linux/drivers/net/ethernet/sfc/falcon/farch.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2005-2006 Fen Systems Ltd.
   5 * Copyright 2006-2013 Solarflare Communications Inc.
   6 */
   7
   8#include <linux/bitops.h>
   9#include <linux/delay.h>
  10#include <linux/interrupt.h>
  11#include <linux/pci.h>
  12#include <linux/module.h>
  13#include <linux/seq_file.h>
  14#include <linux/crc32.h>
  15#include "net_driver.h"
  16#include "bitfield.h"
  17#include "efx.h"
  18#include "nic.h"
  19#include "farch_regs.h"
  20#include "io.h"
  21#include "workarounds.h"
  22
  23/* Falcon-architecture (SFC4000) support */
  24
  25/**************************************************************************
  26 *
  27 * Configurable values
  28 *
  29 **************************************************************************
  30 */
  31
  32/* This is set to 16 for a good reason.  In summary, if larger than
  33 * 16, the descriptor cache holds more than a default socket
  34 * buffer's worth of packets (for UDP we can only have at most one
  35 * socket buffer's worth outstanding).  This combined with the fact
  36 * that we only get 1 TX event per descriptor cache means the NIC
  37 * goes idle.
  38 */
  39#define TX_DC_ENTRIES 16
  40#define TX_DC_ENTRIES_ORDER 1
  41
  42#define RX_DC_ENTRIES 64
  43#define RX_DC_ENTRIES_ORDER 3
  44
  45/* If EF4_MAX_INT_ERRORS internal errors occur within
  46 * EF4_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
  47 * disable it.
  48 */
  49#define EF4_INT_ERROR_EXPIRE 3600
  50#define EF4_MAX_INT_ERRORS 5
  51
  52/* Depth of RX flush request fifo */
  53#define EF4_RX_FLUSH_COUNT 4
  54
  55/* Driver generated events */
  56#define _EF4_CHANNEL_MAGIC_TEST         0x000101
  57#define _EF4_CHANNEL_MAGIC_FILL         0x000102
  58#define _EF4_CHANNEL_MAGIC_RX_DRAIN     0x000103
  59#define _EF4_CHANNEL_MAGIC_TX_DRAIN     0x000104
  60
  61#define _EF4_CHANNEL_MAGIC(_code, _data)        ((_code) << 8 | (_data))
  62#define _EF4_CHANNEL_MAGIC_CODE(_magic)         ((_magic) >> 8)
  63
  64#define EF4_CHANNEL_MAGIC_TEST(_channel)                                \
  65        _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_TEST, (_channel)->channel)
  66#define EF4_CHANNEL_MAGIC_FILL(_rx_queue)                               \
  67        _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_FILL,                     \
  68                           ef4_rx_queue_index(_rx_queue))
  69#define EF4_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)                           \
  70        _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_RX_DRAIN,                 \
  71                           ef4_rx_queue_index(_rx_queue))
  72#define EF4_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)                           \
  73        _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_TX_DRAIN,                 \
  74                           (_tx_queue)->queue)
  75
  76static void ef4_farch_magic_event(struct ef4_channel *channel, u32 magic);
  77
  78/**************************************************************************
  79 *
  80 * Hardware access
  81 *
  82 **************************************************************************/
  83
  84static inline void ef4_write_buf_tbl(struct ef4_nic *efx, ef4_qword_t *value,
  85                                     unsigned int index)
  86{
  87        ef4_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
  88                        value, index);
  89}
  90
  91static bool ef4_masked_compare_oword(const ef4_oword_t *a, const ef4_oword_t *b,
  92                                     const ef4_oword_t *mask)
  93{
  94        return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
  95                ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
  96}
  97
  98int ef4_farch_test_registers(struct ef4_nic *efx,
  99                             const struct ef4_farch_register_test *regs,
 100                             size_t n_regs)
 101{
 102        unsigned address = 0;
 103        int i, j;
 104        ef4_oword_t mask, imask, original, reg, buf;
 105
 106        for (i = 0; i < n_regs; ++i) {
 107                address = regs[i].address;
 108                mask = imask = regs[i].mask;
 109                EF4_INVERT_OWORD(imask);
 110
 111                ef4_reado(efx, &original, address);
 112
 113                /* bit sweep on and off */
 114                for (j = 0; j < 128; j++) {
 115                        if (!EF4_EXTRACT_OWORD32(mask, j, j))
 116                                continue;
 117
 118                        /* Test this testable bit can be set in isolation */
 119                        EF4_AND_OWORD(reg, original, mask);
 120                        EF4_SET_OWORD32(reg, j, j, 1);
 121
 122                        ef4_writeo(efx, &reg, address);
 123                        ef4_reado(efx, &buf, address);
 124
 125                        if (ef4_masked_compare_oword(&reg, &buf, &mask))
 126                                goto fail;
 127
 128                        /* Test this testable bit can be cleared in isolation */
 129                        EF4_OR_OWORD(reg, original, mask);
 130                        EF4_SET_OWORD32(reg, j, j, 0);
 131
 132                        ef4_writeo(efx, &reg, address);
 133                        ef4_reado(efx, &buf, address);
 134
 135                        if (ef4_masked_compare_oword(&reg, &buf, &mask))
 136                                goto fail;
 137                }
 138
 139                ef4_writeo(efx, &original, address);
 140        }
 141
 142        return 0;
 143
 144fail:
 145        netif_err(efx, hw, efx->net_dev,
 146                  "wrote "EF4_OWORD_FMT" read "EF4_OWORD_FMT
 147                  " at address 0x%x mask "EF4_OWORD_FMT"\n", EF4_OWORD_VAL(reg),
 148                  EF4_OWORD_VAL(buf), address, EF4_OWORD_VAL(mask));
 149        return -EIO;
 150}
 151
 152/**************************************************************************
 153 *
 154 * Special buffer handling
 155 * Special buffers are used for event queues and the TX and RX
 156 * descriptor rings.
 157 *
 158 *************************************************************************/
 159
 160/*
 161 * Initialise a special buffer
 162 *
 163 * This will define a buffer (previously allocated via
 164 * ef4_alloc_special_buffer()) in the buffer table, allowing
 165 * it to be used for event queues, descriptor rings etc.
 166 */
 167static void
 168ef4_init_special_buffer(struct ef4_nic *efx, struct ef4_special_buffer *buffer)
 169{
 170        ef4_qword_t buf_desc;
 171        unsigned int index;
 172        dma_addr_t dma_addr;
 173        int i;
 174
 175        EF4_BUG_ON_PARANOID(!buffer->buf.addr);
 176
 177        /* Write buffer descriptors to NIC */
 178        for (i = 0; i < buffer->entries; i++) {
 179                index = buffer->index + i;
 180                dma_addr = buffer->buf.dma_addr + (i * EF4_BUF_SIZE);
 181                netif_dbg(efx, probe, efx->net_dev,
 182                          "mapping special buffer %d at %llx\n",
 183                          index, (unsigned long long)dma_addr);
 184                EF4_POPULATE_QWORD_3(buf_desc,
 185                                     FRF_AZ_BUF_ADR_REGION, 0,
 186                                     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
 187                                     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
 188                ef4_write_buf_tbl(efx, &buf_desc, index);
 189        }
 190}
 191
 192/* Unmaps a buffer and clears the buffer table entries */
 193static void
 194ef4_fini_special_buffer(struct ef4_nic *efx, struct ef4_special_buffer *buffer)
 195{
 196        ef4_oword_t buf_tbl_upd;
 197        unsigned int start = buffer->index;
 198        unsigned int end = (buffer->index + buffer->entries - 1);
 199
 200        if (!buffer->entries)
 201                return;
 202
 203        netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
 204                  buffer->index, buffer->index + buffer->entries - 1);
 205
 206        EF4_POPULATE_OWORD_4(buf_tbl_upd,
 207                             FRF_AZ_BUF_UPD_CMD, 0,
 208                             FRF_AZ_BUF_CLR_CMD, 1,
 209                             FRF_AZ_BUF_CLR_END_ID, end,
 210                             FRF_AZ_BUF_CLR_START_ID, start);
 211        ef4_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
 212}
 213
 214/*
 215 * Allocate a new special buffer
 216 *
 217 * This allocates memory for a new buffer, clears it and allocates a
 218 * new buffer ID range.  It does not write into the buffer table.
 219 *
 220 * This call will allocate 4KB buffers, since 8KB buffers can't be
 221 * used for event queues and descriptor rings.
 222 */
 223static int ef4_alloc_special_buffer(struct ef4_nic *efx,
 224                                    struct ef4_special_buffer *buffer,
 225                                    unsigned int len)
 226{
 227        len = ALIGN(len, EF4_BUF_SIZE);
 228
 229        if (ef4_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
 230                return -ENOMEM;
 231        buffer->entries = len / EF4_BUF_SIZE;
 232        BUG_ON(buffer->buf.dma_addr & (EF4_BUF_SIZE - 1));
 233
 234        /* Select new buffer ID */
 235        buffer->index = efx->next_buffer_table;
 236        efx->next_buffer_table += buffer->entries;
 237
 238        netif_dbg(efx, probe, efx->net_dev,
 239                  "allocating special buffers %d-%d at %llx+%x "
 240                  "(virt %p phys %llx)\n", buffer->index,
 241                  buffer->index + buffer->entries - 1,
 242                  (u64)buffer->buf.dma_addr, len,
 243                  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
 244
 245        return 0;
 246}
 247
 248static void
 249ef4_free_special_buffer(struct ef4_nic *efx, struct ef4_special_buffer *buffer)
 250{
 251        if (!buffer->buf.addr)
 252                return;
 253
 254        netif_dbg(efx, hw, efx->net_dev,
 255                  "deallocating special buffers %d-%d at %llx+%x "
 256                  "(virt %p phys %llx)\n", buffer->index,
 257                  buffer->index + buffer->entries - 1,
 258                  (u64)buffer->buf.dma_addr, buffer->buf.len,
 259                  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
 260
 261        ef4_nic_free_buffer(efx, &buffer->buf);
 262        buffer->entries = 0;
 263}
 264
 265/**************************************************************************
 266 *
 267 * TX path
 268 *
 269 **************************************************************************/
 270
 271/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
 272static inline void ef4_farch_notify_tx_desc(struct ef4_tx_queue *tx_queue)
 273{
 274        unsigned write_ptr;
 275        ef4_dword_t reg;
 276
 277        write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 278        EF4_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
 279        ef4_writed_page(tx_queue->efx, &reg,
 280                        FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
 281}
 282
 283/* Write pointer and first descriptor for TX descriptor ring */
 284static inline void ef4_farch_push_tx_desc(struct ef4_tx_queue *tx_queue,
 285                                          const ef4_qword_t *txd)
 286{
 287        unsigned write_ptr;
 288        ef4_oword_t reg;
 289
 290        BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
 291        BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
 292
 293        write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 294        EF4_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
 295                             FRF_AZ_TX_DESC_WPTR, write_ptr);
 296        reg.qword[0] = *txd;
 297        ef4_writeo_page(tx_queue->efx, &reg,
 298                        FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
 299}
 300
 301
 302/* For each entry inserted into the software descriptor ring, create a
 303 * descriptor in the hardware TX descriptor ring (in host memory), and
 304 * write a doorbell.
 305 */
 306void ef4_farch_tx_write(struct ef4_tx_queue *tx_queue)
 307{
 308        struct ef4_tx_buffer *buffer;
 309        ef4_qword_t *txd;
 310        unsigned write_ptr;
 311        unsigned old_write_count = tx_queue->write_count;
 312
 313        tx_queue->xmit_more_available = false;
 314        if (unlikely(tx_queue->write_count == tx_queue->insert_count))
 315                return;
 316
 317        do {
 318                write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 319                buffer = &tx_queue->buffer[write_ptr];
 320                txd = ef4_tx_desc(tx_queue, write_ptr);
 321                ++tx_queue->write_count;
 322
 323                EF4_BUG_ON_PARANOID(buffer->flags & EF4_TX_BUF_OPTION);
 324
 325                /* Create TX descriptor ring entry */
 326                BUILD_BUG_ON(EF4_TX_BUF_CONT != 1);
 327                EF4_POPULATE_QWORD_4(*txd,
 328                                     FSF_AZ_TX_KER_CONT,
 329                                     buffer->flags & EF4_TX_BUF_CONT,
 330                                     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
 331                                     FSF_AZ_TX_KER_BUF_REGION, 0,
 332                                     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
 333        } while (tx_queue->write_count != tx_queue->insert_count);
 334
 335        wmb(); /* Ensure descriptors are written before they are fetched */
 336
 337        if (ef4_nic_may_push_tx_desc(tx_queue, old_write_count)) {
 338                txd = ef4_tx_desc(tx_queue,
 339                                  old_write_count & tx_queue->ptr_mask);
 340                ef4_farch_push_tx_desc(tx_queue, txd);
 341                ++tx_queue->pushes;
 342        } else {
 343                ef4_farch_notify_tx_desc(tx_queue);
 344        }
 345}
 346
 347unsigned int ef4_farch_tx_limit_len(struct ef4_tx_queue *tx_queue,
 348                                    dma_addr_t dma_addr, unsigned int len)
 349{
 350        /* Don't cross 4K boundaries with descriptors. */
 351        unsigned int limit = (~dma_addr & (EF4_PAGE_SIZE - 1)) + 1;
 352
 353        len = min(limit, len);
 354
 355        if (EF4_WORKAROUND_5391(tx_queue->efx) && (dma_addr & 0xf))
 356                len = min_t(unsigned int, len, 512 - (dma_addr & 0xf));
 357
 358        return len;
 359}
 360
 361
 362/* Allocate hardware resources for a TX queue */
 363int ef4_farch_tx_probe(struct ef4_tx_queue *tx_queue)
 364{
 365        struct ef4_nic *efx = tx_queue->efx;
 366        unsigned entries;
 367
 368        entries = tx_queue->ptr_mask + 1;
 369        return ef4_alloc_special_buffer(efx, &tx_queue->txd,
 370                                        entries * sizeof(ef4_qword_t));
 371}
 372
 373void ef4_farch_tx_init(struct ef4_tx_queue *tx_queue)
 374{
 375        struct ef4_nic *efx = tx_queue->efx;
 376        ef4_oword_t reg;
 377
 378        /* Pin TX descriptor ring */
 379        ef4_init_special_buffer(efx, &tx_queue->txd);
 380
 381        /* Push TX descriptor ring to card */
 382        EF4_POPULATE_OWORD_10(reg,
 383                              FRF_AZ_TX_DESCQ_EN, 1,
 384                              FRF_AZ_TX_ISCSI_DDIG_EN, 0,
 385                              FRF_AZ_TX_ISCSI_HDIG_EN, 0,
 386                              FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
 387                              FRF_AZ_TX_DESCQ_EVQ_ID,
 388                              tx_queue->channel->channel,
 389                              FRF_AZ_TX_DESCQ_OWNER_ID, 0,
 390                              FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
 391                              FRF_AZ_TX_DESCQ_SIZE,
 392                              __ffs(tx_queue->txd.entries),
 393                              FRF_AZ_TX_DESCQ_TYPE, 0,
 394                              FRF_BZ_TX_NON_IP_DROP_DIS, 1);
 395
 396        if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
 397                int csum = tx_queue->queue & EF4_TXQ_TYPE_OFFLOAD;
 398                EF4_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
 399                EF4_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
 400                                    !csum);
 401        }
 402
 403        ef4_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
 404                         tx_queue->queue);
 405
 406        if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0) {
 407                /* Only 128 bits in this register */
 408                BUILD_BUG_ON(EF4_MAX_TX_QUEUES > 128);
 409
 410                ef4_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
 411                if (tx_queue->queue & EF4_TXQ_TYPE_OFFLOAD)
 412                        __clear_bit_le(tx_queue->queue, &reg);
 413                else
 414                        __set_bit_le(tx_queue->queue, &reg);
 415                ef4_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
 416        }
 417
 418        if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
 419                EF4_POPULATE_OWORD_1(reg,
 420                                     FRF_BZ_TX_PACE,
 421                                     (tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI) ?
 422                                     FFE_BZ_TX_PACE_OFF :
 423                                     FFE_BZ_TX_PACE_RESERVED);
 424                ef4_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
 425                                 tx_queue->queue);
 426        }
 427}
 428
 429static void ef4_farch_flush_tx_queue(struct ef4_tx_queue *tx_queue)
 430{
 431        struct ef4_nic *efx = tx_queue->efx;
 432        ef4_oword_t tx_flush_descq;
 433
 434        WARN_ON(atomic_read(&tx_queue->flush_outstanding));
 435        atomic_set(&tx_queue->flush_outstanding, 1);
 436
 437        EF4_POPULATE_OWORD_2(tx_flush_descq,
 438                             FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
 439                             FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
 440        ef4_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
 441}
 442
 443void ef4_farch_tx_fini(struct ef4_tx_queue *tx_queue)
 444{
 445        struct ef4_nic *efx = tx_queue->efx;
 446        ef4_oword_t tx_desc_ptr;
 447
 448        /* Remove TX descriptor ring from card */
 449        EF4_ZERO_OWORD(tx_desc_ptr);
 450        ef4_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
 451                         tx_queue->queue);
 452
 453        /* Unpin TX descriptor ring */
 454        ef4_fini_special_buffer(efx, &tx_queue->txd);
 455}
 456
 457/* Free buffers backing TX queue */
 458void ef4_farch_tx_remove(struct ef4_tx_queue *tx_queue)
 459{
 460        ef4_free_special_buffer(tx_queue->efx, &tx_queue->txd);
 461}
 462
 463/**************************************************************************
 464 *
 465 * RX path
 466 *
 467 **************************************************************************/
 468
 469/* This creates an entry in the RX descriptor queue */
 470static inline void
 471ef4_farch_build_rx_desc(struct ef4_rx_queue *rx_queue, unsigned index)
 472{
 473        struct ef4_rx_buffer *rx_buf;
 474        ef4_qword_t *rxd;
 475
 476        rxd = ef4_rx_desc(rx_queue, index);
 477        rx_buf = ef4_rx_buffer(rx_queue, index);
 478        EF4_POPULATE_QWORD_3(*rxd,
 479                             FSF_AZ_RX_KER_BUF_SIZE,
 480                             rx_buf->len -
 481                             rx_queue->efx->type->rx_buffer_padding,
 482                             FSF_AZ_RX_KER_BUF_REGION, 0,
 483                             FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
 484}
 485
 486/* This writes to the RX_DESC_WPTR register for the specified receive
 487 * descriptor ring.
 488 */
 489void ef4_farch_rx_write(struct ef4_rx_queue *rx_queue)
 490{
 491        struct ef4_nic *efx = rx_queue->efx;
 492        ef4_dword_t reg;
 493        unsigned write_ptr;
 494
 495        while (rx_queue->notified_count != rx_queue->added_count) {
 496                ef4_farch_build_rx_desc(
 497                        rx_queue,
 498                        rx_queue->notified_count & rx_queue->ptr_mask);
 499                ++rx_queue->notified_count;
 500        }
 501
 502        wmb();
 503        write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
 504        EF4_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
 505        ef4_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
 506                        ef4_rx_queue_index(rx_queue));
 507}
 508
 509int ef4_farch_rx_probe(struct ef4_rx_queue *rx_queue)
 510{
 511        struct ef4_nic *efx = rx_queue->efx;
 512        unsigned entries;
 513
 514        entries = rx_queue->ptr_mask + 1;
 515        return ef4_alloc_special_buffer(efx, &rx_queue->rxd,
 516                                        entries * sizeof(ef4_qword_t));
 517}
 518
 519void ef4_farch_rx_init(struct ef4_rx_queue *rx_queue)
 520{
 521        ef4_oword_t rx_desc_ptr;
 522        struct ef4_nic *efx = rx_queue->efx;
 523        bool is_b0 = ef4_nic_rev(efx) >= EF4_REV_FALCON_B0;
 524        bool iscsi_digest_en = is_b0;
 525        bool jumbo_en;
 526
 527        /* For kernel-mode queues in Falcon A1, the JUMBO flag enables
 528         * DMA to continue after a PCIe page boundary (and scattering
 529         * is not possible).  In Falcon B0 and Siena, it enables
 530         * scatter.
 531         */
 532        jumbo_en = !is_b0 || efx->rx_scatter;
 533
 534        netif_dbg(efx, hw, efx->net_dev,
 535                  "RX queue %d ring in special buffers %d-%d\n",
 536                  ef4_rx_queue_index(rx_queue), rx_queue->rxd.index,
 537                  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
 538
 539        rx_queue->scatter_n = 0;
 540
 541        /* Pin RX descriptor ring */
 542        ef4_init_special_buffer(efx, &rx_queue->rxd);
 543
 544        /* Push RX descriptor ring to card */
 545        EF4_POPULATE_OWORD_10(rx_desc_ptr,
 546                              FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
 547                              FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
 548                              FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
 549                              FRF_AZ_RX_DESCQ_EVQ_ID,
 550                              ef4_rx_queue_channel(rx_queue)->channel,
 551                              FRF_AZ_RX_DESCQ_OWNER_ID, 0,
 552                              FRF_AZ_RX_DESCQ_LABEL,
 553                              ef4_rx_queue_index(rx_queue),
 554                              FRF_AZ_RX_DESCQ_SIZE,
 555                              __ffs(rx_queue->rxd.entries),
 556                              FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
 557                              FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
 558                              FRF_AZ_RX_DESCQ_EN, 1);
 559        ef4_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 560                         ef4_rx_queue_index(rx_queue));
 561}
 562
 563static void ef4_farch_flush_rx_queue(struct ef4_rx_queue *rx_queue)
 564{
 565        struct ef4_nic *efx = rx_queue->efx;
 566        ef4_oword_t rx_flush_descq;
 567
 568        EF4_POPULATE_OWORD_2(rx_flush_descq,
 569                             FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
 570                             FRF_AZ_RX_FLUSH_DESCQ,
 571                             ef4_rx_queue_index(rx_queue));
 572        ef4_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
 573}
 574
 575void ef4_farch_rx_fini(struct ef4_rx_queue *rx_queue)
 576{
 577        ef4_oword_t rx_desc_ptr;
 578        struct ef4_nic *efx = rx_queue->efx;
 579
 580        /* Remove RX descriptor ring from card */
 581        EF4_ZERO_OWORD(rx_desc_ptr);
 582        ef4_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 583                         ef4_rx_queue_index(rx_queue));
 584
 585        /* Unpin RX descriptor ring */
 586        ef4_fini_special_buffer(efx, &rx_queue->rxd);
 587}
 588
 589/* Free buffers backing RX queue */
 590void ef4_farch_rx_remove(struct ef4_rx_queue *rx_queue)
 591{
 592        ef4_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
 593}
 594
 595/**************************************************************************
 596 *
 597 * Flush handling
 598 *
 599 **************************************************************************/
 600
 601/* ef4_farch_flush_queues() must be woken up when all flushes are completed,
 602 * or more RX flushes can be kicked off.
 603 */
 604static bool ef4_farch_flush_wake(struct ef4_nic *efx)
 605{
 606        /* Ensure that all updates are visible to ef4_farch_flush_queues() */
 607        smp_mb();
 608
 609        return (atomic_read(&efx->active_queues) == 0 ||
 610                (atomic_read(&efx->rxq_flush_outstanding) < EF4_RX_FLUSH_COUNT
 611                 && atomic_read(&efx->rxq_flush_pending) > 0));
 612}
 613
 614static bool ef4_check_tx_flush_complete(struct ef4_nic *efx)
 615{
 616        bool i = true;
 617        ef4_oword_t txd_ptr_tbl;
 618        struct ef4_channel *channel;
 619        struct ef4_tx_queue *tx_queue;
 620
 621        ef4_for_each_channel(channel, efx) {
 622                ef4_for_each_channel_tx_queue(tx_queue, channel) {
 623                        ef4_reado_table(efx, &txd_ptr_tbl,
 624                                        FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
 625                        if (EF4_OWORD_FIELD(txd_ptr_tbl,
 626                                            FRF_AZ_TX_DESCQ_FLUSH) ||
 627                            EF4_OWORD_FIELD(txd_ptr_tbl,
 628                                            FRF_AZ_TX_DESCQ_EN)) {
 629                                netif_dbg(efx, hw, efx->net_dev,
 630                                          "flush did not complete on TXQ %d\n",
 631                                          tx_queue->queue);
 632                                i = false;
 633                        } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
 634                                                  1, 0)) {
 635                                /* The flush is complete, but we didn't
 636                                 * receive a flush completion event
 637                                 */
 638                                netif_dbg(efx, hw, efx->net_dev,
 639                                          "flush complete on TXQ %d, so drain "
 640                                          "the queue\n", tx_queue->queue);
 641                                /* Don't need to increment active_queues as it
 642                                 * has already been incremented for the queues
 643                                 * which did not drain
 644                                 */
 645                                ef4_farch_magic_event(channel,
 646                                                      EF4_CHANNEL_MAGIC_TX_DRAIN(
 647                                                              tx_queue));
 648                        }
 649                }
 650        }
 651
 652        return i;
 653}
 654
 655/* Flush all the transmit queues, and continue flushing receive queues until
 656 * they're all flushed. Wait for the DRAIN events to be received so that there
 657 * are no more RX and TX events left on any channel. */
 658static int ef4_farch_do_flush(struct ef4_nic *efx)
 659{
 660        unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
 661        struct ef4_channel *channel;
 662        struct ef4_rx_queue *rx_queue;
 663        struct ef4_tx_queue *tx_queue;
 664        int rc = 0;
 665
 666        ef4_for_each_channel(channel, efx) {
 667                ef4_for_each_channel_tx_queue(tx_queue, channel) {
 668                        ef4_farch_flush_tx_queue(tx_queue);
 669                }
 670                ef4_for_each_channel_rx_queue(rx_queue, channel) {
 671                        rx_queue->flush_pending = true;
 672                        atomic_inc(&efx->rxq_flush_pending);
 673                }
 674        }
 675
 676        while (timeout && atomic_read(&efx->active_queues) > 0) {
 677                /* The hardware supports four concurrent rx flushes, each of
 678                 * which may need to be retried if there is an outstanding
 679                 * descriptor fetch
 680                 */
 681                ef4_for_each_channel(channel, efx) {
 682                        ef4_for_each_channel_rx_queue(rx_queue, channel) {
 683                                if (atomic_read(&efx->rxq_flush_outstanding) >=
 684                                    EF4_RX_FLUSH_COUNT)
 685                                        break;
 686
 687                                if (rx_queue->flush_pending) {
 688                                        rx_queue->flush_pending = false;
 689                                        atomic_dec(&efx->rxq_flush_pending);
 690                                        atomic_inc(&efx->rxq_flush_outstanding);
 691                                        ef4_farch_flush_rx_queue(rx_queue);
 692                                }
 693                        }
 694                }
 695
 696                timeout = wait_event_timeout(efx->flush_wq,
 697                                             ef4_farch_flush_wake(efx),
 698                                             timeout);
 699        }
 700
 701        if (atomic_read(&efx->active_queues) &&
 702            !ef4_check_tx_flush_complete(efx)) {
 703                netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
 704                          "(rx %d+%d)\n", atomic_read(&efx->active_queues),
 705                          atomic_read(&efx->rxq_flush_outstanding),
 706                          atomic_read(&efx->rxq_flush_pending));
 707                rc = -ETIMEDOUT;
 708
 709                atomic_set(&efx->active_queues, 0);
 710                atomic_set(&efx->rxq_flush_pending, 0);
 711                atomic_set(&efx->rxq_flush_outstanding, 0);
 712        }
 713
 714        return rc;
 715}
 716
 717int ef4_farch_fini_dmaq(struct ef4_nic *efx)
 718{
 719        struct ef4_channel *channel;
 720        struct ef4_tx_queue *tx_queue;
 721        struct ef4_rx_queue *rx_queue;
 722        int rc = 0;
 723
 724        /* Do not attempt to write to the NIC during EEH recovery */
 725        if (efx->state != STATE_RECOVERY) {
 726                /* Only perform flush if DMA is enabled */
 727                if (efx->pci_dev->is_busmaster) {
 728                        efx->type->prepare_flush(efx);
 729                        rc = ef4_farch_do_flush(efx);
 730                        efx->type->finish_flush(efx);
 731                }
 732
 733                ef4_for_each_channel(channel, efx) {
 734                        ef4_for_each_channel_rx_queue(rx_queue, channel)
 735                                ef4_farch_rx_fini(rx_queue);
 736                        ef4_for_each_channel_tx_queue(tx_queue, channel)
 737                                ef4_farch_tx_fini(tx_queue);
 738                }
 739        }
 740
 741        return rc;
 742}
 743
 744/* Reset queue and flush accounting after FLR
 745 *
 746 * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
 747 * mastering was disabled), in which case we don't receive (RXQ) flush
 748 * completion events.  This means that efx->rxq_flush_outstanding remained at 4
 749 * after the FLR; also, efx->active_queues was non-zero (as no flush completion
 750 * events were received, and we didn't go through ef4_check_tx_flush_complete())
 751 * If we don't fix this up, on the next call to ef4_realloc_channels() we won't
 752 * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
 753 * for batched flush requests; and the efx->active_queues gets messed up because
 754 * we keep incrementing for the newly initialised queues, but it never went to
 755 * zero previously.  Then we get a timeout every time we try to restart the
 756 * queues, as it doesn't go back to zero when we should be flushing the queues.
 757 */
 758void ef4_farch_finish_flr(struct ef4_nic *efx)
 759{
 760        atomic_set(&efx->rxq_flush_pending, 0);
 761        atomic_set(&efx->rxq_flush_outstanding, 0);
 762        atomic_set(&efx->active_queues, 0);
 763}
 764
 765
 766/**************************************************************************
 767 *
 768 * Event queue processing
 769 * Event queues are processed by per-channel tasklets.
 770 *
 771 **************************************************************************/
 772
 773/* Update a channel's event queue's read pointer (RPTR) register
 774 *
 775 * This writes the EVQ_RPTR_REG register for the specified channel's
 776 * event queue.
 777 */
 778void ef4_farch_ev_read_ack(struct ef4_channel *channel)
 779{
 780        ef4_dword_t reg;
 781        struct ef4_nic *efx = channel->efx;
 782
 783        EF4_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
 784                             channel->eventq_read_ptr & channel->eventq_mask);
 785
 786        /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
 787         * of 4 bytes, but it is really 16 bytes just like later revisions.
 788         */
 789        ef4_writed(efx, &reg,
 790                   efx->type->evq_rptr_tbl_base +
 791                   FR_BZ_EVQ_RPTR_STEP * channel->channel);
 792}
 793
 794/* Use HW to insert a SW defined event */
 795void ef4_farch_generate_event(struct ef4_nic *efx, unsigned int evq,
 796                              ef4_qword_t *event)
 797{
 798        ef4_oword_t drv_ev_reg;
 799
 800        BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
 801                     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
 802        drv_ev_reg.u32[0] = event->u32[0];
 803        drv_ev_reg.u32[1] = event->u32[1];
 804        drv_ev_reg.u32[2] = 0;
 805        drv_ev_reg.u32[3] = 0;
 806        EF4_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
 807        ef4_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
 808}
 809
 810static void ef4_farch_magic_event(struct ef4_channel *channel, u32 magic)
 811{
 812        ef4_qword_t event;
 813
 814        EF4_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
 815                             FSE_AZ_EV_CODE_DRV_GEN_EV,
 816                             FSF_AZ_DRV_GEN_EV_MAGIC, magic);
 817        ef4_farch_generate_event(channel->efx, channel->channel, &event);
 818}
 819
 820/* Handle a transmit completion event
 821 *
 822 * The NIC batches TX completion events; the message we receive is of
 823 * the form "complete all TX events up to this index".
 824 */
 825static int
 826ef4_farch_handle_tx_event(struct ef4_channel *channel, ef4_qword_t *event)
 827{
 828        unsigned int tx_ev_desc_ptr;
 829        unsigned int tx_ev_q_label;
 830        struct ef4_tx_queue *tx_queue;
 831        struct ef4_nic *efx = channel->efx;
 832        int tx_packets = 0;
 833
 834        if (unlikely(READ_ONCE(efx->reset_pending)))
 835                return 0;
 836
 837        if (likely(EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
 838                /* Transmit completion */
 839                tx_ev_desc_ptr = EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
 840                tx_ev_q_label = EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
 841                tx_queue = ef4_channel_get_tx_queue(
 842                        channel, tx_ev_q_label % EF4_TXQ_TYPES);
 843                tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
 844                              tx_queue->ptr_mask);
 845                ef4_xmit_done(tx_queue, tx_ev_desc_ptr);
 846        } else if (EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
 847                /* Rewrite the FIFO write pointer */
 848                tx_ev_q_label = EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
 849                tx_queue = ef4_channel_get_tx_queue(
 850                        channel, tx_ev_q_label % EF4_TXQ_TYPES);
 851
 852                netif_tx_lock(efx->net_dev);
 853                ef4_farch_notify_tx_desc(tx_queue);
 854                netif_tx_unlock(efx->net_dev);
 855        } else if (EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
 856                ef4_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
 857        } else {
 858                netif_err(efx, tx_err, efx->net_dev,
 859                          "channel %d unexpected TX event "
 860                          EF4_QWORD_FMT"\n", channel->channel,
 861                          EF4_QWORD_VAL(*event));
 862        }
 863
 864        return tx_packets;
 865}
 866
 867/* Detect errors included in the rx_evt_pkt_ok bit. */
 868static u16 ef4_farch_handle_rx_not_ok(struct ef4_rx_queue *rx_queue,
 869                                      const ef4_qword_t *event)
 870{
 871        struct ef4_channel *channel = ef4_rx_queue_channel(rx_queue);
 872        struct ef4_nic *efx = rx_queue->efx;
 873        bool __maybe_unused rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
 874        bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
 875        bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
 876        bool rx_ev_pause_frm;
 877
 878        rx_ev_tobe_disc = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
 879        rx_ev_buf_owner_id_err = EF4_QWORD_FIELD(*event,
 880                                                 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
 881        rx_ev_ip_hdr_chksum_err = EF4_QWORD_FIELD(*event,
 882                                                  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
 883        rx_ev_tcp_udp_chksum_err = EF4_QWORD_FIELD(*event,
 884                                                   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
 885        rx_ev_eth_crc_err = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
 886        rx_ev_frm_trunc = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
 887        rx_ev_drib_nib = ((ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) ?
 888                          0 : EF4_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
 889        rx_ev_pause_frm = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
 890
 891
 892        /* Count errors that are not in MAC stats.  Ignore expected
 893         * checksum errors during self-test. */
 894        if (rx_ev_frm_trunc)
 895                ++channel->n_rx_frm_trunc;
 896        else if (rx_ev_tobe_disc)
 897                ++channel->n_rx_tobe_disc;
 898        else if (!efx->loopback_selftest) {
 899                if (rx_ev_ip_hdr_chksum_err)
 900                        ++channel->n_rx_ip_hdr_chksum_err;
 901                else if (rx_ev_tcp_udp_chksum_err)
 902                        ++channel->n_rx_tcp_udp_chksum_err;
 903        }
 904
 905        /* TOBE_DISC is expected on unicast mismatches; don't print out an
 906         * error message.  FRM_TRUNC indicates RXDP dropped the packet due
 907         * to a FIFO overflow.
 908         */
 909#ifdef DEBUG
 910        {
 911        /* Every error apart from tobe_disc and pause_frm */
 912
 913        bool rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
 914                                rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
 915                                rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
 916
 917        if (rx_ev_other_err && net_ratelimit()) {
 918                netif_dbg(efx, rx_err, efx->net_dev,
 919                          " RX queue %d unexpected RX event "
 920                          EF4_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
 921                          ef4_rx_queue_index(rx_queue), EF4_QWORD_VAL(*event),
 922                          rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
 923                          rx_ev_ip_hdr_chksum_err ?
 924                          " [IP_HDR_CHKSUM_ERR]" : "",
 925                          rx_ev_tcp_udp_chksum_err ?
 926                          " [TCP_UDP_CHKSUM_ERR]" : "",
 927                          rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
 928                          rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
 929                          rx_ev_drib_nib ? " [DRIB_NIB]" : "",
 930                          rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
 931                          rx_ev_pause_frm ? " [PAUSE]" : "");
 932        }
 933        }
 934#endif
 935
 936        /* The frame must be discarded if any of these are true. */
 937        return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
 938                rx_ev_tobe_disc | rx_ev_pause_frm) ?
 939                EF4_RX_PKT_DISCARD : 0;
 940}
 941
 942/* Handle receive events that are not in-order. Return true if this
 943 * can be handled as a partial packet discard, false if it's more
 944 * serious.
 945 */
 946static bool
 947ef4_farch_handle_rx_bad_index(struct ef4_rx_queue *rx_queue, unsigned index)
 948{
 949        struct ef4_channel *channel = ef4_rx_queue_channel(rx_queue);
 950        struct ef4_nic *efx = rx_queue->efx;
 951        unsigned expected, dropped;
 952
 953        if (rx_queue->scatter_n &&
 954            index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
 955                      rx_queue->ptr_mask)) {
 956                ++channel->n_rx_nodesc_trunc;
 957                return true;
 958        }
 959
 960        expected = rx_queue->removed_count & rx_queue->ptr_mask;
 961        dropped = (index - expected) & rx_queue->ptr_mask;
 962        netif_info(efx, rx_err, efx->net_dev,
 963                   "dropped %d events (index=%d expected=%d)\n",
 964                   dropped, index, expected);
 965
 966        ef4_schedule_reset(efx, EF4_WORKAROUND_5676(efx) ?
 967                           RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
 968        return false;
 969}
 970
 971/* Handle a packet received event
 972 *
 973 * The NIC gives a "discard" flag if it's a unicast packet with the
 974 * wrong destination address
 975 * Also "is multicast" and "matches multicast filter" flags can be used to
 976 * discard non-matching multicast packets.
 977 */
 978static void
 979ef4_farch_handle_rx_event(struct ef4_channel *channel, const ef4_qword_t *event)
 980{
 981        unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
 982        unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
 983        unsigned expected_ptr;
 984        bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
 985        u16 flags;
 986        struct ef4_rx_queue *rx_queue;
 987        struct ef4_nic *efx = channel->efx;
 988
 989        if (unlikely(READ_ONCE(efx->reset_pending)))
 990                return;
 991
 992        rx_ev_cont = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
 993        rx_ev_sop = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
 994        WARN_ON(EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
 995                channel->channel);
 996
 997        rx_queue = ef4_channel_get_rx_queue(channel);
 998
 999        rx_ev_desc_ptr = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1000        expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
1001                        rx_queue->ptr_mask);
1002
1003        /* Check for partial drops and other errors */
1004        if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
1005            unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
1006                if (rx_ev_desc_ptr != expected_ptr &&
1007                    !ef4_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1008                        return;
1009
1010                /* Discard all pending fragments */
1011                if (rx_queue->scatter_n) {
1012                        ef4_rx_packet(
1013                                rx_queue,
1014                                rx_queue->removed_count & rx_queue->ptr_mask,
1015                                rx_queue->scatter_n, 0, EF4_RX_PKT_DISCARD);
1016                        rx_queue->removed_count += rx_queue->scatter_n;
1017                        rx_queue->scatter_n = 0;
1018                }
1019
1020                /* Return if there is no new fragment */
1021                if (rx_ev_desc_ptr != expected_ptr)
1022                        return;
1023
1024                /* Discard new fragment if not SOP */
1025                if (!rx_ev_sop) {
1026                        ef4_rx_packet(
1027                                rx_queue,
1028                                rx_queue->removed_count & rx_queue->ptr_mask,
1029                                1, 0, EF4_RX_PKT_DISCARD);
1030                        ++rx_queue->removed_count;
1031                        return;
1032                }
1033        }
1034
1035        ++rx_queue->scatter_n;
1036        if (rx_ev_cont)
1037                return;
1038
1039        rx_ev_byte_cnt = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1040        rx_ev_pkt_ok = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1041        rx_ev_hdr_type = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1042
1043        if (likely(rx_ev_pkt_ok)) {
1044                /* If packet is marked as OK then we can rely on the
1045                 * hardware checksum and classification.
1046                 */
1047                flags = 0;
1048                switch (rx_ev_hdr_type) {
1049                case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1050                        flags |= EF4_RX_PKT_TCP;
1051                        fallthrough;
1052                case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1053                        flags |= EF4_RX_PKT_CSUMMED;
1054                        fallthrough;
1055                case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1056                case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1057                        break;
1058                }
1059        } else {
1060                flags = ef4_farch_handle_rx_not_ok(rx_queue, event);
1061        }
1062
1063        /* Detect multicast packets that didn't match the filter */
1064        rx_ev_mcast_pkt = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1065        if (rx_ev_mcast_pkt) {
1066                unsigned int rx_ev_mcast_hash_match =
1067                        EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1068
1069                if (unlikely(!rx_ev_mcast_hash_match)) {
1070                        ++channel->n_rx_mcast_mismatch;
1071                        flags |= EF4_RX_PKT_DISCARD;
1072                }
1073        }
1074
1075        channel->irq_mod_score += 2;
1076
1077        /* Handle received packet */
1078        ef4_rx_packet(rx_queue,
1079                      rx_queue->removed_count & rx_queue->ptr_mask,
1080                      rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1081        rx_queue->removed_count += rx_queue->scatter_n;
1082        rx_queue->scatter_n = 0;
1083}
1084
1085/* If this flush done event corresponds to a &struct ef4_tx_queue, then
1086 * send an %EF4_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1087 * of all transmit completions.
1088 */
1089static void
1090ef4_farch_handle_tx_flush_done(struct ef4_nic *efx, ef4_qword_t *event)
1091{
1092        struct ef4_tx_queue *tx_queue;
1093        int qid;
1094
1095        qid = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1096        if (qid < EF4_TXQ_TYPES * efx->n_tx_channels) {
1097                tx_queue = ef4_get_tx_queue(efx, qid / EF4_TXQ_TYPES,
1098                                            qid % EF4_TXQ_TYPES);
1099                if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1100                        ef4_farch_magic_event(tx_queue->channel,
1101                                              EF4_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1102                }
1103        }
1104}
1105
1106/* If this flush done event corresponds to a &struct ef4_rx_queue: If the flush
1107 * was successful then send an %EF4_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1108 * the RX queue back to the mask of RX queues in need of flushing.
1109 */
1110static void
1111ef4_farch_handle_rx_flush_done(struct ef4_nic *efx, ef4_qword_t *event)
1112{
1113        struct ef4_channel *channel;
1114        struct ef4_rx_queue *rx_queue;
1115        int qid;
1116        bool failed;
1117
1118        qid = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1119        failed = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1120        if (qid >= efx->n_channels)
1121                return;
1122        channel = ef4_get_channel(efx, qid);
1123        if (!ef4_channel_has_rx_queue(channel))
1124                return;
1125        rx_queue = ef4_channel_get_rx_queue(channel);
1126
1127        if (failed) {
1128                netif_info(efx, hw, efx->net_dev,
1129                           "RXQ %d flush retry\n", qid);
1130                rx_queue->flush_pending = true;
1131                atomic_inc(&efx->rxq_flush_pending);
1132        } else {
1133                ef4_farch_magic_event(ef4_rx_queue_channel(rx_queue),
1134                                      EF4_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1135        }
1136        atomic_dec(&efx->rxq_flush_outstanding);
1137        if (ef4_farch_flush_wake(efx))
1138                wake_up(&efx->flush_wq);
1139}
1140
1141static void
1142ef4_farch_handle_drain_event(struct ef4_channel *channel)
1143{
1144        struct ef4_nic *efx = channel->efx;
1145
1146        WARN_ON(atomic_read(&efx->active_queues) == 0);
1147        atomic_dec(&efx->active_queues);
1148        if (ef4_farch_flush_wake(efx))
1149                wake_up(&efx->flush_wq);
1150}
1151
1152static void ef4_farch_handle_generated_event(struct ef4_channel *channel,
1153                                             ef4_qword_t *event)
1154{
1155        struct ef4_nic *efx = channel->efx;
1156        struct ef4_rx_queue *rx_queue =
1157                ef4_channel_has_rx_queue(channel) ?
1158                ef4_channel_get_rx_queue(channel) : NULL;
1159        unsigned magic, code;
1160
1161        magic = EF4_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1162        code = _EF4_CHANNEL_MAGIC_CODE(magic);
1163
1164        if (magic == EF4_CHANNEL_MAGIC_TEST(channel)) {
1165                channel->event_test_cpu = raw_smp_processor_id();
1166        } else if (rx_queue && magic == EF4_CHANNEL_MAGIC_FILL(rx_queue)) {
1167                /* The queue must be empty, so we won't receive any rx
1168                 * events, so ef4_process_channel() won't refill the
1169                 * queue. Refill it here */
1170                ef4_fast_push_rx_descriptors(rx_queue, true);
1171        } else if (rx_queue && magic == EF4_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1172                ef4_farch_handle_drain_event(channel);
1173        } else if (code == _EF4_CHANNEL_MAGIC_TX_DRAIN) {
1174                ef4_farch_handle_drain_event(channel);
1175        } else {
1176                netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1177                          "generated event "EF4_QWORD_FMT"\n",
1178                          channel->channel, EF4_QWORD_VAL(*event));
1179        }
1180}
1181
1182static void
1183ef4_farch_handle_driver_event(struct ef4_channel *channel, ef4_qword_t *event)
1184{
1185        struct ef4_nic *efx = channel->efx;
1186        unsigned int ev_sub_code;
1187        unsigned int ev_sub_data;
1188
1189        ev_sub_code = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1190        ev_sub_data = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1191
1192        switch (ev_sub_code) {
1193        case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1194                netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1195                           channel->channel, ev_sub_data);
1196                ef4_farch_handle_tx_flush_done(efx, event);
1197                break;
1198        case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1199                netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1200                           channel->channel, ev_sub_data);
1201                ef4_farch_handle_rx_flush_done(efx, event);
1202                break;
1203        case FSE_AZ_EVQ_INIT_DONE_EV:
1204                netif_dbg(efx, hw, efx->net_dev,
1205                          "channel %d EVQ %d initialised\n",
1206                          channel->channel, ev_sub_data);
1207                break;
1208        case FSE_AZ_SRM_UPD_DONE_EV:
1209                netif_vdbg(efx, hw, efx->net_dev,
1210                           "channel %d SRAM update done\n", channel->channel);
1211                break;
1212        case FSE_AZ_WAKE_UP_EV:
1213                netif_vdbg(efx, hw, efx->net_dev,
1214                           "channel %d RXQ %d wakeup event\n",
1215                           channel->channel, ev_sub_data);
1216                break;
1217        case FSE_AZ_TIMER_EV:
1218                netif_vdbg(efx, hw, efx->net_dev,
1219                           "channel %d RX queue %d timer expired\n",
1220                           channel->channel, ev_sub_data);
1221                break;
1222        case FSE_AA_RX_RECOVER_EV:
1223                netif_err(efx, rx_err, efx->net_dev,
1224                          "channel %d seen DRIVER RX_RESET event. "
1225                        "Resetting.\n", channel->channel);
1226                atomic_inc(&efx->rx_reset);
1227                ef4_schedule_reset(efx,
1228                                   EF4_WORKAROUND_6555(efx) ?
1229                                   RESET_TYPE_RX_RECOVERY :
1230                                   RESET_TYPE_DISABLE);
1231                break;
1232        case FSE_BZ_RX_DSC_ERROR_EV:
1233                netif_err(efx, rx_err, efx->net_dev,
1234                          "RX DMA Q %d reports descriptor fetch error."
1235                          " RX Q %d is disabled.\n", ev_sub_data,
1236                          ev_sub_data);
1237                ef4_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1238                break;
1239        case FSE_BZ_TX_DSC_ERROR_EV:
1240                netif_err(efx, tx_err, efx->net_dev,
1241                          "TX DMA Q %d reports descriptor fetch error."
1242                          " TX Q %d is disabled.\n", ev_sub_data,
1243                          ev_sub_data);
1244                ef4_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1245                break;
1246        default:
1247                netif_vdbg(efx, hw, efx->net_dev,
1248                           "channel %d unknown driver event code %d "
1249                           "data %04x\n", channel->channel, ev_sub_code,
1250                           ev_sub_data);
1251                break;
1252        }
1253}
1254
1255int ef4_farch_ev_process(struct ef4_channel *channel, int budget)
1256{
1257        struct ef4_nic *efx = channel->efx;
1258        unsigned int read_ptr;
1259        ef4_qword_t event, *p_event;
1260        int ev_code;
1261        int tx_packets = 0;
1262        int spent = 0;
1263
1264        if (budget <= 0)
1265                return spent;
1266
1267        read_ptr = channel->eventq_read_ptr;
1268
1269        for (;;) {
1270                p_event = ef4_event(channel, read_ptr);
1271                event = *p_event;
1272
1273                if (!ef4_event_present(&event))
1274                        /* End of events */
1275                        break;
1276
1277                netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1278                           "channel %d event is "EF4_QWORD_FMT"\n",
1279                           channel->channel, EF4_QWORD_VAL(event));
1280
1281                /* Clear this event by marking it all ones */
1282                EF4_SET_QWORD(*p_event);
1283
1284                ++read_ptr;
1285
1286                ev_code = EF4_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1287
1288                switch (ev_code) {
1289                case FSE_AZ_EV_CODE_RX_EV:
1290                        ef4_farch_handle_rx_event(channel, &event);
1291                        if (++spent == budget)
1292                                goto out;
1293                        break;
1294                case FSE_AZ_EV_CODE_TX_EV:
1295                        tx_packets += ef4_farch_handle_tx_event(channel,
1296                                                                &event);
1297                        if (tx_packets > efx->txq_entries) {
1298                                spent = budget;
1299                                goto out;
1300                        }
1301                        break;
1302                case FSE_AZ_EV_CODE_DRV_GEN_EV:
1303                        ef4_farch_handle_generated_event(channel, &event);
1304                        break;
1305                case FSE_AZ_EV_CODE_DRIVER_EV:
1306                        ef4_farch_handle_driver_event(channel, &event);
1307                        break;
1308                case FSE_AZ_EV_CODE_GLOBAL_EV:
1309                        if (efx->type->handle_global_event &&
1310                            efx->type->handle_global_event(channel, &event))
1311                                break;
1312                        fallthrough;
1313                default:
1314                        netif_err(channel->efx, hw, channel->efx->net_dev,
1315                                  "channel %d unknown event type %d (data "
1316                                  EF4_QWORD_FMT ")\n", channel->channel,
1317                                  ev_code, EF4_QWORD_VAL(event));
1318                }
1319        }
1320
1321out:
1322        channel->eventq_read_ptr = read_ptr;
1323        return spent;
1324}
1325
1326/* Allocate buffer table entries for event queue */
1327int ef4_farch_ev_probe(struct ef4_channel *channel)
1328{
1329        struct ef4_nic *efx = channel->efx;
1330        unsigned entries;
1331
1332        entries = channel->eventq_mask + 1;
1333        return ef4_alloc_special_buffer(efx, &channel->eventq,
1334                                        entries * sizeof(ef4_qword_t));
1335}
1336
1337int ef4_farch_ev_init(struct ef4_channel *channel)
1338{
1339        ef4_oword_t reg;
1340        struct ef4_nic *efx = channel->efx;
1341
1342        netif_dbg(efx, hw, efx->net_dev,
1343                  "channel %d event queue in special buffers %d-%d\n",
1344                  channel->channel, channel->eventq.index,
1345                  channel->eventq.index + channel->eventq.entries - 1);
1346
1347        /* Pin event queue buffer */
1348        ef4_init_special_buffer(efx, &channel->eventq);
1349
1350        /* Fill event queue with all ones (i.e. empty events) */
1351        memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1352
1353        /* Push event queue to card */
1354        EF4_POPULATE_OWORD_3(reg,
1355                             FRF_AZ_EVQ_EN, 1,
1356                             FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1357                             FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1358        ef4_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1359                         channel->channel);
1360
1361        return 0;
1362}
1363
1364void ef4_farch_ev_fini(struct ef4_channel *channel)
1365{
1366        ef4_oword_t reg;
1367        struct ef4_nic *efx = channel->efx;
1368
1369        /* Remove event queue from card */
1370        EF4_ZERO_OWORD(reg);
1371        ef4_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1372                         channel->channel);
1373
1374        /* Unpin event queue */
1375        ef4_fini_special_buffer(efx, &channel->eventq);
1376}
1377
1378/* Free buffers backing event queue */
1379void ef4_farch_ev_remove(struct ef4_channel *channel)
1380{
1381        ef4_free_special_buffer(channel->efx, &channel->eventq);
1382}
1383
1384
1385void ef4_farch_ev_test_generate(struct ef4_channel *channel)
1386{
1387        ef4_farch_magic_event(channel, EF4_CHANNEL_MAGIC_TEST(channel));
1388}
1389
1390void ef4_farch_rx_defer_refill(struct ef4_rx_queue *rx_queue)
1391{
1392        ef4_farch_magic_event(ef4_rx_queue_channel(rx_queue),
1393                              EF4_CHANNEL_MAGIC_FILL(rx_queue));
1394}
1395
1396/**************************************************************************
1397 *
1398 * Hardware interrupts
1399 * The hardware interrupt handler does very little work; all the event
1400 * queue processing is carried out by per-channel tasklets.
1401 *
1402 **************************************************************************/
1403
1404/* Enable/disable/generate interrupts */
1405static inline void ef4_farch_interrupts(struct ef4_nic *efx,
1406                                      bool enabled, bool force)
1407{
1408        ef4_oword_t int_en_reg_ker;
1409
1410        EF4_POPULATE_OWORD_3(int_en_reg_ker,
1411                             FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1412                             FRF_AZ_KER_INT_KER, force,
1413                             FRF_AZ_DRV_INT_EN_KER, enabled);
1414        ef4_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1415}
1416
1417void ef4_farch_irq_enable_master(struct ef4_nic *efx)
1418{
1419        EF4_ZERO_OWORD(*((ef4_oword_t *) efx->irq_status.addr));
1420        wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1421
1422        ef4_farch_interrupts(efx, true, false);
1423}
1424
1425void ef4_farch_irq_disable_master(struct ef4_nic *efx)
1426{
1427        /* Disable interrupts */
1428        ef4_farch_interrupts(efx, false, false);
1429}
1430
1431/* Generate a test interrupt
1432 * Interrupt must already have been enabled, otherwise nasty things
1433 * may happen.
1434 */
1435int ef4_farch_irq_test_generate(struct ef4_nic *efx)
1436{
1437        ef4_farch_interrupts(efx, true, true);
1438        return 0;
1439}
1440
1441/* Process a fatal interrupt
1442 * Disable bus mastering ASAP and schedule a reset
1443 */
1444irqreturn_t ef4_farch_fatal_interrupt(struct ef4_nic *efx)
1445{
1446        struct falcon_nic_data *nic_data = efx->nic_data;
1447        ef4_oword_t *int_ker = efx->irq_status.addr;
1448        ef4_oword_t fatal_intr;
1449        int error, mem_perr;
1450
1451        ef4_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1452        error = EF4_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1453
1454        netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EF4_OWORD_FMT" status "
1455                  EF4_OWORD_FMT ": %s\n", EF4_OWORD_VAL(*int_ker),
1456                  EF4_OWORD_VAL(fatal_intr),
1457                  error ? "disabling bus mastering" : "no recognised error");
1458
1459        /* If this is a memory parity error dump which blocks are offending */
1460        mem_perr = (EF4_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1461                    EF4_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1462        if (mem_perr) {
1463                ef4_oword_t reg;
1464                ef4_reado(efx, &reg, FR_AZ_MEM_STAT);
1465                netif_err(efx, hw, efx->net_dev,
1466                          "SYSTEM ERROR: memory parity error "EF4_OWORD_FMT"\n",
1467                          EF4_OWORD_VAL(reg));
1468        }
1469
1470        /* Disable both devices */
1471        pci_clear_master(efx->pci_dev);
1472        if (ef4_nic_is_dual_func(efx))
1473                pci_clear_master(nic_data->pci_dev2);
1474        ef4_farch_irq_disable_master(efx);
1475
1476        /* Count errors and reset or disable the NIC accordingly */
1477        if (efx->int_error_count == 0 ||
1478            time_after(jiffies, efx->int_error_expire)) {
1479                efx->int_error_count = 0;
1480                efx->int_error_expire =
1481                        jiffies + EF4_INT_ERROR_EXPIRE * HZ;
1482        }
1483        if (++efx->int_error_count < EF4_MAX_INT_ERRORS) {
1484                netif_err(efx, hw, efx->net_dev,
1485                          "SYSTEM ERROR - reset scheduled\n");
1486                ef4_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1487        } else {
1488                netif_err(efx, hw, efx->net_dev,
1489                          "SYSTEM ERROR - max number of errors seen."
1490                          "NIC will be disabled\n");
1491                ef4_schedule_reset(efx, RESET_TYPE_DISABLE);
1492        }
1493
1494        return IRQ_HANDLED;
1495}
1496
1497/* Handle a legacy interrupt
1498 * Acknowledges the interrupt and schedule event queue processing.
1499 */
1500irqreturn_t ef4_farch_legacy_interrupt(int irq, void *dev_id)
1501{
1502        struct ef4_nic *efx = dev_id;
1503        bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
1504        ef4_oword_t *int_ker = efx->irq_status.addr;
1505        irqreturn_t result = IRQ_NONE;
1506        struct ef4_channel *channel;
1507        ef4_dword_t reg;
1508        u32 queues;
1509        int syserr;
1510
1511        /* Read the ISR which also ACKs the interrupts */
1512        ef4_readd(efx, &reg, FR_BZ_INT_ISR0);
1513        queues = EF4_EXTRACT_DWORD(reg, 0, 31);
1514
1515        /* Legacy interrupts are disabled too late by the EEH kernel
1516         * code. Disable them earlier.
1517         * If an EEH error occurred, the read will have returned all ones.
1518         */
1519        if (EF4_DWORD_IS_ALL_ONES(reg) && ef4_try_recovery(efx) &&
1520            !efx->eeh_disabled_legacy_irq) {
1521                disable_irq_nosync(efx->legacy_irq);
1522                efx->eeh_disabled_legacy_irq = true;
1523        }
1524
1525        /* Handle non-event-queue sources */
1526        if (queues & (1U << efx->irq_level) && soft_enabled) {
1527                syserr = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1528                if (unlikely(syserr))
1529                        return ef4_farch_fatal_interrupt(efx);
1530                efx->last_irq_cpu = raw_smp_processor_id();
1531        }
1532
1533        if (queues != 0) {
1534                efx->irq_zero_count = 0;
1535
1536                /* Schedule processing of any interrupting queues */
1537                if (likely(soft_enabled)) {
1538                        ef4_for_each_channel(channel, efx) {
1539                                if (queues & 1)
1540                                        ef4_schedule_channel_irq(channel);
1541                                queues >>= 1;
1542                        }
1543                }
1544                result = IRQ_HANDLED;
1545
1546        } else {
1547                ef4_qword_t *event;
1548
1549                /* Legacy ISR read can return zero once (SF bug 15783) */
1550
1551                /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1552                 * because this might be a shared interrupt. */
1553                if (efx->irq_zero_count++ == 0)
1554                        result = IRQ_HANDLED;
1555
1556                /* Ensure we schedule or rearm all event queues */
1557                if (likely(soft_enabled)) {
1558                        ef4_for_each_channel(channel, efx) {
1559                                event = ef4_event(channel,
1560                                                  channel->eventq_read_ptr);
1561                                if (ef4_event_present(event))
1562                                        ef4_schedule_channel_irq(channel);
1563                                else
1564                                        ef4_farch_ev_read_ack(channel);
1565                        }
1566                }
1567        }
1568
1569        if (result == IRQ_HANDLED)
1570                netif_vdbg(efx, intr, efx->net_dev,
1571                           "IRQ %d on CPU %d status " EF4_DWORD_FMT "\n",
1572                           irq, raw_smp_processor_id(), EF4_DWORD_VAL(reg));
1573
1574        return result;
1575}
1576
1577/* Handle an MSI interrupt
1578 *
1579 * Handle an MSI hardware interrupt.  This routine schedules event
1580 * queue processing.  No interrupt acknowledgement cycle is necessary.
1581 * Also, we never need to check that the interrupt is for us, since
1582 * MSI interrupts cannot be shared.
1583 */
1584irqreturn_t ef4_farch_msi_interrupt(int irq, void *dev_id)
1585{
1586        struct ef4_msi_context *context = dev_id;
1587        struct ef4_nic *efx = context->efx;
1588        ef4_oword_t *int_ker = efx->irq_status.addr;
1589        int syserr;
1590
1591        netif_vdbg(efx, intr, efx->net_dev,
1592                   "IRQ %d on CPU %d status " EF4_OWORD_FMT "\n",
1593                   irq, raw_smp_processor_id(), EF4_OWORD_VAL(*int_ker));
1594
1595        if (!likely(READ_ONCE(efx->irq_soft_enabled)))
1596                return IRQ_HANDLED;
1597
1598        /* Handle non-event-queue sources */
1599        if (context->index == efx->irq_level) {
1600                syserr = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1601                if (unlikely(syserr))
1602                        return ef4_farch_fatal_interrupt(efx);
1603                efx->last_irq_cpu = raw_smp_processor_id();
1604        }
1605
1606        /* Schedule processing of the channel */
1607        ef4_schedule_channel_irq(efx->channel[context->index]);
1608
1609        return IRQ_HANDLED;
1610}
1611
1612/* Setup RSS indirection table.
1613 * This maps from the hash value of the packet to RXQ
1614 */
1615void ef4_farch_rx_push_indir_table(struct ef4_nic *efx)
1616{
1617        size_t i = 0;
1618        ef4_dword_t dword;
1619
1620        BUG_ON(ef4_nic_rev(efx) < EF4_REV_FALCON_B0);
1621
1622        BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1623                     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1624
1625        for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1626                EF4_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1627                                     efx->rx_indir_table[i]);
1628                ef4_writed(efx, &dword,
1629                           FR_BZ_RX_INDIRECTION_TBL +
1630                           FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1631        }
1632}
1633
1634/* Looks at available SRAM resources and works out how many queues we
1635 * can support, and where things like descriptor caches should live.
1636 *
1637 * SRAM is split up as follows:
1638 * 0                          buftbl entries for channels
1639 * efx->vf_buftbl_base        buftbl entries for SR-IOV
1640 * efx->rx_dc_base            RX descriptor caches
1641 * efx->tx_dc_base            TX descriptor caches
1642 */
1643void ef4_farch_dimension_resources(struct ef4_nic *efx, unsigned sram_lim_qw)
1644{
1645        unsigned vi_count;
1646
1647        /* Account for the buffer table entries backing the datapath channels
1648         * and the descriptor caches for those channels.
1649         */
1650        vi_count = max(efx->n_channels, efx->n_tx_channels * EF4_TXQ_TYPES);
1651
1652        efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1653        efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1654}
1655
1656u32 ef4_farch_fpga_ver(struct ef4_nic *efx)
1657{
1658        ef4_oword_t altera_build;
1659        ef4_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1660        return EF4_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1661}
1662
1663void ef4_farch_init_common(struct ef4_nic *efx)
1664{
1665        ef4_oword_t temp;
1666
1667        /* Set positions of descriptor caches in SRAM. */
1668        EF4_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1669        ef4_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1670        EF4_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1671        ef4_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1672
1673        /* Set TX descriptor cache size. */
1674        BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1675        EF4_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1676        ef4_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1677
1678        /* Set RX descriptor cache size.  Set low watermark to size-8, as
1679         * this allows most efficient prefetching.
1680         */
1681        BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1682        EF4_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1683        ef4_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1684        EF4_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1685        ef4_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1686
1687        /* Program INT_KER address */
1688        EF4_POPULATE_OWORD_2(temp,
1689                             FRF_AZ_NORM_INT_VEC_DIS_KER,
1690                             EF4_INT_MODE_USE_MSI(efx),
1691                             FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1692        ef4_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1693
1694        /* Use a valid MSI-X vector */
1695        efx->irq_level = 0;
1696
1697        /* Enable all the genuinely fatal interrupts.  (They are still
1698         * masked by the overall interrupt mask, controlled by
1699         * falcon_interrupts()).
1700         *
1701         * Note: All other fatal interrupts are enabled
1702         */
1703        EF4_POPULATE_OWORD_3(temp,
1704                             FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1705                             FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1706                             FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1707        EF4_INVERT_OWORD(temp);
1708        ef4_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1709
1710        /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1711         * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1712         */
1713        ef4_reado(efx, &temp, FR_AZ_TX_RESERVED);
1714        EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1715        EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1716        EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1717        EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1718        EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1719        /* Enable SW_EV to inherit in char driver - assume harmless here */
1720        EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1721        /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1722        EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1723        /* Disable hardware watchdog which can misfire */
1724        EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1725        /* Squash TX of packets of 16 bytes or less */
1726        if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0)
1727                EF4_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1728        ef4_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1729
1730        if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
1731                EF4_POPULATE_OWORD_4(temp,
1732                                     /* Default values */
1733                                     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1734                                     FRF_BZ_TX_PACE_SB_AF, 0xb,
1735                                     FRF_BZ_TX_PACE_FB_BASE, 0,
1736                                     /* Allow large pace values in the
1737                                      * fast bin. */
1738                                     FRF_BZ_TX_PACE_BIN_TH,
1739                                     FFE_BZ_TX_PACE_RESERVED);
1740                ef4_writeo(efx, &temp, FR_BZ_TX_PACE);
1741        }
1742}
1743
1744/**************************************************************************
1745 *
1746 * Filter tables
1747 *
1748 **************************************************************************
1749 */
1750
1751/* "Fudge factors" - difference between programmed value and actual depth.
1752 * Due to pipelined implementation we need to program H/W with a value that
1753 * is larger than the hop limit we want.
1754 */
1755#define EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1756#define EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1757
1758/* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1759 * We also need to avoid infinite loops in ef4_farch_filter_search() when the
1760 * table is full.
1761 */
1762#define EF4_FARCH_FILTER_CTL_SRCH_MAX 200
1763
1764/* Don't try very hard to find space for performance hints, as this is
1765 * counter-productive. */
1766#define EF4_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1767
1768enum ef4_farch_filter_type {
1769        EF4_FARCH_FILTER_TCP_FULL = 0,
1770        EF4_FARCH_FILTER_TCP_WILD,
1771        EF4_FARCH_FILTER_UDP_FULL,
1772        EF4_FARCH_FILTER_UDP_WILD,
1773        EF4_FARCH_FILTER_MAC_FULL = 4,
1774        EF4_FARCH_FILTER_MAC_WILD,
1775        EF4_FARCH_FILTER_UC_DEF = 8,
1776        EF4_FARCH_FILTER_MC_DEF,
1777        EF4_FARCH_FILTER_TYPE_COUNT,            /* number of specific types */
1778};
1779
1780enum ef4_farch_filter_table_id {
1781        EF4_FARCH_FILTER_TABLE_RX_IP = 0,
1782        EF4_FARCH_FILTER_TABLE_RX_MAC,
1783        EF4_FARCH_FILTER_TABLE_RX_DEF,
1784        EF4_FARCH_FILTER_TABLE_TX_MAC,
1785        EF4_FARCH_FILTER_TABLE_COUNT,
1786};
1787
1788enum ef4_farch_filter_index {
1789        EF4_FARCH_FILTER_INDEX_UC_DEF,
1790        EF4_FARCH_FILTER_INDEX_MC_DEF,
1791        EF4_FARCH_FILTER_SIZE_RX_DEF,
1792};
1793
1794struct ef4_farch_filter_spec {
1795        u8      type:4;
1796        u8      priority:4;
1797        u8      flags;
1798        u16     dmaq_id;
1799        u32     data[3];
1800};
1801
1802struct ef4_farch_filter_table {
1803        enum ef4_farch_filter_table_id id;
1804        u32             offset;         /* address of table relative to BAR */
1805        unsigned        size;           /* number of entries */
1806        unsigned        step;           /* step between entries */
1807        unsigned        used;           /* number currently used */
1808        unsigned long   *used_bitmap;
1809        struct ef4_farch_filter_spec *spec;
1810        unsigned        search_limit[EF4_FARCH_FILTER_TYPE_COUNT];
1811};
1812
1813struct ef4_farch_filter_state {
1814        struct ef4_farch_filter_table table[EF4_FARCH_FILTER_TABLE_COUNT];
1815};
1816
1817static void
1818ef4_farch_filter_table_clear_entry(struct ef4_nic *efx,
1819                                   struct ef4_farch_filter_table *table,
1820                                   unsigned int filter_idx);
1821
1822/* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1823 * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
1824static u16 ef4_farch_filter_hash(u32 key)
1825{
1826        u16 tmp;
1827
1828        /* First 16 rounds */
1829        tmp = 0x1fff ^ key >> 16;
1830        tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1831        tmp = tmp ^ tmp >> 9;
1832        /* Last 16 rounds */
1833        tmp = tmp ^ tmp << 13 ^ key;
1834        tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1835        return tmp ^ tmp >> 9;
1836}
1837
1838/* To allow for hash collisions, filter search continues at these
1839 * increments from the first possible entry selected by the hash. */
1840static u16 ef4_farch_filter_increment(u32 key)
1841{
1842        return key * 2 - 1;
1843}
1844
1845static enum ef4_farch_filter_table_id
1846ef4_farch_filter_spec_table_id(const struct ef4_farch_filter_spec *spec)
1847{
1848        BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1849                     (EF4_FARCH_FILTER_TCP_FULL >> 2));
1850        BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1851                     (EF4_FARCH_FILTER_TCP_WILD >> 2));
1852        BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1853                     (EF4_FARCH_FILTER_UDP_FULL >> 2));
1854        BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1855                     (EF4_FARCH_FILTER_UDP_WILD >> 2));
1856        BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_MAC !=
1857                     (EF4_FARCH_FILTER_MAC_FULL >> 2));
1858        BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_MAC !=
1859                     (EF4_FARCH_FILTER_MAC_WILD >> 2));
1860        BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_TX_MAC !=
1861                     EF4_FARCH_FILTER_TABLE_RX_MAC + 2);
1862        return (spec->type >> 2) + ((spec->flags & EF4_FILTER_FLAG_TX) ? 2 : 0);
1863}
1864
1865static void ef4_farch_filter_push_rx_config(struct ef4_nic *efx)
1866{
1867        struct ef4_farch_filter_state *state = efx->filter_state;
1868        struct ef4_farch_filter_table *table;
1869        ef4_oword_t filter_ctl;
1870
1871        ef4_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1872
1873        table = &state->table[EF4_FARCH_FILTER_TABLE_RX_IP];
1874        EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1875                            table->search_limit[EF4_FARCH_FILTER_TCP_FULL] +
1876                            EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1877        EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1878                            table->search_limit[EF4_FARCH_FILTER_TCP_WILD] +
1879                            EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1880        EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1881                            table->search_limit[EF4_FARCH_FILTER_UDP_FULL] +
1882                            EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1883        EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1884                            table->search_limit[EF4_FARCH_FILTER_UDP_WILD] +
1885                            EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1886
1887        table = &state->table[EF4_FARCH_FILTER_TABLE_RX_MAC];
1888        if (table->size) {
1889                EF4_SET_OWORD_FIELD(
1890                        filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1891                        table->search_limit[EF4_FARCH_FILTER_MAC_FULL] +
1892                        EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1893                EF4_SET_OWORD_FIELD(
1894                        filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1895                        table->search_limit[EF4_FARCH_FILTER_MAC_WILD] +
1896                        EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1897        }
1898
1899        table = &state->table[EF4_FARCH_FILTER_TABLE_RX_DEF];
1900        if (table->size) {
1901                EF4_SET_OWORD_FIELD(
1902                        filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1903                        table->spec[EF4_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1904                EF4_SET_OWORD_FIELD(
1905                        filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1906                        !!(table->spec[EF4_FARCH_FILTER_INDEX_UC_DEF].flags &
1907                           EF4_FILTER_FLAG_RX_RSS));
1908                EF4_SET_OWORD_FIELD(
1909                        filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1910                        table->spec[EF4_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1911                EF4_SET_OWORD_FIELD(
1912                        filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1913                        !!(table->spec[EF4_FARCH_FILTER_INDEX_MC_DEF].flags &
1914                           EF4_FILTER_FLAG_RX_RSS));
1915
1916                /* There is a single bit to enable RX scatter for all
1917                 * unmatched packets.  Only set it if scatter is
1918                 * enabled in both filter specs.
1919                 */
1920                EF4_SET_OWORD_FIELD(
1921                        filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1922                        !!(table->spec[EF4_FARCH_FILTER_INDEX_UC_DEF].flags &
1923                           table->spec[EF4_FARCH_FILTER_INDEX_MC_DEF].flags &
1924                           EF4_FILTER_FLAG_RX_SCATTER));
1925        } else if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
1926                /* We don't expose 'default' filters because unmatched
1927                 * packets always go to the queue number found in the
1928                 * RSS table.  But we still need to set the RX scatter
1929                 * bit here.
1930                 */
1931                EF4_SET_OWORD_FIELD(
1932                        filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1933                        efx->rx_scatter);
1934        }
1935
1936        ef4_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1937}
1938
1939static void ef4_farch_filter_push_tx_limits(struct ef4_nic *efx)
1940{
1941        struct ef4_farch_filter_state *state = efx->filter_state;
1942        struct ef4_farch_filter_table *table;
1943        ef4_oword_t tx_cfg;
1944
1945        ef4_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
1946
1947        table = &state->table[EF4_FARCH_FILTER_TABLE_TX_MAC];
1948        if (table->size) {
1949                EF4_SET_OWORD_FIELD(
1950                        tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
1951                        table->search_limit[EF4_FARCH_FILTER_MAC_FULL] +
1952                        EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1953                EF4_SET_OWORD_FIELD(
1954                        tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
1955                        table->search_limit[EF4_FARCH_FILTER_MAC_WILD] +
1956                        EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1957        }
1958
1959        ef4_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
1960}
1961
1962static int
1963ef4_farch_filter_from_gen_spec(struct ef4_farch_filter_spec *spec,
1964                               const struct ef4_filter_spec *gen_spec)
1965{
1966        bool is_full = false;
1967
1968        if ((gen_spec->flags & EF4_FILTER_FLAG_RX_RSS) &&
1969            gen_spec->rss_context != EF4_FILTER_RSS_CONTEXT_DEFAULT)
1970                return -EINVAL;
1971
1972        spec->priority = gen_spec->priority;
1973        spec->flags = gen_spec->flags;
1974        spec->dmaq_id = gen_spec->dmaq_id;
1975
1976        switch (gen_spec->match_flags) {
1977        case (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_IP_PROTO |
1978              EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT |
1979              EF4_FILTER_MATCH_REM_HOST | EF4_FILTER_MATCH_REM_PORT):
1980                is_full = true;
1981                fallthrough;
1982        case (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_IP_PROTO |
1983              EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT): {
1984                __be32 rhost, host1, host2;
1985                __be16 rport, port1, port2;
1986
1987                EF4_BUG_ON_PARANOID(!(gen_spec->flags & EF4_FILTER_FLAG_RX));
1988
1989                if (gen_spec->ether_type != htons(ETH_P_IP))
1990                        return -EPROTONOSUPPORT;
1991                if (gen_spec->loc_port == 0 ||
1992                    (is_full && gen_spec->rem_port == 0))
1993                        return -EADDRNOTAVAIL;
1994                switch (gen_spec->ip_proto) {
1995                case IPPROTO_TCP:
1996                        spec->type = (is_full ? EF4_FARCH_FILTER_TCP_FULL :
1997                                      EF4_FARCH_FILTER_TCP_WILD);
1998                        break;
1999                case IPPROTO_UDP:
2000                        spec->type = (is_full ? EF4_FARCH_FILTER_UDP_FULL :
2001                                      EF4_FARCH_FILTER_UDP_WILD);
2002                        break;
2003                default:
2004                        return -EPROTONOSUPPORT;
2005                }
2006
2007                /* Filter is constructed in terms of source and destination,
2008                 * with the odd wrinkle that the ports are swapped in a UDP
2009                 * wildcard filter.  We need to convert from local and remote
2010                 * (= zero for wildcard) addresses.
2011                 */
2012                rhost = is_full ? gen_spec->rem_host[0] : 0;
2013                rport = is_full ? gen_spec->rem_port : 0;
2014                host1 = rhost;
2015                host2 = gen_spec->loc_host[0];
2016                if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2017                        port1 = gen_spec->loc_port;
2018                        port2 = rport;
2019                } else {
2020                        port1 = rport;
2021                        port2 = gen_spec->loc_port;
2022                }
2023                spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2024                spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2025                spec->data[2] = ntohl(host2);
2026
2027                break;
2028        }
2029
2030        case EF4_FILTER_MATCH_LOC_MAC | EF4_FILTER_MATCH_OUTER_VID:
2031                is_full = true;
2032                fallthrough;
2033        case EF4_FILTER_MATCH_LOC_MAC:
2034                spec->type = (is_full ? EF4_FARCH_FILTER_MAC_FULL :
2035                              EF4_FARCH_FILTER_MAC_WILD);
2036                spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2037                spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2038                                 gen_spec->loc_mac[3] << 16 |
2039                                 gen_spec->loc_mac[4] << 8 |
2040                                 gen_spec->loc_mac[5]);
2041                spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2042                                 gen_spec->loc_mac[1]);
2043                break;
2044
2045        case EF4_FILTER_MATCH_LOC_MAC_IG:
2046                spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2047                              EF4_FARCH_FILTER_MC_DEF :
2048                              EF4_FARCH_FILTER_UC_DEF);
2049                memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2050                break;
2051
2052        default:
2053                return -EPROTONOSUPPORT;
2054        }
2055
2056        return 0;
2057}
2058
2059static void
2060ef4_farch_filter_to_gen_spec(struct ef4_filter_spec *gen_spec,
2061                             const struct ef4_farch_filter_spec *spec)
2062{
2063        bool is_full = false;
2064
2065        /* *gen_spec should be completely initialised, to be consistent
2066         * with ef4_filter_init_{rx,tx}() and in case we want to copy
2067         * it back to userland.
2068         */
2069        memset(gen_spec, 0, sizeof(*gen_spec));
2070
2071        gen_spec->priority = spec->priority;
2072        gen_spec->flags = spec->flags;
2073        gen_spec->dmaq_id = spec->dmaq_id;
2074
2075        switch (spec->type) {
2076        case EF4_FARCH_FILTER_TCP_FULL:
2077        case EF4_FARCH_FILTER_UDP_FULL:
2078                is_full = true;
2079                fallthrough;
2080        case EF4_FARCH_FILTER_TCP_WILD:
2081        case EF4_FARCH_FILTER_UDP_WILD: {
2082                __be32 host1, host2;
2083                __be16 port1, port2;
2084
2085                gen_spec->match_flags =
2086                        EF4_FILTER_MATCH_ETHER_TYPE |
2087                        EF4_FILTER_MATCH_IP_PROTO |
2088                        EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT;
2089                if (is_full)
2090                        gen_spec->match_flags |= (EF4_FILTER_MATCH_REM_HOST |
2091                                                  EF4_FILTER_MATCH_REM_PORT);
2092                gen_spec->ether_type = htons(ETH_P_IP);
2093                gen_spec->ip_proto =
2094                        (spec->type == EF4_FARCH_FILTER_TCP_FULL ||
2095                         spec->type == EF4_FARCH_FILTER_TCP_WILD) ?
2096                        IPPROTO_TCP : IPPROTO_UDP;
2097
2098                host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2099                port1 = htons(spec->data[0]);
2100                host2 = htonl(spec->data[2]);
2101                port2 = htons(spec->data[1] >> 16);
2102                if (spec->flags & EF4_FILTER_FLAG_TX) {
2103                        gen_spec->loc_host[0] = host1;
2104                        gen_spec->rem_host[0] = host2;
2105                } else {
2106                        gen_spec->loc_host[0] = host2;
2107                        gen_spec->rem_host[0] = host1;
2108                }
2109                if (!!(gen_spec->flags & EF4_FILTER_FLAG_TX) ^
2110                    (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2111                        gen_spec->loc_port = port1;
2112                        gen_spec->rem_port = port2;
2113                } else {
2114                        gen_spec->loc_port = port2;
2115                        gen_spec->rem_port = port1;
2116                }
2117
2118                break;
2119        }
2120
2121        case EF4_FARCH_FILTER_MAC_FULL:
2122                is_full = true;
2123                fallthrough;
2124        case EF4_FARCH_FILTER_MAC_WILD:
2125                gen_spec->match_flags = EF4_FILTER_MATCH_LOC_MAC;
2126                if (is_full)
2127                        gen_spec->match_flags |= EF4_FILTER_MATCH_OUTER_VID;
2128                gen_spec->loc_mac[0] = spec->data[2] >> 8;
2129                gen_spec->loc_mac[1] = spec->data[2];
2130                gen_spec->loc_mac[2] = spec->data[1] >> 24;
2131                gen_spec->loc_mac[3] = spec->data[1] >> 16;
2132                gen_spec->loc_mac[4] = spec->data[1] >> 8;
2133                gen_spec->loc_mac[5] = spec->data[1];
2134                gen_spec->outer_vid = htons(spec->data[0]);
2135                break;
2136
2137        case EF4_FARCH_FILTER_UC_DEF:
2138        case EF4_FARCH_FILTER_MC_DEF:
2139                gen_spec->match_flags = EF4_FILTER_MATCH_LOC_MAC_IG;
2140                gen_spec->loc_mac[0] = spec->type == EF4_FARCH_FILTER_MC_DEF;
2141                break;
2142
2143        default:
2144                WARN_ON(1);
2145                break;
2146        }
2147}
2148
2149static void
2150ef4_farch_filter_init_rx_auto(struct ef4_nic *efx,
2151                              struct ef4_farch_filter_spec *spec)
2152{
2153        /* If there's only one channel then disable RSS for non VF
2154         * traffic, thereby allowing VFs to use RSS when the PF can't.
2155         */
2156        spec->priority = EF4_FILTER_PRI_AUTO;
2157        spec->flags = (EF4_FILTER_FLAG_RX |
2158                       (ef4_rss_enabled(efx) ? EF4_FILTER_FLAG_RX_RSS : 0) |
2159                       (efx->rx_scatter ? EF4_FILTER_FLAG_RX_SCATTER : 0));
2160        spec->dmaq_id = 0;
2161}
2162
2163/* Build a filter entry and return its n-tuple key. */
2164static u32 ef4_farch_filter_build(ef4_oword_t *filter,
2165                                  struct ef4_farch_filter_spec *spec)
2166{
2167        u32 data3;
2168
2169        switch (ef4_farch_filter_spec_table_id(spec)) {
2170        case EF4_FARCH_FILTER_TABLE_RX_IP: {
2171                bool is_udp = (spec->type == EF4_FARCH_FILTER_UDP_FULL ||
2172                               spec->type == EF4_FARCH_FILTER_UDP_WILD);
2173                EF4_POPULATE_OWORD_7(
2174                        *filter,
2175                        FRF_BZ_RSS_EN,
2176                        !!(spec->flags & EF4_FILTER_FLAG_RX_RSS),
2177                        FRF_BZ_SCATTER_EN,
2178                        !!(spec->flags & EF4_FILTER_FLAG_RX_SCATTER),
2179                        FRF_BZ_TCP_UDP, is_udp,
2180                        FRF_BZ_RXQ_ID, spec->dmaq_id,
2181                        EF4_DWORD_2, spec->data[2],
2182                        EF4_DWORD_1, spec->data[1],
2183                        EF4_DWORD_0, spec->data[0]);
2184                data3 = is_udp;
2185                break;
2186        }
2187
2188        case EF4_FARCH_FILTER_TABLE_RX_MAC: {
2189                bool is_wild = spec->type == EF4_FARCH_FILTER_MAC_WILD;
2190                EF4_POPULATE_OWORD_7(
2191                        *filter,
2192                        FRF_CZ_RMFT_RSS_EN,
2193                        !!(spec->flags & EF4_FILTER_FLAG_RX_RSS),
2194                        FRF_CZ_RMFT_SCATTER_EN,
2195                        !!(spec->flags & EF4_FILTER_FLAG_RX_SCATTER),
2196                        FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2197                        FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2198                        FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2199                        FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2200                        FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2201                data3 = is_wild;
2202                break;
2203        }
2204
2205        case EF4_FARCH_FILTER_TABLE_TX_MAC: {
2206                bool is_wild = spec->type == EF4_FARCH_FILTER_MAC_WILD;
2207                EF4_POPULATE_OWORD_5(*filter,
2208                                     FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2209                                     FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2210                                     FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2211                                     FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2212                                     FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2213                data3 = is_wild | spec->dmaq_id << 1;
2214                break;
2215        }
2216
2217        default:
2218                BUG();
2219        }
2220
2221        return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2222}
2223
2224static bool ef4_farch_filter_equal(const struct ef4_farch_filter_spec *left,
2225                                   const struct ef4_farch_filter_spec *right)
2226{
2227        if (left->type != right->type ||
2228            memcmp(left->data, right->data, sizeof(left->data)))
2229                return false;
2230
2231        if (left->flags & EF4_FILTER_FLAG_TX &&
2232            left->dmaq_id != right->dmaq_id)
2233                return false;
2234
2235        return true;
2236}
2237
2238/*
2239 * Construct/deconstruct external filter IDs.  At least the RX filter
2240 * IDs must be ordered by matching priority, for RX NFC semantics.
2241 *
2242 * Deconstruction needs to be robust against invalid IDs so that
2243 * ef4_filter_remove_id_safe() and ef4_filter_get_filter_safe() can
2244 * accept user-provided IDs.
2245 */
2246
2247#define EF4_FARCH_FILTER_MATCH_PRI_COUNT        5
2248
2249static const u8 ef4_farch_filter_type_match_pri[EF4_FARCH_FILTER_TYPE_COUNT] = {
2250        [EF4_FARCH_FILTER_TCP_FULL]     = 0,
2251        [EF4_FARCH_FILTER_UDP_FULL]     = 0,
2252        [EF4_FARCH_FILTER_TCP_WILD]     = 1,
2253        [EF4_FARCH_FILTER_UDP_WILD]     = 1,
2254        [EF4_FARCH_FILTER_MAC_FULL]     = 2,
2255        [EF4_FARCH_FILTER_MAC_WILD]     = 3,
2256        [EF4_FARCH_FILTER_UC_DEF]       = 4,
2257        [EF4_FARCH_FILTER_MC_DEF]       = 4,
2258};
2259
2260static const enum ef4_farch_filter_table_id ef4_farch_filter_range_table[] = {
2261        EF4_FARCH_FILTER_TABLE_RX_IP,   /* RX match pri 0 */
2262        EF4_FARCH_FILTER_TABLE_RX_IP,
2263        EF4_FARCH_FILTER_TABLE_RX_MAC,
2264        EF4_FARCH_FILTER_TABLE_RX_MAC,
2265        EF4_FARCH_FILTER_TABLE_RX_DEF,  /* RX match pri 4 */
2266        EF4_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 0 */
2267        EF4_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 1 */
2268};
2269
2270#define EF4_FARCH_FILTER_INDEX_WIDTH 13
2271#define EF4_FARCH_FILTER_INDEX_MASK ((1 << EF4_FARCH_FILTER_INDEX_WIDTH) - 1)
2272
2273static inline u32
2274ef4_farch_filter_make_id(const struct ef4_farch_filter_spec *spec,
2275                         unsigned int index)
2276{
2277        unsigned int range;
2278
2279        range = ef4_farch_filter_type_match_pri[spec->type];
2280        if (!(spec->flags & EF4_FILTER_FLAG_RX))
2281                range += EF4_FARCH_FILTER_MATCH_PRI_COUNT;
2282
2283        return range << EF4_FARCH_FILTER_INDEX_WIDTH | index;
2284}
2285
2286static inline enum ef4_farch_filter_table_id
2287ef4_farch_filter_id_table_id(u32 id)
2288{
2289        unsigned int range = id >> EF4_FARCH_FILTER_INDEX_WIDTH;
2290
2291        if (range < ARRAY_SIZE(ef4_farch_filter_range_table))
2292                return ef4_farch_filter_range_table[range];
2293        else
2294                return EF4_FARCH_FILTER_TABLE_COUNT; /* invalid */
2295}
2296
2297static inline unsigned int ef4_farch_filter_id_index(u32 id)
2298{
2299        return id & EF4_FARCH_FILTER_INDEX_MASK;
2300}
2301
2302u32 ef4_farch_filter_get_rx_id_limit(struct ef4_nic *efx)
2303{
2304        struct ef4_farch_filter_state *state = efx->filter_state;
2305        unsigned int range = EF4_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2306        enum ef4_farch_filter_table_id table_id;
2307
2308        do {
2309                table_id = ef4_farch_filter_range_table[range];
2310                if (state->table[table_id].size != 0)
2311                        return range << EF4_FARCH_FILTER_INDEX_WIDTH |
2312                                state->table[table_id].size;
2313        } while (range--);
2314
2315        return 0;
2316}
2317
2318s32 ef4_farch_filter_insert(struct ef4_nic *efx,
2319                            struct ef4_filter_spec *gen_spec,
2320                            bool replace_equal)
2321{
2322        struct ef4_farch_filter_state *state = efx->filter_state;
2323        struct ef4_farch_filter_table *table;
2324        struct ef4_farch_filter_spec spec;
2325        ef4_oword_t filter;
2326        int rep_index, ins_index;
2327        unsigned int depth = 0;
2328        int rc;
2329
2330        rc = ef4_farch_filter_from_gen_spec(&spec, gen_spec);
2331        if (rc)
2332                return rc;
2333
2334        table = &state->table[ef4_farch_filter_spec_table_id(&spec)];
2335        if (table->size == 0)
2336                return -EINVAL;
2337
2338        netif_vdbg(efx, hw, efx->net_dev,
2339                   "%s: type %d search_limit=%d", __func__, spec.type,
2340                   table->search_limit[spec.type]);
2341
2342        if (table->id == EF4_FARCH_FILTER_TABLE_RX_DEF) {
2343                /* One filter spec per type */
2344                BUILD_BUG_ON(EF4_FARCH_FILTER_INDEX_UC_DEF != 0);
2345                BUILD_BUG_ON(EF4_FARCH_FILTER_INDEX_MC_DEF !=
2346                             EF4_FARCH_FILTER_MC_DEF - EF4_FARCH_FILTER_UC_DEF);
2347                rep_index = spec.type - EF4_FARCH_FILTER_UC_DEF;
2348                ins_index = rep_index;
2349
2350                spin_lock_bh(&efx->filter_lock);
2351        } else {
2352                /* Search concurrently for
2353                 * (1) a filter to be replaced (rep_index): any filter
2354                 *     with the same match values, up to the current
2355                 *     search depth for this type, and
2356                 * (2) the insertion point (ins_index): (1) or any
2357                 *     free slot before it or up to the maximum search
2358                 *     depth for this priority
2359                 * We fail if we cannot find (2).
2360                 *
2361                 * We can stop once either
2362                 * (a) we find (1), in which case we have definitely
2363                 *     found (2) as well; or
2364                 * (b) we have searched exhaustively for (1), and have
2365                 *     either found (2) or searched exhaustively for it
2366                 */
2367                u32 key = ef4_farch_filter_build(&filter, &spec);
2368                unsigned int hash = ef4_farch_filter_hash(key);
2369                unsigned int incr = ef4_farch_filter_increment(key);
2370                unsigned int max_rep_depth = table->search_limit[spec.type];
2371                unsigned int max_ins_depth =
2372                        spec.priority <= EF4_FILTER_PRI_HINT ?
2373                        EF4_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2374                        EF4_FARCH_FILTER_CTL_SRCH_MAX;
2375                unsigned int i = hash & (table->size - 1);
2376
2377                ins_index = -1;
2378                depth = 1;
2379
2380                spin_lock_bh(&efx->filter_lock);
2381
2382                for (;;) {
2383                        if (!test_bit(i, table->used_bitmap)) {
2384                                if (ins_index < 0)
2385                                        ins_index = i;
2386                        } else if (ef4_farch_filter_equal(&spec,
2387                                                          &table->spec[i])) {
2388                                /* Case (a) */
2389                                if (ins_index < 0)
2390                                        ins_index = i;
2391                                rep_index = i;
2392                                break;
2393                        }
2394
2395                        if (depth >= max_rep_depth &&
2396                            (ins_index >= 0 || depth >= max_ins_depth)) {
2397                                /* Case (b) */
2398                                if (ins_index < 0) {
2399                                        rc = -EBUSY;
2400                                        goto out;
2401                                }
2402                                rep_index = -1;
2403                                break;
2404                        }
2405
2406                        i = (i + incr) & (table->size - 1);
2407                        ++depth;
2408                }
2409        }
2410
2411        /* If we found a filter to be replaced, check whether we
2412         * should do so
2413         */
2414        if (rep_index >= 0) {
2415                struct ef4_farch_filter_spec *saved_spec =
2416                        &table->spec[rep_index];
2417
2418                if (spec.priority == saved_spec->priority && !replace_equal) {
2419                        rc = -EEXIST;
2420                        goto out;
2421                }
2422                if (spec.priority < saved_spec->priority) {
2423                        rc = -EPERM;
2424                        goto out;
2425                }
2426                if (saved_spec->priority == EF4_FILTER_PRI_AUTO ||
2427                    saved_spec->flags & EF4_FILTER_FLAG_RX_OVER_AUTO)
2428                        spec.flags |= EF4_FILTER_FLAG_RX_OVER_AUTO;
2429        }
2430
2431        /* Insert the filter */
2432        if (ins_index != rep_index) {
2433                __set_bit(ins_index, table->used_bitmap);
2434                ++table->used;
2435        }
2436        table->spec[ins_index] = spec;
2437
2438        if (table->id == EF4_FARCH_FILTER_TABLE_RX_DEF) {
2439                ef4_farch_filter_push_rx_config(efx);
2440        } else {
2441                if (table->search_limit[spec.type] < depth) {
2442                        table->search_limit[spec.type] = depth;
2443                        if (spec.flags & EF4_FILTER_FLAG_TX)
2444                                ef4_farch_filter_push_tx_limits(efx);
2445                        else
2446                                ef4_farch_filter_push_rx_config(efx);
2447                }
2448
2449                ef4_writeo(efx, &filter,
2450                           table->offset + table->step * ins_index);
2451
2452                /* If we were able to replace a filter by inserting
2453                 * at a lower depth, clear the replaced filter
2454                 */
2455                if (ins_index != rep_index && rep_index >= 0)
2456                        ef4_farch_filter_table_clear_entry(efx, table,
2457                                                           rep_index);
2458        }
2459
2460        netif_vdbg(efx, hw, efx->net_dev,
2461                   "%s: filter type %d index %d rxq %u set",
2462                   __func__, spec.type, ins_index, spec.dmaq_id);
2463        rc = ef4_farch_filter_make_id(&spec, ins_index);
2464
2465out:
2466        spin_unlock_bh(&efx->filter_lock);
2467        return rc;
2468}
2469
2470static void
2471ef4_farch_filter_table_clear_entry(struct ef4_nic *efx,
2472                                   struct ef4_farch_filter_table *table,
2473                                   unsigned int filter_idx)
2474{
2475        static ef4_oword_t filter;
2476
2477        EF4_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2478        BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2479
2480        __clear_bit(filter_idx, table->used_bitmap);
2481        --table->used;
2482        memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2483
2484        ef4_writeo(efx, &filter, table->offset + table->step * filter_idx);
2485
2486        /* If this filter required a greater search depth than
2487         * any other, the search limit for its type can now be
2488         * decreased.  However, it is hard to determine that
2489         * unless the table has become completely empty - in
2490         * which case, all its search limits can be set to 0.
2491         */
2492        if (unlikely(table->used == 0)) {
2493                memset(table->search_limit, 0, sizeof(table->search_limit));
2494                if (table->id == EF4_FARCH_FILTER_TABLE_TX_MAC)
2495                        ef4_farch_filter_push_tx_limits(efx);
2496                else
2497                        ef4_farch_filter_push_rx_config(efx);
2498        }
2499}
2500
2501static int ef4_farch_filter_remove(struct ef4_nic *efx,
2502                                   struct ef4_farch_filter_table *table,
2503                                   unsigned int filter_idx,
2504                                   enum ef4_filter_priority priority)
2505{
2506        struct ef4_farch_filter_spec *spec = &table->spec[filter_idx];
2507
2508        if (!test_bit(filter_idx, table->used_bitmap) ||
2509            spec->priority != priority)
2510                return -ENOENT;
2511
2512        if (spec->flags & EF4_FILTER_FLAG_RX_OVER_AUTO) {
2513                ef4_farch_filter_init_rx_auto(efx, spec);
2514                ef4_farch_filter_push_rx_config(efx);
2515        } else {
2516                ef4_farch_filter_table_clear_entry(efx, table, filter_idx);
2517        }
2518
2519        return 0;
2520}
2521
2522int ef4_farch_filter_remove_safe(struct ef4_nic *efx,
2523                                 enum ef4_filter_priority priority,
2524                                 u32 filter_id)
2525{
2526        struct ef4_farch_filter_state *state = efx->filter_state;
2527        enum ef4_farch_filter_table_id table_id;
2528        struct ef4_farch_filter_table *table;
2529        unsigned int filter_idx;
2530        int rc;
2531
2532        table_id = ef4_farch_filter_id_table_id(filter_id);
2533        if ((unsigned int)table_id >= EF4_FARCH_FILTER_TABLE_COUNT)
2534                return -ENOENT;
2535        table = &state->table[table_id];
2536
2537        filter_idx = ef4_farch_filter_id_index(filter_id);
2538        if (filter_idx >= table->size)
2539                return -ENOENT;
2540
2541        spin_lock_bh(&efx->filter_lock);
2542        rc = ef4_farch_filter_remove(efx, table, filter_idx, priority);
2543        spin_unlock_bh(&efx->filter_lock);
2544
2545        return rc;
2546}
2547
2548int ef4_farch_filter_get_safe(struct ef4_nic *efx,
2549                              enum ef4_filter_priority priority,
2550                              u32 filter_id, struct ef4_filter_spec *spec_buf)
2551{
2552        struct ef4_farch_filter_state *state = efx->filter_state;
2553        enum ef4_farch_filter_table_id table_id;
2554        struct ef4_farch_filter_table *table;
2555        struct ef4_farch_filter_spec *spec;
2556        unsigned int filter_idx;
2557        int rc;
2558
2559        table_id = ef4_farch_filter_id_table_id(filter_id);
2560        if ((unsigned int)table_id >= EF4_FARCH_FILTER_TABLE_COUNT)
2561                return -ENOENT;
2562        table = &state->table[table_id];
2563
2564        filter_idx = ef4_farch_filter_id_index(filter_id);
2565        if (filter_idx >= table->size)
2566                return -ENOENT;
2567        spec = &table->spec[filter_idx];
2568
2569        spin_lock_bh(&efx->filter_lock);
2570
2571        if (test_bit(filter_idx, table->used_bitmap) &&
2572            spec->priority == priority) {
2573                ef4_farch_filter_to_gen_spec(spec_buf, spec);
2574                rc = 0;
2575        } else {
2576                rc = -ENOENT;
2577        }
2578
2579        spin_unlock_bh(&efx->filter_lock);
2580
2581        return rc;
2582}
2583
2584static void
2585ef4_farch_filter_table_clear(struct ef4_nic *efx,
2586                             enum ef4_farch_filter_table_id table_id,
2587                             enum ef4_filter_priority priority)
2588{
2589        struct ef4_farch_filter_state *state = efx->filter_state;
2590        struct ef4_farch_filter_table *table = &state->table[table_id];
2591        unsigned int filter_idx;
2592
2593        spin_lock_bh(&efx->filter_lock);
2594        for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2595                if (table->spec[filter_idx].priority != EF4_FILTER_PRI_AUTO)
2596                        ef4_farch_filter_remove(efx, table,
2597                                                filter_idx, priority);
2598        }
2599        spin_unlock_bh(&efx->filter_lock);
2600}
2601
2602int ef4_farch_filter_clear_rx(struct ef4_nic *efx,
2603                               enum ef4_filter_priority priority)
2604{
2605        ef4_farch_filter_table_clear(efx, EF4_FARCH_FILTER_TABLE_RX_IP,
2606                                     priority);
2607        ef4_farch_filter_table_clear(efx, EF4_FARCH_FILTER_TABLE_RX_MAC,
2608                                     priority);
2609        ef4_farch_filter_table_clear(efx, EF4_FARCH_FILTER_TABLE_RX_DEF,
2610                                     priority);
2611        return 0;
2612}
2613
2614u32 ef4_farch_filter_count_rx_used(struct ef4_nic *efx,
2615                                   enum ef4_filter_priority priority)
2616{
2617        struct ef4_farch_filter_state *state = efx->filter_state;
2618        enum ef4_farch_filter_table_id table_id;
2619        struct ef4_farch_filter_table *table;
2620        unsigned int filter_idx;
2621        u32 count = 0;
2622
2623        spin_lock_bh(&efx->filter_lock);
2624
2625        for (table_id = EF4_FARCH_FILTER_TABLE_RX_IP;
2626             table_id <= EF4_FARCH_FILTER_TABLE_RX_DEF;
2627             table_id++) {
2628                table = &state->table[table_id];
2629                for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2630                        if (test_bit(filter_idx, table->used_bitmap) &&
2631                            table->spec[filter_idx].priority == priority)
2632                                ++count;
2633                }
2634        }
2635
2636        spin_unlock_bh(&efx->filter_lock);
2637
2638        return count;
2639}
2640
2641s32 ef4_farch_filter_get_rx_ids(struct ef4_nic *efx,
2642                                enum ef4_filter_priority priority,
2643                                u32 *buf, u32 size)
2644{
2645        struct ef4_farch_filter_state *state = efx->filter_state;
2646        enum ef4_farch_filter_table_id table_id;
2647        struct ef4_farch_filter_table *table;
2648        unsigned int filter_idx;
2649        s32 count = 0;
2650
2651        spin_lock_bh(&efx->filter_lock);
2652
2653        for (table_id = EF4_FARCH_FILTER_TABLE_RX_IP;
2654             table_id <= EF4_FARCH_FILTER_TABLE_RX_DEF;
2655             table_id++) {
2656                table = &state->table[table_id];
2657                for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2658                        if (test_bit(filter_idx, table->used_bitmap) &&
2659                            table->spec[filter_idx].priority == priority) {
2660                                if (count == size) {
2661                                        count = -EMSGSIZE;
2662                                        goto out;
2663                                }
2664                                buf[count++] = ef4_farch_filter_make_id(
2665                                        &table->spec[filter_idx], filter_idx);
2666                        }
2667                }
2668        }
2669out:
2670        spin_unlock_bh(&efx->filter_lock);
2671
2672        return count;
2673}
2674
2675/* Restore filter stater after reset */
2676void ef4_farch_filter_table_restore(struct ef4_nic *efx)
2677{
2678        struct ef4_farch_filter_state *state = efx->filter_state;
2679        enum ef4_farch_filter_table_id table_id;
2680        struct ef4_farch_filter_table *table;
2681        ef4_oword_t filter;
2682        unsigned int filter_idx;
2683
2684        spin_lock_bh(&efx->filter_lock);
2685
2686        for (table_id = 0; table_id < EF4_FARCH_FILTER_TABLE_COUNT; table_id++) {
2687                table = &state->table[table_id];
2688
2689                /* Check whether this is a regular register table */
2690                if (table->step == 0)
2691                        continue;
2692
2693                for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2694                        if (!test_bit(filter_idx, table->used_bitmap))
2695                                continue;
2696                        ef4_farch_filter_build(&filter, &table->spec[filter_idx]);
2697                        ef4_writeo(efx, &filter,
2698                                   table->offset + table->step * filter_idx);
2699                }
2700        }
2701
2702        ef4_farch_filter_push_rx_config(efx);
2703        ef4_farch_filter_push_tx_limits(efx);
2704
2705        spin_unlock_bh(&efx->filter_lock);
2706}
2707
2708void ef4_farch_filter_table_remove(struct ef4_nic *efx)
2709{
2710        struct ef4_farch_filter_state *state = efx->filter_state;
2711        enum ef4_farch_filter_table_id table_id;
2712
2713        for (table_id = 0; table_id < EF4_FARCH_FILTER_TABLE_COUNT; table_id++) {
2714                kfree(state->table[table_id].used_bitmap);
2715                vfree(state->table[table_id].spec);
2716        }
2717        kfree(state);
2718}
2719
2720int ef4_farch_filter_table_probe(struct ef4_nic *efx)
2721{
2722        struct ef4_farch_filter_state *state;
2723        struct ef4_farch_filter_table *table;
2724        unsigned table_id;
2725
2726        state = kzalloc(sizeof(struct ef4_farch_filter_state), GFP_KERNEL);
2727        if (!state)
2728                return -ENOMEM;
2729        efx->filter_state = state;
2730
2731        if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
2732                table = &state->table[EF4_FARCH_FILTER_TABLE_RX_IP];
2733                table->id = EF4_FARCH_FILTER_TABLE_RX_IP;
2734                table->offset = FR_BZ_RX_FILTER_TBL0;
2735                table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2736                table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2737        }
2738
2739        for (table_id = 0; table_id < EF4_FARCH_FILTER_TABLE_COUNT; table_id++) {
2740                table = &state->table[table_id];
2741                if (table->size == 0)
2742                        continue;
2743                table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2744                                             sizeof(unsigned long),
2745                                             GFP_KERNEL);
2746                if (!table->used_bitmap)
2747                        goto fail;
2748                table->spec = vzalloc(array_size(sizeof(*table->spec),
2749                                                 table->size));
2750                if (!table->spec)
2751                        goto fail;
2752        }
2753
2754        table = &state->table[EF4_FARCH_FILTER_TABLE_RX_DEF];
2755        if (table->size) {
2756                /* RX default filters must always exist */
2757                struct ef4_farch_filter_spec *spec;
2758                unsigned i;
2759
2760                for (i = 0; i < EF4_FARCH_FILTER_SIZE_RX_DEF; i++) {
2761                        spec = &table->spec[i];
2762                        spec->type = EF4_FARCH_FILTER_UC_DEF + i;
2763                        ef4_farch_filter_init_rx_auto(efx, spec);
2764                        __set_bit(i, table->used_bitmap);
2765                }
2766        }
2767
2768        ef4_farch_filter_push_rx_config(efx);
2769
2770        return 0;
2771
2772fail:
2773        ef4_farch_filter_table_remove(efx);
2774        return -ENOMEM;
2775}
2776
2777/* Update scatter enable flags for filters pointing to our own RX queues */
2778void ef4_farch_filter_update_rx_scatter(struct ef4_nic *efx)
2779{
2780        struct ef4_farch_filter_state *state = efx->filter_state;
2781        enum ef4_farch_filter_table_id table_id;
2782        struct ef4_farch_filter_table *table;
2783        ef4_oword_t filter;
2784        unsigned int filter_idx;
2785
2786        spin_lock_bh(&efx->filter_lock);
2787
2788        for (table_id = EF4_FARCH_FILTER_TABLE_RX_IP;
2789             table_id <= EF4_FARCH_FILTER_TABLE_RX_DEF;
2790             table_id++) {
2791                table = &state->table[table_id];
2792
2793                for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2794                        if (!test_bit(filter_idx, table->used_bitmap) ||
2795                            table->spec[filter_idx].dmaq_id >=
2796                            efx->n_rx_channels)
2797                                continue;
2798
2799                        if (efx->rx_scatter)
2800                                table->spec[filter_idx].flags |=
2801                                        EF4_FILTER_FLAG_RX_SCATTER;
2802                        else
2803                                table->spec[filter_idx].flags &=
2804                                        ~EF4_FILTER_FLAG_RX_SCATTER;
2805
2806                        if (table_id == EF4_FARCH_FILTER_TABLE_RX_DEF)
2807                                /* Pushed by ef4_farch_filter_push_rx_config() */
2808                                continue;
2809
2810                        ef4_farch_filter_build(&filter, &table->spec[filter_idx]);
2811                        ef4_writeo(efx, &filter,
2812                                   table->offset + table->step * filter_idx);
2813                }
2814        }
2815
2816        ef4_farch_filter_push_rx_config(efx);
2817
2818        spin_unlock_bh(&efx->filter_lock);
2819}
2820
2821#ifdef CONFIG_RFS_ACCEL
2822
2823s32 ef4_farch_filter_rfs_insert(struct ef4_nic *efx,
2824                                struct ef4_filter_spec *gen_spec)
2825{
2826        return ef4_farch_filter_insert(efx, gen_spec, true);
2827}
2828
2829bool ef4_farch_filter_rfs_expire_one(struct ef4_nic *efx, u32 flow_id,
2830                                     unsigned int index)
2831{
2832        struct ef4_farch_filter_state *state = efx->filter_state;
2833        struct ef4_farch_filter_table *table =
2834                &state->table[EF4_FARCH_FILTER_TABLE_RX_IP];
2835
2836        if (test_bit(index, table->used_bitmap) &&
2837            table->spec[index].priority == EF4_FILTER_PRI_HINT &&
2838            rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id,
2839                                flow_id, index)) {
2840                ef4_farch_filter_table_clear_entry(efx, table, index);
2841                return true;
2842        }
2843
2844        return false;
2845}
2846
2847#endif /* CONFIG_RFS_ACCEL */
2848
2849void ef4_farch_filter_sync_rx_mode(struct ef4_nic *efx)
2850{
2851        struct net_device *net_dev = efx->net_dev;
2852        struct netdev_hw_addr *ha;
2853        union ef4_multicast_hash *mc_hash = &efx->multicast_hash;
2854        u32 crc;
2855        int bit;
2856
2857        if (!ef4_dev_registered(efx))
2858                return;
2859
2860        netif_addr_lock_bh(net_dev);
2861
2862        efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2863
2864        /* Build multicast hash table */
2865        if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2866                memset(mc_hash, 0xff, sizeof(*mc_hash));
2867        } else {
2868                memset(mc_hash, 0x00, sizeof(*mc_hash));
2869                netdev_for_each_mc_addr(ha, net_dev) {
2870                        crc = ether_crc_le(ETH_ALEN, ha->addr);
2871                        bit = crc & (EF4_MCAST_HASH_ENTRIES - 1);
2872                        __set_bit_le(bit, mc_hash);
2873                }
2874
2875                /* Broadcast packets go through the multicast hash filter.
2876                 * ether_crc_le() of the broadcast address is 0xbe2612ff
2877                 * so we always add bit 0xff to the mask.
2878                 */
2879                __set_bit_le(0xff, mc_hash);
2880        }
2881
2882        netif_addr_unlock_bh(net_dev);
2883}
2884