linux/drivers/net/wireless/ath/wil6210/main.c
<<
>>
Prefs
   1// SPDX-License-Identifier: ISC
   2/*
   3 * Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
   4 * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved.
   5 */
   6
   7#include <linux/moduleparam.h>
   8#include <linux/if_arp.h>
   9#include <linux/etherdevice.h>
  10#include <linux/rtnetlink.h>
  11
  12#include "wil6210.h"
  13#include "txrx.h"
  14#include "txrx_edma.h"
  15#include "wmi.h"
  16#include "boot_loader.h"
  17
  18#define WAIT_FOR_HALP_VOTE_MS 100
  19#define WAIT_FOR_SCAN_ABORT_MS 1000
  20#define WIL_DEFAULT_NUM_RX_STATUS_RINGS 1
  21#define WIL_BOARD_FILE_MAX_NAMELEN 128
  22
  23bool debug_fw; /* = false; */
  24module_param(debug_fw, bool, 0444);
  25MODULE_PARM_DESC(debug_fw, " do not perform card reset. For FW debug");
  26
  27static u8 oob_mode;
  28module_param(oob_mode, byte, 0444);
  29MODULE_PARM_DESC(oob_mode,
  30                 " enable out of the box (OOB) mode in FW, for diagnostics and certification");
  31
  32bool no_fw_recovery;
  33module_param(no_fw_recovery, bool, 0644);
  34MODULE_PARM_DESC(no_fw_recovery, " disable automatic FW error recovery");
  35
  36/* if not set via modparam, will be set to default value of 1/8 of
  37 * rx ring size during init flow
  38 */
  39unsigned short rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_INIT;
  40module_param(rx_ring_overflow_thrsh, ushort, 0444);
  41MODULE_PARM_DESC(rx_ring_overflow_thrsh,
  42                 " RX ring overflow threshold in descriptors.");
  43
  44/* We allow allocation of more than 1 page buffers to support large packets.
  45 * It is suboptimal behavior performance wise in case MTU above page size.
  46 */
  47unsigned int mtu_max = TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD;
  48static int mtu_max_set(const char *val, const struct kernel_param *kp)
  49{
  50        int ret;
  51
  52        /* sets mtu_max directly. no need to restore it in case of
  53         * illegal value since we assume this will fail insmod
  54         */
  55        ret = param_set_uint(val, kp);
  56        if (ret)
  57                return ret;
  58
  59        if (mtu_max < 68 || mtu_max > WIL_MAX_ETH_MTU)
  60                ret = -EINVAL;
  61
  62        return ret;
  63}
  64
  65static const struct kernel_param_ops mtu_max_ops = {
  66        .set = mtu_max_set,
  67        .get = param_get_uint,
  68};
  69
  70module_param_cb(mtu_max, &mtu_max_ops, &mtu_max, 0444);
  71MODULE_PARM_DESC(mtu_max, " Max MTU value.");
  72
  73static uint rx_ring_order;
  74static uint tx_ring_order = WIL_TX_RING_SIZE_ORDER_DEFAULT;
  75static uint bcast_ring_order = WIL_BCAST_RING_SIZE_ORDER_DEFAULT;
  76
  77static int ring_order_set(const char *val, const struct kernel_param *kp)
  78{
  79        int ret;
  80        uint x;
  81
  82        ret = kstrtouint(val, 0, &x);
  83        if (ret)
  84                return ret;
  85
  86        if ((x < WIL_RING_SIZE_ORDER_MIN) || (x > WIL_RING_SIZE_ORDER_MAX))
  87                return -EINVAL;
  88
  89        *((uint *)kp->arg) = x;
  90
  91        return 0;
  92}
  93
  94static const struct kernel_param_ops ring_order_ops = {
  95        .set = ring_order_set,
  96        .get = param_get_uint,
  97};
  98
  99module_param_cb(rx_ring_order, &ring_order_ops, &rx_ring_order, 0444);
 100MODULE_PARM_DESC(rx_ring_order, " Rx ring order; size = 1 << order");
 101module_param_cb(tx_ring_order, &ring_order_ops, &tx_ring_order, 0444);
 102MODULE_PARM_DESC(tx_ring_order, " Tx ring order; size = 1 << order");
 103module_param_cb(bcast_ring_order, &ring_order_ops, &bcast_ring_order, 0444);
 104MODULE_PARM_DESC(bcast_ring_order, " Bcast ring order; size = 1 << order");
 105
 106enum {
 107        WIL_BOOT_ERR,
 108        WIL_BOOT_VANILLA,
 109        WIL_BOOT_PRODUCTION,
 110        WIL_BOOT_DEVELOPMENT,
 111};
 112
 113enum {
 114        WIL_SIG_STATUS_VANILLA = 0x0,
 115        WIL_SIG_STATUS_DEVELOPMENT = 0x1,
 116        WIL_SIG_STATUS_PRODUCTION = 0x2,
 117        WIL_SIG_STATUS_CORRUPTED_PRODUCTION = 0x3,
 118};
 119
 120#define RST_DELAY (20) /* msec, for loop in @wil_wait_device_ready */
 121#define RST_COUNT (1 + 1000/RST_DELAY) /* round up to be above 1 sec total */
 122
 123#define PMU_READY_DELAY_MS (4) /* ms, for sleep in @wil_wait_device_ready */
 124
 125#define OTP_HW_DELAY (200) /* usec, loop in @wil_wait_device_ready_talyn_mb */
 126/* round up to be above 2 ms total */
 127#define OTP_HW_COUNT (1 + 2000 / OTP_HW_DELAY)
 128
 129/*
 130 * Due to a hardware issue,
 131 * one has to read/write to/from NIC in 32-bit chunks;
 132 * regular memcpy_fromio and siblings will
 133 * not work on 64-bit platform - it uses 64-bit transactions
 134 *
 135 * Force 32-bit transactions to enable NIC on 64-bit platforms
 136 *
 137 * To avoid byte swap on big endian host, __raw_{read|write}l
 138 * should be used - {read|write}l would swap bytes to provide
 139 * little endian on PCI value in host endianness.
 140 */
 141void wil_memcpy_fromio_32(void *dst, const volatile void __iomem *src,
 142                          size_t count)
 143{
 144        u32 *d = dst;
 145        const volatile u32 __iomem *s = src;
 146
 147        for (; count >= 4; count -= 4)
 148                *d++ = __raw_readl(s++);
 149
 150        if (unlikely(count)) {
 151                /* count can be 1..3 */
 152                u32 tmp = __raw_readl(s);
 153
 154                memcpy(d, &tmp, count);
 155        }
 156}
 157
 158void wil_memcpy_toio_32(volatile void __iomem *dst, const void *src,
 159                        size_t count)
 160{
 161        volatile u32 __iomem *d = dst;
 162        const u32 *s = src;
 163
 164        for (; count >= 4; count -= 4)
 165                __raw_writel(*s++, d++);
 166
 167        if (unlikely(count)) {
 168                /* count can be 1..3 */
 169                u32 tmp = 0;
 170
 171                memcpy(&tmp, s, count);
 172                __raw_writel(tmp, d);
 173        }
 174}
 175
 176/* Device memory access is prohibited while reset or suspend.
 177 * wil_mem_access_lock protects accessing device memory in these cases
 178 */
 179int wil_mem_access_lock(struct wil6210_priv *wil)
 180{
 181        if (!down_read_trylock(&wil->mem_lock))
 182                return -EBUSY;
 183
 184        if (test_bit(wil_status_suspending, wil->status) ||
 185            test_bit(wil_status_suspended, wil->status)) {
 186                up_read(&wil->mem_lock);
 187                return -EBUSY;
 188        }
 189
 190        return 0;
 191}
 192
 193void wil_mem_access_unlock(struct wil6210_priv *wil)
 194{
 195        up_read(&wil->mem_lock);
 196}
 197
 198static void wil_ring_fini_tx(struct wil6210_priv *wil, int id)
 199{
 200        struct wil_ring *ring = &wil->ring_tx[id];
 201        struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
 202
 203        lockdep_assert_held(&wil->mutex);
 204
 205        if (!ring->va)
 206                return;
 207
 208        wil_dbg_misc(wil, "vring_fini_tx: id=%d\n", id);
 209
 210        spin_lock_bh(&txdata->lock);
 211        txdata->dot1x_open = false;
 212        txdata->mid = U8_MAX;
 213        txdata->enabled = 0; /* no Tx can be in progress or start anew */
 214        spin_unlock_bh(&txdata->lock);
 215        /* napi_synchronize waits for completion of the current NAPI but will
 216         * not prevent the next NAPI run.
 217         * Add a memory barrier to guarantee that txdata->enabled is zeroed
 218         * before napi_synchronize so that the next scheduled NAPI will not
 219         * handle this vring
 220         */
 221        wmb();
 222        /* make sure NAPI won't touch this vring */
 223        if (test_bit(wil_status_napi_en, wil->status))
 224                napi_synchronize(&wil->napi_tx);
 225
 226        wil->txrx_ops.ring_fini_tx(wil, ring);
 227}
 228
 229static bool wil_vif_is_connected(struct wil6210_priv *wil, u8 mid)
 230{
 231        int i;
 232
 233        for (i = 0; i < wil->max_assoc_sta; i++) {
 234                if (wil->sta[i].mid == mid &&
 235                    wil->sta[i].status == wil_sta_connected)
 236                        return true;
 237        }
 238
 239        return false;
 240}
 241
 242static void wil_disconnect_cid_complete(struct wil6210_vif *vif, int cid,
 243                                        u16 reason_code)
 244__acquires(&sta->tid_rx_lock) __releases(&sta->tid_rx_lock)
 245{
 246        uint i;
 247        struct wil6210_priv *wil = vif_to_wil(vif);
 248        struct net_device *ndev = vif_to_ndev(vif);
 249        struct wireless_dev *wdev = vif_to_wdev(vif);
 250        struct wil_sta_info *sta = &wil->sta[cid];
 251        int min_ring_id = wil_get_min_tx_ring_id(wil);
 252
 253        might_sleep();
 254        wil_dbg_misc(wil,
 255                     "disconnect_cid_complete: CID %d, MID %d, status %d\n",
 256                     cid, sta->mid, sta->status);
 257        /* inform upper layers */
 258        if (sta->status != wil_sta_unused) {
 259                if (vif->mid != sta->mid) {
 260                        wil_err(wil, "STA MID mismatch with VIF MID(%d)\n",
 261                                vif->mid);
 262                }
 263
 264                switch (wdev->iftype) {
 265                case NL80211_IFTYPE_AP:
 266                case NL80211_IFTYPE_P2P_GO:
 267                        /* AP-like interface */
 268                        cfg80211_del_sta(ndev, sta->addr, GFP_KERNEL);
 269                        break;
 270                default:
 271                        break;
 272                }
 273                sta->status = wil_sta_unused;
 274                sta->mid = U8_MAX;
 275        }
 276        /* reorder buffers */
 277        for (i = 0; i < WIL_STA_TID_NUM; i++) {
 278                struct wil_tid_ampdu_rx *r;
 279
 280                spin_lock_bh(&sta->tid_rx_lock);
 281
 282                r = sta->tid_rx[i];
 283                sta->tid_rx[i] = NULL;
 284                wil_tid_ampdu_rx_free(wil, r);
 285
 286                spin_unlock_bh(&sta->tid_rx_lock);
 287        }
 288        /* crypto context */
 289        memset(sta->tid_crypto_rx, 0, sizeof(sta->tid_crypto_rx));
 290        memset(&sta->group_crypto_rx, 0, sizeof(sta->group_crypto_rx));
 291        /* release vrings */
 292        for (i = min_ring_id; i < ARRAY_SIZE(wil->ring_tx); i++) {
 293                if (wil->ring2cid_tid[i][0] == cid)
 294                        wil_ring_fini_tx(wil, i);
 295        }
 296        /* statistics */
 297        memset(&sta->stats, 0, sizeof(sta->stats));
 298        sta->stats.tx_latency_min_us = U32_MAX;
 299}
 300
 301static void _wil6210_disconnect_complete(struct wil6210_vif *vif,
 302                                         const u8 *bssid, u16 reason_code)
 303{
 304        struct wil6210_priv *wil = vif_to_wil(vif);
 305        int cid = -ENOENT;
 306        struct net_device *ndev;
 307        struct wireless_dev *wdev;
 308
 309        ndev = vif_to_ndev(vif);
 310        wdev = vif_to_wdev(vif);
 311
 312        might_sleep();
 313        wil_info(wil, "disconnect_complete: bssid=%pM, reason=%d\n",
 314                 bssid, reason_code);
 315
 316        /* Cases are:
 317         * - disconnect single STA, still connected
 318         * - disconnect single STA, already disconnected
 319         * - disconnect all
 320         *
 321         * For "disconnect all", there are 3 options:
 322         * - bssid == NULL
 323         * - bssid is broadcast address (ff:ff:ff:ff:ff:ff)
 324         * - bssid is our MAC address
 325         */
 326        if (bssid && !is_broadcast_ether_addr(bssid) &&
 327            !ether_addr_equal_unaligned(ndev->dev_addr, bssid)) {
 328                cid = wil_find_cid(wil, vif->mid, bssid);
 329                wil_dbg_misc(wil,
 330                             "Disconnect complete %pM, CID=%d, reason=%d\n",
 331                             bssid, cid, reason_code);
 332                if (wil_cid_valid(wil, cid)) /* disconnect 1 peer */
 333                        wil_disconnect_cid_complete(vif, cid, reason_code);
 334        } else { /* all */
 335                wil_dbg_misc(wil, "Disconnect complete all\n");
 336                for (cid = 0; cid < wil->max_assoc_sta; cid++)
 337                        wil_disconnect_cid_complete(vif, cid, reason_code);
 338        }
 339
 340        /* link state */
 341        switch (wdev->iftype) {
 342        case NL80211_IFTYPE_STATION:
 343        case NL80211_IFTYPE_P2P_CLIENT:
 344                wil_bcast_fini(vif);
 345                wil_update_net_queues_bh(wil, vif, NULL, true);
 346                netif_carrier_off(ndev);
 347                if (!wil_has_other_active_ifaces(wil, ndev, false, true))
 348                        wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
 349
 350                if (test_and_clear_bit(wil_vif_fwconnected, vif->status)) {
 351                        atomic_dec(&wil->connected_vifs);
 352                        cfg80211_disconnected(ndev, reason_code,
 353                                              NULL, 0,
 354                                              vif->locally_generated_disc,
 355                                              GFP_KERNEL);
 356                        vif->locally_generated_disc = false;
 357                } else if (test_bit(wil_vif_fwconnecting, vif->status)) {
 358                        cfg80211_connect_result(ndev, bssid, NULL, 0, NULL, 0,
 359                                                WLAN_STATUS_UNSPECIFIED_FAILURE,
 360                                                GFP_KERNEL);
 361                        vif->bss = NULL;
 362                }
 363                clear_bit(wil_vif_fwconnecting, vif->status);
 364                clear_bit(wil_vif_ft_roam, vif->status);
 365                vif->ptk_rekey_state = WIL_REKEY_IDLE;
 366
 367                break;
 368        case NL80211_IFTYPE_AP:
 369        case NL80211_IFTYPE_P2P_GO:
 370                if (!wil_vif_is_connected(wil, vif->mid)) {
 371                        wil_update_net_queues_bh(wil, vif, NULL, true);
 372                        if (test_and_clear_bit(wil_vif_fwconnected,
 373                                               vif->status))
 374                                atomic_dec(&wil->connected_vifs);
 375                } else {
 376                        wil_update_net_queues_bh(wil, vif, NULL, false);
 377                }
 378                break;
 379        default:
 380                break;
 381        }
 382}
 383
 384static int wil_disconnect_cid(struct wil6210_vif *vif, int cid,
 385                              u16 reason_code)
 386{
 387        struct wil6210_priv *wil = vif_to_wil(vif);
 388        struct wireless_dev *wdev = vif_to_wdev(vif);
 389        struct wil_sta_info *sta = &wil->sta[cid];
 390        bool del_sta = false;
 391
 392        might_sleep();
 393        wil_dbg_misc(wil, "disconnect_cid: CID %d, MID %d, status %d\n",
 394                     cid, sta->mid, sta->status);
 395
 396        if (sta->status == wil_sta_unused)
 397                return 0;
 398
 399        if (vif->mid != sta->mid) {
 400                wil_err(wil, "STA MID mismatch with VIF MID(%d)\n", vif->mid);
 401                return -EINVAL;
 402        }
 403
 404        /* inform lower layers */
 405        if (wdev->iftype == NL80211_IFTYPE_AP && disable_ap_sme)
 406                del_sta = true;
 407
 408        /* disconnect by sending command disconnect/del_sta and wait
 409         * synchronously for WMI_DISCONNECT_EVENTID event.
 410         */
 411        return wmi_disconnect_sta(vif, sta->addr, reason_code, del_sta);
 412}
 413
 414static void _wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid,
 415                                u16 reason_code)
 416{
 417        struct wil6210_priv *wil;
 418        struct net_device *ndev;
 419        int cid = -ENOENT;
 420
 421        if (unlikely(!vif))
 422                return;
 423
 424        wil = vif_to_wil(vif);
 425        ndev = vif_to_ndev(vif);
 426
 427        might_sleep();
 428        wil_info(wil, "disconnect bssid=%pM, reason=%d\n", bssid, reason_code);
 429
 430        /* Cases are:
 431         * - disconnect single STA, still connected
 432         * - disconnect single STA, already disconnected
 433         * - disconnect all
 434         *
 435         * For "disconnect all", there are 3 options:
 436         * - bssid == NULL
 437         * - bssid is broadcast address (ff:ff:ff:ff:ff:ff)
 438         * - bssid is our MAC address
 439         */
 440        if (bssid && !is_broadcast_ether_addr(bssid) &&
 441            !ether_addr_equal_unaligned(ndev->dev_addr, bssid)) {
 442                cid = wil_find_cid(wil, vif->mid, bssid);
 443                wil_dbg_misc(wil, "Disconnect %pM, CID=%d, reason=%d\n",
 444                             bssid, cid, reason_code);
 445                if (wil_cid_valid(wil, cid)) /* disconnect 1 peer */
 446                        wil_disconnect_cid(vif, cid, reason_code);
 447        } else { /* all */
 448                wil_dbg_misc(wil, "Disconnect all\n");
 449                for (cid = 0; cid < wil->max_assoc_sta; cid++)
 450                        wil_disconnect_cid(vif, cid, reason_code);
 451        }
 452
 453        /* call event handler manually after processing wmi_call,
 454         * to avoid deadlock - disconnect event handler acquires
 455         * wil->mutex while it is already held here
 456         */
 457        _wil6210_disconnect_complete(vif, bssid, reason_code);
 458}
 459
 460void wil_disconnect_worker(struct work_struct *work)
 461{
 462        struct wil6210_vif *vif = container_of(work,
 463                        struct wil6210_vif, disconnect_worker);
 464        struct wil6210_priv *wil = vif_to_wil(vif);
 465        struct net_device *ndev = vif_to_ndev(vif);
 466        int rc;
 467        struct {
 468                struct wmi_cmd_hdr wmi;
 469                struct wmi_disconnect_event evt;
 470        } __packed reply;
 471
 472        if (test_bit(wil_vif_fwconnected, vif->status))
 473                /* connect succeeded after all */
 474                return;
 475
 476        if (!test_bit(wil_vif_fwconnecting, vif->status))
 477                /* already disconnected */
 478                return;
 479
 480        memset(&reply, 0, sizeof(reply));
 481
 482        rc = wmi_call(wil, WMI_DISCONNECT_CMDID, vif->mid, NULL, 0,
 483                      WMI_DISCONNECT_EVENTID, &reply, sizeof(reply),
 484                      WIL6210_DISCONNECT_TO_MS);
 485        if (rc) {
 486                wil_err(wil, "disconnect error %d\n", rc);
 487                return;
 488        }
 489
 490        wil_update_net_queues_bh(wil, vif, NULL, true);
 491        netif_carrier_off(ndev);
 492        cfg80211_connect_result(ndev, NULL, NULL, 0, NULL, 0,
 493                                WLAN_STATUS_UNSPECIFIED_FAILURE, GFP_KERNEL);
 494        clear_bit(wil_vif_fwconnecting, vif->status);
 495}
 496
 497static int wil_wait_for_recovery(struct wil6210_priv *wil)
 498{
 499        if (wait_event_interruptible(wil->wq, wil->recovery_state !=
 500                                     fw_recovery_pending)) {
 501                wil_err(wil, "Interrupt, canceling recovery\n");
 502                return -ERESTARTSYS;
 503        }
 504        if (wil->recovery_state != fw_recovery_running) {
 505                wil_info(wil, "Recovery cancelled\n");
 506                return -EINTR;
 507        }
 508        wil_info(wil, "Proceed with recovery\n");
 509        return 0;
 510}
 511
 512void wil_set_recovery_state(struct wil6210_priv *wil, int state)
 513{
 514        wil_dbg_misc(wil, "set_recovery_state: %d -> %d\n",
 515                     wil->recovery_state, state);
 516
 517        wil->recovery_state = state;
 518        wake_up_interruptible(&wil->wq);
 519}
 520
 521bool wil_is_recovery_blocked(struct wil6210_priv *wil)
 522{
 523        return no_fw_recovery && (wil->recovery_state == fw_recovery_pending);
 524}
 525
 526static void wil_fw_error_worker(struct work_struct *work)
 527{
 528        struct wil6210_priv *wil = container_of(work, struct wil6210_priv,
 529                                                fw_error_worker);
 530        struct net_device *ndev = wil->main_ndev;
 531        struct wireless_dev *wdev;
 532
 533        wil_dbg_misc(wil, "fw error worker\n");
 534
 535        if (!ndev || !(ndev->flags & IFF_UP)) {
 536                wil_info(wil, "No recovery - interface is down\n");
 537                return;
 538        }
 539        wdev = ndev->ieee80211_ptr;
 540
 541        /* increment @recovery_count if less then WIL6210_FW_RECOVERY_TO
 542         * passed since last recovery attempt
 543         */
 544        if (time_is_after_jiffies(wil->last_fw_recovery +
 545                                  WIL6210_FW_RECOVERY_TO))
 546                wil->recovery_count++;
 547        else
 548                wil->recovery_count = 1; /* fw was alive for a long time */
 549
 550        if (wil->recovery_count > WIL6210_FW_RECOVERY_RETRIES) {
 551                wil_err(wil, "too many recovery attempts (%d), giving up\n",
 552                        wil->recovery_count);
 553                return;
 554        }
 555
 556        wil->last_fw_recovery = jiffies;
 557
 558        wil_info(wil, "fw error recovery requested (try %d)...\n",
 559                 wil->recovery_count);
 560        if (!no_fw_recovery)
 561                wil->recovery_state = fw_recovery_running;
 562        if (wil_wait_for_recovery(wil) != 0)
 563                return;
 564
 565        rtnl_lock();
 566        mutex_lock(&wil->mutex);
 567        /* Needs adaptation for multiple VIFs
 568         * need to go over all VIFs and consider the appropriate
 569         * recovery because each one can have different iftype.
 570         */
 571        switch (wdev->iftype) {
 572        case NL80211_IFTYPE_STATION:
 573        case NL80211_IFTYPE_P2P_CLIENT:
 574        case NL80211_IFTYPE_MONITOR:
 575                /* silent recovery, upper layers will see disconnect */
 576                __wil_down(wil);
 577                __wil_up(wil);
 578                break;
 579        case NL80211_IFTYPE_AP:
 580        case NL80211_IFTYPE_P2P_GO:
 581                if (no_fw_recovery) /* upper layers do recovery */
 582                        break;
 583                /* silent recovery, upper layers will see disconnect */
 584                __wil_down(wil);
 585                __wil_up(wil);
 586                mutex_unlock(&wil->mutex);
 587                wil_cfg80211_ap_recovery(wil);
 588                mutex_lock(&wil->mutex);
 589                wil_info(wil, "... completed\n");
 590                break;
 591        default:
 592                wil_err(wil, "No recovery - unknown interface type %d\n",
 593                        wdev->iftype);
 594                break;
 595        }
 596
 597        mutex_unlock(&wil->mutex);
 598        rtnl_unlock();
 599}
 600
 601static int wil_find_free_ring(struct wil6210_priv *wil)
 602{
 603        int i;
 604        int min_ring_id = wil_get_min_tx_ring_id(wil);
 605
 606        for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
 607                if (!wil->ring_tx[i].va)
 608                        return i;
 609        }
 610        return -EINVAL;
 611}
 612
 613int wil_ring_init_tx(struct wil6210_vif *vif, int cid)
 614{
 615        struct wil6210_priv *wil = vif_to_wil(vif);
 616        int rc = -EINVAL, ringid;
 617
 618        if (cid < 0) {
 619                wil_err(wil, "No connection pending\n");
 620                goto out;
 621        }
 622        ringid = wil_find_free_ring(wil);
 623        if (ringid < 0) {
 624                wil_err(wil, "No free vring found\n");
 625                goto out;
 626        }
 627
 628        wil_dbg_wmi(wil, "Configure for connection CID %d MID %d ring %d\n",
 629                    cid, vif->mid, ringid);
 630
 631        rc = wil->txrx_ops.ring_init_tx(vif, ringid, 1 << tx_ring_order,
 632                                        cid, 0);
 633        if (rc)
 634                wil_err(wil, "init TX for CID %d MID %d vring %d failed\n",
 635                        cid, vif->mid, ringid);
 636
 637out:
 638        return rc;
 639}
 640
 641int wil_bcast_init(struct wil6210_vif *vif)
 642{
 643        struct wil6210_priv *wil = vif_to_wil(vif);
 644        int ri = vif->bcast_ring, rc;
 645
 646        if (ri >= 0 && wil->ring_tx[ri].va)
 647                return 0;
 648
 649        ri = wil_find_free_ring(wil);
 650        if (ri < 0)
 651                return ri;
 652
 653        vif->bcast_ring = ri;
 654        rc = wil->txrx_ops.ring_init_bcast(vif, ri, 1 << bcast_ring_order);
 655        if (rc)
 656                vif->bcast_ring = -1;
 657
 658        return rc;
 659}
 660
 661void wil_bcast_fini(struct wil6210_vif *vif)
 662{
 663        struct wil6210_priv *wil = vif_to_wil(vif);
 664        int ri = vif->bcast_ring;
 665
 666        if (ri < 0)
 667                return;
 668
 669        vif->bcast_ring = -1;
 670        wil_ring_fini_tx(wil, ri);
 671}
 672
 673void wil_bcast_fini_all(struct wil6210_priv *wil)
 674{
 675        int i;
 676        struct wil6210_vif *vif;
 677
 678        for (i = 0; i < GET_MAX_VIFS(wil); i++) {
 679                vif = wil->vifs[i];
 680                if (vif)
 681                        wil_bcast_fini(vif);
 682        }
 683}
 684
 685int wil_priv_init(struct wil6210_priv *wil)
 686{
 687        uint i;
 688
 689        wil_dbg_misc(wil, "priv_init\n");
 690
 691        memset(wil->sta, 0, sizeof(wil->sta));
 692        for (i = 0; i < WIL6210_MAX_CID; i++) {
 693                spin_lock_init(&wil->sta[i].tid_rx_lock);
 694                wil->sta[i].mid = U8_MAX;
 695        }
 696
 697        for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) {
 698                spin_lock_init(&wil->ring_tx_data[i].lock);
 699                wil->ring2cid_tid[i][0] = WIL6210_MAX_CID;
 700        }
 701
 702        mutex_init(&wil->mutex);
 703        mutex_init(&wil->vif_mutex);
 704        mutex_init(&wil->wmi_mutex);
 705        mutex_init(&wil->halp.lock);
 706
 707        init_completion(&wil->wmi_ready);
 708        init_completion(&wil->wmi_call);
 709        init_completion(&wil->halp.comp);
 710
 711        INIT_WORK(&wil->wmi_event_worker, wmi_event_worker);
 712        INIT_WORK(&wil->fw_error_worker, wil_fw_error_worker);
 713
 714        INIT_LIST_HEAD(&wil->pending_wmi_ev);
 715        spin_lock_init(&wil->wmi_ev_lock);
 716        spin_lock_init(&wil->net_queue_lock);
 717        spin_lock_init(&wil->eap_lock);
 718
 719        init_waitqueue_head(&wil->wq);
 720        init_rwsem(&wil->mem_lock);
 721
 722        wil->wmi_wq = create_singlethread_workqueue(WIL_NAME "_wmi");
 723        if (!wil->wmi_wq)
 724                return -EAGAIN;
 725
 726        wil->wq_service = create_singlethread_workqueue(WIL_NAME "_service");
 727        if (!wil->wq_service)
 728                goto out_wmi_wq;
 729
 730        wil->last_fw_recovery = jiffies;
 731        wil->tx_interframe_timeout = WIL6210_ITR_TX_INTERFRAME_TIMEOUT_DEFAULT;
 732        wil->rx_interframe_timeout = WIL6210_ITR_RX_INTERFRAME_TIMEOUT_DEFAULT;
 733        wil->tx_max_burst_duration = WIL6210_ITR_TX_MAX_BURST_DURATION_DEFAULT;
 734        wil->rx_max_burst_duration = WIL6210_ITR_RX_MAX_BURST_DURATION_DEFAULT;
 735
 736        if (rx_ring_overflow_thrsh == WIL6210_RX_HIGH_TRSH_INIT)
 737                rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_DEFAULT;
 738
 739        wil->ps_profile =  WMI_PS_PROFILE_TYPE_DEFAULT;
 740
 741        wil->wakeup_trigger = WMI_WAKEUP_TRIGGER_UCAST |
 742                              WMI_WAKEUP_TRIGGER_BCAST;
 743        memset(&wil->suspend_stats, 0, sizeof(wil->suspend_stats));
 744        wil->ring_idle_trsh = 16;
 745
 746        wil->reply_mid = U8_MAX;
 747        wil->max_vifs = 1;
 748        wil->max_assoc_sta = max_assoc_sta;
 749
 750        /* edma configuration can be updated via debugfs before allocation */
 751        wil->num_rx_status_rings = WIL_DEFAULT_NUM_RX_STATUS_RINGS;
 752        wil->tx_status_ring_order = WIL_TX_SRING_SIZE_ORDER_DEFAULT;
 753
 754        /* Rx status ring size should be bigger than the number of RX buffers
 755         * in order to prevent backpressure on the status ring, which may
 756         * cause HW freeze.
 757         */
 758        wil->rx_status_ring_order = WIL_RX_SRING_SIZE_ORDER_DEFAULT;
 759        /* Number of RX buffer IDs should be bigger than the RX descriptor
 760         * ring size as in HW reorder flow, the HW can consume additional
 761         * buffers before releasing the previous ones.
 762         */
 763        wil->rx_buff_id_count = WIL_RX_BUFF_ARR_SIZE_DEFAULT;
 764
 765        wil->amsdu_en = true;
 766
 767        return 0;
 768
 769out_wmi_wq:
 770        destroy_workqueue(wil->wmi_wq);
 771
 772        return -EAGAIN;
 773}
 774
 775void wil6210_bus_request(struct wil6210_priv *wil, u32 kbps)
 776{
 777        if (wil->platform_ops.bus_request) {
 778                wil->bus_request_kbps = kbps;
 779                wil->platform_ops.bus_request(wil->platform_handle, kbps);
 780        }
 781}
 782
 783/**
 784 * wil6210_disconnect - disconnect one connection
 785 * @vif: virtual interface context
 786 * @bssid: peer to disconnect, NULL to disconnect all
 787 * @reason_code: Reason code for the Disassociation frame
 788 *
 789 * Disconnect and release associated resources. Issue WMI
 790 * command(s) to trigger MAC disconnect. When command was issued
 791 * successfully, call the wil6210_disconnect_complete function
 792 * to handle the event synchronously
 793 */
 794void wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid,
 795                        u16 reason_code)
 796{
 797        struct wil6210_priv *wil = vif_to_wil(vif);
 798
 799        wil_dbg_misc(wil, "disconnecting\n");
 800
 801        del_timer_sync(&vif->connect_timer);
 802        _wil6210_disconnect(vif, bssid, reason_code);
 803}
 804
 805/**
 806 * wil6210_disconnect_complete - handle disconnect event
 807 * @vif: virtual interface context
 808 * @bssid: peer to disconnect, NULL to disconnect all
 809 * @reason_code: Reason code for the Disassociation frame
 810 *
 811 * Release associated resources and indicate upper layers the
 812 * connection is terminated.
 813 */
 814void wil6210_disconnect_complete(struct wil6210_vif *vif, const u8 *bssid,
 815                                 u16 reason_code)
 816{
 817        struct wil6210_priv *wil = vif_to_wil(vif);
 818
 819        wil_dbg_misc(wil, "got disconnect\n");
 820
 821        del_timer_sync(&vif->connect_timer);
 822        _wil6210_disconnect_complete(vif, bssid, reason_code);
 823}
 824
 825void wil_priv_deinit(struct wil6210_priv *wil)
 826{
 827        wil_dbg_misc(wil, "priv_deinit\n");
 828
 829        wil_set_recovery_state(wil, fw_recovery_idle);
 830        cancel_work_sync(&wil->fw_error_worker);
 831        wmi_event_flush(wil);
 832        destroy_workqueue(wil->wq_service);
 833        destroy_workqueue(wil->wmi_wq);
 834        kfree(wil->brd_info);
 835}
 836
 837static void wil_shutdown_bl(struct wil6210_priv *wil)
 838{
 839        u32 val;
 840
 841        wil_s(wil, RGF_USER_BL +
 842              offsetof(struct bl_dedicated_registers_v1,
 843                       bl_shutdown_handshake), BL_SHUTDOWN_HS_GRTD);
 844
 845        usleep_range(100, 150);
 846
 847        val = wil_r(wil, RGF_USER_BL +
 848                    offsetof(struct bl_dedicated_registers_v1,
 849                             bl_shutdown_handshake));
 850        if (val & BL_SHUTDOWN_HS_RTD) {
 851                wil_dbg_misc(wil, "BL is ready for halt\n");
 852                return;
 853        }
 854
 855        wil_err(wil, "BL did not report ready for halt\n");
 856}
 857
 858/* this format is used by ARC embedded CPU for instruction memory */
 859static inline u32 ARC_me_imm32(u32 d)
 860{
 861        return ((d & 0xffff0000) >> 16) | ((d & 0x0000ffff) << 16);
 862}
 863
 864/* defines access to interrupt vectors for wil_freeze_bl */
 865#define ARC_IRQ_VECTOR_OFFSET(N)        ((N) * 8)
 866/* ARC long jump instruction */
 867#define ARC_JAL_INST                    (0x20200f80)
 868
 869static void wil_freeze_bl(struct wil6210_priv *wil)
 870{
 871        u32 jal, upc, saved;
 872        u32 ivt3 = ARC_IRQ_VECTOR_OFFSET(3);
 873
 874        jal = wil_r(wil, wil->iccm_base + ivt3);
 875        if (jal != ARC_me_imm32(ARC_JAL_INST)) {
 876                wil_dbg_misc(wil, "invalid IVT entry found, skipping\n");
 877                return;
 878        }
 879
 880        /* prevent the target from entering deep sleep
 881         * and disabling memory access
 882         */
 883        saved = wil_r(wil, RGF_USER_USAGE_8);
 884        wil_w(wil, RGF_USER_USAGE_8, saved | BIT_USER_PREVENT_DEEP_SLEEP);
 885        usleep_range(20, 25); /* let the BL process the bit */
 886
 887        /* redirect to endless loop in the INT_L1 context and let it trap */
 888        wil_w(wil, wil->iccm_base + ivt3 + 4, ARC_me_imm32(ivt3));
 889        usleep_range(20, 25); /* let the BL get into the trap */
 890
 891        /* verify the BL is frozen */
 892        upc = wil_r(wil, RGF_USER_CPU_PC);
 893        if (upc < ivt3 || (upc > (ivt3 + 8)))
 894                wil_dbg_misc(wil, "BL freeze failed, PC=0x%08X\n", upc);
 895
 896        wil_w(wil, RGF_USER_USAGE_8, saved);
 897}
 898
 899static void wil_bl_prepare_halt(struct wil6210_priv *wil)
 900{
 901        u32 tmp, ver;
 902
 903        /* before halting device CPU driver must make sure BL is not accessing
 904         * host memory. This is done differently depending on BL version:
 905         * 1. For very old BL versions the procedure is skipped
 906         * (not supported).
 907         * 2. For old BL version we use a special trick to freeze the BL
 908         * 3. For new BL versions we shutdown the BL using handshake procedure.
 909         */
 910        tmp = wil_r(wil, RGF_USER_BL +
 911                    offsetof(struct bl_dedicated_registers_v0,
 912                             boot_loader_struct_version));
 913        if (!tmp) {
 914                wil_dbg_misc(wil, "old BL, skipping halt preparation\n");
 915                return;
 916        }
 917
 918        tmp = wil_r(wil, RGF_USER_BL +
 919                    offsetof(struct bl_dedicated_registers_v1,
 920                             bl_shutdown_handshake));
 921        ver = BL_SHUTDOWN_HS_PROT_VER(tmp);
 922
 923        if (ver > 0)
 924                wil_shutdown_bl(wil);
 925        else
 926                wil_freeze_bl(wil);
 927}
 928
 929static inline void wil_halt_cpu(struct wil6210_priv *wil)
 930{
 931        if (wil->hw_version >= HW_VER_TALYN_MB) {
 932                wil_w(wil, RGF_USER_USER_CPU_0_TALYN_MB,
 933                      BIT_USER_USER_CPU_MAN_RST);
 934                wil_w(wil, RGF_USER_MAC_CPU_0_TALYN_MB,
 935                      BIT_USER_MAC_CPU_MAN_RST);
 936        } else {
 937                wil_w(wil, RGF_USER_USER_CPU_0, BIT_USER_USER_CPU_MAN_RST);
 938                wil_w(wil, RGF_USER_MAC_CPU_0,  BIT_USER_MAC_CPU_MAN_RST);
 939        }
 940}
 941
 942static inline void wil_release_cpu(struct wil6210_priv *wil)
 943{
 944        /* Start CPU */
 945        if (wil->hw_version >= HW_VER_TALYN_MB)
 946                wil_w(wil, RGF_USER_USER_CPU_0_TALYN_MB, 1);
 947        else
 948                wil_w(wil, RGF_USER_USER_CPU_0, 1);
 949}
 950
 951static void wil_set_oob_mode(struct wil6210_priv *wil, u8 mode)
 952{
 953        wil_info(wil, "oob_mode to %d\n", mode);
 954        switch (mode) {
 955        case 0:
 956                wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE |
 957                      BIT_USER_OOB_R2_MODE);
 958                break;
 959        case 1:
 960                wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE);
 961                wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE);
 962                break;
 963        case 2:
 964                wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE);
 965                wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE);
 966                break;
 967        default:
 968                wil_err(wil, "invalid oob_mode: %d\n", mode);
 969        }
 970}
 971
 972static int wil_wait_device_ready(struct wil6210_priv *wil, int no_flash)
 973{
 974        int delay = 0;
 975        u32 x, x1 = 0;
 976
 977        /* wait until device ready. */
 978        if (no_flash) {
 979                msleep(PMU_READY_DELAY_MS);
 980
 981                wil_dbg_misc(wil, "Reset completed\n");
 982        } else {
 983                do {
 984                        msleep(RST_DELAY);
 985                        x = wil_r(wil, RGF_USER_BL +
 986                                  offsetof(struct bl_dedicated_registers_v0,
 987                                           boot_loader_ready));
 988                        if (x1 != x) {
 989                                wil_dbg_misc(wil, "BL.ready 0x%08x => 0x%08x\n",
 990                                             x1, x);
 991                                x1 = x;
 992                        }
 993                        if (delay++ > RST_COUNT) {
 994                                wil_err(wil, "Reset not completed, bl.ready 0x%08x\n",
 995                                        x);
 996                                return -ETIME;
 997                        }
 998                } while (x != BL_READY);
 999
1000                wil_dbg_misc(wil, "Reset completed in %d ms\n",
1001                             delay * RST_DELAY);
1002        }
1003
1004        return 0;
1005}
1006
1007static int wil_wait_device_ready_talyn_mb(struct wil6210_priv *wil)
1008{
1009        u32 otp_hw;
1010        u8 signature_status;
1011        bool otp_signature_err;
1012        bool hw_section_done;
1013        u32 otp_qc_secured;
1014        int delay = 0;
1015
1016        /* Wait for OTP signature test to complete */
1017        usleep_range(2000, 2200);
1018
1019        wil->boot_config = WIL_BOOT_ERR;
1020
1021        /* Poll until OTP signature status is valid.
1022         * In vanilla and development modes, when signature test is complete
1023         * HW sets BIT_OTP_SIGNATURE_ERR_TALYN_MB.
1024         * In production mode BIT_OTP_SIGNATURE_ERR_TALYN_MB remains 0, poll
1025         * for signature status change to 2 or 3.
1026         */
1027        do {
1028                otp_hw = wil_r(wil, RGF_USER_OTP_HW_RD_MACHINE_1);
1029                signature_status = WIL_GET_BITS(otp_hw, 8, 9);
1030                otp_signature_err = otp_hw & BIT_OTP_SIGNATURE_ERR_TALYN_MB;
1031
1032                if (otp_signature_err &&
1033                    signature_status == WIL_SIG_STATUS_VANILLA) {
1034                        wil->boot_config = WIL_BOOT_VANILLA;
1035                        break;
1036                }
1037                if (otp_signature_err &&
1038                    signature_status == WIL_SIG_STATUS_DEVELOPMENT) {
1039                        wil->boot_config = WIL_BOOT_DEVELOPMENT;
1040                        break;
1041                }
1042                if (!otp_signature_err &&
1043                    signature_status == WIL_SIG_STATUS_PRODUCTION) {
1044                        wil->boot_config = WIL_BOOT_PRODUCTION;
1045                        break;
1046                }
1047                if  (!otp_signature_err &&
1048                     signature_status ==
1049                     WIL_SIG_STATUS_CORRUPTED_PRODUCTION) {
1050                        /* Unrecognized OTP signature found. Possibly a
1051                         * corrupted production signature, access control
1052                         * is applied as in production mode, therefore
1053                         * do not fail
1054                         */
1055                        wil->boot_config = WIL_BOOT_PRODUCTION;
1056                        break;
1057                }
1058                if (delay++ > OTP_HW_COUNT)
1059                        break;
1060
1061                usleep_range(OTP_HW_DELAY, OTP_HW_DELAY + 10);
1062        } while (!otp_signature_err && signature_status == 0);
1063
1064        if (wil->boot_config == WIL_BOOT_ERR) {
1065                wil_err(wil,
1066                        "invalid boot config, signature_status %d otp_signature_err %d\n",
1067                        signature_status, otp_signature_err);
1068                return -ETIME;
1069        }
1070
1071        wil_dbg_misc(wil,
1072                     "signature test done in %d usec, otp_hw 0x%x, boot_config %d\n",
1073                     delay * OTP_HW_DELAY, otp_hw, wil->boot_config);
1074
1075        if (wil->boot_config == WIL_BOOT_VANILLA)
1076                /* Assuming not SPI boot (currently not supported) */
1077                goto out;
1078
1079        hw_section_done = otp_hw & BIT_OTP_HW_SECTION_DONE_TALYN_MB;
1080        delay = 0;
1081
1082        while (!hw_section_done) {
1083                msleep(RST_DELAY);
1084
1085                otp_hw = wil_r(wil, RGF_USER_OTP_HW_RD_MACHINE_1);
1086                hw_section_done = otp_hw & BIT_OTP_HW_SECTION_DONE_TALYN_MB;
1087
1088                if (delay++ > RST_COUNT) {
1089                        wil_err(wil, "TO waiting for hw_section_done\n");
1090                        return -ETIME;
1091                }
1092        }
1093
1094        wil_dbg_misc(wil, "HW section done in %d ms\n", delay * RST_DELAY);
1095
1096        otp_qc_secured = wil_r(wil, RGF_OTP_QC_SECURED);
1097        wil->secured_boot = otp_qc_secured & BIT_BOOT_FROM_ROM ? 1 : 0;
1098        wil_dbg_misc(wil, "secured boot is %sabled\n",
1099                     wil->secured_boot ? "en" : "dis");
1100
1101out:
1102        wil_dbg_misc(wil, "Reset completed\n");
1103
1104        return 0;
1105}
1106
1107static int wil_target_reset(struct wil6210_priv *wil, int no_flash)
1108{
1109        u32 x;
1110        int rc;
1111
1112        wil_dbg_misc(wil, "Resetting \"%s\"...\n", wil->hw_name);
1113
1114        if (wil->hw_version < HW_VER_TALYN) {
1115                /* Clear MAC link up */
1116                wil_s(wil, RGF_HP_CTRL, BIT(15));
1117                wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0,
1118                      BIT_HPAL_PERST_FROM_PAD);
1119                wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0, BIT_CAR_PERST_RST);
1120        }
1121
1122        wil_halt_cpu(wil);
1123
1124        if (!no_flash) {
1125                /* clear all boot loader "ready" bits */
1126                wil_w(wil, RGF_USER_BL +
1127                      offsetof(struct bl_dedicated_registers_v0,
1128                               boot_loader_ready), 0);
1129                /* this should be safe to write even with old BLs */
1130                wil_w(wil, RGF_USER_BL +
1131                      offsetof(struct bl_dedicated_registers_v1,
1132                               bl_shutdown_handshake), 0);
1133        }
1134        /* Clear Fw Download notification */
1135        wil_c(wil, RGF_USER_USAGE_6, BIT(0));
1136
1137        wil_s(wil, RGF_CAF_OSC_CONTROL, BIT_CAF_OSC_XTAL_EN);
1138        /* XTAL stabilization should take about 3ms */
1139        usleep_range(5000, 7000);
1140        x = wil_r(wil, RGF_CAF_PLL_LOCK_STATUS);
1141        if (!(x & BIT_CAF_OSC_DIG_XTAL_STABLE)) {
1142                wil_err(wil, "Xtal stabilization timeout\n"
1143                        "RGF_CAF_PLL_LOCK_STATUS = 0x%08x\n", x);
1144                return -ETIME;
1145        }
1146        /* switch 10k to XTAL*/
1147        wil_c(wil, RGF_USER_SPARROW_M_4, BIT_SPARROW_M_4_SEL_SLEEP_OR_REF);
1148        /* 40 MHz */
1149        wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_CAR_AHB_SW_SEL);
1150
1151        wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x3ff81f);
1152        wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0xf);
1153
1154        if (wil->hw_version >= HW_VER_TALYN_MB) {
1155                wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x7e000000);
1156                wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003f);
1157                wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0xc00000f0);
1158                wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xffe7fe00);
1159        } else {
1160                wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0xfe000000);
1161                wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003f);
1162                wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x000000f0);
1163                wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xffe7fe00);
1164        }
1165
1166        wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x0);
1167        wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0x0);
1168
1169        wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0);
1170        wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0);
1171        wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0);
1172        wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0);
1173
1174        wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x00000003);
1175        /* reset A2 PCIE AHB */
1176        wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x00008000);
1177
1178        wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0);
1179
1180        if (wil->hw_version == HW_VER_TALYN_MB)
1181                rc = wil_wait_device_ready_talyn_mb(wil);
1182        else
1183                rc = wil_wait_device_ready(wil, no_flash);
1184        if (rc)
1185                return rc;
1186
1187        wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_RST_PWGD);
1188
1189        /* enable fix for HW bug related to the SA/DA swap in AP Rx */
1190        wil_s(wil, RGF_DMA_OFUL_NID_0, BIT_DMA_OFUL_NID_0_RX_EXT_TR_EN |
1191              BIT_DMA_OFUL_NID_0_RX_EXT_A3_SRC);
1192
1193        if (wil->hw_version < HW_VER_TALYN_MB && no_flash) {
1194                /* Reset OTP HW vectors to fit 40MHz */
1195                wil_w(wil, RGF_USER_XPM_IFC_RD_TIME1, 0x60001);
1196                wil_w(wil, RGF_USER_XPM_IFC_RD_TIME2, 0x20027);
1197                wil_w(wil, RGF_USER_XPM_IFC_RD_TIME3, 0x1);
1198                wil_w(wil, RGF_USER_XPM_IFC_RD_TIME4, 0x20027);
1199                wil_w(wil, RGF_USER_XPM_IFC_RD_TIME5, 0x30003);
1200                wil_w(wil, RGF_USER_XPM_IFC_RD_TIME6, 0x20002);
1201                wil_w(wil, RGF_USER_XPM_IFC_RD_TIME7, 0x60001);
1202                wil_w(wil, RGF_USER_XPM_IFC_RD_TIME8, 0x60001);
1203                wil_w(wil, RGF_USER_XPM_IFC_RD_TIME9, 0x60001);
1204                wil_w(wil, RGF_USER_XPM_IFC_RD_TIME10, 0x60001);
1205                wil_w(wil, RGF_USER_XPM_RD_DOUT_SAMPLE_TIME, 0x57);
1206        }
1207
1208        return 0;
1209}
1210
1211static void wil_collect_fw_info(struct wil6210_priv *wil)
1212{
1213        struct wiphy *wiphy = wil_to_wiphy(wil);
1214        u8 retry_short;
1215        int rc;
1216
1217        wil_refresh_fw_capabilities(wil);
1218
1219        rc = wmi_get_mgmt_retry(wil, &retry_short);
1220        if (!rc) {
1221                wiphy->retry_short = retry_short;
1222                wil_dbg_misc(wil, "FW retry_short: %d\n", retry_short);
1223        }
1224}
1225
1226void wil_refresh_fw_capabilities(struct wil6210_priv *wil)
1227{
1228        struct wiphy *wiphy = wil_to_wiphy(wil);
1229        int features;
1230
1231        wil->keep_radio_on_during_sleep =
1232                test_bit(WIL_PLATFORM_CAPA_RADIO_ON_IN_SUSPEND,
1233                         wil->platform_capa) &&
1234                test_bit(WMI_FW_CAPABILITY_D3_SUSPEND, wil->fw_capabilities);
1235
1236        wil_info(wil, "keep_radio_on_during_sleep (%d)\n",
1237                 wil->keep_radio_on_during_sleep);
1238
1239        if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities))
1240                wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;
1241        else
1242                wiphy->signal_type = CFG80211_SIGNAL_TYPE_UNSPEC;
1243
1244        if (test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities)) {
1245                wiphy->max_sched_scan_reqs = 1;
1246                wiphy->max_sched_scan_ssids = WMI_MAX_PNO_SSID_NUM;
1247                wiphy->max_match_sets = WMI_MAX_PNO_SSID_NUM;
1248                wiphy->max_sched_scan_ie_len = WMI_MAX_IE_LEN;
1249                wiphy->max_sched_scan_plans = WMI_MAX_PLANS_NUM;
1250        }
1251
1252        if (test_bit(WMI_FW_CAPABILITY_TX_REQ_EXT, wil->fw_capabilities))
1253                wiphy->flags |= WIPHY_FLAG_OFFCHAN_TX;
1254
1255        if (wil->platform_ops.set_features) {
1256                features = (test_bit(WMI_FW_CAPABILITY_REF_CLOCK_CONTROL,
1257                                     wil->fw_capabilities) &&
1258                            test_bit(WIL_PLATFORM_CAPA_EXT_CLK,
1259                                     wil->platform_capa)) ?
1260                        BIT(WIL_PLATFORM_FEATURE_FW_EXT_CLK_CONTROL) : 0;
1261
1262                if (wil->n_msi == 3)
1263                        features |= BIT(WIL_PLATFORM_FEATURE_TRIPLE_MSI);
1264
1265                wil->platform_ops.set_features(wil->platform_handle, features);
1266        }
1267
1268        if (test_bit(WMI_FW_CAPABILITY_BACK_WIN_SIZE_64,
1269                     wil->fw_capabilities)) {
1270                wil->max_agg_wsize = WIL_MAX_AGG_WSIZE_64;
1271                wil->max_ampdu_size = WIL_MAX_AMPDU_SIZE_128;
1272        } else {
1273                wil->max_agg_wsize = WIL_MAX_AGG_WSIZE;
1274                wil->max_ampdu_size = WIL_MAX_AMPDU_SIZE;
1275        }
1276
1277        update_supported_bands(wil);
1278}
1279
1280void wil_mbox_ring_le2cpus(struct wil6210_mbox_ring *r)
1281{
1282        le32_to_cpus(&r->base);
1283        le16_to_cpus(&r->entry_size);
1284        le16_to_cpus(&r->size);
1285        le32_to_cpus(&r->tail);
1286        le32_to_cpus(&r->head);
1287}
1288
1289/* construct actual board file name to use */
1290void wil_get_board_file(struct wil6210_priv *wil, char *buf, size_t len)
1291{
1292        const char *board_file;
1293        const char *wil_talyn_fw_name = ftm_mode ? WIL_FW_NAME_FTM_TALYN :
1294                              WIL_FW_NAME_TALYN;
1295
1296        if (wil->board_file) {
1297                board_file = wil->board_file;
1298        } else {
1299                /* If specific FW file is used for Talyn,
1300                 * use specific board file
1301                 */
1302                if (strcmp(wil->wil_fw_name, wil_talyn_fw_name) == 0)
1303                        board_file = WIL_BRD_NAME_TALYN;
1304                else
1305                        board_file = WIL_BOARD_FILE_NAME;
1306        }
1307
1308        strlcpy(buf, board_file, len);
1309}
1310
1311static int wil_get_bl_info(struct wil6210_priv *wil)
1312{
1313        struct net_device *ndev = wil->main_ndev;
1314        struct wiphy *wiphy = wil_to_wiphy(wil);
1315        union {
1316                struct bl_dedicated_registers_v0 bl0;
1317                struct bl_dedicated_registers_v1 bl1;
1318        } bl;
1319        u32 bl_ver;
1320        u8 *mac;
1321        u16 rf_status;
1322
1323        wil_memcpy_fromio_32(&bl, wil->csr + HOSTADDR(RGF_USER_BL),
1324                             sizeof(bl));
1325        bl_ver = le32_to_cpu(bl.bl0.boot_loader_struct_version);
1326        mac = bl.bl0.mac_address;
1327
1328        if (bl_ver == 0) {
1329                le32_to_cpus(&bl.bl0.rf_type);
1330                le32_to_cpus(&bl.bl0.baseband_type);
1331                rf_status = 0; /* actually, unknown */
1332                wil_info(wil,
1333                         "Boot Loader struct v%d: MAC = %pM RF = 0x%08x bband = 0x%08x\n",
1334                         bl_ver, mac,
1335                         bl.bl0.rf_type, bl.bl0.baseband_type);
1336                wil_info(wil, "Boot Loader build unknown for struct v0\n");
1337        } else {
1338                le16_to_cpus(&bl.bl1.rf_type);
1339                rf_status = le16_to_cpu(bl.bl1.rf_status);
1340                le32_to_cpus(&bl.bl1.baseband_type);
1341                le16_to_cpus(&bl.bl1.bl_version_subminor);
1342                le16_to_cpus(&bl.bl1.bl_version_build);
1343                wil_info(wil,
1344                         "Boot Loader struct v%d: MAC = %pM RF = 0x%04x (status 0x%04x) bband = 0x%08x\n",
1345                         bl_ver, mac,
1346                         bl.bl1.rf_type, rf_status,
1347                         bl.bl1.baseband_type);
1348                wil_info(wil, "Boot Loader build %d.%d.%d.%d\n",
1349                         bl.bl1.bl_version_major, bl.bl1.bl_version_minor,
1350                         bl.bl1.bl_version_subminor, bl.bl1.bl_version_build);
1351        }
1352
1353        if (!is_valid_ether_addr(mac)) {
1354                wil_err(wil, "BL: Invalid MAC %pM\n", mac);
1355                return -EINVAL;
1356        }
1357
1358        ether_addr_copy(ndev->perm_addr, mac);
1359        ether_addr_copy(wiphy->perm_addr, mac);
1360        if (!is_valid_ether_addr(ndev->dev_addr))
1361                ether_addr_copy(ndev->dev_addr, mac);
1362
1363        if (rf_status) {/* bad RF cable? */
1364                wil_err(wil, "RF communication error 0x%04x",
1365                        rf_status);
1366                return -EAGAIN;
1367        }
1368
1369        return 0;
1370}
1371
1372static void wil_bl_crash_info(struct wil6210_priv *wil, bool is_err)
1373{
1374        u32 bl_assert_code, bl_assert_blink, bl_magic_number;
1375        u32 bl_ver = wil_r(wil, RGF_USER_BL +
1376                           offsetof(struct bl_dedicated_registers_v0,
1377                                    boot_loader_struct_version));
1378
1379        if (bl_ver < 2)
1380                return;
1381
1382        bl_assert_code = wil_r(wil, RGF_USER_BL +
1383                               offsetof(struct bl_dedicated_registers_v1,
1384                                        bl_assert_code));
1385        bl_assert_blink = wil_r(wil, RGF_USER_BL +
1386                                offsetof(struct bl_dedicated_registers_v1,
1387                                         bl_assert_blink));
1388        bl_magic_number = wil_r(wil, RGF_USER_BL +
1389                                offsetof(struct bl_dedicated_registers_v1,
1390                                         bl_magic_number));
1391
1392        if (is_err) {
1393                wil_err(wil,
1394                        "BL assert code 0x%08x blink 0x%08x magic 0x%08x\n",
1395                        bl_assert_code, bl_assert_blink, bl_magic_number);
1396        } else {
1397                wil_dbg_misc(wil,
1398                             "BL assert code 0x%08x blink 0x%08x magic 0x%08x\n",
1399                             bl_assert_code, bl_assert_blink, bl_magic_number);
1400        }
1401}
1402
1403static int wil_get_otp_info(struct wil6210_priv *wil)
1404{
1405        struct net_device *ndev = wil->main_ndev;
1406        struct wiphy *wiphy = wil_to_wiphy(wil);
1407        u8 mac[8];
1408        int mac_addr;
1409
1410        /* OEM MAC has precedence */
1411        mac_addr = RGF_OTP_OEM_MAC;
1412        wil_memcpy_fromio_32(mac, wil->csr + HOSTADDR(mac_addr), sizeof(mac));
1413
1414        if (is_valid_ether_addr(mac)) {
1415                wil_info(wil, "using OEM MAC %pM\n", mac);
1416        } else {
1417                if (wil->hw_version >= HW_VER_TALYN_MB)
1418                        mac_addr = RGF_OTP_MAC_TALYN_MB;
1419                else
1420                        mac_addr = RGF_OTP_MAC;
1421
1422                wil_memcpy_fromio_32(mac, wil->csr + HOSTADDR(mac_addr),
1423                                     sizeof(mac));
1424        }
1425
1426        if (!is_valid_ether_addr(mac)) {
1427                wil_err(wil, "Invalid MAC %pM\n", mac);
1428                return -EINVAL;
1429        }
1430
1431        ether_addr_copy(ndev->perm_addr, mac);
1432        ether_addr_copy(wiphy->perm_addr, mac);
1433        if (!is_valid_ether_addr(ndev->dev_addr))
1434                ether_addr_copy(ndev->dev_addr, mac);
1435
1436        return 0;
1437}
1438
1439static int wil_wait_for_fw_ready(struct wil6210_priv *wil)
1440{
1441        ulong to = msecs_to_jiffies(2000);
1442        ulong left = wait_for_completion_timeout(&wil->wmi_ready, to);
1443
1444        if (0 == left) {
1445                wil_err(wil, "Firmware not ready\n");
1446                return -ETIME;
1447        } else {
1448                wil_info(wil, "FW ready after %d ms. HW version 0x%08x\n",
1449                         jiffies_to_msecs(to-left), wil->hw_version);
1450        }
1451        return 0;
1452}
1453
1454void wil_abort_scan(struct wil6210_vif *vif, bool sync)
1455{
1456        struct wil6210_priv *wil = vif_to_wil(vif);
1457        int rc;
1458        struct cfg80211_scan_info info = {
1459                .aborted = true,
1460        };
1461
1462        lockdep_assert_held(&wil->vif_mutex);
1463
1464        if (!vif->scan_request)
1465                return;
1466
1467        wil_dbg_misc(wil, "Abort scan_request 0x%p\n", vif->scan_request);
1468        del_timer_sync(&vif->scan_timer);
1469        mutex_unlock(&wil->vif_mutex);
1470        rc = wmi_abort_scan(vif);
1471        if (!rc && sync)
1472                wait_event_interruptible_timeout(wil->wq, !vif->scan_request,
1473                                                 msecs_to_jiffies(
1474                                                 WAIT_FOR_SCAN_ABORT_MS));
1475
1476        mutex_lock(&wil->vif_mutex);
1477        if (vif->scan_request) {
1478                cfg80211_scan_done(vif->scan_request, &info);
1479                vif->scan_request = NULL;
1480        }
1481}
1482
1483void wil_abort_scan_all_vifs(struct wil6210_priv *wil, bool sync)
1484{
1485        int i;
1486
1487        lockdep_assert_held(&wil->vif_mutex);
1488
1489        for (i = 0; i < GET_MAX_VIFS(wil); i++) {
1490                struct wil6210_vif *vif = wil->vifs[i];
1491
1492                if (vif)
1493                        wil_abort_scan(vif, sync);
1494        }
1495}
1496
1497int wil_ps_update(struct wil6210_priv *wil, enum wmi_ps_profile_type ps_profile)
1498{
1499        int rc;
1500
1501        if (!test_bit(WMI_FW_CAPABILITY_PS_CONFIG, wil->fw_capabilities)) {
1502                wil_err(wil, "set_power_mgmt not supported\n");
1503                return -EOPNOTSUPP;
1504        }
1505
1506        rc  = wmi_ps_dev_profile_cfg(wil, ps_profile);
1507        if (rc)
1508                wil_err(wil, "wmi_ps_dev_profile_cfg failed (%d)\n", rc);
1509        else
1510                wil->ps_profile = ps_profile;
1511
1512        return rc;
1513}
1514
1515static void wil_pre_fw_config(struct wil6210_priv *wil)
1516{
1517        wil_clear_fw_log_addr(wil);
1518        /* Mark FW as loaded from host */
1519        wil_s(wil, RGF_USER_USAGE_6, 1);
1520
1521        /* clear any interrupts which on-card-firmware
1522         * may have set
1523         */
1524        wil6210_clear_irq(wil);
1525        /* CAF_ICR - clear and mask */
1526        /* it is W1C, clear by writing back same value */
1527        if (wil->hw_version < HW_VER_TALYN_MB) {
1528                wil_s(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, ICR), 0);
1529                wil_w(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, IMV), ~0);
1530        }
1531        /* clear PAL_UNIT_ICR (potential D0->D3 leftover)
1532         * In Talyn-MB host cannot access this register due to
1533         * access control, hence PAL_UNIT_ICR is cleared by the FW
1534         */
1535        if (wil->hw_version < HW_VER_TALYN_MB)
1536                wil_s(wil, RGF_PAL_UNIT_ICR + offsetof(struct RGF_ICR, ICR),
1537                      0);
1538
1539        if (wil->fw_calib_result > 0) {
1540                __le32 val = cpu_to_le32(wil->fw_calib_result |
1541                                                (CALIB_RESULT_SIGNATURE << 8));
1542                wil_w(wil, RGF_USER_FW_CALIB_RESULT, (u32 __force)val);
1543        }
1544}
1545
1546static int wil_restore_vifs(struct wil6210_priv *wil)
1547{
1548        struct wil6210_vif *vif;
1549        struct net_device *ndev;
1550        struct wireless_dev *wdev;
1551        int i, rc;
1552
1553        for (i = 0; i < GET_MAX_VIFS(wil); i++) {
1554                vif = wil->vifs[i];
1555                if (!vif)
1556                        continue;
1557                vif->ap_isolate = 0;
1558                if (vif->mid) {
1559                        ndev = vif_to_ndev(vif);
1560                        wdev = vif_to_wdev(vif);
1561                        rc = wmi_port_allocate(wil, vif->mid, ndev->dev_addr,
1562                                               wdev->iftype);
1563                        if (rc) {
1564                                wil_err(wil, "fail to restore VIF %d type %d, rc %d\n",
1565                                        i, wdev->iftype, rc);
1566                                return rc;
1567                        }
1568                }
1569        }
1570
1571        return 0;
1572}
1573
1574/*
1575 * Clear FW and ucode log start addr to indicate FW log is not ready. The host
1576 * driver clears the addresses before FW starts and FW initializes the address
1577 * when it is ready to send logs.
1578 */
1579void wil_clear_fw_log_addr(struct wil6210_priv *wil)
1580{
1581        /* FW log addr */
1582        wil_w(wil, RGF_USER_USAGE_1, 0);
1583        /* ucode log addr */
1584        wil_w(wil, RGF_USER_USAGE_2, 0);
1585        wil_dbg_misc(wil, "Cleared FW and ucode log address");
1586}
1587
1588/*
1589 * We reset all the structures, and we reset the UMAC.
1590 * After calling this routine, you're expected to reload
1591 * the firmware.
1592 */
1593int wil_reset(struct wil6210_priv *wil, bool load_fw)
1594{
1595        int rc, i;
1596        unsigned long status_flags = BIT(wil_status_resetting);
1597        int no_flash;
1598        struct wil6210_vif *vif;
1599
1600        wil_dbg_misc(wil, "reset\n");
1601
1602        WARN_ON(!mutex_is_locked(&wil->mutex));
1603        WARN_ON(test_bit(wil_status_napi_en, wil->status));
1604
1605        if (debug_fw) {
1606                static const u8 mac[ETH_ALEN] = {
1607                        0x00, 0xde, 0xad, 0x12, 0x34, 0x56,
1608                };
1609                struct net_device *ndev = wil->main_ndev;
1610
1611                ether_addr_copy(ndev->perm_addr, mac);
1612                ether_addr_copy(ndev->dev_addr, ndev->perm_addr);
1613                return 0;
1614        }
1615
1616        if (wil->hw_version == HW_VER_UNKNOWN)
1617                return -ENODEV;
1618
1619        if (test_bit(WIL_PLATFORM_CAPA_T_PWR_ON_0, wil->platform_capa) &&
1620            wil->hw_version < HW_VER_TALYN_MB) {
1621                wil_dbg_misc(wil, "Notify FW to set T_POWER_ON=0\n");
1622                wil_s(wil, RGF_USER_USAGE_8, BIT_USER_SUPPORT_T_POWER_ON_0);
1623        }
1624
1625        if (test_bit(WIL_PLATFORM_CAPA_EXT_CLK, wil->platform_capa)) {
1626                wil_dbg_misc(wil, "Notify FW on ext clock configuration\n");
1627                wil_s(wil, RGF_USER_USAGE_8, BIT_USER_EXT_CLK);
1628        }
1629
1630        if (wil->platform_ops.notify) {
1631                rc = wil->platform_ops.notify(wil->platform_handle,
1632                                              WIL_PLATFORM_EVT_PRE_RESET);
1633                if (rc)
1634                        wil_err(wil, "PRE_RESET platform notify failed, rc %d\n",
1635                                rc);
1636        }
1637
1638        set_bit(wil_status_resetting, wil->status);
1639        mutex_lock(&wil->vif_mutex);
1640        wil_abort_scan_all_vifs(wil, false);
1641        mutex_unlock(&wil->vif_mutex);
1642
1643        for (i = 0; i < GET_MAX_VIFS(wil); i++) {
1644                vif = wil->vifs[i];
1645                if (vif) {
1646                        cancel_work_sync(&vif->disconnect_worker);
1647                        wil6210_disconnect(vif, NULL,
1648                                           WLAN_REASON_DEAUTH_LEAVING);
1649                        vif->ptk_rekey_state = WIL_REKEY_IDLE;
1650                }
1651        }
1652        wil_bcast_fini_all(wil);
1653
1654        /* Disable device led before reset*/
1655        wmi_led_cfg(wil, false);
1656
1657        down_write(&wil->mem_lock);
1658
1659        /* prevent NAPI from being scheduled and prevent wmi commands */
1660        mutex_lock(&wil->wmi_mutex);
1661        if (test_bit(wil_status_suspending, wil->status))
1662                status_flags |= BIT(wil_status_suspending);
1663        bitmap_and(wil->status, wil->status, &status_flags,
1664                   wil_status_last);
1665        wil_dbg_misc(wil, "wil->status (0x%lx)\n", *wil->status);
1666        mutex_unlock(&wil->wmi_mutex);
1667
1668        wil_mask_irq(wil);
1669
1670        wmi_event_flush(wil);
1671
1672        flush_workqueue(wil->wq_service);
1673        flush_workqueue(wil->wmi_wq);
1674
1675        no_flash = test_bit(hw_capa_no_flash, wil->hw_capa);
1676        if (!no_flash)
1677                wil_bl_crash_info(wil, false);
1678        wil_disable_irq(wil);
1679        rc = wil_target_reset(wil, no_flash);
1680        wil6210_clear_irq(wil);
1681        wil_enable_irq(wil);
1682        wil->txrx_ops.rx_fini(wil);
1683        wil->txrx_ops.tx_fini(wil);
1684        if (rc) {
1685                if (!no_flash)
1686                        wil_bl_crash_info(wil, true);
1687                goto out;
1688        }
1689
1690        if (no_flash) {
1691                rc = wil_get_otp_info(wil);
1692        } else {
1693                rc = wil_get_bl_info(wil);
1694                if (rc == -EAGAIN && !load_fw)
1695                        /* ignore RF error if not going up */
1696                        rc = 0;
1697        }
1698        if (rc)
1699                goto out;
1700
1701        wil_set_oob_mode(wil, oob_mode);
1702        if (load_fw) {
1703                char board_file[WIL_BOARD_FILE_MAX_NAMELEN];
1704
1705                if  (wil->secured_boot) {
1706                        wil_err(wil, "secured boot is not supported\n");
1707                        up_write(&wil->mem_lock);
1708                        return -ENOTSUPP;
1709                }
1710
1711                board_file[0] = '\0';
1712                wil_get_board_file(wil, board_file, sizeof(board_file));
1713                wil_info(wil, "Use firmware <%s> + board <%s>\n",
1714                         wil->wil_fw_name, board_file);
1715
1716                if (!no_flash)
1717                        wil_bl_prepare_halt(wil);
1718
1719                wil_halt_cpu(wil);
1720                memset(wil->fw_version, 0, sizeof(wil->fw_version));
1721                /* Loading f/w from the file */
1722                rc = wil_request_firmware(wil, wil->wil_fw_name, true);
1723                if (rc)
1724                        goto out;
1725                if (wil->num_of_brd_entries)
1726                        rc = wil_request_board(wil, board_file);
1727                else
1728                        rc = wil_request_firmware(wil, board_file, true);
1729                if (rc)
1730                        goto out;
1731
1732                wil_pre_fw_config(wil);
1733                wil_release_cpu(wil);
1734        }
1735
1736        /* init after reset */
1737        reinit_completion(&wil->wmi_ready);
1738        reinit_completion(&wil->wmi_call);
1739        reinit_completion(&wil->halp.comp);
1740
1741        clear_bit(wil_status_resetting, wil->status);
1742
1743        up_write(&wil->mem_lock);
1744
1745        if (load_fw) {
1746                wil_unmask_irq(wil);
1747
1748                /* we just started MAC, wait for FW ready */
1749                rc = wil_wait_for_fw_ready(wil);
1750                if (rc)
1751                        return rc;
1752
1753                /* check FW is responsive */
1754                rc = wmi_echo(wil);
1755                if (rc) {
1756                        wil_err(wil, "wmi_echo failed, rc %d\n", rc);
1757                        return rc;
1758                }
1759
1760                wil->txrx_ops.configure_interrupt_moderation(wil);
1761
1762                /* Enable OFU rdy valid bug fix, to prevent hang in oful34_rx
1763                 * while there is back-pressure from Host during RX
1764                 */
1765                if (wil->hw_version >= HW_VER_TALYN_MB)
1766                        wil_s(wil, RGF_DMA_MISC_CTL,
1767                              BIT_OFUL34_RDY_VALID_BUG_FIX_EN);
1768
1769                rc = wil_restore_vifs(wil);
1770                if (rc) {
1771                        wil_err(wil, "failed to restore vifs, rc %d\n", rc);
1772                        return rc;
1773                }
1774
1775                wil_collect_fw_info(wil);
1776
1777                if (wil->ps_profile != WMI_PS_PROFILE_TYPE_DEFAULT)
1778                        wil_ps_update(wil, wil->ps_profile);
1779
1780                if (wil->platform_ops.notify) {
1781                        rc = wil->platform_ops.notify(wil->platform_handle,
1782                                                      WIL_PLATFORM_EVT_FW_RDY);
1783                        if (rc) {
1784                                wil_err(wil, "FW_RDY notify failed, rc %d\n",
1785                                        rc);
1786                                rc = 0;
1787                        }
1788                }
1789        }
1790
1791        return rc;
1792
1793out:
1794        up_write(&wil->mem_lock);
1795        clear_bit(wil_status_resetting, wil->status);
1796        return rc;
1797}
1798
1799void wil_fw_error_recovery(struct wil6210_priv *wil)
1800{
1801        wil_dbg_misc(wil, "starting fw error recovery\n");
1802
1803        if (test_bit(wil_status_resetting, wil->status)) {
1804                wil_info(wil, "Reset already in progress\n");
1805                return;
1806        }
1807
1808        wil->recovery_state = fw_recovery_pending;
1809        schedule_work(&wil->fw_error_worker);
1810}
1811
1812int __wil_up(struct wil6210_priv *wil)
1813{
1814        struct net_device *ndev = wil->main_ndev;
1815        struct wireless_dev *wdev = ndev->ieee80211_ptr;
1816        int rc;
1817
1818        WARN_ON(!mutex_is_locked(&wil->mutex));
1819
1820        rc = wil_reset(wil, true);
1821        if (rc)
1822                return rc;
1823
1824        /* Rx RING. After MAC and beacon */
1825        if (rx_ring_order == 0)
1826                rx_ring_order = wil->hw_version < HW_VER_TALYN_MB ?
1827                        WIL_RX_RING_SIZE_ORDER_DEFAULT :
1828                        WIL_RX_RING_SIZE_ORDER_TALYN_DEFAULT;
1829
1830        rc = wil->txrx_ops.rx_init(wil, rx_ring_order);
1831        if (rc)
1832                return rc;
1833
1834        rc = wil->txrx_ops.tx_init(wil);
1835        if (rc)
1836                return rc;
1837
1838        switch (wdev->iftype) {
1839        case NL80211_IFTYPE_STATION:
1840                wil_dbg_misc(wil, "type: STATION\n");
1841                ndev->type = ARPHRD_ETHER;
1842                break;
1843        case NL80211_IFTYPE_AP:
1844                wil_dbg_misc(wil, "type: AP\n");
1845                ndev->type = ARPHRD_ETHER;
1846                break;
1847        case NL80211_IFTYPE_P2P_CLIENT:
1848                wil_dbg_misc(wil, "type: P2P_CLIENT\n");
1849                ndev->type = ARPHRD_ETHER;
1850                break;
1851        case NL80211_IFTYPE_P2P_GO:
1852                wil_dbg_misc(wil, "type: P2P_GO\n");
1853                ndev->type = ARPHRD_ETHER;
1854                break;
1855        case NL80211_IFTYPE_MONITOR:
1856                wil_dbg_misc(wil, "type: Monitor\n");
1857                ndev->type = ARPHRD_IEEE80211_RADIOTAP;
1858                /* ARPHRD_IEEE80211 or ARPHRD_IEEE80211_RADIOTAP ? */
1859                break;
1860        default:
1861                return -EOPNOTSUPP;
1862        }
1863
1864        /* MAC address - pre-requisite for other commands */
1865        wmi_set_mac_address(wil, ndev->dev_addr);
1866
1867        wil_dbg_misc(wil, "NAPI enable\n");
1868        napi_enable(&wil->napi_rx);
1869        napi_enable(&wil->napi_tx);
1870        set_bit(wil_status_napi_en, wil->status);
1871
1872        wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
1873
1874        return 0;
1875}
1876
1877int wil_up(struct wil6210_priv *wil)
1878{
1879        int rc;
1880
1881        wil_dbg_misc(wil, "up\n");
1882
1883        mutex_lock(&wil->mutex);
1884        rc = __wil_up(wil);
1885        mutex_unlock(&wil->mutex);
1886
1887        return rc;
1888}
1889
1890int __wil_down(struct wil6210_priv *wil)
1891{
1892        int rc;
1893        WARN_ON(!mutex_is_locked(&wil->mutex));
1894
1895        set_bit(wil_status_resetting, wil->status);
1896
1897        wil6210_bus_request(wil, 0);
1898
1899        wil_disable_irq(wil);
1900        if (test_and_clear_bit(wil_status_napi_en, wil->status)) {
1901                napi_disable(&wil->napi_rx);
1902                napi_disable(&wil->napi_tx);
1903                wil_dbg_misc(wil, "NAPI disable\n");
1904        }
1905        wil_enable_irq(wil);
1906
1907        mutex_lock(&wil->vif_mutex);
1908        wil_p2p_stop_radio_operations(wil);
1909        wil_abort_scan_all_vifs(wil, false);
1910        mutex_unlock(&wil->vif_mutex);
1911
1912        rc = wil_reset(wil, false);
1913
1914        return rc;
1915}
1916
1917int wil_down(struct wil6210_priv *wil)
1918{
1919        int rc;
1920
1921        wil_dbg_misc(wil, "down\n");
1922
1923        wil_set_recovery_state(wil, fw_recovery_idle);
1924        mutex_lock(&wil->mutex);
1925        rc = __wil_down(wil);
1926        mutex_unlock(&wil->mutex);
1927
1928        return rc;
1929}
1930
1931int wil_find_cid(struct wil6210_priv *wil, u8 mid, const u8 *mac)
1932{
1933        int i;
1934        int rc = -ENOENT;
1935
1936        for (i = 0; i < wil->max_assoc_sta; i++) {
1937                if (wil->sta[i].mid == mid &&
1938                    wil->sta[i].status != wil_sta_unused &&
1939                    ether_addr_equal(wil->sta[i].addr, mac)) {
1940                        rc = i;
1941                        break;
1942                }
1943        }
1944
1945        return rc;
1946}
1947
1948void wil_halp_vote(struct wil6210_priv *wil)
1949{
1950        unsigned long rc;
1951        unsigned long to_jiffies = msecs_to_jiffies(WAIT_FOR_HALP_VOTE_MS);
1952
1953        if (wil->hw_version >= HW_VER_TALYN_MB)
1954                return;
1955
1956        mutex_lock(&wil->halp.lock);
1957
1958        wil_dbg_irq(wil, "halp_vote: start, HALP ref_cnt (%d)\n",
1959                    wil->halp.ref_cnt);
1960
1961        if (++wil->halp.ref_cnt == 1) {
1962                reinit_completion(&wil->halp.comp);
1963                /* mark to IRQ context to handle HALP ICR */
1964                wil->halp.handle_icr = true;
1965                wil6210_set_halp(wil);
1966                rc = wait_for_completion_timeout(&wil->halp.comp, to_jiffies);
1967                if (!rc) {
1968                        wil_err(wil, "HALP vote timed out\n");
1969                        /* Mask HALP as done in case the interrupt is raised */
1970                        wil->halp.handle_icr = false;
1971                        wil6210_mask_halp(wil);
1972                } else {
1973                        wil_dbg_irq(wil,
1974                                    "halp_vote: HALP vote completed after %d ms\n",
1975                                    jiffies_to_msecs(to_jiffies - rc));
1976                }
1977        }
1978
1979        wil_dbg_irq(wil, "halp_vote: end, HALP ref_cnt (%d)\n",
1980                    wil->halp.ref_cnt);
1981
1982        mutex_unlock(&wil->halp.lock);
1983}
1984
1985void wil_halp_unvote(struct wil6210_priv *wil)
1986{
1987        if (wil->hw_version >= HW_VER_TALYN_MB)
1988                return;
1989
1990        WARN_ON(wil->halp.ref_cnt == 0);
1991
1992        mutex_lock(&wil->halp.lock);
1993
1994        wil_dbg_irq(wil, "halp_unvote: start, HALP ref_cnt (%d)\n",
1995                    wil->halp.ref_cnt);
1996
1997        if (--wil->halp.ref_cnt == 0) {
1998                wil6210_clear_halp(wil);
1999                wil_dbg_irq(wil, "HALP unvote\n");
2000        }
2001
2002        wil_dbg_irq(wil, "halp_unvote:end, HALP ref_cnt (%d)\n",
2003                    wil->halp.ref_cnt);
2004
2005        mutex_unlock(&wil->halp.lock);
2006}
2007
2008void wil_init_txrx_ops(struct wil6210_priv *wil)
2009{
2010        if (wil->use_enhanced_dma_hw)
2011                wil_init_txrx_ops_edma(wil);
2012        else
2013                wil_init_txrx_ops_legacy_dma(wil);
2014}
2015