex, "winbond-840 full duplex setting(s) (1)");
 155
 156/*
 157                                Theory of Operation
 158
 159I. Board Compatibility
 160
 161This driver is for the Winbond w89c840 chip.
 162
 163II. Board-specific settings
 164
 165None.
 166
 167III. Driver operation
 168
 169This chip is very similar to the Digital 21*4* "Tulip" family.  The first
 170twelve registers and the descriptor format are nearly identical.  Read a
 171Tulip manual for operational details.
 172
 173A significant difference is that the multicast filter and station address are
 174stored in registers rather than loaded through a pseudo-transmit packet.
 175
 176Unlike the Tulip, transmit buffers are limited to 1KB.  To transmit a
 177full-sized packet we must use both data buffers in a descriptor.  Thus the
 178driver uses ring mode where descriptors are implicitly sequential in memory,
 179rather than using the second descriptor address as a chain pointer to
 180subsequent descriptors.
 181
 182IV. Notes
 183
 184If you are going to almost clone a Tulip, why not go all the way and avoid
 185the need for a new driver?
 186
 187IVb. References
 188
 189http://www.scyld.com/expert/100mbps.html
 190http://www.scyld.com/expert/NWay.html
 191http://www.winbond.com.tw/
 192
 193IVc. Errata
 194
 195A horrible bug exists in the transmit FIFO.  Apparently the chip doesn't
 196correctly detect a full FIFO, and queuing more than 2048 bytes may result in
 197silent data corruption.
 198
 199Test with 'ping -s 10000' on a fast computer.
 200
 201*/
 202
 203
 204
 205/*
 206  PCI probe table.
 207*/
 208enum chip_capability_flags {
 209        CanHaveMII=1, HasBrokenTx=2, AlwaysFDX=4, FDXOnNoMII=8,
 210};
 211
 212static const struct pci_device_id w840_pci_tbl[] = {
 213        { 0x1050, 0x0840, PCI_ANY_ID, 0x8153,     0, 0, 0 },
 214        { 0x1050, 0x0840, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
 215        { 0x11f6, 0x2011, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2 },
 216        { }
 217};
 218MODULE_DEVICE_TABLE(pci, w840_pci_tbl);
 219
 220enum {
 221        netdev_res_size         = 128,  /* size of PCI BAR resource */
 222};
 223
 224struct pci_id_info {
 225        const char *name;
 226        int drv_flags;          /* Driver use, intended as capability flags. */
 227};
 228
 229static const struct pci_id_info pci_id_tbl[] = {
 230        {                               /* Sometime a Level-One switch card. */
 231          "Winbond W89c840",    CanHaveMII | HasBrokenTx | FDXOnNoMII},
 232        { "Winbond W89c840",    CanHaveMII | HasBrokenTx},
 233        { "Compex RL100-ATX",   CanHaveMII | HasBrokenTx},
 234        { }     /* terminate list. */
 235};
 236
 237/* This driver was written to use PCI memory space, however some x86 systems
 238   work only with I/O space accesses. See CONFIG_TULIP_MMIO in .config
 239*/
 240
 241/* Offsets to the Command and Status Registers, "CSRs".
 242   While similar to the Tulip, these registers are longword aligned.
 243   Note: It's not useful to define symbolic names for every register bit in
 244   the device.  The name can only partially document the semantics and make
 245   the driver longer and more difficult to read.
 246*/
 247enum w840_offsets {
 248        PCIBusCfg=0x00, TxStartDemand=0x04, RxStartDemand=0x08,
 249        RxRingPtr=0x0C, TxRingPtr=0x10,
 250        IntrStatus=0x14, NetworkConfig=0x18, IntrEnable=0x1C,
 251        RxMissed=0x20, EECtrl=0x24, MIICtrl=0x24, BootRom=0x28, GPTimer=0x2C,
 252        CurRxDescAddr=0x30, CurRxBufAddr=0x34,                  /* Debug use */
 253        MulticastFilter0=0x38, MulticastFilter1=0x3C, StationAddr=0x40,
 254        CurTxDescAddr=0x4C, CurTxBufAddr=0x50,
 255};
 256
 257/* Bits in the NetworkConfig register. */
 258enum rx_mode_bits {
 259        AcceptErr=0x80,
 260        RxAcceptBroadcast=0x20, AcceptMulticast=0x10,
 261        RxAcceptAllPhys=0x08, AcceptMyPhys=0x02,
 262};
 263
 264enum mii_reg_bits {
 265        MDIO_ShiftClk=0x10000, MDIO_DataIn=0x80000, MDIO_DataOut=0x20000,
 266        MDIO_EnbOutput=0x40000, MDIO_EnbIn = 0x00000,
 267};
 268
 269/* The Tulip Rx and Tx buffer descriptors. */
 270struct w840_rx_desc {
 271        s32 status;
 272        s32 length;
 273        u32 buffer1;
 274        u32 buffer2;
 275};
 276
 277struct w840_tx_desc {
 278        s32 status;
 279        s32 length;
 280        u32 buffer1, buffer2;
 281};
 282
 283#define MII_CNT         1 /* winbond only supports one MII */
 284struct netdev_private {
 285        struct w840_rx_desc *rx_ring;
 286        dma_addr_t      rx_addr[RX_RING_SIZE];
 287        struct w840_tx_desc *tx_ring;
 288        dma_addr_t      tx_addr[TX_RING_SIZE];
 289        dma_addr_t ring_dma_addr;
 290        /* The addresses of receive-in-place skbuffs. */
 291        struct sk_buff* rx_skbuff[RX_RING_SIZE];
 292        /* The saved address of a sent-in-place packet/buffer, for later free(). */
 293        struct sk_buff* tx_skbuff[TX_RING_SIZE];
 294        struct net_device_stats stats;
 295        struct timer_list timer;        /* Media monitoring timer. */
 296        /* Frequently used values: keep some adjacent for cache effect. */
 297        spinlock_t lock;
 298        int chip_id, drv_flags;
 299        struct pci_dev *pci_dev;
 300        int csr6;
 301        struct w840_rx_desc *rx_head_desc;
 302        unsigned int cur_rx, dirty_rx;          /* Producer/consumer ring indices */
 303        unsigned int rx_buf_sz;                         /* Based on MTU+slack. */
 304        unsigned int cur_tx, dirty_tx;
 305        unsigned int tx_q_bytes;
 306        unsigned int tx_full;                           /* The Tx queue is full. */
 307        /* MII transceiver section. */
 308        int mii_cnt;                                            /* MII device addresses. */
 309        unsigned char phys[MII_CNT];            /* MII device addresses, but only the first is used */
 310        u32 mii;
 311        struct mii_if_info mii_if;
 312        void __iomem *base_addr;
 313};
 314
 315static int  eeprom_read(void __iomem *ioaddr, int location);
 316static int  mdio_read(struct net_device *dev, int phy_id, int location);
 317static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
 318static int  netdev_open(struct net_device *dev);
 319static int  update_link(struct net_device *dev);
 320static void netdev_timer(struct timer_list *t);
 321static void init_rxtx_rings(struct net_device *dev);
 322static void free_rxtx_rings(struct netdev_private *np);
 323static void init_registers(struct net_device *dev);
 324static void tx_timeout(struct net_device *dev, unsigned int txqueue);
 325static int alloc_ringdesc(struct net_device *dev);
 326static void free_ringdesc(struct netdev_private *np);
 327static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
 328static irqreturn_t intr_handler(int irq, void *dev_instance);
 329static void netdev_error(struct net_device *dev, int intr_status);
 330static int  netdev_rx(struct net_device *dev);
 331static u32 __set_rx_mode(struct net_device *dev);
 332static void set_rx_mode(struct net_device *dev);
 333static struct net_device_stats *get_stats(struct net_device *dev);
 334static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 335static const struct ethtool_ops netdev_ethtool_ops;
 336static int  netdev_close(struct net_device *dev);
 337
 338static const struct net_device_ops netdev_ops = {
 339        .ndo_open               = netdev_open,
 340        .ndo_stop               = netdev_close,
 341        .ndo_start_xmit         = start_tx,
 342        .ndo_get_stats          = get_stats,
 343        .ndo_set_rx_mode        = set_rx_mode,
 344        .ndo_do_ioctl           = netdev_ioctl,
 345        .ndo_tx_timeout         = tx_timeout,
 346        .ndo_set_mac_address    = eth_mac_addr,
 347        .ndo_validate_addr      = eth_validate_addr,
 348};
 349
 350static int w840_probe1(struct pci_dev *pdev, const struct pci_device_id *ent)
 351{
 352        struct net_device *dev;
 353        struct netdev_private *np;
 354        static int find_cnt;
 355        int chip_idx = ent->driver_data;
 356        int irq;
 357        int i, option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
 358        void __iomem *ioaddr;
 359
 360        i = pcim_enable_device(pdev);
 361        if (i) return i;
 362
 363        pci_set_master(pdev);
 364
 365        irq = pdev->irq;
 366
 367        if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
 368                pr_warn("Device %s disabled due to DMA limitations\n",
 369                        pci_name(pdev));
 370                return -EIO;
 371        }
 372        dev = alloc_etherdev(sizeof(*np));
 373        if (!dev)
 374                return -ENOMEM;
 375        SET_NETDEV_DEV(dev, &pdev->dev);
 376
 377        if (pci_request_regions(pdev, DRV_NAME))
 378                goto err_out_netdev;
 379
 380        ioaddr = pci_iomap(pdev, TULIP_BAR, netdev_res_size);
 381        if (!ioaddr)
 382                goto err_out_netdev;
 383
 384        for (i = 0; i < 3; i++)
 385                ((__le16 *)dev->dev_addr)[i] = cpu_to_le16(eeprom_read(ioaddr, i));
 386
 387        /* Reset the chip to erase previous misconfiguration.
 388           No hold time required! */
 389        iowrite32(0x00000001, ioaddr + PCIBusCfg);
 390
 391        np = netdev_priv(dev);
 392        np->pci_dev = pdev;
 393        np->chip_id = chip_idx;
 394        np->drv_flags = pci_id_tbl[chip_idx].drv_flags;
 395        spin_lock_init(&np->lock);
 396        np->mii_if.dev = dev;
 397        np->mii_if.mdio_read = mdio_read;
 398        np->mii_if.mdio_write = mdio_write;
 399        np->base_addr = ioaddr;
 400
 401        pci_set_drvdata(pdev, dev);
 402
 403        if (dev->mem_start)
 404                option = dev->mem_start;
 405
 406        /* The lower four bits are the media type. */
 407        if (option > 0) {
 408                if (option & 0x200)
 409                        np->mii_if.full_duplex = 1;
 410                if (option & 15)
 411                        dev_info(&dev->dev,
 412                                 "ignoring user supplied media type %d",
 413                                 option & 15);
 414        }
 415        if (find_cnt < MAX_UNITS  &&  full_duplex[find_cnt] > 0)
 416                np->mii_if.full_duplex = 1;
 417
 418        if (np->mii_if.full_duplex)
 419                np->mii_if.force_media = 1;
 420
 421        /* The chip-specific entries in the device structure. */
 422        dev->netdev_ops = &netdev_ops;
 423        dev->ethtool_ops = &netdev_ethtool_ops;
 424        dev->watchdog_timeo = TX_TIMEOUT;
 425
 426        i = register_netdev(dev);
 427        if (i)
 428                goto err_out_cleardev;
 429
 430        dev_info(&dev->dev, "%s at %p, %pM, IRQ %d\n",
 431                 pci_id_tbl[chip_idx].name, ioaddr, dev->dev_addr, irq);
 432
 433        if (np->drv_flags & CanHaveMII) {
 434                int phy, phy_idx = 0;
 435                for (phy = 1; phy < 32 && phy_idx < MII_CNT; phy++) {
 436                        int mii_status = mdio_read(dev, phy, MII_BMSR);
 437                        if (mii_status != 0xffff  &&  mii_status != 0x0000) {
 438                                np->phys[phy_idx++] = phy;
 439                                np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
 440                                np->mii = (mdio_read(dev, phy, MII_PHYSID1) << 16)+
 441                                                mdio_read(dev, phy, MII_PHYSID2);
 442                                dev_info(&dev->dev,
 443                                         "MII PHY %08xh found at address %d, status 0x%04x advertising %04x\n",
 444                                         np->mii, phy, mii_status,
 445                                         np->mii_if.advertising);
 446                        }
 447                }
 448                np->mii_cnt = phy_idx;
 449                np->mii_if.phy_id = np->phys[0];
 450                if (phy_idx == 0) {
 451                        dev_warn(&dev->dev,
 452                                 "MII PHY not found -- this device may not operate correctly\n");
 453                }
 454        }
 455
 456        find_cnt++;
 457        return 0;
 458
 459err_out_cleardev:
 460        pci_iounmap(pdev, ioaddr);
 461err_out_netdev:
 462        free_netdev (dev);
 463        return -ENODEV;
 464}
 465
 466
 467/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.  These are
 468   often serial bit streams generated by the host processor.
 469   The example below is for the common 93c46 EEPROM, 64 16 bit words. */
 470
 471/* Delay between EEPROM clock transitions.
 472   No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
 473   a delay.  Note that pre-2.0.34 kernels had a cache-alignment bug that
 474   made udelay() unreliable.
 475   The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
 476   deprecated.
 477*/
 478#define eeprom_delay(ee_addr)   ioread32(ee_addr)
 479
 480enum EEPROM_Ctrl_Bits {
 481        EE_ShiftClk=0x02, EE_Write0=0x801, EE_Write1=0x805,
 482        EE_ChipSelect=0x801, EE_DataIn=0x08,
 483};
 484
 485/* The EEPROM commands include the alway-set leading bit. */
 486enum EEPROM_Cmds {
 487        EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
 488};
 489
 490static int eeprom_read(void __iomem *addr, int location)
 491{
 492        int i;
 493        int retval = 0;
 494        void __iomem *ee_addr = addr + EECtrl;
 495        int read_cmd = location | EE_ReadCmd;
 496        iowrite32(EE_ChipSelect, ee_addr);
 497
 498        /* Shift the read command bits out. */
 499        for (i = 10; i >= 0; i--) {
 500                short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
 501                iowrite32(dataval, ee_addr);
 502                eeprom_delay(ee_addr);
 503                iowrite32(dataval | EE_ShiftClk, ee_addr);
 504                eeprom_delay(ee_addr);
 505        }
 506        iowrite32(EE_ChipSelect, ee_addr);
 507        eeprom_delay(ee_addr);
 508
 509        for (i = 16; i > 0; i--) {
 510                iowrite32(EE_ChipSelect | EE_ShiftClk, ee_addr);
 511                eeprom_delay(ee_addr);
 512                retval = (retval << 1) | ((ioread32(ee_addr) & EE_DataIn) ? 1 : 0);
 513                iowrite32(EE_ChipSelect, ee_addr);
 514                eeprom_delay(ee_addr);
 515        }
 516
 517        /* Terminate the EEPROM access. */
 518        iowrite32(0, ee_addr);
 519        return retval;
 520}
 521
 522/*  MII transceiver control section.
 523        Read and write the MII registers using software-generated serial
 524        MDIO protocol.  See the MII specifications or DP83840A data sheet
 525        for details.
 526
 527        The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
 528        met by back-to-back 33Mhz PCI cycles. */
 529#define mdio_delay(mdio_addr) ioread32(mdio_addr)
 530
 531/* Set iff a MII transceiver on any interface requires mdio preamble.
 532   This only set with older transceivers, so the extra
 533   code size of a per-interface flag is not worthwhile. */
 534static char mii_preamble_required = 1;
 535
 536#define MDIO_WRITE0 (MDIO_EnbOutput)
 537#define MDIO_WRITE1 (MDIO_DataOut | MDIO_EnbOutput)
 538
 539/* Generate the preamble required for initial synchronization and
 540   a few older transceivers. */
 541static void mdio_sync(void __iomem *mdio_addr)
 542{
 543        int bits = 32;
 544
 545        /* Establish sync by sending at least 32 logic ones. */
 546        while (--bits >= 0) {
 547                iowrite32(MDIO_WRITE1, mdio_addr);
 548                mdio_delay(mdio_addr);
 549                iowrite32(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr);
 550                mdio_delay(mdio_addr);
 551        }
 552}
 553
 554static int mdio_read(struct net_device *dev, int phy_id, int location)
 555{
 556        struct netdev_private *np = netdev_priv(dev);
 557        void __iomem *mdio_addr = np->base_addr + MIICtrl;
 558        int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location;
 559        int i, retval = 0;
 560
 561        if (mii_preamble_required)
 562                mdio_sync(mdio_addr);
 563
 564        /* Shift the read command bits out. */
 565        for (i = 15; i >= 0; i--) {
 566                int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
 567
 568                iowrite32(dataval, mdio_addr);
 569                mdio_delay(mdio_addr);
 570                iowrite32(dataval | MDIO_ShiftClk, mdio_addr);
 571                mdio_delay(mdio_addr);
 572        }
 573        /* Read the two transition, 16 data, and wire-idle bits. */
 574        for (i = 20; i > 0; i--) {
 575                iowrite32(MDIO_EnbIn, mdio_addr);
 576                mdio_delay(mdio_addr);
 577                retval = (retval << 1) | ((ioread32(mdio_addr) & MDIO_DataIn) ? 1 : 0);
 578                iowrite32(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
 579                mdio_delay(mdio_addr);
 580        }
 581        return (retval>>1) & 0xffff;
 582}
 583
 584static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
 585{
 586        struct netdev_private *np = netdev_priv(dev);
 587        void __iomem *mdio_addr = np->base_addr + MIICtrl;
 588        int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value;
 589        int i;
 590
 591        if (location == 4  &&  phy_id == np->phys[0])
 592                np->mii_if.advertising = value;
 593
 594        if (mii_preamble_required)
 595                mdio_sync(mdio_addr);
 596
 597        /* Shift the command bits out. */
 598        for (i = 31; i >= 0; i--) {
 599                int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
 600
 601                iowrite32(dataval, mdio_addr);
 602                mdio_delay(mdio_addr);
 603                iowrite32(dataval | MDIO_ShiftClk, mdio_addr);
 604                mdio_delay(mdio_addr);
 605        }
 606        /* Clear out extra bits. */
 607        for (i = 2; i > 0; i--) {
 608                iowrite32(MDIO_EnbIn, mdio_addr);
 609                mdio_delay(mdio_addr);
 610                iowrite32(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
 611                mdio_delay(mdio_addr);
 612        }
 613}
 614
 615
 616static int netdev_open(struct net_device *dev)
 617{
 618        struct netdev_private *np = netdev_priv(dev);
 619        void __iomem *ioaddr = np->base_addr;
 620        const int irq = np->pci_dev->irq;
 621        int i;
 622
 623        iowrite32(0x00000001, ioaddr + PCIBusCfg);              /* Reset */
 624
 625        netif_device_detach(dev);
 626        i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
 627        if (i)
 628                goto out_err;
 629
 630        if (debug > 1)
 631                netdev_dbg(dev, "%s() irq %d\n", __func__, irq);
 632
 633        i = alloc_ringdesc(dev);
 634        if (i)
 635                goto out_err;
 636
 637        spin_lock_irq(&np->lock);
 638        netif_device_attach(dev);
 639        init_registers(dev);
 640        spin_unlock_irq(&np->lock);
 641
 642        netif_start_queue(dev);
 643        if (debug > 2)
 644                netdev_dbg(dev, "Done %s()\n", __func__);
 645
 646        /* Set the timer to check for link beat. */
 647        timer_setup(&np->timer, netdev_timer, 0);
 648        np->timer.expires = jiffies + 1*HZ;
 649        add_timer(&np->timer);
 650        return 0;
 651out_err:
 652        netif_device_attach(dev);
 653        return i;
 654}
 655
 656#define MII_DAVICOM_DM9101      0x0181b800
 657
 658static int update_link(struct net_device *dev)
 659{
 660        struct netdev_private *np = netdev_priv(dev);
 661        int duplex, fasteth, result, mii_reg;
 662
 663        /* BSMR */
 664        mii_reg = mdio_read(dev, np->phys[0], MII_BMSR);
 665
 666        if (mii_reg == 0xffff)
 667                return np->csr6;
 668        /* reread: the link status bit is sticky */
 669        mii_reg = mdio_read(dev, np->phys[0], MII_BMSR);
 670        if (!(mii_reg & 0x4)) {
 671                if (netif_carrier_ok(dev)) {
 672                        if (debug)
 673                                dev_info(&dev->dev,
 674                                         "MII #%d reports no link. Disabling watchdog\n",
 675                                         np->phys[0]);
 676                        netif_carrier_off(dev);
 677                }
 678                return np->csr6;
 679        }
 680        if (!netif_carrier_ok(dev)) {
 681                if (debug)
 682                        dev_info(&dev->dev,
 683                                 "MII #%d link is back. Enabling watchdog\n",
 684                                 np->phys[0]);
 685                netif_carrier_on(dev);
 686        }
 687
 688        if ((np->mii & ~0xf) == MII_DAVICOM_DM9101) {
 689                /* If the link partner doesn't support autonegotiation
 690                 * the MII detects it's abilities with the "parallel detection".
 691                 * Some MIIs update the LPA register to the result of the parallel
 692                 * detection, some don't.
 693                 * The Davicom PHY [at least 0181b800] doesn't.
 694                 * Instead bit 9 and 13 of the BMCR are updated to the result
 695                 * of the negotiation..
 696                 */
 697                mii_reg = mdio_read(dev, np->phys[0], MII_BMCR);
 698                duplex = mii_reg & BMCR_FULLDPLX;
 699                fasteth = mii_reg & BMCR_SPEED100;
 700        } else {
 701                int negotiated;
 702                mii_reg = mdio_read(dev, np->phys[0], MII_LPA);
 703                negotiated = mii_reg & np->mii_if.advertising;
 704
 705                duplex = (negotiated & LPA_100FULL) || ((negotiated & 0x02C0) == LPA_10FULL);
 706                fasteth = negotiated & 0x380;
 707        }
 708        duplex |= np->mii_if.force_media;
 709        /* remove fastether and fullduplex */
 710        result = np->csr6 & ~0x20000200;
 711        if (duplex)
 712                result |= 0x200;
 713        if (fasteth)
 714                result |= 0x20000000;
 715        if (result != np->csr6 && debug)
 716                dev_info(&dev->dev,
 717                         "Setting %dMBit-%s-duplex based on MII#%d\n",
 718                         fasteth ? 100 : 10, duplex ? "full" : "half",
 719                         np->phys[0]);
 720        return result;
 721}
 722
 723#define RXTX_TIMEOUT    2000
 724static inline void update_csr6(struct net_device *dev, int new)
 725{
 726        struct netdev_private *np = netdev_priv(dev);
 727        void __iomem *ioaddr = np->base_addr;
 728        int limit = RXTX_TIMEOUT;
 729
 730        if (!netif_device_present(dev))
 731                new = 0;
 732        if (new==np->csr6)
 733                return;
 734        /* stop both Tx and Rx processes */
 735        iowrite32(np->csr6 & ~0x2002, ioaddr + NetworkConfig);
 736        /* wait until they have really stopped */
 737        for (;;) {
 738                int csr5 = ioread32(ioaddr + IntrStatus);
 739                int t;
 740
 741                t = (csr5 >> 17) & 0x07;
 742                if (t==0||t==1) {
 743                        /* rx stopped */
 744                        t = (csr5 >> 20) & 0x07;
 745                        if (t==0||t==1)
 746                                break;
 747                }
 748
 749                limit--;
 750                if(!limit) {
 751                        dev_info(&dev->dev,
 752                                 "couldn't stop rxtx, IntrStatus %xh\n", csr5);
 753                        break;
 754                }
 755                udelay(1);
 756        }
 757        np->csr6 = new;
 758        /* and restart them with the new configuration */
 759        iowrite32(np->csr6, ioaddr + NetworkConfig);
 760        if (new & 0x200)
 761                np->mii_if.full_duplex = 1;
 762}
 763
 764static void netdev_timer(struct timer_list *t)
 765{
 766        struct netdev_private *np = from_timer(np, t, timer);
 767        struct net_device *dev = pci_get_drvdata(np->pci_dev);
 768        void __iomem *ioaddr = np->base_addr;
 769
 770        if (debug > 2)
 771                netdev_dbg(dev, "Media selection timer tick, status %08x config %08x\n",
 772                           ioread32(ioaddr + IntrStatus),
 773                           ioread32(ioaddr + NetworkConfig));
 774        spin_lock_irq(&np->lock);
 775        update_csr6(dev, update_link(dev));
 776        spin_unlock_irq(&np->lock);
 777        np->timer.expires = jiffies + 10*HZ;
 778        add_timer(&np->timer);
 779}
 780
 781static void init_rxtx_rings(struct net_device *dev)
 782{
 783        struct netdev_private *np = netdev_priv(dev);
 784        int i;
 785
 786        np->rx_head_desc = &np->rx_ring[0];
 787        np->tx_ring = (struct w840_tx_desc*)&np->rx_ring[RX_RING_SIZE];
 788
 789        /* Initial all Rx descriptors. */
 790        for (i = 0; i < RX_RING_SIZE; i++) {
 791                np->rx_ring[i].length = np->rx_buf_sz;
 792                np->rx_ring[i].status = 0;
 793                np->rx_skbuff[i] = NULL;
 794        }
 795        /* Mark the last entry as wrapping the ring. */
 796        np->rx_ring[i-1].length |= DescEndRing;
 797
 798        /* Fill in the Rx buffers.  Handle allocation failure gracefully. */
 799        for (i = 0; i < RX_RING_SIZE; i++) {
 800                struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
 801                np->rx_skbuff[i] = skb;
 802                if (skb == NULL)
 803                        break;
 804                np->rx_addr[i] = dma_map_single(&np->pci_dev->dev, skb->data,
 805                                                np->rx_buf_sz,
 806                                                DMA_FROM_DEVICE);
 807
 808                np->rx_ring[i].buffer1 = np->rx_addr[i];
 809                np->rx_ring[i].status = DescOwned;
 810        }
 811
 812        np->cur_rx = 0;
 813        np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
 814
 815        /* Initialize the Tx descriptors */
 816        for (i = 0; i < TX_RING_SIZE; i++) {
 817                np->tx_skbuff[i] = NULL;
 818                np->tx_ring[i].status = 0;
 819        }
 820        np->tx_full = 0;
 821        np->tx_q_bytes = np->dirty_tx = np->cur_tx = 0;
 822
 823        iowrite32(np->ring_dma_addr, np->base_addr + RxRingPtr);
 824        iowrite32(np->ring_dma_addr+sizeof(struct w840_rx_desc)*RX_RING_SIZE,
 825                np->base_addr + TxRingPtr);
 826
 827}
 828
 829static void free_rxtx_rings(struct netdev_private* np)
 830{
 831        int i;
 832        /* Free all the skbuffs in the Rx queue. */
 833        for (i = 0; i < RX_RING_SIZE; i++) {
 834                np->rx_ring[i].status = 0;
 835                if (np->rx_skbuff[i]) {
 836                        dma_unmap_single(&np->pci_dev->dev, np->rx_addr[i],
 837                                         np->rx_skbuff[i]->len,
 838                                         DMA_FROM_DEVICE);
 839                        dev_kfree_skb(np->rx_skbuff[i]);
 840                }
 841                np->rx_skbuff[i] = NULL;
 842        }
 843        for (i = 0; i < TX_RING_SIZE; i++) {
 844                if (np->tx_skbuff[i]) {
 845                        dma_unmap_single(&np->pci_dev->dev, np->tx_addr[i],
 846                                         np->tx_skbuff[i]->len, DMA_TO_DEVICE);
 847                        dev_kfree_skb(np->tx_skbuff[i]);
 848                }
 849                np->tx_skbuff[i] = NULL;
 850        }
 851}
 852
 853static void init_registers(struct net_device *dev)
 854{
 855        struct netdev_private *np = netdev_priv(dev);
 856        void __iomem *ioaddr = np->base_addr;
 857        int i;
 858
 859        for (i = 0; i < 6; i++)
 860                iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
 861
 862        /* Initialize other registers. */
 863#ifdef __BIG_ENDIAN
 864        i = (1<<20);    /* Big-endian descriptors */
 865#else
 866        i = 0;
 867#endif
 868        i |= (0x04<<2);         /* skip length 4 u32 */
 869        i |= 0x02;              /* give Rx priority */
 870
 871        /* Configure the PCI bus bursts and FIFO thresholds.
 872           486: Set 8 longword cache alignment, 8 longword burst.
 873           586: Set 16 longword cache alignment, no burst limit.
 874           Cache alignment bits 15:14        Burst length 13:8
 875                0000    <not allowed>           0000 align to cache     0800 8 longwords
 876                4000    8  longwords            0100 1 longword         1000 16 longwords
 877                8000    16 longwords            0200 2 longwords        2000 32 longwords
 878                C000    32  longwords           0400 4 longwords */
 879
 880#if defined (__i386__) && !defined(MODULE)
 881        /* When not a module we can work around broken '486 PCI boards. */
 882        if (boot_cpu_data.x86 <= 4) {
 883                i |= 0x4800;
 884                dev_info(&dev->dev,
 885                         "This is a 386/486 PCI system, setting cache alignment to 8 longwords\n");
 886        } else {
 887                i |= 0xE000;
 888        }
 889#elif defined(__powerpc__) || defined(__i386__) || defined(__alpha__) || defined(__ia64__) || defined(__x86_64__)
 890        i |= 0xE000;
 891#elif defined(CONFIG_SPARC) || defined (CONFIG_PARISC) || defined(CONFIG_ARM)
 892        i |= 0x4800;
 893#else
 894        dev_warn(&dev->dev, "unknown CPU architecture, using default csr0 setting\n");
 895        i |= 0x4800;
 896#endif
 897        iowrite32(i, ioaddr + PCIBusCfg);
 898
 899        np->csr6 = 0;
 900        /* 128 byte Tx threshold;
 901                Transmit on; Receive on; */
 902        update_csr6(dev, 0x00022002 | update_link(dev) | __set_rx_mode(dev));
 903
 904        /* Clear and Enable interrupts by setting the interrupt mask. */
 905        iowrite32(0x1A0F5, ioaddr + IntrStatus);
 906        iowrite32(0x1A0F5, ioaddr + IntrEnable);
 907
 908        iowrite32(0, ioaddr + RxStartDemand);
 909}
 910
 911static void tx_timeout(struct net_device *dev, unsigned int txqueue)
 912{
 913        struct netdev_private *np = netdev_priv(dev);
 914        void __iomem *ioaddr = np->base_addr;
 915        const int irq = np->pci_dev->irq;
 916
 917        dev_warn(&dev->dev, "Transmit timed out, status %08x, resetting...\n",
 918                 ioread32(ioaddr + IntrStatus));
 919
 920        {
 921                int i;
 922                printk(KERN_DEBUG "  Rx ring %p: ", np->rx_ring);
 923                for (i = 0; i < RX_RING_SIZE; i++)
 924                        printk(KERN_CONT " %08x", (unsigned int)np->rx_ring[i].status);
 925                printk(KERN_CONT "\n");
 926                printk(KERN_DEBUG "  Tx ring %p: ", np->tx_ring);
 927                for (i = 0; i < TX_RING_SIZE; i++)
 928                        printk(KERN_CONT " %08x", np->tx_ring[i].status);
 929                printk(KERN_CONT "\n");
 930        }
 931        printk(KERN_DEBUG "Tx cur %d Tx dirty %d Tx Full %d, q bytes %d\n",
 932               np->cur_tx, np->dirty_tx, np->tx_full, np->tx_q_bytes);
 933        printk(KERN_DEBUG "Tx Descriptor addr %xh\n", ioread32(ioaddr+0x4C));
 934
 935        disable_irq(irq);
 936        spin_lock_irq(&np->lock);
 937        /*
 938         * Under high load dirty_tx and the internal tx descriptor pointer
 939         * come out of sync, thus perform a software reset and reinitialize
 940         * everything.
 941         */
 942
 943        iowrite32(1, np->base_addr+PCIBusCfg);
 944        udelay(1);
 945
 946        free_rxtx_rings(np);
 947        init_rxtx_rings(dev);
 948        init_registers(dev);
 949        spin_unlock_irq(&np->lock);
 950        enable_irq(irq);
 951
 952        netif_wake_queue(dev);
 953        netif_trans_update(dev); /* prevent tx timeout */
 954        np->stats.tx_errors++;
 955}
 956
 957/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
 958static int alloc_ringdesc(struct net_device *dev)
 959{
 960        struct netdev_private *np = netdev_priv(dev);
 961
 962        np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
 963
 964        np->rx_ring = dma_alloc_coherent(&np->pci_dev->dev,
 965                                         sizeof(struct w840_rx_desc) * RX_RING_SIZE +
 966                                         sizeof(struct w840_tx_desc) * TX_RING_SIZE,
 967                                         &np->ring_dma_addr, GFP_KERNEL);
 968        if(!np->rx_ring)
 969                return -ENOMEM;
 970        init_rxtx_rings(dev);
 971        return 0;
 972}
 973
 974static void free_ringdesc(struct netdev_private *np)
 975{
 976        dma_free_coherent(&np->pci_dev->dev,
 977                          sizeof(struct w840_rx_desc) * RX_RING_SIZE +
 978                          sizeof(struct w840_tx_desc) * TX_RING_SIZE,
 979                          np->rx_ring, np->ring_dma_addr);
 980
 981}
 982
 983static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
 984{
 985        struct netdev_private *np = netdev_priv(dev);
 986        unsigned entry;
 987
 988        /* Caution: the write order is important here, set the field
 989           with the "ownership" bits last. */
 990
 991        /* Calculate the next Tx descriptor entry. */
 992        entry = np->cur_tx % TX_RING_SIZE;
 993
 994        np->tx_addr[entry] = dma_map_single(&np->pci_dev->dev, skb->data,
 995                                            skb->len, DMA_TO_DEVICE);
 996        np->tx_skbuff[entry] = skb;
 997
 998        np->tx_ring[entry].buffer1 = np->tx_addr[entry];
 999        if (skb->len < TX_BUFLIMIT) {
1000                np->tx_ring[entry].length = DescWholePkt | skb->len;
1001        } else {
1002                int len = skb->len - TX_BUFLIMIT;
1003
1004                np->tx_ring[entry].buffer2 = np->tx_addr[entry]+TX_BUFLIMIT;
1005                np->tx_ring[entry].length = DescWholePkt | (len << 11) | TX_BUFLIMIT;
1006        }
1007        if(entry == TX_RING_SIZE-1)
1008                np->tx_ring[entry].length |= DescEndRing;
1009
1010        /* Now acquire the irq spinlock.
1011         * The difficult race is the ordering between
1012         * increasing np->cur_tx and setting DescOwned:
1013         * - if np->cur_tx is increased first the interrupt
1014         *   handler could consider the packet as transmitted
1015         *   since DescOwned is cleared.
1016         * - If DescOwned is set first the NIC could report the
1017         *   packet as sent, but the interrupt handler would ignore it
1018         *   since the np->cur_tx was not yet increased.
1019         */
1020        spin_lock_irq(&np->lock);
1021        np->cur_tx++;
1022
1023        wmb(); /* flush length, buffer1, buffer2 */
1024        np->tx_ring[entry].status = DescOwned;
1025        wmb(); /* flush status and kick the hardware */
1026        iowrite32(0, np->base_addr + TxStartDemand);
1027        np->tx_q_bytes += skb->len;
1028        /* Work around horrible bug in the chip by marking the queue as full
1029           when we do not have FIFO room for a maximum sized packet. */
1030        if (np->cur_tx - np->dirty_tx > TX_QUEUE_LEN ||
1031                ((np->drv_flags & HasBrokenTx) && np->tx_q_bytes > TX_BUG_FIFO_LIMIT)) {
1032                netif_stop_queue(dev);
1033                wmb();
1034                np->tx_full = 1;
1035        }
1036        spin_unlock_irq(&np->lock);
1037
1038        if (debug > 4) {
1039                netdev_dbg(dev, "Transmit frame #%d queued in slot %d\n",
1040                           np->cur_tx, entry);
1041        }
1042        return NETDEV_TX_OK;
1043}
1044
1045static void netdev_tx_done(struct net_device *dev)
1046{
1047        struct netdev_private *np = netdev_priv(dev);
1048        for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1049                int entry = np->dirty_tx % TX_RING_SIZE;
1050                int tx_status = np->tx_ring[entry].status;
1051
1052                if (tx_status < 0)
1053                        break;
1054                if (tx_status & 0x8000) {       /* There was an error, log it. */
1055#ifndef final_version
1056                        if (debug > 1)
1057                                netdev_dbg(dev, "Transmit error, Tx status %08x\n",
1058                                           tx_status);
1059#endif
1060                        np->stats.tx_errors++;
1061                        if (tx_status & 0x0104) np->stats.tx_aborted_errors++;
1062                        if (tx_status & 0x0C80) np->stats.tx_carrier_errors++;
1063                        if (tx_status & 0x0200) np->stats.tx_window_errors++;
1064                        if (tx_status & 0x0002) np->stats.tx_fifo_errors++;
1065                        if ((tx_status & 0x0080) && np->mii_if.full_duplex == 0)
1066                                np->stats.tx_heartbeat_errors++;
1067                } else {
1068#ifndef final_version
1069                        if (debug > 3)
1070                                netdev_dbg(dev, "Transmit slot %d ok, Tx status %08x\n",
1071                                           entry, tx_status);
1072#endif
1073                        np->stats.tx_bytes += np->tx_skbuff[entry]->len;
1074                        np->stats.collisions += (tx_status >> 3) & 15;
1075                        np->stats.tx_packets++;
1076                }
1077                /* Free the original skb. */
1078                dma_unmap_single(&np->pci_dev->dev, np->tx_addr[entry],
1079                                 np->tx_skbuff[entry]->len, DMA_TO_DEVICE);
1080                np->tx_q_bytes -= np->tx_skbuff[entry]->len;
1081                dev_kfree_skb_irq(np->tx_skbuff[entry]);
1082                np->tx_skbuff[entry] = NULL;
1083        }
1084        if (np->tx_full &&
1085                np->cur_tx - np->dirty_tx < TX_QUEUE_LEN_RESTART &&
1086                np->tx_q_bytes < TX_BUG_FIFO_LIMIT) {
1087                /* The ring is no longer full, clear tbusy. */
1088                np->tx_full = 0;
1089                wmb();
1090                netif_wake_queue(dev);
1091        }
1092}
1093
1094/* The interrupt handler does all of the Rx thread work and cleans up
1095   after the Tx thread. */
1096static irqreturn_t intr_handler(int irq, void *dev_instance)
1097{
1098        struct net_device *dev = (struct net_device *)dev_instance;
1099        struct netdev_private *np = netdev_priv(dev);
1100        void __iomem *ioaddr = np->base_addr;
1101        int work_limit = max_interrupt_work;
1102        int handled = 0;
1103
1104        if (!netif_device_present(dev))
1105                return IRQ_NONE;
1106        do {
1107                u32 intr_status = ioread32(ioaddr + IntrStatus);
1108
1109                /* Acknowledge all of the current interrupt sources ASAP. */
1110                iowrite32(intr_status & 0x001ffff, ioaddr + IntrStatus);
1111
1112                if (debug > 4)
1113                        netdev_dbg(dev, "Interrupt, status %04x\n", intr_status);
1114
1115                if ((intr_status & (NormalIntr|AbnormalIntr)) == 0)
1116                        break;
1117
1118                handled = 1;
1119
1120                if (intr_status & (RxIntr | RxNoBuf))
1121                        netdev_rx(dev);
1122                if (intr_status & RxNoBuf)
1123                        iowrite32(0, ioaddr + RxStartDemand);
1124
1125                if (intr_status & (TxNoBuf | TxIntr) &&
1126                        np->cur_tx != np->dirty_tx) {
1127                        spin_lock(&np->lock);
1128                        netdev_tx_done(dev);
1129                        spin_unlock(&np->lock);
1130                }
1131
1132                /* Abnormal error summary/uncommon events handlers. */
1133                if (intr_status & (AbnormalIntr | TxFIFOUnderflow | SystemError |
1134                                                   TimerInt | TxDied))
1135                        netdev_error(dev, intr_status);
1136
1137                if (--work_limit < 0) {
1138                        dev_warn(&dev->dev,
1139                                 "Too much work at interrupt, status=0x%04x\n",
1140                                 intr_status);
1141                        /* Set the timer to re-enable the other interrupts after
1142                           10*82usec ticks. */
1143                        spin_lock(&np->lock);
1144                        if (netif_device_present(dev)) {
1145                                iowrite32(AbnormalIntr | TimerInt, ioaddr + IntrEnable);
1146                                iowrite32(10, ioaddr + GPTimer);
1147                        }
1148                        spin_unlock(&np->lock);
1149                        break;
1150                }
1151        } while (1);
1152
1153        if (debug > 3)
1154                netdev_dbg(dev, "exiting interrupt, status=%#4.4x\n",
1155                           ioread32(ioaddr + IntrStatus));
1156        return IRQ_RETVAL(handled);
1157}
1158
1159/* This routine is logically part of the interrupt handler, but separated
1160   for clarity and better register allocation. */
1161static int netdev_rx(struct net_device *dev)
1162{
1163        struct netdev_private *np = netdev_priv(dev);
1164        int entry = np->cur_rx % RX_RING_SIZE;
1165        int work_limit = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
1166
1167        if (debug > 4) {
1168                netdev_dbg(dev, " In netdev_rx(), entry %d status %04x\n",
1169                           entry, np->rx_ring[entry].status);
1170        }
1171
1172        /* If EOP is set on the next entry, it's a new packet. Send it up. */
1173        while (--work_limit >= 0) {
1174                struct w840_rx_desc *desc = np->rx_head_desc;
1175                s32 status = desc->status;
1176
1177                if (debug > 4)
1178                        netdev_dbg(dev, "  netdev_rx() status was %08x\n",
1179                                   status);
1180                if (status < 0)
1181                        break;
1182                if ((status & 0x38008300) != 0x0300) {
1183                        if ((status & 0x38000300) != 0x0300) {
1184                                /* Ingore earlier buffers. */
1185                                if ((status & 0xffff) != 0x7fff) {
1186                                        dev_warn(&dev->dev,
1187                                                 "Oversized Ethernet frame spanned multiple buffers, entry %#x status %04x!\n",
1188                                                 np->cur_rx, status);
1189                                        np->stats.rx_length_errors++;
1190                                }
1191                        } else if (status & 0x8000) {
1192                                /* There was a fatal error. */
1193                                if (debug > 2)
1194                                        netdev_dbg(dev, "Receive error, Rx status %08x\n",
1195                                                   status);
1196                                np->stats.rx_errors++; /* end of a packet.*/
1197                                if (status & 0x0890) np->stats.rx_length_errors++;
1198                                if (status & 0x004C) np->stats.rx_frame_errors++;
1199                                if (status & 0x0002) np->stats.rx_crc_errors++;
1200                        }
1201                } else {
1202                        struct sk_buff *skb;
1203                        /* Omit the four octet CRC from the length. */
1204                        int pkt_len = ((status >> 16) & 0x7ff) - 4;
1205
1206#ifndef final_version
1207                        if (debug > 4)
1208                                netdev_dbg(dev, "  netdev_rx() normal Rx pkt length %d status %x\n",
1209                                           pkt_len, status);
1210#endif
1211                        /* Check if the packet is long enough to accept without copying
1212                           to a minimally-sized skbuff. */
1213                        if (pkt_len < rx_copybreak &&
1214                            (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1215                                skb_reserve(skb, 2);    /* 16 byte align the IP header */
1216                                dma_sync_single_for_cpu(&np->pci_dev->dev,
1217                                                        np->rx_addr[entry],
1218                                                        np->rx_skbuff[entry]->len,
1219                                                        DMA_FROM_DEVICE);
1220                                skb_copy_to_linear_data(skb, np->rx_skbuff[entry]->data, pkt_len);
1221                                skb_put(skb, pkt_len);
1222                                dma_sync_single_for_device(&np->pci_dev->dev,
1223                                                           np->rx_addr[entry],
1224                                                           np->rx_skbuff[entry]->len,
1225                                                           DMA_FROM_DEVICE);
1226                        } else {
1227                                dma_unmap_single(&np->pci_dev->dev,
1228                                                 np->rx_addr[entry],
1229                                                 np->rx_skbuff[entry]->len,
1230                                                 DMA_FROM_DEVICE);
1231                                skb_put(skb = np->rx_skbuff[entry], pkt_len);
1232                                np->rx_skbuff[entry] = NULL;
1233                        }
1234#ifndef final_version                           /* Remove after testing. */
1235                        /* You will want this info for the initial debug. */
1236                        if (debug > 5)
1237                                netdev_dbg(dev, "  Rx data %pM %pM %02x%02x %pI4\n",
1238                                           &skb->data[0], &skb->data[6],
1239                                           skb->data[12], skb->data[13],
1240                                           &skb->data[14]);
1241#endif
1242                        skb->protocol = eth_type_trans(skb, dev);
1243                        netif_rx(skb);
1244                        np->stats.rx_packets++;
1245                        np->stats.rx_bytes += pkt_len;
1246                }
1247                entry = (++np->cur_rx) % RX_RING_SIZE;
1248                np->rx_head_desc = &np->rx_ring[entry];
1249        }
1250
1251        /* Refill the Rx ring buffers. */
1252        for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1253                struct sk_buff *skb;
1254                entry = np->dirty_rx % RX_RING_SIZE;
1255                if (np->rx_skbuff[entry] == NULL) {
1256                        skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1257                        np->rx_skbuff[entry] = skb;
1258                        if (skb == NULL)
1259                                break;                  /* Better luck next round. */
1260                        np->rx_addr[entry] = dma_map_single(&np->pci_dev->dev,
1261                                                            skb->data,
1262                                                            np->rx_buf_sz,
1263                                                            DMA_FROM_DEVICE);
1264                        np->rx_ring[entry].buffer1 = np->rx_addr[entry];
1265                }
1266                wmb();
1267                np->rx_ring[entry].status = DescOwned;
1268        }
1269
1270        return 0;
1271}
1272
1273static void netdev_error(struct net_device *dev, int intr_status)
1274{
1275        struct netdev_private *np = netdev_priv(dev);
1276        void __iomem *ioaddr = np->base_addr;
1277
1278        if (debug > 2)
1279                netdev_dbg(dev, "Abnormal event, %08x\n", intr_status);
1280        if (intr_status == 0xffffffff)
1281                return;
1282        spin_lock(&np->lock);
1283        if (intr_status & TxFIFOUnderflow) {
1284                int new;
1285                /* Bump up the Tx threshold */
1286#if 0
1287                /* This causes lots of dropped packets,
1288                 * and under high load even tx_timeouts
1289                 */
1290                new = np->csr6 + 0x4000;
1291#else
1292                new = (np->csr6 >> 14)&0x7f;
1293                if (new < 64)
1294                        new *= 2;
1295                 else
1296                        new = 127; /* load full packet before starting */
1297                new = (np->csr6 & ~(0x7F << 14)) | (new<<14);
1298#endif
1299                netdev_dbg(dev, "Tx underflow, new csr6 %08x\n", new);
1300                update_csr6(dev, new);
1301        }
1302        if (intr_status & RxDied) {             /* Missed a Rx frame. */
1303                np->stats.rx_errors++;
1304        }
1305        if (intr_status & TimerInt) {
1306                /* Re-enable other interrupts. */
1307                if (netif_device_present(dev))
1308                        iowrite32(0x1A0F5, ioaddr + IntrEnable);
1309        }
1310        np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff;
1311        iowrite32(0, ioaddr + RxStartDemand);
1312        spin_unlock(&np->lock);
1313}
1314
1315static struct net_device_stats *get_stats(struct net_device *dev)
1316{
1317        struct netdev_private *np = netdev_priv(dev);
1318        void __iomem *ioaddr = np->base_addr;
1319
1320        /* The chip only need report frame silently dropped. */
1321        spin_lock_irq(&np->lock);
1322        if (netif_running(dev) && netif_device_present(dev))
1323                np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff;
1324        spin_unlock_irq(&np->lock);
1325
1326        return &np->stats;
1327}
1328
1329
1330static u32 __set_rx_mode(struct net_device *dev)
1331{
1332        struct netdev_private *np = netdev_priv(dev);
1333        void __iomem *ioaddr = np->base_addr;
1334        u32 mc_filter[2];                       /* Multicast hash filter */
1335        u32 rx_mode;
1336
1337        if (dev->flags & IFF_PROMISC) {                 /* Set promiscuous. */
1338                memset(mc_filter, 0xff, sizeof(mc_filter));
1339                rx_mode = RxAcceptBroadcast | AcceptMulticast | RxAcceptAllPhys
1340                        | AcceptMyPhys;
1341        } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1342                   (dev->flags & IFF_ALLMULTI)) {
1343                /* Too many to match, or accept all multicasts. */
1344                memset(mc_filter, 0xff, sizeof(mc_filter));
1345                rx_mode = RxAcceptBroadcast | AcceptMulticast | AcceptMyPhys;
1346        } else {
1347                struct netdev_hw_addr *ha;
1348
1349                memset(mc_filter, 0, sizeof(mc_filter));
1350                netdev_for_each_mc_addr(ha, dev) {
1351                        int filbit;
1352
1353                        filbit = (ether_crc(ETH_ALEN, ha->addr) >> 26) ^ 0x3F;
1354                        filbit &= 0x3f;
1355                        mc_filter[filbit >> 5] |= 1 << (filbit & 31);
1356                }
1357                rx_mode = RxAcceptBroadcast | AcceptMulticast | AcceptMyPhys;
1358        }
1359        iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
1360        iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1361        return rx_mode;
1362}
1363
1364static void set_rx_mode(struct net_device *dev)
1365{
1366        struct netdev_private *np = netdev_priv(dev);
1367        u32 rx_mode = __set_rx_mode(dev);
1368        spin_lock_irq(&np->lock);
1369        update_csr6(dev, (np->csr6 & ~0x00F8) | rx_mode);
1370        spin_unlock_irq(&np->lock);
1371}
1372
1373static void netdev_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1374{
1375        struct netdev_private *np = netdev_priv(dev);
1376
1377        strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1378        strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1379}
1380
1381static int netdev_get_link_ksettings(struct net_device *dev,
1382                                     struct ethtool_link_ksettings *cmd)
1383{
1384        struct netdev_private *np = netdev_priv(dev);
1385
1386        spin_lock_irq(&np->lock);
1387        mii_ethtool_get_link_ksettings(&np->mii_if, cmd);
1388        spin_unlock_irq(&np->lock);
1389
1390        return 0;
1391}
1392
1393static int netdev_set_link_ksettings(struct net_device *dev,
1394                                     const struct ethtool_link_ksettings *cmd)
1395{
1396        struct netdev_private *np = netdev_priv(dev);
1397        int rc;
1398
1399        spin_lock_irq(&np->lock);
1400        rc = mii_ethtool_set_link_ksettings(&np->mii_if, cmd);
1401        spin_unlock_irq(&np->lock);
1402
1403        return rc;
1404}
1405
1406static int netdev_nway_reset(struct net_device *dev)
1407{
1408        struct netdev_private *np = netdev_priv(dev);
1409        return mii_nway_restart(&np->mii_if);
1410}
1411
1412static u32 netdev_get_link(struct net_device *dev)
1413{
1414        struct netdev_private *np = netdev_priv(dev);
1415        return mii_link_ok(&np->mii_if);
1416}
1417
1418static u32 netdev_get_msglevel(struct net_device *dev)
1419{
1420        return debug;
1421}
1422
1423static void netdev_set_msglevel(struct net_device *dev, u32 value)
1424{
1425        debug = value;
1426}
1427
1428static const struct ethtool_ops netdev_ethtool_ops = {
1429        .get_drvinfo            = netdev_get_drvinfo,
1430        .nway_reset             = netdev_nway_reset,
1431        .get_link               = netdev_get_link,
1432        .get_msglevel           = netdev_get_msglevel,
1433        .set_msglevel           = netdev_set_msglevel,
1434        .get_link_ksettings     = netdev_get_link_ksettings,
1435        .set_link_ksettings     = netdev_set_link_ksettings,
1436};
1437
1438static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1439{
1440        struct mii_ioctl_data *data = if_mii(rq);
1441        struct netdev_private *np = netdev_priv(dev);
1442
1443        switch(cmd) {
1444        case SIOCGMIIPHY:               /* Get address of MII PHY in use. */
1445                data->phy_id = ((struct netdev_private *)netdev_priv(dev))->phys[0] & 0x1f;
1446                fallthrough;
1447
1448        case SIOCGMIIREG:               /* Read MII PHY register. */
1449                spin_lock_irq(&np->lock);
1450                data->val_out = mdio_read(dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
1451                spin_unlock_irq(&np->lock);
1452                return 0;
1453
1454        case SIOCSMIIREG:               /* Write MII PHY register. */
1455                spin_lock_irq(&np->lock);
1456                mdio_write(dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
1457                spin_unlock_irq(&np->lock);
1458                return 0;
1459        default:
1460                return -EOPNOTSUPP;
1461        }
1462}
1463
1464static int netdev_close(struct net_device *dev)
1465{
1466        struct netdev_private *np = netdev_priv(dev);
1467        void __iomem *ioaddr = np->base_addr;
1468
1469        netif_stop_queue(dev);
1470
1471        if (debug > 1) {
1472                netdev_dbg(dev, "Shutting down ethercard, status was %08x Config %08x\n",
1473                           ioread32(ioaddr + IntrStatus),
1474                           ioread32(ioaddr + NetworkConfig));
1475                netdev_dbg(dev, "Queue pointers were Tx %d / %d,  Rx %d / %d\n",
1476                           np->cur_tx, np->dirty_tx,
1477                           np->cur_rx, np->dirty_rx);
1478        }
1479
1480        /* Stop the chip's Tx and Rx processes. */
1481        spin_lock_irq(&np->lock);
1482        netif_device_detach(dev);
1483        update_csr6(dev, 0);
1484        iowrite32(0x0000, ioaddr + IntrEnable);
1485        spin_unlock_irq(&np->lock);
1486
1487        free_irq(np->pci_dev->irq, dev);
1488        wmb();
1489        netif_device_attach(dev);
1490
1491        if (ioread32(ioaddr + NetworkConfig) != 0xffffffff)
1492                np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff;
1493
1494#ifdef __i386__
1495        if (debug > 2) {
1496                int i;
1497
1498                printk(KERN_DEBUG"  Tx ring at %p:\n", np->tx_ring);
1499                for (i = 0; i < TX_RING_SIZE; i++)
1500                        printk(KERN_DEBUG " #%d desc. %04x %04x %08x\n",
1501                               i, np->tx_ring[i].length,
1502                               np->tx_ring[i].status, np->tx_ring[i].buffer1);
1503                printk(KERN_DEBUG "  Rx ring %p:\n", np->rx_ring);
1504                for (i = 0; i < RX_RING_SIZE; i++) {
1505                        printk(KERN_DEBUG " #%d desc. %04x %04x %08x\n",
1506                               i, np->rx_ring[i].length,
1507                               np->rx_ring[i].status, np->rx_ring[i].buffer1);
1508                }
1509        }
1510#endif /* __i386__ debugging only */
1511
1512        del_timer_sync(&np->timer);
1513
1514        free_rxtx_rings(np);
1515        free_ringdesc(np);
1516
1517        return 0;
1518}
1519
1520static void w840_remove1(struct pci_dev *pdev)
1521{
1522        struct net_device *dev = pci_get_drvdata(pdev);
1523
1524        if (dev) {
1525                struct netdev_private *np = netdev_priv(dev);
1526                unregister_netdev(dev);
1527                pci_iounmap(pdev, np->base_addr);
1528                free_netdev(dev);
1529        }
1530}
1531
1532/*
1533 * suspend/resume synchronization:
1534 * - open, close, do_ioctl:
1535 *      rtnl_lock, & netif_device_detach after the rtnl_unlock.
1536 * - get_stats:
1537 *      spin_lock_irq(np->lock), doesn't touch hw if not present
1538 * - start_xmit:
1539 *      synchronize_irq + netif_tx_disable;
1540 * - tx_timeout:
1541 *      netif_device_detach + netif_tx_disable;
1542 * - set_multicast_list
1543 *      netif_device_detach + netif_tx_disable;
1544 * - interrupt handler
1545 *      doesn't touch hw if not present, synchronize_irq waits for
1546 *      running instances of the interrupt handler.
1547 *
1548 * Disabling hw requires clearing csr6 & IntrEnable.
1549 * update_csr6 & all function that write IntrEnable check netif_device_present
1550 * before settings any bits.
1551 *
1552 * Detach must occur under spin_unlock_irq(), interrupts from a detached
1553 * device would cause an irq storm.
1554 */
1555static int __maybe_unused w840_suspend(struct device *dev_d)
1556{
1557        struct net_device *dev = dev_get_drvdata(dev_d);
1558        struct netdev_private *np = netdev_priv(dev);
1559        void __iomem *ioaddr = np->base_addr;
1560
1561        rtnl_lock();
1562        if (netif_running (dev)) {
1563                del_timer_sync(&np->timer);
1564
1565                spin_lock_irq(&np->lock);
1566                netif_device_detach(dev);
1567                update_csr6(dev, 0);
1568                iowrite32(0, ioaddr + IntrEnable);
1569                spin_unlock_irq(&np->lock);
1570
1571                synchronize_irq(np->pci_dev->irq);
1572                netif_tx_disable(dev);
1573
1574                np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff;
1575
1576                /* no more hardware accesses behind this line. */
1577
1578                BUG_ON(np->csr6 || ioread32(ioaddr + IntrEnable));
1579
1580                /* pci_power_off(pdev, -1); */
1581
1582                free_rxtx_rings(np);
1583        } else {
1584                netif_device_detach(dev);
1585        }
1586        rtnl_unlock();
1587        return 0;
1588}
1589
1590static int __maybe_unused w840_resume(struct device *dev_d)
1591{
1592        struct net_device *dev = dev_get_drvdata(dev_d);
1593        struct netdev_private *np = netdev_priv(dev);
1594
1595        rtnl_lock();
1596        if (netif_device_present(dev))
1597                goto out; /* device not suspended */
1598        if (netif_running(dev)) {
1599                spin_lock_irq(&np->lock);
1600                iowrite32(1, np->base_addr+PCIBusCfg);
1601                ioread32(np->base_addr+PCIBusCfg);
1602                udelay(1);
1603                netif_device_attach(dev);
1604                init_rxtx_rings(dev);
1605                init_registers(dev);
1606                spin_unlock_irq(&np->lock);
1607
1608                netif_wake_queue(dev);
1609
1610                mod_timer(&np->timer, jiffies + 1*HZ);
1611        } else {
1612                netif_device_attach(dev);
1613        }
1614out:
1615        rtnl_unlock();
1616        return 0;
1617}
1618
1619static SIMPLE_DEV_PM_OPS(w840_pm_ops, w840_suspend, w840_resume);
1620
1621static struct pci_driver w840_driver = {
1622        .name           = DRV_NAME,
1623        .id_table       = w840_pci_tbl,
1624        .probe          = w840_probe1,
1625        .remove         = w840_remove1,
1626        .driver.pm      = &w840_pm_ops,
1627};
1628
1629module_pci_driver(w840_driver);
1630