linux/drivers/net/ethernet/freescale/gianfar.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* drivers/net/ethernet/freescale/gianfar.c
   3 *
   4 * Gianfar Ethernet Driver
   5 * This driver is designed for the non-CPM ethernet controllers
   6 * on the 85xx and 83xx family of integrated processors
   7 * Based on 8260_io/fcc_enet.c
   8 *
   9 * Author: Andy Fleming
  10 * Maintainer: Kumar Gala
  11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
  12 *
  13 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
  14 * Copyright 2007 MontaVista Software, Inc.
  15 *
  16 *  Gianfar:  AKA Lambda Draconis, "Dragon"
  17 *  RA 11 31 24.2
  18 *  Dec +69 19 52
  19 *  V 3.84
  20 *  B-V +1.62
  21 *
  22 *  Theory of operation
  23 *
  24 *  The driver is initialized through of_device. Configuration information
  25 *  is therefore conveyed through an OF-style device tree.
  26 *
  27 *  The Gianfar Ethernet Controller uses a ring of buffer
  28 *  descriptors.  The beginning is indicated by a register
  29 *  pointing to the physical address of the start of the ring.
  30 *  The end is determined by a "wrap" bit being set in the
  31 *  last descriptor of the ring.
  32 *
  33 *  When a packet is received, the RXF bit in the
  34 *  IEVENT register is set, triggering an interrupt when the
  35 *  corresponding bit in the IMASK register is also set (if
  36 *  interrupt coalescing is active, then the interrupt may not
  37 *  happen immediately, but will wait until either a set number
  38 *  of frames or amount of time have passed).  In NAPI, the
  39 *  interrupt handler will signal there is work to be done, and
  40 *  exit. This method will start at the last known empty
  41 *  descriptor, and process every subsequent descriptor until there
  42 *  are none left with data (NAPI will stop after a set number of
  43 *  packets to give time to other tasks, but will eventually
  44 *  process all the packets).  The data arrives inside a
  45 *  pre-allocated skb, and so after the skb is passed up to the
  46 *  stack, a new skb must be allocated, and the address field in
  47 *  the buffer descriptor must be updated to indicate this new
  48 *  skb.
  49 *
  50 *  When the kernel requests that a packet be transmitted, the
  51 *  driver starts where it left off last time, and points the
  52 *  descriptor at the buffer which was passed in.  The driver
  53 *  then informs the DMA engine that there are packets ready to
  54 *  be transmitted.  Once the controller is finished transmitting
  55 *  the packet, an interrupt may be triggered (under the same
  56 *  conditions as for reception, but depending on the TXF bit).
  57 *  The driver then cleans up the buffer.
  58 */
  59
  60#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  61
  62#include <linux/kernel.h>
  63#include <linux/string.h>
  64#include <linux/errno.h>
  65#include <linux/unistd.h>
  66#include <linux/slab.h>
  67#include <linux/interrupt.h>
  68#include <linux/delay.h>
  69#include <linux/netdevice.h>
  70#include <linux/etherdevice.h>
  71#include <linux/skbuff.h>
  72#include <linux/if_vlan.h>
  73#include <linux/spinlock.h>
  74#include <linux/mm.h>
  75#include <linux/of_address.h>
  76#include <linux/of_irq.h>
  77#include <linux/of_mdio.h>
  78#include <linux/of_platform.h>
  79#include <linux/ip.h>
  80#include <linux/tcp.h>
  81#include <linux/udp.h>
  82#include <linux/in.h>
  83#include <linux/net_tstamp.h>
  84
  85#include <asm/io.h>
  86#ifdef CONFIG_PPC
  87#include <asm/reg.h>
  88#include <asm/mpc85xx.h>
  89#endif
  90#include <asm/irq.h>
  91#include <linux/uaccess.h>
  92#include <linux/module.h>
  93#include <linux/dma-mapping.h>
  94#include <linux/crc32.h>
  95#include <linux/mii.h>
  96#include <linux/phy.h>
  97#include <linux/phy_fixed.h>
  98#include <linux/of.h>
  99#include <linux/of_net.h>
 100
 101#include "gianfar.h"
 102
 103#define TX_TIMEOUT      (5*HZ)
 104
 105MODULE_AUTHOR("Freescale Semiconductor, Inc");
 106MODULE_DESCRIPTION("Gianfar Ethernet Driver");
 107MODULE_LICENSE("GPL");
 108
 109static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
 110                            dma_addr_t buf)
 111{
 112        u32 lstatus;
 113
 114        bdp->bufPtr = cpu_to_be32(buf);
 115
 116        lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
 117        if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
 118                lstatus |= BD_LFLAG(RXBD_WRAP);
 119
 120        gfar_wmb();
 121
 122        bdp->lstatus = cpu_to_be32(lstatus);
 123}
 124
 125static void gfar_init_tx_rx_base(struct gfar_private *priv)
 126{
 127        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 128        u32 __iomem *baddr;
 129        int i;
 130
 131        baddr = &regs->tbase0;
 132        for (i = 0; i < priv->num_tx_queues; i++) {
 133                gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
 134                baddr += 2;
 135        }
 136
 137        baddr = &regs->rbase0;
 138        for (i = 0; i < priv->num_rx_queues; i++) {
 139                gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
 140                baddr += 2;
 141        }
 142}
 143
 144static void gfar_init_rqprm(struct gfar_private *priv)
 145{
 146        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 147        u32 __iomem *baddr;
 148        int i;
 149
 150        baddr = &regs->rqprm0;
 151        for (i = 0; i < priv->num_rx_queues; i++) {
 152                gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
 153                           (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
 154                baddr++;
 155        }
 156}
 157
 158static void gfar_rx_offload_en(struct gfar_private *priv)
 159{
 160        /* set this when rx hw offload (TOE) functions are being used */
 161        priv->uses_rxfcb = 0;
 162
 163        if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
 164                priv->uses_rxfcb = 1;
 165
 166        if (priv->hwts_rx_en || priv->rx_filer_enable)
 167                priv->uses_rxfcb = 1;
 168}
 169
 170static void gfar_mac_rx_config(struct gfar_private *priv)
 171{
 172        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 173        u32 rctrl = 0;
 174
 175        if (priv->rx_filer_enable) {
 176                rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
 177                /* Program the RIR0 reg with the required distribution */
 178                gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
 179        }
 180
 181        /* Restore PROMISC mode */
 182        if (priv->ndev->flags & IFF_PROMISC)
 183                rctrl |= RCTRL_PROM;
 184
 185        if (priv->ndev->features & NETIF_F_RXCSUM)
 186                rctrl |= RCTRL_CHECKSUMMING;
 187
 188        if (priv->extended_hash)
 189                rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
 190
 191        if (priv->padding) {
 192                rctrl &= ~RCTRL_PAL_MASK;
 193                rctrl |= RCTRL_PADDING(priv->padding);
 194        }
 195
 196        /* Enable HW time stamping if requested from user space */
 197        if (priv->hwts_rx_en)
 198                rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
 199
 200        if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
 201                rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
 202
 203        /* Clear the LFC bit */
 204        gfar_write(&regs->rctrl, rctrl);
 205        /* Init flow control threshold values */
 206        gfar_init_rqprm(priv);
 207        gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
 208        rctrl |= RCTRL_LFC;
 209
 210        /* Init rctrl based on our settings */
 211        gfar_write(&regs->rctrl, rctrl);
 212}
 213
 214static void gfar_mac_tx_config(struct gfar_private *priv)
 215{
 216        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 217        u32 tctrl = 0;
 218
 219        if (priv->ndev->features & NETIF_F_IP_CSUM)
 220                tctrl |= TCTRL_INIT_CSUM;
 221
 222        if (priv->prio_sched_en)
 223                tctrl |= TCTRL_TXSCHED_PRIO;
 224        else {
 225                tctrl |= TCTRL_TXSCHED_WRRS;
 226                gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
 227                gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
 228        }
 229
 230        if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
 231                tctrl |= TCTRL_VLINS;
 232
 233        gfar_write(&regs->tctrl, tctrl);
 234}
 235
 236static void gfar_configure_coalescing(struct gfar_private *priv,
 237                               unsigned long tx_mask, unsigned long rx_mask)
 238{
 239        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 240        u32 __iomem *baddr;
 241
 242        if (priv->mode == MQ_MG_MODE) {
 243                int i = 0;
 244
 245                baddr = &regs->txic0;
 246                for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
 247                        gfar_write(baddr + i, 0);
 248                        if (likely(priv->tx_queue[i]->txcoalescing))
 249                                gfar_write(baddr + i, priv->tx_queue[i]->txic);
 250                }
 251
 252                baddr = &regs->rxic0;
 253                for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
 254                        gfar_write(baddr + i, 0);
 255                        if (likely(priv->rx_queue[i]->rxcoalescing))
 256                                gfar_write(baddr + i, priv->rx_queue[i]->rxic);
 257                }
 258        } else {
 259                /* Backward compatible case -- even if we enable
 260                 * multiple queues, there's only single reg to program
 261                 */
 262                gfar_write(&regs->txic, 0);
 263                if (likely(priv->tx_queue[0]->txcoalescing))
 264                        gfar_write(&regs->txic, priv->tx_queue[0]->txic);
 265
 266                gfar_write(&regs->rxic, 0);
 267                if (unlikely(priv->rx_queue[0]->rxcoalescing))
 268                        gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
 269        }
 270}
 271
 272static void gfar_configure_coalescing_all(struct gfar_private *priv)
 273{
 274        gfar_configure_coalescing(priv, 0xFF, 0xFF);
 275}
 276
 277static void gfar_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
 278{
 279        struct gfar_private *priv = netdev_priv(dev);
 280        int i;
 281
 282        for (i = 0; i < priv->num_rx_queues; i++) {
 283                stats->rx_packets += priv->rx_queue[i]->stats.rx_packets;
 284                stats->rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
 285                stats->rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
 286        }
 287
 288        for (i = 0; i < priv->num_tx_queues; i++) {
 289                stats->tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
 290                stats->tx_packets += priv->tx_queue[i]->stats.tx_packets;
 291        }
 292
 293        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
 294                struct rmon_mib __iomem *rmon = &priv->gfargrp[0].regs->rmon;
 295                unsigned long flags;
 296                u32 rdrp, car, car_before;
 297                u64 rdrp_offset;
 298
 299                spin_lock_irqsave(&priv->rmon_overflow.lock, flags);
 300                car = gfar_read(&rmon->car1) & CAR1_C1RDR;
 301                do {
 302                        car_before = car;
 303                        rdrp = gfar_read(&rmon->rdrp);
 304                        car = gfar_read(&rmon->car1) & CAR1_C1RDR;
 305                } while (car != car_before);
 306                if (car) {
 307                        priv->rmon_overflow.rdrp++;
 308                        gfar_write(&rmon->car1, car);
 309                }
 310                rdrp_offset = priv->rmon_overflow.rdrp;
 311                spin_unlock_irqrestore(&priv->rmon_overflow.lock, flags);
 312
 313                stats->rx_missed_errors = rdrp + (rdrp_offset << 16);
 314        }
 315}
 316
 317/* Set the appropriate hash bit for the given addr */
 318/* The algorithm works like so:
 319 * 1) Take the Destination Address (ie the multicast address), and
 320 * do a CRC on it (little endian), and reverse the bits of the
 321 * result.
 322 * 2) Use the 8 most significant bits as a hash into a 256-entry
 323 * table.  The table is controlled through 8 32-bit registers:
 324 * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
 325 * gaddr7.  This means that the 3 most significant bits in the
 326 * hash index which gaddr register to use, and the 5 other bits
 327 * indicate which bit (assuming an IBM numbering scheme, which
 328 * for PowerPC (tm) is usually the case) in the register holds
 329 * the entry.
 330 */
 331static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
 332{
 333        u32 tempval;
 334        struct gfar_private *priv = netdev_priv(dev);
 335        u32 result = ether_crc(ETH_ALEN, addr);
 336        int width = priv->hash_width;
 337        u8 whichbit = (result >> (32 - width)) & 0x1f;
 338        u8 whichreg = result >> (32 - width + 5);
 339        u32 value = (1 << (31-whichbit));
 340
 341        tempval = gfar_read(priv->hash_regs[whichreg]);
 342        tempval |= value;
 343        gfar_write(priv->hash_regs[whichreg], tempval);
 344}
 345
 346/* There are multiple MAC Address register pairs on some controllers
 347 * This function sets the numth pair to a given address
 348 */
 349static void gfar_set_mac_for_addr(struct net_device *dev, int num,
 350                                  const u8 *addr)
 351{
 352        struct gfar_private *priv = netdev_priv(dev);
 353        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 354        u32 tempval;
 355        u32 __iomem *macptr = &regs->macstnaddr1;
 356
 357        macptr += num*2;
 358
 359        /* For a station address of 0x12345678ABCD in transmission
 360         * order (BE), MACnADDR1 is set to 0xCDAB7856 and
 361         * MACnADDR2 is set to 0x34120000.
 362         */
 363        tempval = (addr[5] << 24) | (addr[4] << 16) |
 364                  (addr[3] << 8)  |  addr[2];
 365
 366        gfar_write(macptr, tempval);
 367
 368        tempval = (addr[1] << 24) | (addr[0] << 16);
 369
 370        gfar_write(macptr+1, tempval);
 371}
 372
 373static int gfar_set_mac_addr(struct net_device *dev, void *p)
 374{
 375        int ret;
 376
 377        ret = eth_mac_addr(dev, p);
 378        if (ret)
 379                return ret;
 380
 381        gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
 382
 383        return 0;
 384}
 385
 386static void gfar_ints_disable(struct gfar_private *priv)
 387{
 388        int i;
 389        for (i = 0; i < priv->num_grps; i++) {
 390                struct gfar __iomem *regs = priv->gfargrp[i].regs;
 391                /* Clear IEVENT */
 392                gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
 393
 394                /* Initialize IMASK */
 395                gfar_write(&regs->imask, IMASK_INIT_CLEAR);
 396        }
 397}
 398
 399static void gfar_ints_enable(struct gfar_private *priv)
 400{
 401        int i;
 402        for (i = 0; i < priv->num_grps; i++) {
 403                struct gfar __iomem *regs = priv->gfargrp[i].regs;
 404                /* Unmask the interrupts we look for */
 405                gfar_write(&regs->imask,
 406                           IMASK_DEFAULT | priv->rmon_overflow.imask);
 407        }
 408}
 409
 410static int gfar_alloc_tx_queues(struct gfar_private *priv)
 411{
 412        int i;
 413
 414        for (i = 0; i < priv->num_tx_queues; i++) {
 415                priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
 416                                            GFP_KERNEL);
 417                if (!priv->tx_queue[i])
 418                        return -ENOMEM;
 419
 420                priv->tx_queue[i]->tx_skbuff = NULL;
 421                priv->tx_queue[i]->qindex = i;
 422                priv->tx_queue[i]->dev = priv->ndev;
 423                spin_lock_init(&(priv->tx_queue[i]->txlock));
 424        }
 425        return 0;
 426}
 427
 428static int gfar_alloc_rx_queues(struct gfar_private *priv)
 429{
 430        int i;
 431
 432        for (i = 0; i < priv->num_rx_queues; i++) {
 433                priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
 434                                            GFP_KERNEL);
 435                if (!priv->rx_queue[i])
 436                        return -ENOMEM;
 437
 438                priv->rx_queue[i]->qindex = i;
 439                priv->rx_queue[i]->ndev = priv->ndev;
 440        }
 441        return 0;
 442}
 443
 444static void gfar_free_tx_queues(struct gfar_private *priv)
 445{
 446        int i;
 447
 448        for (i = 0; i < priv->num_tx_queues; i++)
 449                kfree(priv->tx_queue[i]);
 450}
 451
 452static void gfar_free_rx_queues(struct gfar_private *priv)
 453{
 454        int i;
 455
 456        for (i = 0; i < priv->num_rx_queues; i++)
 457                kfree(priv->rx_queue[i]);
 458}
 459
 460static void unmap_group_regs(struct gfar_private *priv)
 461{
 462        int i;
 463
 464        for (i = 0; i < MAXGROUPS; i++)
 465                if (priv->gfargrp[i].regs)
 466                        iounmap(priv->gfargrp[i].regs);
 467}
 468
 469static void free_gfar_dev(struct gfar_private *priv)
 470{
 471        int i, j;
 472
 473        for (i = 0; i < priv->num_grps; i++)
 474                for (j = 0; j < GFAR_NUM_IRQS; j++) {
 475                        kfree(priv->gfargrp[i].irqinfo[j]);
 476                        priv->gfargrp[i].irqinfo[j] = NULL;
 477                }
 478
 479        free_netdev(priv->ndev);
 480}
 481
 482static void disable_napi(struct gfar_private *priv)
 483{
 484        int i;
 485
 486        for (i = 0; i < priv->num_grps; i++) {
 487                napi_disable(&priv->gfargrp[i].napi_rx);
 488                napi_disable(&priv->gfargrp[i].napi_tx);
 489        }
 490}
 491
 492static void enable_napi(struct gfar_private *priv)
 493{
 494        int i;
 495
 496        for (i = 0; i < priv->num_grps; i++) {
 497                napi_enable(&priv->gfargrp[i].napi_rx);
 498                napi_enable(&priv->gfargrp[i].napi_tx);
 499        }
 500}
 501
 502static int gfar_parse_group(struct device_node *np,
 503                            struct gfar_private *priv, const char *model)
 504{
 505        struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
 506        int i;
 507
 508        for (i = 0; i < GFAR_NUM_IRQS; i++) {
 509                grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
 510                                          GFP_KERNEL);
 511                if (!grp->irqinfo[i])
 512                        return -ENOMEM;
 513        }
 514
 515        grp->regs = of_iomap(np, 0);
 516        if (!grp->regs)
 517                return -ENOMEM;
 518
 519        gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
 520
 521        /* If we aren't the FEC we have multiple interrupts */
 522        if (model && strcasecmp(model, "FEC")) {
 523                gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
 524                gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
 525                if (!gfar_irq(grp, TX)->irq ||
 526                    !gfar_irq(grp, RX)->irq ||
 527                    !gfar_irq(grp, ER)->irq)
 528                        return -EINVAL;
 529        }
 530
 531        grp->priv = priv;
 532        spin_lock_init(&grp->grplock);
 533        if (priv->mode == MQ_MG_MODE) {
 534                /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
 535                grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 536                grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 537        } else {
 538                grp->rx_bit_map = 0xFF;
 539                grp->tx_bit_map = 0xFF;
 540        }
 541
 542        /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
 543         * right to left, so we need to revert the 8 bits to get the q index
 544         */
 545        grp->rx_bit_map = bitrev8(grp->rx_bit_map);
 546        grp->tx_bit_map = bitrev8(grp->tx_bit_map);
 547
 548        /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
 549         * also assign queues to groups
 550         */
 551        for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
 552                if (!grp->rx_queue)
 553                        grp->rx_queue = priv->rx_queue[i];
 554                grp->num_rx_queues++;
 555                grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
 556                priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
 557                priv->rx_queue[i]->grp = grp;
 558        }
 559
 560        for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
 561                if (!grp->tx_queue)
 562                        grp->tx_queue = priv->tx_queue[i];
 563                grp->num_tx_queues++;
 564                grp->tstat |= (TSTAT_CLEAR_THALT >> i);
 565                priv->tqueue |= (TQUEUE_EN0 >> i);
 566                priv->tx_queue[i]->grp = grp;
 567        }
 568
 569        priv->num_grps++;
 570
 571        return 0;
 572}
 573
 574static int gfar_of_group_count(struct device_node *np)
 575{
 576        struct device_node *child;
 577        int num = 0;
 578
 579        for_each_available_child_of_node(np, child)
 580                if (of_node_name_eq(child, "queue-group"))
 581                        num++;
 582
 583        return num;
 584}
 585
 586/* Reads the controller's registers to determine what interface
 587 * connects it to the PHY.
 588 */
 589static phy_interface_t gfar_get_interface(struct net_device *dev)
 590{
 591        struct gfar_private *priv = netdev_priv(dev);
 592        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 593        u32 ecntrl;
 594
 595        ecntrl = gfar_read(&regs->ecntrl);
 596
 597        if (ecntrl & ECNTRL_SGMII_MODE)
 598                return PHY_INTERFACE_MODE_SGMII;
 599
 600        if (ecntrl & ECNTRL_TBI_MODE) {
 601                if (ecntrl & ECNTRL_REDUCED_MODE)
 602                        return PHY_INTERFACE_MODE_RTBI;
 603                else
 604                        return PHY_INTERFACE_MODE_TBI;
 605        }
 606
 607        if (ecntrl & ECNTRL_REDUCED_MODE) {
 608                if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
 609                        return PHY_INTERFACE_MODE_RMII;
 610                }
 611                else {
 612                        phy_interface_t interface = priv->interface;
 613
 614                        /* This isn't autodetected right now, so it must
 615                         * be set by the device tree or platform code.
 616                         */
 617                        if (interface == PHY_INTERFACE_MODE_RGMII_ID)
 618                                return PHY_INTERFACE_MODE_RGMII_ID;
 619
 620                        return PHY_INTERFACE_MODE_RGMII;
 621                }
 622        }
 623
 624        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
 625                return PHY_INTERFACE_MODE_GMII;
 626
 627        return PHY_INTERFACE_MODE_MII;
 628}
 629
 630static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
 631{
 632        const char *model;
 633        int err = 0, i;
 634        phy_interface_t interface;
 635        struct net_device *dev = NULL;
 636        struct gfar_private *priv = NULL;
 637        struct device_node *np = ofdev->dev.of_node;
 638        struct device_node *child = NULL;
 639        u32 stash_len = 0;
 640        u32 stash_idx = 0;
 641        unsigned int num_tx_qs, num_rx_qs;
 642        unsigned short mode;
 643
 644        if (!np)
 645                return -ENODEV;
 646
 647        if (of_device_is_compatible(np, "fsl,etsec2"))
 648                mode = MQ_MG_MODE;
 649        else
 650                mode = SQ_SG_MODE;
 651
 652        if (mode == SQ_SG_MODE) {
 653                num_tx_qs = 1;
 654                num_rx_qs = 1;
 655        } else { /* MQ_MG_MODE */
 656                /* get the actual number of supported groups */
 657                unsigned int num_grps = gfar_of_group_count(np);
 658
 659                if (num_grps == 0 || num_grps > MAXGROUPS) {
 660                        dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
 661                                num_grps);
 662                        pr_err("Cannot do alloc_etherdev, aborting\n");
 663                        return -EINVAL;
 664                }
 665
 666                num_tx_qs = num_grps; /* one txq per int group */
 667                num_rx_qs = num_grps; /* one rxq per int group */
 668        }
 669
 670        if (num_tx_qs > MAX_TX_QS) {
 671                pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
 672                       num_tx_qs, MAX_TX_QS);
 673                pr_err("Cannot do alloc_etherdev, aborting\n");
 674                return -EINVAL;
 675        }
 676
 677        if (num_rx_qs > MAX_RX_QS) {
 678                pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
 679                       num_rx_qs, MAX_RX_QS);
 680                pr_err("Cannot do alloc_etherdev, aborting\n");
 681                return -EINVAL;
 682        }
 683
 684        *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
 685        dev = *pdev;
 686        if (NULL == dev)
 687                return -ENOMEM;
 688
 689        priv = netdev_priv(dev);
 690        priv->ndev = dev;
 691
 692        priv->mode = mode;
 693
 694        priv->num_tx_queues = num_tx_qs;
 695        netif_set_real_num_rx_queues(dev, num_rx_qs);
 696        priv->num_rx_queues = num_rx_qs;
 697
 698        err = gfar_alloc_tx_queues(priv);
 699        if (err)
 700                goto tx_alloc_failed;
 701
 702        err = gfar_alloc_rx_queues(priv);
 703        if (err)
 704                goto rx_alloc_failed;
 705
 706        err = of_property_read_string(np, "model", &model);
 707        if (err) {
 708                pr_err("Device model property missing, aborting\n");
 709                goto rx_alloc_failed;
 710        }
 711
 712        /* Init Rx queue filer rule set linked list */
 713        INIT_LIST_HEAD(&priv->rx_list.list);
 714        priv->rx_list.count = 0;
 715        mutex_init(&priv->rx_queue_access);
 716
 717        for (i = 0; i < MAXGROUPS; i++)
 718                priv->gfargrp[i].regs = NULL;
 719
 720        /* Parse and initialize group specific information */
 721        if (priv->mode == MQ_MG_MODE) {
 722                for_each_available_child_of_node(np, child) {
 723                        if (!of_node_name_eq(child, "queue-group"))
 724                                continue;
 725
 726                        err = gfar_parse_group(child, priv, model);
 727                        if (err) {
 728                                of_node_put(child);
 729                                goto err_grp_init;
 730                        }
 731                }
 732        } else { /* SQ_SG_MODE */
 733                err = gfar_parse_group(np, priv, model);
 734                if (err)
 735                        goto err_grp_init;
 736        }
 737
 738        if (of_property_read_bool(np, "bd-stash")) {
 739                priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
 740                priv->bd_stash_en = 1;
 741        }
 742
 743        err = of_property_read_u32(np, "rx-stash-len", &stash_len);
 744
 745        if (err == 0)
 746                priv->rx_stash_size = stash_len;
 747
 748        err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
 749
 750        if (err == 0)
 751                priv->rx_stash_index = stash_idx;
 752
 753        if (stash_len || stash_idx)
 754                priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
 755
 756        err = of_get_mac_address(np, dev->dev_addr);
 757        if (err) {
 758                eth_hw_addr_random(dev);
 759                dev_info(&ofdev->dev, "Using random MAC address: %pM\n", dev->dev_addr);
 760        }
 761
 762        if (model && !strcasecmp(model, "TSEC"))
 763                priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 764                                     FSL_GIANFAR_DEV_HAS_COALESCE |
 765                                     FSL_GIANFAR_DEV_HAS_RMON |
 766                                     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
 767
 768        if (model && !strcasecmp(model, "eTSEC"))
 769                priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 770                                     FSL_GIANFAR_DEV_HAS_COALESCE |
 771                                     FSL_GIANFAR_DEV_HAS_RMON |
 772                                     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
 773                                     FSL_GIANFAR_DEV_HAS_CSUM |
 774                                     FSL_GIANFAR_DEV_HAS_VLAN |
 775                                     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
 776                                     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
 777                                     FSL_GIANFAR_DEV_HAS_TIMER |
 778                                     FSL_GIANFAR_DEV_HAS_RX_FILER;
 779
 780        /* Use PHY connection type from the DT node if one is specified there.
 781         * rgmii-id really needs to be specified. Other types can be
 782         * detected by hardware
 783         */
 784        err = of_get_phy_mode(np, &interface);
 785        if (!err)
 786                priv->interface = interface;
 787        else
 788                priv->interface = gfar_get_interface(dev);
 789
 790        if (of_find_property(np, "fsl,magic-packet", NULL))
 791                priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
 792
 793        if (of_get_property(np, "fsl,wake-on-filer", NULL))
 794                priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
 795
 796        priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
 797
 798        /* In the case of a fixed PHY, the DT node associated
 799         * to the PHY is the Ethernet MAC DT node.
 800         */
 801        if (!priv->phy_node && of_phy_is_fixed_link(np)) {
 802                err = of_phy_register_fixed_link(np);
 803                if (err)
 804                        goto err_grp_init;
 805
 806                priv->phy_node = of_node_get(np);
 807        }
 808
 809        /* Find the TBI PHY.  If it's not there, we don't support SGMII */
 810        priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
 811
 812        return 0;
 813
 814err_grp_init:
 815        unmap_group_regs(priv);
 816rx_alloc_failed:
 817        gfar_free_rx_queues(priv);
 818tx_alloc_failed:
 819        gfar_free_tx_queues(priv);
 820        free_gfar_dev(priv);
 821        return err;
 822}
 823
 824static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
 825                                   u32 class)
 826{
 827        u32 rqfpr = FPR_FILER_MASK;
 828        u32 rqfcr = 0x0;
 829
 830        rqfar--;
 831        rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
 832        priv->ftp_rqfpr[rqfar] = rqfpr;
 833        priv->ftp_rqfcr[rqfar] = rqfcr;
 834        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 835
 836        rqfar--;
 837        rqfcr = RQFCR_CMP_NOMATCH;
 838        priv->ftp_rqfpr[rqfar] = rqfpr;
 839        priv->ftp_rqfcr[rqfar] = rqfcr;
 840        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 841
 842        rqfar--;
 843        rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
 844        rqfpr = class;
 845        priv->ftp_rqfcr[rqfar] = rqfcr;
 846        priv->ftp_rqfpr[rqfar] = rqfpr;
 847        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 848
 849        rqfar--;
 850        rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
 851        rqfpr = class;
 852        priv->ftp_rqfcr[rqfar] = rqfcr;
 853        priv->ftp_rqfpr[rqfar] = rqfpr;
 854        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 855
 856        return rqfar;
 857}
 858
 859static void gfar_init_filer_table(struct gfar_private *priv)
 860{
 861        int i = 0x0;
 862        u32 rqfar = MAX_FILER_IDX;
 863        u32 rqfcr = 0x0;
 864        u32 rqfpr = FPR_FILER_MASK;
 865
 866        /* Default rule */
 867        rqfcr = RQFCR_CMP_MATCH;
 868        priv->ftp_rqfcr[rqfar] = rqfcr;
 869        priv->ftp_rqfpr[rqfar] = rqfpr;
 870        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 871
 872        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
 873        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
 874        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
 875        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
 876        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
 877        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
 878
 879        /* cur_filer_idx indicated the first non-masked rule */
 880        priv->cur_filer_idx = rqfar;
 881
 882        /* Rest are masked rules */
 883        rqfcr = RQFCR_CMP_NOMATCH;
 884        for (i = 0; i < rqfar; i++) {
 885                priv->ftp_rqfcr[i] = rqfcr;
 886                priv->ftp_rqfpr[i] = rqfpr;
 887                gfar_write_filer(priv, i, rqfcr, rqfpr);
 888        }
 889}
 890
 891#ifdef CONFIG_PPC
 892static void __gfar_detect_errata_83xx(struct gfar_private *priv)
 893{
 894        unsigned int pvr = mfspr(SPRN_PVR);
 895        unsigned int svr = mfspr(SPRN_SVR);
 896        unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
 897        unsigned int rev = svr & 0xffff;
 898
 899        /* MPC8313 Rev 2.0 and higher; All MPC837x */
 900        if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
 901            (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
 902                priv->errata |= GFAR_ERRATA_74;
 903
 904        /* MPC8313 and MPC837x all rev */
 905        if ((pvr == 0x80850010 && mod == 0x80b0) ||
 906            (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
 907                priv->errata |= GFAR_ERRATA_76;
 908
 909        /* MPC8313 Rev < 2.0 */
 910        if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
 911                priv->errata |= GFAR_ERRATA_12;
 912}
 913
 914static void __gfar_detect_errata_85xx(struct gfar_private *priv)
 915{
 916        unsigned int svr = mfspr(SPRN_SVR);
 917
 918        if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
 919                priv->errata |= GFAR_ERRATA_12;
 920        /* P2020/P1010 Rev 1; MPC8548 Rev 2 */
 921        if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
 922            ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
 923            ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
 924                priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
 925}
 926#endif
 927
 928static void gfar_detect_errata(struct gfar_private *priv)
 929{
 930        struct device *dev = &priv->ofdev->dev;
 931
 932        /* no plans to fix */
 933        priv->errata |= GFAR_ERRATA_A002;
 934
 935#ifdef CONFIG_PPC
 936        if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
 937                __gfar_detect_errata_85xx(priv);
 938        else /* non-mpc85xx parts, i.e. e300 core based */
 939                __gfar_detect_errata_83xx(priv);
 940#endif
 941
 942        if (priv->errata)
 943                dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
 944                         priv->errata);
 945}
 946
 947static void gfar_init_addr_hash_table(struct gfar_private *priv)
 948{
 949        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 950
 951        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
 952                priv->extended_hash = 1;
 953                priv->hash_width = 9;
 954
 955                priv->hash_regs[0] = &regs->igaddr0;
 956                priv->hash_regs[1] = &regs->igaddr1;
 957                priv->hash_regs[2] = &regs->igaddr2;
 958                priv->hash_regs[3] = &regs->igaddr3;
 959                priv->hash_regs[4] = &regs->igaddr4;
 960                priv->hash_regs[5] = &regs->igaddr5;
 961                priv->hash_regs[6] = &regs->igaddr6;
 962                priv->hash_regs[7] = &regs->igaddr7;
 963                priv->hash_regs[8] = &regs->gaddr0;
 964                priv->hash_regs[9] = &regs->gaddr1;
 965                priv->hash_regs[10] = &regs->gaddr2;
 966                priv->hash_regs[11] = &regs->gaddr3;
 967                priv->hash_regs[12] = &regs->gaddr4;
 968                priv->hash_regs[13] = &regs->gaddr5;
 969                priv->hash_regs[14] = &regs->gaddr6;
 970                priv->hash_regs[15] = &regs->gaddr7;
 971
 972        } else {
 973                priv->extended_hash = 0;
 974                priv->hash_width = 8;
 975
 976                priv->hash_regs[0] = &regs->gaddr0;
 977                priv->hash_regs[1] = &regs->gaddr1;
 978                priv->hash_regs[2] = &regs->gaddr2;
 979                priv->hash_regs[3] = &regs->gaddr3;
 980                priv->hash_regs[4] = &regs->gaddr4;
 981                priv->hash_regs[5] = &regs->gaddr5;
 982                priv->hash_regs[6] = &regs->gaddr6;
 983                priv->hash_regs[7] = &regs->gaddr7;
 984        }
 985}
 986
 987static int __gfar_is_rx_idle(struct gfar_private *priv)
 988{
 989        u32 res;
 990
 991        /* Normaly TSEC should not hang on GRS commands, so we should
 992         * actually wait for IEVENT_GRSC flag.
 993         */
 994        if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
 995                return 0;
 996
 997        /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
 998         * the same as bits 23-30, the eTSEC Rx is assumed to be idle
 999         * and the Rx can be safely reset.
1000         */
1001        res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1002        res &= 0x7f807f80;
1003        if ((res & 0xffff) == (res >> 16))
1004                return 1;
1005
1006        return 0;
1007}
1008
1009/* Halt the receive and transmit queues */
1010static void gfar_halt_nodisable(struct gfar_private *priv)
1011{
1012        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1013        u32 tempval;
1014        unsigned int timeout;
1015        int stopped;
1016
1017        gfar_ints_disable(priv);
1018
1019        if (gfar_is_dma_stopped(priv))
1020                return;
1021
1022        /* Stop the DMA, and wait for it to stop */
1023        tempval = gfar_read(&regs->dmactrl);
1024        tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1025        gfar_write(&regs->dmactrl, tempval);
1026
1027retry:
1028        timeout = 1000;
1029        while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1030                cpu_relax();
1031                timeout--;
1032        }
1033
1034        if (!timeout)
1035                stopped = gfar_is_dma_stopped(priv);
1036
1037        if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1038            !__gfar_is_rx_idle(priv))
1039                goto retry;
1040}
1041
1042/* Halt the receive and transmit queues */
1043static void gfar_halt(struct gfar_private *priv)
1044{
1045        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1046        u32 tempval;
1047
1048        /* Dissable the Rx/Tx hw queues */
1049        gfar_write(&regs->rqueue, 0);
1050        gfar_write(&regs->tqueue, 0);
1051
1052        mdelay(10);
1053
1054        gfar_halt_nodisable(priv);
1055
1056        /* Disable Rx/Tx DMA */
1057        tempval = gfar_read(&regs->maccfg1);
1058        tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1059        gfar_write(&regs->maccfg1, tempval);
1060}
1061
1062static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1063{
1064        struct txbd8 *txbdp;
1065        struct gfar_private *priv = netdev_priv(tx_queue->dev);
1066        int i, j;
1067
1068        txbdp = tx_queue->tx_bd_base;
1069
1070        for (i = 0; i < tx_queue->tx_ring_size; i++) {
1071                if (!tx_queue->tx_skbuff[i])
1072                        continue;
1073
1074                dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1075                                 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1076                txbdp->lstatus = 0;
1077                for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1078                     j++) {
1079                        txbdp++;
1080                        dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1081                                       be16_to_cpu(txbdp->length),
1082                                       DMA_TO_DEVICE);
1083                }
1084                txbdp++;
1085                dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1086                tx_queue->tx_skbuff[i] = NULL;
1087        }
1088        kfree(tx_queue->tx_skbuff);
1089        tx_queue->tx_skbuff = NULL;
1090}
1091
1092static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1093{
1094        int i;
1095
1096        struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1097
1098        dev_kfree_skb(rx_queue->skb);
1099
1100        for (i = 0; i < rx_queue->rx_ring_size; i++) {
1101                struct  gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1102
1103                rxbdp->lstatus = 0;
1104                rxbdp->bufPtr = 0;
1105                rxbdp++;
1106
1107                if (!rxb->page)
1108                        continue;
1109
1110                dma_unmap_page(rx_queue->dev, rxb->dma,
1111                               PAGE_SIZE, DMA_FROM_DEVICE);
1112                __free_page(rxb->page);
1113
1114                rxb->page = NULL;
1115        }
1116
1117        kfree(rx_queue->rx_buff);
1118        rx_queue->rx_buff = NULL;
1119}
1120
1121/* If there are any tx skbs or rx skbs still around, free them.
1122 * Then free tx_skbuff and rx_skbuff
1123 */
1124static void free_skb_resources(struct gfar_private *priv)
1125{
1126        struct gfar_priv_tx_q *tx_queue = NULL;
1127        struct gfar_priv_rx_q *rx_queue = NULL;
1128        int i;
1129
1130        /* Go through all the buffer descriptors and free their data buffers */
1131        for (i = 0; i < priv->num_tx_queues; i++) {
1132                struct netdev_queue *txq;
1133
1134                tx_queue = priv->tx_queue[i];
1135                txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1136                if (tx_queue->tx_skbuff)
1137                        free_skb_tx_queue(tx_queue);
1138                netdev_tx_reset_queue(txq);
1139        }
1140
1141        for (i = 0; i < priv->num_rx_queues; i++) {
1142                rx_queue = priv->rx_queue[i];
1143                if (rx_queue->rx_buff)
1144                        free_skb_rx_queue(rx_queue);
1145        }
1146
1147        dma_free_coherent(priv->dev,
1148                          sizeof(struct txbd8) * priv->total_tx_ring_size +
1149                          sizeof(struct rxbd8) * priv->total_rx_ring_size,
1150                          priv->tx_queue[0]->tx_bd_base,
1151                          priv->tx_queue[0]->tx_bd_dma_base);
1152}
1153
1154void stop_gfar(struct net_device *dev)
1155{
1156        struct gfar_private *priv = netdev_priv(dev);
1157
1158        netif_tx_stop_all_queues(dev);
1159
1160        smp_mb__before_atomic();
1161        set_bit(GFAR_DOWN, &priv->state);
1162        smp_mb__after_atomic();
1163
1164        disable_napi(priv);
1165
1166        /* disable ints and gracefully shut down Rx/Tx DMA */
1167        gfar_halt(priv);
1168
1169        phy_stop(dev->phydev);
1170
1171        free_skb_resources(priv);
1172}
1173
1174static void gfar_start(struct gfar_private *priv)
1175{
1176        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1177        u32 tempval;
1178        int i = 0;
1179
1180        /* Enable Rx/Tx hw queues */
1181        gfar_write(&regs->rqueue, priv->rqueue);
1182        gfar_write(&regs->tqueue, priv->tqueue);
1183
1184        /* Initialize DMACTRL to have WWR and WOP */
1185        tempval = gfar_read(&regs->dmactrl);
1186        tempval |= DMACTRL_INIT_SETTINGS;
1187        gfar_write(&regs->dmactrl, tempval);
1188
1189        /* Make sure we aren't stopped */
1190        tempval = gfar_read(&regs->dmactrl);
1191        tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1192        gfar_write(&regs->dmactrl, tempval);
1193
1194        for (i = 0; i < priv->num_grps; i++) {
1195                regs = priv->gfargrp[i].regs;
1196                /* Clear THLT/RHLT, so that the DMA starts polling now */
1197                gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1198                gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1199        }
1200
1201        /* Enable Rx/Tx DMA */
1202        tempval = gfar_read(&regs->maccfg1);
1203        tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1204        gfar_write(&regs->maccfg1, tempval);
1205
1206        gfar_ints_enable(priv);
1207
1208        netif_trans_update(priv->ndev); /* prevent tx timeout */
1209}
1210
1211static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
1212{
1213        struct page *page;
1214        dma_addr_t addr;
1215
1216        page = dev_alloc_page();
1217        if (unlikely(!page))
1218                return false;
1219
1220        addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1221        if (unlikely(dma_mapping_error(rxq->dev, addr))) {
1222                __free_page(page);
1223
1224                return false;
1225        }
1226
1227        rxb->dma = addr;
1228        rxb->page = page;
1229        rxb->page_offset = 0;
1230
1231        return true;
1232}
1233
1234static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
1235{
1236        struct gfar_private *priv = netdev_priv(rx_queue->ndev);
1237        struct gfar_extra_stats *estats = &priv->extra_stats;
1238
1239        netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
1240        atomic64_inc(&estats->rx_alloc_err);
1241}
1242
1243static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
1244                                int alloc_cnt)
1245{
1246        struct rxbd8 *bdp;
1247        struct gfar_rx_buff *rxb;
1248        int i;
1249
1250        i = rx_queue->next_to_use;
1251        bdp = &rx_queue->rx_bd_base[i];
1252        rxb = &rx_queue->rx_buff[i];
1253
1254        while (alloc_cnt--) {
1255                /* try reuse page */
1256                if (unlikely(!rxb->page)) {
1257                        if (unlikely(!gfar_new_page(rx_queue, rxb))) {
1258                                gfar_rx_alloc_err(rx_queue);
1259                                break;
1260                        }
1261                }
1262
1263                /* Setup the new RxBD */
1264                gfar_init_rxbdp(rx_queue, bdp,
1265                                rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
1266
1267                /* Update to the next pointer */
1268                bdp++;
1269                rxb++;
1270
1271                if (unlikely(++i == rx_queue->rx_ring_size)) {
1272                        i = 0;
1273                        bdp = rx_queue->rx_bd_base;
1274                        rxb = rx_queue->rx_buff;
1275                }
1276        }
1277
1278        rx_queue->next_to_use = i;
1279        rx_queue->next_to_alloc = i;
1280}
1281
1282static void gfar_init_bds(struct net_device *ndev)
1283{
1284        struct gfar_private *priv = netdev_priv(ndev);
1285        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1286        struct gfar_priv_tx_q *tx_queue = NULL;
1287        struct gfar_priv_rx_q *rx_queue = NULL;
1288        struct txbd8 *txbdp;
1289        u32 __iomem *rfbptr;
1290        int i, j;
1291
1292        for (i = 0; i < priv->num_tx_queues; i++) {
1293                tx_queue = priv->tx_queue[i];
1294                /* Initialize some variables in our dev structure */
1295                tx_queue->num_txbdfree = tx_queue->tx_ring_size;
1296                tx_queue->dirty_tx = tx_queue->tx_bd_base;
1297                tx_queue->cur_tx = tx_queue->tx_bd_base;
1298                tx_queue->skb_curtx = 0;
1299                tx_queue->skb_dirtytx = 0;
1300
1301                /* Initialize Transmit Descriptor Ring */
1302                txbdp = tx_queue->tx_bd_base;
1303                for (j = 0; j < tx_queue->tx_ring_size; j++) {
1304                        txbdp->lstatus = 0;
1305                        txbdp->bufPtr = 0;
1306                        txbdp++;
1307                }
1308
1309                /* Set the last descriptor in the ring to indicate wrap */
1310                txbdp--;
1311                txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
1312                                            TXBD_WRAP);
1313        }
1314
1315        rfbptr = &regs->rfbptr0;
1316        for (i = 0; i < priv->num_rx_queues; i++) {
1317                rx_queue = priv->rx_queue[i];
1318
1319                rx_queue->next_to_clean = 0;
1320                rx_queue->next_to_use = 0;
1321                rx_queue->next_to_alloc = 0;
1322
1323                /* make sure next_to_clean != next_to_use after this
1324                 * by leaving at least 1 unused descriptor
1325                 */
1326                gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
1327
1328                rx_queue->rfbptr = rfbptr;
1329                rfbptr += 2;
1330        }
1331}
1332
1333static int gfar_alloc_skb_resources(struct net_device *ndev)
1334{
1335        void *vaddr;
1336        dma_addr_t addr;
1337        int i, j;
1338        struct gfar_private *priv = netdev_priv(ndev);
1339        struct device *dev = priv->dev;
1340        struct gfar_priv_tx_q *tx_queue = NULL;
1341        struct gfar_priv_rx_q *rx_queue = NULL;
1342
1343        priv->total_tx_ring_size = 0;
1344        for (i = 0; i < priv->num_tx_queues; i++)
1345                priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
1346
1347        priv->total_rx_ring_size = 0;
1348        for (i = 0; i < priv->num_rx_queues; i++)
1349                priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
1350
1351        /* Allocate memory for the buffer descriptors */
1352        vaddr = dma_alloc_coherent(dev,
1353                                   (priv->total_tx_ring_size *
1354                                    sizeof(struct txbd8)) +
1355                                   (priv->total_rx_ring_size *
1356                                    sizeof(struct rxbd8)),
1357                                   &addr, GFP_KERNEL);
1358        if (!vaddr)
1359                return -ENOMEM;
1360
1361        for (i = 0; i < priv->num_tx_queues; i++) {
1362                tx_queue = priv->tx_queue[i];
1363                tx_queue->tx_bd_base = vaddr;
1364                tx_queue->tx_bd_dma_base = addr;
1365                tx_queue->dev = ndev;
1366                /* enet DMA only understands physical addresses */
1367                addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1368                vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1369        }
1370
1371        /* Start the rx descriptor ring where the tx ring leaves off */
1372        for (i = 0; i < priv->num_rx_queues; i++) {
1373                rx_queue = priv->rx_queue[i];
1374                rx_queue->rx_bd_base = vaddr;
1375                rx_queue->rx_bd_dma_base = addr;
1376                rx_queue->ndev = ndev;
1377                rx_queue->dev = dev;
1378                addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1379                vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1380        }
1381
1382        /* Setup the skbuff rings */
1383        for (i = 0; i < priv->num_tx_queues; i++) {
1384                tx_queue = priv->tx_queue[i];
1385                tx_queue->tx_skbuff =
1386                        kmalloc_array(tx_queue->tx_ring_size,
1387                                      sizeof(*tx_queue->tx_skbuff),
1388                                      GFP_KERNEL);
1389                if (!tx_queue->tx_skbuff)
1390                        goto cleanup;
1391
1392                for (j = 0; j < tx_queue->tx_ring_size; j++)
1393                        tx_queue->tx_skbuff[j] = NULL;
1394        }
1395
1396        for (i = 0; i < priv->num_rx_queues; i++) {
1397                rx_queue = priv->rx_queue[i];
1398                rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
1399                                            sizeof(*rx_queue->rx_buff),
1400                                            GFP_KERNEL);
1401                if (!rx_queue->rx_buff)
1402                        goto cleanup;
1403        }
1404
1405        gfar_init_bds(ndev);
1406
1407        return 0;
1408
1409cleanup:
1410        free_skb_resources(priv);
1411        return -ENOMEM;
1412}
1413
1414/* Bring the controller up and running */
1415int startup_gfar(struct net_device *ndev)
1416{
1417        struct gfar_private *priv = netdev_priv(ndev);
1418        int err;
1419
1420        gfar_mac_reset(priv);
1421
1422        err = gfar_alloc_skb_resources(ndev);
1423        if (err)
1424                return err;
1425
1426        gfar_init_tx_rx_base(priv);
1427
1428        smp_mb__before_atomic();
1429        clear_bit(GFAR_DOWN, &priv->state);
1430        smp_mb__after_atomic();
1431
1432        /* Start Rx/Tx DMA and enable the interrupts */
1433        gfar_start(priv);
1434
1435        /* force link state update after mac reset */
1436        priv->oldlink = 0;
1437        priv->oldspeed = 0;
1438        priv->oldduplex = -1;
1439
1440        phy_start(ndev->phydev);
1441
1442        enable_napi(priv);
1443
1444        netif_tx_wake_all_queues(ndev);
1445
1446        return 0;
1447}
1448
1449static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
1450{
1451        struct net_device *ndev = priv->ndev;
1452        struct phy_device *phydev = ndev->phydev;
1453        u32 val = 0;
1454
1455        if (!phydev->duplex)
1456                return val;
1457
1458        if (!priv->pause_aneg_en) {
1459                if (priv->tx_pause_en)
1460                        val |= MACCFG1_TX_FLOW;
1461                if (priv->rx_pause_en)
1462                        val |= MACCFG1_RX_FLOW;
1463        } else {
1464                u16 lcl_adv, rmt_adv;
1465                u8 flowctrl;
1466                /* get link partner capabilities */
1467                rmt_adv = 0;
1468                if (phydev->pause)
1469                        rmt_adv = LPA_PAUSE_CAP;
1470                if (phydev->asym_pause)
1471                        rmt_adv |= LPA_PAUSE_ASYM;
1472
1473                lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
1474                flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
1475                if (flowctrl & FLOW_CTRL_TX)
1476                        val |= MACCFG1_TX_FLOW;
1477                if (flowctrl & FLOW_CTRL_RX)
1478                        val |= MACCFG1_RX_FLOW;
1479        }
1480
1481        return val;
1482}
1483
1484static noinline void gfar_update_link_state(struct gfar_private *priv)
1485{
1486        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1487        struct net_device *ndev = priv->ndev;
1488        struct phy_device *phydev = ndev->phydev;
1489        struct gfar_priv_rx_q *rx_queue = NULL;
1490        int i;
1491
1492        if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
1493                return;
1494
1495        if (phydev->link) {
1496                u32 tempval1 = gfar_read(&regs->maccfg1);
1497                u32 tempval = gfar_read(&regs->maccfg2);
1498                u32 ecntrl = gfar_read(&regs->ecntrl);
1499                u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
1500
1501                if (phydev->duplex != priv->oldduplex) {
1502                        if (!(phydev->duplex))
1503                                tempval &= ~(MACCFG2_FULL_DUPLEX);
1504                        else
1505                                tempval |= MACCFG2_FULL_DUPLEX;
1506
1507                        priv->oldduplex = phydev->duplex;
1508                }
1509
1510                if (phydev->speed != priv->oldspeed) {
1511                        switch (phydev->speed) {
1512                        case 1000:
1513                                tempval =
1514                                    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1515
1516                                ecntrl &= ~(ECNTRL_R100);
1517                                break;
1518                        case 100:
1519                        case 10:
1520                                tempval =
1521                                    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1522
1523                                /* Reduced mode distinguishes
1524                                 * between 10 and 100
1525                                 */
1526                                if (phydev->speed == SPEED_100)
1527                                        ecntrl |= ECNTRL_R100;
1528                                else
1529                                        ecntrl &= ~(ECNTRL_R100);
1530                                break;
1531                        default:
1532                                netif_warn(priv, link, priv->ndev,
1533                                           "Ack!  Speed (%d) is not 10/100/1000!\n",
1534                                           phydev->speed);
1535                                break;
1536                        }
1537
1538                        priv->oldspeed = phydev->speed;
1539                }
1540
1541                tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1542                tempval1 |= gfar_get_flowctrl_cfg(priv);
1543
1544                /* Turn last free buffer recording on */
1545                if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
1546                        for (i = 0; i < priv->num_rx_queues; i++) {
1547                                u32 bdp_dma;
1548
1549                                rx_queue = priv->rx_queue[i];
1550                                bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
1551                                gfar_write(rx_queue->rfbptr, bdp_dma);
1552                        }
1553
1554                        priv->tx_actual_en = 1;
1555                }
1556
1557                if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
1558                        priv->tx_actual_en = 0;
1559
1560                gfar_write(&regs->maccfg1, tempval1);
1561                gfar_write(&regs->maccfg2, tempval);
1562                gfar_write(&regs->ecntrl, ecntrl);
1563
1564                if (!priv->oldlink)
1565                        priv->oldlink = 1;
1566
1567        } else if (priv->oldlink) {
1568                priv->oldlink = 0;
1569                priv->oldspeed = 0;
1570                priv->oldduplex = -1;
1571        }
1572
1573        if (netif_msg_link(priv))
1574                phy_print_status(phydev);
1575}
1576
1577/* Called every time the controller might need to be made
1578 * aware of new link state.  The PHY code conveys this
1579 * information through variables in the phydev structure, and this
1580 * function converts those variables into the appropriate
1581 * register values, and can bring down the device if needed.
1582 */
1583static void adjust_link(struct net_device *dev)
1584{
1585        struct gfar_private *priv = netdev_priv(dev);
1586        struct phy_device *phydev = dev->phydev;
1587
1588        if (unlikely(phydev->link != priv->oldlink ||
1589                     (phydev->link && (phydev->duplex != priv->oldduplex ||
1590                                       phydev->speed != priv->oldspeed))))
1591                gfar_update_link_state(priv);
1592}
1593
1594/* Initialize TBI PHY interface for communicating with the
1595 * SERDES lynx PHY on the chip.  We communicate with this PHY
1596 * through the MDIO bus on each controller, treating it as a
1597 * "normal" PHY at the address found in the TBIPA register.  We assume
1598 * that the TBIPA register is valid.  Either the MDIO bus code will set
1599 * it to a value that doesn't conflict with other PHYs on the bus, or the
1600 * value doesn't matter, as there are no other PHYs on the bus.
1601 */
1602static void gfar_configure_serdes(struct net_device *dev)
1603{
1604        struct gfar_private *priv = netdev_priv(dev);
1605        struct phy_device *tbiphy;
1606
1607        if (!priv->tbi_node) {
1608                dev_warn(&dev->dev, "error: SGMII mode requires that the "
1609                                    "device tree specify a tbi-handle\n");
1610                return;
1611        }
1612
1613        tbiphy = of_phy_find_device(priv->tbi_node);
1614        if (!tbiphy) {
1615                dev_err(&dev->dev, "error: Could not get TBI device\n");
1616                return;
1617        }
1618
1619        /* If the link is already up, we must already be ok, and don't need to
1620         * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1621         * everything for us?  Resetting it takes the link down and requires
1622         * several seconds for it to come back.
1623         */
1624        if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1625                put_device(&tbiphy->mdio.dev);
1626                return;
1627        }
1628
1629        /* Single clk mode, mii mode off(for serdes communication) */
1630        phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1631
1632        phy_write(tbiphy, MII_ADVERTISE,
1633                  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1634                  ADVERTISE_1000XPSE_ASYM);
1635
1636        phy_write(tbiphy, MII_BMCR,
1637                  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1638                  BMCR_SPEED1000);
1639
1640        put_device(&tbiphy->mdio.dev);
1641}
1642
1643/* Initializes driver's PHY state, and attaches to the PHY.
1644 * Returns 0 on success.
1645 */
1646static int init_phy(struct net_device *dev)
1647{
1648        __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1649        struct gfar_private *priv = netdev_priv(dev);
1650        phy_interface_t interface = priv->interface;
1651        struct phy_device *phydev;
1652        struct ethtool_eee edata;
1653
1654        linkmode_set_bit_array(phy_10_100_features_array,
1655                               ARRAY_SIZE(phy_10_100_features_array),
1656                               mask);
1657        linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask);
1658        linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask);
1659        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1660                linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask);
1661
1662        priv->oldlink = 0;
1663        priv->oldspeed = 0;
1664        priv->oldduplex = -1;
1665
1666        phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1667                                interface);
1668        if (!phydev) {
1669                dev_err(&dev->dev, "could not attach to PHY\n");
1670                return -ENODEV;
1671        }
1672
1673        if (interface == PHY_INTERFACE_MODE_SGMII)
1674                gfar_configure_serdes(dev);
1675
1676        /* Remove any features not supported by the controller */
1677        linkmode_and(phydev->supported, phydev->supported, mask);
1678        linkmode_copy(phydev->advertising, phydev->supported);
1679
1680        /* Add support for flow control */
1681        phy_support_asym_pause(phydev);
1682
1683        /* disable EEE autoneg, EEE not supported by eTSEC */
1684        memset(&edata, 0, sizeof(struct ethtool_eee));
1685        phy_ethtool_set_eee(phydev, &edata);
1686
1687        return 0;
1688}
1689
1690static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1691{
1692        struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
1693
1694        memset(fcb, 0, GMAC_FCB_LEN);
1695
1696        return fcb;
1697}
1698
1699static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1700                                    int fcb_length)
1701{
1702        /* If we're here, it's a IP packet with a TCP or UDP
1703         * payload.  We set it to checksum, using a pseudo-header
1704         * we provide
1705         */
1706        u8 flags = TXFCB_DEFAULT;
1707
1708        /* Tell the controller what the protocol is
1709         * And provide the already calculated phcs
1710         */
1711        if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1712                flags |= TXFCB_UDP;
1713                fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
1714        } else
1715                fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
1716
1717        /* l3os is the distance between the start of the
1718         * frame (skb->data) and the start of the IP hdr.
1719         * l4os is the distance between the start of the
1720         * l3 hdr and the l4 hdr
1721         */
1722        fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
1723        fcb->l4os = skb_network_header_len(skb);
1724
1725        fcb->flags = flags;
1726}
1727
1728static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1729{
1730        fcb->flags |= TXFCB_VLN;
1731        fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
1732}
1733
1734static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1735                                      struct txbd8 *base, int ring_size)
1736{
1737        struct txbd8 *new_bd = bdp + stride;
1738
1739        return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1740}
1741
1742static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1743                                      int ring_size)
1744{
1745        return skip_txbd(bdp, 1, base, ring_size);
1746}
1747
1748/* eTSEC12: csum generation not supported for some fcb offsets */
1749static inline bool gfar_csum_errata_12(struct gfar_private *priv,
1750                                       unsigned long fcb_addr)
1751{
1752        return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
1753               (fcb_addr % 0x20) > 0x18);
1754}
1755
1756/* eTSEC76: csum generation for frames larger than 2500 may
1757 * cause excess delays before start of transmission
1758 */
1759static inline bool gfar_csum_errata_76(struct gfar_private *priv,
1760                                       unsigned int len)
1761{
1762        return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
1763               (len > 2500));
1764}
1765
1766/* This is called by the kernel when a frame is ready for transmission.
1767 * It is pointed to by the dev->hard_start_xmit function pointer
1768 */
1769static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1770{
1771        struct gfar_private *priv = netdev_priv(dev);
1772        struct gfar_priv_tx_q *tx_queue = NULL;
1773        struct netdev_queue *txq;
1774        struct gfar __iomem *regs = NULL;
1775        struct txfcb *fcb = NULL;
1776        struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
1777        u32 lstatus;
1778        skb_frag_t *frag;
1779        int i, rq = 0;
1780        int do_tstamp, do_csum, do_vlan;
1781        u32 bufaddr;
1782        unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
1783
1784        rq = skb->queue_mapping;
1785        tx_queue = priv->tx_queue[rq];
1786        txq = netdev_get_tx_queue(dev, rq);
1787        base = tx_queue->tx_bd_base;
1788        regs = tx_queue->grp->regs;
1789
1790        do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
1791        do_vlan = skb_vlan_tag_present(skb);
1792        do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1793                    priv->hwts_tx_en;
1794
1795        if (do_csum || do_vlan)
1796                fcb_len = GMAC_FCB_LEN;
1797
1798        /* check if time stamp should be generated */
1799        if (unlikely(do_tstamp))
1800                fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
1801
1802        /* make space for additional header when fcb is needed */
1803        if (fcb_len) {
1804                if (unlikely(skb_cow_head(skb, fcb_len))) {
1805                        dev->stats.tx_errors++;
1806                        dev_kfree_skb_any(skb);
1807                        return NETDEV_TX_OK;
1808                }
1809        }
1810
1811        /* total number of fragments in the SKB */
1812        nr_frags = skb_shinfo(skb)->nr_frags;
1813
1814        /* calculate the required number of TxBDs for this skb */
1815        if (unlikely(do_tstamp))
1816                nr_txbds = nr_frags + 2;
1817        else
1818                nr_txbds = nr_frags + 1;
1819
1820        /* check if there is space to queue this packet */
1821        if (nr_txbds > tx_queue->num_txbdfree) {
1822                /* no space, stop the queue */
1823                netif_tx_stop_queue(txq);
1824                dev->stats.tx_fifo_errors++;
1825                return NETDEV_TX_BUSY;
1826        }
1827
1828        /* Update transmit stats */
1829        bytes_sent = skb->len;
1830        tx_queue->stats.tx_bytes += bytes_sent;
1831        /* keep Tx bytes on wire for BQL accounting */
1832        GFAR_CB(skb)->bytes_sent = bytes_sent;
1833        tx_queue->stats.tx_packets++;
1834
1835        txbdp = txbdp_start = tx_queue->cur_tx;
1836        lstatus = be32_to_cpu(txbdp->lstatus);
1837
1838        /* Add TxPAL between FCB and frame if required */
1839        if (unlikely(do_tstamp)) {
1840                skb_push(skb, GMAC_TXPAL_LEN);
1841                memset(skb->data, 0, GMAC_TXPAL_LEN);
1842        }
1843
1844        /* Add TxFCB if required */
1845        if (fcb_len) {
1846                fcb = gfar_add_fcb(skb);
1847                lstatus |= BD_LFLAG(TXBD_TOE);
1848        }
1849
1850        /* Set up checksumming */
1851        if (do_csum) {
1852                gfar_tx_checksum(skb, fcb, fcb_len);
1853
1854                if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
1855                    unlikely(gfar_csum_errata_76(priv, skb->len))) {
1856                        __skb_pull(skb, GMAC_FCB_LEN);
1857                        skb_checksum_help(skb);
1858                        if (do_vlan || do_tstamp) {
1859                                /* put back a new fcb for vlan/tstamp TOE */
1860                                fcb = gfar_add_fcb(skb);
1861                        } else {
1862                                /* Tx TOE not used */
1863                                lstatus &= ~(BD_LFLAG(TXBD_TOE));
1864                                fcb = NULL;
1865                        }
1866                }
1867        }
1868
1869        if (do_vlan)
1870                gfar_tx_vlan(skb, fcb);
1871
1872        bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
1873                                 DMA_TO_DEVICE);
1874        if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1875                goto dma_map_err;
1876
1877        txbdp_start->bufPtr = cpu_to_be32(bufaddr);
1878
1879        /* Time stamp insertion requires one additional TxBD */
1880        if (unlikely(do_tstamp))
1881                txbdp_tstamp = txbdp = next_txbd(txbdp, base,
1882                                                 tx_queue->tx_ring_size);
1883
1884        if (likely(!nr_frags)) {
1885                if (likely(!do_tstamp))
1886                        lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1887        } else {
1888                u32 lstatus_start = lstatus;
1889
1890                /* Place the fragment addresses and lengths into the TxBDs */
1891                frag = &skb_shinfo(skb)->frags[0];
1892                for (i = 0; i < nr_frags; i++, frag++) {
1893                        unsigned int size;
1894
1895                        /* Point at the next BD, wrapping as needed */
1896                        txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1897
1898                        size = skb_frag_size(frag);
1899
1900                        lstatus = be32_to_cpu(txbdp->lstatus) | size |
1901                                  BD_LFLAG(TXBD_READY);
1902
1903                        /* Handle the last BD specially */
1904                        if (i == nr_frags - 1)
1905                                lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1906
1907                        bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
1908                                                   size, DMA_TO_DEVICE);
1909                        if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1910                                goto dma_map_err;
1911
1912                        /* set the TxBD length and buffer pointer */
1913                        txbdp->bufPtr = cpu_to_be32(bufaddr);
1914                        txbdp->lstatus = cpu_to_be32(lstatus);
1915                }
1916
1917                lstatus = lstatus_start;
1918        }
1919
1920        /* If time stamping is requested one additional TxBD must be set up. The
1921         * first TxBD points to the FCB and must have a data length of
1922         * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
1923         * the full frame length.
1924         */
1925        if (unlikely(do_tstamp)) {
1926                u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
1927
1928                bufaddr = be32_to_cpu(txbdp_start->bufPtr);
1929                bufaddr += fcb_len;
1930
1931                lstatus_ts |= BD_LFLAG(TXBD_READY) |
1932                              (skb_headlen(skb) - fcb_len);
1933                if (!nr_frags)
1934                        lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1935
1936                txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
1937                txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
1938                lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
1939
1940                /* Setup tx hardware time stamping */
1941                skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1942                fcb->ptp = 1;
1943        } else {
1944                lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1945        }
1946
1947        netdev_tx_sent_queue(txq, bytes_sent);
1948
1949        gfar_wmb();
1950
1951        txbdp_start->lstatus = cpu_to_be32(lstatus);
1952
1953        gfar_wmb(); /* force lstatus write before tx_skbuff */
1954
1955        tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
1956
1957        /* Update the current skb pointer to the next entry we will use
1958         * (wrapping if necessary)
1959         */
1960        tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
1961                              TX_RING_MOD_MASK(tx_queue->tx_ring_size);
1962
1963        tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1964
1965        /* We can work in parallel with gfar_clean_tx_ring(), except
1966         * when modifying num_txbdfree. Note that we didn't grab the lock
1967         * when we were reading the num_txbdfree and checking for available
1968         * space, that's because outside of this function it can only grow.
1969         */
1970        spin_lock_bh(&tx_queue->txlock);
1971        /* reduce TxBD free count */
1972        tx_queue->num_txbdfree -= (nr_txbds);
1973        spin_unlock_bh(&tx_queue->txlock);
1974
1975        /* If the next BD still needs to be cleaned up, then the bds
1976         * are full.  We need to tell the kernel to stop sending us stuff.
1977         */
1978        if (!tx_queue->num_txbdfree) {
1979                netif_tx_stop_queue(txq);
1980
1981                dev->stats.tx_fifo_errors++;
1982        }
1983
1984        /* Tell the DMA to go go go */
1985        gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
1986
1987        return NETDEV_TX_OK;
1988
1989dma_map_err:
1990        txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
1991        if (do_tstamp)
1992                txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1993        for (i = 0; i < nr_frags; i++) {
1994                lstatus = be32_to_cpu(txbdp->lstatus);
1995                if (!(lstatus & BD_LFLAG(TXBD_READY)))
1996                        break;
1997
1998                lstatus &= ~BD_LFLAG(TXBD_READY);
1999                txbdp->lstatus = cpu_to_be32(lstatus);
2000                bufaddr = be32_to_cpu(txbdp->bufPtr);
2001                dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2002                               DMA_TO_DEVICE);
2003                txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2004        }
2005        gfar_wmb();
2006        dev_kfree_skb_any(skb);
2007        return NETDEV_TX_OK;
2008}
2009
2010/* Changes the mac address if the controller is not running. */
2011static int gfar_set_mac_address(struct net_device *dev)
2012{
2013        gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2014
2015        return 0;
2016}
2017
2018static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2019{
2020        struct gfar_private *priv = netdev_priv(dev);
2021
2022        while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2023                cpu_relax();
2024
2025        if (dev->flags & IFF_UP)
2026                stop_gfar(dev);
2027
2028        dev->mtu = new_mtu;
2029
2030        if (dev->flags & IFF_UP)
2031                startup_gfar(dev);
2032
2033        clear_bit_unlock(GFAR_RESETTING, &priv->state);
2034
2035        return 0;
2036}
2037
2038static void reset_gfar(struct net_device *ndev)
2039{
2040        struct gfar_private *priv = netdev_priv(ndev);
2041
2042        while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2043                cpu_relax();
2044
2045        stop_gfar(ndev);
2046        startup_gfar(ndev);
2047
2048        clear_bit_unlock(GFAR_RESETTING, &priv->state);
2049}
2050
2051/* gfar_reset_task gets scheduled when a packet has not been
2052 * transmitted after a set amount of time.
2053 * For now, assume that clearing out all the structures, and
2054 * starting over will fix the problem.
2055 */
2056static void gfar_reset_task(struct work_struct *work)
2057{
2058        struct gfar_private *priv = container_of(work, struct gfar_private,
2059                                                 reset_task);
2060        reset_gfar(priv->ndev);
2061}
2062
2063static void gfar_timeout(struct net_device *dev, unsigned int txqueue)
2064{
2065        struct gfar_private *priv = netdev_priv(dev);
2066
2067        dev->stats.tx_errors++;
2068        schedule_work(&priv->reset_task);
2069}
2070
2071static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
2072{
2073        struct hwtstamp_config config;
2074        struct gfar_private *priv = netdev_priv(netdev);
2075
2076        if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2077                return -EFAULT;
2078
2079        /* reserved for future extensions */
2080        if (config.flags)
2081                return -EINVAL;
2082
2083        switch (config.tx_type) {
2084        case HWTSTAMP_TX_OFF:
2085                priv->hwts_tx_en = 0;
2086                break;
2087        case HWTSTAMP_TX_ON:
2088                if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2089                        return -ERANGE;
2090                priv->hwts_tx_en = 1;
2091                break;
2092        default:
2093                return -ERANGE;
2094        }
2095
2096        switch (config.rx_filter) {
2097        case HWTSTAMP_FILTER_NONE:
2098                if (priv->hwts_rx_en) {
2099                        priv->hwts_rx_en = 0;
2100                        reset_gfar(netdev);
2101                }
2102                break;
2103        default:
2104                if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2105                        return -ERANGE;
2106                if (!priv->hwts_rx_en) {
2107                        priv->hwts_rx_en = 1;
2108                        reset_gfar(netdev);
2109                }
2110                config.rx_filter = HWTSTAMP_FILTER_ALL;
2111                break;
2112        }
2113
2114        return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2115                -EFAULT : 0;
2116}
2117
2118static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
2119{
2120        struct hwtstamp_config config;
2121        struct gfar_private *priv = netdev_priv(netdev);
2122
2123        config.flags = 0;
2124        config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2125        config.rx_filter = (priv->hwts_rx_en ?
2126                            HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
2127
2128        return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2129                -EFAULT : 0;
2130}
2131
2132static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2133{
2134        struct phy_device *phydev = dev->phydev;
2135
2136        if (!netif_running(dev))
2137                return -EINVAL;
2138
2139        if (cmd == SIOCSHWTSTAMP)
2140                return gfar_hwtstamp_set(dev, rq);
2141        if (cmd == SIOCGHWTSTAMP)
2142                return gfar_hwtstamp_get(dev, rq);
2143
2144        if (!phydev)
2145                return -ENODEV;
2146
2147        return phy_mii_ioctl(phydev, rq, cmd);
2148}
2149
2150/* Interrupt Handler for Transmit complete */
2151static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2152{
2153        struct net_device *dev = tx_queue->dev;
2154        struct netdev_queue *txq;
2155        struct gfar_private *priv = netdev_priv(dev);
2156        struct txbd8 *bdp, *next = NULL;
2157        struct txbd8 *lbdp = NULL;
2158        struct txbd8 *base = tx_queue->tx_bd_base;
2159        struct sk_buff *skb;
2160        int skb_dirtytx;
2161        int tx_ring_size = tx_queue->tx_ring_size;
2162        int frags = 0, nr_txbds = 0;
2163        int i;
2164        int howmany = 0;
2165        int tqi = tx_queue->qindex;
2166        unsigned int bytes_sent = 0;
2167        u32 lstatus;
2168        size_t buflen;
2169
2170        txq = netdev_get_tx_queue(dev, tqi);
2171        bdp = tx_queue->dirty_tx;
2172        skb_dirtytx = tx_queue->skb_dirtytx;
2173
2174        while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2175                bool do_tstamp;
2176
2177                do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2178                            priv->hwts_tx_en;
2179
2180                frags = skb_shinfo(skb)->nr_frags;
2181
2182                /* When time stamping, one additional TxBD must be freed.
2183                 * Also, we need to dma_unmap_single() the TxPAL.
2184                 */
2185                if (unlikely(do_tstamp))
2186                        nr_txbds = frags + 2;
2187                else
2188                        nr_txbds = frags + 1;
2189
2190                lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2191
2192                lstatus = be32_to_cpu(lbdp->lstatus);
2193
2194                /* Only clean completed frames */
2195                if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2196                    (lstatus & BD_LENGTH_MASK))
2197                        break;
2198
2199                if (unlikely(do_tstamp)) {
2200                        next = next_txbd(bdp, base, tx_ring_size);
2201                        buflen = be16_to_cpu(next->length) +
2202                                 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2203                } else
2204                        buflen = be16_to_cpu(bdp->length);
2205
2206                dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2207                                 buflen, DMA_TO_DEVICE);
2208
2209                if (unlikely(do_tstamp)) {
2210                        struct skb_shared_hwtstamps shhwtstamps;
2211                        u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2212                                          ~0x7UL);
2213
2214                        memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2215                        shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2216                        skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2217                        skb_tstamp_tx(skb, &shhwtstamps);
2218                        gfar_clear_txbd_status(bdp);
2219                        bdp = next;
2220                }
2221
2222                gfar_clear_txbd_status(bdp);
2223                bdp = next_txbd(bdp, base, tx_ring_size);
2224
2225                for (i = 0; i < frags; i++) {
2226                        dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2227                                       be16_to_cpu(bdp->length),
2228                                       DMA_TO_DEVICE);
2229                        gfar_clear_txbd_status(bdp);
2230                        bdp = next_txbd(bdp, base, tx_ring_size);
2231                }
2232
2233                bytes_sent += GFAR_CB(skb)->bytes_sent;
2234
2235                dev_kfree_skb_any(skb);
2236
2237                tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2238
2239                skb_dirtytx = (skb_dirtytx + 1) &
2240                              TX_RING_MOD_MASK(tx_ring_size);
2241
2242                howmany++;
2243                spin_lock(&tx_queue->txlock);
2244                tx_queue->num_txbdfree += nr_txbds;
2245                spin_unlock(&tx_queue->txlock);
2246        }
2247
2248        /* If we freed a buffer, we can restart transmission, if necessary */
2249        if (tx_queue->num_txbdfree &&
2250            netif_tx_queue_stopped(txq) &&
2251            !(test_bit(GFAR_DOWN, &priv->state)))
2252                netif_wake_subqueue(priv->ndev, tqi);
2253
2254        /* Update dirty indicators */
2255        tx_queue->skb_dirtytx = skb_dirtytx;
2256        tx_queue->dirty_tx = bdp;
2257
2258        netdev_tx_completed_queue(txq, howmany, bytes_sent);
2259}
2260
2261static void count_errors(u32 lstatus, struct net_device *ndev)
2262{
2263        struct gfar_private *priv = netdev_priv(ndev);
2264        struct net_device_stats *stats = &ndev->stats;
2265        struct gfar_extra_stats *estats = &priv->extra_stats;
2266
2267        /* If the packet was truncated, none of the other errors matter */
2268        if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2269                stats->rx_length_errors++;
2270
2271                atomic64_inc(&estats->rx_trunc);
2272
2273                return;
2274        }
2275        /* Count the errors, if there were any */
2276        if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2277                stats->rx_length_errors++;
2278
2279                if (lstatus & BD_LFLAG(RXBD_LARGE))
2280                        atomic64_inc(&estats->rx_large);
2281                else
2282                        atomic64_inc(&estats->rx_short);
2283        }
2284        if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2285                stats->rx_frame_errors++;
2286                atomic64_inc(&estats->rx_nonoctet);
2287        }
2288        if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2289                atomic64_inc(&estats->rx_crcerr);
2290                stats->rx_crc_errors++;
2291        }
2292        if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2293                atomic64_inc(&estats->rx_overrun);
2294                stats->rx_over_errors++;
2295        }
2296}
2297
2298static irqreturn_t gfar_receive(int irq, void *grp_id)
2299{
2300        struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2301        unsigned long flags;
2302        u32 imask, ievent;
2303
2304        ievent = gfar_read(&grp->regs->ievent);
2305
2306        if (unlikely(ievent & IEVENT_FGPI)) {
2307                gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2308                return IRQ_HANDLED;
2309        }
2310
2311        if (likely(napi_schedule_prep(&grp->napi_rx))) {
2312                spin_lock_irqsave(&grp->grplock, flags);
2313                imask = gfar_read(&grp->regs->imask);
2314                imask &= IMASK_RX_DISABLED | grp->priv->rmon_overflow.imask;
2315                gfar_write(&grp->regs->imask, imask);
2316                spin_unlock_irqrestore(&grp->grplock, flags);
2317                __napi_schedule(&grp->napi_rx);
2318        } else {
2319                /* Clear IEVENT, so interrupts aren't called again
2320                 * because of the packets that have already arrived.
2321                 */
2322                gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2323        }
2324
2325        return IRQ_HANDLED;
2326}
2327
2328/* Interrupt Handler for Transmit complete */
2329static irqreturn_t gfar_transmit(int irq, void *grp_id)
2330{
2331        struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2332        unsigned long flags;
2333        u32 imask;
2334
2335        if (likely(napi_schedule_prep(&grp->napi_tx))) {
2336                spin_lock_irqsave(&grp->grplock, flags);
2337                imask = gfar_read(&grp->regs->imask);
2338                imask &= IMASK_TX_DISABLED | grp->priv->rmon_overflow.imask;
2339                gfar_write(&grp->regs->imask, imask);
2340                spin_unlock_irqrestore(&grp->grplock, flags);
2341                __napi_schedule(&grp->napi_tx);
2342        } else {
2343                /* Clear IEVENT, so interrupts aren't called again
2344                 * because of the packets that have already arrived.
2345                 */
2346                gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2347        }
2348
2349        return IRQ_HANDLED;
2350}
2351
2352static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2353                             struct sk_buff *skb, bool first)
2354{
2355        int size = lstatus & BD_LENGTH_MASK;
2356        struct page *page = rxb->page;
2357
2358        if (likely(first)) {
2359                skb_put(skb, size);
2360        } else {
2361                /* the last fragments' length contains the full frame length */
2362                if (lstatus & BD_LFLAG(RXBD_LAST))
2363                        size -= skb->len;
2364
2365                WARN(size < 0, "gianfar: rx fragment size underflow");
2366                if (size < 0)
2367                        return false;
2368
2369                skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2370                                rxb->page_offset + RXBUF_ALIGNMENT,
2371                                size, GFAR_RXB_TRUESIZE);
2372        }
2373
2374        /* try reuse page */
2375        if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2376                return false;
2377
2378        /* change offset to the other half */
2379        rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2380
2381        page_ref_inc(page);
2382
2383        return true;
2384}
2385
2386static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2387                               struct gfar_rx_buff *old_rxb)
2388{
2389        struct gfar_rx_buff *new_rxb;
2390        u16 nta = rxq->next_to_alloc;
2391
2392        new_rxb = &rxq->rx_buff[nta];
2393
2394        /* find next buf that can reuse a page */
2395        nta++;
2396        rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2397
2398        /* copy page reference */
2399        *new_rxb = *old_rxb;
2400
2401        /* sync for use by the device */
2402        dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2403                                         old_rxb->page_offset,
2404                                         GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2405}
2406
2407static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2408                                            u32 lstatus, struct sk_buff *skb)
2409{
2410        struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2411        struct page *page = rxb->page;
2412        bool first = false;
2413
2414        if (likely(!skb)) {
2415                void *buff_addr = page_address(page) + rxb->page_offset;
2416
2417                skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2418                if (unlikely(!skb)) {
2419                        gfar_rx_alloc_err(rx_queue);
2420                        return NULL;
2421                }
2422                skb_reserve(skb, RXBUF_ALIGNMENT);
2423                first = true;
2424        }
2425
2426        dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2427                                      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2428
2429        if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2430                /* reuse the free half of the page */
2431                gfar_reuse_rx_page(rx_queue, rxb);
2432        } else {
2433                /* page cannot be reused, unmap it */
2434                dma_unmap_page(rx_queue->dev, rxb->dma,
2435                               PAGE_SIZE, DMA_FROM_DEVICE);
2436        }
2437
2438        /* clear rxb content */
2439        rxb->page = NULL;
2440
2441        return skb;
2442}
2443
2444static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2445{
2446        /* If valid headers were found, and valid sums
2447         * were verified, then we tell the kernel that no
2448         * checksumming is necessary.  Otherwise, it is [FIXME]
2449         */
2450        if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2451            (RXFCB_CIP | RXFCB_CTU))
2452                skb->ip_summed = CHECKSUM_UNNECESSARY;
2453        else
2454                skb_checksum_none_assert(skb);
2455}
2456
2457/* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2458static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
2459{
2460        struct gfar_private *priv = netdev_priv(ndev);
2461        struct rxfcb *fcb = NULL;
2462
2463        /* fcb is at the beginning if exists */
2464        fcb = (struct rxfcb *)skb->data;
2465
2466        /* Remove the FCB from the skb
2467         * Remove the padded bytes, if there are any
2468         */
2469        if (priv->uses_rxfcb)
2470                skb_pull(skb, GMAC_FCB_LEN);
2471
2472        /* Get receive timestamp from the skb */
2473        if (priv->hwts_rx_en) {
2474                struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2475                u64 *ns = (u64 *) skb->data;
2476
2477                memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2478                shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2479        }
2480
2481        if (priv->padding)
2482                skb_pull(skb, priv->padding);
2483
2484        /* Trim off the FCS */
2485        pskb_trim(skb, skb->len - ETH_FCS_LEN);
2486
2487        if (ndev->features & NETIF_F_RXCSUM)
2488                gfar_rx_checksum(skb, fcb);
2489
2490        /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2491         * Even if vlan rx accel is disabled, on some chips
2492         * RXFCB_VLN is pseudo randomly set.
2493         */
2494        if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2495            be16_to_cpu(fcb->flags) & RXFCB_VLN)
2496                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2497                                       be16_to_cpu(fcb->vlctl));
2498}
2499
2500/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2501 * until the budget/quota has been reached. Returns the number
2502 * of frames handled
2503 */
2504static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue,
2505                              int rx_work_limit)
2506{
2507        struct net_device *ndev = rx_queue->ndev;
2508        struct gfar_private *priv = netdev_priv(ndev);
2509        struct rxbd8 *bdp;
2510        int i, howmany = 0;
2511        struct sk_buff *skb = rx_queue->skb;
2512        int cleaned_cnt = gfar_rxbd_unused(rx_queue);
2513        unsigned int total_bytes = 0, total_pkts = 0;
2514
2515        /* Get the first full descriptor */
2516        i = rx_queue->next_to_clean;
2517
2518        while (rx_work_limit--) {
2519                u32 lstatus;
2520
2521                if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
2522                        gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2523                        cleaned_cnt = 0;
2524                }
2525
2526                bdp = &rx_queue->rx_bd_base[i];
2527                lstatus = be32_to_cpu(bdp->lstatus);
2528                if (lstatus & BD_LFLAG(RXBD_EMPTY))
2529                        break;
2530
2531                /* lost RXBD_LAST descriptor due to overrun */
2532                if (skb &&
2533                    (lstatus & BD_LFLAG(RXBD_FIRST))) {
2534                        /* discard faulty buffer */
2535                        dev_kfree_skb(skb);
2536                        skb = NULL;
2537                        rx_queue->stats.rx_dropped++;
2538
2539                        /* can continue normally */
2540                }
2541
2542                /* order rx buffer descriptor reads */
2543                rmb();
2544
2545                /* fetch next to clean buffer from the ring */
2546                skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
2547                if (unlikely(!skb))
2548                        break;
2549
2550                cleaned_cnt++;
2551                howmany++;
2552
2553                if (unlikely(++i == rx_queue->rx_ring_size))
2554                        i = 0;
2555
2556                rx_queue->next_to_clean = i;
2557
2558                /* fetch next buffer if not the last in frame */
2559                if (!(lstatus & BD_LFLAG(RXBD_LAST)))
2560                        continue;
2561
2562                if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
2563                        count_errors(lstatus, ndev);
2564
2565                        /* discard faulty buffer */
2566                        dev_kfree_skb(skb);
2567                        skb = NULL;
2568                        rx_queue->stats.rx_dropped++;
2569                        continue;
2570                }
2571
2572                gfar_process_frame(ndev, skb);
2573
2574                /* Increment the number of packets */
2575                total_pkts++;
2576                total_bytes += skb->len;
2577
2578                skb_record_rx_queue(skb, rx_queue->qindex);
2579
2580                skb->protocol = eth_type_trans(skb, ndev);
2581
2582                /* Send the packet up the stack */
2583                napi_gro_receive(&rx_queue->grp->napi_rx, skb);
2584
2585                skb = NULL;
2586        }
2587
2588        /* Store incomplete frames for completion */
2589        rx_queue->skb = skb;
2590
2591        rx_queue->stats.rx_packets += total_pkts;
2592        rx_queue->stats.rx_bytes += total_bytes;
2593
2594        if (cleaned_cnt)
2595                gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2596
2597        /* Update Last Free RxBD pointer for LFC */
2598        if (unlikely(priv->tx_actual_en)) {
2599                u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
2600
2601                gfar_write(rx_queue->rfbptr, bdp_dma);
2602        }
2603
2604        return howmany;
2605}
2606
2607static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2608{
2609        struct gfar_priv_grp *gfargrp =
2610                container_of(napi, struct gfar_priv_grp, napi_rx);
2611        struct gfar __iomem *regs = gfargrp->regs;
2612        struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2613        int work_done = 0;
2614
2615        /* Clear IEVENT, so interrupts aren't called again
2616         * because of the packets that have already arrived
2617         */
2618        gfar_write(&regs->ievent, IEVENT_RX_MASK);
2619
2620        work_done = gfar_clean_rx_ring(rx_queue, budget);
2621
2622        if (work_done < budget) {
2623                u32 imask;
2624                napi_complete_done(napi, work_done);
2625                /* Clear the halt bit in RSTAT */
2626                gfar_write(&regs->rstat, gfargrp->rstat);
2627
2628                spin_lock_irq(&gfargrp->grplock);
2629                imask = gfar_read(&regs->imask);
2630                imask |= IMASK_RX_DEFAULT;
2631                gfar_write(&regs->imask, imask);
2632                spin_unlock_irq(&gfargrp->grplock);
2633        }
2634
2635        return work_done;
2636}
2637
2638static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2639{
2640        struct gfar_priv_grp *gfargrp =
2641                container_of(napi, struct gfar_priv_grp, napi_tx);
2642        struct gfar __iomem *regs = gfargrp->regs;
2643        struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2644        u32 imask;
2645
2646        /* Clear IEVENT, so interrupts aren't called again
2647         * because of the packets that have already arrived
2648         */
2649        gfar_write(&regs->ievent, IEVENT_TX_MASK);
2650
2651        /* run Tx cleanup to completion */
2652        if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2653                gfar_clean_tx_ring(tx_queue);
2654
2655        napi_complete(napi);
2656
2657        spin_lock_irq(&gfargrp->grplock);
2658        imask = gfar_read(&regs->imask);
2659        imask |= IMASK_TX_DEFAULT;
2660        gfar_write(&regs->imask, imask);
2661        spin_unlock_irq(&gfargrp->grplock);
2662
2663        return 0;
2664}
2665
2666/* GFAR error interrupt handler */
2667static irqreturn_t gfar_error(int irq, void *grp_id)
2668{
2669        struct gfar_priv_grp *gfargrp = grp_id;
2670        struct gfar __iomem *regs = gfargrp->regs;
2671        struct gfar_private *priv= gfargrp->priv;
2672        struct net_device *dev = priv->ndev;
2673
2674        /* Save ievent for future reference */
2675        u32 events = gfar_read(&regs->ievent);
2676
2677        /* Clear IEVENT */
2678        gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
2679
2680        /* Magic Packet is not an error. */
2681        if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2682            (events & IEVENT_MAG))
2683                events &= ~IEVENT_MAG;
2684
2685        /* Hmm... */
2686        if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2687                netdev_dbg(dev,
2688                           "error interrupt (ievent=0x%08x imask=0x%08x)\n",
2689                           events, gfar_read(&regs->imask));
2690
2691        /* Update the error counters */
2692        if (events & IEVENT_TXE) {
2693                dev->stats.tx_errors++;
2694
2695                if (events & IEVENT_LC)
2696                        dev->stats.tx_window_errors++;
2697                if (events & IEVENT_CRL)
2698                        dev->stats.tx_aborted_errors++;
2699                if (events & IEVENT_XFUN) {
2700                        netif_dbg(priv, tx_err, dev,
2701                                  "TX FIFO underrun, packet dropped\n");
2702                        dev->stats.tx_dropped++;
2703                        atomic64_inc(&priv->extra_stats.tx_underrun);
2704
2705                        schedule_work(&priv->reset_task);
2706                }
2707                netif_dbg(priv, tx_err, dev, "Transmit Error\n");
2708        }
2709        if (events & IEVENT_MSRO) {
2710                struct rmon_mib __iomem *rmon = &regs->rmon;
2711                u32 car;
2712
2713                spin_lock(&priv->rmon_overflow.lock);
2714                car = gfar_read(&rmon->car1) & CAR1_C1RDR;
2715                if (car) {
2716                        priv->rmon_overflow.rdrp++;
2717                        gfar_write(&rmon->car1, car);
2718                }
2719                spin_unlock(&priv->rmon_overflow.lock);
2720        }
2721        if (events & IEVENT_BSY) {
2722                dev->stats.rx_over_errors++;
2723                atomic64_inc(&priv->extra_stats.rx_bsy);
2724
2725                netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
2726                          gfar_read(&regs->rstat));
2727        }
2728        if (events & IEVENT_BABR) {
2729                dev->stats.rx_errors++;
2730                atomic64_inc(&priv->extra_stats.rx_babr);
2731
2732                netif_dbg(priv, rx_err, dev, "babbling RX error\n");
2733        }
2734        if (events & IEVENT_EBERR) {
2735                atomic64_inc(&priv->extra_stats.eberr);
2736                netif_dbg(priv, rx_err, dev, "bus error\n");
2737        }
2738        if (events & IEVENT_RXC)
2739                netif_dbg(priv, rx_status, dev, "control frame\n");
2740
2741        if (events & IEVENT_BABT) {
2742                atomic64_inc(&priv->extra_stats.tx_babt);
2743                netif_dbg(priv, tx_err, dev, "babbling TX error\n");
2744        }
2745        return IRQ_HANDLED;
2746}
2747
2748/* The interrupt handler for devices with one interrupt */
2749static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2750{
2751        struct gfar_priv_grp *gfargrp = grp_id;
2752
2753        /* Save ievent for future reference */
2754        u32 events = gfar_read(&gfargrp->regs->ievent);
2755
2756        /* Check for reception */
2757        if (events & IEVENT_RX_MASK)
2758                gfar_receive(irq, grp_id);
2759
2760        /* Check for transmit completion */
2761        if (events & IEVENT_TX_MASK)
2762                gfar_transmit(irq, grp_id);
2763
2764        /* Check for errors */
2765        if (events & IEVENT_ERR_MASK)
2766                gfar_error(irq, grp_id);
2767
2768        return IRQ_HANDLED;
2769}
2770
2771#ifdef CONFIG_NET_POLL_CONTROLLER
2772/* Polling 'interrupt' - used by things like netconsole to send skbs
2773 * without having to re-enable interrupts. It's not called while
2774 * the interrupt routine is executing.
2775 */
2776static void gfar_netpoll(struct net_device *dev)
2777{
2778        struct gfar_private *priv = netdev_priv(dev);
2779        int i;
2780
2781        /* If the device has multiple interrupts, run tx/rx */
2782        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2783                for (i = 0; i < priv->num_grps; i++) {
2784                        struct gfar_priv_grp *grp = &priv->gfargrp[i];
2785
2786                        disable_irq(gfar_irq(grp, TX)->irq);
2787                        disable_irq(gfar_irq(grp, RX)->irq);
2788                        disable_irq(gfar_irq(grp, ER)->irq);
2789                        gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2790                        enable_irq(gfar_irq(grp, ER)->irq);
2791                        enable_irq(gfar_irq(grp, RX)->irq);
2792                        enable_irq(gfar_irq(grp, TX)->irq);
2793                }
2794        } else {
2795                for (i = 0; i < priv->num_grps; i++) {
2796                        struct gfar_priv_grp *grp = &priv->gfargrp[i];
2797
2798                        disable_irq(gfar_irq(grp, TX)->irq);
2799                        gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2800                        enable_irq(gfar_irq(grp, TX)->irq);
2801                }
2802        }
2803}
2804#endif
2805
2806static void free_grp_irqs(struct gfar_priv_grp *grp)
2807{
2808        free_irq(gfar_irq(grp, TX)->irq, grp);
2809        free_irq(gfar_irq(grp, RX)->irq, grp);
2810        free_irq(gfar_irq(grp, ER)->irq, grp);
2811}
2812
2813static int register_grp_irqs(struct gfar_priv_grp *grp)
2814{
2815        struct gfar_private *priv = grp->priv;
2816        struct net_device *dev = priv->ndev;
2817        int err;
2818
2819        /* If the device has multiple interrupts, register for
2820         * them.  Otherwise, only register for the one
2821         */
2822        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2823                /* Install our interrupt handlers for Error,
2824                 * Transmit, and Receive
2825                 */
2826                err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2827                                  gfar_irq(grp, ER)->name, grp);
2828                if (err < 0) {
2829                        netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2830                                  gfar_irq(grp, ER)->irq);
2831
2832                        goto err_irq_fail;
2833                }
2834                enable_irq_wake(gfar_irq(grp, ER)->irq);
2835
2836                err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2837                                  gfar_irq(grp, TX)->name, grp);
2838                if (err < 0) {
2839                        netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2840                                  gfar_irq(grp, TX)->irq);
2841                        goto tx_irq_fail;
2842                }
2843                err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2844                                  gfar_irq(grp, RX)->name, grp);
2845                if (err < 0) {
2846                        netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2847                                  gfar_irq(grp, RX)->irq);
2848                        goto rx_irq_fail;
2849                }
2850                enable_irq_wake(gfar_irq(grp, RX)->irq);
2851
2852        } else {
2853                err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2854                                  gfar_irq(grp, TX)->name, grp);
2855                if (err < 0) {
2856                        netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2857                                  gfar_irq(grp, TX)->irq);
2858                        goto err_irq_fail;
2859                }
2860                enable_irq_wake(gfar_irq(grp, TX)->irq);
2861        }
2862
2863        return 0;
2864
2865rx_irq_fail:
2866        free_irq(gfar_irq(grp, TX)->irq, grp);
2867tx_irq_fail:
2868        free_irq(gfar_irq(grp, ER)->irq, grp);
2869err_irq_fail:
2870        return err;
2871
2872}
2873
2874static void gfar_free_irq(struct gfar_private *priv)
2875{
2876        int i;
2877
2878        /* Free the IRQs */
2879        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2880                for (i = 0; i < priv->num_grps; i++)
2881                        free_grp_irqs(&priv->gfargrp[i]);
2882        } else {
2883                for (i = 0; i < priv->num_grps; i++)
2884                        free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2885                                 &priv->gfargrp[i]);
2886        }
2887}
2888
2889static int gfar_request_irq(struct gfar_private *priv)
2890{
2891        int err, i, j;
2892
2893        for (i = 0; i < priv->num_grps; i++) {
2894                err = register_grp_irqs(&priv->gfargrp[i]);
2895                if (err) {
2896                        for (j = 0; j < i; j++)
2897                                free_grp_irqs(&priv->gfargrp[j]);
2898                        return err;
2899                }
2900        }
2901
2902        return 0;
2903}
2904
2905/* Called when something needs to use the ethernet device
2906 * Returns 0 for success.
2907 */
2908static int gfar_enet_open(struct net_device *dev)
2909{
2910        struct gfar_private *priv = netdev_priv(dev);
2911        int err;
2912
2913        err = init_phy(dev);
2914        if (err)
2915                return err;
2916
2917        err = gfar_request_irq(priv);
2918        if (err)
2919                return err;
2920
2921        err = startup_gfar(dev);
2922        if (err)
2923                return err;
2924
2925        return err;
2926}
2927
2928/* Stops the kernel queue, and halts the controller */
2929static int gfar_close(struct net_device *dev)
2930{
2931        struct gfar_private *priv = netdev_priv(dev);
2932
2933        cancel_work_sync(&priv->reset_task);
2934        stop_gfar(dev);
2935
2936        /* Disconnect from the PHY */
2937        phy_disconnect(dev->phydev);
2938
2939        gfar_free_irq(priv);
2940
2941        return 0;
2942}
2943
2944/* Clears each of the exact match registers to zero, so they
2945 * don't interfere with normal reception
2946 */
2947static void gfar_clear_exact_match(struct net_device *dev)
2948{
2949        int idx;
2950        static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
2951
2952        for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
2953                gfar_set_mac_for_addr(dev, idx, zero_arr);
2954}
2955
2956/* Update the hash table based on the current list of multicast
2957 * addresses we subscribe to.  Also, change the promiscuity of
2958 * the device based on the flags (this function is called
2959 * whenever dev->flags is changed
2960 */
2961static void gfar_set_multi(struct net_device *dev)
2962{
2963        struct netdev_hw_addr *ha;
2964        struct gfar_private *priv = netdev_priv(dev);
2965        struct gfar __iomem *regs = priv->gfargrp[0].regs;
2966        u32 tempval;
2967
2968        if (dev->flags & IFF_PROMISC) {
2969                /* Set RCTRL to PROM */
2970                tempval = gfar_read(&regs->rctrl);
2971                tempval |= RCTRL_PROM;
2972                gfar_write(&regs->rctrl, tempval);
2973        } else {
2974                /* Set RCTRL to not PROM */
2975                tempval = gfar_read(&regs->rctrl);
2976                tempval &= ~(RCTRL_PROM);
2977                gfar_write(&regs->rctrl, tempval);
2978        }
2979
2980        if (dev->flags & IFF_ALLMULTI) {
2981                /* Set the hash to rx all multicast frames */
2982                gfar_write(&regs->igaddr0, 0xffffffff);
2983                gfar_write(&regs->igaddr1, 0xffffffff);
2984                gfar_write(&regs->igaddr2, 0xffffffff);
2985                gfar_write(&regs->igaddr3, 0xffffffff);
2986                gfar_write(&regs->igaddr4, 0xffffffff);
2987                gfar_write(&regs->igaddr5, 0xffffffff);
2988                gfar_write(&regs->igaddr6, 0xffffffff);
2989                gfar_write(&regs->igaddr7, 0xffffffff);
2990                gfar_write(&regs->gaddr0, 0xffffffff);
2991                gfar_write(&regs->gaddr1, 0xffffffff);
2992                gfar_write(&regs->gaddr2, 0xffffffff);
2993                gfar_write(&regs->gaddr3, 0xffffffff);
2994                gfar_write(&regs->gaddr4, 0xffffffff);
2995                gfar_write(&regs->gaddr5, 0xffffffff);
2996                gfar_write(&regs->gaddr6, 0xffffffff);
2997                gfar_write(&regs->gaddr7, 0xffffffff);
2998        } else {
2999                int em_num;
3000                int idx;
3001
3002                /* zero out the hash */
3003                gfar_write(&regs->igaddr0, 0x0);
3004                gfar_write(&regs->igaddr1, 0x0);
3005                gfar_write(&regs->igaddr2, 0x0);
3006                gfar_write(&regs->igaddr3, 0x0);
3007                gfar_write(&regs->igaddr4, 0x0);
3008                gfar_write(&regs->igaddr5, 0x0);
3009                gfar_write(&regs->igaddr6, 0x0);
3010                gfar_write(&regs->igaddr7, 0x0);
3011                gfar_write(&regs->gaddr0, 0x0);
3012                gfar_write(&regs->gaddr1, 0x0);
3013                gfar_write(&regs->gaddr2, 0x0);
3014                gfar_write(&regs->gaddr3, 0x0);
3015                gfar_write(&regs->gaddr4, 0x0);
3016                gfar_write(&regs->gaddr5, 0x0);
3017                gfar_write(&regs->gaddr6, 0x0);
3018                gfar_write(&regs->gaddr7, 0x0);
3019
3020                /* If we have extended hash tables, we need to
3021                 * clear the exact match registers to prepare for
3022                 * setting them
3023                 */
3024                if (priv->extended_hash) {
3025                        em_num = GFAR_EM_NUM + 1;
3026                        gfar_clear_exact_match(dev);
3027                        idx = 1;
3028                } else {
3029                        idx = 0;
3030                        em_num = 0;
3031                }
3032
3033                if (netdev_mc_empty(dev))
3034                        return;
3035
3036                /* Parse the list, and set the appropriate bits */
3037                netdev_for_each_mc_addr(ha, dev) {
3038                        if (idx < em_num) {
3039                                gfar_set_mac_for_addr(dev, idx, ha->addr);
3040                                idx++;
3041                        } else
3042                                gfar_set_hash_for_addr(dev, ha->addr);
3043                }
3044        }
3045}
3046
3047void gfar_mac_reset(struct gfar_private *priv)
3048{
3049        struct gfar __iomem *regs = priv->gfargrp[0].regs;
3050        u32 tempval;
3051
3052        /* Reset MAC layer */
3053        gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
3054
3055        /* We need to delay at least 3 TX clocks */
3056        udelay(3);
3057
3058        /* the soft reset bit is not self-resetting, so we need to
3059         * clear it before resuming normal operation
3060         */
3061        gfar_write(&regs->maccfg1, 0);
3062
3063        udelay(3);
3064
3065        gfar_rx_offload_en(priv);
3066
3067        /* Initialize the max receive frame/buffer lengths */
3068        gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
3069        gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
3070
3071        /* Initialize the Minimum Frame Length Register */
3072        gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
3073
3074        /* Initialize MACCFG2. */
3075        tempval = MACCFG2_INIT_SETTINGS;
3076
3077        /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
3078         * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
3079         * and by checking RxBD[LG] and discarding larger than MAXFRM.
3080         */
3081        if (gfar_has_errata(priv, GFAR_ERRATA_74))
3082                tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
3083
3084        gfar_write(&regs->maccfg2, tempval);
3085
3086        /* Clear mac addr hash registers */
3087        gfar_write(&regs->igaddr0, 0);
3088        gfar_write(&regs->igaddr1, 0);
3089        gfar_write(&regs->igaddr2, 0);
3090        gfar_write(&regs->igaddr3, 0);
3091        gfar_write(&regs->igaddr4, 0);
3092        gfar_write(&regs->igaddr5, 0);
3093        gfar_write(&regs->igaddr6, 0);
3094        gfar_write(&regs->igaddr7, 0);
3095
3096        gfar_write(&regs->gaddr0, 0);
3097        gfar_write(&regs->gaddr1, 0);
3098        gfar_write(&regs->gaddr2, 0);
3099        gfar_write(&regs->gaddr3, 0);
3100        gfar_write(&regs->gaddr4, 0);
3101        gfar_write(&regs->gaddr5, 0);
3102        gfar_write(&regs->gaddr6, 0);
3103        gfar_write(&regs->gaddr7, 0);
3104
3105        if (priv->extended_hash)
3106                gfar_clear_exact_match(priv->ndev);
3107
3108        gfar_mac_rx_config(priv);
3109
3110        gfar_mac_tx_config(priv);
3111
3112        gfar_set_mac_address(priv->ndev);
3113
3114        gfar_set_multi(priv->ndev);
3115
3116        /* clear ievent and imask before configuring coalescing */
3117        gfar_ints_disable(priv);
3118
3119        /* Configure the coalescing support */
3120        gfar_configure_coalescing_all(priv);
3121}
3122
3123static void gfar_hw_init(struct gfar_private *priv)
3124{
3125        struct gfar __iomem *regs = priv->gfargrp[0].regs;
3126        u32 attrs;
3127
3128        /* Stop the DMA engine now, in case it was running before
3129         * (The firmware could have used it, and left it running).
3130         */
3131        gfar_halt(priv);
3132
3133        gfar_mac_reset(priv);
3134
3135        /* Zero out the rmon mib registers if it has them */
3136        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3137                memset_io(&regs->rmon, 0, offsetof(struct rmon_mib, car1));
3138
3139                /* Mask off the CAM interrupts */
3140                gfar_write(&regs->rmon.cam1, 0xffffffff);
3141                gfar_write(&regs->rmon.cam2, 0xffffffff);
3142                /* Clear the CAR registers (w1c style) */
3143                gfar_write(&regs->rmon.car1, 0xffffffff);
3144                gfar_write(&regs->rmon.car2, 0xffffffff);
3145        }
3146
3147        /* Initialize ECNTRL */
3148        gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
3149
3150        /* Set the extraction length and index */
3151        attrs = ATTRELI_EL(priv->rx_stash_size) |
3152                ATTRELI_EI(priv->rx_stash_index);
3153
3154        gfar_write(&regs->attreli, attrs);
3155
3156        /* Start with defaults, and add stashing
3157         * depending on driver parameters
3158         */
3159        attrs = ATTR_INIT_SETTINGS;
3160
3161        if (priv->bd_stash_en)
3162                attrs |= ATTR_BDSTASH;
3163
3164        if (priv->rx_stash_size != 0)
3165                attrs |= ATTR_BUFSTASH;
3166
3167        gfar_write(&regs->attr, attrs);
3168
3169        /* FIFO configs */
3170        gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
3171        gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
3172        gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
3173
3174        /* Program the interrupt steering regs, only for MG devices */
3175        if (priv->num_grps > 1)
3176                gfar_write_isrg(priv);
3177}
3178
3179static const struct net_device_ops gfar_netdev_ops = {
3180        .ndo_open = gfar_enet_open,
3181        .ndo_start_xmit = gfar_start_xmit,
3182        .ndo_stop = gfar_close,
3183        .ndo_change_mtu = gfar_change_mtu,
3184        .ndo_set_features = gfar_set_features,
3185        .ndo_set_rx_mode = gfar_set_multi,
3186        .ndo_tx_timeout = gfar_timeout,
3187        .ndo_do_ioctl = gfar_ioctl,
3188        .ndo_get_stats64 = gfar_get_stats64,
3189        .ndo_change_carrier = fixed_phy_change_carrier,
3190        .ndo_set_mac_address = gfar_set_mac_addr,
3191        .ndo_validate_addr = eth_validate_addr,
3192#ifdef CONFIG_NET_POLL_CONTROLLER
3193        .ndo_poll_controller = gfar_netpoll,
3194#endif
3195};
3196
3197/* Set up the ethernet device structure, private data,
3198 * and anything else we need before we start
3199 */
3200static int gfar_probe(struct platform_device *ofdev)
3201{
3202        struct device_node *np = ofdev->dev.of_node;
3203        struct net_device *dev = NULL;
3204        struct gfar_private *priv = NULL;
3205        int err = 0, i;
3206
3207        err = gfar_of_init(ofdev, &dev);
3208
3209        if (err)
3210                return err;
3211
3212        priv = netdev_priv(dev);
3213        priv->ndev = dev;
3214        priv->ofdev = ofdev;
3215        priv->dev = &ofdev->dev;
3216        SET_NETDEV_DEV(dev, &ofdev->dev);
3217
3218        INIT_WORK(&priv->reset_task, gfar_reset_task);
3219
3220        platform_set_drvdata(ofdev, priv);
3221
3222        gfar_detect_errata(priv);
3223
3224        /* Set the dev->base_addr to the gfar reg region */
3225        dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
3226
3227        /* Fill in the dev structure */
3228        dev->watchdog_timeo = TX_TIMEOUT;
3229        /* MTU range: 50 - 9586 */
3230        dev->mtu = 1500;
3231        dev->min_mtu = 50;
3232        dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
3233        dev->netdev_ops = &gfar_netdev_ops;
3234        dev->ethtool_ops = &gfar_ethtool_ops;
3235
3236        /* Register for napi ...We are registering NAPI for each grp */
3237        for (i = 0; i < priv->num_grps; i++) {
3238                netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3239                               gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
3240                netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
3241                                  gfar_poll_tx_sq, 2);
3242        }
3243
3244        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
3245                dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3246                                   NETIF_F_RXCSUM;
3247                dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
3248                                 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
3249        }
3250
3251        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
3252                dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
3253                                    NETIF_F_HW_VLAN_CTAG_RX;
3254                dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3255        }
3256
3257        dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3258
3259        gfar_init_addr_hash_table(priv);
3260
3261        /* Insert receive time stamps into padding alignment bytes, and
3262         * plus 2 bytes padding to ensure the cpu alignment.
3263         */
3264        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3265                priv->padding = 8 + DEFAULT_PADDING;
3266
3267        if (dev->features & NETIF_F_IP_CSUM ||
3268            priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3269                dev->needed_headroom = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
3270
3271        /* Initializing some of the rx/tx queue level parameters */
3272        for (i = 0; i < priv->num_tx_queues; i++) {
3273                priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
3274                priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
3275                priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
3276                priv->tx_queue[i]->txic = DEFAULT_TXIC;
3277        }
3278
3279        for (i = 0; i < priv->num_rx_queues; i++) {
3280                priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
3281                priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
3282                priv->rx_queue[i]->rxic = DEFAULT_RXIC;
3283        }
3284
3285        /* Always enable rx filer if available */
3286        priv->rx_filer_enable =
3287            (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
3288        /* Enable most messages by default */
3289        priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
3290        /* use pritority h/w tx queue scheduling for single queue devices */
3291        if (priv->num_tx_queues == 1)
3292                priv->prio_sched_en = 1;
3293
3294        set_bit(GFAR_DOWN, &priv->state);
3295
3296        gfar_hw_init(priv);
3297
3298        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3299                struct rmon_mib __iomem *rmon = &priv->gfargrp[0].regs->rmon;
3300
3301                spin_lock_init(&priv->rmon_overflow.lock);
3302                priv->rmon_overflow.imask = IMASK_MSRO;
3303                gfar_write(&rmon->cam1, gfar_read(&rmon->cam1) & ~CAM1_M1RDR);
3304        }
3305
3306        /* Carrier starts down, phylib will bring it up */
3307        netif_carrier_off(dev);
3308
3309        err = register_netdev(dev);
3310
3311        if (err) {
3312                pr_err("%s: Cannot register net device, aborting\n", dev->name);
3313                goto register_fail;
3314        }
3315
3316        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
3317                priv->wol_supported |= GFAR_WOL_MAGIC;
3318
3319        if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
3320            priv->rx_filer_enable)
3321                priv->wol_supported |= GFAR_WOL_FILER_UCAST;
3322
3323        device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
3324
3325        /* fill out IRQ number and name fields */
3326        for (i = 0; i < priv->num_grps; i++) {
3327                struct gfar_priv_grp *grp = &priv->gfargrp[i];
3328                if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3329                        sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
3330                                dev->name, "_g", '0' + i, "_tx");
3331                        sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
3332                                dev->name, "_g", '0' + i, "_rx");
3333                        sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
3334                                dev->name, "_g", '0' + i, "_er");
3335                } else
3336                        strcpy(gfar_irq(grp, TX)->name, dev->name);
3337        }
3338
3339        /* Initialize the filer table */
3340        gfar_init_filer_table(priv);
3341
3342        /* Print out the device info */
3343        netdev_info(dev, "mac: %pM\n", dev->dev_addr);
3344
3345        /* Even more device info helps when determining which kernel
3346         * provided which set of benchmarks.
3347         */
3348        netdev_info(dev, "Running with NAPI enabled\n");
3349        for (i = 0; i < priv->num_rx_queues; i++)
3350                netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
3351                            i, priv->rx_queue[i]->rx_ring_size);
3352        for (i = 0; i < priv->num_tx_queues; i++)
3353                netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
3354                            i, priv->tx_queue[i]->tx_ring_size);
3355
3356        return 0;
3357
3358register_fail:
3359        if (of_phy_is_fixed_link(np))
3360                of_phy_deregister_fixed_link(np);
3361        unmap_group_regs(priv);
3362        gfar_free_rx_queues(priv);
3363        gfar_free_tx_queues(priv);
3364        of_node_put(priv->phy_node);
3365        of_node_put(priv->tbi_node);
3366        free_gfar_dev(priv);
3367        return err;
3368}
3369
3370static int gfar_remove(struct platform_device *ofdev)
3371{
3372        struct gfar_private *priv = platform_get_drvdata(ofdev);
3373        struct device_node *np = ofdev->dev.of_node;
3374
3375        of_node_put(priv->phy_node);
3376        of_node_put(priv->tbi_node);
3377
3378        unregister_netdev(priv->ndev);
3379
3380        if (of_phy_is_fixed_link(np))
3381                of_phy_deregister_fixed_link(np);
3382
3383        unmap_group_regs(priv);
3384        gfar_free_rx_queues(priv);
3385        gfar_free_tx_queues(priv);
3386        free_gfar_dev(priv);
3387
3388        return 0;
3389}
3390
3391#ifdef CONFIG_PM
3392
3393static void __gfar_filer_disable(struct gfar_private *priv)
3394{
3395        struct gfar __iomem *regs = priv->gfargrp[0].regs;
3396        u32 temp;
3397
3398        temp = gfar_read(&regs->rctrl);
3399        temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
3400        gfar_write(&regs->rctrl, temp);
3401}
3402
3403static void __gfar_filer_enable(struct gfar_private *priv)
3404{
3405        struct gfar __iomem *regs = priv->gfargrp[0].regs;
3406        u32 temp;
3407
3408        temp = gfar_read(&regs->rctrl);
3409        temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
3410        gfar_write(&regs->rctrl, temp);
3411}
3412
3413/* Filer rules implementing wol capabilities */
3414static void gfar_filer_config_wol(struct gfar_private *priv)
3415{
3416        unsigned int i;
3417        u32 rqfcr;
3418
3419        __gfar_filer_disable(priv);
3420
3421        /* clear the filer table, reject any packet by default */
3422        rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
3423        for (i = 0; i <= MAX_FILER_IDX; i++)
3424                gfar_write_filer(priv, i, rqfcr, 0);
3425
3426        i = 0;
3427        if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
3428                /* unicast packet, accept it */
3429                struct net_device *ndev = priv->ndev;
3430                /* get the default rx queue index */
3431                u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
3432                u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
3433                                    (ndev->dev_addr[1] << 8) |
3434                                     ndev->dev_addr[2];
3435
3436                rqfcr = (qindex << 10) | RQFCR_AND |
3437                        RQFCR_CMP_EXACT | RQFCR_PID_DAH;
3438
3439                gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3440
3441                dest_mac_addr = (ndev->dev_addr[3] << 16) |
3442                                (ndev->dev_addr[4] << 8) |
3443                                 ndev->dev_addr[5];
3444                rqfcr = (qindex << 10) | RQFCR_GPI |
3445                        RQFCR_CMP_EXACT | RQFCR_PID_DAL;
3446                gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3447        }
3448
3449        __gfar_filer_enable(priv);
3450}
3451
3452static void gfar_filer_restore_table(struct gfar_private *priv)
3453{
3454        u32 rqfcr, rqfpr;
3455        unsigned int i;
3456
3457        __gfar_filer_disable(priv);
3458
3459        for (i = 0; i <= MAX_FILER_IDX; i++) {
3460                rqfcr = priv->ftp_rqfcr[i];
3461                rqfpr = priv->ftp_rqfpr[i];
3462                gfar_write_filer(priv, i, rqfcr, rqfpr);
3463        }
3464
3465        __gfar_filer_enable(priv);
3466}
3467
3468/* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
3469static void gfar_start_wol_filer(struct gfar_private *priv)
3470{
3471        struct gfar __iomem *regs = priv->gfargrp[0].regs;
3472        u32 tempval;
3473        int i = 0;
3474
3475        /* Enable Rx hw queues */
3476        gfar_write(&regs->rqueue, priv->rqueue);
3477
3478        /* Initialize DMACTRL to have WWR and WOP */
3479        tempval = gfar_read(&regs->dmactrl);
3480        tempval |= DMACTRL_INIT_SETTINGS;
3481        gfar_write(&regs->dmactrl, tempval);
3482
3483        /* Make sure we aren't stopped */
3484        tempval = gfar_read(&regs->dmactrl);
3485        tempval &= ~DMACTRL_GRS;
3486        gfar_write(&regs->dmactrl, tempval);
3487
3488        for (i = 0; i < priv->num_grps; i++) {
3489                regs = priv->gfargrp[i].regs;
3490                /* Clear RHLT, so that the DMA starts polling now */
3491                gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
3492                /* enable the Filer General Purpose Interrupt */
3493                gfar_write(&regs->imask, IMASK_FGPI);
3494        }
3495
3496        /* Enable Rx DMA */
3497        tempval = gfar_read(&regs->maccfg1);
3498        tempval |= MACCFG1_RX_EN;
3499        gfar_write(&regs->maccfg1, tempval);
3500}
3501
3502static int gfar_suspend(struct device *dev)
3503{
3504        struct gfar_private *priv = dev_get_drvdata(dev);
3505        struct net_device *ndev = priv->ndev;
3506        struct gfar __iomem *regs = priv->gfargrp[0].regs;
3507        u32 tempval;
3508        u16 wol = priv->wol_opts;
3509
3510        if (!netif_running(ndev))
3511                return 0;
3512
3513        disable_napi(priv);
3514        netif_tx_lock(ndev);
3515        netif_device_detach(ndev);
3516        netif_tx_unlock(ndev);
3517
3518        gfar_halt(priv);
3519
3520        if (wol & GFAR_WOL_MAGIC) {
3521                /* Enable interrupt on Magic Packet */
3522                gfar_write(&regs->imask, IMASK_MAG);
3523
3524                /* Enable Magic Packet mode */
3525                tempval = gfar_read(&regs->maccfg2);
3526                tempval |= MACCFG2_MPEN;
3527                gfar_write(&regs->maccfg2, tempval);
3528
3529                /* re-enable the Rx block */
3530                tempval = gfar_read(&regs->maccfg1);
3531                tempval |= MACCFG1_RX_EN;
3532                gfar_write(&regs->maccfg1, tempval);
3533
3534        } else if (wol & GFAR_WOL_FILER_UCAST) {
3535                gfar_filer_config_wol(priv);
3536                gfar_start_wol_filer(priv);
3537
3538        } else {
3539                phy_stop(ndev->phydev);
3540        }
3541
3542        return 0;
3543}
3544
3545static int gfar_resume(struct device *dev)
3546{
3547        struct gfar_private *priv = dev_get_drvdata(dev);
3548        struct net_device *ndev = priv->ndev;
3549        struct gfar __iomem *regs = priv->gfargrp[0].regs;
3550        u32 tempval;
3551        u16 wol = priv->wol_opts;
3552
3553        if (!netif_running(ndev))
3554                return 0;
3555
3556        if (wol & GFAR_WOL_MAGIC) {
3557                /* Disable Magic Packet mode */
3558                tempval = gfar_read(&regs->maccfg2);
3559                tempval &= ~MACCFG2_MPEN;
3560                gfar_write(&regs->maccfg2, tempval);
3561
3562        } else if (wol & GFAR_WOL_FILER_UCAST) {
3563                /* need to stop rx only, tx is already down */
3564                gfar_halt(priv);
3565                gfar_filer_restore_table(priv);
3566
3567        } else {
3568                phy_start(ndev->phydev);
3569        }
3570
3571        gfar_start(priv);
3572
3573        netif_device_attach(ndev);
3574        enable_napi(priv);
3575
3576        return 0;
3577}
3578
3579static int gfar_restore(struct device *dev)
3580{
3581        struct gfar_private *priv = dev_get_drvdata(dev);
3582        struct net_device *ndev = priv->ndev;
3583
3584        if (!netif_running(ndev)) {
3585                netif_device_attach(ndev);
3586
3587                return 0;
3588        }
3589
3590        gfar_init_bds(ndev);
3591
3592        gfar_mac_reset(priv);
3593
3594        gfar_init_tx_rx_base(priv);
3595
3596        gfar_start(priv);
3597
3598        priv->oldlink = 0;
3599        priv->oldspeed = 0;
3600        priv->oldduplex = -1;
3601
3602        if (ndev->phydev)
3603                phy_start(ndev->phydev);
3604
3605        netif_device_attach(ndev);
3606        enable_napi(priv);
3607
3608        return 0;
3609}
3610
3611static const struct dev_pm_ops gfar_pm_ops = {
3612        .suspend = gfar_suspend,
3613        .resume = gfar_resume,
3614        .freeze = gfar_suspend,
3615        .thaw = gfar_resume,
3616        .restore = gfar_restore,
3617};
3618
3619#define GFAR_PM_OPS (&gfar_pm_ops)
3620
3621#else
3622
3623#define GFAR_PM_OPS NULL
3624
3625#endif
3626
3627static const struct of_device_id gfar_match[] =
3628{
3629        {
3630                .type = "network",
3631                .compatible = "gianfar",
3632        },
3633        {
3634                .compatible = "fsl,etsec2",
3635        },
3636        {},
3637};
3638MODULE_DEVICE_TABLE(of, gfar_match);
3639
3640/* Structure for a device driver */
3641static struct platform_driver gfar_driver = {
3642        .driver = {
3643                .name = "fsl-gianfar",
3644                .pm = GFAR_PM_OPS,
3645                .of_match_table = gfar_match,
3646        },
3647        .probe = gfar_probe,
3648        .remove = gfar_remove,
3649};
3650
3651module_platform_driver(gfar_driver);
3652