linux/drivers/net/vrf.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * vrf.c: device driver to encapsulate a VRF space
   4 *
   5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
   6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
   7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
   8 *
   9 * Based on dummy, team and ipvlan drivers
  10 */
  11
  12#include <linux/ethtool.h>
  13#include <linux/module.h>
  14#include <linux/kernel.h>
  15#include <linux/netdevice.h>
  16#include <linux/etherdevice.h>
  17#include <linux/ip.h>
  18#include <linux/init.h>
  19#include <linux/moduleparam.h>
  20#include <linux/netfilter.h>
  21#include <linux/rtnetlink.h>
  22#include <net/rtnetlink.h>
  23#include <linux/u64_stats_sync.h>
  24#include <linux/hashtable.h>
  25#include <linux/spinlock_types.h>
  26
  27#include <linux/inetdevice.h>
  28#include <net/arp.h>
  29#include <net/ip.h>
  30#include <net/ip_fib.h>
  31#include <net/ip6_fib.h>
  32#include <net/ip6_route.h>
  33#include <net/route.h>
  34#include <net/addrconf.h>
  35#include <net/l3mdev.h>
  36#include <net/fib_rules.h>
  37#include <net/netns/generic.h>
  38
  39#define DRV_NAME        "vrf"
  40#define DRV_VERSION     "1.1"
  41
  42#define FIB_RULE_PREF  1000       /* default preference for FIB rules */
  43
  44#define HT_MAP_BITS     4
  45#define HASH_INITVAL    ((u32)0xcafef00d)
  46
  47struct  vrf_map {
  48        DECLARE_HASHTABLE(ht, HT_MAP_BITS);
  49        spinlock_t vmap_lock;
  50
  51        /* shared_tables:
  52         * count how many distinct tables do not comply with the strict mode
  53         * requirement.
  54         * shared_tables value must be 0 in order to enable the strict mode.
  55         *
  56         * example of the evolution of shared_tables:
  57         *                                                        | time
  58         * add  vrf0 --> table 100        shared_tables = 0       | t0
  59         * add  vrf1 --> table 101        shared_tables = 0       | t1
  60         * add  vrf2 --> table 100        shared_tables = 1       | t2
  61         * add  vrf3 --> table 100        shared_tables = 1       | t3
  62         * add  vrf4 --> table 101        shared_tables = 2       v t4
  63         *
  64         * shared_tables is a "step function" (or "staircase function")
  65         * and it is increased by one when the second vrf is associated to a
  66         * table.
  67         *
  68         * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
  69         *
  70         * at t3, another dev (vrf3) is bound to the same table 100 but the
  71         * value of shared_tables is still 1.
  72         * This means that no matter how many new vrfs will register on the
  73         * table 100, the shared_tables will not increase (considering only
  74         * table 100).
  75         *
  76         * at t4, vrf4 is bound to table 101, and shared_tables = 2.
  77         *
  78         * Looking at the value of shared_tables we can immediately know if
  79         * the strict_mode can or cannot be enforced. Indeed, strict_mode
  80         * can be enforced iff shared_tables = 0.
  81         *
  82         * Conversely, shared_tables is decreased when a vrf is de-associated
  83         * from a table with exactly two associated vrfs.
  84         */
  85        u32 shared_tables;
  86
  87        bool strict_mode;
  88};
  89
  90struct vrf_map_elem {
  91        struct hlist_node hnode;
  92        struct list_head vrf_list;  /* VRFs registered to this table */
  93
  94        u32 table_id;
  95        int users;
  96        int ifindex;
  97};
  98
  99static unsigned int vrf_net_id;
 100
 101/* per netns vrf data */
 102struct netns_vrf {
 103        /* protected by rtnl lock */
 104        bool add_fib_rules;
 105
 106        struct vrf_map vmap;
 107        struct ctl_table_header *ctl_hdr;
 108};
 109
 110struct net_vrf {
 111        struct rtable __rcu     *rth;
 112        struct rt6_info __rcu   *rt6;
 113#if IS_ENABLED(CONFIG_IPV6)
 114        struct fib6_table       *fib6_table;
 115#endif
 116        u32                     tb_id;
 117
 118        struct list_head        me_list;   /* entry in vrf_map_elem */
 119        int                     ifindex;
 120};
 121
 122struct pcpu_dstats {
 123        u64                     tx_pkts;
 124        u64                     tx_bytes;
 125        u64                     tx_drps;
 126        u64                     rx_pkts;
 127        u64                     rx_bytes;
 128        u64                     rx_drps;
 129        struct u64_stats_sync   syncp;
 130};
 131
 132static void vrf_rx_stats(struct net_device *dev, int len)
 133{
 134        struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
 135
 136        u64_stats_update_begin(&dstats->syncp);
 137        dstats->rx_pkts++;
 138        dstats->rx_bytes += len;
 139        u64_stats_update_end(&dstats->syncp);
 140}
 141
 142static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
 143{
 144        vrf_dev->stats.tx_errors++;
 145        kfree_skb(skb);
 146}
 147
 148static void vrf_get_stats64(struct net_device *dev,
 149                            struct rtnl_link_stats64 *stats)
 150{
 151        int i;
 152
 153        for_each_possible_cpu(i) {
 154                const struct pcpu_dstats *dstats;
 155                u64 tbytes, tpkts, tdrops, rbytes, rpkts;
 156                unsigned int start;
 157
 158                dstats = per_cpu_ptr(dev->dstats, i);
 159                do {
 160                        start = u64_stats_fetch_begin_irq(&dstats->syncp);
 161                        tbytes = dstats->tx_bytes;
 162                        tpkts = dstats->tx_pkts;
 163                        tdrops = dstats->tx_drps;
 164                        rbytes = dstats->rx_bytes;
 165                        rpkts = dstats->rx_pkts;
 166                } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
 167                stats->tx_bytes += tbytes;
 168                stats->tx_packets += tpkts;
 169                stats->tx_dropped += tdrops;
 170                stats->rx_bytes += rbytes;
 171                stats->rx_packets += rpkts;
 172        }
 173}
 174
 175static struct vrf_map *netns_vrf_map(struct net *net)
 176{
 177        struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
 178
 179        return &nn_vrf->vmap;
 180}
 181
 182static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
 183{
 184        return netns_vrf_map(dev_net(dev));
 185}
 186
 187static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
 188{
 189        struct list_head *me_head = &me->vrf_list;
 190        struct net_vrf *vrf;
 191
 192        if (list_empty(me_head))
 193                return -ENODEV;
 194
 195        vrf = list_first_entry(me_head, struct net_vrf, me_list);
 196
 197        return vrf->ifindex;
 198}
 199
 200static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
 201{
 202        struct vrf_map_elem *me;
 203
 204        me = kmalloc(sizeof(*me), flags);
 205        if (!me)
 206                return NULL;
 207
 208        return me;
 209}
 210
 211static void vrf_map_elem_free(struct vrf_map_elem *me)
 212{
 213        kfree(me);
 214}
 215
 216static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
 217                              int ifindex, int users)
 218{
 219        me->table_id = table_id;
 220        me->ifindex = ifindex;
 221        me->users = users;
 222        INIT_LIST_HEAD(&me->vrf_list);
 223}
 224
 225static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
 226                                                u32 table_id)
 227{
 228        struct vrf_map_elem *me;
 229        u32 key;
 230
 231        key = jhash_1word(table_id, HASH_INITVAL);
 232        hash_for_each_possible(vmap->ht, me, hnode, key) {
 233                if (me->table_id == table_id)
 234                        return me;
 235        }
 236
 237        return NULL;
 238}
 239
 240static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
 241{
 242        u32 table_id = me->table_id;
 243        u32 key;
 244
 245        key = jhash_1word(table_id, HASH_INITVAL);
 246        hash_add(vmap->ht, &me->hnode, key);
 247}
 248
 249static void vrf_map_del_elem(struct vrf_map_elem *me)
 250{
 251        hash_del(&me->hnode);
 252}
 253
 254static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
 255{
 256        spin_lock(&vmap->vmap_lock);
 257}
 258
 259static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
 260{
 261        spin_unlock(&vmap->vmap_lock);
 262}
 263
 264/* called with rtnl lock held */
 265static int
 266vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
 267{
 268        struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
 269        struct net_vrf *vrf = netdev_priv(dev);
 270        struct vrf_map_elem *new_me, *me;
 271        u32 table_id = vrf->tb_id;
 272        bool free_new_me = false;
 273        int users;
 274        int res;
 275
 276        /* we pre-allocate elements used in the spin-locked section (so that we
 277         * keep the spinlock as short as possible).
 278         */
 279        new_me = vrf_map_elem_alloc(GFP_KERNEL);
 280        if (!new_me)
 281                return -ENOMEM;
 282
 283        vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
 284
 285        vrf_map_lock(vmap);
 286
 287        me = vrf_map_lookup_elem(vmap, table_id);
 288        if (!me) {
 289                me = new_me;
 290                vrf_map_add_elem(vmap, me);
 291                goto link_vrf;
 292        }
 293
 294        /* we already have an entry in the vrf_map, so it means there is (at
 295         * least) a vrf registered on the specific table.
 296         */
 297        free_new_me = true;
 298        if (vmap->strict_mode) {
 299                /* vrfs cannot share the same table */
 300                NL_SET_ERR_MSG(extack, "Table is used by another VRF");
 301                res = -EBUSY;
 302                goto unlock;
 303        }
 304
 305link_vrf:
 306        users = ++me->users;
 307        if (users == 2)
 308                ++vmap->shared_tables;
 309
 310        list_add(&vrf->me_list, &me->vrf_list);
 311
 312        res = 0;
 313
 314unlock:
 315        vrf_map_unlock(vmap);
 316
 317        /* clean-up, if needed */
 318        if (free_new_me)
 319                vrf_map_elem_free(new_me);
 320
 321        return res;
 322}
 323
 324/* called with rtnl lock held */
 325static void vrf_map_unregister_dev(struct net_device *dev)
 326{
 327        struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
 328        struct net_vrf *vrf = netdev_priv(dev);
 329        u32 table_id = vrf->tb_id;
 330        struct vrf_map_elem *me;
 331        int users;
 332
 333        vrf_map_lock(vmap);
 334
 335        me = vrf_map_lookup_elem(vmap, table_id);
 336        if (!me)
 337                goto unlock;
 338
 339        list_del(&vrf->me_list);
 340
 341        users = --me->users;
 342        if (users == 1) {
 343                --vmap->shared_tables;
 344        } else if (users == 0) {
 345                vrf_map_del_elem(me);
 346
 347                /* no one will refer to this element anymore */
 348                vrf_map_elem_free(me);
 349        }
 350
 351unlock:
 352        vrf_map_unlock(vmap);
 353}
 354
 355/* return the vrf device index associated with the table_id */
 356static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
 357{
 358        struct vrf_map *vmap = netns_vrf_map(net);
 359        struct vrf_map_elem *me;
 360        int ifindex;
 361
 362        vrf_map_lock(vmap);
 363
 364        if (!vmap->strict_mode) {
 365                ifindex = -EPERM;
 366                goto unlock;
 367        }
 368
 369        me = vrf_map_lookup_elem(vmap, table_id);
 370        if (!me) {
 371                ifindex = -ENODEV;
 372                goto unlock;
 373        }
 374
 375        ifindex = vrf_map_elem_get_vrf_ifindex(me);
 376
 377unlock:
 378        vrf_map_unlock(vmap);
 379
 380        return ifindex;
 381}
 382
 383/* by default VRF devices do not have a qdisc and are expected
 384 * to be created with only a single queue.
 385 */
 386static bool qdisc_tx_is_default(const struct net_device *dev)
 387{
 388        struct netdev_queue *txq;
 389        struct Qdisc *qdisc;
 390
 391        if (dev->num_tx_queues > 1)
 392                return false;
 393
 394        txq = netdev_get_tx_queue(dev, 0);
 395        qdisc = rcu_access_pointer(txq->qdisc);
 396
 397        return !qdisc->enqueue;
 398}
 399
 400/* Local traffic destined to local address. Reinsert the packet to rx
 401 * path, similar to loopback handling.
 402 */
 403static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
 404                          struct dst_entry *dst)
 405{
 406        int len = skb->len;
 407
 408        skb_orphan(skb);
 409
 410        skb_dst_set(skb, dst);
 411
 412        /* set pkt_type to avoid skb hitting packet taps twice -
 413         * once on Tx and again in Rx processing
 414         */
 415        skb->pkt_type = PACKET_LOOPBACK;
 416
 417        skb->protocol = eth_type_trans(skb, dev);
 418
 419        if (likely(netif_rx(skb) == NET_RX_SUCCESS))
 420                vrf_rx_stats(dev, len);
 421        else
 422                this_cpu_inc(dev->dstats->rx_drps);
 423
 424        return NETDEV_TX_OK;
 425}
 426
 427#if IS_ENABLED(CONFIG_IPV6)
 428static int vrf_ip6_local_out(struct net *net, struct sock *sk,
 429                             struct sk_buff *skb)
 430{
 431        int err;
 432
 433        err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
 434                      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
 435
 436        if (likely(err == 1))
 437                err = dst_output(net, sk, skb);
 438
 439        return err;
 440}
 441
 442static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
 443                                           struct net_device *dev)
 444{
 445        const struct ipv6hdr *iph;
 446        struct net *net = dev_net(skb->dev);
 447        struct flowi6 fl6;
 448        int ret = NET_XMIT_DROP;
 449        struct dst_entry *dst;
 450        struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
 451
 452        if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
 453                goto err;
 454
 455        iph = ipv6_hdr(skb);
 456
 457        memset(&fl6, 0, sizeof(fl6));
 458        /* needed to match OIF rule */
 459        fl6.flowi6_oif = dev->ifindex;
 460        fl6.flowi6_iif = LOOPBACK_IFINDEX;
 461        fl6.daddr = iph->daddr;
 462        fl6.saddr = iph->saddr;
 463        fl6.flowlabel = ip6_flowinfo(iph);
 464        fl6.flowi6_mark = skb->mark;
 465        fl6.flowi6_proto = iph->nexthdr;
 466        fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF;
 467
 468        dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
 469        if (IS_ERR(dst) || dst == dst_null)
 470                goto err;
 471
 472        skb_dst_drop(skb);
 473
 474        /* if dst.dev is the VRF device again this is locally originated traffic
 475         * destined to a local address. Short circuit to Rx path.
 476         */
 477        if (dst->dev == dev)
 478                return vrf_local_xmit(skb, dev, dst);
 479
 480        skb_dst_set(skb, dst);
 481
 482        /* strip the ethernet header added for pass through VRF device */
 483        __skb_pull(skb, skb_network_offset(skb));
 484
 485        ret = vrf_ip6_local_out(net, skb->sk, skb);
 486        if (unlikely(net_xmit_eval(ret)))
 487                dev->stats.tx_errors++;
 488        else
 489                ret = NET_XMIT_SUCCESS;
 490
 491        return ret;
 492err:
 493        vrf_tx_error(dev, skb);
 494        return NET_XMIT_DROP;
 495}
 496#else
 497static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
 498                                           struct net_device *dev)
 499{
 500        vrf_tx_error(dev, skb);
 501        return NET_XMIT_DROP;
 502}
 503#endif
 504
 505/* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
 506static int vrf_ip_local_out(struct net *net, struct sock *sk,
 507                            struct sk_buff *skb)
 508{
 509        int err;
 510
 511        err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
 512                      skb, NULL, skb_dst(skb)->dev, dst_output);
 513        if (likely(err == 1))
 514                err = dst_output(net, sk, skb);
 515
 516        return err;
 517}
 518
 519static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
 520                                           struct net_device *vrf_dev)
 521{
 522        struct iphdr *ip4h;
 523        int ret = NET_XMIT_DROP;
 524        struct flowi4 fl4;
 525        struct net *net = dev_net(vrf_dev);
 526        struct rtable *rt;
 527
 528        if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
 529                goto err;
 530
 531        ip4h = ip_hdr(skb);
 532
 533        memset(&fl4, 0, sizeof(fl4));
 534        /* needed to match OIF rule */
 535        fl4.flowi4_oif = vrf_dev->ifindex;
 536        fl4.flowi4_iif = LOOPBACK_IFINDEX;
 537        fl4.flowi4_tos = RT_TOS(ip4h->tos);
 538        fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF;
 539        fl4.flowi4_proto = ip4h->protocol;
 540        fl4.daddr = ip4h->daddr;
 541        fl4.saddr = ip4h->saddr;
 542
 543        rt = ip_route_output_flow(net, &fl4, NULL);
 544        if (IS_ERR(rt))
 545                goto err;
 546
 547        skb_dst_drop(skb);
 548
 549        /* if dst.dev is the VRF device again this is locally originated traffic
 550         * destined to a local address. Short circuit to Rx path.
 551         */
 552        if (rt->dst.dev == vrf_dev)
 553                return vrf_local_xmit(skb, vrf_dev, &rt->dst);
 554
 555        skb_dst_set(skb, &rt->dst);
 556
 557        /* strip the ethernet header added for pass through VRF device */
 558        __skb_pull(skb, skb_network_offset(skb));
 559
 560        if (!ip4h->saddr) {
 561                ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
 562                                               RT_SCOPE_LINK);
 563        }
 564
 565        ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
 566        if (unlikely(net_xmit_eval(ret)))
 567                vrf_dev->stats.tx_errors++;
 568        else
 569                ret = NET_XMIT_SUCCESS;
 570
 571out:
 572        return ret;
 573err:
 574        vrf_tx_error(vrf_dev, skb);
 575        goto out;
 576}
 577
 578static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
 579{
 580        switch (skb->protocol) {
 581        case htons(ETH_P_IP):
 582                return vrf_process_v4_outbound(skb, dev);
 583        case htons(ETH_P_IPV6):
 584                return vrf_process_v6_outbound(skb, dev);
 585        default:
 586                vrf_tx_error(dev, skb);
 587                return NET_XMIT_DROP;
 588        }
 589}
 590
 591static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
 592{
 593        int len = skb->len;
 594        netdev_tx_t ret = is_ip_tx_frame(skb, dev);
 595
 596        if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
 597                struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
 598
 599                u64_stats_update_begin(&dstats->syncp);
 600                dstats->tx_pkts++;
 601                dstats->tx_bytes += len;
 602                u64_stats_update_end(&dstats->syncp);
 603        } else {
 604                this_cpu_inc(dev->dstats->tx_drps);
 605        }
 606
 607        return ret;
 608}
 609
 610static void vrf_finish_direct(struct sk_buff *skb)
 611{
 612        struct net_device *vrf_dev = skb->dev;
 613
 614        if (!list_empty(&vrf_dev->ptype_all) &&
 615            likely(skb_headroom(skb) >= ETH_HLEN)) {
 616                struct ethhdr *eth = skb_push(skb, ETH_HLEN);
 617
 618                ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
 619                eth_zero_addr(eth->h_dest);
 620                eth->h_proto = skb->protocol;
 621
 622                rcu_read_lock_bh();
 623                dev_queue_xmit_nit(skb, vrf_dev);
 624                rcu_read_unlock_bh();
 625
 626                skb_pull(skb, ETH_HLEN);
 627        }
 628
 629        /* reset skb device */
 630        nf_reset_ct(skb);
 631}
 632
 633#if IS_ENABLED(CONFIG_IPV6)
 634/* modelled after ip6_finish_output2 */
 635static int vrf_finish_output6(struct net *net, struct sock *sk,
 636                              struct sk_buff *skb)
 637{
 638        struct dst_entry *dst = skb_dst(skb);
 639        struct net_device *dev = dst->dev;
 640        const struct in6_addr *nexthop;
 641        struct neighbour *neigh;
 642        int ret;
 643
 644        nf_reset_ct(skb);
 645
 646        skb->protocol = htons(ETH_P_IPV6);
 647        skb->dev = dev;
 648
 649        rcu_read_lock_bh();
 650        nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
 651        neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
 652        if (unlikely(!neigh))
 653                neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
 654        if (!IS_ERR(neigh)) {
 655                sock_confirm_neigh(skb, neigh);
 656                ret = neigh_output(neigh, skb, false);
 657                rcu_read_unlock_bh();
 658                return ret;
 659        }
 660        rcu_read_unlock_bh();
 661
 662        IP6_INC_STATS(dev_net(dst->dev),
 663                      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
 664        kfree_skb(skb);
 665        return -EINVAL;
 666}
 667
 668/* modelled after ip6_output */
 669static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
 670{
 671        return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
 672                            net, sk, skb, NULL, skb_dst(skb)->dev,
 673                            vrf_finish_output6,
 674                            !(IP6CB(skb)->flags & IP6SKB_REROUTED));
 675}
 676
 677/* set dst on skb to send packet to us via dev_xmit path. Allows
 678 * packet to go through device based features such as qdisc, netfilter
 679 * hooks and packet sockets with skb->dev set to vrf device.
 680 */
 681static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
 682                                            struct sk_buff *skb)
 683{
 684        struct net_vrf *vrf = netdev_priv(vrf_dev);
 685        struct dst_entry *dst = NULL;
 686        struct rt6_info *rt6;
 687
 688        rcu_read_lock();
 689
 690        rt6 = rcu_dereference(vrf->rt6);
 691        if (likely(rt6)) {
 692                dst = &rt6->dst;
 693                dst_hold(dst);
 694        }
 695
 696        rcu_read_unlock();
 697
 698        if (unlikely(!dst)) {
 699                vrf_tx_error(vrf_dev, skb);
 700                return NULL;
 701        }
 702
 703        skb_dst_drop(skb);
 704        skb_dst_set(skb, dst);
 705
 706        return skb;
 707}
 708
 709static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
 710                                     struct sk_buff *skb)
 711{
 712        vrf_finish_direct(skb);
 713
 714        return vrf_ip6_local_out(net, sk, skb);
 715}
 716
 717static int vrf_output6_direct(struct net *net, struct sock *sk,
 718                              struct sk_buff *skb)
 719{
 720        int err = 1;
 721
 722        skb->protocol = htons(ETH_P_IPV6);
 723
 724        if (!(IPCB(skb)->flags & IPSKB_REROUTED))
 725                err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
 726                              NULL, skb->dev, vrf_output6_direct_finish);
 727
 728        if (likely(err == 1))
 729                vrf_finish_direct(skb);
 730
 731        return err;
 732}
 733
 734static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
 735                                     struct sk_buff *skb)
 736{
 737        int err;
 738
 739        err = vrf_output6_direct(net, sk, skb);
 740        if (likely(err == 1))
 741                err = vrf_ip6_local_out(net, sk, skb);
 742
 743        return err;
 744}
 745
 746static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
 747                                          struct sock *sk,
 748                                          struct sk_buff *skb)
 749{
 750        struct net *net = dev_net(vrf_dev);
 751        int err;
 752
 753        skb->dev = vrf_dev;
 754
 755        err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
 756                      skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
 757
 758        if (likely(err == 1))
 759                err = vrf_output6_direct(net, sk, skb);
 760
 761        if (likely(err == 1))
 762                return skb;
 763
 764        return NULL;
 765}
 766
 767static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
 768                                   struct sock *sk,
 769                                   struct sk_buff *skb)
 770{
 771        /* don't divert link scope packets */
 772        if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
 773                return skb;
 774
 775        if (qdisc_tx_is_default(vrf_dev) ||
 776            IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
 777                return vrf_ip6_out_direct(vrf_dev, sk, skb);
 778
 779        return vrf_ip6_out_redirect(vrf_dev, skb);
 780}
 781
 782/* holding rtnl */
 783static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
 784{
 785        struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
 786        struct net *net = dev_net(dev);
 787        struct dst_entry *dst;
 788
 789        RCU_INIT_POINTER(vrf->rt6, NULL);
 790        synchronize_rcu();
 791
 792        /* move dev in dst's to loopback so this VRF device can be deleted
 793         * - based on dst_ifdown
 794         */
 795        if (rt6) {
 796                dst = &rt6->dst;
 797                dev_put(dst->dev);
 798                dst->dev = net->loopback_dev;
 799                dev_hold(dst->dev);
 800                dst_release(dst);
 801        }
 802}
 803
 804static int vrf_rt6_create(struct net_device *dev)
 805{
 806        int flags = DST_NOPOLICY | DST_NOXFRM;
 807        struct net_vrf *vrf = netdev_priv(dev);
 808        struct net *net = dev_net(dev);
 809        struct rt6_info *rt6;
 810        int rc = -ENOMEM;
 811
 812        /* IPv6 can be CONFIG enabled and then disabled runtime */
 813        if (!ipv6_mod_enabled())
 814                return 0;
 815
 816        vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
 817        if (!vrf->fib6_table)
 818                goto out;
 819
 820        /* create a dst for routing packets out a VRF device */
 821        rt6 = ip6_dst_alloc(net, dev, flags);
 822        if (!rt6)
 823                goto out;
 824
 825        rt6->dst.output = vrf_output6;
 826
 827        rcu_assign_pointer(vrf->rt6, rt6);
 828
 829        rc = 0;
 830out:
 831        return rc;
 832}
 833#else
 834static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
 835                                   struct sock *sk,
 836                                   struct sk_buff *skb)
 837{
 838        return skb;
 839}
 840
 841static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
 842{
 843}
 844
 845static int vrf_rt6_create(struct net_device *dev)
 846{
 847        return 0;
 848}
 849#endif
 850
 851/* modelled after ip_finish_output2 */
 852static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 853{
 854        struct dst_entry *dst = skb_dst(skb);
 855        struct rtable *rt = (struct rtable *)dst;
 856        struct net_device *dev = dst->dev;
 857        unsigned int hh_len = LL_RESERVED_SPACE(dev);
 858        struct neighbour *neigh;
 859        bool is_v6gw = false;
 860        int ret = -EINVAL;
 861
 862        nf_reset_ct(skb);
 863
 864        /* Be paranoid, rather than too clever. */
 865        if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
 866                struct sk_buff *skb2;
 867
 868                skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
 869                if (!skb2) {
 870                        ret = -ENOMEM;
 871                        goto err;
 872                }
 873                if (skb->sk)
 874                        skb_set_owner_w(skb2, skb->sk);
 875
 876                consume_skb(skb);
 877                skb = skb2;
 878        }
 879
 880        rcu_read_lock_bh();
 881
 882        neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
 883        if (!IS_ERR(neigh)) {
 884                sock_confirm_neigh(skb, neigh);
 885                /* if crossing protocols, can not use the cached header */
 886                ret = neigh_output(neigh, skb, is_v6gw);
 887                rcu_read_unlock_bh();
 888                return ret;
 889        }
 890
 891        rcu_read_unlock_bh();
 892err:
 893        vrf_tx_error(skb->dev, skb);
 894        return ret;
 895}
 896
 897static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 898{
 899        struct net_device *dev = skb_dst(skb)->dev;
 900
 901        IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
 902
 903        skb->dev = dev;
 904        skb->protocol = htons(ETH_P_IP);
 905
 906        return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
 907                            net, sk, skb, NULL, dev,
 908                            vrf_finish_output,
 909                            !(IPCB(skb)->flags & IPSKB_REROUTED));
 910}
 911
 912/* set dst on skb to send packet to us via dev_xmit path. Allows
 913 * packet to go through device based features such as qdisc, netfilter
 914 * hooks and packet sockets with skb->dev set to vrf device.
 915 */
 916static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
 917                                           struct sk_buff *skb)
 918{
 919        struct net_vrf *vrf = netdev_priv(vrf_dev);
 920        struct dst_entry *dst = NULL;
 921        struct rtable *rth;
 922
 923        rcu_read_lock();
 924
 925        rth = rcu_dereference(vrf->rth);
 926        if (likely(rth)) {
 927                dst = &rth->dst;
 928                dst_hold(dst);
 929        }
 930
 931        rcu_read_unlock();
 932
 933        if (unlikely(!dst)) {
 934                vrf_tx_error(vrf_dev, skb);
 935                return NULL;
 936        }
 937
 938        skb_dst_drop(skb);
 939        skb_dst_set(skb, dst);
 940
 941        return skb;
 942}
 943
 944static int vrf_output_direct_finish(struct net *net, struct sock *sk,
 945                                    struct sk_buff *skb)
 946{
 947        vrf_finish_direct(skb);
 948
 949        return vrf_ip_local_out(net, sk, skb);
 950}
 951
 952static int vrf_output_direct(struct net *net, struct sock *sk,
 953                             struct sk_buff *skb)
 954{
 955        int err = 1;
 956
 957        skb->protocol = htons(ETH_P_IP);
 958
 959        if (!(IPCB(skb)->flags & IPSKB_REROUTED))
 960                err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
 961                              NULL, skb->dev, vrf_output_direct_finish);
 962
 963        if (likely(err == 1))
 964                vrf_finish_direct(skb);
 965
 966        return err;
 967}
 968
 969static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
 970                                    struct sk_buff *skb)
 971{
 972        int err;
 973
 974        err = vrf_output_direct(net, sk, skb);
 975        if (likely(err == 1))
 976                err = vrf_ip_local_out(net, sk, skb);
 977
 978        return err;
 979}
 980
 981static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
 982                                         struct sock *sk,
 983                                         struct sk_buff *skb)
 984{
 985        struct net *net = dev_net(vrf_dev);
 986        int err;
 987
 988        skb->dev = vrf_dev;
 989
 990        err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
 991                      skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
 992
 993        if (likely(err == 1))
 994                err = vrf_output_direct(net, sk, skb);
 995
 996        if (likely(err == 1))
 997                return skb;
 998
 999        return NULL;
1000}
1001
1002static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
1003                                  struct sock *sk,
1004                                  struct sk_buff *skb)
1005{
1006        /* don't divert multicast or local broadcast */
1007        if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
1008            ipv4_is_lbcast(ip_hdr(skb)->daddr))
1009                return skb;
1010
1011        if (qdisc_tx_is_default(vrf_dev) ||
1012            IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
1013                return vrf_ip_out_direct(vrf_dev, sk, skb);
1014
1015        return vrf_ip_out_redirect(vrf_dev, skb);
1016}
1017
1018/* called with rcu lock held */
1019static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1020                                  struct sock *sk,
1021                                  struct sk_buff *skb,
1022                                  u16 proto)
1023{
1024        switch (proto) {
1025        case AF_INET:
1026                return vrf_ip_out(vrf_dev, sk, skb);
1027        case AF_INET6:
1028                return vrf_ip6_out(vrf_dev, sk, skb);
1029        }
1030
1031        return skb;
1032}
1033
1034/* holding rtnl */
1035static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1036{
1037        struct rtable *rth = rtnl_dereference(vrf->rth);
1038        struct net *net = dev_net(dev);
1039        struct dst_entry *dst;
1040
1041        RCU_INIT_POINTER(vrf->rth, NULL);
1042        synchronize_rcu();
1043
1044        /* move dev in dst's to loopback so this VRF device can be deleted
1045         * - based on dst_ifdown
1046         */
1047        if (rth) {
1048                dst = &rth->dst;
1049                dev_put(dst->dev);
1050                dst->dev = net->loopback_dev;
1051                dev_hold(dst->dev);
1052                dst_release(dst);
1053        }
1054}
1055
1056static int vrf_rtable_create(struct net_device *dev)
1057{
1058        struct net_vrf *vrf = netdev_priv(dev);
1059        struct rtable *rth;
1060
1061        if (!fib_new_table(dev_net(dev), vrf->tb_id))
1062                return -ENOMEM;
1063
1064        /* create a dst for routing packets out through a VRF device */
1065        rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1);
1066        if (!rth)
1067                return -ENOMEM;
1068
1069        rth->dst.output = vrf_output;
1070
1071        rcu_assign_pointer(vrf->rth, rth);
1072
1073        return 0;
1074}
1075
1076/**************************** device handling ********************/
1077
1078/* cycle interface to flush neighbor cache and move routes across tables */
1079static void cycle_netdev(struct net_device *dev,
1080                         struct netlink_ext_ack *extack)
1081{
1082        unsigned int flags = dev->flags;
1083        int ret;
1084
1085        if (!netif_running(dev))
1086                return;
1087
1088        ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1089        if (ret >= 0)
1090                ret = dev_change_flags(dev, flags, extack);
1091
1092        if (ret < 0) {
1093                netdev_err(dev,
1094                           "Failed to cycle device %s; route tables might be wrong!\n",
1095                           dev->name);
1096        }
1097}
1098
1099static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1100                            struct netlink_ext_ack *extack)
1101{
1102        int ret;
1103
1104        /* do not allow loopback device to be enslaved to a VRF.
1105         * The vrf device acts as the loopback for the vrf.
1106         */
1107        if (port_dev == dev_net(dev)->loopback_dev) {
1108                NL_SET_ERR_MSG(extack,
1109                               "Can not enslave loopback device to a VRF");
1110                return -EOPNOTSUPP;
1111        }
1112
1113        port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1114        ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1115        if (ret < 0)
1116                goto err;
1117
1118        cycle_netdev(port_dev, extack);
1119
1120        return 0;
1121
1122err:
1123        port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1124        return ret;
1125}
1126
1127static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1128                         struct netlink_ext_ack *extack)
1129{
1130        if (netif_is_l3_master(port_dev)) {
1131                NL_SET_ERR_MSG(extack,
1132                               "Can not enslave an L3 master device to a VRF");
1133                return -EINVAL;
1134        }
1135
1136        if (netif_is_l3_slave(port_dev))
1137                return -EINVAL;
1138
1139        return do_vrf_add_slave(dev, port_dev, extack);
1140}
1141
1142/* inverse of do_vrf_add_slave */
1143static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1144{
1145        netdev_upper_dev_unlink(port_dev, dev);
1146        port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1147
1148        cycle_netdev(port_dev, NULL);
1149
1150        return 0;
1151}
1152
1153static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1154{
1155        return do_vrf_del_slave(dev, port_dev);
1156}
1157
1158static void vrf_dev_uninit(struct net_device *dev)
1159{
1160        struct net_vrf *vrf = netdev_priv(dev);
1161
1162        vrf_rtable_release(dev, vrf);
1163        vrf_rt6_release(dev, vrf);
1164
1165        free_percpu(dev->dstats);
1166        dev->dstats = NULL;
1167}
1168
1169static int vrf_dev_init(struct net_device *dev)
1170{
1171        struct net_vrf *vrf = netdev_priv(dev);
1172
1173        dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
1174        if (!dev->dstats)
1175                goto out_nomem;
1176
1177        /* create the default dst which points back to us */
1178        if (vrf_rtable_create(dev) != 0)
1179                goto out_stats;
1180
1181        if (vrf_rt6_create(dev) != 0)
1182                goto out_rth;
1183
1184        dev->flags = IFF_MASTER | IFF_NOARP;
1185
1186        /* similarly, oper state is irrelevant; set to up to avoid confusion */
1187        dev->operstate = IF_OPER_UP;
1188        netdev_lockdep_set_classes(dev);
1189        return 0;
1190
1191out_rth:
1192        vrf_rtable_release(dev, vrf);
1193out_stats:
1194        free_percpu(dev->dstats);
1195        dev->dstats = NULL;
1196out_nomem:
1197        return -ENOMEM;
1198}
1199
1200static const struct net_device_ops vrf_netdev_ops = {
1201        .ndo_init               = vrf_dev_init,
1202        .ndo_uninit             = vrf_dev_uninit,
1203        .ndo_start_xmit         = vrf_xmit,
1204        .ndo_set_mac_address    = eth_mac_addr,
1205        .ndo_get_stats64        = vrf_get_stats64,
1206        .ndo_add_slave          = vrf_add_slave,
1207        .ndo_del_slave          = vrf_del_slave,
1208};
1209
1210static u32 vrf_fib_table(const struct net_device *dev)
1211{
1212        struct net_vrf *vrf = netdev_priv(dev);
1213
1214        return vrf->tb_id;
1215}
1216
1217static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1218{
1219        kfree_skb(skb);
1220        return 0;
1221}
1222
1223static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1224                                      struct sk_buff *skb,
1225                                      struct net_device *dev)
1226{
1227        struct net *net = dev_net(dev);
1228
1229        if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1230                skb = NULL;    /* kfree_skb(skb) handled by nf code */
1231
1232        return skb;
1233}
1234
1235static int vrf_prepare_mac_header(struct sk_buff *skb,
1236                                  struct net_device *vrf_dev, u16 proto)
1237{
1238        struct ethhdr *eth;
1239        int err;
1240
1241        /* in general, we do not know if there is enough space in the head of
1242         * the packet for hosting the mac header.
1243         */
1244        err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev));
1245        if (unlikely(err))
1246                /* no space in the skb head */
1247                return -ENOBUFS;
1248
1249        __skb_push(skb, ETH_HLEN);
1250        eth = (struct ethhdr *)skb->data;
1251
1252        skb_reset_mac_header(skb);
1253
1254        /* we set the ethernet destination and the source addresses to the
1255         * address of the VRF device.
1256         */
1257        ether_addr_copy(eth->h_dest, vrf_dev->dev_addr);
1258        ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
1259        eth->h_proto = htons(proto);
1260
1261        /* the destination address of the Ethernet frame corresponds to the
1262         * address set on the VRF interface; therefore, the packet is intended
1263         * to be processed locally.
1264         */
1265        skb->protocol = eth->h_proto;
1266        skb->pkt_type = PACKET_HOST;
1267
1268        skb_postpush_rcsum(skb, skb->data, ETH_HLEN);
1269
1270        skb_pull_inline(skb, ETH_HLEN);
1271
1272        return 0;
1273}
1274
1275/* prepare and add the mac header to the packet if it was not set previously.
1276 * In this way, packet sniffers such as tcpdump can parse the packet correctly.
1277 * If the mac header was already set, the original mac header is left
1278 * untouched and the function returns immediately.
1279 */
1280static int vrf_add_mac_header_if_unset(struct sk_buff *skb,
1281                                       struct net_device *vrf_dev,
1282                                       u16 proto)
1283{
1284        if (skb_mac_header_was_set(skb))
1285                return 0;
1286
1287        return vrf_prepare_mac_header(skb, vrf_dev, proto);
1288}
1289
1290#if IS_ENABLED(CONFIG_IPV6)
1291/* neighbor handling is done with actual device; do not want
1292 * to flip skb->dev for those ndisc packets. This really fails
1293 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1294 * a start.
1295 */
1296static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1297{
1298        const struct ipv6hdr *iph = ipv6_hdr(skb);
1299        bool rc = false;
1300
1301        if (iph->nexthdr == NEXTHDR_ICMP) {
1302                const struct icmp6hdr *icmph;
1303                struct icmp6hdr _icmph;
1304
1305                icmph = skb_header_pointer(skb, sizeof(*iph),
1306                                           sizeof(_icmph), &_icmph);
1307                if (!icmph)
1308                        goto out;
1309
1310                switch (icmph->icmp6_type) {
1311                case NDISC_ROUTER_SOLICITATION:
1312                case NDISC_ROUTER_ADVERTISEMENT:
1313                case NDISC_NEIGHBOUR_SOLICITATION:
1314                case NDISC_NEIGHBOUR_ADVERTISEMENT:
1315                case NDISC_REDIRECT:
1316                        rc = true;
1317                        break;
1318                }
1319        }
1320
1321out:
1322        return rc;
1323}
1324
1325static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1326                                             const struct net_device *dev,
1327                                             struct flowi6 *fl6,
1328                                             int ifindex,
1329                                             const struct sk_buff *skb,
1330                                             int flags)
1331{
1332        struct net_vrf *vrf = netdev_priv(dev);
1333
1334        return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1335}
1336
1337static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1338                              int ifindex)
1339{
1340        const struct ipv6hdr *iph = ipv6_hdr(skb);
1341        struct flowi6 fl6 = {
1342                .flowi6_iif     = ifindex,
1343                .flowi6_mark    = skb->mark,
1344                .flowi6_proto   = iph->nexthdr,
1345                .daddr          = iph->daddr,
1346                .saddr          = iph->saddr,
1347                .flowlabel      = ip6_flowinfo(iph),
1348        };
1349        struct net *net = dev_net(vrf_dev);
1350        struct rt6_info *rt6;
1351
1352        rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1353                                   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1354        if (unlikely(!rt6))
1355                return;
1356
1357        if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1358                return;
1359
1360        skb_dst_set(skb, &rt6->dst);
1361}
1362
1363static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1364                                   struct sk_buff *skb)
1365{
1366        int orig_iif = skb->skb_iif;
1367        bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1368        bool is_ndisc = ipv6_ndisc_frame(skb);
1369
1370        nf_reset_ct(skb);
1371
1372        /* loopback, multicast & non-ND link-local traffic; do not push through
1373         * packet taps again. Reset pkt_type for upper layers to process skb.
1374         * For strict packets with a source LLA, determine the dst using the
1375         * original ifindex.
1376         */
1377        if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1378                skb->dev = vrf_dev;
1379                skb->skb_iif = vrf_dev->ifindex;
1380                IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1381
1382                if (skb->pkt_type == PACKET_LOOPBACK)
1383                        skb->pkt_type = PACKET_HOST;
1384                else if (ipv6_addr_type(&ipv6_hdr(skb)->saddr) & IPV6_ADDR_LINKLOCAL)
1385                        vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1386
1387                goto out;
1388        }
1389
1390        /* if packet is NDISC then keep the ingress interface */
1391        if (!is_ndisc) {
1392                vrf_rx_stats(vrf_dev, skb->len);
1393                skb->dev = vrf_dev;
1394                skb->skb_iif = vrf_dev->ifindex;
1395
1396                if (!list_empty(&vrf_dev->ptype_all)) {
1397                        int err;
1398
1399                        err = vrf_add_mac_header_if_unset(skb, vrf_dev,
1400                                                          ETH_P_IPV6);
1401                        if (likely(!err)) {
1402                                skb_push(skb, skb->mac_len);
1403                                dev_queue_xmit_nit(skb, vrf_dev);
1404                                skb_pull(skb, skb->mac_len);
1405                        }
1406                }
1407
1408                IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1409        }
1410
1411        if (need_strict)
1412                vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1413
1414        skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1415out:
1416        return skb;
1417}
1418
1419#else
1420static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1421                                   struct sk_buff *skb)
1422{
1423        return skb;
1424}
1425#endif
1426
1427static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1428                                  struct sk_buff *skb)
1429{
1430        skb->dev = vrf_dev;
1431        skb->skb_iif = vrf_dev->ifindex;
1432        IPCB(skb)->flags |= IPSKB_L3SLAVE;
1433
1434        nf_reset_ct(skb);
1435
1436        if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1437                goto out;
1438
1439        /* loopback traffic; do not push through packet taps again.
1440         * Reset pkt_type for upper layers to process skb
1441         */
1442        if (skb->pkt_type == PACKET_LOOPBACK) {
1443                skb->pkt_type = PACKET_HOST;
1444                goto out;
1445        }
1446
1447        vrf_rx_stats(vrf_dev, skb->len);
1448
1449        if (!list_empty(&vrf_dev->ptype_all)) {
1450                int err;
1451
1452                err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP);
1453                if (likely(!err)) {
1454                        skb_push(skb, skb->mac_len);
1455                        dev_queue_xmit_nit(skb, vrf_dev);
1456                        skb_pull(skb, skb->mac_len);
1457                }
1458        }
1459
1460        skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1461out:
1462        return skb;
1463}
1464
1465/* called with rcu lock held */
1466static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1467                                  struct sk_buff *skb,
1468                                  u16 proto)
1469{
1470        switch (proto) {
1471        case AF_INET:
1472                return vrf_ip_rcv(vrf_dev, skb);
1473        case AF_INET6:
1474                return vrf_ip6_rcv(vrf_dev, skb);
1475        }
1476
1477        return skb;
1478}
1479
1480#if IS_ENABLED(CONFIG_IPV6)
1481/* send to link-local or multicast address via interface enslaved to
1482 * VRF device. Force lookup to VRF table without changing flow struct
1483 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1484 * is taken on the dst by this function.
1485 */
1486static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1487                                              struct flowi6 *fl6)
1488{
1489        struct net *net = dev_net(dev);
1490        int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1491        struct dst_entry *dst = NULL;
1492        struct rt6_info *rt;
1493
1494        /* VRF device does not have a link-local address and
1495         * sending packets to link-local or mcast addresses over
1496         * a VRF device does not make sense
1497         */
1498        if (fl6->flowi6_oif == dev->ifindex) {
1499                dst = &net->ipv6.ip6_null_entry->dst;
1500                return dst;
1501        }
1502
1503        if (!ipv6_addr_any(&fl6->saddr))
1504                flags |= RT6_LOOKUP_F_HAS_SADDR;
1505
1506        rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1507        if (rt)
1508                dst = &rt->dst;
1509
1510        return dst;
1511}
1512#endif
1513
1514static const struct l3mdev_ops vrf_l3mdev_ops = {
1515        .l3mdev_fib_table       = vrf_fib_table,
1516        .l3mdev_l3_rcv          = vrf_l3_rcv,
1517        .l3mdev_l3_out          = vrf_l3_out,
1518#if IS_ENABLED(CONFIG_IPV6)
1519        .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1520#endif
1521};
1522
1523static void vrf_get_drvinfo(struct net_device *dev,
1524                            struct ethtool_drvinfo *info)
1525{
1526        strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1527        strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1528}
1529
1530static const struct ethtool_ops vrf_ethtool_ops = {
1531        .get_drvinfo    = vrf_get_drvinfo,
1532};
1533
1534static inline size_t vrf_fib_rule_nl_size(void)
1535{
1536        size_t sz;
1537
1538        sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1539        sz += nla_total_size(sizeof(u8));       /* FRA_L3MDEV */
1540        sz += nla_total_size(sizeof(u32));      /* FRA_PRIORITY */
1541        sz += nla_total_size(sizeof(u8));       /* FRA_PROTOCOL */
1542
1543        return sz;
1544}
1545
1546static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1547{
1548        struct fib_rule_hdr *frh;
1549        struct nlmsghdr *nlh;
1550        struct sk_buff *skb;
1551        int err;
1552
1553        if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1554            !ipv6_mod_enabled())
1555                return 0;
1556
1557        skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1558        if (!skb)
1559                return -ENOMEM;
1560
1561        nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1562        if (!nlh)
1563                goto nla_put_failure;
1564
1565        /* rule only needs to appear once */
1566        nlh->nlmsg_flags |= NLM_F_EXCL;
1567
1568        frh = nlmsg_data(nlh);
1569        memset(frh, 0, sizeof(*frh));
1570        frh->family = family;
1571        frh->action = FR_ACT_TO_TBL;
1572
1573        if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1574                goto nla_put_failure;
1575
1576        if (nla_put_u8(skb, FRA_L3MDEV, 1))
1577                goto nla_put_failure;
1578
1579        if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1580                goto nla_put_failure;
1581
1582        nlmsg_end(skb, nlh);
1583
1584        /* fib_nl_{new,del}rule handling looks for net from skb->sk */
1585        skb->sk = dev_net(dev)->rtnl;
1586        if (add_it) {
1587                err = fib_nl_newrule(skb, nlh, NULL);
1588                if (err == -EEXIST)
1589                        err = 0;
1590        } else {
1591                err = fib_nl_delrule(skb, nlh, NULL);
1592                if (err == -ENOENT)
1593                        err = 0;
1594        }
1595        nlmsg_free(skb);
1596
1597        return err;
1598
1599nla_put_failure:
1600        nlmsg_free(skb);
1601
1602        return -EMSGSIZE;
1603}
1604
1605static int vrf_add_fib_rules(const struct net_device *dev)
1606{
1607        int err;
1608
1609        err = vrf_fib_rule(dev, AF_INET,  true);
1610        if (err < 0)
1611                goto out_err;
1612
1613        err = vrf_fib_rule(dev, AF_INET6, true);
1614        if (err < 0)
1615                goto ipv6_err;
1616
1617#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1618        err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1619        if (err < 0)
1620                goto ipmr_err;
1621#endif
1622
1623#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1624        err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1625        if (err < 0)
1626                goto ip6mr_err;
1627#endif
1628
1629        return 0;
1630
1631#if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1632ip6mr_err:
1633        vrf_fib_rule(dev, RTNL_FAMILY_IPMR,  false);
1634#endif
1635
1636#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1637ipmr_err:
1638        vrf_fib_rule(dev, AF_INET6,  false);
1639#endif
1640
1641ipv6_err:
1642        vrf_fib_rule(dev, AF_INET,  false);
1643
1644out_err:
1645        netdev_err(dev, "Failed to add FIB rules.\n");
1646        return err;
1647}
1648
1649static void vrf_setup(struct net_device *dev)
1650{
1651        ether_setup(dev);
1652
1653        /* Initialize the device structure. */
1654        dev->netdev_ops = &vrf_netdev_ops;
1655        dev->l3mdev_ops = &vrf_l3mdev_ops;
1656        dev->ethtool_ops = &vrf_ethtool_ops;
1657        dev->needs_free_netdev = true;
1658
1659        /* Fill in device structure with ethernet-generic values. */
1660        eth_hw_addr_random(dev);
1661
1662        /* don't acquire vrf device's netif_tx_lock when transmitting */
1663        dev->features |= NETIF_F_LLTX;
1664
1665        /* don't allow vrf devices to change network namespaces. */
1666        dev->features |= NETIF_F_NETNS_LOCAL;
1667
1668        /* does not make sense for a VLAN to be added to a vrf device */
1669        dev->features   |= NETIF_F_VLAN_CHALLENGED;
1670
1671        /* enable offload features */
1672        dev->features   |= NETIF_F_GSO_SOFTWARE;
1673        dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1674        dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1675
1676        dev->hw_features = dev->features;
1677        dev->hw_enc_features = dev->features;
1678
1679        /* default to no qdisc; user can add if desired */
1680        dev->priv_flags |= IFF_NO_QUEUE;
1681        dev->priv_flags |= IFF_NO_RX_HANDLER;
1682        dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1683
1684        /* VRF devices do not care about MTU, but if the MTU is set
1685         * too low then the ipv4 and ipv6 protocols are disabled
1686         * which breaks networking.
1687         */
1688        dev->min_mtu = IPV6_MIN_MTU;
1689        dev->max_mtu = IP6_MAX_MTU;
1690        dev->mtu = dev->max_mtu;
1691}
1692
1693static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1694                        struct netlink_ext_ack *extack)
1695{
1696        if (tb[IFLA_ADDRESS]) {
1697                if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1698                        NL_SET_ERR_MSG(extack, "Invalid hardware address");
1699                        return -EINVAL;
1700                }
1701                if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1702                        NL_SET_ERR_MSG(extack, "Invalid hardware address");
1703                        return -EADDRNOTAVAIL;
1704                }
1705        }
1706        return 0;
1707}
1708
1709static void vrf_dellink(struct net_device *dev, struct list_head *head)
1710{
1711        struct net_device *port_dev;
1712        struct list_head *iter;
1713
1714        netdev_for_each_lower_dev(dev, port_dev, iter)
1715                vrf_del_slave(dev, port_dev);
1716
1717        vrf_map_unregister_dev(dev);
1718
1719        unregister_netdevice_queue(dev, head);
1720}
1721
1722static int vrf_newlink(struct net *src_net, struct net_device *dev,
1723                       struct nlattr *tb[], struct nlattr *data[],
1724                       struct netlink_ext_ack *extack)
1725{
1726        struct net_vrf *vrf = netdev_priv(dev);
1727        struct netns_vrf *nn_vrf;
1728        bool *add_fib_rules;
1729        struct net *net;
1730        int err;
1731
1732        if (!data || !data[IFLA_VRF_TABLE]) {
1733                NL_SET_ERR_MSG(extack, "VRF table id is missing");
1734                return -EINVAL;
1735        }
1736
1737        vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1738        if (vrf->tb_id == RT_TABLE_UNSPEC) {
1739                NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1740                                    "Invalid VRF table id");
1741                return -EINVAL;
1742        }
1743
1744        dev->priv_flags |= IFF_L3MDEV_MASTER;
1745
1746        err = register_netdevice(dev);
1747        if (err)
1748                goto out;
1749
1750        /* mapping between table_id and vrf;
1751         * note: such binding could not be done in the dev init function
1752         * because dev->ifindex id is not available yet.
1753         */
1754        vrf->ifindex = dev->ifindex;
1755
1756        err = vrf_map_register_dev(dev, extack);
1757        if (err) {
1758                unregister_netdevice(dev);
1759                goto out;
1760        }
1761
1762        net = dev_net(dev);
1763        nn_vrf = net_generic(net, vrf_net_id);
1764
1765        add_fib_rules = &nn_vrf->add_fib_rules;
1766        if (*add_fib_rules) {
1767                err = vrf_add_fib_rules(dev);
1768                if (err) {
1769                        vrf_map_unregister_dev(dev);
1770                        unregister_netdevice(dev);
1771                        goto out;
1772                }
1773                *add_fib_rules = false;
1774        }
1775
1776out:
1777        return err;
1778}
1779
1780static size_t vrf_nl_getsize(const struct net_device *dev)
1781{
1782        return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1783}
1784
1785static int vrf_fillinfo(struct sk_buff *skb,
1786                        const struct net_device *dev)
1787{
1788        struct net_vrf *vrf = netdev_priv(dev);
1789
1790        return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1791}
1792
1793static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1794                                 const struct net_device *slave_dev)
1795{
1796        return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1797}
1798
1799static int vrf_fill_slave_info(struct sk_buff *skb,
1800                               const struct net_device *vrf_dev,
1801                               const struct net_device *slave_dev)
1802{
1803        struct net_vrf *vrf = netdev_priv(vrf_dev);
1804
1805        if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1806                return -EMSGSIZE;
1807
1808        return 0;
1809}
1810
1811static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1812        [IFLA_VRF_TABLE] = { .type = NLA_U32 },
1813};
1814
1815static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1816        .kind           = DRV_NAME,
1817        .priv_size      = sizeof(struct net_vrf),
1818
1819        .get_size       = vrf_nl_getsize,
1820        .policy         = vrf_nl_policy,
1821        .validate       = vrf_validate,
1822        .fill_info      = vrf_fillinfo,
1823
1824        .get_slave_size  = vrf_get_slave_size,
1825        .fill_slave_info = vrf_fill_slave_info,
1826
1827        .newlink        = vrf_newlink,
1828        .dellink        = vrf_dellink,
1829        .setup          = vrf_setup,
1830        .maxtype        = IFLA_VRF_MAX,
1831};
1832
1833static int vrf_device_event(struct notifier_block *unused,
1834                            unsigned long event, void *ptr)
1835{
1836        struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1837
1838        /* only care about unregister events to drop slave references */
1839        if (event == NETDEV_UNREGISTER) {
1840                struct net_device *vrf_dev;
1841
1842                if (!netif_is_l3_slave(dev))
1843                        goto out;
1844
1845                vrf_dev = netdev_master_upper_dev_get(dev);
1846                vrf_del_slave(vrf_dev, dev);
1847        }
1848out:
1849        return NOTIFY_DONE;
1850}
1851
1852static struct notifier_block vrf_notifier_block __read_mostly = {
1853        .notifier_call = vrf_device_event,
1854};
1855
1856static int vrf_map_init(struct vrf_map *vmap)
1857{
1858        spin_lock_init(&vmap->vmap_lock);
1859        hash_init(vmap->ht);
1860
1861        vmap->strict_mode = false;
1862
1863        return 0;
1864}
1865
1866#ifdef CONFIG_SYSCTL
1867static bool vrf_strict_mode(struct vrf_map *vmap)
1868{
1869        bool strict_mode;
1870
1871        vrf_map_lock(vmap);
1872        strict_mode = vmap->strict_mode;
1873        vrf_map_unlock(vmap);
1874
1875        return strict_mode;
1876}
1877
1878static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1879{
1880        bool *cur_mode;
1881        int res = 0;
1882
1883        vrf_map_lock(vmap);
1884
1885        cur_mode = &vmap->strict_mode;
1886        if (*cur_mode == new_mode)
1887                goto unlock;
1888
1889        if (*cur_mode) {
1890                /* disable strict mode */
1891                *cur_mode = false;
1892        } else {
1893                if (vmap->shared_tables) {
1894                        /* we cannot allow strict_mode because there are some
1895                         * vrfs that share one or more tables.
1896                         */
1897                        res = -EBUSY;
1898                        goto unlock;
1899                }
1900
1901                /* no tables are shared among vrfs, so we can go back
1902                 * to 1:1 association between a vrf with its table.
1903                 */
1904                *cur_mode = true;
1905        }
1906
1907unlock:
1908        vrf_map_unlock(vmap);
1909
1910        return res;
1911}
1912
1913static int vrf_shared_table_handler(struct ctl_table *table, int write,
1914                                    void *buffer, size_t *lenp, loff_t *ppos)
1915{
1916        struct net *net = (struct net *)table->extra1;
1917        struct vrf_map *vmap = netns_vrf_map(net);
1918        int proc_strict_mode = 0;
1919        struct ctl_table tmp = {
1920                .procname       = table->procname,
1921                .data           = &proc_strict_mode,
1922                .maxlen         = sizeof(int),
1923                .mode           = table->mode,
1924                .extra1         = SYSCTL_ZERO,
1925                .extra2         = SYSCTL_ONE,
1926        };
1927        int ret;
1928
1929        if (!write)
1930                proc_strict_mode = vrf_strict_mode(vmap);
1931
1932        ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1933
1934        if (write && ret == 0)
1935                ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1936
1937        return ret;
1938}
1939
1940static const struct ctl_table vrf_table[] = {
1941        {
1942                .procname       = "strict_mode",
1943                .data           = NULL,
1944                .maxlen         = sizeof(int),
1945                .mode           = 0644,
1946                .proc_handler   = vrf_shared_table_handler,
1947                /* set by the vrf_netns_init */
1948                .extra1         = NULL,
1949        },
1950        { },
1951};
1952
1953static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1954{
1955        struct ctl_table *table;
1956
1957        table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1958        if (!table)
1959                return -ENOMEM;
1960
1961        /* init the extra1 parameter with the reference to current netns */
1962        table[0].extra1 = net;
1963
1964        nn_vrf->ctl_hdr = register_net_sysctl(net, "net/vrf", table);
1965        if (!nn_vrf->ctl_hdr) {
1966                kfree(table);
1967                return -ENOMEM;
1968        }
1969
1970        return 0;
1971}
1972
1973static void vrf_netns_exit_sysctl(struct net *net)
1974{
1975        struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1976        struct ctl_table *table;
1977
1978        table = nn_vrf->ctl_hdr->ctl_table_arg;
1979        unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1980        kfree(table);
1981}
1982#else
1983static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1984{
1985        return 0;
1986}
1987
1988static void vrf_netns_exit_sysctl(struct net *net)
1989{
1990}
1991#endif
1992
1993/* Initialize per network namespace state */
1994static int __net_init vrf_netns_init(struct net *net)
1995{
1996        struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1997
1998        nn_vrf->add_fib_rules = true;
1999        vrf_map_init(&nn_vrf->vmap);
2000
2001        return vrf_netns_init_sysctl(net, nn_vrf);
2002}
2003
2004static void __net_exit vrf_netns_exit(struct net *net)
2005{
2006        vrf_netns_exit_sysctl(net);
2007}
2008
2009static struct pernet_operations vrf_net_ops __net_initdata = {
2010        .init = vrf_netns_init,
2011        .exit = vrf_netns_exit,
2012        .id   = &vrf_net_id,
2013        .size = sizeof(struct netns_vrf),
2014};
2015
2016static int __init vrf_init_module(void)
2017{
2018        int rc;
2019
2020        register_netdevice_notifier(&vrf_notifier_block);
2021
2022        rc = register_pernet_subsys(&vrf_net_ops);
2023        if (rc < 0)
2024                goto error;
2025
2026        rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
2027                                          vrf_ifindex_lookup_by_table_id);
2028        if (rc < 0)
2029                goto unreg_pernet;
2030
2031        rc = rtnl_link_register(&vrf_link_ops);
2032        if (rc < 0)
2033                goto table_lookup_unreg;
2034
2035        return 0;
2036
2037table_lookup_unreg:
2038        l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
2039                                       vrf_ifindex_lookup_by_table_id);
2040
2041unreg_pernet:
2042        unregister_pernet_subsys(&vrf_net_ops);
2043
2044error:
2045        unregister_netdevice_notifier(&vrf_notifier_block);
2046        return rc;
2047}
2048
2049module_init(vrf_init_module);
2050MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2051MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2052MODULE_LICENSE("GPL");
2053MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2054MODULE_VERSION(DRV_VERSION);
2055