linux/drivers/net/ethernet/sfc/ptp.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2011-2013 Solarflare Communications Inc.
   5 */
   6
   7/* Theory of operation:
   8 *
   9 * PTP support is assisted by firmware running on the MC, which provides
  10 * the hardware timestamping capabilities.  Both transmitted and received
  11 * PTP event packets are queued onto internal queues for subsequent processing;
  12 * this is because the MC operations are relatively long and would block
  13 * block NAPI/interrupt operation.
  14 *
  15 * Receive event processing:
  16 *      The event contains the packet's UUID and sequence number, together
  17 *      with the hardware timestamp.  The PTP receive packet queue is searched
  18 *      for this UUID/sequence number and, if found, put on a pending queue.
  19 *      Packets not matching are delivered without timestamps (MCDI events will
  20 *      always arrive after the actual packet).
  21 *      It is important for the operation of the PTP protocol that the ordering
  22 *      of packets between the event and general port is maintained.
  23 *
  24 * Work queue processing:
  25 *      If work waiting, synchronise host/hardware time
  26 *
  27 *      Transmit: send packet through MC, which returns the transmission time
  28 *      that is converted to an appropriate timestamp.
  29 *
  30 *      Receive: the packet's reception time is converted to an appropriate
  31 *      timestamp.
  32 */
  33#include <linux/ip.h>
  34#include <linux/udp.h>
  35#include <linux/time.h>
  36#include <linux/ktime.h>
  37#include <linux/module.h>
  38#include <linux/pps_kernel.h>
  39#include <linux/ptp_clock_kernel.h>
  40#include "net_driver.h"
  41#include "efx.h"
  42#include "mcdi.h"
  43#include "mcdi_pcol.h"
  44#include "io.h"
  45#include "farch_regs.h"
  46#include "tx.h"
  47#include "nic.h" /* indirectly includes ptp.h */
  48
  49/* Maximum number of events expected to make up a PTP event */
  50#define MAX_EVENT_FRAGS                 3
  51
  52/* Maximum delay, ms, to begin synchronisation */
  53#define MAX_SYNCHRONISE_WAIT_MS         2
  54
  55/* How long, at most, to spend synchronising */
  56#define SYNCHRONISE_PERIOD_NS           250000
  57
  58/* How often to update the shared memory time */
  59#define SYNCHRONISATION_GRANULARITY_NS  200
  60
  61/* Minimum permitted length of a (corrected) synchronisation time */
  62#define DEFAULT_MIN_SYNCHRONISATION_NS  120
  63
  64/* Maximum permitted length of a (corrected) synchronisation time */
  65#define MAX_SYNCHRONISATION_NS          1000
  66
  67/* How many (MC) receive events that can be queued */
  68#define MAX_RECEIVE_EVENTS              8
  69
  70/* Length of (modified) moving average. */
  71#define AVERAGE_LENGTH                  16
  72
  73/* How long an unmatched event or packet can be held */
  74#define PKT_EVENT_LIFETIME_MS           10
  75
  76/* Offsets into PTP packet for identification.  These offsets are from the
  77 * start of the IP header, not the MAC header.  Note that neither PTP V1 nor
  78 * PTP V2 permit the use of IPV4 options.
  79 */
  80#define PTP_DPORT_OFFSET        22
  81
  82#define PTP_V1_VERSION_LENGTH   2
  83#define PTP_V1_VERSION_OFFSET   28
  84
  85#define PTP_V1_UUID_LENGTH      6
  86#define PTP_V1_UUID_OFFSET      50
  87
  88#define PTP_V1_SEQUENCE_LENGTH  2
  89#define PTP_V1_SEQUENCE_OFFSET  58
  90
  91/* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
  92 * includes IP header.
  93 */
  94#define PTP_V1_MIN_LENGTH       64
  95
  96#define PTP_V2_VERSION_LENGTH   1
  97#define PTP_V2_VERSION_OFFSET   29
  98
  99#define PTP_V2_UUID_LENGTH      8
 100#define PTP_V2_UUID_OFFSET      48
 101
 102/* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
 103 * the MC only captures the last six bytes of the clock identity. These values
 104 * reflect those, not the ones used in the standard.  The standard permits
 105 * mapping of V1 UUIDs to V2 UUIDs with these same values.
 106 */
 107#define PTP_V2_MC_UUID_LENGTH   6
 108#define PTP_V2_MC_UUID_OFFSET   50
 109
 110#define PTP_V2_SEQUENCE_LENGTH  2
 111#define PTP_V2_SEQUENCE_OFFSET  58
 112
 113/* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
 114 * includes IP header.
 115 */
 116#define PTP_V2_MIN_LENGTH       63
 117
 118#define PTP_MIN_LENGTH          63
 119
 120#define PTP_ADDRESS             0xe0000181      /* 224.0.1.129 */
 121#define PTP_EVENT_PORT          319
 122#define PTP_GENERAL_PORT        320
 123
 124/* Annoyingly the format of the version numbers are different between
 125 * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
 126 */
 127#define PTP_VERSION_V1          1
 128
 129#define PTP_VERSION_V2          2
 130#define PTP_VERSION_V2_MASK     0x0f
 131
 132enum ptp_packet_state {
 133        PTP_PACKET_STATE_UNMATCHED = 0,
 134        PTP_PACKET_STATE_MATCHED,
 135        PTP_PACKET_STATE_TIMED_OUT,
 136        PTP_PACKET_STATE_MATCH_UNWANTED
 137};
 138
 139/* NIC synchronised with single word of time only comprising
 140 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
 141 */
 142#define MC_NANOSECOND_BITS      30
 143#define MC_NANOSECOND_MASK      ((1 << MC_NANOSECOND_BITS) - 1)
 144#define MC_SECOND_MASK          ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
 145
 146/* Maximum parts-per-billion adjustment that is acceptable */
 147#define MAX_PPB                 1000000
 148
 149/* Precalculate scale word to avoid long long division at runtime */
 150/* This is equivalent to 2^66 / 10^9. */
 151#define PPB_SCALE_WORD  ((1LL << (57)) / 1953125LL)
 152
 153/* How much to shift down after scaling to convert to FP40 */
 154#define PPB_SHIFT_FP40          26
 155/* ... and FP44. */
 156#define PPB_SHIFT_FP44          22
 157
 158#define PTP_SYNC_ATTEMPTS       4
 159
 160/**
 161 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
 162 * @words: UUID and (partial) sequence number
 163 * @expiry: Time after which the packet should be delivered irrespective of
 164 *            event arrival.
 165 * @state: The state of the packet - whether it is ready for processing or
 166 *         whether that is of no interest.
 167 */
 168struct efx_ptp_match {
 169        u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
 170        unsigned long expiry;
 171        enum ptp_packet_state state;
 172};
 173
 174/**
 175 * struct efx_ptp_event_rx - A PTP receive event (from MC)
 176 * @link: list of events
 177 * @seq0: First part of (PTP) UUID
 178 * @seq1: Second part of (PTP) UUID and sequence number
 179 * @hwtimestamp: Event timestamp
 180 * @expiry: Time which the packet arrived
 181 */
 182struct efx_ptp_event_rx {
 183        struct list_head link;
 184        u32 seq0;
 185        u32 seq1;
 186        ktime_t hwtimestamp;
 187        unsigned long expiry;
 188};
 189
 190/**
 191 * struct efx_ptp_timeset - Synchronisation between host and MC
 192 * @host_start: Host time immediately before hardware timestamp taken
 193 * @major: Hardware timestamp, major
 194 * @minor: Hardware timestamp, minor
 195 * @host_end: Host time immediately after hardware timestamp taken
 196 * @wait: Number of NIC clock ticks between hardware timestamp being read and
 197 *          host end time being seen
 198 * @window: Difference of host_end and host_start
 199 * @valid: Whether this timeset is valid
 200 */
 201struct efx_ptp_timeset {
 202        u32 host_start;
 203        u32 major;
 204        u32 minor;
 205        u32 host_end;
 206        u32 wait;
 207        u32 window;     /* Derived: end - start, allowing for wrap */
 208};
 209
 210/**
 211 * struct efx_ptp_data - Precision Time Protocol (PTP) state
 212 * @efx: The NIC context
 213 * @channel: The PTP channel (Siena only)
 214 * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are
 215 *      separate events)
 216 * @rxq: Receive SKB queue (awaiting timestamps)
 217 * @txq: Transmit SKB queue
 218 * @evt_list: List of MC receive events awaiting packets
 219 * @evt_free_list: List of free events
 220 * @evt_lock: Lock for manipulating evt_list and evt_free_list
 221 * @rx_evts: Instantiated events (on evt_list and evt_free_list)
 222 * @workwq: Work queue for processing pending PTP operations
 223 * @work: Work task
 224 * @reset_required: A serious error has occurred and the PTP task needs to be
 225 *                  reset (disable, enable).
 226 * @rxfilter_event: Receive filter when operating
 227 * @rxfilter_general: Receive filter when operating
 228 * @rxfilter_installed: Receive filter installed
 229 * @config: Current timestamp configuration
 230 * @enabled: PTP operation enabled
 231 * @mode: Mode in which PTP operating (PTP version)
 232 * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
 233 * @nic_to_kernel_time: Function to convert from NIC to kernel time
 234 * @nic_time: contains time details
 235 * @nic_time.minor_max: Wrap point for NIC minor times
 236 * @nic_time.sync_event_diff_min: Minimum acceptable difference between time
 237 * in packet prefix and last MCDI time sync event i.e. how much earlier than
 238 * the last sync event time a packet timestamp can be.
 239 * @nic_time.sync_event_diff_max: Maximum acceptable difference between time
 240 * in packet prefix and last MCDI time sync event i.e. how much later than
 241 * the last sync event time a packet timestamp can be.
 242 * @nic_time.sync_event_minor_shift: Shift required to make minor time from
 243 * field in MCDI time sync event.
 244 * @min_synchronisation_ns: Minimum acceptable corrected sync window
 245 * @capabilities: Capabilities flags from the NIC
 246 * @ts_corrections: contains corrections details
 247 * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit
 248 *                         timestamps
 249 * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive
 250 *                         timestamps
 251 * @ts_corrections.pps_out: PPS output error (information only)
 252 * @ts_corrections.pps_in: Required driver correction of PPS input timestamps
 253 * @ts_corrections.general_tx: Required driver correction of general packet
 254 *                             transmit timestamps
 255 * @ts_corrections.general_rx: Required driver correction of general packet
 256 *                             receive timestamps
 257 * @evt_frags: Partly assembled PTP events
 258 * @evt_frag_idx: Current fragment number
 259 * @evt_code: Last event code
 260 * @start: Address at which MC indicates ready for synchronisation
 261 * @host_time_pps: Host time at last PPS
 262 * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion
 263 * frequency adjustment into a fixed point fractional nanosecond format.
 264 * @current_adjfreq: Current ppb adjustment.
 265 * @phc_clock: Pointer to registered phc device (if primary function)
 266 * @phc_clock_info: Registration structure for phc device
 267 * @pps_work: pps work task for handling pps events
 268 * @pps_workwq: pps work queue
 269 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
 270 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
 271 *         allocations in main data path).
 272 * @good_syncs: Number of successful synchronisations.
 273 * @fast_syncs: Number of synchronisations requiring short delay
 274 * @bad_syncs: Number of failed synchronisations.
 275 * @sync_timeouts: Number of synchronisation timeouts
 276 * @no_time_syncs: Number of synchronisations with no good times.
 277 * @invalid_sync_windows: Number of sync windows with bad durations.
 278 * @undersize_sync_windows: Number of corrected sync windows that are too small
 279 * @oversize_sync_windows: Number of corrected sync windows that are too large
 280 * @rx_no_timestamp: Number of packets received without a timestamp.
 281 * @timeset: Last set of synchronisation statistics.
 282 * @xmit_skb: Transmit SKB function.
 283 */
 284struct efx_ptp_data {
 285        struct efx_nic *efx;
 286        struct efx_channel *channel;
 287        bool rx_ts_inline;
 288        struct sk_buff_head rxq;
 289        struct sk_buff_head txq;
 290        struct list_head evt_list;
 291        struct list_head evt_free_list;
 292        spinlock_t evt_lock;
 293        struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
 294        struct workqueue_struct *workwq;
 295        struct work_struct work;
 296        bool reset_required;
 297        u32 rxfilter_event;
 298        u32 rxfilter_general;
 299        bool rxfilter_installed;
 300        struct hwtstamp_config config;
 301        bool enabled;
 302        unsigned int mode;
 303        void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor);
 304        ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor,
 305                                      s32 correction);
 306        struct {
 307                u32 minor_max;
 308                u32 sync_event_diff_min;
 309                u32 sync_event_diff_max;
 310                unsigned int sync_event_minor_shift;
 311        } nic_time;
 312        unsigned int min_synchronisation_ns;
 313        unsigned int capabilities;
 314        struct {
 315                s32 ptp_tx;
 316                s32 ptp_rx;
 317                s32 pps_out;
 318                s32 pps_in;
 319                s32 general_tx;
 320                s32 general_rx;
 321        } ts_corrections;
 322        efx_qword_t evt_frags[MAX_EVENT_FRAGS];
 323        int evt_frag_idx;
 324        int evt_code;
 325        struct efx_buffer start;
 326        struct pps_event_time host_time_pps;
 327        unsigned int adjfreq_ppb_shift;
 328        s64 current_adjfreq;
 329        struct ptp_clock *phc_clock;
 330        struct ptp_clock_info phc_clock_info;
 331        struct work_struct pps_work;
 332        struct workqueue_struct *pps_workwq;
 333        bool nic_ts_enabled;
 334        efx_dword_t txbuf[MCDI_TX_BUF_LEN(MC_CMD_PTP_IN_TRANSMIT_LENMAX)];
 335
 336        unsigned int good_syncs;
 337        unsigned int fast_syncs;
 338        unsigned int bad_syncs;
 339        unsigned int sync_timeouts;
 340        unsigned int no_time_syncs;
 341        unsigned int invalid_sync_windows;
 342        unsigned int undersize_sync_windows;
 343        unsigned int oversize_sync_windows;
 344        unsigned int rx_no_timestamp;
 345        struct efx_ptp_timeset
 346        timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
 347        void (*xmit_skb)(struct efx_nic *efx, struct sk_buff *skb);
 348};
 349
 350static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
 351static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
 352static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts);
 353static int efx_phc_settime(struct ptp_clock_info *ptp,
 354                           const struct timespec64 *e_ts);
 355static int efx_phc_enable(struct ptp_clock_info *ptp,
 356                          struct ptp_clock_request *request, int on);
 357
 358bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx)
 359{
 360        return efx_has_cap(efx, TX_MAC_TIMESTAMPING);
 361}
 362
 363/* PTP 'extra' channel is still a traffic channel, but we only create TX queues
 364 * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit.
 365 */
 366static bool efx_ptp_want_txqs(struct efx_channel *channel)
 367{
 368        return efx_ptp_use_mac_tx_timestamps(channel->efx);
 369}
 370
 371#define PTP_SW_STAT(ext_name, field_name)                               \
 372        { #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
 373#define PTP_MC_STAT(ext_name, mcdi_name)                                \
 374        { #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
 375static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = {
 376        PTP_SW_STAT(ptp_good_syncs, good_syncs),
 377        PTP_SW_STAT(ptp_fast_syncs, fast_syncs),
 378        PTP_SW_STAT(ptp_bad_syncs, bad_syncs),
 379        PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts),
 380        PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs),
 381        PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows),
 382        PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows),
 383        PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows),
 384        PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp),
 385        PTP_MC_STAT(ptp_tx_timestamp_packets, TX),
 386        PTP_MC_STAT(ptp_rx_timestamp_packets, RX),
 387        PTP_MC_STAT(ptp_timestamp_packets, TS),
 388        PTP_MC_STAT(ptp_filter_matches, FM),
 389        PTP_MC_STAT(ptp_non_filter_matches, NFM),
 390};
 391#define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
 392static const unsigned long efx_ptp_stat_mask[] = {
 393        [0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL,
 394};
 395
 396size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings)
 397{
 398        if (!efx->ptp_data)
 399                return 0;
 400
 401        return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
 402                                      efx_ptp_stat_mask, strings);
 403}
 404
 405size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats)
 406{
 407        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN);
 408        MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN);
 409        size_t i;
 410        int rc;
 411
 412        if (!efx->ptp_data)
 413                return 0;
 414
 415        /* Copy software statistics */
 416        for (i = 0; i < PTP_STAT_COUNT; i++) {
 417                if (efx_ptp_stat_desc[i].dma_width)
 418                        continue;
 419                stats[i] = *(unsigned int *)((char *)efx->ptp_data +
 420                                             efx_ptp_stat_desc[i].offset);
 421        }
 422
 423        /* Fetch MC statistics.  We *must* fill in all statistics or
 424         * risk leaking kernel memory to userland, so if the MCDI
 425         * request fails we pretend we got zeroes.
 426         */
 427        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS);
 428        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 429        rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 430                          outbuf, sizeof(outbuf), NULL);
 431        if (rc)
 432                memset(outbuf, 0, sizeof(outbuf));
 433        efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
 434                             efx_ptp_stat_mask,
 435                             stats, _MCDI_PTR(outbuf, 0), false);
 436
 437        return PTP_STAT_COUNT;
 438}
 439
 440/* For Siena platforms NIC time is s and ns */
 441static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor)
 442{
 443        struct timespec64 ts = ns_to_timespec64(ns);
 444        *nic_major = (u32)ts.tv_sec;
 445        *nic_minor = ts.tv_nsec;
 446}
 447
 448static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor,
 449                                                s32 correction)
 450{
 451        ktime_t kt = ktime_set(nic_major, nic_minor);
 452        if (correction >= 0)
 453                kt = ktime_add_ns(kt, (u64)correction);
 454        else
 455                kt = ktime_sub_ns(kt, (u64)-correction);
 456        return kt;
 457}
 458
 459/* To convert from s27 format to ns we multiply then divide by a power of 2.
 460 * For the conversion from ns to s27, the operation is also converted to a
 461 * multiply and shift.
 462 */
 463#define S27_TO_NS_SHIFT (27)
 464#define NS_TO_S27_MULT  (((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
 465#define NS_TO_S27_SHIFT (63 - S27_TO_NS_SHIFT)
 466#define S27_MINOR_MAX   (1 << S27_TO_NS_SHIFT)
 467
 468/* For Huntington platforms NIC time is in seconds and fractions of a second
 469 * where the minor register only uses 27 bits in units of 2^-27s.
 470 */
 471static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor)
 472{
 473        struct timespec64 ts = ns_to_timespec64(ns);
 474        u32 maj = (u32)ts.tv_sec;
 475        u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT +
 476                         (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT);
 477
 478        /* The conversion can result in the minor value exceeding the maximum.
 479         * In this case, round up to the next second.
 480         */
 481        if (min >= S27_MINOR_MAX) {
 482                min -= S27_MINOR_MAX;
 483                maj++;
 484        }
 485
 486        *nic_major = maj;
 487        *nic_minor = min;
 488}
 489
 490static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor)
 491{
 492        u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC +
 493                        (1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT);
 494        return ktime_set(nic_major, ns);
 495}
 496
 497static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor,
 498                                               s32 correction)
 499{
 500        /* Apply the correction and deal with carry */
 501        nic_minor += correction;
 502        if ((s32)nic_minor < 0) {
 503                nic_minor += S27_MINOR_MAX;
 504                nic_major--;
 505        } else if (nic_minor >= S27_MINOR_MAX) {
 506                nic_minor -= S27_MINOR_MAX;
 507                nic_major++;
 508        }
 509
 510        return efx_ptp_s27_to_ktime(nic_major, nic_minor);
 511}
 512
 513/* For Medford2 platforms the time is in seconds and quarter nanoseconds. */
 514static void efx_ptp_ns_to_s_qns(s64 ns, u32 *nic_major, u32 *nic_minor)
 515{
 516        struct timespec64 ts = ns_to_timespec64(ns);
 517
 518        *nic_major = (u32)ts.tv_sec;
 519        *nic_minor = ts.tv_nsec * 4;
 520}
 521
 522static ktime_t efx_ptp_s_qns_to_ktime_correction(u32 nic_major, u32 nic_minor,
 523                                                 s32 correction)
 524{
 525        ktime_t kt;
 526
 527        nic_minor = DIV_ROUND_CLOSEST(nic_minor, 4);
 528        correction = DIV_ROUND_CLOSEST(correction, 4);
 529
 530        kt = ktime_set(nic_major, nic_minor);
 531
 532        if (correction >= 0)
 533                kt = ktime_add_ns(kt, (u64)correction);
 534        else
 535                kt = ktime_sub_ns(kt, (u64)-correction);
 536        return kt;
 537}
 538
 539struct efx_channel *efx_ptp_channel(struct efx_nic *efx)
 540{
 541        return efx->ptp_data ? efx->ptp_data->channel : NULL;
 542}
 543
 544static u32 last_sync_timestamp_major(struct efx_nic *efx)
 545{
 546        struct efx_channel *channel = efx_ptp_channel(efx);
 547        u32 major = 0;
 548
 549        if (channel)
 550                major = channel->sync_timestamp_major;
 551        return major;
 552}
 553
 554/* The 8000 series and later can provide the time from the MAC, which is only
 555 * 48 bits long and provides meta-information in the top 2 bits.
 556 */
 557static ktime_t
 558efx_ptp_mac_nic_to_ktime_correction(struct efx_nic *efx,
 559                                    struct efx_ptp_data *ptp,
 560                                    u32 nic_major, u32 nic_minor,
 561                                    s32 correction)
 562{
 563        u32 sync_timestamp;
 564        ktime_t kt = { 0 };
 565        s16 delta;
 566
 567        if (!(nic_major & 0x80000000)) {
 568                WARN_ON_ONCE(nic_major >> 16);
 569
 570                /* Medford provides 48 bits of timestamp, so we must get the top
 571                 * 16 bits from the timesync event state.
 572                 *
 573                 * We only have the lower 16 bits of the time now, but we do
 574                 * have a full resolution timestamp at some point in past. As
 575                 * long as the difference between the (real) now and the sync
 576                 * is less than 2^15, then we can reconstruct the difference
 577                 * between those two numbers using only the lower 16 bits of
 578                 * each.
 579                 *
 580                 * Put another way
 581                 *
 582                 * a - b = ((a mod k) - b) mod k
 583                 *
 584                 * when -k/2 < (a-b) < k/2. In our case k is 2^16. We know
 585                 * (a mod k) and b, so can calculate the delta, a - b.
 586                 *
 587                 */
 588                sync_timestamp = last_sync_timestamp_major(efx);
 589
 590                /* Because delta is s16 this does an implicit mask down to
 591                 * 16 bits which is what we need, assuming
 592                 * MEDFORD_TX_SECS_EVENT_BITS is 16. delta is signed so that
 593                 * we can deal with the (unlikely) case of sync timestamps
 594                 * arriving from the future.
 595                 */
 596                delta = nic_major - sync_timestamp;
 597
 598                /* Recover the fully specified time now, by applying the offset
 599                 * to the (fully specified) sync time.
 600                 */
 601                nic_major = sync_timestamp + delta;
 602
 603                kt = ptp->nic_to_kernel_time(nic_major, nic_minor,
 604                                             correction);
 605        }
 606        return kt;
 607}
 608
 609ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue)
 610{
 611        struct efx_nic *efx = tx_queue->efx;
 612        struct efx_ptp_data *ptp = efx->ptp_data;
 613        ktime_t kt;
 614
 615        if (efx_ptp_use_mac_tx_timestamps(efx))
 616                kt = efx_ptp_mac_nic_to_ktime_correction(efx, ptp,
 617                                tx_queue->completed_timestamp_major,
 618                                tx_queue->completed_timestamp_minor,
 619                                ptp->ts_corrections.general_tx);
 620        else
 621                kt = ptp->nic_to_kernel_time(
 622                                tx_queue->completed_timestamp_major,
 623                                tx_queue->completed_timestamp_minor,
 624                                ptp->ts_corrections.general_tx);
 625        return kt;
 626}
 627
 628/* Get PTP attributes and set up time conversions */
 629static int efx_ptp_get_attributes(struct efx_nic *efx)
 630{
 631        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN);
 632        MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN);
 633        struct efx_ptp_data *ptp = efx->ptp_data;
 634        int rc;
 635        u32 fmt;
 636        size_t out_len;
 637
 638        /* Get the PTP attributes. If the NIC doesn't support the operation we
 639         * use the default format for compatibility with older NICs i.e.
 640         * seconds and nanoseconds.
 641         */
 642        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES);
 643        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 644        rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 645                                outbuf, sizeof(outbuf), &out_len);
 646        if (rc == 0) {
 647                fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT);
 648        } else if (rc == -EINVAL) {
 649                fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS;
 650        } else if (rc == -EPERM) {
 651                netif_info(efx, probe, efx->net_dev, "no PTP support\n");
 652                return rc;
 653        } else {
 654                efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf),
 655                                       outbuf, sizeof(outbuf), rc);
 656                return rc;
 657        }
 658
 659        switch (fmt) {
 660        case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION:
 661                ptp->ns_to_nic_time = efx_ptp_ns_to_s27;
 662                ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction;
 663                ptp->nic_time.minor_max = 1 << 27;
 664                ptp->nic_time.sync_event_minor_shift = 19;
 665                break;
 666        case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS:
 667                ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns;
 668                ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction;
 669                ptp->nic_time.minor_max = 1000000000;
 670                ptp->nic_time.sync_event_minor_shift = 22;
 671                break;
 672        case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS:
 673                ptp->ns_to_nic_time = efx_ptp_ns_to_s_qns;
 674                ptp->nic_to_kernel_time = efx_ptp_s_qns_to_ktime_correction;
 675                ptp->nic_time.minor_max = 4000000000UL;
 676                ptp->nic_time.sync_event_minor_shift = 24;
 677                break;
 678        default:
 679                return -ERANGE;
 680        }
 681
 682        /* Precalculate acceptable difference between the minor time in the
 683         * packet prefix and the last MCDI time sync event. We expect the
 684         * packet prefix timestamp to be after of sync event by up to one
 685         * sync event interval (0.25s) but we allow it to exceed this by a
 686         * fuzz factor of (0.1s)
 687         */
 688        ptp->nic_time.sync_event_diff_min = ptp->nic_time.minor_max
 689                - (ptp->nic_time.minor_max / 10);
 690        ptp->nic_time.sync_event_diff_max = (ptp->nic_time.minor_max / 4)
 691                + (ptp->nic_time.minor_max / 10);
 692
 693        /* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older
 694         * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return
 695         * a value to use for the minimum acceptable corrected synchronization
 696         * window and may return further capabilities.
 697         * If we have the extra information store it. For older firmware that
 698         * does not implement the extended command use the default value.
 699         */
 700        if (rc == 0 &&
 701            out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST)
 702                ptp->min_synchronisation_ns =
 703                        MCDI_DWORD(outbuf,
 704                                   PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN);
 705        else
 706                ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS;
 707
 708        if (rc == 0 &&
 709            out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN)
 710                ptp->capabilities = MCDI_DWORD(outbuf,
 711                                        PTP_OUT_GET_ATTRIBUTES_CAPABILITIES);
 712        else
 713                ptp->capabilities = 0;
 714
 715        /* Set up the shift for conversion between frequency
 716         * adjustments in parts-per-billion and the fixed-point
 717         * fractional ns format that the adapter uses.
 718         */
 719        if (ptp->capabilities & (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN))
 720                ptp->adjfreq_ppb_shift = PPB_SHIFT_FP44;
 721        else
 722                ptp->adjfreq_ppb_shift = PPB_SHIFT_FP40;
 723
 724        return 0;
 725}
 726
 727/* Get PTP timestamp corrections */
 728static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx)
 729{
 730        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN);
 731        MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN);
 732        int rc;
 733        size_t out_len;
 734
 735        /* Get the timestamp corrections from the NIC. If this operation is
 736         * not supported (older NICs) then no correction is required.
 737         */
 738        MCDI_SET_DWORD(inbuf, PTP_IN_OP,
 739                       MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS);
 740        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 741
 742        rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 743                                outbuf, sizeof(outbuf), &out_len);
 744        if (rc == 0) {
 745                efx->ptp_data->ts_corrections.ptp_tx = MCDI_DWORD(outbuf,
 746                        PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT);
 747                efx->ptp_data->ts_corrections.ptp_rx = MCDI_DWORD(outbuf,
 748                        PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE);
 749                efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf,
 750                        PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT);
 751                efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf,
 752                        PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN);
 753
 754                if (out_len >= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN) {
 755                        efx->ptp_data->ts_corrections.general_tx = MCDI_DWORD(
 756                                outbuf,
 757                                PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX);
 758                        efx->ptp_data->ts_corrections.general_rx = MCDI_DWORD(
 759                                outbuf,
 760                                PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX);
 761                } else {
 762                        efx->ptp_data->ts_corrections.general_tx =
 763                                efx->ptp_data->ts_corrections.ptp_tx;
 764                        efx->ptp_data->ts_corrections.general_rx =
 765                                efx->ptp_data->ts_corrections.ptp_rx;
 766                }
 767        } else if (rc == -EINVAL) {
 768                efx->ptp_data->ts_corrections.ptp_tx = 0;
 769                efx->ptp_data->ts_corrections.ptp_rx = 0;
 770                efx->ptp_data->ts_corrections.pps_out = 0;
 771                efx->ptp_data->ts_corrections.pps_in = 0;
 772                efx->ptp_data->ts_corrections.general_tx = 0;
 773                efx->ptp_data->ts_corrections.general_rx = 0;
 774        } else {
 775                efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf,
 776                                       sizeof(outbuf), rc);
 777                return rc;
 778        }
 779
 780        return 0;
 781}
 782
 783/* Enable MCDI PTP support. */
 784static int efx_ptp_enable(struct efx_nic *efx)
 785{
 786        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
 787        MCDI_DECLARE_BUF_ERR(outbuf);
 788        int rc;
 789
 790        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
 791        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 792        MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
 793                       efx->ptp_data->channel ?
 794                       efx->ptp_data->channel->channel : 0);
 795        MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
 796
 797        rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 798                                outbuf, sizeof(outbuf), NULL);
 799        rc = (rc == -EALREADY) ? 0 : rc;
 800        if (rc)
 801                efx_mcdi_display_error(efx, MC_CMD_PTP,
 802                                       MC_CMD_PTP_IN_ENABLE_LEN,
 803                                       outbuf, sizeof(outbuf), rc);
 804        return rc;
 805}
 806
 807/* Disable MCDI PTP support.
 808 *
 809 * Note that this function should never rely on the presence of ptp_data -
 810 * may be called before that exists.
 811 */
 812static int efx_ptp_disable(struct efx_nic *efx)
 813{
 814        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
 815        MCDI_DECLARE_BUF_ERR(outbuf);
 816        int rc;
 817
 818        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
 819        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 820        rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 821                                outbuf, sizeof(outbuf), NULL);
 822        rc = (rc == -EALREADY) ? 0 : rc;
 823        /* If we get ENOSYS, the NIC doesn't support PTP, and thus this function
 824         * should only have been called during probe.
 825         */
 826        if (rc == -ENOSYS || rc == -EPERM)
 827                netif_info(efx, probe, efx->net_dev, "no PTP support\n");
 828        else if (rc)
 829                efx_mcdi_display_error(efx, MC_CMD_PTP,
 830                                       MC_CMD_PTP_IN_DISABLE_LEN,
 831                                       outbuf, sizeof(outbuf), rc);
 832        return rc;
 833}
 834
 835static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
 836{
 837        struct sk_buff *skb;
 838
 839        while ((skb = skb_dequeue(q))) {
 840                local_bh_disable();
 841                netif_receive_skb(skb);
 842                local_bh_enable();
 843        }
 844}
 845
 846static void efx_ptp_handle_no_channel(struct efx_nic *efx)
 847{
 848        netif_err(efx, drv, efx->net_dev,
 849                  "ERROR: PTP requires MSI-X and 1 additional interrupt"
 850                  "vector. PTP disabled\n");
 851}
 852
 853/* Repeatedly send the host time to the MC which will capture the hardware
 854 * time.
 855 */
 856static void efx_ptp_send_times(struct efx_nic *efx,
 857                               struct pps_event_time *last_time)
 858{
 859        struct pps_event_time now;
 860        struct timespec64 limit;
 861        struct efx_ptp_data *ptp = efx->ptp_data;
 862        int *mc_running = ptp->start.addr;
 863
 864        pps_get_ts(&now);
 865        limit = now.ts_real;
 866        timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
 867
 868        /* Write host time for specified period or until MC is done */
 869        while ((timespec64_compare(&now.ts_real, &limit) < 0) &&
 870               READ_ONCE(*mc_running)) {
 871                struct timespec64 update_time;
 872                unsigned int host_time;
 873
 874                /* Don't update continuously to avoid saturating the PCIe bus */
 875                update_time = now.ts_real;
 876                timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
 877                do {
 878                        pps_get_ts(&now);
 879                } while ((timespec64_compare(&now.ts_real, &update_time) < 0) &&
 880                         READ_ONCE(*mc_running));
 881
 882                /* Synchronise NIC with single word of time only */
 883                host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
 884                             now.ts_real.tv_nsec);
 885                /* Update host time in NIC memory */
 886                efx->type->ptp_write_host_time(efx, host_time);
 887        }
 888        *last_time = now;
 889}
 890
 891/* Read a timeset from the MC's results and partial process. */
 892static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
 893                                 struct efx_ptp_timeset *timeset)
 894{
 895        unsigned start_ns, end_ns;
 896
 897        timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
 898        timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR);
 899        timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR);
 900        timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
 901        timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
 902
 903        /* Ignore seconds */
 904        start_ns = timeset->host_start & MC_NANOSECOND_MASK;
 905        end_ns = timeset->host_end & MC_NANOSECOND_MASK;
 906        /* Allow for rollover */
 907        if (end_ns < start_ns)
 908                end_ns += NSEC_PER_SEC;
 909        /* Determine duration of operation */
 910        timeset->window = end_ns - start_ns;
 911}
 912
 913/* Process times received from MC.
 914 *
 915 * Extract times from returned results, and establish the minimum value
 916 * seen.  The minimum value represents the "best" possible time and events
 917 * too much greater than this are rejected - the machine is, perhaps, too
 918 * busy. A number of readings are taken so that, hopefully, at least one good
 919 * synchronisation will be seen in the results.
 920 */
 921static int
 922efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
 923                      size_t response_length,
 924                      const struct pps_event_time *last_time)
 925{
 926        unsigned number_readings =
 927                MCDI_VAR_ARRAY_LEN(response_length,
 928                                   PTP_OUT_SYNCHRONIZE_TIMESET);
 929        unsigned i;
 930        unsigned ngood = 0;
 931        unsigned last_good = 0;
 932        struct efx_ptp_data *ptp = efx->ptp_data;
 933        u32 last_sec;
 934        u32 start_sec;
 935        struct timespec64 delta;
 936        ktime_t mc_time;
 937
 938        if (number_readings == 0)
 939                return -EAGAIN;
 940
 941        /* Read the set of results and find the last good host-MC
 942         * synchronization result. The MC times when it finishes reading the
 943         * host time so the corrected window time should be fairly constant
 944         * for a given platform. Increment stats for any results that appear
 945         * to be erroneous.
 946         */
 947        for (i = 0; i < number_readings; i++) {
 948                s32 window, corrected;
 949                struct timespec64 wait;
 950
 951                efx_ptp_read_timeset(
 952                        MCDI_ARRAY_STRUCT_PTR(synch_buf,
 953                                              PTP_OUT_SYNCHRONIZE_TIMESET, i),
 954                        &ptp->timeset[i]);
 955
 956                wait = ktime_to_timespec64(
 957                        ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0));
 958                window = ptp->timeset[i].window;
 959                corrected = window - wait.tv_nsec;
 960
 961                /* We expect the uncorrected synchronization window to be at
 962                 * least as large as the interval between host start and end
 963                 * times. If it is smaller than this then this is mostly likely
 964                 * to be a consequence of the host's time being adjusted.
 965                 * Check that the corrected sync window is in a reasonable
 966                 * range. If it is out of range it is likely to be because an
 967                 * interrupt or other delay occurred between reading the system
 968                 * time and writing it to MC memory.
 969                 */
 970                if (window < SYNCHRONISATION_GRANULARITY_NS) {
 971                        ++ptp->invalid_sync_windows;
 972                } else if (corrected >= MAX_SYNCHRONISATION_NS) {
 973                        ++ptp->oversize_sync_windows;
 974                } else if (corrected < ptp->min_synchronisation_ns) {
 975                        ++ptp->undersize_sync_windows;
 976                } else {
 977                        ngood++;
 978                        last_good = i;
 979                }
 980        }
 981
 982        if (ngood == 0) {
 983                netif_warn(efx, drv, efx->net_dev,
 984                           "PTP no suitable synchronisations\n");
 985                return -EAGAIN;
 986        }
 987
 988        /* Calculate delay from last good sync (host time) to last_time.
 989         * It is possible that the seconds rolled over between taking
 990         * the start reading and the last value written by the host.  The
 991         * timescales are such that a gap of more than one second is never
 992         * expected.  delta is *not* normalised.
 993         */
 994        start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
 995        last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
 996        if (start_sec != last_sec &&
 997            ((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
 998                netif_warn(efx, hw, efx->net_dev,
 999                           "PTP bad synchronisation seconds\n");
1000                return -EAGAIN;
1001        }
1002        delta.tv_sec = (last_sec - start_sec) & 1;
1003        delta.tv_nsec =
1004                last_time->ts_real.tv_nsec -
1005                (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
1006
1007        /* Convert the NIC time at last good sync into kernel time.
1008         * No correction is required - this time is the output of a
1009         * firmware process.
1010         */
1011        mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major,
1012                                          ptp->timeset[last_good].minor, 0);
1013
1014        /* Calculate delay from NIC top of second to last_time */
1015        delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec;
1016
1017        /* Set PPS timestamp to match NIC top of second */
1018        ptp->host_time_pps = *last_time;
1019        pps_sub_ts(&ptp->host_time_pps, delta);
1020
1021        return 0;
1022}
1023
1024/* Synchronize times between the host and the MC */
1025static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
1026{
1027        struct efx_ptp_data *ptp = efx->ptp_data;
1028        MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
1029        size_t response_length;
1030        int rc;
1031        unsigned long timeout;
1032        struct pps_event_time last_time = {};
1033        unsigned int loops = 0;
1034        int *start = ptp->start.addr;
1035
1036        MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
1037        MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0);
1038        MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
1039                       num_readings);
1040        MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
1041                       ptp->start.dma_addr);
1042
1043        /* Clear flag that signals MC ready */
1044        WRITE_ONCE(*start, 0);
1045        rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
1046                                MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
1047        EFX_WARN_ON_ONCE_PARANOID(rc);
1048
1049        /* Wait for start from MCDI (or timeout) */
1050        timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
1051        while (!READ_ONCE(*start) && (time_before(jiffies, timeout))) {
1052                udelay(20);     /* Usually start MCDI execution quickly */
1053                loops++;
1054        }
1055
1056        if (loops <= 1)
1057                ++ptp->fast_syncs;
1058        if (!time_before(jiffies, timeout))
1059                ++ptp->sync_timeouts;
1060
1061        if (READ_ONCE(*start))
1062                efx_ptp_send_times(efx, &last_time);
1063
1064        /* Collect results */
1065        rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
1066                                 MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
1067                                 synch_buf, sizeof(synch_buf),
1068                                 &response_length);
1069        if (rc == 0) {
1070                rc = efx_ptp_process_times(efx, synch_buf, response_length,
1071                                           &last_time);
1072                if (rc == 0)
1073                        ++ptp->good_syncs;
1074                else
1075                        ++ptp->no_time_syncs;
1076        }
1077
1078        /* Increment the bad syncs counter if the synchronize fails, whatever
1079         * the reason.
1080         */
1081        if (rc != 0)
1082                ++ptp->bad_syncs;
1083
1084        return rc;
1085}
1086
1087/* Transmit a PTP packet via the dedicated hardware timestamped queue. */
1088static void efx_ptp_xmit_skb_queue(struct efx_nic *efx, struct sk_buff *skb)
1089{
1090        struct efx_ptp_data *ptp_data = efx->ptp_data;
1091        u8 type = efx_tx_csum_type_skb(skb);
1092        struct efx_tx_queue *tx_queue;
1093
1094        tx_queue = efx_channel_get_tx_queue(ptp_data->channel, type);
1095        if (tx_queue && tx_queue->timestamping) {
1096                efx_enqueue_skb(tx_queue, skb);
1097        } else {
1098                WARN_ONCE(1, "PTP channel has no timestamped tx queue\n");
1099                dev_kfree_skb_any(skb);
1100        }
1101}
1102
1103/* Transmit a PTP packet, via the MCDI interface, to the wire. */
1104static void efx_ptp_xmit_skb_mc(struct efx_nic *efx, struct sk_buff *skb)
1105{
1106        struct efx_ptp_data *ptp_data = efx->ptp_data;
1107        struct skb_shared_hwtstamps timestamps;
1108        int rc = -EIO;
1109        MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
1110        size_t len;
1111
1112        MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
1113        MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0);
1114        MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
1115        if (skb_shinfo(skb)->nr_frags != 0) {
1116                rc = skb_linearize(skb);
1117                if (rc != 0)
1118                        goto fail;
1119        }
1120
1121        if (skb->ip_summed == CHECKSUM_PARTIAL) {
1122                rc = skb_checksum_help(skb);
1123                if (rc != 0)
1124                        goto fail;
1125        }
1126        skb_copy_from_linear_data(skb,
1127                                  MCDI_PTR(ptp_data->txbuf,
1128                                           PTP_IN_TRANSMIT_PACKET),
1129                                  skb->len);
1130        rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
1131                          ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
1132                          txtime, sizeof(txtime), &len);
1133        if (rc != 0)
1134                goto fail;
1135
1136        memset(&timestamps, 0, sizeof(timestamps));
1137        timestamps.hwtstamp = ptp_data->nic_to_kernel_time(
1138                MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR),
1139                MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR),
1140                ptp_data->ts_corrections.ptp_tx);
1141
1142        skb_tstamp_tx(skb, &timestamps);
1143
1144        rc = 0;
1145
1146fail:
1147        dev_kfree_skb_any(skb);
1148
1149        return;
1150}
1151
1152static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
1153{
1154        struct efx_ptp_data *ptp = efx->ptp_data;
1155        struct list_head *cursor;
1156        struct list_head *next;
1157
1158        if (ptp->rx_ts_inline)
1159                return;
1160
1161        /* Drop time-expired events */
1162        spin_lock_bh(&ptp->evt_lock);
1163        list_for_each_safe(cursor, next, &ptp->evt_list) {
1164                struct efx_ptp_event_rx *evt;
1165
1166                evt = list_entry(cursor, struct efx_ptp_event_rx,
1167                                 link);
1168                if (time_after(jiffies, evt->expiry)) {
1169                        list_move(&evt->link, &ptp->evt_free_list);
1170                        netif_warn(efx, hw, efx->net_dev,
1171                                   "PTP rx event dropped\n");
1172                }
1173        }
1174        spin_unlock_bh(&ptp->evt_lock);
1175}
1176
1177static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
1178                                              struct sk_buff *skb)
1179{
1180        struct efx_ptp_data *ptp = efx->ptp_data;
1181        bool evts_waiting;
1182        struct list_head *cursor;
1183        struct list_head *next;
1184        struct efx_ptp_match *match;
1185        enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
1186
1187        WARN_ON_ONCE(ptp->rx_ts_inline);
1188
1189        spin_lock_bh(&ptp->evt_lock);
1190        evts_waiting = !list_empty(&ptp->evt_list);
1191        spin_unlock_bh(&ptp->evt_lock);
1192
1193        if (!evts_waiting)
1194                return PTP_PACKET_STATE_UNMATCHED;
1195
1196        match = (struct efx_ptp_match *)skb->cb;
1197        /* Look for a matching timestamp in the event queue */
1198        spin_lock_bh(&ptp->evt_lock);
1199        list_for_each_safe(cursor, next, &ptp->evt_list) {
1200                struct efx_ptp_event_rx *evt;
1201
1202                evt = list_entry(cursor, struct efx_ptp_event_rx, link);
1203                if ((evt->seq0 == match->words[0]) &&
1204                    (evt->seq1 == match->words[1])) {
1205                        struct skb_shared_hwtstamps *timestamps;
1206
1207                        /* Match - add in hardware timestamp */
1208                        timestamps = skb_hwtstamps(skb);
1209                        timestamps->hwtstamp = evt->hwtimestamp;
1210
1211                        match->state = PTP_PACKET_STATE_MATCHED;
1212                        rc = PTP_PACKET_STATE_MATCHED;
1213                        list_move(&evt->link, &ptp->evt_free_list);
1214                        break;
1215                }
1216        }
1217        spin_unlock_bh(&ptp->evt_lock);
1218
1219        return rc;
1220}
1221
1222/* Process any queued receive events and corresponding packets
1223 *
1224 * q is returned with all the packets that are ready for delivery.
1225 */
1226static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
1227{
1228        struct efx_ptp_data *ptp = efx->ptp_data;
1229        struct sk_buff *skb;
1230
1231        while ((skb = skb_dequeue(&ptp->rxq))) {
1232                struct efx_ptp_match *match;
1233
1234                match = (struct efx_ptp_match *)skb->cb;
1235                if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
1236                        __skb_queue_tail(q, skb);
1237                } else if (efx_ptp_match_rx(efx, skb) ==
1238                           PTP_PACKET_STATE_MATCHED) {
1239                        __skb_queue_tail(q, skb);
1240                } else if (time_after(jiffies, match->expiry)) {
1241                        match->state = PTP_PACKET_STATE_TIMED_OUT;
1242                        ++ptp->rx_no_timestamp;
1243                        __skb_queue_tail(q, skb);
1244                } else {
1245                        /* Replace unprocessed entry and stop */
1246                        skb_queue_head(&ptp->rxq, skb);
1247                        break;
1248                }
1249        }
1250}
1251
1252/* Complete processing of a received packet */
1253static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
1254{
1255        local_bh_disable();
1256        netif_receive_skb(skb);
1257        local_bh_enable();
1258}
1259
1260static void efx_ptp_remove_multicast_filters(struct efx_nic *efx)
1261{
1262        struct efx_ptp_data *ptp = efx->ptp_data;
1263
1264        if (ptp->rxfilter_installed) {
1265                efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1266                                          ptp->rxfilter_general);
1267                efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1268                                          ptp->rxfilter_event);
1269                ptp->rxfilter_installed = false;
1270        }
1271}
1272
1273static int efx_ptp_insert_multicast_filters(struct efx_nic *efx)
1274{
1275        struct efx_ptp_data *ptp = efx->ptp_data;
1276        struct efx_filter_spec rxfilter;
1277        int rc;
1278
1279        if (!ptp->channel || ptp->rxfilter_installed)
1280                return 0;
1281
1282        /* Must filter on both event and general ports to ensure
1283         * that there is no packet re-ordering.
1284         */
1285        efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1286                           efx_rx_queue_index(
1287                                   efx_channel_get_rx_queue(ptp->channel)));
1288        rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1289                                       htonl(PTP_ADDRESS),
1290                                       htons(PTP_EVENT_PORT));
1291        if (rc != 0)
1292                return rc;
1293
1294        rc = efx_filter_insert_filter(efx, &rxfilter, true);
1295        if (rc < 0)
1296                return rc;
1297        ptp->rxfilter_event = rc;
1298
1299        efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1300                           efx_rx_queue_index(
1301                                   efx_channel_get_rx_queue(ptp->channel)));
1302        rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1303                                       htonl(PTP_ADDRESS),
1304                                       htons(PTP_GENERAL_PORT));
1305        if (rc != 0)
1306                goto fail;
1307
1308        rc = efx_filter_insert_filter(efx, &rxfilter, true);
1309        if (rc < 0)
1310                goto fail;
1311        ptp->rxfilter_general = rc;
1312
1313        ptp->rxfilter_installed = true;
1314        return 0;
1315
1316fail:
1317        efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1318                                  ptp->rxfilter_event);
1319        return rc;
1320}
1321
1322static int efx_ptp_start(struct efx_nic *efx)
1323{
1324        struct efx_ptp_data *ptp = efx->ptp_data;
1325        int rc;
1326
1327        ptp->reset_required = false;
1328
1329        rc = efx_ptp_insert_multicast_filters(efx);
1330        if (rc)
1331                return rc;
1332
1333        rc = efx_ptp_enable(efx);
1334        if (rc != 0)
1335                goto fail;
1336
1337        ptp->evt_frag_idx = 0;
1338        ptp->current_adjfreq = 0;
1339
1340        return 0;
1341
1342fail:
1343        efx_ptp_remove_multicast_filters(efx);
1344        return rc;
1345}
1346
1347static int efx_ptp_stop(struct efx_nic *efx)
1348{
1349        struct efx_ptp_data *ptp = efx->ptp_data;
1350        struct list_head *cursor;
1351        struct list_head *next;
1352        int rc;
1353
1354        if (ptp == NULL)
1355                return 0;
1356
1357        rc = efx_ptp_disable(efx);
1358
1359        efx_ptp_remove_multicast_filters(efx);
1360
1361        /* Make sure RX packets are really delivered */
1362        efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
1363        skb_queue_purge(&efx->ptp_data->txq);
1364
1365        /* Drop any pending receive events */
1366        spin_lock_bh(&efx->ptp_data->evt_lock);
1367        list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
1368                list_move(cursor, &efx->ptp_data->evt_free_list);
1369        }
1370        spin_unlock_bh(&efx->ptp_data->evt_lock);
1371
1372        return rc;
1373}
1374
1375static int efx_ptp_restart(struct efx_nic *efx)
1376{
1377        if (efx->ptp_data && efx->ptp_data->enabled)
1378                return efx_ptp_start(efx);
1379        return 0;
1380}
1381
1382static void efx_ptp_pps_worker(struct work_struct *work)
1383{
1384        struct efx_ptp_data *ptp =
1385                container_of(work, struct efx_ptp_data, pps_work);
1386        struct efx_nic *efx = ptp->efx;
1387        struct ptp_clock_event ptp_evt;
1388
1389        if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
1390                return;
1391
1392        ptp_evt.type = PTP_CLOCK_PPSUSR;
1393        ptp_evt.pps_times = ptp->host_time_pps;
1394        ptp_clock_event(ptp->phc_clock, &ptp_evt);
1395}
1396
1397static void efx_ptp_worker(struct work_struct *work)
1398{
1399        struct efx_ptp_data *ptp_data =
1400                container_of(work, struct efx_ptp_data, work);
1401        struct efx_nic *efx = ptp_data->efx;
1402        struct sk_buff *skb;
1403        struct sk_buff_head tempq;
1404
1405        if (ptp_data->reset_required) {
1406                efx_ptp_stop(efx);
1407                efx_ptp_start(efx);
1408                return;
1409        }
1410
1411        efx_ptp_drop_time_expired_events(efx);
1412
1413        __skb_queue_head_init(&tempq);
1414        efx_ptp_process_events(efx, &tempq);
1415
1416        while ((skb = skb_dequeue(&ptp_data->txq)))
1417                ptp_data->xmit_skb(efx, skb);
1418
1419        while ((skb = __skb_dequeue(&tempq)))
1420                efx_ptp_process_rx(efx, skb);
1421}
1422
1423static const struct ptp_clock_info efx_phc_clock_info = {
1424        .owner          = THIS_MODULE,
1425        .name           = "sfc",
1426        .max_adj        = MAX_PPB,
1427        .n_alarm        = 0,
1428        .n_ext_ts       = 0,
1429        .n_per_out      = 0,
1430        .n_pins         = 0,
1431        .pps            = 1,
1432        .adjfreq        = efx_phc_adjfreq,
1433        .adjtime        = efx_phc_adjtime,
1434        .gettime64      = efx_phc_gettime,
1435        .settime64      = efx_phc_settime,
1436        .enable         = efx_phc_enable,
1437};
1438
1439/* Initialise PTP state. */
1440int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel)
1441{
1442        struct efx_ptp_data *ptp;
1443        int rc = 0;
1444        unsigned int pos;
1445
1446        ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
1447        efx->ptp_data = ptp;
1448        if (!efx->ptp_data)
1449                return -ENOMEM;
1450
1451        ptp->efx = efx;
1452        ptp->channel = channel;
1453        ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
1454
1455        rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
1456        if (rc != 0)
1457                goto fail1;
1458
1459        skb_queue_head_init(&ptp->rxq);
1460        skb_queue_head_init(&ptp->txq);
1461        ptp->workwq = create_singlethread_workqueue("sfc_ptp");
1462        if (!ptp->workwq) {
1463                rc = -ENOMEM;
1464                goto fail2;
1465        }
1466
1467        if (efx_ptp_use_mac_tx_timestamps(efx)) {
1468                ptp->xmit_skb = efx_ptp_xmit_skb_queue;
1469                /* Request sync events on this channel. */
1470                channel->sync_events_state = SYNC_EVENTS_QUIESCENT;
1471        } else {
1472                ptp->xmit_skb = efx_ptp_xmit_skb_mc;
1473        }
1474
1475        INIT_WORK(&ptp->work, efx_ptp_worker);
1476        ptp->config.flags = 0;
1477        ptp->config.tx_type = HWTSTAMP_TX_OFF;
1478        ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
1479        INIT_LIST_HEAD(&ptp->evt_list);
1480        INIT_LIST_HEAD(&ptp->evt_free_list);
1481        spin_lock_init(&ptp->evt_lock);
1482        for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
1483                list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
1484
1485        /* Get the NIC PTP attributes and set up time conversions */
1486        rc = efx_ptp_get_attributes(efx);
1487        if (rc < 0)
1488                goto fail3;
1489
1490        /* Get the timestamp corrections */
1491        rc = efx_ptp_get_timestamp_corrections(efx);
1492        if (rc < 0)
1493                goto fail3;
1494
1495        if (efx->mcdi->fn_flags &
1496            (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) {
1497                ptp->phc_clock_info = efx_phc_clock_info;
1498                ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
1499                                                    &efx->pci_dev->dev);
1500                if (IS_ERR(ptp->phc_clock)) {
1501                        rc = PTR_ERR(ptp->phc_clock);
1502                        goto fail3;
1503                } else if (ptp->phc_clock) {
1504                        INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
1505                        ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
1506                        if (!ptp->pps_workwq) {
1507                                rc = -ENOMEM;
1508                                goto fail4;
1509                        }
1510                }
1511        }
1512        ptp->nic_ts_enabled = false;
1513
1514        return 0;
1515fail4:
1516        ptp_clock_unregister(efx->ptp_data->phc_clock);
1517
1518fail3:
1519        destroy_workqueue(efx->ptp_data->workwq);
1520
1521fail2:
1522        efx_nic_free_buffer(efx, &ptp->start);
1523
1524fail1:
1525        kfree(efx->ptp_data);
1526        efx->ptp_data = NULL;
1527
1528        return rc;
1529}
1530
1531/* Initialise PTP channel.
1532 *
1533 * Setting core_index to zero causes the queue to be initialised and doesn't
1534 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
1535 */
1536static int efx_ptp_probe_channel(struct efx_channel *channel)
1537{
1538        struct efx_nic *efx = channel->efx;
1539        int rc;
1540
1541        channel->irq_moderation_us = 0;
1542        channel->rx_queue.core_index = 0;
1543
1544        rc = efx_ptp_probe(efx, channel);
1545        /* Failure to probe PTP is not fatal; this channel will just not be
1546         * used for anything.
1547         * In the case of EPERM, efx_ptp_probe will print its own message (in
1548         * efx_ptp_get_attributes()), so we don't need to.
1549         */
1550        if (rc && rc != -EPERM)
1551                netif_warn(efx, drv, efx->net_dev,
1552                           "Failed to probe PTP, rc=%d\n", rc);
1553        return 0;
1554}
1555
1556void efx_ptp_remove(struct efx_nic *efx)
1557{
1558        if (!efx->ptp_data)
1559                return;
1560
1561        (void)efx_ptp_disable(efx);
1562
1563        cancel_work_sync(&efx->ptp_data->work);
1564        if (efx->ptp_data->pps_workwq)
1565                cancel_work_sync(&efx->ptp_data->pps_work);
1566
1567        skb_queue_purge(&efx->ptp_data->rxq);
1568        skb_queue_purge(&efx->ptp_data->txq);
1569
1570        if (efx->ptp_data->phc_clock) {
1571                destroy_workqueue(efx->ptp_data->pps_workwq);
1572                ptp_clock_unregister(efx->ptp_data->phc_clock);
1573        }
1574
1575        destroy_workqueue(efx->ptp_data->workwq);
1576
1577        efx_nic_free_buffer(efx, &efx->ptp_data->start);
1578        kfree(efx->ptp_data);
1579        efx->ptp_data = NULL;
1580}
1581
1582static void efx_ptp_remove_channel(struct efx_channel *channel)
1583{
1584        efx_ptp_remove(channel->efx);
1585}
1586
1587static void efx_ptp_get_channel_name(struct efx_channel *channel,
1588                                     char *buf, size_t len)
1589{
1590        snprintf(buf, len, "%s-ptp", channel->efx->name);
1591}
1592
1593/* Determine whether this packet should be processed by the PTP module
1594 * or transmitted conventionally.
1595 */
1596bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1597{
1598        return efx->ptp_data &&
1599                efx->ptp_data->enabled &&
1600                skb->len >= PTP_MIN_LENGTH &&
1601                skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
1602                likely(skb->protocol == htons(ETH_P_IP)) &&
1603                skb_transport_header_was_set(skb) &&
1604                skb_network_header_len(skb) >= sizeof(struct iphdr) &&
1605                ip_hdr(skb)->protocol == IPPROTO_UDP &&
1606                skb_headlen(skb) >=
1607                skb_transport_offset(skb) + sizeof(struct udphdr) &&
1608                udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
1609}
1610
1611/* Receive a PTP packet.  Packets are queued until the arrival of
1612 * the receive timestamp from the MC - this will probably occur after the
1613 * packet arrival because of the processing in the MC.
1614 */
1615static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
1616{
1617        struct efx_nic *efx = channel->efx;
1618        struct efx_ptp_data *ptp = efx->ptp_data;
1619        struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
1620        u8 *match_data_012, *match_data_345;
1621        unsigned int version;
1622        u8 *data;
1623
1624        match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1625
1626        /* Correct version? */
1627        if (ptp->mode == MC_CMD_PTP_MODE_V1) {
1628                if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
1629                        return false;
1630                }
1631                data = skb->data;
1632                version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]);
1633                if (version != PTP_VERSION_V1) {
1634                        return false;
1635                }
1636
1637                /* PTP V1 uses all six bytes of the UUID to match the packet
1638                 * to the timestamp
1639                 */
1640                match_data_012 = data + PTP_V1_UUID_OFFSET;
1641                match_data_345 = data + PTP_V1_UUID_OFFSET + 3;
1642        } else {
1643                if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
1644                        return false;
1645                }
1646                data = skb->data;
1647                version = data[PTP_V2_VERSION_OFFSET];
1648                if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
1649                        return false;
1650                }
1651
1652                /* The original V2 implementation uses bytes 2-7 of
1653                 * the UUID to match the packet to the timestamp. This
1654                 * discards two of the bytes of the MAC address used
1655                 * to create the UUID (SF bug 33070).  The PTP V2
1656                 * enhanced mode fixes this issue and uses bytes 0-2
1657                 * and byte 5-7 of the UUID.
1658                 */
1659                match_data_345 = data + PTP_V2_UUID_OFFSET + 5;
1660                if (ptp->mode == MC_CMD_PTP_MODE_V2) {
1661                        match_data_012 = data + PTP_V2_UUID_OFFSET + 2;
1662                } else {
1663                        match_data_012 = data + PTP_V2_UUID_OFFSET + 0;
1664                        BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
1665                }
1666        }
1667
1668        /* Does this packet require timestamping? */
1669        if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
1670                match->state = PTP_PACKET_STATE_UNMATCHED;
1671
1672                /* We expect the sequence number to be in the same position in
1673                 * the packet for PTP V1 and V2
1674                 */
1675                BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
1676                BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
1677
1678                /* Extract UUID/Sequence information */
1679                match->words[0] = (match_data_012[0]         |
1680                                   (match_data_012[1] << 8)  |
1681                                   (match_data_012[2] << 16) |
1682                                   (match_data_345[0] << 24));
1683                match->words[1] = (match_data_345[1]         |
1684                                   (match_data_345[2] << 8)  |
1685                                   (data[PTP_V1_SEQUENCE_OFFSET +
1686                                         PTP_V1_SEQUENCE_LENGTH - 1] <<
1687                                    16));
1688        } else {
1689                match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
1690        }
1691
1692        skb_queue_tail(&ptp->rxq, skb);
1693        queue_work(ptp->workwq, &ptp->work);
1694
1695        return true;
1696}
1697
1698/* Transmit a PTP packet.  This has to be transmitted by the MC
1699 * itself, through an MCDI call.  MCDI calls aren't permitted
1700 * in the transmit path so defer the actual transmission to a suitable worker.
1701 */
1702int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1703{
1704        struct efx_ptp_data *ptp = efx->ptp_data;
1705
1706        skb_queue_tail(&ptp->txq, skb);
1707
1708        if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
1709            (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
1710                efx_xmit_hwtstamp_pending(skb);
1711        queue_work(ptp->workwq, &ptp->work);
1712
1713        return NETDEV_TX_OK;
1714}
1715
1716int efx_ptp_get_mode(struct efx_nic *efx)
1717{
1718        return efx->ptp_data->mode;
1719}
1720
1721int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
1722                        unsigned int new_mode)
1723{
1724        if ((enable_wanted != efx->ptp_data->enabled) ||
1725            (enable_wanted && (efx->ptp_data->mode != new_mode))) {
1726                int rc = 0;
1727
1728                if (enable_wanted) {
1729                        /* Change of mode requires disable */
1730                        if (efx->ptp_data->enabled &&
1731                            (efx->ptp_data->mode != new_mode)) {
1732                                efx->ptp_data->enabled = false;
1733                                rc = efx_ptp_stop(efx);
1734                                if (rc != 0)
1735                                        return rc;
1736                        }
1737
1738                        /* Set new operating mode and establish
1739                         * baseline synchronisation, which must
1740                         * succeed.
1741                         */
1742                        efx->ptp_data->mode = new_mode;
1743                        if (netif_running(efx->net_dev))
1744                                rc = efx_ptp_start(efx);
1745                        if (rc == 0) {
1746                                rc = efx_ptp_synchronize(efx,
1747                                                         PTP_SYNC_ATTEMPTS * 2);
1748                                if (rc != 0)
1749                                        efx_ptp_stop(efx);
1750                        }
1751                } else {
1752                        rc = efx_ptp_stop(efx);
1753                }
1754
1755                if (rc != 0)
1756                        return rc;
1757
1758                efx->ptp_data->enabled = enable_wanted;
1759        }
1760
1761        return 0;
1762}
1763
1764static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
1765{
1766        int rc;
1767
1768        if (init->flags)
1769                return -EINVAL;
1770
1771        if ((init->tx_type != HWTSTAMP_TX_OFF) &&
1772            (init->tx_type != HWTSTAMP_TX_ON))
1773                return -ERANGE;
1774
1775        rc = efx->type->ptp_set_ts_config(efx, init);
1776        if (rc)
1777                return rc;
1778
1779        efx->ptp_data->config = *init;
1780        return 0;
1781}
1782
1783void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
1784{
1785        struct efx_ptp_data *ptp = efx->ptp_data;
1786        struct efx_nic *primary = efx->primary;
1787
1788        ASSERT_RTNL();
1789
1790        if (!ptp)
1791                return;
1792
1793        ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
1794                                     SOF_TIMESTAMPING_RX_HARDWARE |
1795                                     SOF_TIMESTAMPING_RAW_HARDWARE);
1796        /* Check licensed features.  If we don't have the license for TX
1797         * timestamps, the NIC will not support them.
1798         */
1799        if (efx_ptp_use_mac_tx_timestamps(efx)) {
1800                struct efx_ef10_nic_data *nic_data = efx->nic_data;
1801
1802                if (!(nic_data->licensed_features &
1803                      (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN)))
1804                        ts_info->so_timestamping &=
1805                                ~SOF_TIMESTAMPING_TX_HARDWARE;
1806        }
1807        if (primary && primary->ptp_data && primary->ptp_data->phc_clock)
1808                ts_info->phc_index =
1809                        ptp_clock_index(primary->ptp_data->phc_clock);
1810        ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
1811        ts_info->rx_filters = ptp->efx->type->hwtstamp_filters;
1812}
1813
1814int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1815{
1816        struct hwtstamp_config config;
1817        int rc;
1818
1819        /* Not a PTP enabled port */
1820        if (!efx->ptp_data)
1821                return -EOPNOTSUPP;
1822
1823        if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1824                return -EFAULT;
1825
1826        rc = efx_ptp_ts_init(efx, &config);
1827        if (rc != 0)
1828                return rc;
1829
1830        return copy_to_user(ifr->ifr_data, &config, sizeof(config))
1831                ? -EFAULT : 0;
1832}
1833
1834int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1835{
1836        if (!efx->ptp_data)
1837                return -EOPNOTSUPP;
1838
1839        return copy_to_user(ifr->ifr_data, &efx->ptp_data->config,
1840                            sizeof(efx->ptp_data->config)) ? -EFAULT : 0;
1841}
1842
1843static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
1844{
1845        struct efx_ptp_data *ptp = efx->ptp_data;
1846
1847        netif_err(efx, hw, efx->net_dev,
1848                "PTP unexpected event length: got %d expected %d\n",
1849                ptp->evt_frag_idx, expected_frag_len);
1850        ptp->reset_required = true;
1851        queue_work(ptp->workwq, &ptp->work);
1852}
1853
1854/* Process a completed receive event.  Put it on the event queue and
1855 * start worker thread.  This is required because event and their
1856 * correspoding packets may come in either order.
1857 */
1858static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
1859{
1860        struct efx_ptp_event_rx *evt = NULL;
1861
1862        if (WARN_ON_ONCE(ptp->rx_ts_inline))
1863                return;
1864
1865        if (ptp->evt_frag_idx != 3) {
1866                ptp_event_failure(efx, 3);
1867                return;
1868        }
1869
1870        spin_lock_bh(&ptp->evt_lock);
1871        if (!list_empty(&ptp->evt_free_list)) {
1872                evt = list_first_entry(&ptp->evt_free_list,
1873                                       struct efx_ptp_event_rx, link);
1874                list_del(&evt->link);
1875
1876                evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
1877                evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
1878                                             MCDI_EVENT_SRC)        |
1879                             (EFX_QWORD_FIELD(ptp->evt_frags[1],
1880                                              MCDI_EVENT_SRC) << 8) |
1881                             (EFX_QWORD_FIELD(ptp->evt_frags[0],
1882                                              MCDI_EVENT_SRC) << 16));
1883                evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time(
1884                        EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
1885                        EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA),
1886                        ptp->ts_corrections.ptp_rx);
1887                evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1888                list_add_tail(&evt->link, &ptp->evt_list);
1889
1890                queue_work(ptp->workwq, &ptp->work);
1891        } else if (net_ratelimit()) {
1892                /* Log a rate-limited warning message. */
1893                netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n");
1894        }
1895        spin_unlock_bh(&ptp->evt_lock);
1896}
1897
1898static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
1899{
1900        int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
1901        if (ptp->evt_frag_idx != 1) {
1902                ptp_event_failure(efx, 1);
1903                return;
1904        }
1905
1906        netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
1907}
1908
1909static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
1910{
1911        if (ptp->nic_ts_enabled)
1912                queue_work(ptp->pps_workwq, &ptp->pps_work);
1913}
1914
1915void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
1916{
1917        struct efx_ptp_data *ptp = efx->ptp_data;
1918        int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
1919
1920        if (!ptp) {
1921                if (!efx->ptp_warned) {
1922                        netif_warn(efx, drv, efx->net_dev,
1923                                   "Received PTP event but PTP not set up\n");
1924                        efx->ptp_warned = true;
1925                }
1926                return;
1927        }
1928
1929        if (!ptp->enabled)
1930                return;
1931
1932        if (ptp->evt_frag_idx == 0) {
1933                ptp->evt_code = code;
1934        } else if (ptp->evt_code != code) {
1935                netif_err(efx, hw, efx->net_dev,
1936                          "PTP out of sequence event %d\n", code);
1937                ptp->evt_frag_idx = 0;
1938        }
1939
1940        ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
1941        if (!MCDI_EVENT_FIELD(*ev, CONT)) {
1942                /* Process resulting event */
1943                switch (code) {
1944                case MCDI_EVENT_CODE_PTP_RX:
1945                        ptp_event_rx(efx, ptp);
1946                        break;
1947                case MCDI_EVENT_CODE_PTP_FAULT:
1948                        ptp_event_fault(efx, ptp);
1949                        break;
1950                case MCDI_EVENT_CODE_PTP_PPS:
1951                        ptp_event_pps(efx, ptp);
1952                        break;
1953                default:
1954                        netif_err(efx, hw, efx->net_dev,
1955                                  "PTP unknown event %d\n", code);
1956                        break;
1957                }
1958                ptp->evt_frag_idx = 0;
1959        } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
1960                netif_err(efx, hw, efx->net_dev,
1961                          "PTP too many event fragments\n");
1962                ptp->evt_frag_idx = 0;
1963        }
1964}
1965
1966void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev)
1967{
1968        struct efx_nic *efx = channel->efx;
1969        struct efx_ptp_data *ptp = efx->ptp_data;
1970
1971        /* When extracting the sync timestamp minor value, we should discard
1972         * the least significant two bits. These are not required in order
1973         * to reconstruct full-range timestamps and they are optionally used
1974         * to report status depending on the options supplied when subscribing
1975         * for sync events.
1976         */
1977        channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR);
1978        channel->sync_timestamp_minor =
1979                (MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_MS_8BITS) & 0xFC)
1980                        << ptp->nic_time.sync_event_minor_shift;
1981
1982        /* if sync events have been disabled then we want to silently ignore
1983         * this event, so throw away result.
1984         */
1985        (void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED,
1986                       SYNC_EVENTS_VALID);
1987}
1988
1989static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh)
1990{
1991#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
1992        return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset));
1993#else
1994        const u8 *data = eh + efx->rx_packet_ts_offset;
1995        return (u32)data[0]       |
1996               (u32)data[1] << 8  |
1997               (u32)data[2] << 16 |
1998               (u32)data[3] << 24;
1999#endif
2000}
2001
2002void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
2003                                   struct sk_buff *skb)
2004{
2005        struct efx_nic *efx = channel->efx;
2006        struct efx_ptp_data *ptp = efx->ptp_data;
2007        u32 pkt_timestamp_major, pkt_timestamp_minor;
2008        u32 diff, carry;
2009        struct skb_shared_hwtstamps *timestamps;
2010
2011        if (channel->sync_events_state != SYNC_EVENTS_VALID)
2012                return;
2013
2014        pkt_timestamp_minor = efx_rx_buf_timestamp_minor(efx, skb_mac_header(skb));
2015
2016        /* get the difference between the packet and sync timestamps,
2017         * modulo one second
2018         */
2019        diff = pkt_timestamp_minor - channel->sync_timestamp_minor;
2020        if (pkt_timestamp_minor < channel->sync_timestamp_minor)
2021                diff += ptp->nic_time.minor_max;
2022
2023        /* do we roll over a second boundary and need to carry the one? */
2024        carry = (channel->sync_timestamp_minor >= ptp->nic_time.minor_max - diff) ?
2025                1 : 0;
2026
2027        if (diff <= ptp->nic_time.sync_event_diff_max) {
2028                /* packet is ahead of the sync event by a quarter of a second or
2029                 * less (allowing for fuzz)
2030                 */
2031                pkt_timestamp_major = channel->sync_timestamp_major + carry;
2032        } else if (diff >= ptp->nic_time.sync_event_diff_min) {
2033                /* packet is behind the sync event but within the fuzz factor.
2034                 * This means the RX packet and sync event crossed as they were
2035                 * placed on the event queue, which can sometimes happen.
2036                 */
2037                pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry;
2038        } else {
2039                /* it's outside tolerance in both directions. this might be
2040                 * indicative of us missing sync events for some reason, so
2041                 * we'll call it an error rather than risk giving a bogus
2042                 * timestamp.
2043                 */
2044                netif_vdbg(efx, drv, efx->net_dev,
2045                          "packet timestamp %x too far from sync event %x:%x\n",
2046                          pkt_timestamp_minor, channel->sync_timestamp_major,
2047                          channel->sync_timestamp_minor);
2048                return;
2049        }
2050
2051        /* attach the timestamps to the skb */
2052        timestamps = skb_hwtstamps(skb);
2053        timestamps->hwtstamp =
2054                ptp->nic_to_kernel_time(pkt_timestamp_major,
2055                                        pkt_timestamp_minor,
2056                                        ptp->ts_corrections.general_rx);
2057}
2058
2059static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
2060{
2061        struct efx_ptp_data *ptp_data = container_of(ptp,
2062                                                     struct efx_ptp_data,
2063                                                     phc_clock_info);
2064        struct efx_nic *efx = ptp_data->efx;
2065        MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
2066        s64 adjustment_ns;
2067        int rc;
2068
2069        if (delta > MAX_PPB)
2070                delta = MAX_PPB;
2071        else if (delta < -MAX_PPB)
2072                delta = -MAX_PPB;
2073
2074        /* Convert ppb to fixed point ns taking care to round correctly. */
2075        adjustment_ns = ((s64)delta * PPB_SCALE_WORD +
2076                         (1 << (ptp_data->adjfreq_ppb_shift - 1))) >>
2077                        ptp_data->adjfreq_ppb_shift;
2078
2079        MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
2080        MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0);
2081        MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
2082        MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
2083        MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
2084        rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
2085                          NULL, 0, NULL);
2086        if (rc != 0)
2087                return rc;
2088
2089        ptp_data->current_adjfreq = adjustment_ns;
2090        return 0;
2091}
2092
2093static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
2094{
2095        u32 nic_major, nic_minor;
2096        struct efx_ptp_data *ptp_data = container_of(ptp,
2097                                                     struct efx_ptp_data,
2098                                                     phc_clock_info);
2099        struct efx_nic *efx = ptp_data->efx;
2100        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
2101
2102        efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor);
2103
2104        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
2105        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
2106        MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq);
2107        MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major);
2108        MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor);
2109        return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2110                            NULL, 0, NULL);
2111}
2112
2113static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
2114{
2115        struct efx_ptp_data *ptp_data = container_of(ptp,
2116                                                     struct efx_ptp_data,
2117                                                     phc_clock_info);
2118        struct efx_nic *efx = ptp_data->efx;
2119        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
2120        MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
2121        int rc;
2122        ktime_t kt;
2123
2124        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
2125        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
2126
2127        rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2128                          outbuf, sizeof(outbuf), NULL);
2129        if (rc != 0)
2130                return rc;
2131
2132        kt = ptp_data->nic_to_kernel_time(
2133                MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR),
2134                MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0);
2135        *ts = ktime_to_timespec64(kt);
2136        return 0;
2137}
2138
2139static int efx_phc_settime(struct ptp_clock_info *ptp,
2140                           const struct timespec64 *e_ts)
2141{
2142        /* Get the current NIC time, efx_phc_gettime.
2143         * Subtract from the desired time to get the offset
2144         * call efx_phc_adjtime with the offset
2145         */
2146        int rc;
2147        struct timespec64 time_now;
2148        struct timespec64 delta;
2149
2150        rc = efx_phc_gettime(ptp, &time_now);
2151        if (rc != 0)
2152                return rc;
2153
2154        delta = timespec64_sub(*e_ts, time_now);
2155
2156        rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta));
2157        if (rc != 0)
2158                return rc;
2159
2160        return 0;
2161}
2162
2163static int efx_phc_enable(struct ptp_clock_info *ptp,
2164                          struct ptp_clock_request *request,
2165                          int enable)
2166{
2167        struct efx_ptp_data *ptp_data = container_of(ptp,
2168                                                     struct efx_ptp_data,
2169                                                     phc_clock_info);
2170        if (request->type != PTP_CLK_REQ_PPS)
2171                return -EOPNOTSUPP;
2172
2173        ptp_data->nic_ts_enabled = !!enable;
2174        return 0;
2175}
2176
2177static const struct efx_channel_type efx_ptp_channel_type = {
2178        .handle_no_channel      = efx_ptp_handle_no_channel,
2179        .pre_probe              = efx_ptp_probe_channel,
2180        .post_remove            = efx_ptp_remove_channel,
2181        .get_name               = efx_ptp_get_channel_name,
2182        /* no copy operation; there is no need to reallocate this channel */
2183        .receive_skb            = efx_ptp_rx,
2184        .want_txqs              = efx_ptp_want_txqs,
2185        .keep_eventq            = false,
2186};
2187
2188void efx_ptp_defer_probe_with_channel(struct efx_nic *efx)
2189{
2190        /* Check whether PTP is implemented on this NIC.  The DISABLE
2191         * operation will succeed if and only if it is implemented.
2192         */
2193        if (efx_ptp_disable(efx) == 0)
2194                efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
2195                        &efx_ptp_channel_type;
2196}
2197
2198void efx_ptp_start_datapath(struct efx_nic *efx)
2199{
2200        if (efx_ptp_restart(efx))
2201                netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n");
2202        /* re-enable timestamping if it was previously enabled */
2203        if (efx->type->ptp_set_ts_sync_events)
2204                efx->type->ptp_set_ts_sync_events(efx, true, true);
2205}
2206
2207void efx_ptp_stop_datapath(struct efx_nic *efx)
2208{
2209        /* temporarily disable timestamping */
2210        if (efx->type->ptp_set_ts_sync_events)
2211                efx->type->ptp_set_ts_sync_events(efx, false, true);
2212        efx_ptp_stop(efx);
2213}
2214