linux/drivers/net/ethernet/sfc/nic_common.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2005-2006 Fen Systems Ltd.
   5 * Copyright 2006-2013 Solarflare Communications Inc.
   6 * Copyright 2019-2020 Xilinx Inc.
   7 */
   8
   9#ifndef EFX_NIC_COMMON_H
  10#define EFX_NIC_COMMON_H
  11
  12#include "net_driver.h"
  13#include "efx_common.h"
  14#include "mcdi.h"
  15#include "ptp.h"
  16
  17enum {
  18        /* Revisions 0-2 were Falcon A0, A1 and B0 respectively.
  19         * They are not supported by this driver but these revision numbers
  20         * form part of the ethtool API for register dumping.
  21         */
  22        EFX_REV_SIENA_A0 = 3,
  23        EFX_REV_HUNT_A0 = 4,
  24        EFX_REV_EF100 = 5,
  25};
  26
  27static inline int efx_nic_rev(struct efx_nic *efx)
  28{
  29        return efx->type->revision;
  30}
  31
  32/* Read the current event from the event queue */
  33static inline efx_qword_t *efx_event(struct efx_channel *channel,
  34                                     unsigned int index)
  35{
  36        return ((efx_qword_t *) (channel->eventq.buf.addr)) +
  37                (index & channel->eventq_mask);
  38}
  39
  40/* See if an event is present
  41 *
  42 * We check both the high and low dword of the event for all ones.  We
  43 * wrote all ones when we cleared the event, and no valid event can
  44 * have all ones in either its high or low dwords.  This approach is
  45 * robust against reordering.
  46 *
  47 * Note that using a single 64-bit comparison is incorrect; even
  48 * though the CPU read will be atomic, the DMA write may not be.
  49 */
  50static inline int efx_event_present(efx_qword_t *event)
  51{
  52        return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
  53                  EFX_DWORD_IS_ALL_ONES(event->dword[1]));
  54}
  55
  56/* Returns a pointer to the specified transmit descriptor in the TX
  57 * descriptor queue belonging to the specified channel.
  58 */
  59static inline efx_qword_t *
  60efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
  61{
  62        return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index;
  63}
  64
  65/* Report whether this TX queue would be empty for the given write_count.
  66 * May return false negative.
  67 */
  68static inline bool efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue, unsigned int write_count)
  69{
  70        unsigned int empty_read_count = READ_ONCE(tx_queue->empty_read_count);
  71
  72        if (empty_read_count == 0)
  73                return false;
  74
  75        return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
  76}
  77
  78int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
  79                        bool *data_mapped);
  80
  81/* Decide whether to push a TX descriptor to the NIC vs merely writing
  82 * the doorbell.  This can reduce latency when we are adding a single
  83 * descriptor to an empty queue, but is otherwise pointless.  Further,
  84 * Falcon and Siena have hardware bugs (SF bug 33851) that may be
  85 * triggered if we don't check this.
  86 * We use the write_count used for the last doorbell push, to get the
  87 * NIC's view of the tx queue.
  88 */
  89static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue,
  90                                            unsigned int write_count)
  91{
  92        bool was_empty = efx_nic_tx_is_empty(tx_queue, write_count);
  93
  94        tx_queue->empty_read_count = 0;
  95        return was_empty && tx_queue->write_count - write_count == 1;
  96}
  97
  98/* Returns a pointer to the specified descriptor in the RX descriptor queue */
  99static inline efx_qword_t *
 100efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
 101{
 102        return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index;
 103}
 104
 105/* Alignment of PCIe DMA boundaries (4KB) */
 106#define EFX_PAGE_SIZE   4096
 107/* Size and alignment of buffer table entries (same) */
 108#define EFX_BUF_SIZE    EFX_PAGE_SIZE
 109
 110/* NIC-generic software stats */
 111enum {
 112        GENERIC_STAT_rx_noskb_drops,
 113        GENERIC_STAT_rx_nodesc_trunc,
 114        GENERIC_STAT_COUNT
 115};
 116
 117#define EFX_GENERIC_SW_STAT(ext_name)                           \
 118        [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
 119
 120/* TX data path */
 121static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
 122{
 123        return tx_queue->efx->type->tx_probe(tx_queue);
 124}
 125static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
 126{
 127        tx_queue->efx->type->tx_init(tx_queue);
 128}
 129static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
 130{
 131        if (tx_queue->efx->type->tx_remove)
 132                tx_queue->efx->type->tx_remove(tx_queue);
 133}
 134static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
 135{
 136        tx_queue->efx->type->tx_write(tx_queue);
 137}
 138
 139/* RX data path */
 140static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
 141{
 142        return rx_queue->efx->type->rx_probe(rx_queue);
 143}
 144static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
 145{
 146        rx_queue->efx->type->rx_init(rx_queue);
 147}
 148static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
 149{
 150        rx_queue->efx->type->rx_remove(rx_queue);
 151}
 152static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
 153{
 154        rx_queue->efx->type->rx_write(rx_queue);
 155}
 156static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
 157{
 158        rx_queue->efx->type->rx_defer_refill(rx_queue);
 159}
 160
 161/* Event data path */
 162static inline int efx_nic_probe_eventq(struct efx_channel *channel)
 163{
 164        return channel->efx->type->ev_probe(channel);
 165}
 166static inline int efx_nic_init_eventq(struct efx_channel *channel)
 167{
 168        return channel->efx->type->ev_init(channel);
 169}
 170static inline void efx_nic_fini_eventq(struct efx_channel *channel)
 171{
 172        channel->efx->type->ev_fini(channel);
 173}
 174static inline void efx_nic_remove_eventq(struct efx_channel *channel)
 175{
 176        channel->efx->type->ev_remove(channel);
 177}
 178static inline int
 179efx_nic_process_eventq(struct efx_channel *channel, int quota)
 180{
 181        return channel->efx->type->ev_process(channel, quota);
 182}
 183static inline void efx_nic_eventq_read_ack(struct efx_channel *channel)
 184{
 185        channel->efx->type->ev_read_ack(channel);
 186}
 187
 188void efx_nic_event_test_start(struct efx_channel *channel);
 189
 190bool efx_nic_event_present(struct efx_channel *channel);
 191
 192static inline void efx_sensor_event(struct efx_nic *efx, efx_qword_t *ev)
 193{
 194        if (efx->type->sensor_event)
 195                efx->type->sensor_event(efx, ev);
 196}
 197
 198/* Some statistics are computed as A - B where A and B each increase
 199 * linearly with some hardware counter(s) and the counters are read
 200 * asynchronously.  If the counters contributing to B are always read
 201 * after those contributing to A, the computed value may be lower than
 202 * the true value by some variable amount, and may decrease between
 203 * subsequent computations.
 204 *
 205 * We should never allow statistics to decrease or to exceed the true
 206 * value.  Since the computed value will never be greater than the
 207 * true value, we can achieve this by only storing the computed value
 208 * when it increases.
 209 */
 210static inline void efx_update_diff_stat(u64 *stat, u64 diff)
 211{
 212        if ((s64)(diff - *stat) > 0)
 213                *stat = diff;
 214}
 215
 216/* Interrupts */
 217int efx_nic_init_interrupt(struct efx_nic *efx);
 218int efx_nic_irq_test_start(struct efx_nic *efx);
 219void efx_nic_fini_interrupt(struct efx_nic *efx);
 220
 221static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel)
 222{
 223        return READ_ONCE(channel->event_test_cpu);
 224}
 225static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx)
 226{
 227        return READ_ONCE(efx->last_irq_cpu);
 228}
 229
 230/* Global Resources */
 231int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
 232                         unsigned int len, gfp_t gfp_flags);
 233void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer);
 234
 235size_t efx_nic_get_regs_len(struct efx_nic *efx);
 236void efx_nic_get_regs(struct efx_nic *efx, void *buf);
 237
 238#define EFX_MC_STATS_GENERATION_INVALID ((__force __le64)(-1))
 239
 240size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
 241                              const unsigned long *mask, u8 *names);
 242int efx_nic_copy_stats(struct efx_nic *efx, __le64 *dest);
 243void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
 244                          const unsigned long *mask, u64 *stats,
 245                          const void *dma_buf, bool accumulate);
 246void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *stat);
 247static inline size_t efx_nic_update_stats_atomic(struct efx_nic *efx, u64 *full_stats,
 248                                                 struct rtnl_link_stats64 *core_stats)
 249{
 250        if (efx->type->update_stats_atomic)
 251                return efx->type->update_stats_atomic(efx, full_stats, core_stats);
 252        return efx->type->update_stats(efx, full_stats, core_stats);
 253}
 254
 255#define EFX_MAX_FLUSH_TIME 5000
 256
 257#endif /* EFX_NIC_COMMON_H */
 258