linux/drivers/net/ethernet/marvell/skge.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
   4 * Ethernet adapters. Based on earlier sk98lin, e100 and
   5 * FreeBSD if_sk drivers.
   6 *
   7 * This driver intentionally does not support all the features
   8 * of the original driver such as link fail-over and link management because
   9 * those should be done at higher levels.
  10 *
  11 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  12 */
  13
  14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15
  16#include <linux/in.h>
  17#include <linux/kernel.h>
  18#include <linux/module.h>
  19#include <linux/moduleparam.h>
  20#include <linux/netdevice.h>
  21#include <linux/etherdevice.h>
  22#include <linux/ethtool.h>
  23#include <linux/pci.h>
  24#include <linux/if_vlan.h>
  25#include <linux/ip.h>
  26#include <linux/delay.h>
  27#include <linux/crc32.h>
  28#include <linux/dma-mapping.h>
  29#include <linux/debugfs.h>
  30#include <linux/sched.h>
  31#include <linux/seq_file.h>
  32#include <linux/mii.h>
  33#include <linux/slab.h>
  34#include <linux/dmi.h>
  35#include <linux/prefetch.h>
  36#include <asm/irq.h>
  37
  38#include "skge.h"
  39
  40#define DRV_NAME                "skge"
  41#define DRV_VERSION             "1.14"
  42
  43#define DEFAULT_TX_RING_SIZE    128
  44#define DEFAULT_RX_RING_SIZE    512
  45#define MAX_TX_RING_SIZE        1024
  46#define TX_LOW_WATER            (MAX_SKB_FRAGS + 1)
  47#define MAX_RX_RING_SIZE        4096
  48#define RX_COPY_THRESHOLD       128
  49#define RX_BUF_SIZE             1536
  50#define PHY_RETRIES             1000
  51#define ETH_JUMBO_MTU           9000
  52#define TX_WATCHDOG             (5 * HZ)
  53#define NAPI_WEIGHT             64
  54#define BLINK_MS                250
  55#define LINK_HZ                 HZ
  56
  57#define SKGE_EEPROM_MAGIC       0x9933aabb
  58
  59
  60MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  61MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
  62MODULE_LICENSE("GPL");
  63MODULE_VERSION(DRV_VERSION);
  64
  65static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
  66                                NETIF_MSG_LINK | NETIF_MSG_IFUP |
  67                                NETIF_MSG_IFDOWN);
  68
  69static int debug = -1;  /* defaults above */
  70module_param(debug, int, 0);
  71MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  72
  73static const struct pci_device_id skge_id_table[] = {
  74        { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) },       /* 3Com 3C940 */
  75        { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) },       /* 3Com 3C940B */
  76#ifdef CONFIG_SKGE_GENESIS
  77        { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */
  78#endif
  79        { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */
  80        { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) },      /* D-Link DGE-530T (rev.B) */
  81        { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) },      /* D-Link DGE-530T */
  82        { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) },      /* D-Link DGE-530T Rev C1 */
  83        { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },    /* Marvell Yukon 88E8001/8003/8010 */
  84        { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) },    /* Belkin */
  85        { PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) },       /* CNet PowerG-2000 */
  86        { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) },    /* Linksys EG1064 v2 */
  87        { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */
  88        { 0 }
  89};
  90MODULE_DEVICE_TABLE(pci, skge_id_table);
  91
  92static int skge_up(struct net_device *dev);
  93static int skge_down(struct net_device *dev);
  94static void skge_phy_reset(struct skge_port *skge);
  95static void skge_tx_clean(struct net_device *dev);
  96static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  97static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  98static void genesis_get_stats(struct skge_port *skge, u64 *data);
  99static void yukon_get_stats(struct skge_port *skge, u64 *data);
 100static void yukon_init(struct skge_hw *hw, int port);
 101static void genesis_mac_init(struct skge_hw *hw, int port);
 102static void genesis_link_up(struct skge_port *skge);
 103static void skge_set_multicast(struct net_device *dev);
 104static irqreturn_t skge_intr(int irq, void *dev_id);
 105
 106/* Avoid conditionals by using array */
 107static const int txqaddr[] = { Q_XA1, Q_XA2 };
 108static const int rxqaddr[] = { Q_R1, Q_R2 };
 109static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
 110static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
 111static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
 112static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
 113
 114static inline bool is_genesis(const struct skge_hw *hw)
 115{
 116#ifdef CONFIG_SKGE_GENESIS
 117        return hw->chip_id == CHIP_ID_GENESIS;
 118#else
 119        return false;
 120#endif
 121}
 122
 123static int skge_get_regs_len(struct net_device *dev)
 124{
 125        return 0x4000;
 126}
 127
 128/*
 129 * Returns copy of whole control register region
 130 * Note: skip RAM address register because accessing it will
 131 *       cause bus hangs!
 132 */
 133static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
 134                          void *p)
 135{
 136        const struct skge_port *skge = netdev_priv(dev);
 137        const void __iomem *io = skge->hw->regs;
 138
 139        regs->version = 1;
 140        memset(p, 0, regs->len);
 141        memcpy_fromio(p, io, B3_RAM_ADDR);
 142
 143        if (regs->len > B3_RI_WTO_R1) {
 144                memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
 145                              regs->len - B3_RI_WTO_R1);
 146        }
 147}
 148
 149/* Wake on Lan only supported on Yukon chips with rev 1 or above */
 150static u32 wol_supported(const struct skge_hw *hw)
 151{
 152        if (is_genesis(hw))
 153                return 0;
 154
 155        if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
 156                return 0;
 157
 158        return WAKE_MAGIC | WAKE_PHY;
 159}
 160
 161static void skge_wol_init(struct skge_port *skge)
 162{
 163        struct skge_hw *hw = skge->hw;
 164        int port = skge->port;
 165        u16 ctrl;
 166
 167        skge_write16(hw, B0_CTST, CS_RST_CLR);
 168        skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
 169
 170        /* Turn on Vaux */
 171        skge_write8(hw, B0_POWER_CTRL,
 172                    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
 173
 174        /* WA code for COMA mode -- clear PHY reset */
 175        if (hw->chip_id == CHIP_ID_YUKON_LITE &&
 176            hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
 177                u32 reg = skge_read32(hw, B2_GP_IO);
 178                reg |= GP_DIR_9;
 179                reg &= ~GP_IO_9;
 180                skge_write32(hw, B2_GP_IO, reg);
 181        }
 182
 183        skge_write32(hw, SK_REG(port, GPHY_CTRL),
 184                     GPC_DIS_SLEEP |
 185                     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
 186                     GPC_ANEG_1 | GPC_RST_SET);
 187
 188        skge_write32(hw, SK_REG(port, GPHY_CTRL),
 189                     GPC_DIS_SLEEP |
 190                     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
 191                     GPC_ANEG_1 | GPC_RST_CLR);
 192
 193        skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
 194
 195        /* Force to 10/100 skge_reset will re-enable on resume   */
 196        gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
 197                     (PHY_AN_100FULL | PHY_AN_100HALF |
 198                      PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
 199        /* no 1000 HD/FD */
 200        gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
 201        gm_phy_write(hw, port, PHY_MARV_CTRL,
 202                     PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
 203                     PHY_CT_RE_CFG | PHY_CT_DUP_MD);
 204
 205
 206        /* Set GMAC to no flow control and auto update for speed/duplex */
 207        gma_write16(hw, port, GM_GP_CTRL,
 208                    GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
 209                    GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
 210
 211        /* Set WOL address */
 212        memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
 213                    skge->netdev->dev_addr, ETH_ALEN);
 214
 215        /* Turn on appropriate WOL control bits */
 216        skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
 217        ctrl = 0;
 218        if (skge->wol & WAKE_PHY)
 219                ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
 220        else
 221                ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
 222
 223        if (skge->wol & WAKE_MAGIC)
 224                ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
 225        else
 226                ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
 227
 228        ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
 229        skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
 230
 231        /* block receiver */
 232        skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
 233}
 234
 235static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
 236{
 237        struct skge_port *skge = netdev_priv(dev);
 238
 239        wol->supported = wol_supported(skge->hw);
 240        wol->wolopts = skge->wol;
 241}
 242
 243static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
 244{
 245        struct skge_port *skge = netdev_priv(dev);
 246        struct skge_hw *hw = skge->hw;
 247
 248        if ((wol->wolopts & ~wol_supported(hw)) ||
 249            !device_can_wakeup(&hw->pdev->dev))
 250                return -EOPNOTSUPP;
 251
 252        skge->wol = wol->wolopts;
 253
 254        device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
 255
 256        return 0;
 257}
 258
 259/* Determine supported/advertised modes based on hardware.
 260 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
 261 */
 262static u32 skge_supported_modes(const struct skge_hw *hw)
 263{
 264        u32 supported;
 265
 266        if (hw->copper) {
 267                supported = (SUPPORTED_10baseT_Half |
 268                             SUPPORTED_10baseT_Full |
 269                             SUPPORTED_100baseT_Half |
 270                             SUPPORTED_100baseT_Full |
 271                             SUPPORTED_1000baseT_Half |
 272                             SUPPORTED_1000baseT_Full |
 273                             SUPPORTED_Autoneg |
 274                             SUPPORTED_TP);
 275
 276                if (is_genesis(hw))
 277                        supported &= ~(SUPPORTED_10baseT_Half |
 278                                       SUPPORTED_10baseT_Full |
 279                                       SUPPORTED_100baseT_Half |
 280                                       SUPPORTED_100baseT_Full);
 281
 282                else if (hw->chip_id == CHIP_ID_YUKON)
 283                        supported &= ~SUPPORTED_1000baseT_Half;
 284        } else
 285                supported = (SUPPORTED_1000baseT_Full |
 286                             SUPPORTED_1000baseT_Half |
 287                             SUPPORTED_FIBRE |
 288                             SUPPORTED_Autoneg);
 289
 290        return supported;
 291}
 292
 293static int skge_get_link_ksettings(struct net_device *dev,
 294                                   struct ethtool_link_ksettings *cmd)
 295{
 296        struct skge_port *skge = netdev_priv(dev);
 297        struct skge_hw *hw = skge->hw;
 298        u32 supported, advertising;
 299
 300        supported = skge_supported_modes(hw);
 301
 302        if (hw->copper) {
 303                cmd->base.port = PORT_TP;
 304                cmd->base.phy_address = hw->phy_addr;
 305        } else
 306                cmd->base.port = PORT_FIBRE;
 307
 308        advertising = skge->advertising;
 309        cmd->base.autoneg = skge->autoneg;
 310        cmd->base.speed = skge->speed;
 311        cmd->base.duplex = skge->duplex;
 312
 313        ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
 314                                                supported);
 315        ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
 316                                                advertising);
 317
 318        return 0;
 319}
 320
 321static int skge_set_link_ksettings(struct net_device *dev,
 322                                   const struct ethtool_link_ksettings *cmd)
 323{
 324        struct skge_port *skge = netdev_priv(dev);
 325        const struct skge_hw *hw = skge->hw;
 326        u32 supported = skge_supported_modes(hw);
 327        int err = 0;
 328        u32 advertising;
 329
 330        ethtool_convert_link_mode_to_legacy_u32(&advertising,
 331                                                cmd->link_modes.advertising);
 332
 333        if (cmd->base.autoneg == AUTONEG_ENABLE) {
 334                advertising = supported;
 335                skge->duplex = -1;
 336                skge->speed = -1;
 337        } else {
 338                u32 setting;
 339                u32 speed = cmd->base.speed;
 340
 341                switch (speed) {
 342                case SPEED_1000:
 343                        if (cmd->base.duplex == DUPLEX_FULL)
 344                                setting = SUPPORTED_1000baseT_Full;
 345                        else if (cmd->base.duplex == DUPLEX_HALF)
 346                                setting = SUPPORTED_1000baseT_Half;
 347                        else
 348                                return -EINVAL;
 349                        break;
 350                case SPEED_100:
 351                        if (cmd->base.duplex == DUPLEX_FULL)
 352                                setting = SUPPORTED_100baseT_Full;
 353                        else if (cmd->base.duplex == DUPLEX_HALF)
 354                                setting = SUPPORTED_100baseT_Half;
 355                        else
 356                                return -EINVAL;
 357                        break;
 358
 359                case SPEED_10:
 360                        if (cmd->base.duplex == DUPLEX_FULL)
 361                                setting = SUPPORTED_10baseT_Full;
 362                        else if (cmd->base.duplex == DUPLEX_HALF)
 363                                setting = SUPPORTED_10baseT_Half;
 364                        else
 365                                return -EINVAL;
 366                        break;
 367                default:
 368                        return -EINVAL;
 369                }
 370
 371                if ((setting & supported) == 0)
 372                        return -EINVAL;
 373
 374                skge->speed = speed;
 375                skge->duplex = cmd->base.duplex;
 376        }
 377
 378        skge->autoneg = cmd->base.autoneg;
 379        skge->advertising = advertising;
 380
 381        if (netif_running(dev)) {
 382                skge_down(dev);
 383                err = skge_up(dev);
 384                if (err) {
 385                        dev_close(dev);
 386                        return err;
 387                }
 388        }
 389
 390        return 0;
 391}
 392
 393static void skge_get_drvinfo(struct net_device *dev,
 394                             struct ethtool_drvinfo *info)
 395{
 396        struct skge_port *skge = netdev_priv(dev);
 397
 398        strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
 399        strlcpy(info->version, DRV_VERSION, sizeof(info->version));
 400        strlcpy(info->bus_info, pci_name(skge->hw->pdev),
 401                sizeof(info->bus_info));
 402}
 403
 404static const struct skge_stat {
 405        char       name[ETH_GSTRING_LEN];
 406        u16        xmac_offset;
 407        u16        gma_offset;
 408} skge_stats[] = {
 409        { "tx_bytes",           XM_TXO_OK_HI,  GM_TXO_OK_HI },
 410        { "rx_bytes",           XM_RXO_OK_HI,  GM_RXO_OK_HI },
 411
 412        { "tx_broadcast",       XM_TXF_BC_OK,  GM_TXF_BC_OK },
 413        { "rx_broadcast",       XM_RXF_BC_OK,  GM_RXF_BC_OK },
 414        { "tx_multicast",       XM_TXF_MC_OK,  GM_TXF_MC_OK },
 415        { "rx_multicast",       XM_RXF_MC_OK,  GM_RXF_MC_OK },
 416        { "tx_unicast",         XM_TXF_UC_OK,  GM_TXF_UC_OK },
 417        { "rx_unicast",         XM_RXF_UC_OK,  GM_RXF_UC_OK },
 418        { "tx_mac_pause",       XM_TXF_MPAUSE, GM_TXF_MPAUSE },
 419        { "rx_mac_pause",       XM_RXF_MPAUSE, GM_RXF_MPAUSE },
 420
 421        { "collisions",         XM_TXF_SNG_COL, GM_TXF_SNG_COL },
 422        { "multi_collisions",   XM_TXF_MUL_COL, GM_TXF_MUL_COL },
 423        { "aborted",            XM_TXF_ABO_COL, GM_TXF_ABO_COL },
 424        { "late_collision",     XM_TXF_LAT_COL, GM_TXF_LAT_COL },
 425        { "fifo_underrun",      XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
 426        { "fifo_overflow",      XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
 427
 428        { "rx_toolong",         XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
 429        { "rx_jabber",          XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
 430        { "rx_runt",            XM_RXE_RUNT,    GM_RXE_FRAG },
 431        { "rx_too_long",        XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
 432        { "rx_fcs_error",       XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
 433};
 434
 435static int skge_get_sset_count(struct net_device *dev, int sset)
 436{
 437        switch (sset) {
 438        case ETH_SS_STATS:
 439                return ARRAY_SIZE(skge_stats);
 440        default:
 441                return -EOPNOTSUPP;
 442        }
 443}
 444
 445static void skge_get_ethtool_stats(struct net_device *dev,
 446                                   struct ethtool_stats *stats, u64 *data)
 447{
 448        struct skge_port *skge = netdev_priv(dev);
 449
 450        if (is_genesis(skge->hw))
 451                genesis_get_stats(skge, data);
 452        else
 453                yukon_get_stats(skge, data);
 454}
 455
 456/* Use hardware MIB variables for critical path statistics and
 457 * transmit feedback not reported at interrupt.
 458 * Other errors are accounted for in interrupt handler.
 459 */
 460static struct net_device_stats *skge_get_stats(struct net_device *dev)
 461{
 462        struct skge_port *skge = netdev_priv(dev);
 463        u64 data[ARRAY_SIZE(skge_stats)];
 464
 465        if (is_genesis(skge->hw))
 466                genesis_get_stats(skge, data);
 467        else
 468                yukon_get_stats(skge, data);
 469
 470        dev->stats.tx_bytes = data[0];
 471        dev->stats.rx_bytes = data[1];
 472        dev->stats.tx_packets = data[2] + data[4] + data[6];
 473        dev->stats.rx_packets = data[3] + data[5] + data[7];
 474        dev->stats.multicast = data[3] + data[5];
 475        dev->stats.collisions = data[10];
 476        dev->stats.tx_aborted_errors = data[12];
 477
 478        return &dev->stats;
 479}
 480
 481static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
 482{
 483        int i;
 484
 485        switch (stringset) {
 486        case ETH_SS_STATS:
 487                for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
 488                        memcpy(data + i * ETH_GSTRING_LEN,
 489                               skge_stats[i].name, ETH_GSTRING_LEN);
 490                break;
 491        }
 492}
 493
 494static void skge_get_ring_param(struct net_device *dev,
 495                                struct ethtool_ringparam *p)
 496{
 497        struct skge_port *skge = netdev_priv(dev);
 498
 499        p->rx_max_pending = MAX_RX_RING_SIZE;
 500        p->tx_max_pending = MAX_TX_RING_SIZE;
 501
 502        p->rx_pending = skge->rx_ring.count;
 503        p->tx_pending = skge->tx_ring.count;
 504}
 505
 506static int skge_set_ring_param(struct net_device *dev,
 507                               struct ethtool_ringparam *p)
 508{
 509        struct skge_port *skge = netdev_priv(dev);
 510        int err = 0;
 511
 512        if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
 513            p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
 514                return -EINVAL;
 515
 516        skge->rx_ring.count = p->rx_pending;
 517        skge->tx_ring.count = p->tx_pending;
 518
 519        if (netif_running(dev)) {
 520                skge_down(dev);
 521                err = skge_up(dev);
 522                if (err)
 523                        dev_close(dev);
 524        }
 525
 526        return err;
 527}
 528
 529static u32 skge_get_msglevel(struct net_device *netdev)
 530{
 531        struct skge_port *skge = netdev_priv(netdev);
 532        return skge->msg_enable;
 533}
 534
 535static void skge_set_msglevel(struct net_device *netdev, u32 value)
 536{
 537        struct skge_port *skge = netdev_priv(netdev);
 538        skge->msg_enable = value;
 539}
 540
 541static int skge_nway_reset(struct net_device *dev)
 542{
 543        struct skge_port *skge = netdev_priv(dev);
 544
 545        if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
 546                return -EINVAL;
 547
 548        skge_phy_reset(skge);
 549        return 0;
 550}
 551
 552static void skge_get_pauseparam(struct net_device *dev,
 553                                struct ethtool_pauseparam *ecmd)
 554{
 555        struct skge_port *skge = netdev_priv(dev);
 556
 557        ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
 558                          (skge->flow_control == FLOW_MODE_SYM_OR_REM));
 559        ecmd->tx_pause = (ecmd->rx_pause ||
 560                          (skge->flow_control == FLOW_MODE_LOC_SEND));
 561
 562        ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
 563}
 564
 565static int skge_set_pauseparam(struct net_device *dev,
 566                               struct ethtool_pauseparam *ecmd)
 567{
 568        struct skge_port *skge = netdev_priv(dev);
 569        struct ethtool_pauseparam old;
 570        int err = 0;
 571
 572        skge_get_pauseparam(dev, &old);
 573
 574        if (ecmd->autoneg != old.autoneg)
 575                skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
 576        else {
 577                if (ecmd->rx_pause && ecmd->tx_pause)
 578                        skge->flow_control = FLOW_MODE_SYMMETRIC;
 579                else if (ecmd->rx_pause && !ecmd->tx_pause)
 580                        skge->flow_control = FLOW_MODE_SYM_OR_REM;
 581                else if (!ecmd->rx_pause && ecmd->tx_pause)
 582                        skge->flow_control = FLOW_MODE_LOC_SEND;
 583                else
 584                        skge->flow_control = FLOW_MODE_NONE;
 585        }
 586
 587        if (netif_running(dev)) {
 588                skge_down(dev);
 589                err = skge_up(dev);
 590                if (err) {
 591                        dev_close(dev);
 592                        return err;
 593                }
 594        }
 595
 596        return 0;
 597}
 598
 599/* Chip internal frequency for clock calculations */
 600static inline u32 hwkhz(const struct skge_hw *hw)
 601{
 602        return is_genesis(hw) ? 53125 : 78125;
 603}
 604
 605/* Chip HZ to microseconds */
 606static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
 607{
 608        return (ticks * 1000) / hwkhz(hw);
 609}
 610
 611/* Microseconds to chip HZ */
 612static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
 613{
 614        return hwkhz(hw) * usec / 1000;
 615}
 616
 617static int skge_get_coalesce(struct net_device *dev,
 618                             struct ethtool_coalesce *ecmd)
 619{
 620        struct skge_port *skge = netdev_priv(dev);
 621        struct skge_hw *hw = skge->hw;
 622        int port = skge->port;
 623
 624        ecmd->rx_coalesce_usecs = 0;
 625        ecmd->tx_coalesce_usecs = 0;
 626
 627        if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
 628                u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
 629                u32 msk = skge_read32(hw, B2_IRQM_MSK);
 630
 631                if (msk & rxirqmask[port])
 632                        ecmd->rx_coalesce_usecs = delay;
 633                if (msk & txirqmask[port])
 634                        ecmd->tx_coalesce_usecs = delay;
 635        }
 636
 637        return 0;
 638}
 639
 640/* Note: interrupt timer is per board, but can turn on/off per port */
 641static int skge_set_coalesce(struct net_device *dev,
 642                             struct ethtool_coalesce *ecmd)
 643{
 644        struct skge_port *skge = netdev_priv(dev);
 645        struct skge_hw *hw = skge->hw;
 646        int port = skge->port;
 647        u32 msk = skge_read32(hw, B2_IRQM_MSK);
 648        u32 delay = 25;
 649
 650        if (ecmd->rx_coalesce_usecs == 0)
 651                msk &= ~rxirqmask[port];
 652        else if (ecmd->rx_coalesce_usecs < 25 ||
 653                 ecmd->rx_coalesce_usecs > 33333)
 654                return -EINVAL;
 655        else {
 656                msk |= rxirqmask[port];
 657                delay = ecmd->rx_coalesce_usecs;
 658        }
 659
 660        if (ecmd->tx_coalesce_usecs == 0)
 661                msk &= ~txirqmask[port];
 662        else if (ecmd->tx_coalesce_usecs < 25 ||
 663                 ecmd->tx_coalesce_usecs > 33333)
 664                return -EINVAL;
 665        else {
 666                msk |= txirqmask[port];
 667                delay = min(delay, ecmd->rx_coalesce_usecs);
 668        }
 669
 670        skge_write32(hw, B2_IRQM_MSK, msk);
 671        if (msk == 0)
 672                skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
 673        else {
 674                skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
 675                skge_write32(hw, B2_IRQM_CTRL, TIM_START);
 676        }
 677        return 0;
 678}
 679
 680enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
 681static void skge_led(struct skge_port *skge, enum led_mode mode)
 682{
 683        struct skge_hw *hw = skge->hw;
 684        int port = skge->port;
 685
 686        spin_lock_bh(&hw->phy_lock);
 687        if (is_genesis(hw)) {
 688                switch (mode) {
 689                case LED_MODE_OFF:
 690                        if (hw->phy_type == SK_PHY_BCOM)
 691                                xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
 692                        else {
 693                                skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
 694                                skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
 695                        }
 696                        skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
 697                        skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
 698                        skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
 699                        break;
 700
 701                case LED_MODE_ON:
 702                        skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
 703                        skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
 704
 705                        skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
 706                        skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
 707
 708                        break;
 709
 710                case LED_MODE_TST:
 711                        skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
 712                        skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
 713                        skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
 714
 715                        if (hw->phy_type == SK_PHY_BCOM)
 716                                xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
 717                        else {
 718                                skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
 719                                skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
 720                                skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
 721                        }
 722
 723                }
 724        } else {
 725                switch (mode) {
 726                case LED_MODE_OFF:
 727                        gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
 728                        gm_phy_write(hw, port, PHY_MARV_LED_OVER,
 729                                     PHY_M_LED_MO_DUP(MO_LED_OFF)  |
 730                                     PHY_M_LED_MO_10(MO_LED_OFF)   |
 731                                     PHY_M_LED_MO_100(MO_LED_OFF)  |
 732                                     PHY_M_LED_MO_1000(MO_LED_OFF) |
 733                                     PHY_M_LED_MO_RX(MO_LED_OFF));
 734                        break;
 735                case LED_MODE_ON:
 736                        gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
 737                                     PHY_M_LED_PULS_DUR(PULS_170MS) |
 738                                     PHY_M_LED_BLINK_RT(BLINK_84MS) |
 739                                     PHY_M_LEDC_TX_CTRL |
 740                                     PHY_M_LEDC_DP_CTRL);
 741
 742                        gm_phy_write(hw, port, PHY_MARV_LED_OVER,
 743                                     PHY_M_LED_MO_RX(MO_LED_OFF) |
 744                                     (skge->speed == SPEED_100 ?
 745                                      PHY_M_LED_MO_100(MO_LED_ON) : 0));
 746                        break;
 747                case LED_MODE_TST:
 748                        gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
 749                        gm_phy_write(hw, port, PHY_MARV_LED_OVER,
 750                                     PHY_M_LED_MO_DUP(MO_LED_ON)  |
 751                                     PHY_M_LED_MO_10(MO_LED_ON)   |
 752                                     PHY_M_LED_MO_100(MO_LED_ON)  |
 753                                     PHY_M_LED_MO_1000(MO_LED_ON) |
 754                                     PHY_M_LED_MO_RX(MO_LED_ON));
 755                }
 756        }
 757        spin_unlock_bh(&hw->phy_lock);
 758}
 759
 760/* blink LED's for finding board */
 761static int skge_set_phys_id(struct net_device *dev,
 762                            enum ethtool_phys_id_state state)
 763{
 764        struct skge_port *skge = netdev_priv(dev);
 765
 766        switch (state) {
 767        case ETHTOOL_ID_ACTIVE:
 768                return 2;       /* cycle on/off twice per second */
 769
 770        case ETHTOOL_ID_ON:
 771                skge_led(skge, LED_MODE_TST);
 772                break;
 773
 774        case ETHTOOL_ID_OFF:
 775                skge_led(skge, LED_MODE_OFF);
 776                break;
 777
 778        case ETHTOOL_ID_INACTIVE:
 779                /* back to regular LED state */
 780                skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
 781        }
 782
 783        return 0;
 784}
 785
 786static int skge_get_eeprom_len(struct net_device *dev)
 787{
 788        struct skge_port *skge = netdev_priv(dev);
 789        u32 reg2;
 790
 791        pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
 792        return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
 793}
 794
 795static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
 796{
 797        u32 val;
 798
 799        pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
 800
 801        do {
 802                pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
 803        } while (!(offset & PCI_VPD_ADDR_F));
 804
 805        pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
 806        return val;
 807}
 808
 809static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
 810{
 811        pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
 812        pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
 813                              offset | PCI_VPD_ADDR_F);
 814
 815        do {
 816                pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
 817        } while (offset & PCI_VPD_ADDR_F);
 818}
 819
 820static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
 821                           u8 *data)
 822{
 823        struct skge_port *skge = netdev_priv(dev);
 824        struct pci_dev *pdev = skge->hw->pdev;
 825        int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
 826        int length = eeprom->len;
 827        u16 offset = eeprom->offset;
 828
 829        if (!cap)
 830                return -EINVAL;
 831
 832        eeprom->magic = SKGE_EEPROM_MAGIC;
 833
 834        while (length > 0) {
 835                u32 val = skge_vpd_read(pdev, cap, offset);
 836                int n = min_t(int, length, sizeof(val));
 837
 838                memcpy(data, &val, n);
 839                length -= n;
 840                data += n;
 841                offset += n;
 842        }
 843        return 0;
 844}
 845
 846static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
 847                           u8 *data)
 848{
 849        struct skge_port *skge = netdev_priv(dev);
 850        struct pci_dev *pdev = skge->hw->pdev;
 851        int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
 852        int length = eeprom->len;
 853        u16 offset = eeprom->offset;
 854
 855        if (!cap)
 856                return -EINVAL;
 857
 858        if (eeprom->magic != SKGE_EEPROM_MAGIC)
 859                return -EINVAL;
 860
 861        while (length > 0) {
 862                u32 val;
 863                int n = min_t(int, length, sizeof(val));
 864
 865                if (n < sizeof(val))
 866                        val = skge_vpd_read(pdev, cap, offset);
 867                memcpy(&val, data, n);
 868
 869                skge_vpd_write(pdev, cap, offset, val);
 870
 871                length -= n;
 872                data += n;
 873                offset += n;
 874        }
 875        return 0;
 876}
 877
 878static const struct ethtool_ops skge_ethtool_ops = {
 879        .supported_coalesce_params = ETHTOOL_COALESCE_USECS,
 880        .get_drvinfo    = skge_get_drvinfo,
 881        .get_regs_len   = skge_get_regs_len,
 882        .get_regs       = skge_get_regs,
 883        .get_wol        = skge_get_wol,
 884        .set_wol        = skge_set_wol,
 885        .get_msglevel   = skge_get_msglevel,
 886        .set_msglevel   = skge_set_msglevel,
 887        .nway_reset     = skge_nway_reset,
 888        .get_link       = ethtool_op_get_link,
 889        .get_eeprom_len = skge_get_eeprom_len,
 890        .get_eeprom     = skge_get_eeprom,
 891        .set_eeprom     = skge_set_eeprom,
 892        .get_ringparam  = skge_get_ring_param,
 893        .set_ringparam  = skge_set_ring_param,
 894        .get_pauseparam = skge_get_pauseparam,
 895        .set_pauseparam = skge_set_pauseparam,
 896        .get_coalesce   = skge_get_coalesce,
 897        .set_coalesce   = skge_set_coalesce,
 898        .get_strings    = skge_get_strings,
 899        .set_phys_id    = skge_set_phys_id,
 900        .get_sset_count = skge_get_sset_count,
 901        .get_ethtool_stats = skge_get_ethtool_stats,
 902        .get_link_ksettings = skge_get_link_ksettings,
 903        .set_link_ksettings = skge_set_link_ksettings,
 904};
 905
 906/*
 907 * Allocate ring elements and chain them together
 908 * One-to-one association of board descriptors with ring elements
 909 */
 910static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
 911{
 912        struct skge_tx_desc *d;
 913        struct skge_element *e;
 914        int i;
 915
 916        ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
 917        if (!ring->start)
 918                return -ENOMEM;
 919
 920        for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
 921                e->desc = d;
 922                if (i == ring->count - 1) {
 923                        e->next = ring->start;
 924                        d->next_offset = base;
 925                } else {
 926                        e->next = e + 1;
 927                        d->next_offset = base + (i+1) * sizeof(*d);
 928                }
 929        }
 930        ring->to_use = ring->to_clean = ring->start;
 931
 932        return 0;
 933}
 934
 935/* Allocate and setup a new buffer for receiving */
 936static int skge_rx_setup(struct skge_port *skge, struct skge_element *e,
 937                         struct sk_buff *skb, unsigned int bufsize)
 938{
 939        struct skge_rx_desc *rd = e->desc;
 940        dma_addr_t map;
 941
 942        map = dma_map_single(&skge->hw->pdev->dev, skb->data, bufsize,
 943                             DMA_FROM_DEVICE);
 944
 945        if (dma_mapping_error(&skge->hw->pdev->dev, map))
 946                return -1;
 947
 948        rd->dma_lo = lower_32_bits(map);
 949        rd->dma_hi = upper_32_bits(map);
 950        e->skb = skb;
 951        rd->csum1_start = ETH_HLEN;
 952        rd->csum2_start = ETH_HLEN;
 953        rd->csum1 = 0;
 954        rd->csum2 = 0;
 955
 956        wmb();
 957
 958        rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
 959        dma_unmap_addr_set(e, mapaddr, map);
 960        dma_unmap_len_set(e, maplen, bufsize);
 961        return 0;
 962}
 963
 964/* Resume receiving using existing skb,
 965 * Note: DMA address is not changed by chip.
 966 *       MTU not changed while receiver active.
 967 */
 968static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
 969{
 970        struct skge_rx_desc *rd = e->desc;
 971
 972        rd->csum2 = 0;
 973        rd->csum2_start = ETH_HLEN;
 974
 975        wmb();
 976
 977        rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
 978}
 979
 980
 981/* Free all  buffers in receive ring, assumes receiver stopped */
 982static void skge_rx_clean(struct skge_port *skge)
 983{
 984        struct skge_hw *hw = skge->hw;
 985        struct skge_ring *ring = &skge->rx_ring;
 986        struct skge_element *e;
 987
 988        e = ring->start;
 989        do {
 990                struct skge_rx_desc *rd = e->desc;
 991                rd->control = 0;
 992                if (e->skb) {
 993                        dma_unmap_single(&hw->pdev->dev,
 994                                         dma_unmap_addr(e, mapaddr),
 995                                         dma_unmap_len(e, maplen),
 996                                         DMA_FROM_DEVICE);
 997                        dev_kfree_skb(e->skb);
 998                        e->skb = NULL;
 999                }
1000        } while ((e = e->next) != ring->start);
1001}
1002
1003
1004/* Allocate buffers for receive ring
1005 * For receive:  to_clean is next received frame.
1006 */
1007static int skge_rx_fill(struct net_device *dev)
1008{
1009        struct skge_port *skge = netdev_priv(dev);
1010        struct skge_ring *ring = &skge->rx_ring;
1011        struct skge_element *e;
1012
1013        e = ring->start;
1014        do {
1015                struct sk_buff *skb;
1016
1017                skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1018                                         GFP_KERNEL);
1019                if (!skb)
1020                        return -ENOMEM;
1021
1022                skb_reserve(skb, NET_IP_ALIGN);
1023                if (skge_rx_setup(skge, e, skb, skge->rx_buf_size) < 0) {
1024                        dev_kfree_skb(skb);
1025                        return -EIO;
1026                }
1027        } while ((e = e->next) != ring->start);
1028
1029        ring->to_clean = ring->start;
1030        return 0;
1031}
1032
1033static const char *skge_pause(enum pause_status status)
1034{
1035        switch (status) {
1036        case FLOW_STAT_NONE:
1037                return "none";
1038        case FLOW_STAT_REM_SEND:
1039                return "rx only";
1040        case FLOW_STAT_LOC_SEND:
1041                return "tx_only";
1042        case FLOW_STAT_SYMMETRIC:               /* Both station may send PAUSE */
1043                return "both";
1044        default:
1045                return "indeterminated";
1046        }
1047}
1048
1049
1050static void skge_link_up(struct skge_port *skge)
1051{
1052        skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1053                    LED_BLK_OFF|LED_SYNC_OFF|LED_REG_ON);
1054
1055        netif_carrier_on(skge->netdev);
1056        netif_wake_queue(skge->netdev);
1057
1058        netif_info(skge, link, skge->netdev,
1059                   "Link is up at %d Mbps, %s duplex, flow control %s\n",
1060                   skge->speed,
1061                   skge->duplex == DUPLEX_FULL ? "full" : "half",
1062                   skge_pause(skge->flow_status));
1063}
1064
1065static void skge_link_down(struct skge_port *skge)
1066{
1067        skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
1068        netif_carrier_off(skge->netdev);
1069        netif_stop_queue(skge->netdev);
1070
1071        netif_info(skge, link, skge->netdev, "Link is down\n");
1072}
1073
1074static void xm_link_down(struct skge_hw *hw, int port)
1075{
1076        struct net_device *dev = hw->dev[port];
1077        struct skge_port *skge = netdev_priv(dev);
1078
1079        xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1080
1081        if (netif_carrier_ok(dev))
1082                skge_link_down(skge);
1083}
1084
1085static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1086{
1087        int i;
1088
1089        xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1090        *val = xm_read16(hw, port, XM_PHY_DATA);
1091
1092        if (hw->phy_type == SK_PHY_XMAC)
1093                goto ready;
1094
1095        for (i = 0; i < PHY_RETRIES; i++) {
1096                if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1097                        goto ready;
1098                udelay(1);
1099        }
1100
1101        return -ETIMEDOUT;
1102 ready:
1103        *val = xm_read16(hw, port, XM_PHY_DATA);
1104
1105        return 0;
1106}
1107
1108static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1109{
1110        u16 v = 0;
1111        if (__xm_phy_read(hw, port, reg, &v))
1112                pr_warn("%s: phy read timed out\n", hw->dev[port]->name);
1113        return v;
1114}
1115
1116static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1117{
1118        int i;
1119
1120        xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1121        for (i = 0; i < PHY_RETRIES; i++) {
1122                if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1123                        goto ready;
1124                udelay(1);
1125        }
1126        return -EIO;
1127
1128 ready:
1129        xm_write16(hw, port, XM_PHY_DATA, val);
1130        for (i = 0; i < PHY_RETRIES; i++) {
1131                if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1132                        return 0;
1133                udelay(1);
1134        }
1135        return -ETIMEDOUT;
1136}
1137
1138static void genesis_init(struct skge_hw *hw)
1139{
1140        /* set blink source counter */
1141        skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1142        skge_write8(hw, B2_BSC_CTRL, BSC_START);
1143
1144        /* configure mac arbiter */
1145        skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1146
1147        /* configure mac arbiter timeout values */
1148        skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1149        skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1150        skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1151        skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1152
1153        skge_write8(hw, B3_MA_RCINI_RX1, 0);
1154        skge_write8(hw, B3_MA_RCINI_RX2, 0);
1155        skge_write8(hw, B3_MA_RCINI_TX1, 0);
1156        skge_write8(hw, B3_MA_RCINI_TX2, 0);
1157
1158        /* configure packet arbiter timeout */
1159        skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1160        skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1161        skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1162        skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1163        skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1164}
1165
1166static void genesis_reset(struct skge_hw *hw, int port)
1167{
1168        static const u8 zero[8]  = { 0 };
1169        u32 reg;
1170
1171        skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1172
1173        /* reset the statistics module */
1174        xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1175        xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1176        xm_write32(hw, port, XM_MODE, 0);               /* clear Mode Reg */
1177        xm_write16(hw, port, XM_TX_CMD, 0);     /* reset TX CMD Reg */
1178        xm_write16(hw, port, XM_RX_CMD, 0);     /* reset RX CMD Reg */
1179
1180        /* disable Broadcom PHY IRQ */
1181        if (hw->phy_type == SK_PHY_BCOM)
1182                xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1183
1184        xm_outhash(hw, port, XM_HSM, zero);
1185
1186        /* Flush TX and RX fifo */
1187        reg = xm_read32(hw, port, XM_MODE);
1188        xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
1189        xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
1190}
1191
1192/* Convert mode to MII values  */
1193static const u16 phy_pause_map[] = {
1194        [FLOW_MODE_NONE] =      0,
1195        [FLOW_MODE_LOC_SEND] =  PHY_AN_PAUSE_ASYM,
1196        [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1197        [FLOW_MODE_SYM_OR_REM]  = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1198};
1199
1200/* special defines for FIBER (88E1011S only) */
1201static const u16 fiber_pause_map[] = {
1202        [FLOW_MODE_NONE]        = PHY_X_P_NO_PAUSE,
1203        [FLOW_MODE_LOC_SEND]    = PHY_X_P_ASYM_MD,
1204        [FLOW_MODE_SYMMETRIC]   = PHY_X_P_SYM_MD,
1205        [FLOW_MODE_SYM_OR_REM]  = PHY_X_P_BOTH_MD,
1206};
1207
1208
1209/* Check status of Broadcom phy link */
1210static void bcom_check_link(struct skge_hw *hw, int port)
1211{
1212        struct net_device *dev = hw->dev[port];
1213        struct skge_port *skge = netdev_priv(dev);
1214        u16 status;
1215
1216        /* read twice because of latch */
1217        xm_phy_read(hw, port, PHY_BCOM_STAT);
1218        status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1219
1220        if ((status & PHY_ST_LSYNC) == 0) {
1221                xm_link_down(hw, port);
1222                return;
1223        }
1224
1225        if (skge->autoneg == AUTONEG_ENABLE) {
1226                u16 lpa, aux;
1227
1228                if (!(status & PHY_ST_AN_OVER))
1229                        return;
1230
1231                lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1232                if (lpa & PHY_B_AN_RF) {
1233                        netdev_notice(dev, "remote fault\n");
1234                        return;
1235                }
1236
1237                aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1238
1239                /* Check Duplex mismatch */
1240                switch (aux & PHY_B_AS_AN_RES_MSK) {
1241                case PHY_B_RES_1000FD:
1242                        skge->duplex = DUPLEX_FULL;
1243                        break;
1244                case PHY_B_RES_1000HD:
1245                        skge->duplex = DUPLEX_HALF;
1246                        break;
1247                default:
1248                        netdev_notice(dev, "duplex mismatch\n");
1249                        return;
1250                }
1251
1252                /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1253                switch (aux & PHY_B_AS_PAUSE_MSK) {
1254                case PHY_B_AS_PAUSE_MSK:
1255                        skge->flow_status = FLOW_STAT_SYMMETRIC;
1256                        break;
1257                case PHY_B_AS_PRR:
1258                        skge->flow_status = FLOW_STAT_REM_SEND;
1259                        break;
1260                case PHY_B_AS_PRT:
1261                        skge->flow_status = FLOW_STAT_LOC_SEND;
1262                        break;
1263                default:
1264                        skge->flow_status = FLOW_STAT_NONE;
1265                }
1266                skge->speed = SPEED_1000;
1267        }
1268
1269        if (!netif_carrier_ok(dev))
1270                genesis_link_up(skge);
1271}
1272
1273/* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1274 * Phy on for 100 or 10Mbit operation
1275 */
1276static void bcom_phy_init(struct skge_port *skge)
1277{
1278        struct skge_hw *hw = skge->hw;
1279        int port = skge->port;
1280        int i;
1281        u16 id1, r, ext, ctl;
1282
1283        /* magic workaround patterns for Broadcom */
1284        static const struct {
1285                u16 reg;
1286                u16 val;
1287        } A1hack[] = {
1288                { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1289                { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1290                { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1291                { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1292        }, C0hack[] = {
1293                { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1294                { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1295        };
1296
1297        /* read Id from external PHY (all have the same address) */
1298        id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1299
1300        /* Optimize MDIO transfer by suppressing preamble. */
1301        r = xm_read16(hw, port, XM_MMU_CMD);
1302        r |=  XM_MMU_NO_PRE;
1303        xm_write16(hw, port, XM_MMU_CMD, r);
1304
1305        switch (id1) {
1306        case PHY_BCOM_ID1_C0:
1307                /*
1308                 * Workaround BCOM Errata for the C0 type.
1309                 * Write magic patterns to reserved registers.
1310                 */
1311                for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1312                        xm_phy_write(hw, port,
1313                                     C0hack[i].reg, C0hack[i].val);
1314
1315                break;
1316        case PHY_BCOM_ID1_A1:
1317                /*
1318                 * Workaround BCOM Errata for the A1 type.
1319                 * Write magic patterns to reserved registers.
1320                 */
1321                for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1322                        xm_phy_write(hw, port,
1323                                     A1hack[i].reg, A1hack[i].val);
1324                break;
1325        }
1326
1327        /*
1328         * Workaround BCOM Errata (#10523) for all BCom PHYs.
1329         * Disable Power Management after reset.
1330         */
1331        r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1332        r |= PHY_B_AC_DIS_PM;
1333        xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1334
1335        /* Dummy read */
1336        xm_read16(hw, port, XM_ISRC);
1337
1338        ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1339        ctl = PHY_CT_SP1000;    /* always 1000mbit */
1340
1341        if (skge->autoneg == AUTONEG_ENABLE) {
1342                /*
1343                 * Workaround BCOM Errata #1 for the C5 type.
1344                 * 1000Base-T Link Acquisition Failure in Slave Mode
1345                 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1346                 */
1347                u16 adv = PHY_B_1000C_RD;
1348                if (skge->advertising & ADVERTISED_1000baseT_Half)
1349                        adv |= PHY_B_1000C_AHD;
1350                if (skge->advertising & ADVERTISED_1000baseT_Full)
1351                        adv |= PHY_B_1000C_AFD;
1352                xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1353
1354                ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1355        } else {
1356                if (skge->duplex == DUPLEX_FULL)
1357                        ctl |= PHY_CT_DUP_MD;
1358                /* Force to slave */
1359                xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1360        }
1361
1362        /* Set autonegotiation pause parameters */
1363        xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1364                     phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1365
1366        /* Handle Jumbo frames */
1367        if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1368                xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1369                             PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1370
1371                ext |= PHY_B_PEC_HIGH_LA;
1372
1373        }
1374
1375        xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1376        xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1377
1378        /* Use link status change interrupt */
1379        xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1380}
1381
1382static void xm_phy_init(struct skge_port *skge)
1383{
1384        struct skge_hw *hw = skge->hw;
1385        int port = skge->port;
1386        u16 ctrl = 0;
1387
1388        if (skge->autoneg == AUTONEG_ENABLE) {
1389                if (skge->advertising & ADVERTISED_1000baseT_Half)
1390                        ctrl |= PHY_X_AN_HD;
1391                if (skge->advertising & ADVERTISED_1000baseT_Full)
1392                        ctrl |= PHY_X_AN_FD;
1393
1394                ctrl |= fiber_pause_map[skge->flow_control];
1395
1396                xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1397
1398                /* Restart Auto-negotiation */
1399                ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1400        } else {
1401                /* Set DuplexMode in Config register */
1402                if (skge->duplex == DUPLEX_FULL)
1403                        ctrl |= PHY_CT_DUP_MD;
1404                /*
1405                 * Do NOT enable Auto-negotiation here. This would hold
1406                 * the link down because no IDLEs are transmitted
1407                 */
1408        }
1409
1410        xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1411
1412        /* Poll PHY for status changes */
1413        mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1414}
1415
1416static int xm_check_link(struct net_device *dev)
1417{
1418        struct skge_port *skge = netdev_priv(dev);
1419        struct skge_hw *hw = skge->hw;
1420        int port = skge->port;
1421        u16 status;
1422
1423        /* read twice because of latch */
1424        xm_phy_read(hw, port, PHY_XMAC_STAT);
1425        status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1426
1427        if ((status & PHY_ST_LSYNC) == 0) {
1428                xm_link_down(hw, port);
1429                return 0;
1430        }
1431
1432        if (skge->autoneg == AUTONEG_ENABLE) {
1433                u16 lpa, res;
1434
1435                if (!(status & PHY_ST_AN_OVER))
1436                        return 0;
1437
1438                lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1439                if (lpa & PHY_B_AN_RF) {
1440                        netdev_notice(dev, "remote fault\n");
1441                        return 0;
1442                }
1443
1444                res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1445
1446                /* Check Duplex mismatch */
1447                switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1448                case PHY_X_RS_FD:
1449                        skge->duplex = DUPLEX_FULL;
1450                        break;
1451                case PHY_X_RS_HD:
1452                        skge->duplex = DUPLEX_HALF;
1453                        break;
1454                default:
1455                        netdev_notice(dev, "duplex mismatch\n");
1456                        return 0;
1457                }
1458
1459                /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1460                if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1461                     skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1462                    (lpa & PHY_X_P_SYM_MD))
1463                        skge->flow_status = FLOW_STAT_SYMMETRIC;
1464                else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1465                         (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1466                        /* Enable PAUSE receive, disable PAUSE transmit */
1467                        skge->flow_status  = FLOW_STAT_REM_SEND;
1468                else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1469                         (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1470                        /* Disable PAUSE receive, enable PAUSE transmit */
1471                        skge->flow_status = FLOW_STAT_LOC_SEND;
1472                else
1473                        skge->flow_status = FLOW_STAT_NONE;
1474
1475                skge->speed = SPEED_1000;
1476        }
1477
1478        if (!netif_carrier_ok(dev))
1479                genesis_link_up(skge);
1480        return 1;
1481}
1482
1483/* Poll to check for link coming up.
1484 *
1485 * Since internal PHY is wired to a level triggered pin, can't
1486 * get an interrupt when carrier is detected, need to poll for
1487 * link coming up.
1488 */
1489static void xm_link_timer(struct timer_list *t)
1490{
1491        struct skge_port *skge = from_timer(skge, t, link_timer);
1492        struct net_device *dev = skge->netdev;
1493        struct skge_hw *hw = skge->hw;
1494        int port = skge->port;
1495        int i;
1496        unsigned long flags;
1497
1498        if (!netif_running(dev))
1499                return;
1500
1501        spin_lock_irqsave(&hw->phy_lock, flags);
1502
1503        /*
1504         * Verify that the link by checking GPIO register three times.
1505         * This pin has the signal from the link_sync pin connected to it.
1506         */
1507        for (i = 0; i < 3; i++) {
1508                if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1509                        goto link_down;
1510        }
1511
1512        /* Re-enable interrupt to detect link down */
1513        if (xm_check_link(dev)) {
1514                u16 msk = xm_read16(hw, port, XM_IMSK);
1515                msk &= ~XM_IS_INP_ASS;
1516                xm_write16(hw, port, XM_IMSK, msk);
1517                xm_read16(hw, port, XM_ISRC);
1518        } else {
1519link_down:
1520                mod_timer(&skge->link_timer,
1521                          round_jiffies(jiffies + LINK_HZ));
1522        }
1523        spin_unlock_irqrestore(&hw->phy_lock, flags);
1524}
1525
1526static void genesis_mac_init(struct skge_hw *hw, int port)
1527{
1528        struct net_device *dev = hw->dev[port];
1529        struct skge_port *skge = netdev_priv(dev);
1530        int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1531        int i;
1532        u32 r;
1533        static const u8 zero[6]  = { 0 };
1534
1535        for (i = 0; i < 10; i++) {
1536                skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1537                             MFF_SET_MAC_RST);
1538                if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1539                        goto reset_ok;
1540                udelay(1);
1541        }
1542
1543        netdev_warn(dev, "genesis reset failed\n");
1544
1545 reset_ok:
1546        /* Unreset the XMAC. */
1547        skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1548
1549        /*
1550         * Perform additional initialization for external PHYs,
1551         * namely for the 1000baseTX cards that use the XMAC's
1552         * GMII mode.
1553         */
1554        if (hw->phy_type != SK_PHY_XMAC) {
1555                /* Take external Phy out of reset */
1556                r = skge_read32(hw, B2_GP_IO);
1557                if (port == 0)
1558                        r |= GP_DIR_0|GP_IO_0;
1559                else
1560                        r |= GP_DIR_2|GP_IO_2;
1561
1562                skge_write32(hw, B2_GP_IO, r);
1563
1564                /* Enable GMII interface */
1565                xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1566        }
1567
1568
1569        switch (hw->phy_type) {
1570        case SK_PHY_XMAC:
1571                xm_phy_init(skge);
1572                break;
1573        case SK_PHY_BCOM:
1574                bcom_phy_init(skge);
1575                bcom_check_link(hw, port);
1576        }
1577
1578        /* Set Station Address */
1579        xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1580
1581        /* We don't use match addresses so clear */
1582        for (i = 1; i < 16; i++)
1583                xm_outaddr(hw, port, XM_EXM(i), zero);
1584
1585        /* Clear MIB counters */
1586        xm_write16(hw, port, XM_STAT_CMD,
1587                        XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1588        /* Clear two times according to Errata #3 */
1589        xm_write16(hw, port, XM_STAT_CMD,
1590                        XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1591
1592        /* configure Rx High Water Mark (XM_RX_HI_WM) */
1593        xm_write16(hw, port, XM_RX_HI_WM, 1450);
1594
1595        /* We don't need the FCS appended to the packet. */
1596        r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1597        if (jumbo)
1598                r |= XM_RX_BIG_PK_OK;
1599
1600        if (skge->duplex == DUPLEX_HALF) {
1601                /*
1602                 * If in manual half duplex mode the other side might be in
1603                 * full duplex mode, so ignore if a carrier extension is not seen
1604                 * on frames received
1605                 */
1606                r |= XM_RX_DIS_CEXT;
1607        }
1608        xm_write16(hw, port, XM_RX_CMD, r);
1609
1610        /* We want short frames padded to 60 bytes. */
1611        xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1612
1613        /* Increase threshold for jumbo frames on dual port */
1614        if (hw->ports > 1 && jumbo)
1615                xm_write16(hw, port, XM_TX_THR, 1020);
1616        else
1617                xm_write16(hw, port, XM_TX_THR, 512);
1618
1619        /*
1620         * Enable the reception of all error frames. This is
1621         * a necessary evil due to the design of the XMAC. The
1622         * XMAC's receive FIFO is only 8K in size, however jumbo
1623         * frames can be up to 9000 bytes in length. When bad
1624         * frame filtering is enabled, the XMAC's RX FIFO operates
1625         * in 'store and forward' mode. For this to work, the
1626         * entire frame has to fit into the FIFO, but that means
1627         * that jumbo frames larger than 8192 bytes will be
1628         * truncated. Disabling all bad frame filtering causes
1629         * the RX FIFO to operate in streaming mode, in which
1630         * case the XMAC will start transferring frames out of the
1631         * RX FIFO as soon as the FIFO threshold is reached.
1632         */
1633        xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1634
1635
1636        /*
1637         * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1638         *      - Enable all bits excepting 'Octets Rx OK Low CntOv'
1639         *        and 'Octets Rx OK Hi Cnt Ov'.
1640         */
1641        xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1642
1643        /*
1644         * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1645         *      - Enable all bits excepting 'Octets Tx OK Low CntOv'
1646         *        and 'Octets Tx OK Hi Cnt Ov'.
1647         */
1648        xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1649
1650        /* Configure MAC arbiter */
1651        skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1652
1653        /* configure timeout values */
1654        skge_write8(hw, B3_MA_TOINI_RX1, 72);
1655        skge_write8(hw, B3_MA_TOINI_RX2, 72);
1656        skge_write8(hw, B3_MA_TOINI_TX1, 72);
1657        skge_write8(hw, B3_MA_TOINI_TX2, 72);
1658
1659        skge_write8(hw, B3_MA_RCINI_RX1, 0);
1660        skge_write8(hw, B3_MA_RCINI_RX2, 0);
1661        skge_write8(hw, B3_MA_RCINI_TX1, 0);
1662        skge_write8(hw, B3_MA_RCINI_TX2, 0);
1663
1664        /* Configure Rx MAC FIFO */
1665        skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1666        skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1667        skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1668
1669        /* Configure Tx MAC FIFO */
1670        skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1671        skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1672        skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1673
1674        if (jumbo) {
1675                /* Enable frame flushing if jumbo frames used */
1676                skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
1677        } else {
1678                /* enable timeout timers if normal frames */
1679                skge_write16(hw, B3_PA_CTRL,
1680                             (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1681        }
1682}
1683
1684static void genesis_stop(struct skge_port *skge)
1685{
1686        struct skge_hw *hw = skge->hw;
1687        int port = skge->port;
1688        unsigned retries = 1000;
1689        u16 cmd;
1690
1691        /* Disable Tx and Rx */
1692        cmd = xm_read16(hw, port, XM_MMU_CMD);
1693        cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1694        xm_write16(hw, port, XM_MMU_CMD, cmd);
1695
1696        genesis_reset(hw, port);
1697
1698        /* Clear Tx packet arbiter timeout IRQ */
1699        skge_write16(hw, B3_PA_CTRL,
1700                     port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1701
1702        /* Reset the MAC */
1703        skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1704        do {
1705                skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1706                if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1707                        break;
1708        } while (--retries > 0);
1709
1710        /* For external PHYs there must be special handling */
1711        if (hw->phy_type != SK_PHY_XMAC) {
1712                u32 reg = skge_read32(hw, B2_GP_IO);
1713                if (port == 0) {
1714                        reg |= GP_DIR_0;
1715                        reg &= ~GP_IO_0;
1716                } else {
1717                        reg |= GP_DIR_2;
1718                        reg &= ~GP_IO_2;
1719                }
1720                skge_write32(hw, B2_GP_IO, reg);
1721                skge_read32(hw, B2_GP_IO);
1722        }
1723
1724        xm_write16(hw, port, XM_MMU_CMD,
1725                        xm_read16(hw, port, XM_MMU_CMD)
1726                        & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1727
1728        xm_read16(hw, port, XM_MMU_CMD);
1729}
1730
1731
1732static void genesis_get_stats(struct skge_port *skge, u64 *data)
1733{
1734        struct skge_hw *hw = skge->hw;
1735        int port = skge->port;
1736        int i;
1737        unsigned long timeout = jiffies + HZ;
1738
1739        xm_write16(hw, port,
1740                        XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1741
1742        /* wait for update to complete */
1743        while (xm_read16(hw, port, XM_STAT_CMD)
1744               & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1745                if (time_after(jiffies, timeout))
1746                        break;
1747                udelay(10);
1748        }
1749
1750        /* special case for 64 bit octet counter */
1751        data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1752                | xm_read32(hw, port, XM_TXO_OK_LO);
1753        data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1754                | xm_read32(hw, port, XM_RXO_OK_LO);
1755
1756        for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1757                data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1758}
1759
1760static void genesis_mac_intr(struct skge_hw *hw, int port)
1761{
1762        struct net_device *dev = hw->dev[port];
1763        struct skge_port *skge = netdev_priv(dev);
1764        u16 status = xm_read16(hw, port, XM_ISRC);
1765
1766        netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1767                     "mac interrupt status 0x%x\n", status);
1768
1769        if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1770                xm_link_down(hw, port);
1771                mod_timer(&skge->link_timer, jiffies + 1);
1772        }
1773
1774        if (status & XM_IS_TXF_UR) {
1775                xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1776                ++dev->stats.tx_fifo_errors;
1777        }
1778}
1779
1780static void genesis_link_up(struct skge_port *skge)
1781{
1782        struct skge_hw *hw = skge->hw;
1783        int port = skge->port;
1784        u16 cmd, msk;
1785        u32 mode;
1786
1787        cmd = xm_read16(hw, port, XM_MMU_CMD);
1788
1789        /*
1790         * enabling pause frame reception is required for 1000BT
1791         * because the XMAC is not reset if the link is going down
1792         */
1793        if (skge->flow_status == FLOW_STAT_NONE ||
1794            skge->flow_status == FLOW_STAT_LOC_SEND)
1795                /* Disable Pause Frame Reception */
1796                cmd |= XM_MMU_IGN_PF;
1797        else
1798                /* Enable Pause Frame Reception */
1799                cmd &= ~XM_MMU_IGN_PF;
1800
1801        xm_write16(hw, port, XM_MMU_CMD, cmd);
1802
1803        mode = xm_read32(hw, port, XM_MODE);
1804        if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
1805            skge->flow_status == FLOW_STAT_LOC_SEND) {
1806                /*
1807                 * Configure Pause Frame Generation
1808                 * Use internal and external Pause Frame Generation.
1809                 * Sending pause frames is edge triggered.
1810                 * Send a Pause frame with the maximum pause time if
1811                 * internal oder external FIFO full condition occurs.
1812                 * Send a zero pause time frame to re-start transmission.
1813                 */
1814                /* XM_PAUSE_DA = '010000C28001' (default) */
1815                /* XM_MAC_PTIME = 0xffff (maximum) */
1816                /* remember this value is defined in big endian (!) */
1817                xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1818
1819                mode |= XM_PAUSE_MODE;
1820                skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1821        } else {
1822                /*
1823                 * disable pause frame generation is required for 1000BT
1824                 * because the XMAC is not reset if the link is going down
1825                 */
1826                /* Disable Pause Mode in Mode Register */
1827                mode &= ~XM_PAUSE_MODE;
1828
1829                skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1830        }
1831
1832        xm_write32(hw, port, XM_MODE, mode);
1833
1834        /* Turn on detection of Tx underrun */
1835        msk = xm_read16(hw, port, XM_IMSK);
1836        msk &= ~XM_IS_TXF_UR;
1837        xm_write16(hw, port, XM_IMSK, msk);
1838
1839        xm_read16(hw, port, XM_ISRC);
1840
1841        /* get MMU Command Reg. */
1842        cmd = xm_read16(hw, port, XM_MMU_CMD);
1843        if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1844                cmd |= XM_MMU_GMII_FD;
1845
1846        /*
1847         * Workaround BCOM Errata (#10523) for all BCom Phys
1848         * Enable Power Management after link up
1849         */
1850        if (hw->phy_type == SK_PHY_BCOM) {
1851                xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1852                             xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1853                             & ~PHY_B_AC_DIS_PM);
1854                xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1855        }
1856
1857        /* enable Rx/Tx */
1858        xm_write16(hw, port, XM_MMU_CMD,
1859                        cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1860        skge_link_up(skge);
1861}
1862
1863
1864static inline void bcom_phy_intr(struct skge_port *skge)
1865{
1866        struct skge_hw *hw = skge->hw;
1867        int port = skge->port;
1868        u16 isrc;
1869
1870        isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1871        netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1872                     "phy interrupt status 0x%x\n", isrc);
1873
1874        if (isrc & PHY_B_IS_PSE)
1875                pr_err("%s: uncorrectable pair swap error\n",
1876                       hw->dev[port]->name);
1877
1878        /* Workaround BCom Errata:
1879         *      enable and disable loopback mode if "NO HCD" occurs.
1880         */
1881        if (isrc & PHY_B_IS_NO_HDCL) {
1882                u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1883                xm_phy_write(hw, port, PHY_BCOM_CTRL,
1884                                  ctrl | PHY_CT_LOOP);
1885                xm_phy_write(hw, port, PHY_BCOM_CTRL,
1886                                  ctrl & ~PHY_CT_LOOP);
1887        }
1888
1889        if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1890                bcom_check_link(hw, port);
1891
1892}
1893
1894static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1895{
1896        int i;
1897
1898        gma_write16(hw, port, GM_SMI_DATA, val);
1899        gma_write16(hw, port, GM_SMI_CTRL,
1900                         GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1901        for (i = 0; i < PHY_RETRIES; i++) {
1902                udelay(1);
1903
1904                if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1905                        return 0;
1906        }
1907
1908        pr_warn("%s: phy write timeout\n", hw->dev[port]->name);
1909        return -EIO;
1910}
1911
1912static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1913{
1914        int i;
1915
1916        gma_write16(hw, port, GM_SMI_CTRL,
1917                         GM_SMI_CT_PHY_AD(hw->phy_addr)
1918                         | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1919
1920        for (i = 0; i < PHY_RETRIES; i++) {
1921                udelay(1);
1922                if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1923                        goto ready;
1924        }
1925
1926        return -ETIMEDOUT;
1927 ready:
1928        *val = gma_read16(hw, port, GM_SMI_DATA);
1929        return 0;
1930}
1931
1932static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1933{
1934        u16 v = 0;
1935        if (__gm_phy_read(hw, port, reg, &v))
1936                pr_warn("%s: phy read timeout\n", hw->dev[port]->name);
1937        return v;
1938}
1939
1940/* Marvell Phy Initialization */
1941static void yukon_init(struct skge_hw *hw, int port)
1942{
1943        struct skge_port *skge = netdev_priv(hw->dev[port]);
1944        u16 ctrl, ct1000, adv;
1945
1946        if (skge->autoneg == AUTONEG_ENABLE) {
1947                u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1948
1949                ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1950                          PHY_M_EC_MAC_S_MSK);
1951                ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1952
1953                ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1954
1955                gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1956        }
1957
1958        ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1959        if (skge->autoneg == AUTONEG_DISABLE)
1960                ctrl &= ~PHY_CT_ANE;
1961
1962        ctrl |= PHY_CT_RESET;
1963        gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1964
1965        ctrl = 0;
1966        ct1000 = 0;
1967        adv = PHY_AN_CSMA;
1968
1969        if (skge->autoneg == AUTONEG_ENABLE) {
1970                if (hw->copper) {
1971                        if (skge->advertising & ADVERTISED_1000baseT_Full)
1972                                ct1000 |= PHY_M_1000C_AFD;
1973                        if (skge->advertising & ADVERTISED_1000baseT_Half)
1974                                ct1000 |= PHY_M_1000C_AHD;
1975                        if (skge->advertising & ADVERTISED_100baseT_Full)
1976                                adv |= PHY_M_AN_100_FD;
1977                        if (skge->advertising & ADVERTISED_100baseT_Half)
1978                                adv |= PHY_M_AN_100_HD;
1979                        if (skge->advertising & ADVERTISED_10baseT_Full)
1980                                adv |= PHY_M_AN_10_FD;
1981                        if (skge->advertising & ADVERTISED_10baseT_Half)
1982                                adv |= PHY_M_AN_10_HD;
1983
1984                        /* Set Flow-control capabilities */
1985                        adv |= phy_pause_map[skge->flow_control];
1986                } else {
1987                        if (skge->advertising & ADVERTISED_1000baseT_Full)
1988                                adv |= PHY_M_AN_1000X_AFD;
1989                        if (skge->advertising & ADVERTISED_1000baseT_Half)
1990                                adv |= PHY_M_AN_1000X_AHD;
1991
1992                        adv |= fiber_pause_map[skge->flow_control];
1993                }
1994
1995                /* Restart Auto-negotiation */
1996                ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1997        } else {
1998                /* forced speed/duplex settings */
1999                ct1000 = PHY_M_1000C_MSE;
2000
2001                if (skge->duplex == DUPLEX_FULL)
2002                        ctrl |= PHY_CT_DUP_MD;
2003
2004                switch (skge->speed) {
2005                case SPEED_1000:
2006                        ctrl |= PHY_CT_SP1000;
2007                        break;
2008                case SPEED_100:
2009                        ctrl |= PHY_CT_SP100;
2010                        break;
2011                }
2012
2013                ctrl |= PHY_CT_RESET;
2014        }
2015
2016        gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2017
2018        gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2019        gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2020
2021        /* Enable phy interrupt on autonegotiation complete (or link up) */
2022        if (skge->autoneg == AUTONEG_ENABLE)
2023                gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2024        else
2025                gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2026}
2027
2028static void yukon_reset(struct skge_hw *hw, int port)
2029{
2030        gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2031        gma_write16(hw, port, GM_MC_ADDR_H1, 0);        /* clear MC hash */
2032        gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2033        gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2034        gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2035
2036        gma_write16(hw, port, GM_RX_CTRL,
2037                         gma_read16(hw, port, GM_RX_CTRL)
2038                         | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2039}
2040
2041/* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2042static int is_yukon_lite_a0(struct skge_hw *hw)
2043{
2044        u32 reg;
2045        int ret;
2046
2047        if (hw->chip_id != CHIP_ID_YUKON)
2048                return 0;
2049
2050        reg = skge_read32(hw, B2_FAR);
2051        skge_write8(hw, B2_FAR + 3, 0xff);
2052        ret = (skge_read8(hw, B2_FAR + 3) != 0);
2053        skge_write32(hw, B2_FAR, reg);
2054        return ret;
2055}
2056
2057static void yukon_mac_init(struct skge_hw *hw, int port)
2058{
2059        struct skge_port *skge = netdev_priv(hw->dev[port]);
2060        int i;
2061        u32 reg;
2062        const u8 *addr = hw->dev[port]->dev_addr;
2063
2064        /* WA code for COMA mode -- set PHY reset */
2065        if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2066            hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2067                reg = skge_read32(hw, B2_GP_IO);
2068                reg |= GP_DIR_9 | GP_IO_9;
2069                skge_write32(hw, B2_GP_IO, reg);
2070        }
2071
2072        /* hard reset */
2073        skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2074        skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2075
2076        /* WA code for COMA mode -- clear PHY reset */
2077        if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2078            hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2079                reg = skge_read32(hw, B2_GP_IO);
2080                reg |= GP_DIR_9;
2081                reg &= ~GP_IO_9;
2082                skge_write32(hw, B2_GP_IO, reg);
2083        }
2084
2085        /* Set hardware config mode */
2086        reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2087                GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2088        reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2089
2090        /* Clear GMC reset */
2091        skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2092        skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2093        skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2094
2095        if (skge->autoneg == AUTONEG_DISABLE) {
2096                reg = GM_GPCR_AU_ALL_DIS;
2097                gma_write16(hw, port, GM_GP_CTRL,
2098                                 gma_read16(hw, port, GM_GP_CTRL) | reg);
2099
2100                switch (skge->speed) {
2101                case SPEED_1000:
2102                        reg &= ~GM_GPCR_SPEED_100;
2103                        reg |= GM_GPCR_SPEED_1000;
2104                        break;
2105                case SPEED_100:
2106                        reg &= ~GM_GPCR_SPEED_1000;
2107                        reg |= GM_GPCR_SPEED_100;
2108                        break;
2109                case SPEED_10:
2110                        reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2111                        break;
2112                }
2113
2114                if (skge->duplex == DUPLEX_FULL)
2115                        reg |= GM_GPCR_DUP_FULL;
2116        } else
2117                reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2118
2119        switch (skge->flow_control) {
2120        case FLOW_MODE_NONE:
2121                skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2122                reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2123                break;
2124        case FLOW_MODE_LOC_SEND:
2125                /* disable Rx flow-control */
2126                reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2127                break;
2128        case FLOW_MODE_SYMMETRIC:
2129        case FLOW_MODE_SYM_OR_REM:
2130                /* enable Tx & Rx flow-control */
2131                break;
2132        }
2133
2134        gma_write16(hw, port, GM_GP_CTRL, reg);
2135        skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2136
2137        yukon_init(hw, port);
2138
2139        /* MIB clear */
2140        reg = gma_read16(hw, port, GM_PHY_ADDR);
2141        gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2142
2143        for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2144                gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2145        gma_write16(hw, port, GM_PHY_ADDR, reg);
2146
2147        /* transmit control */
2148        gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2149
2150        /* receive control reg: unicast + multicast + no FCS  */
2151        gma_write16(hw, port, GM_RX_CTRL,
2152                         GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2153
2154        /* transmit flow control */
2155        gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2156
2157        /* transmit parameter */
2158        gma_write16(hw, port, GM_TX_PARAM,
2159                         TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2160                         TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2161                         TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2162
2163        /* configure the Serial Mode Register */
2164        reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
2165                | GM_SMOD_VLAN_ENA
2166                | IPG_DATA_VAL(IPG_DATA_DEF);
2167
2168        if (hw->dev[port]->mtu > ETH_DATA_LEN)
2169                reg |= GM_SMOD_JUMBO_ENA;
2170
2171        gma_write16(hw, port, GM_SERIAL_MODE, reg);
2172
2173        /* physical address: used for pause frames */
2174        gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2175        /* virtual address for data */
2176        gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2177
2178        /* enable interrupt mask for counter overflows */
2179        gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2180        gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2181        gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2182
2183        /* Initialize Mac Fifo */
2184
2185        /* Configure Rx MAC FIFO */
2186        skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2187        reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2188
2189        /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2190        if (is_yukon_lite_a0(hw))
2191                reg &= ~GMF_RX_F_FL_ON;
2192
2193        skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2194        skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2195        /*
2196         * because Pause Packet Truncation in GMAC is not working
2197         * we have to increase the Flush Threshold to 64 bytes
2198         * in order to flush pause packets in Rx FIFO on Yukon-1
2199         */
2200        skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2201
2202        /* Configure Tx MAC FIFO */
2203        skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2204        skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2205}
2206
2207/* Go into power down mode */
2208static void yukon_suspend(struct skge_hw *hw, int port)
2209{
2210        u16 ctrl;
2211
2212        ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2213        ctrl |= PHY_M_PC_POL_R_DIS;
2214        gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2215
2216        ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2217        ctrl |= PHY_CT_RESET;
2218        gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2219
2220        /* switch IEEE compatible power down mode on */
2221        ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2222        ctrl |= PHY_CT_PDOWN;
2223        gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2224}
2225
2226static void yukon_stop(struct skge_port *skge)
2227{
2228        struct skge_hw *hw = skge->hw;
2229        int port = skge->port;
2230
2231        skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2232        yukon_reset(hw, port);
2233
2234        gma_write16(hw, port, GM_GP_CTRL,
2235                         gma_read16(hw, port, GM_GP_CTRL)
2236                         & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2237        gma_read16(hw, port, GM_GP_CTRL);
2238
2239        yukon_suspend(hw, port);
2240
2241        /* set GPHY Control reset */
2242        skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2243        skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2244}
2245
2246static void yukon_get_stats(struct skge_port *skge, u64 *data)
2247{
2248        struct skge_hw *hw = skge->hw;
2249        int port = skge->port;
2250        int i;
2251
2252        data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2253                | gma_read32(hw, port, GM_TXO_OK_LO);
2254        data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2255                | gma_read32(hw, port, GM_RXO_OK_LO);
2256
2257        for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2258                data[i] = gma_read32(hw, port,
2259                                          skge_stats[i].gma_offset);
2260}
2261
2262static void yukon_mac_intr(struct skge_hw *hw, int port)
2263{
2264        struct net_device *dev = hw->dev[port];
2265        struct skge_port *skge = netdev_priv(dev);
2266        u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2267
2268        netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2269                     "mac interrupt status 0x%x\n", status);
2270
2271        if (status & GM_IS_RX_FF_OR) {
2272                ++dev->stats.rx_fifo_errors;
2273                skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2274        }
2275
2276        if (status & GM_IS_TX_FF_UR) {
2277                ++dev->stats.tx_fifo_errors;
2278                skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2279        }
2280
2281}
2282
2283static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2284{
2285        switch (aux & PHY_M_PS_SPEED_MSK) {
2286        case PHY_M_PS_SPEED_1000:
2287                return SPEED_1000;
2288        case PHY_M_PS_SPEED_100:
2289                return SPEED_100;
2290        default:
2291                return SPEED_10;
2292        }
2293}
2294
2295static void yukon_link_up(struct skge_port *skge)
2296{
2297        struct skge_hw *hw = skge->hw;
2298        int port = skge->port;
2299        u16 reg;
2300
2301        /* Enable Transmit FIFO Underrun */
2302        skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2303
2304        reg = gma_read16(hw, port, GM_GP_CTRL);
2305        if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2306                reg |= GM_GPCR_DUP_FULL;
2307
2308        /* enable Rx/Tx */
2309        reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2310        gma_write16(hw, port, GM_GP_CTRL, reg);
2311
2312        gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2313        skge_link_up(skge);
2314}
2315
2316static void yukon_link_down(struct skge_port *skge)
2317{
2318        struct skge_hw *hw = skge->hw;
2319        int port = skge->port;
2320        u16 ctrl;
2321
2322        ctrl = gma_read16(hw, port, GM_GP_CTRL);
2323        ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2324        gma_write16(hw, port, GM_GP_CTRL, ctrl);
2325
2326        if (skge->flow_status == FLOW_STAT_REM_SEND) {
2327                ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2328                ctrl |= PHY_M_AN_ASP;
2329                /* restore Asymmetric Pause bit */
2330                gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2331        }
2332
2333        skge_link_down(skge);
2334
2335        yukon_init(hw, port);
2336}
2337
2338static void yukon_phy_intr(struct skge_port *skge)
2339{
2340        struct skge_hw *hw = skge->hw;
2341        int port = skge->port;
2342        const char *reason = NULL;
2343        u16 istatus, phystat;
2344
2345        istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2346        phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2347
2348        netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2349                     "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
2350
2351        if (istatus & PHY_M_IS_AN_COMPL) {
2352                if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2353                    & PHY_M_AN_RF) {
2354                        reason = "remote fault";
2355                        goto failed;
2356                }
2357
2358                if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2359                        reason = "master/slave fault";
2360                        goto failed;
2361                }
2362
2363                if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2364                        reason = "speed/duplex";
2365                        goto failed;
2366                }
2367
2368                skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2369                        ? DUPLEX_FULL : DUPLEX_HALF;
2370                skge->speed = yukon_speed(hw, phystat);
2371
2372                /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2373                switch (phystat & PHY_M_PS_PAUSE_MSK) {
2374                case PHY_M_PS_PAUSE_MSK:
2375                        skge->flow_status = FLOW_STAT_SYMMETRIC;
2376                        break;
2377                case PHY_M_PS_RX_P_EN:
2378                        skge->flow_status = FLOW_STAT_REM_SEND;
2379                        break;
2380                case PHY_M_PS_TX_P_EN:
2381                        skge->flow_status = FLOW_STAT_LOC_SEND;
2382                        break;
2383                default:
2384                        skge->flow_status = FLOW_STAT_NONE;
2385                }
2386
2387                if (skge->flow_status == FLOW_STAT_NONE ||
2388                    (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2389                        skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2390                else
2391                        skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2392                yukon_link_up(skge);
2393                return;
2394        }
2395
2396        if (istatus & PHY_M_IS_LSP_CHANGE)
2397                skge->speed = yukon_speed(hw, phystat);
2398
2399        if (istatus & PHY_M_IS_DUP_CHANGE)
2400                skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2401        if (istatus & PHY_M_IS_LST_CHANGE) {
2402                if (phystat & PHY_M_PS_LINK_UP)
2403                        yukon_link_up(skge);
2404                else
2405                        yukon_link_down(skge);
2406        }
2407        return;
2408 failed:
2409        pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
2410
2411        /* XXX restart autonegotiation? */
2412}
2413
2414static void skge_phy_reset(struct skge_port *skge)
2415{
2416        struct skge_hw *hw = skge->hw;
2417        int port = skge->port;
2418        struct net_device *dev = hw->dev[port];
2419
2420        netif_stop_queue(skge->netdev);
2421        netif_carrier_off(skge->netdev);
2422
2423        spin_lock_bh(&hw->phy_lock);
2424        if (is_genesis(hw)) {
2425                genesis_reset(hw, port);
2426                genesis_mac_init(hw, port);
2427        } else {
2428                yukon_reset(hw, port);
2429                yukon_init(hw, port);
2430        }
2431        spin_unlock_bh(&hw->phy_lock);
2432
2433        skge_set_multicast(dev);
2434}
2435
2436/* Basic MII support */
2437static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2438{
2439        struct mii_ioctl_data *data = if_mii(ifr);
2440        struct skge_port *skge = netdev_priv(dev);
2441        struct skge_hw *hw = skge->hw;
2442        int err = -EOPNOTSUPP;
2443
2444        if (!netif_running(dev))
2445                return -ENODEV; /* Phy still in reset */
2446
2447        switch (cmd) {
2448        case SIOCGMIIPHY:
2449                data->phy_id = hw->phy_addr;
2450
2451                fallthrough;
2452        case SIOCGMIIREG: {
2453                u16 val = 0;
2454                spin_lock_bh(&hw->phy_lock);
2455
2456                if (is_genesis(hw))
2457                        err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2458                else
2459                        err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2460                spin_unlock_bh(&hw->phy_lock);
2461                data->val_out = val;
2462                break;
2463        }
2464
2465        case SIOCSMIIREG:
2466                spin_lock_bh(&hw->phy_lock);
2467                if (is_genesis(hw))
2468                        err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2469                                   data->val_in);
2470                else
2471                        err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2472                                   data->val_in);
2473                spin_unlock_bh(&hw->phy_lock);
2474                break;
2475        }
2476        return err;
2477}
2478
2479static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2480{
2481        u32 end;
2482
2483        start /= 8;
2484        len /= 8;
2485        end = start + len - 1;
2486
2487        skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2488        skge_write32(hw, RB_ADDR(q, RB_START), start);
2489        skge_write32(hw, RB_ADDR(q, RB_WP), start);
2490        skge_write32(hw, RB_ADDR(q, RB_RP), start);
2491        skge_write32(hw, RB_ADDR(q, RB_END), end);
2492
2493        if (q == Q_R1 || q == Q_R2) {
2494                /* Set thresholds on receive queue's */
2495                skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2496                             start + (2*len)/3);
2497                skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2498                             start + (len/3));
2499        } else {
2500                /* Enable store & forward on Tx queue's because
2501                 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2502                 */
2503                skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2504        }
2505
2506        skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2507}
2508
2509/* Setup Bus Memory Interface */
2510static void skge_qset(struct skge_port *skge, u16 q,
2511                      const struct skge_element *e)
2512{
2513        struct skge_hw *hw = skge->hw;
2514        u32 watermark = 0x600;
2515        u64 base = skge->dma + (e->desc - skge->mem);
2516
2517        /* optimization to reduce window on 32bit/33mhz */
2518        if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2519                watermark /= 2;
2520
2521        skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2522        skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2523        skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2524        skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2525}
2526
2527static int skge_up(struct net_device *dev)
2528{
2529        struct skge_port *skge = netdev_priv(dev);
2530        struct skge_hw *hw = skge->hw;
2531        int port = skge->port;
2532        u32 chunk, ram_addr;
2533        size_t rx_size, tx_size;
2534        int err;
2535
2536        if (!is_valid_ether_addr(dev->dev_addr))
2537                return -EINVAL;
2538
2539        netif_info(skge, ifup, skge->netdev, "enabling interface\n");
2540
2541        if (dev->mtu > RX_BUF_SIZE)
2542                skge->rx_buf_size = dev->mtu + ETH_HLEN;
2543        else
2544                skge->rx_buf_size = RX_BUF_SIZE;
2545
2546
2547        rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2548        tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2549        skge->mem_size = tx_size + rx_size;
2550        skge->mem = dma_alloc_coherent(&hw->pdev->dev, skge->mem_size,
2551                                       &skge->dma, GFP_KERNEL);
2552        if (!skge->mem)
2553                return -ENOMEM;
2554
2555        BUG_ON(skge->dma & 7);
2556
2557        if (upper_32_bits(skge->dma) != upper_32_bits(skge->dma + skge->mem_size)) {
2558                dev_err(&hw->pdev->dev, "dma_alloc_coherent region crosses 4G boundary\n");
2559                err = -EINVAL;
2560                goto free_pci_mem;
2561        }
2562
2563        err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2564        if (err)
2565                goto free_pci_mem;
2566
2567        err = skge_rx_fill(dev);
2568        if (err)
2569                goto free_rx_ring;
2570
2571        err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2572                              skge->dma + rx_size);
2573        if (err)
2574                goto free_rx_ring;
2575
2576        if (hw->ports == 1) {
2577                err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED,
2578                                  dev->name, hw);
2579                if (err) {
2580                        netdev_err(dev, "Unable to allocate interrupt %d error: %d\n",
2581                                   hw->pdev->irq, err);
2582                        goto free_tx_ring;
2583                }
2584        }
2585
2586        /* Initialize MAC */
2587        netif_carrier_off(dev);
2588        spin_lock_bh(&hw->phy_lock);
2589        if (is_genesis(hw))
2590                genesis_mac_init(hw, port);
2591        else
2592                yukon_mac_init(hw, port);
2593        spin_unlock_bh(&hw->phy_lock);
2594
2595        /* Configure RAMbuffers - equally between ports and tx/rx */
2596        chunk = (hw->ram_size  - hw->ram_offset) / (hw->ports * 2);
2597        ram_addr = hw->ram_offset + 2 * chunk * port;
2598
2599        skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2600        skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2601
2602        BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2603        skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2604        skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2605
2606        /* Start receiver BMU */
2607        wmb();
2608        skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2609        skge_led(skge, LED_MODE_ON);
2610
2611        spin_lock_irq(&hw->hw_lock);
2612        hw->intr_mask |= portmask[port];
2613        skge_write32(hw, B0_IMSK, hw->intr_mask);
2614        skge_read32(hw, B0_IMSK);
2615        spin_unlock_irq(&hw->hw_lock);
2616
2617        napi_enable(&skge->napi);
2618
2619        skge_set_multicast(dev);
2620
2621        return 0;
2622
2623 free_tx_ring:
2624        kfree(skge->tx_ring.start);
2625 free_rx_ring:
2626        skge_rx_clean(skge);
2627        kfree(skge->rx_ring.start);
2628 free_pci_mem:
2629        dma_free_coherent(&hw->pdev->dev, skge->mem_size, skge->mem,
2630                          skge->dma);
2631        skge->mem = NULL;
2632
2633        return err;
2634}
2635
2636/* stop receiver */
2637static void skge_rx_stop(struct skge_hw *hw, int port)
2638{
2639        skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2640        skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2641                     RB_RST_SET|RB_DIS_OP_MD);
2642        skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2643}
2644
2645static int skge_down(struct net_device *dev)
2646{
2647        struct skge_port *skge = netdev_priv(dev);
2648        struct skge_hw *hw = skge->hw;
2649        int port = skge->port;
2650
2651        if (!skge->mem)
2652                return 0;
2653
2654        netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
2655
2656        netif_tx_disable(dev);
2657
2658        if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)
2659                del_timer_sync(&skge->link_timer);
2660
2661        napi_disable(&skge->napi);
2662        netif_carrier_off(dev);
2663
2664        spin_lock_irq(&hw->hw_lock);
2665        hw->intr_mask &= ~portmask[port];
2666        skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask);
2667        skge_read32(hw, B0_IMSK);
2668        spin_unlock_irq(&hw->hw_lock);
2669
2670        if (hw->ports == 1)
2671                free_irq(hw->pdev->irq, hw);
2672
2673        skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
2674        if (is_genesis(hw))
2675                genesis_stop(skge);
2676        else
2677                yukon_stop(skge);
2678
2679        /* Stop transmitter */
2680        skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2681        skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2682                     RB_RST_SET|RB_DIS_OP_MD);
2683
2684
2685        /* Disable Force Sync bit and Enable Alloc bit */
2686        skge_write8(hw, SK_REG(port, TXA_CTRL),
2687                    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2688
2689        /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2690        skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2691        skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2692
2693        /* Reset PCI FIFO */
2694        skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2695        skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2696
2697        /* Reset the RAM Buffer async Tx queue */
2698        skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2699
2700        skge_rx_stop(hw, port);
2701
2702        if (is_genesis(hw)) {
2703                skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2704                skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2705        } else {
2706                skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2707                skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2708        }
2709
2710        skge_led(skge, LED_MODE_OFF);
2711
2712        netif_tx_lock_bh(dev);
2713        skge_tx_clean(dev);
2714        netif_tx_unlock_bh(dev);
2715
2716        skge_rx_clean(skge);
2717
2718        kfree(skge->rx_ring.start);
2719        kfree(skge->tx_ring.start);
2720        dma_free_coherent(&hw->pdev->dev, skge->mem_size, skge->mem,
2721                          skge->dma);
2722        skge->mem = NULL;
2723        return 0;
2724}
2725
2726static inline int skge_avail(const struct skge_ring *ring)
2727{
2728        smp_mb();
2729        return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2730                + (ring->to_clean - ring->to_use) - 1;
2731}
2732
2733static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
2734                                   struct net_device *dev)
2735{
2736        struct skge_port *skge = netdev_priv(dev);
2737        struct skge_hw *hw = skge->hw;
2738        struct skge_element *e;
2739        struct skge_tx_desc *td;
2740        int i;
2741        u32 control, len;
2742        dma_addr_t map;
2743
2744        if (skb_padto(skb, ETH_ZLEN))
2745                return NETDEV_TX_OK;
2746
2747        if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2748                return NETDEV_TX_BUSY;
2749
2750        e = skge->tx_ring.to_use;
2751        td = e->desc;
2752        BUG_ON(td->control & BMU_OWN);
2753        e->skb = skb;
2754        len = skb_headlen(skb);
2755        map = dma_map_single(&hw->pdev->dev, skb->data, len, DMA_TO_DEVICE);
2756        if (dma_mapping_error(&hw->pdev->dev, map))
2757                goto mapping_error;
2758
2759        dma_unmap_addr_set(e, mapaddr, map);
2760        dma_unmap_len_set(e, maplen, len);
2761
2762        td->dma_lo = lower_32_bits(map);
2763        td->dma_hi = upper_32_bits(map);
2764
2765        if (skb->ip_summed == CHECKSUM_PARTIAL) {
2766                const int offset = skb_checksum_start_offset(skb);
2767
2768                /* This seems backwards, but it is what the sk98lin
2769                 * does.  Looks like hardware is wrong?
2770                 */
2771                if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
2772                    hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2773                        control = BMU_TCP_CHECK;
2774                else
2775                        control = BMU_UDP_CHECK;
2776
2777                td->csum_offs = 0;
2778                td->csum_start = offset;
2779                td->csum_write = offset + skb->csum_offset;
2780        } else
2781                control = BMU_CHECK;
2782
2783        if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2784                control |= BMU_EOF | BMU_IRQ_EOF;
2785        else {
2786                struct skge_tx_desc *tf = td;
2787
2788                control |= BMU_STFWD;
2789                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2790                        const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2791
2792                        map = skb_frag_dma_map(&hw->pdev->dev, frag, 0,
2793                                               skb_frag_size(frag), DMA_TO_DEVICE);
2794                        if (dma_mapping_error(&hw->pdev->dev, map))
2795                                goto mapping_unwind;
2796
2797                        e = e->next;
2798                        e->skb = skb;
2799                        tf = e->desc;
2800                        BUG_ON(tf->control & BMU_OWN);
2801
2802                        tf->dma_lo = lower_32_bits(map);
2803                        tf->dma_hi = upper_32_bits(map);
2804                        dma_unmap_addr_set(e, mapaddr, map);
2805                        dma_unmap_len_set(e, maplen, skb_frag_size(frag));
2806
2807                        tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag);
2808                }
2809                tf->control |= BMU_EOF | BMU_IRQ_EOF;
2810        }
2811        /* Make sure all the descriptors written */
2812        wmb();
2813        td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2814        wmb();
2815
2816        netdev_sent_queue(dev, skb->len);
2817
2818        skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2819
2820        netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
2821                     "tx queued, slot %td, len %d\n",
2822                     e - skge->tx_ring.start, skb->len);
2823
2824        skge->tx_ring.to_use = e->next;
2825        smp_wmb();
2826
2827        if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2828                netdev_dbg(dev, "transmit queue full\n");
2829                netif_stop_queue(dev);
2830        }
2831
2832        return NETDEV_TX_OK;
2833
2834mapping_unwind:
2835        e = skge->tx_ring.to_use;
2836        dma_unmap_single(&hw->pdev->dev, dma_unmap_addr(e, mapaddr),
2837                         dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2838        while (i-- > 0) {
2839                e = e->next;
2840                dma_unmap_page(&hw->pdev->dev, dma_unmap_addr(e, mapaddr),
2841                               dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2842        }
2843
2844mapping_error:
2845        if (net_ratelimit())
2846                dev_warn(&hw->pdev->dev, "%s: tx mapping error\n", dev->name);
2847        dev_kfree_skb_any(skb);
2848        return NETDEV_TX_OK;
2849}
2850
2851
2852/* Free resources associated with this reing element */
2853static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e,
2854                                 u32 control)
2855{
2856        /* skb header vs. fragment */
2857        if (control & BMU_STF)
2858                dma_unmap_single(&pdev->dev, dma_unmap_addr(e, mapaddr),
2859                                 dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2860        else
2861                dma_unmap_page(&pdev->dev, dma_unmap_addr(e, mapaddr),
2862                               dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2863}
2864
2865/* Free all buffers in transmit ring */
2866static void skge_tx_clean(struct net_device *dev)
2867{
2868        struct skge_port *skge = netdev_priv(dev);
2869        struct skge_element *e;
2870
2871        for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2872                struct skge_tx_desc *td = e->desc;
2873
2874                skge_tx_unmap(skge->hw->pdev, e, td->control);
2875
2876                if (td->control & BMU_EOF)
2877                        dev_kfree_skb(e->skb);
2878                td->control = 0;
2879        }
2880
2881        netdev_reset_queue(dev);
2882        skge->tx_ring.to_clean = e;
2883}
2884
2885static void skge_tx_timeout(struct net_device *dev, unsigned int txqueue)
2886{
2887        struct skge_port *skge = netdev_priv(dev);
2888
2889        netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
2890
2891        skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2892        skge_tx_clean(dev);
2893        netif_wake_queue(dev);
2894}
2895
2896static int skge_change_mtu(struct net_device *dev, int new_mtu)
2897{
2898        int err;
2899
2900        if (!netif_running(dev)) {
2901                dev->mtu = new_mtu;
2902                return 0;
2903        }
2904
2905        skge_down(dev);
2906
2907        dev->mtu = new_mtu;
2908
2909        err = skge_up(dev);
2910        if (err)
2911                dev_close(dev);
2912
2913        return err;
2914}
2915
2916static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2917
2918static void genesis_add_filter(u8 filter[8], const u8 *addr)
2919{
2920        u32 crc, bit;
2921
2922        crc = ether_crc_le(ETH_ALEN, addr);
2923        bit = ~crc & 0x3f;
2924        filter[bit/8] |= 1 << (bit%8);
2925}
2926
2927static void genesis_set_multicast(struct net_device *dev)
2928{
2929        struct skge_port *skge = netdev_priv(dev);
2930        struct skge_hw *hw = skge->hw;
2931        int port = skge->port;
2932        struct netdev_hw_addr *ha;
2933        u32 mode;
2934        u8 filter[8];
2935
2936        mode = xm_read32(hw, port, XM_MODE);
2937        mode |= XM_MD_ENA_HASH;
2938        if (dev->flags & IFF_PROMISC)
2939                mode |= XM_MD_ENA_PROM;
2940        else
2941                mode &= ~XM_MD_ENA_PROM;
2942
2943        if (dev->flags & IFF_ALLMULTI)
2944                memset(filter, 0xff, sizeof(filter));
2945        else {
2946                memset(filter, 0, sizeof(filter));
2947
2948                if (skge->flow_status == FLOW_STAT_REM_SEND ||
2949                    skge->flow_status == FLOW_STAT_SYMMETRIC)
2950                        genesis_add_filter(filter, pause_mc_addr);
2951
2952                netdev_for_each_mc_addr(ha, dev)
2953                        genesis_add_filter(filter, ha->addr);
2954        }
2955
2956        xm_write32(hw, port, XM_MODE, mode);
2957        xm_outhash(hw, port, XM_HSM, filter);
2958}
2959
2960static void yukon_add_filter(u8 filter[8], const u8 *addr)
2961{
2962        u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2963
2964        filter[bit / 8] |= 1 << (bit % 8);
2965}
2966
2967static void yukon_set_multicast(struct net_device *dev)
2968{
2969        struct skge_port *skge = netdev_priv(dev);
2970        struct skge_hw *hw = skge->hw;
2971        int port = skge->port;
2972        struct netdev_hw_addr *ha;
2973        int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
2974                        skge->flow_status == FLOW_STAT_SYMMETRIC);
2975        u16 reg;
2976        u8 filter[8];
2977
2978        memset(filter, 0, sizeof(filter));
2979
2980        reg = gma_read16(hw, port, GM_RX_CTRL);
2981        reg |= GM_RXCR_UCF_ENA;
2982
2983        if (dev->flags & IFF_PROMISC)           /* promiscuous */
2984                reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2985        else if (dev->flags & IFF_ALLMULTI)     /* all multicast */
2986                memset(filter, 0xff, sizeof(filter));
2987        else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
2988                reg &= ~GM_RXCR_MCF_ENA;
2989        else {
2990                reg |= GM_RXCR_MCF_ENA;
2991
2992                if (rx_pause)
2993                        yukon_add_filter(filter, pause_mc_addr);
2994
2995                netdev_for_each_mc_addr(ha, dev)
2996                        yukon_add_filter(filter, ha->addr);
2997        }
2998
2999
3000        gma_write16(hw, port, GM_MC_ADDR_H1,
3001                         (u16)filter[0] | ((u16)filter[1] << 8));
3002        gma_write16(hw, port, GM_MC_ADDR_H2,
3003                         (u16)filter[2] | ((u16)filter[3] << 8));
3004        gma_write16(hw, port, GM_MC_ADDR_H3,
3005                         (u16)filter[4] | ((u16)filter[5] << 8));
3006        gma_write16(hw, port, GM_MC_ADDR_H4,
3007                         (u16)filter[6] | ((u16)filter[7] << 8));
3008
3009        gma_write16(hw, port, GM_RX_CTRL, reg);
3010}
3011
3012static inline u16 phy_length(const struct skge_hw *hw, u32 status)
3013{
3014        if (is_genesis(hw))
3015                return status >> XMR_FS_LEN_SHIFT;
3016        else
3017                return status >> GMR_FS_LEN_SHIFT;
3018}
3019
3020static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
3021{
3022        if (is_genesis(hw))
3023                return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
3024        else
3025                return (status & GMR_FS_ANY_ERR) ||
3026                        (status & GMR_FS_RX_OK) == 0;
3027}
3028
3029static void skge_set_multicast(struct net_device *dev)
3030{
3031        struct skge_port *skge = netdev_priv(dev);
3032
3033        if (is_genesis(skge->hw))
3034                genesis_set_multicast(dev);
3035        else
3036                yukon_set_multicast(dev);
3037
3038}
3039
3040
3041/* Get receive buffer from descriptor.
3042 * Handles copy of small buffers and reallocation failures
3043 */
3044static struct sk_buff *skge_rx_get(struct net_device *dev,
3045                                   struct skge_element *e,
3046                                   u32 control, u32 status, u16 csum)
3047{
3048        struct skge_port *skge = netdev_priv(dev);
3049        struct sk_buff *skb;
3050        u16 len = control & BMU_BBC;
3051
3052        netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
3053                     "rx slot %td status 0x%x len %d\n",
3054                     e - skge->rx_ring.start, status, len);
3055
3056        if (len > skge->rx_buf_size)
3057                goto error;
3058
3059        if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3060                goto error;
3061
3062        if (bad_phy_status(skge->hw, status))
3063                goto error;
3064
3065        if (phy_length(skge->hw, status) != len)
3066                goto error;
3067
3068        if (len < RX_COPY_THRESHOLD) {
3069                skb = netdev_alloc_skb_ip_align(dev, len);
3070                if (!skb)
3071                        goto resubmit;
3072
3073                dma_sync_single_for_cpu(&skge->hw->pdev->dev,
3074                                        dma_unmap_addr(e, mapaddr),
3075                                        dma_unmap_len(e, maplen),
3076                                        DMA_FROM_DEVICE);
3077                skb_copy_from_linear_data(e->skb, skb->data, len);
3078                dma_sync_single_for_device(&skge->hw->pdev->dev,
3079                                           dma_unmap_addr(e, mapaddr),
3080                                           dma_unmap_len(e, maplen),
3081                                           DMA_FROM_DEVICE);
3082                skge_rx_reuse(e, skge->rx_buf_size);
3083        } else {
3084                struct skge_element ee;
3085                struct sk_buff *nskb;
3086
3087                nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
3088                if (!nskb)
3089                        goto resubmit;
3090
3091                ee = *e;
3092
3093                skb = ee.skb;
3094                prefetch(skb->data);
3095
3096                if (skge_rx_setup(skge, e, nskb, skge->rx_buf_size) < 0) {
3097                        dev_kfree_skb(nskb);
3098                        goto resubmit;
3099                }
3100
3101                dma_unmap_single(&skge->hw->pdev->dev,
3102                                 dma_unmap_addr(&ee, mapaddr),
3103                                 dma_unmap_len(&ee, maplen), DMA_FROM_DEVICE);
3104        }
3105
3106        skb_put(skb, len);
3107
3108        if (dev->features & NETIF_F_RXCSUM) {
3109                skb->csum = le16_to_cpu(csum);
3110                skb->ip_summed = CHECKSUM_COMPLETE;
3111        }
3112
3113        skb->protocol = eth_type_trans(skb, dev);
3114
3115        return skb;
3116error:
3117
3118        netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
3119                     "rx err, slot %td control 0x%x status 0x%x\n",
3120                     e - skge->rx_ring.start, control, status);
3121
3122        if (is_genesis(skge->hw)) {
3123                if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3124                        dev->stats.rx_length_errors++;
3125                if (status & XMR_FS_FRA_ERR)
3126                        dev->stats.rx_frame_errors++;
3127                if (status & XMR_FS_FCS_ERR)
3128                        dev->stats.rx_crc_errors++;
3129        } else {
3130                if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3131                        dev->stats.rx_length_errors++;
3132                if (status & GMR_FS_FRAGMENT)
3133                        dev->stats.rx_frame_errors++;
3134                if (status & GMR_FS_CRC_ERR)
3135                        dev->stats.rx_crc_errors++;
3136        }
3137
3138resubmit:
3139        skge_rx_reuse(e, skge->rx_buf_size);
3140        return NULL;
3141}
3142
3143/* Free all buffers in Tx ring which are no longer owned by device */
3144static void skge_tx_done(struct net_device *dev)
3145{
3146        struct skge_port *skge = netdev_priv(dev);
3147        struct skge_ring *ring = &skge->tx_ring;
3148        struct skge_element *e;
3149        unsigned int bytes_compl = 0, pkts_compl = 0;
3150
3151        skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3152
3153        for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3154                u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3155
3156                if (control & BMU_OWN)
3157                        break;
3158
3159                skge_tx_unmap(skge->hw->pdev, e, control);
3160
3161                if (control & BMU_EOF) {
3162                        netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
3163                                     "tx done slot %td\n",
3164                                     e - skge->tx_ring.start);
3165
3166                        pkts_compl++;
3167                        bytes_compl += e->skb->len;
3168
3169                        dev_consume_skb_any(e->skb);
3170                }
3171        }
3172        netdev_completed_queue(dev, pkts_compl, bytes_compl);
3173        skge->tx_ring.to_clean = e;
3174
3175        /* Can run lockless until we need to synchronize to restart queue. */
3176        smp_mb();
3177
3178        if (unlikely(netif_queue_stopped(dev) &&
3179                     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3180                netif_tx_lock(dev);
3181                if (unlikely(netif_queue_stopped(dev) &&
3182                             skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3183                        netif_wake_queue(dev);
3184
3185                }
3186                netif_tx_unlock(dev);
3187        }
3188}
3189
3190static int skge_poll(struct napi_struct *napi, int budget)
3191{
3192        struct skge_port *skge = container_of(napi, struct skge_port, napi);
3193        struct net_device *dev = skge->netdev;
3194        struct skge_hw *hw = skge->hw;
3195        struct skge_ring *ring = &skge->rx_ring;
3196        struct skge_element *e;
3197        int work_done = 0;
3198
3199        skge_tx_done(dev);
3200
3201        skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3202
3203        for (e = ring->to_clean; prefetch(e->next), work_done < budget; e = e->next) {
3204                struct skge_rx_desc *rd = e->desc;
3205                struct sk_buff *skb;
3206                u32 control;
3207
3208                rmb();
3209                control = rd->control;
3210                if (control & BMU_OWN)
3211                        break;
3212
3213                skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3214                if (likely(skb)) {
3215                        napi_gro_receive(napi, skb);
3216                        ++work_done;
3217                }
3218        }
3219        ring->to_clean = e;
3220
3221        /* restart receiver */
3222        wmb();
3223        skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3224
3225        if (work_done < budget && napi_complete_done(napi, work_done)) {
3226                unsigned long flags;
3227
3228                spin_lock_irqsave(&hw->hw_lock, flags);
3229                hw->intr_mask |= napimask[skge->port];
3230                skge_write32(hw, B0_IMSK, hw->intr_mask);
3231                skge_read32(hw, B0_IMSK);
3232                spin_unlock_irqrestore(&hw->hw_lock, flags);
3233        }
3234
3235        return work_done;
3236}
3237
3238/* Parity errors seem to happen when Genesis is connected to a switch
3239 * with no other ports present. Heartbeat error??
3240 */
3241static void skge_mac_parity(struct skge_hw *hw, int port)
3242{
3243        struct net_device *dev = hw->dev[port];
3244
3245        ++dev->stats.tx_heartbeat_errors;
3246
3247        if (is_genesis(hw))
3248                skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3249                             MFF_CLR_PERR);
3250        else
3251                /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3252                skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3253                            (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3254                            ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3255}
3256
3257static void skge_mac_intr(struct skge_hw *hw, int port)
3258{
3259        if (is_genesis(hw))
3260                genesis_mac_intr(hw, port);
3261        else
3262                yukon_mac_intr(hw, port);
3263}
3264
3265/* Handle device specific framing and timeout interrupts */
3266static void skge_error_irq(struct skge_hw *hw)
3267{
3268        struct pci_dev *pdev = hw->pdev;
3269        u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3270
3271        if (is_genesis(hw)) {
3272                /* clear xmac errors */
3273                if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3274                        skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3275                if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3276                        skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3277        } else {
3278                /* Timestamp (unused) overflow */
3279                if (hwstatus & IS_IRQ_TIST_OV)
3280                        skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3281        }
3282
3283        if (hwstatus & IS_RAM_RD_PAR) {
3284                dev_err(&pdev->dev, "Ram read data parity error\n");
3285                skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3286        }
3287
3288        if (hwstatus & IS_RAM_WR_PAR) {
3289                dev_err(&pdev->dev, "Ram write data parity error\n");
3290                skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3291        }
3292
3293        if (hwstatus & IS_M1_PAR_ERR)
3294                skge_mac_parity(hw, 0);
3295
3296        if (hwstatus & IS_M2_PAR_ERR)
3297                skge_mac_parity(hw, 1);
3298
3299        if (hwstatus & IS_R1_PAR_ERR) {
3300                dev_err(&pdev->dev, "%s: receive queue parity error\n",
3301                        hw->dev[0]->name);
3302                skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3303        }
3304
3305        if (hwstatus & IS_R2_PAR_ERR) {
3306                dev_err(&pdev->dev, "%s: receive queue parity error\n",
3307                        hw->dev[1]->name);
3308                skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3309        }
3310
3311        if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3312                u16 pci_status, pci_cmd;
3313
3314                pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3315                pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3316
3317                dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3318                        pci_cmd, pci_status);
3319
3320                /* Write the error bits back to clear them. */
3321                pci_status &= PCI_STATUS_ERROR_BITS;
3322                skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3323                pci_write_config_word(pdev, PCI_COMMAND,
3324                                      pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3325                pci_write_config_word(pdev, PCI_STATUS, pci_status);
3326                skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3327
3328                /* if error still set then just ignore it */
3329                hwstatus = skge_read32(hw, B0_HWE_ISRC);
3330                if (hwstatus & IS_IRQ_STAT) {
3331                        dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3332                        hw->intr_mask &= ~IS_HW_ERR;
3333                }
3334        }
3335}
3336
3337/*
3338 * Interrupt from PHY are handled in tasklet (softirq)
3339 * because accessing phy registers requires spin wait which might
3340 * cause excess interrupt latency.
3341 */
3342static void skge_extirq(struct tasklet_struct *t)
3343{
3344        struct skge_hw *hw = from_tasklet(hw, t, phy_task);
3345        int port;
3346
3347        for (port = 0; port < hw->ports; port++) {
3348                struct net_device *dev = hw->dev[port];
3349
3350                if (netif_running(dev)) {
3351                        struct skge_port *skge = netdev_priv(dev);
3352
3353                        spin_lock(&hw->phy_lock);
3354                        if (!is_genesis(hw))
3355                                yukon_phy_intr(skge);
3356                        else if (hw->phy_type == SK_PHY_BCOM)
3357                                bcom_phy_intr(skge);
3358                        spin_unlock(&hw->phy_lock);
3359                }
3360        }
3361
3362        spin_lock_irq(&hw->hw_lock);
3363        hw->intr_mask |= IS_EXT_REG;
3364        skge_write32(hw, B0_IMSK, hw->intr_mask);
3365        skge_read32(hw, B0_IMSK);
3366        spin_unlock_irq(&hw->hw_lock);
3367}
3368
3369static irqreturn_t skge_intr(int irq, void *dev_id)
3370{
3371        struct skge_hw *hw = dev_id;
3372        u32 status;
3373        int handled = 0;
3374
3375        spin_lock(&hw->hw_lock);
3376        /* Reading this register masks IRQ */
3377        status = skge_read32(hw, B0_SP_ISRC);
3378        if (status == 0 || status == ~0)
3379                goto out;
3380
3381        handled = 1;
3382        status &= hw->intr_mask;
3383        if (status & IS_EXT_REG) {
3384                hw->intr_mask &= ~IS_EXT_REG;
3385                tasklet_schedule(&hw->phy_task);
3386        }
3387
3388        if (status & (IS_XA1_F|IS_R1_F)) {
3389                struct skge_port *skge = netdev_priv(hw->dev[0]);
3390                hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3391                napi_schedule(&skge->napi);
3392        }
3393
3394        if (status & IS_PA_TO_TX1)
3395                skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3396
3397        if (status & IS_PA_TO_RX1) {
3398                ++hw->dev[0]->stats.rx_over_errors;
3399                skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3400        }
3401
3402
3403        if (status & IS_MAC1)
3404                skge_mac_intr(hw, 0);
3405
3406        if (hw->dev[1]) {
3407                struct skge_port *skge = netdev_priv(hw->dev[1]);
3408
3409                if (status & (IS_XA2_F|IS_R2_F)) {
3410                        hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3411                        napi_schedule(&skge->napi);
3412                }
3413
3414                if (status & IS_PA_TO_RX2) {
3415                        ++hw->dev[1]->stats.rx_over_errors;
3416                        skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3417                }
3418
3419                if (status & IS_PA_TO_TX2)
3420                        skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3421
3422                if (status & IS_MAC2)
3423                        skge_mac_intr(hw, 1);
3424        }
3425
3426        if (status & IS_HW_ERR)
3427                skge_error_irq(hw);
3428out:
3429        skge_write32(hw, B0_IMSK, hw->intr_mask);
3430        skge_read32(hw, B0_IMSK);
3431        spin_unlock(&hw->hw_lock);
3432
3433        return IRQ_RETVAL(handled);
3434}
3435
3436#ifdef CONFIG_NET_POLL_CONTROLLER
3437static void skge_netpoll(struct net_device *dev)
3438{
3439        struct skge_port *skge = netdev_priv(dev);
3440
3441        disable_irq(dev->irq);
3442        skge_intr(dev->irq, skge->hw);
3443        enable_irq(dev->irq);
3444}
3445#endif
3446
3447static int skge_set_mac_address(struct net_device *dev, void *p)
3448{
3449        struct skge_port *skge = netdev_priv(dev);
3450        struct skge_hw *hw = skge->hw;
3451        unsigned port = skge->port;
3452        const struct sockaddr *addr = p;
3453        u16 ctrl;
3454
3455        if (!is_valid_ether_addr(addr->sa_data))
3456                return -EADDRNOTAVAIL;
3457
3458        memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3459
3460        if (!netif_running(dev)) {
3461                memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3462                memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3463        } else {
3464                /* disable Rx */
3465                spin_lock_bh(&hw->phy_lock);
3466                ctrl = gma_read16(hw, port, GM_GP_CTRL);
3467                gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3468
3469                memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3470                memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3471
3472                if (is_genesis(hw))
3473                        xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3474                else {
3475                        gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3476                        gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3477                }
3478
3479                gma_write16(hw, port, GM_GP_CTRL, ctrl);
3480                spin_unlock_bh(&hw->phy_lock);
3481        }
3482
3483        return 0;
3484}
3485
3486static const struct {
3487        u8 id;
3488        const char *name;
3489} skge_chips[] = {
3490        { CHIP_ID_GENESIS,      "Genesis" },
3491        { CHIP_ID_YUKON,         "Yukon" },
3492        { CHIP_ID_YUKON_LITE,    "Yukon-Lite"},
3493        { CHIP_ID_YUKON_LP,      "Yukon-LP"},
3494};
3495
3496static const char *skge_board_name(const struct skge_hw *hw)
3497{
3498        int i;
3499        static char buf[16];
3500
3501        for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3502                if (skge_chips[i].id == hw->chip_id)
3503                        return skge_chips[i].name;
3504
3505        snprintf(buf, sizeof(buf), "chipid 0x%x", hw->chip_id);
3506        return buf;
3507}
3508
3509
3510/*
3511 * Setup the board data structure, but don't bring up
3512 * the port(s)
3513 */
3514static int skge_reset(struct skge_hw *hw)
3515{
3516        u32 reg;
3517        u16 ctst, pci_status;
3518        u8 t8, mac_cfg, pmd_type;
3519        int i;
3520
3521        ctst = skge_read16(hw, B0_CTST);
3522
3523        /* do a SW reset */
3524        skge_write8(hw, B0_CTST, CS_RST_SET);
3525        skge_write8(hw, B0_CTST, CS_RST_CLR);
3526
3527        /* clear PCI errors, if any */
3528        skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3529        skge_write8(hw, B2_TST_CTRL2, 0);
3530
3531        pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3532        pci_write_config_word(hw->pdev, PCI_STATUS,
3533                              pci_status | PCI_STATUS_ERROR_BITS);
3534        skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3535        skge_write8(hw, B0_CTST, CS_MRST_CLR);
3536
3537        /* restore CLK_RUN bits (for Yukon-Lite) */
3538        skge_write16(hw, B0_CTST,
3539                     ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3540
3541        hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3542        hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3543        pmd_type = skge_read8(hw, B2_PMD_TYP);
3544        hw->copper = (pmd_type == 'T' || pmd_type == '1');
3545
3546        switch (hw->chip_id) {
3547        case CHIP_ID_GENESIS:
3548#ifdef CONFIG_SKGE_GENESIS
3549                switch (hw->phy_type) {
3550                case SK_PHY_XMAC:
3551                        hw->phy_addr = PHY_ADDR_XMAC;
3552                        break;
3553                case SK_PHY_BCOM:
3554                        hw->phy_addr = PHY_ADDR_BCOM;
3555                        break;
3556                default:
3557                        dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3558                               hw->phy_type);
3559                        return -EOPNOTSUPP;
3560                }
3561                break;
3562#else
3563                dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n");
3564                return -EOPNOTSUPP;
3565#endif
3566
3567        case CHIP_ID_YUKON:
3568        case CHIP_ID_YUKON_LITE:
3569        case CHIP_ID_YUKON_LP:
3570                if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3571                        hw->copper = 1;
3572
3573                hw->phy_addr = PHY_ADDR_MARV;
3574                break;
3575
3576        default:
3577                dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3578                       hw->chip_id);
3579                return -EOPNOTSUPP;
3580        }
3581
3582        mac_cfg = skge_read8(hw, B2_MAC_CFG);
3583        hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3584        hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3585
3586        /* read the adapters RAM size */
3587        t8 = skge_read8(hw, B2_E_0);
3588        if (is_genesis(hw)) {
3589                if (t8 == 3) {
3590                        /* special case: 4 x 64k x 36, offset = 0x80000 */
3591                        hw->ram_size = 0x100000;
3592                        hw->ram_offset = 0x80000;
3593                } else
3594                        hw->ram_size = t8 * 512;
3595        } else if (t8 == 0)
3596                hw->ram_size = 0x20000;
3597        else
3598                hw->ram_size = t8 * 4096;
3599
3600        hw->intr_mask = IS_HW_ERR;
3601
3602        /* Use PHY IRQ for all but fiber based Genesis board */
3603        if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC))
3604                hw->intr_mask |= IS_EXT_REG;
3605
3606        if (is_genesis(hw))
3607                genesis_init(hw);
3608        else {
3609                /* switch power to VCC (WA for VAUX problem) */
3610                skge_write8(hw, B0_POWER_CTRL,
3611                            PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3612
3613                /* avoid boards with stuck Hardware error bits */
3614                if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3615                    (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3616                        dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3617                        hw->intr_mask &= ~IS_HW_ERR;
3618                }
3619
3620                /* Clear PHY COMA */
3621                skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3622                pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3623                reg &= ~PCI_PHY_COMA;
3624                pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3625                skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3626
3627
3628                for (i = 0; i < hw->ports; i++) {
3629                        skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3630                        skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3631                }
3632        }
3633
3634        /* turn off hardware timer (unused) */
3635        skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3636        skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3637        skge_write8(hw, B0_LED, LED_STAT_ON);
3638
3639        /* enable the Tx Arbiters */
3640        for (i = 0; i < hw->ports; i++)
3641                skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3642
3643        /* Initialize ram interface */
3644        skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3645
3646        skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3647        skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3648        skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3649        skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3650        skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3651        skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3652        skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3653        skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3654        skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3655        skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3656        skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3657        skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3658
3659        skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3660
3661        /* Set interrupt moderation for Transmit only
3662         * Receive interrupts avoided by NAPI
3663         */
3664        skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3665        skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3666        skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3667
3668        /* Leave irq disabled until first port is brought up. */
3669        skge_write32(hw, B0_IMSK, 0);
3670
3671        for (i = 0; i < hw->ports; i++) {
3672                if (is_genesis(hw))
3673                        genesis_reset(hw, i);
3674                else
3675                        yukon_reset(hw, i);
3676        }
3677
3678        return 0;
3679}
3680
3681
3682#ifdef CONFIG_SKGE_DEBUG
3683
3684static struct dentry *skge_debug;
3685
3686static int skge_debug_show(struct seq_file *seq, void *v)
3687{
3688        struct net_device *dev = seq->private;
3689        const struct skge_port *skge = netdev_priv(dev);
3690        const struct skge_hw *hw = skge->hw;
3691        const struct skge_element *e;
3692
3693        if (!netif_running(dev))
3694                return -ENETDOWN;
3695
3696        seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3697                   skge_read32(hw, B0_IMSK));
3698
3699        seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3700        for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3701                const struct skge_tx_desc *t = e->desc;
3702                seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3703                           t->control, t->dma_hi, t->dma_lo, t->status,
3704                           t->csum_offs, t->csum_write, t->csum_start);
3705        }
3706
3707        seq_puts(seq, "\nRx Ring:\n");
3708        for (e = skge->rx_ring.to_clean; ; e = e->next) {
3709                const struct skge_rx_desc *r = e->desc;
3710
3711                if (r->control & BMU_OWN)
3712                        break;
3713
3714                seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3715                           r->control, r->dma_hi, r->dma_lo, r->status,
3716                           r->timestamp, r->csum1, r->csum1_start);
3717        }
3718
3719        return 0;
3720}
3721DEFINE_SHOW_ATTRIBUTE(skge_debug);
3722
3723/*
3724 * Use network device events to create/remove/rename
3725 * debugfs file entries
3726 */
3727static int skge_device_event(struct notifier_block *unused,
3728                             unsigned long event, void *ptr)
3729{
3730        struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3731        struct skge_port *skge;
3732
3733        if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
3734                goto done;
3735
3736        skge = netdev_priv(dev);
3737        switch (event) {
3738        case NETDEV_CHANGENAME:
3739                if (skge->debugfs)
3740                        skge->debugfs = debugfs_rename(skge_debug,
3741                                                       skge->debugfs,
3742                                                       skge_debug, dev->name);
3743                break;
3744
3745        case NETDEV_GOING_DOWN:
3746                debugfs_remove(skge->debugfs);
3747                skge->debugfs = NULL;
3748                break;
3749
3750        case NETDEV_UP:
3751                skge->debugfs = debugfs_create_file(dev->name, 0444, skge_debug,
3752                                                    dev, &skge_debug_fops);
3753                break;
3754        }
3755
3756done:
3757        return NOTIFY_DONE;
3758}
3759
3760static struct notifier_block skge_notifier = {
3761        .notifier_call = skge_device_event,
3762};
3763
3764
3765static __init void skge_debug_init(void)
3766{
3767        skge_debug = debugfs_create_dir("skge", NULL);
3768
3769        register_netdevice_notifier(&skge_notifier);
3770}
3771
3772static __exit void skge_debug_cleanup(void)
3773{
3774        if (skge_debug) {
3775                unregister_netdevice_notifier(&skge_notifier);
3776                debugfs_remove(skge_debug);
3777                skge_debug = NULL;
3778        }
3779}
3780
3781#else
3782#define skge_debug_init()
3783#define skge_debug_cleanup()
3784#endif
3785
3786static const struct net_device_ops skge_netdev_ops = {
3787        .ndo_open               = skge_up,
3788        .ndo_stop               = skge_down,
3789        .ndo_start_xmit         = skge_xmit_frame,
3790        .ndo_do_ioctl           = skge_ioctl,
3791        .ndo_get_stats          = skge_get_stats,
3792        .ndo_tx_timeout         = skge_tx_timeout,
3793        .ndo_change_mtu         = skge_change_mtu,
3794        .ndo_validate_addr      = eth_validate_addr,
3795        .ndo_set_rx_mode        = skge_set_multicast,
3796        .ndo_set_mac_address    = skge_set_mac_address,
3797#ifdef CONFIG_NET_POLL_CONTROLLER
3798        .ndo_poll_controller    = skge_netpoll,
3799#endif
3800};
3801
3802
3803/* Initialize network device */
3804static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3805                                       int highmem)
3806{
3807        struct skge_port *skge;
3808        struct net_device *dev = alloc_etherdev(sizeof(*skge));
3809
3810        if (!dev)
3811                return NULL;
3812
3813        SET_NETDEV_DEV(dev, &hw->pdev->dev);
3814        dev->netdev_ops = &skge_netdev_ops;
3815        dev->ethtool_ops = &skge_ethtool_ops;
3816        dev->watchdog_timeo = TX_WATCHDOG;
3817        dev->irq = hw->pdev->irq;
3818
3819        /* MTU range: 60 - 9000 */
3820        dev->min_mtu = ETH_ZLEN;
3821        dev->max_mtu = ETH_JUMBO_MTU;
3822
3823        if (highmem)
3824                dev->features |= NETIF_F_HIGHDMA;
3825
3826        skge = netdev_priv(dev);
3827        netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
3828        skge->netdev = dev;
3829        skge->hw = hw;
3830        skge->msg_enable = netif_msg_init(debug, default_msg);
3831
3832        skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3833        skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3834
3835        /* Auto speed and flow control */
3836        skge->autoneg = AUTONEG_ENABLE;
3837        skge->flow_control = FLOW_MODE_SYM_OR_REM;
3838        skge->duplex = -1;
3839        skge->speed = -1;
3840        skge->advertising = skge_supported_modes(hw);
3841
3842        if (device_can_wakeup(&hw->pdev->dev)) {
3843                skge->wol = wol_supported(hw) & WAKE_MAGIC;
3844                device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
3845        }
3846
3847        hw->dev[port] = dev;
3848
3849        skge->port = port;
3850
3851        /* Only used for Genesis XMAC */
3852        if (is_genesis(hw))
3853                timer_setup(&skge->link_timer, xm_link_timer, 0);
3854        else {
3855                dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3856                                   NETIF_F_RXCSUM;
3857                dev->features |= dev->hw_features;
3858        }
3859
3860        /* read the mac address */
3861        memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3862
3863        return dev;
3864}
3865
3866static void skge_show_addr(struct net_device *dev)
3867{
3868        const struct skge_port *skge = netdev_priv(dev);
3869
3870        netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
3871}
3872
3873static int only_32bit_dma;
3874
3875static int skge_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3876{
3877        struct net_device *dev, *dev1;
3878        struct skge_hw *hw;
3879        int err, using_dac = 0;
3880
3881        err = pci_enable_device(pdev);
3882        if (err) {
3883                dev_err(&pdev->dev, "cannot enable PCI device\n");
3884                goto err_out;
3885        }
3886
3887        err = pci_request_regions(pdev, DRV_NAME);
3888        if (err) {
3889                dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3890                goto err_out_disable_pdev;
3891        }
3892
3893        pci_set_master(pdev);
3894
3895        if (!only_32bit_dma && !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3896                using_dac = 1;
3897                err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
3898        } else if (!(err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))) {
3899                using_dac = 0;
3900                err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
3901        }
3902
3903        if (err) {
3904                dev_err(&pdev->dev, "no usable DMA configuration\n");
3905                goto err_out_free_regions;
3906        }
3907
3908#ifdef __BIG_ENDIAN
3909        /* byte swap descriptors in hardware */
3910        {
3911                u32 reg;
3912
3913                pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3914                reg |= PCI_REV_DESC;
3915                pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3916        }
3917#endif
3918
3919        err = -ENOMEM;
3920        /* space for skge@pci:0000:04:00.0 */
3921        hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
3922                     + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
3923        if (!hw)
3924                goto err_out_free_regions;
3925
3926        sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
3927
3928        hw->pdev = pdev;
3929        spin_lock_init(&hw->hw_lock);
3930        spin_lock_init(&hw->phy_lock);
3931        tasklet_setup(&hw->phy_task, skge_extirq);
3932
3933        hw->regs = ioremap(pci_resource_start(pdev, 0), 0x4000);
3934        if (!hw->regs) {
3935                dev_err(&pdev->dev, "cannot map device registers\n");
3936                goto err_out_free_hw;
3937        }
3938
3939        err = skge_reset(hw);
3940        if (err)
3941                goto err_out_iounmap;
3942
3943        pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3944                DRV_VERSION,
3945                (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3946                skge_board_name(hw), hw->chip_rev);
3947
3948        dev = skge_devinit(hw, 0, using_dac);
3949        if (!dev) {
3950                err = -ENOMEM;
3951                goto err_out_led_off;
3952        }
3953
3954        /* Some motherboards are broken and has zero in ROM. */
3955        if (!is_valid_ether_addr(dev->dev_addr))
3956                dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3957
3958        err = register_netdev(dev);
3959        if (err) {
3960                dev_err(&pdev->dev, "cannot register net device\n");
3961                goto err_out_free_netdev;
3962        }
3963
3964        skge_show_addr(dev);
3965
3966        if (hw->ports > 1) {
3967                dev1 = skge_devinit(hw, 1, using_dac);
3968                if (!dev1) {
3969                        err = -ENOMEM;
3970                        goto err_out_unregister;
3971                }
3972
3973                err = register_netdev(dev1);
3974                if (err) {
3975                        dev_err(&pdev->dev, "cannot register second net device\n");
3976                        goto err_out_free_dev1;
3977                }
3978
3979                err = request_irq(pdev->irq, skge_intr, IRQF_SHARED,
3980                                  hw->irq_name, hw);
3981                if (err) {
3982                        dev_err(&pdev->dev, "cannot assign irq %d\n",
3983                                pdev->irq);
3984                        goto err_out_unregister_dev1;
3985                }
3986
3987                skge_show_addr(dev1);
3988        }
3989        pci_set_drvdata(pdev, hw);
3990
3991        return 0;
3992
3993err_out_unregister_dev1:
3994        unregister_netdev(dev1);
3995err_out_free_dev1:
3996        free_netdev(dev1);
3997err_out_unregister:
3998        unregister_netdev(dev);
3999err_out_free_netdev:
4000        free_netdev(dev);
4001err_out_led_off:
4002        skge_write16(hw, B0_LED, LED_STAT_OFF);
4003err_out_iounmap:
4004        iounmap(hw->regs);
4005err_out_free_hw:
4006        kfree(hw);
4007err_out_free_regions:
4008        pci_release_regions(pdev);
4009err_out_disable_pdev:
4010        pci_disable_device(pdev);
4011err_out:
4012        return err;
4013}
4014
4015static void skge_remove(struct pci_dev *pdev)
4016{
4017        struct skge_hw *hw  = pci_get_drvdata(pdev);
4018        struct net_device *dev0, *dev1;
4019
4020        if (!hw)
4021                return;
4022
4023        dev1 = hw->dev[1];
4024        if (dev1)
4025                unregister_netdev(dev1);
4026        dev0 = hw->dev[0];
4027        unregister_netdev(dev0);
4028
4029        tasklet_kill(&hw->phy_task);
4030
4031        spin_lock_irq(&hw->hw_lock);
4032        hw->intr_mask = 0;
4033
4034        if (hw->ports > 1) {
4035                skge_write32(hw, B0_IMSK, 0);
4036                skge_read32(hw, B0_IMSK);
4037        }
4038        spin_unlock_irq(&hw->hw_lock);
4039
4040        skge_write16(hw, B0_LED, LED_STAT_OFF);
4041        skge_write8(hw, B0_CTST, CS_RST_SET);
4042
4043        if (hw->ports > 1)
4044                free_irq(pdev->irq, hw);
4045        pci_release_regions(pdev);
4046        pci_disable_device(pdev);
4047        if (dev1)
4048                free_netdev(dev1);
4049        free_netdev(dev0);
4050
4051        iounmap(hw->regs);
4052        kfree(hw);
4053}
4054
4055#ifdef CONFIG_PM_SLEEP
4056static int skge_suspend(struct device *dev)
4057{
4058        struct skge_hw *hw  = dev_get_drvdata(dev);
4059        int i;
4060
4061        if (!hw)
4062                return 0;
4063
4064        for (i = 0; i < hw->ports; i++) {
4065                struct net_device *dev = hw->dev[i];
4066                struct skge_port *skge = netdev_priv(dev);
4067
4068                if (netif_running(dev))
4069                        skge_down(dev);
4070
4071                if (skge->wol)
4072                        skge_wol_init(skge);
4073        }
4074
4075        skge_write32(hw, B0_IMSK, 0);
4076
4077        return 0;
4078}
4079
4080static int skge_resume(struct device *dev)
4081{
4082        struct skge_hw *hw  = dev_get_drvdata(dev);
4083        int i, err;
4084
4085        if (!hw)
4086                return 0;
4087
4088        err = skge_reset(hw);
4089        if (err)
4090                goto out;
4091
4092        for (i = 0; i < hw->ports; i++) {
4093                struct net_device *dev = hw->dev[i];
4094
4095                if (netif_running(dev)) {
4096                        err = skge_up(dev);
4097
4098                        if (err) {
4099                                netdev_err(dev, "could not up: %d\n", err);
4100                                dev_close(dev);
4101                                goto out;
4102                        }
4103                }
4104        }
4105out:
4106        return err;
4107}
4108
4109static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
4110#define SKGE_PM_OPS (&skge_pm_ops)
4111
4112#else
4113
4114#define SKGE_PM_OPS NULL
4115#endif /* CONFIG_PM_SLEEP */
4116
4117static void skge_shutdown(struct pci_dev *pdev)
4118{
4119        struct skge_hw *hw  = pci_get_drvdata(pdev);
4120        int i;
4121
4122        if (!hw)
4123                return;
4124
4125        for (i = 0; i < hw->ports; i++) {
4126                struct net_device *dev = hw->dev[i];
4127                struct skge_port *skge = netdev_priv(dev);
4128
4129                if (skge->wol)
4130                        skge_wol_init(skge);
4131        }
4132
4133        pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
4134        pci_set_power_state(pdev, PCI_D3hot);
4135}
4136
4137static struct pci_driver skge_driver = {
4138        .name =         DRV_NAME,
4139        .id_table =     skge_id_table,
4140        .probe =        skge_probe,
4141        .remove =       skge_remove,
4142        .shutdown =     skge_shutdown,
4143        .driver.pm =    SKGE_PM_OPS,
4144};
4145
4146static const struct dmi_system_id skge_32bit_dma_boards[] = {
4147        {
4148                .ident = "Gigabyte nForce boards",
4149                .matches = {
4150                        DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
4151                        DMI_MATCH(DMI_BOARD_NAME, "nForce"),
4152                },
4153        },
4154        {
4155                .ident = "ASUS P5NSLI",
4156                .matches = {
4157                        DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
4158                        DMI_MATCH(DMI_BOARD_NAME, "P5NSLI")
4159                },
4160        },
4161        {
4162                .ident = "FUJITSU SIEMENS A8NE-FM",
4163                .matches = {
4164                        DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."),
4165                        DMI_MATCH(DMI_BOARD_NAME, "A8NE-FM")
4166                },
4167        },
4168        {}
4169};
4170
4171static int __init skge_init_module(void)
4172{
4173        if (dmi_check_system(skge_32bit_dma_boards))
4174                only_32bit_dma = 1;
4175        skge_debug_init();
4176        return pci_register_driver(&skge_driver);
4177}
4178
4179static void __exit skge_cleanup_module(void)
4180{
4181        pci_unregister_driver(&skge_driver);
4182        skge_debug_cleanup();
4183}
4184
4185module_init(skge_init_module);
4186module_exit(skge_cleanup_module);
4187