linux/drivers/net/wireless/intel/iwlwifi/mvm/rxmq.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
   2/*
   3 * Copyright (C) 2012-2014, 2018-2021 Intel Corporation
   4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
   5 * Copyright (C) 2015-2017 Intel Deutschland GmbH
   6 */
   7#include <linux/etherdevice.h>
   8#include <linux/skbuff.h>
   9#include "iwl-trans.h"
  10#include "mvm.h"
  11#include "fw-api.h"
  12
  13static void *iwl_mvm_skb_get_hdr(struct sk_buff *skb)
  14{
  15        struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
  16        u8 *data = skb->data;
  17
  18        /* Alignment concerns */
  19        BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) % 4);
  20        BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) % 4);
  21        BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) % 4);
  22        BUILD_BUG_ON(sizeof(struct ieee80211_vendor_radiotap) % 4);
  23
  24        if (rx_status->flag & RX_FLAG_RADIOTAP_HE)
  25                data += sizeof(struct ieee80211_radiotap_he);
  26        if (rx_status->flag & RX_FLAG_RADIOTAP_HE_MU)
  27                data += sizeof(struct ieee80211_radiotap_he_mu);
  28        if (rx_status->flag & RX_FLAG_RADIOTAP_LSIG)
  29                data += sizeof(struct ieee80211_radiotap_lsig);
  30        if (rx_status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
  31                struct ieee80211_vendor_radiotap *radiotap = (void *)data;
  32
  33                data += sizeof(*radiotap) + radiotap->len + radiotap->pad;
  34        }
  35
  36        return data;
  37}
  38
  39static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
  40                                   int queue, struct ieee80211_sta *sta)
  41{
  42        struct iwl_mvm_sta *mvmsta;
  43        struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
  44        struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
  45        struct iwl_mvm_key_pn *ptk_pn;
  46        int res;
  47        u8 tid, keyidx;
  48        u8 pn[IEEE80211_CCMP_PN_LEN];
  49        u8 *extiv;
  50
  51        /* do PN checking */
  52
  53        /* multicast and non-data only arrives on default queue */
  54        if (!ieee80211_is_data(hdr->frame_control) ||
  55            is_multicast_ether_addr(hdr->addr1))
  56                return 0;
  57
  58        /* do not check PN for open AP */
  59        if (!(stats->flag & RX_FLAG_DECRYPTED))
  60                return 0;
  61
  62        /*
  63         * avoid checking for default queue - we don't want to replicate
  64         * all the logic that's necessary for checking the PN on fragmented
  65         * frames, leave that to mac80211
  66         */
  67        if (queue == 0)
  68                return 0;
  69
  70        /* if we are here - this for sure is either CCMP or GCMP */
  71        if (IS_ERR_OR_NULL(sta)) {
  72                IWL_ERR(mvm,
  73                        "expected hw-decrypted unicast frame for station\n");
  74                return -1;
  75        }
  76
  77        mvmsta = iwl_mvm_sta_from_mac80211(sta);
  78
  79        extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
  80        keyidx = extiv[3] >> 6;
  81
  82        ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
  83        if (!ptk_pn)
  84                return -1;
  85
  86        if (ieee80211_is_data_qos(hdr->frame_control))
  87                tid = ieee80211_get_tid(hdr);
  88        else
  89                tid = 0;
  90
  91        /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
  92        if (tid >= IWL_MAX_TID_COUNT)
  93                return -1;
  94
  95        /* load pn */
  96        pn[0] = extiv[7];
  97        pn[1] = extiv[6];
  98        pn[2] = extiv[5];
  99        pn[3] = extiv[4];
 100        pn[4] = extiv[1];
 101        pn[5] = extiv[0];
 102
 103        res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
 104        if (res < 0)
 105                return -1;
 106        if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
 107                return -1;
 108
 109        memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
 110        stats->flag |= RX_FLAG_PN_VALIDATED;
 111
 112        return 0;
 113}
 114
 115/* iwl_mvm_create_skb Adds the rxb to a new skb */
 116static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
 117                              struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
 118                              struct iwl_rx_cmd_buffer *rxb)
 119{
 120        struct iwl_rx_packet *pkt = rxb_addr(rxb);
 121        struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
 122        unsigned int headlen, fraglen, pad_len = 0;
 123        unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
 124
 125        if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
 126                len -= 2;
 127                pad_len = 2;
 128        }
 129
 130        /* If frame is small enough to fit in skb->head, pull it completely.
 131         * If not, only pull ieee80211_hdr (including crypto if present, and
 132         * an additional 8 bytes for SNAP/ethertype, see below) so that
 133         * splice() or TCP coalesce are more efficient.
 134         *
 135         * Since, in addition, ieee80211_data_to_8023() always pull in at
 136         * least 8 bytes (possibly more for mesh) we can do the same here
 137         * to save the cost of doing it later. That still doesn't pull in
 138         * the actual IP header since the typical case has a SNAP header.
 139         * If the latter changes (there are efforts in the standards group
 140         * to do so) we should revisit this and ieee80211_data_to_8023().
 141         */
 142        headlen = (len <= skb_tailroom(skb)) ? len :
 143                                               hdrlen + crypt_len + 8;
 144
 145        /* The firmware may align the packet to DWORD.
 146         * The padding is inserted after the IV.
 147         * After copying the header + IV skip the padding if
 148         * present before copying packet data.
 149         */
 150        hdrlen += crypt_len;
 151
 152        if (WARN_ONCE(headlen < hdrlen,
 153                      "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n",
 154                      hdrlen, len, crypt_len)) {
 155                /*
 156                 * We warn and trace because we want to be able to see
 157                 * it in trace-cmd as well.
 158                 */
 159                IWL_DEBUG_RX(mvm,
 160                             "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n",
 161                             hdrlen, len, crypt_len);
 162                return -EINVAL;
 163        }
 164
 165        skb_put_data(skb, hdr, hdrlen);
 166        skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
 167
 168        /*
 169         * If we did CHECKSUM_COMPLETE, the hardware only does it right for
 170         * certain cases and starts the checksum after the SNAP. Check if
 171         * this is the case - it's easier to just bail out to CHECKSUM_NONE
 172         * in the cases the hardware didn't handle, since it's rare to see
 173         * such packets, even though the hardware did calculate the checksum
 174         * in this case, just starting after the MAC header instead.
 175         */
 176        if (skb->ip_summed == CHECKSUM_COMPLETE) {
 177                struct {
 178                        u8 hdr[6];
 179                        __be16 type;
 180                } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len);
 181
 182                if (unlikely(headlen - hdrlen < sizeof(*shdr) ||
 183                             !ether_addr_equal(shdr->hdr, rfc1042_header) ||
 184                             (shdr->type != htons(ETH_P_IP) &&
 185                              shdr->type != htons(ETH_P_ARP) &&
 186                              shdr->type != htons(ETH_P_IPV6) &&
 187                              shdr->type != htons(ETH_P_8021Q) &&
 188                              shdr->type != htons(ETH_P_PAE) &&
 189                              shdr->type != htons(ETH_P_TDLS))))
 190                        skb->ip_summed = CHECKSUM_NONE;
 191        }
 192
 193        fraglen = len - headlen;
 194
 195        if (fraglen) {
 196                int offset = (void *)hdr + headlen + pad_len -
 197                             rxb_addr(rxb) + rxb_offset(rxb);
 198
 199                skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
 200                                fraglen, rxb->truesize);
 201        }
 202
 203        return 0;
 204}
 205
 206static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
 207                                            struct sk_buff *skb)
 208{
 209        struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
 210        struct ieee80211_vendor_radiotap *radiotap;
 211        const int size = sizeof(*radiotap) + sizeof(__le16);
 212
 213        if (!mvm->cur_aid)
 214                return;
 215
 216        /* ensure alignment */
 217        BUILD_BUG_ON((size + 2) % 4);
 218
 219        radiotap = skb_put(skb, size + 2);
 220        radiotap->align = 1;
 221        /* Intel OUI */
 222        radiotap->oui[0] = 0xf6;
 223        radiotap->oui[1] = 0x54;
 224        radiotap->oui[2] = 0x25;
 225        /* radiotap sniffer config sub-namespace */
 226        radiotap->subns = 1;
 227        radiotap->present = 0x1;
 228        radiotap->len = size - sizeof(*radiotap);
 229        radiotap->pad = 2;
 230
 231        /* fill the data now */
 232        memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
 233        /* and clear the padding */
 234        memset(radiotap->data + sizeof(__le16), 0, radiotap->pad);
 235
 236        rx_status->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA;
 237}
 238
 239/* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
 240static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
 241                                            struct napi_struct *napi,
 242                                            struct sk_buff *skb, int queue,
 243                                            struct ieee80211_sta *sta,
 244                                            bool csi)
 245{
 246        if (iwl_mvm_check_pn(mvm, skb, queue, sta))
 247                kfree_skb(skb);
 248        else
 249                ieee80211_rx_napi(mvm->hw, sta, skb, napi);
 250}
 251
 252static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
 253                                        struct ieee80211_rx_status *rx_status,
 254                                        u32 rate_n_flags, int energy_a,
 255                                        int energy_b)
 256{
 257        int max_energy;
 258        u32 rate_flags = rate_n_flags;
 259
 260        energy_a = energy_a ? -energy_a : S8_MIN;
 261        energy_b = energy_b ? -energy_b : S8_MIN;
 262        max_energy = max(energy_a, energy_b);
 263
 264        IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
 265                        energy_a, energy_b, max_energy);
 266
 267        rx_status->signal = max_energy;
 268        rx_status->chains =
 269                (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
 270        rx_status->chain_signal[0] = energy_a;
 271        rx_status->chain_signal[1] = energy_b;
 272        rx_status->chain_signal[2] = S8_MIN;
 273}
 274
 275static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta,
 276                                struct ieee80211_hdr *hdr,
 277                                struct iwl_rx_mpdu_desc *desc,
 278                                u32 status)
 279{
 280        struct iwl_mvm_sta *mvmsta;
 281        struct iwl_mvm_vif *mvmvif;
 282        u8 fwkeyid = u32_get_bits(status, IWL_RX_MPDU_STATUS_KEY);
 283        u8 keyid;
 284        struct ieee80211_key_conf *key;
 285        u32 len = le16_to_cpu(desc->mpdu_len);
 286        const u8 *frame = (void *)hdr;
 287
 288        if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE)
 289                return 0;
 290
 291        /*
 292         * For non-beacon, we don't really care. But beacons may
 293         * be filtered out, and we thus need the firmware's replay
 294         * detection, otherwise beacons the firmware previously
 295         * filtered could be replayed, or something like that, and
 296         * it can filter a lot - though usually only if nothing has
 297         * changed.
 298         */
 299        if (!ieee80211_is_beacon(hdr->frame_control))
 300                return 0;
 301
 302        /* good cases */
 303        if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK &&
 304                   !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)))
 305                return 0;
 306
 307        if (!sta)
 308                return -1;
 309
 310        mvmsta = iwl_mvm_sta_from_mac80211(sta);
 311
 312        /* what? */
 313        if (fwkeyid != 6 && fwkeyid != 7)
 314                return -1;
 315
 316        mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
 317
 318        key = rcu_dereference(mvmvif->bcn_prot.keys[fwkeyid - 6]);
 319        if (!key)
 320                return -1;
 321
 322        if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2)
 323                return -1;
 324
 325        /*
 326         * See if the key ID matches - if not this may be due to a
 327         * switch and the firmware may erroneously report !MIC_OK.
 328         */
 329        keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2];
 330        if (keyid != fwkeyid)
 331                return -1;
 332
 333        /* Report status to mac80211 */
 334        if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
 335                ieee80211_key_mic_failure(key);
 336        else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)
 337                ieee80211_key_replay(key);
 338
 339        return -1;
 340}
 341
 342static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
 343                             struct ieee80211_hdr *hdr,
 344                             struct ieee80211_rx_status *stats, u16 phy_info,
 345                             struct iwl_rx_mpdu_desc *desc,
 346                             u32 pkt_flags, int queue, u8 *crypt_len)
 347{
 348        u32 status = le32_to_cpu(desc->status);
 349
 350        /*
 351         * Drop UNKNOWN frames in aggregation, unless in monitor mode
 352         * (where we don't have the keys).
 353         * We limit this to aggregation because in TKIP this is a valid
 354         * scenario, since we may not have the (correct) TTAK (phase 1
 355         * key) in the firmware.
 356         */
 357        if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
 358            (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
 359            IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on)
 360                return -1;
 361
 362        if (unlikely(ieee80211_is_mgmt(hdr->frame_control) &&
 363                     !ieee80211_has_protected(hdr->frame_control)))
 364                return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status);
 365
 366        if (!ieee80211_has_protected(hdr->frame_control) ||
 367            (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
 368            IWL_RX_MPDU_STATUS_SEC_NONE)
 369                return 0;
 370
 371        /* TODO: handle packets encrypted with unknown alg */
 372
 373        switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
 374        case IWL_RX_MPDU_STATUS_SEC_CCM:
 375        case IWL_RX_MPDU_STATUS_SEC_GCM:
 376                BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
 377                /* alg is CCM: check MIC only */
 378                if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
 379                        return -1;
 380
 381                stats->flag |= RX_FLAG_DECRYPTED;
 382                if (pkt_flags & FH_RSCSR_RADA_EN)
 383                        stats->flag |= RX_FLAG_MIC_STRIPPED;
 384                *crypt_len = IEEE80211_CCMP_HDR_LEN;
 385                return 0;
 386        case IWL_RX_MPDU_STATUS_SEC_TKIP:
 387                /* Don't drop the frame and decrypt it in SW */
 388                if (!fw_has_api(&mvm->fw->ucode_capa,
 389                                IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
 390                    !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
 391                        return 0;
 392
 393                if (mvm->trans->trans_cfg->gen2 &&
 394                    !(status & RX_MPDU_RES_STATUS_MIC_OK))
 395                        stats->flag |= RX_FLAG_MMIC_ERROR;
 396
 397                *crypt_len = IEEE80211_TKIP_IV_LEN;
 398                fallthrough;
 399        case IWL_RX_MPDU_STATUS_SEC_WEP:
 400                if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
 401                        return -1;
 402
 403                stats->flag |= RX_FLAG_DECRYPTED;
 404                if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
 405                                IWL_RX_MPDU_STATUS_SEC_WEP)
 406                        *crypt_len = IEEE80211_WEP_IV_LEN;
 407
 408                if (pkt_flags & FH_RSCSR_RADA_EN) {
 409                        stats->flag |= RX_FLAG_ICV_STRIPPED;
 410                        if (mvm->trans->trans_cfg->gen2)
 411                                stats->flag |= RX_FLAG_MMIC_STRIPPED;
 412                }
 413
 414                return 0;
 415        case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
 416                if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
 417                        return -1;
 418                stats->flag |= RX_FLAG_DECRYPTED;
 419                return 0;
 420        case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC:
 421                break;
 422        default:
 423                /*
 424                 * Sometimes we can get frames that were not decrypted
 425                 * because the firmware didn't have the keys yet. This can
 426                 * happen after connection where we can get multicast frames
 427                 * before the GTK is installed.
 428                 * Silently drop those frames.
 429                 * Also drop un-decrypted frames in monitor mode.
 430                 */
 431                if (!is_multicast_ether_addr(hdr->addr1) &&
 432                    !mvm->monitor_on && net_ratelimit())
 433                        IWL_ERR(mvm, "Unhandled alg: 0x%x\n", status);
 434        }
 435
 436        return 0;
 437}
 438
 439static void iwl_mvm_rx_csum(struct iwl_mvm *mvm,
 440                            struct ieee80211_sta *sta,
 441                            struct sk_buff *skb,
 442                            struct iwl_rx_packet *pkt)
 443{
 444        struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
 445
 446        if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
 447                if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
 448                        u16 hwsum = be16_to_cpu(desc->v3.raw_xsum);
 449
 450                        skb->ip_summed = CHECKSUM_COMPLETE;
 451                        skb->csum = csum_unfold(~(__force __sum16)hwsum);
 452                }
 453        } else {
 454                struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
 455                struct iwl_mvm_vif *mvmvif;
 456                u16 flags = le16_to_cpu(desc->l3l4_flags);
 457                u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
 458                                  IWL_RX_L3_PROTO_POS);
 459
 460                mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
 461
 462                if (mvmvif->features & NETIF_F_RXCSUM &&
 463                    flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
 464                    (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
 465                     l3_prot == IWL_RX_L3_TYPE_IPV6 ||
 466                     l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
 467                        skb->ip_summed = CHECKSUM_UNNECESSARY;
 468        }
 469}
 470
 471/*
 472 * returns true if a packet is a duplicate and should be dropped.
 473 * Updates AMSDU PN tracking info
 474 */
 475static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
 476                           struct ieee80211_rx_status *rx_status,
 477                           struct ieee80211_hdr *hdr,
 478                           struct iwl_rx_mpdu_desc *desc)
 479{
 480        struct iwl_mvm_sta *mvm_sta;
 481        struct iwl_mvm_rxq_dup_data *dup_data;
 482        u8 tid, sub_frame_idx;
 483
 484        if (WARN_ON(IS_ERR_OR_NULL(sta)))
 485                return false;
 486
 487        mvm_sta = iwl_mvm_sta_from_mac80211(sta);
 488        dup_data = &mvm_sta->dup_data[queue];
 489
 490        /*
 491         * Drop duplicate 802.11 retransmissions
 492         * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
 493         */
 494        if (ieee80211_is_ctl(hdr->frame_control) ||
 495            ieee80211_is_qos_nullfunc(hdr->frame_control) ||
 496            is_multicast_ether_addr(hdr->addr1)) {
 497                rx_status->flag |= RX_FLAG_DUP_VALIDATED;
 498                return false;
 499        }
 500
 501        if (ieee80211_is_data_qos(hdr->frame_control))
 502                /* frame has qos control */
 503                tid = ieee80211_get_tid(hdr);
 504        else
 505                tid = IWL_MAX_TID_COUNT;
 506
 507        /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
 508        sub_frame_idx = desc->amsdu_info &
 509                IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
 510
 511        if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
 512                     dup_data->last_seq[tid] == hdr->seq_ctrl &&
 513                     dup_data->last_sub_frame[tid] >= sub_frame_idx))
 514                return true;
 515
 516        /* Allow same PN as the first subframe for following sub frames */
 517        if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
 518            sub_frame_idx > dup_data->last_sub_frame[tid] &&
 519            desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
 520                rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
 521
 522        dup_data->last_seq[tid] = hdr->seq_ctrl;
 523        dup_data->last_sub_frame[tid] = sub_frame_idx;
 524
 525        rx_status->flag |= RX_FLAG_DUP_VALIDATED;
 526
 527        return false;
 528}
 529
 530/*
 531 * Returns true if sn2 - buffer_size < sn1 < sn2.
 532 * To be used only in order to compare reorder buffer head with NSSN.
 533 * We fully trust NSSN unless it is behind us due to reorder timeout.
 534 * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN.
 535 */
 536static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size)
 537{
 538        return ieee80211_sn_less(sn1, sn2) &&
 539               !ieee80211_sn_less(sn1, sn2 - buffer_size);
 540}
 541
 542static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn)
 543{
 544        if (IWL_MVM_USE_NSSN_SYNC) {
 545                struct iwl_mvm_nssn_sync_data notif = {
 546                        .baid = baid,
 547                        .nssn = nssn,
 548                };
 549
 550                iwl_mvm_sync_rx_queues_internal(mvm, IWL_MVM_RXQ_NSSN_SYNC, false,
 551                                                &notif, sizeof(notif));
 552        }
 553}
 554
 555#define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10)
 556
 557enum iwl_mvm_release_flags {
 558        IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0),
 559        IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1),
 560};
 561
 562static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
 563                                   struct ieee80211_sta *sta,
 564                                   struct napi_struct *napi,
 565                                   struct iwl_mvm_baid_data *baid_data,
 566                                   struct iwl_mvm_reorder_buffer *reorder_buf,
 567                                   u16 nssn, u32 flags)
 568{
 569        struct iwl_mvm_reorder_buf_entry *entries =
 570                &baid_data->entries[reorder_buf->queue *
 571                                    baid_data->entries_per_queue];
 572        u16 ssn = reorder_buf->head_sn;
 573
 574        lockdep_assert_held(&reorder_buf->lock);
 575
 576        /*
 577         * We keep the NSSN not too far behind, if we are sync'ing it and it
 578         * is more than 2048 ahead of us, it must be behind us. Discard it.
 579         * This can happen if the queue that hit the 0 / 2048 seqno was lagging
 580         * behind and this queue already processed packets. The next if
 581         * would have caught cases where this queue would have processed less
 582         * than 64 packets, but it may have processed more than 64 packets.
 583         */
 584        if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) &&
 585            ieee80211_sn_less(nssn, ssn))
 586                goto set_timer;
 587
 588        /* ignore nssn smaller than head sn - this can happen due to timeout */
 589        if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size))
 590                goto set_timer;
 591
 592        while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) {
 593                int index = ssn % reorder_buf->buf_size;
 594                struct sk_buff_head *skb_list = &entries[index].e.frames;
 595                struct sk_buff *skb;
 596
 597                ssn = ieee80211_sn_inc(ssn);
 598                if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) &&
 599                    (ssn == 2048 || ssn == 0))
 600                        iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn);
 601
 602                /*
 603                 * Empty the list. Will have more than one frame for A-MSDU.
 604                 * Empty list is valid as well since nssn indicates frames were
 605                 * received.
 606                 */
 607                while ((skb = __skb_dequeue(skb_list))) {
 608                        iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
 609                                                        reorder_buf->queue,
 610                                                        sta, false);
 611                        reorder_buf->num_stored--;
 612                }
 613        }
 614        reorder_buf->head_sn = nssn;
 615
 616set_timer:
 617        if (reorder_buf->num_stored && !reorder_buf->removed) {
 618                u16 index = reorder_buf->head_sn % reorder_buf->buf_size;
 619
 620                while (skb_queue_empty(&entries[index].e.frames))
 621                        index = (index + 1) % reorder_buf->buf_size;
 622                /* modify timer to match next frame's expiration time */
 623                mod_timer(&reorder_buf->reorder_timer,
 624                          entries[index].e.reorder_time + 1 +
 625                          RX_REORDER_BUF_TIMEOUT_MQ);
 626        } else {
 627                del_timer(&reorder_buf->reorder_timer);
 628        }
 629}
 630
 631void iwl_mvm_reorder_timer_expired(struct timer_list *t)
 632{
 633        struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer);
 634        struct iwl_mvm_baid_data *baid_data =
 635                iwl_mvm_baid_data_from_reorder_buf(buf);
 636        struct iwl_mvm_reorder_buf_entry *entries =
 637                &baid_data->entries[buf->queue * baid_data->entries_per_queue];
 638        int i;
 639        u16 sn = 0, index = 0;
 640        bool expired = false;
 641        bool cont = false;
 642
 643        spin_lock(&buf->lock);
 644
 645        if (!buf->num_stored || buf->removed) {
 646                spin_unlock(&buf->lock);
 647                return;
 648        }
 649
 650        for (i = 0; i < buf->buf_size ; i++) {
 651                index = (buf->head_sn + i) % buf->buf_size;
 652
 653                if (skb_queue_empty(&entries[index].e.frames)) {
 654                        /*
 655                         * If there is a hole and the next frame didn't expire
 656                         * we want to break and not advance SN
 657                         */
 658                        cont = false;
 659                        continue;
 660                }
 661                if (!cont &&
 662                    !time_after(jiffies, entries[index].e.reorder_time +
 663                                         RX_REORDER_BUF_TIMEOUT_MQ))
 664                        break;
 665
 666                expired = true;
 667                /* continue until next hole after this expired frames */
 668                cont = true;
 669                sn = ieee80211_sn_add(buf->head_sn, i + 1);
 670        }
 671
 672        if (expired) {
 673                struct ieee80211_sta *sta;
 674                struct iwl_mvm_sta *mvmsta;
 675                u8 sta_id = baid_data->sta_id;
 676
 677                rcu_read_lock();
 678                sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]);
 679                mvmsta = iwl_mvm_sta_from_mac80211(sta);
 680
 681                /* SN is set to the last expired frame + 1 */
 682                IWL_DEBUG_HT(buf->mvm,
 683                             "Releasing expired frames for sta %u, sn %d\n",
 684                             sta_id, sn);
 685                iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif,
 686                                                     sta, baid_data->tid);
 687                iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data,
 688                                       buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
 689                rcu_read_unlock();
 690        } else {
 691                /*
 692                 * If no frame expired and there are stored frames, index is now
 693                 * pointing to the first unexpired frame - modify timer
 694                 * accordingly to this frame.
 695                 */
 696                mod_timer(&buf->reorder_timer,
 697                          entries[index].e.reorder_time +
 698                          1 + RX_REORDER_BUF_TIMEOUT_MQ);
 699        }
 700        spin_unlock(&buf->lock);
 701}
 702
 703static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
 704                           struct iwl_mvm_delba_data *data)
 705{
 706        struct iwl_mvm_baid_data *ba_data;
 707        struct ieee80211_sta *sta;
 708        struct iwl_mvm_reorder_buffer *reorder_buf;
 709        u8 baid = data->baid;
 710
 711        if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
 712                return;
 713
 714        rcu_read_lock();
 715
 716        ba_data = rcu_dereference(mvm->baid_map[baid]);
 717        if (WARN_ON_ONCE(!ba_data))
 718                goto out;
 719
 720        sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
 721        if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
 722                goto out;
 723
 724        reorder_buf = &ba_data->reorder_buf[queue];
 725
 726        /* release all frames that are in the reorder buffer to the stack */
 727        spin_lock_bh(&reorder_buf->lock);
 728        iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
 729                               ieee80211_sn_add(reorder_buf->head_sn,
 730                                                reorder_buf->buf_size),
 731                               0);
 732        spin_unlock_bh(&reorder_buf->lock);
 733        del_timer_sync(&reorder_buf->reorder_timer);
 734
 735out:
 736        rcu_read_unlock();
 737}
 738
 739static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
 740                                              struct napi_struct *napi,
 741                                              u8 baid, u16 nssn, int queue,
 742                                              u32 flags)
 743{
 744        struct ieee80211_sta *sta;
 745        struct iwl_mvm_reorder_buffer *reorder_buf;
 746        struct iwl_mvm_baid_data *ba_data;
 747
 748        IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
 749                     baid, nssn);
 750
 751        if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
 752                         baid >= ARRAY_SIZE(mvm->baid_map)))
 753                return;
 754
 755        rcu_read_lock();
 756
 757        ba_data = rcu_dereference(mvm->baid_map[baid]);
 758        if (WARN_ON_ONCE(!ba_data))
 759                goto out;
 760
 761        sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
 762        if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
 763                goto out;
 764
 765        reorder_buf = &ba_data->reorder_buf[queue];
 766
 767        spin_lock_bh(&reorder_buf->lock);
 768        iwl_mvm_release_frames(mvm, sta, napi, ba_data,
 769                               reorder_buf, nssn, flags);
 770        spin_unlock_bh(&reorder_buf->lock);
 771
 772out:
 773        rcu_read_unlock();
 774}
 775
 776static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm,
 777                              struct napi_struct *napi, int queue,
 778                              const struct iwl_mvm_nssn_sync_data *data)
 779{
 780        iwl_mvm_release_frames_from_notif(mvm, napi, data->baid,
 781                                          data->nssn, queue,
 782                                          IWL_MVM_RELEASE_FROM_RSS_SYNC);
 783}
 784
 785void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
 786                            struct iwl_rx_cmd_buffer *rxb, int queue)
 787{
 788        struct iwl_rx_packet *pkt = rxb_addr(rxb);
 789        struct iwl_rxq_sync_notification *notif;
 790        struct iwl_mvm_internal_rxq_notif *internal_notif;
 791        u32 len = iwl_rx_packet_payload_len(pkt);
 792
 793        notif = (void *)pkt->data;
 794        internal_notif = (void *)notif->payload;
 795
 796        if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif),
 797                      "invalid notification size %d (%d)",
 798                      len, (int)(sizeof(*notif) + sizeof(*internal_notif))))
 799                return;
 800        len -= sizeof(*notif) + sizeof(*internal_notif);
 801
 802        if (internal_notif->sync &&
 803            mvm->queue_sync_cookie != internal_notif->cookie) {
 804                WARN_ONCE(1, "Received expired RX queue sync message\n");
 805                return;
 806        }
 807
 808        switch (internal_notif->type) {
 809        case IWL_MVM_RXQ_EMPTY:
 810                WARN_ONCE(len, "invalid empty notification size %d", len);
 811                break;
 812        case IWL_MVM_RXQ_NOTIF_DEL_BA:
 813                if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data),
 814                              "invalid delba notification size %d (%d)",
 815                              len, (int)sizeof(struct iwl_mvm_delba_data)))
 816                        break;
 817                iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
 818                break;
 819        case IWL_MVM_RXQ_NSSN_SYNC:
 820                if (WARN_ONCE(len != sizeof(struct iwl_mvm_nssn_sync_data),
 821                              "invalid nssn sync notification size %d (%d)",
 822                              len, (int)sizeof(struct iwl_mvm_nssn_sync_data)))
 823                        break;
 824                iwl_mvm_nssn_sync(mvm, napi, queue,
 825                                  (void *)internal_notif->data);
 826                break;
 827        default:
 828                WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
 829        }
 830
 831        if (internal_notif->sync) {
 832                WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state),
 833                          "queue sync: queue %d responded a second time!\n",
 834                          queue);
 835                if (READ_ONCE(mvm->queue_sync_state) == 0)
 836                        wake_up(&mvm->rx_sync_waitq);
 837        }
 838}
 839
 840static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm,
 841                                     struct ieee80211_sta *sta, int tid,
 842                                     struct iwl_mvm_reorder_buffer *buffer,
 843                                     u32 reorder, u32 gp2, int queue)
 844{
 845        struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
 846
 847        if (gp2 != buffer->consec_oldsn_ampdu_gp2) {
 848                /* we have a new (A-)MPDU ... */
 849
 850                /*
 851                 * reset counter to 0 if we didn't have any oldsn in
 852                 * the last A-MPDU (as detected by GP2 being identical)
 853                 */
 854                if (!buffer->consec_oldsn_prev_drop)
 855                        buffer->consec_oldsn_drops = 0;
 856
 857                /* either way, update our tracking state */
 858                buffer->consec_oldsn_ampdu_gp2 = gp2;
 859        } else if (buffer->consec_oldsn_prev_drop) {
 860                /*
 861                 * tracking state didn't change, and we had an old SN
 862                 * indication before - do nothing in this case, we
 863                 * already noted this one down and are waiting for the
 864                 * next A-MPDU (by GP2)
 865                 */
 866                return;
 867        }
 868
 869        /* return unless this MPDU has old SN */
 870        if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN))
 871                return;
 872
 873        /* update state */
 874        buffer->consec_oldsn_prev_drop = 1;
 875        buffer->consec_oldsn_drops++;
 876
 877        /* if limit is reached, send del BA and reset state */
 878        if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) {
 879                IWL_WARN(mvm,
 880                         "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n",
 881                         IWL_MVM_AMPDU_CONSEC_DROPS_DELBA,
 882                         sta->addr, queue, tid);
 883                ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr);
 884                buffer->consec_oldsn_prev_drop = 0;
 885                buffer->consec_oldsn_drops = 0;
 886        }
 887}
 888
 889/*
 890 * Returns true if the MPDU was buffered\dropped, false if it should be passed
 891 * to upper layer.
 892 */
 893static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
 894                            struct napi_struct *napi,
 895                            int queue,
 896                            struct ieee80211_sta *sta,
 897                            struct sk_buff *skb,
 898                            struct iwl_rx_mpdu_desc *desc)
 899{
 900        struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
 901        struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
 902        struct iwl_mvm_sta *mvm_sta;
 903        struct iwl_mvm_baid_data *baid_data;
 904        struct iwl_mvm_reorder_buffer *buffer;
 905        struct sk_buff *tail;
 906        u32 reorder = le32_to_cpu(desc->reorder_data);
 907        bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
 908        bool last_subframe =
 909                desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
 910        u8 tid = ieee80211_get_tid(hdr);
 911        u8 sub_frame_idx = desc->amsdu_info &
 912                           IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
 913        struct iwl_mvm_reorder_buf_entry *entries;
 914        int index;
 915        u16 nssn, sn;
 916        u8 baid;
 917
 918        baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
 919                IWL_RX_MPDU_REORDER_BAID_SHIFT;
 920
 921        /*
 922         * This also covers the case of receiving a Block Ack Request
 923         * outside a BA session; we'll pass it to mac80211 and that
 924         * then sends a delBA action frame.
 925         * This also covers pure monitor mode, in which case we won't
 926         * have any BA sessions.
 927         */
 928        if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
 929                return false;
 930
 931        /* no sta yet */
 932        if (WARN_ONCE(IS_ERR_OR_NULL(sta),
 933                      "Got valid BAID without a valid station assigned\n"))
 934                return false;
 935
 936        mvm_sta = iwl_mvm_sta_from_mac80211(sta);
 937
 938        /* not a data packet or a bar */
 939        if (!ieee80211_is_back_req(hdr->frame_control) &&
 940            (!ieee80211_is_data_qos(hdr->frame_control) ||
 941             is_multicast_ether_addr(hdr->addr1)))
 942                return false;
 943
 944        if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
 945                return false;
 946
 947        baid_data = rcu_dereference(mvm->baid_map[baid]);
 948        if (!baid_data) {
 949                IWL_DEBUG_RX(mvm,
 950                             "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
 951                              baid, reorder);
 952                return false;
 953        }
 954
 955        if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id,
 956                 "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n",
 957                 baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id,
 958                 tid))
 959                return false;
 960
 961        nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
 962        sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
 963                IWL_RX_MPDU_REORDER_SN_SHIFT;
 964
 965        buffer = &baid_data->reorder_buf[queue];
 966        entries = &baid_data->entries[queue * baid_data->entries_per_queue];
 967
 968        spin_lock_bh(&buffer->lock);
 969
 970        if (!buffer->valid) {
 971                if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
 972                        spin_unlock_bh(&buffer->lock);
 973                        return false;
 974                }
 975                buffer->valid = true;
 976        }
 977
 978        if (ieee80211_is_back_req(hdr->frame_control)) {
 979                iwl_mvm_release_frames(mvm, sta, napi, baid_data,
 980                                       buffer, nssn, 0);
 981                goto drop;
 982        }
 983
 984        /*
 985         * If there was a significant jump in the nssn - adjust.
 986         * If the SN is smaller than the NSSN it might need to first go into
 987         * the reorder buffer, in which case we just release up to it and the
 988         * rest of the function will take care of storing it and releasing up to
 989         * the nssn.
 990         * This should not happen. This queue has been lagging and it should
 991         * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice
 992         * and update the other queues.
 993         */
 994        if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size,
 995                                buffer->buf_size) ||
 996            !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) {
 997                u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn;
 998
 999                iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer,
1000                                       min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
1001        }
1002
1003        iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder,
1004                                 rx_status->device_timestamp, queue);
1005
1006        /* drop any oudated packets */
1007        if (ieee80211_sn_less(sn, buffer->head_sn))
1008                goto drop;
1009
1010        /* release immediately if allowed by nssn and no stored frames */
1011        if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
1012                if (iwl_mvm_is_sn_less(buffer->head_sn, nssn,
1013                                       buffer->buf_size) &&
1014                   (!amsdu || last_subframe)) {
1015                        /*
1016                         * If we crossed the 2048 or 0 SN, notify all the
1017                         * queues. This is done in order to avoid having a
1018                         * head_sn that lags behind for too long. When that
1019                         * happens, we can get to a situation where the head_sn
1020                         * is within the interval [nssn - buf_size : nssn]
1021                         * which will make us think that the nssn is a packet
1022                         * that we already freed because of the reordering
1023                         * buffer and we will ignore it. So maintain the
1024                         * head_sn somewhat updated across all the queues:
1025                         * when it crosses 0 and 2048.
1026                         */
1027                        if (sn == 2048 || sn == 0)
1028                                iwl_mvm_sync_nssn(mvm, baid, sn);
1029                        buffer->head_sn = nssn;
1030                }
1031                /* No need to update AMSDU last SN - we are moving the head */
1032                spin_unlock_bh(&buffer->lock);
1033                return false;
1034        }
1035
1036        /*
1037         * release immediately if there are no stored frames, and the sn is
1038         * equal to the head.
1039         * This can happen due to reorder timer, where NSSN is behind head_sn.
1040         * When we released everything, and we got the next frame in the
1041         * sequence, according to the NSSN we can't release immediately,
1042         * while technically there is no hole and we can move forward.
1043         */
1044        if (!buffer->num_stored && sn == buffer->head_sn) {
1045                if (!amsdu || last_subframe) {
1046                        if (sn == 2048 || sn == 0)
1047                                iwl_mvm_sync_nssn(mvm, baid, sn);
1048                        buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
1049                }
1050                /* No need to update AMSDU last SN - we are moving the head */
1051                spin_unlock_bh(&buffer->lock);
1052                return false;
1053        }
1054
1055        index = sn % buffer->buf_size;
1056
1057        /*
1058         * Check if we already stored this frame
1059         * As AMSDU is either received or not as whole, logic is simple:
1060         * If we have frames in that position in the buffer and the last frame
1061         * originated from AMSDU had a different SN then it is a retransmission.
1062         * If it is the same SN then if the subframe index is incrementing it
1063         * is the same AMSDU - otherwise it is a retransmission.
1064         */
1065        tail = skb_peek_tail(&entries[index].e.frames);
1066        if (tail && !amsdu)
1067                goto drop;
1068        else if (tail && (sn != buffer->last_amsdu ||
1069                          buffer->last_sub_index >= sub_frame_idx))
1070                goto drop;
1071
1072        /* put in reorder buffer */
1073        __skb_queue_tail(&entries[index].e.frames, skb);
1074        buffer->num_stored++;
1075        entries[index].e.reorder_time = jiffies;
1076
1077        if (amsdu) {
1078                buffer->last_amsdu = sn;
1079                buffer->last_sub_index = sub_frame_idx;
1080        }
1081
1082        /*
1083         * We cannot trust NSSN for AMSDU sub-frames that are not the last.
1084         * The reason is that NSSN advances on the first sub-frame, and may
1085         * cause the reorder buffer to advance before all the sub-frames arrive.
1086         * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
1087         * SN 1. NSSN for first sub frame will be 3 with the result of driver
1088         * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
1089         * already ahead and it will be dropped.
1090         * If the last sub-frame is not on this queue - we will get frame
1091         * release notification with up to date NSSN.
1092         */
1093        if (!amsdu || last_subframe)
1094                iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1095                                       buffer, nssn,
1096                                       IWL_MVM_RELEASE_SEND_RSS_SYNC);
1097
1098        spin_unlock_bh(&buffer->lock);
1099        return true;
1100
1101drop:
1102        kfree_skb(skb);
1103        spin_unlock_bh(&buffer->lock);
1104        return true;
1105}
1106
1107static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
1108                                    u32 reorder_data, u8 baid)
1109{
1110        unsigned long now = jiffies;
1111        unsigned long timeout;
1112        struct iwl_mvm_baid_data *data;
1113
1114        rcu_read_lock();
1115
1116        data = rcu_dereference(mvm->baid_map[baid]);
1117        if (!data) {
1118                IWL_DEBUG_RX(mvm,
1119                             "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
1120                              baid, reorder_data);
1121                goto out;
1122        }
1123
1124        if (!data->timeout)
1125                goto out;
1126
1127        timeout = data->timeout;
1128        /*
1129         * Do not update last rx all the time to avoid cache bouncing
1130         * between the rx queues.
1131         * Update it every timeout. Worst case is the session will
1132         * expire after ~ 2 * timeout, which doesn't matter that much.
1133         */
1134        if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
1135                /* Update is atomic */
1136                data->last_rx = now;
1137
1138out:
1139        rcu_read_unlock();
1140}
1141
1142static void iwl_mvm_flip_address(u8 *addr)
1143{
1144        int i;
1145        u8 mac_addr[ETH_ALEN];
1146
1147        for (i = 0; i < ETH_ALEN; i++)
1148                mac_addr[i] = addr[ETH_ALEN - i - 1];
1149        ether_addr_copy(addr, mac_addr);
1150}
1151
1152struct iwl_mvm_rx_phy_data {
1153        enum iwl_rx_phy_info_type info_type;
1154        __le32 d0, d1, d2, d3;
1155        __le16 d4;
1156};
1157
1158static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
1159                                     struct iwl_mvm_rx_phy_data *phy_data,
1160                                     u32 rate_n_flags,
1161                                     struct ieee80211_radiotap_he_mu *he_mu)
1162{
1163        u32 phy_data2 = le32_to_cpu(phy_data->d2);
1164        u32 phy_data3 = le32_to_cpu(phy_data->d3);
1165        u16 phy_data4 = le16_to_cpu(phy_data->d4);
1166
1167        if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
1168                he_mu->flags1 |=
1169                        cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
1170                                    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
1171
1172                he_mu->flags1 |=
1173                        le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
1174                                                   phy_data4),
1175                                         IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
1176
1177                he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
1178                                             phy_data2);
1179                he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
1180                                             phy_data3);
1181                he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
1182                                             phy_data2);
1183                he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
1184                                             phy_data3);
1185        }
1186
1187        if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
1188            (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) {
1189                he_mu->flags1 |=
1190                        cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
1191                                    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
1192
1193                he_mu->flags2 |=
1194                        le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
1195                                                   phy_data4),
1196                                         IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
1197
1198                he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
1199                                             phy_data2);
1200                he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
1201                                             phy_data3);
1202                he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
1203                                             phy_data2);
1204                he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
1205                                             phy_data3);
1206        }
1207}
1208
1209static void
1210iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
1211                               u32 rate_n_flags,
1212                               struct ieee80211_radiotap_he *he,
1213                               struct ieee80211_radiotap_he_mu *he_mu,
1214                               struct ieee80211_rx_status *rx_status)
1215{
1216        /*
1217         * Unfortunately, we have to leave the mac80211 data
1218         * incorrect for the case that we receive an HE-MU
1219         * transmission and *don't* have the HE phy data (due
1220         * to the bits being used for TSF). This shouldn't
1221         * happen though as management frames where we need
1222         * the TSF/timers are not be transmitted in HE-MU.
1223         */
1224        u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
1225        u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1226        u8 offs = 0;
1227
1228        rx_status->bw = RATE_INFO_BW_HE_RU;
1229
1230        he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1231
1232        switch (ru) {
1233        case 0 ... 36:
1234                rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1235                offs = ru;
1236                break;
1237        case 37 ... 52:
1238                rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1239                offs = ru - 37;
1240                break;
1241        case 53 ... 60:
1242                rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1243                offs = ru - 53;
1244                break;
1245        case 61 ... 64:
1246                rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1247                offs = ru - 61;
1248                break;
1249        case 65 ... 66:
1250                rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1251                offs = ru - 65;
1252                break;
1253        case 67:
1254                rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1255                break;
1256        case 68:
1257                rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1258                break;
1259        }
1260        he->data2 |= le16_encode_bits(offs,
1261                                      IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1262        he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1263                                 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1264        if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1265                he->data2 |=
1266                        cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1267
1268#define CHECK_BW(bw) \
1269        BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1270                     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1271        BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1272                     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1273        CHECK_BW(20);
1274        CHECK_BW(40);
1275        CHECK_BW(80);
1276        CHECK_BW(160);
1277
1278        if (he_mu)
1279                he_mu->flags2 |=
1280                        le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
1281                                                   rate_n_flags),
1282                                         IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1283        else if (he_type == RATE_MCS_HE_TYPE_TRIG)
1284                he->data6 |=
1285                        cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1286                        le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
1287                                                   rate_n_flags),
1288                                         IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1289}
1290
1291static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1292                                       struct iwl_mvm_rx_phy_data *phy_data,
1293                                       struct ieee80211_radiotap_he *he,
1294                                       struct ieee80211_radiotap_he_mu *he_mu,
1295                                       struct ieee80211_rx_status *rx_status,
1296                                       u32 rate_n_flags, int queue)
1297{
1298        switch (phy_data->info_type) {
1299        case IWL_RX_PHY_INFO_TYPE_NONE:
1300        case IWL_RX_PHY_INFO_TYPE_CCK:
1301        case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1302        case IWL_RX_PHY_INFO_TYPE_HT:
1303        case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1304        case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1305                return;
1306        case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1307                he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1308                                         IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1309                                         IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1310                                         IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1311                he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1312                                                            IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1313                                              IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1314                he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1315                                                            IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1316                                              IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1317                he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1318                                                            IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1319                                              IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1320                he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1321                                                            IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1322                                              IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1323                fallthrough;
1324        case IWL_RX_PHY_INFO_TYPE_HE_SU:
1325        case IWL_RX_PHY_INFO_TYPE_HE_MU:
1326        case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1327        case IWL_RX_PHY_INFO_TYPE_HE_TB:
1328                /* HE common */
1329                he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1330                                         IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1331                                         IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1332                he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1333                                         IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1334                                         IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1335                                         IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1336                he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1337                                                            IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1338                                              IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1339                if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1340                    phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1341                        he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1342                        he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1343                                                            IWL_RX_PHY_DATA0_HE_UPLINK),
1344                                                      IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1345                }
1346                he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1347                                                            IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1348                                              IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1349                he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1350                                                            IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1351                                              IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1352                he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1353                                                            IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1354                                              IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1355                he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1356                                                            IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1357                                              IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1358                he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1359                                                            IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1360                                              IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1361                he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1362                                                            IWL_RX_PHY_DATA0_HE_DOPPLER),
1363                                              IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1364                break;
1365        }
1366
1367        switch (phy_data->info_type) {
1368        case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1369        case IWL_RX_PHY_INFO_TYPE_HE_MU:
1370        case IWL_RX_PHY_INFO_TYPE_HE_SU:
1371                he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1372                he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1373                                                            IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1374                                              IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1375                break;
1376        default:
1377                /* nothing here */
1378                break;
1379        }
1380
1381        switch (phy_data->info_type) {
1382        case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1383                he_mu->flags1 |=
1384                        le16_encode_bits(le16_get_bits(phy_data->d4,
1385                                                       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1386                                         IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1387                he_mu->flags1 |=
1388                        le16_encode_bits(le16_get_bits(phy_data->d4,
1389                                                       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1390                                         IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1391                he_mu->flags2 |=
1392                        le16_encode_bits(le16_get_bits(phy_data->d4,
1393                                                       IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1394                                         IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1395                iwl_mvm_decode_he_mu_ext(mvm, phy_data, rate_n_flags, he_mu);
1396                fallthrough;
1397        case IWL_RX_PHY_INFO_TYPE_HE_MU:
1398                he_mu->flags2 |=
1399                        le16_encode_bits(le32_get_bits(phy_data->d1,
1400                                                       IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1401                                         IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1402                he_mu->flags2 |=
1403                        le16_encode_bits(le32_get_bits(phy_data->d1,
1404                                                       IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1405                                         IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1406                fallthrough;
1407        case IWL_RX_PHY_INFO_TYPE_HE_TB:
1408        case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1409                iwl_mvm_decode_he_phy_ru_alloc(phy_data, rate_n_flags,
1410                                               he, he_mu, rx_status);
1411                break;
1412        case IWL_RX_PHY_INFO_TYPE_HE_SU:
1413                he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1414                he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1415                                                            IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1416                                              IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1417                break;
1418        default:
1419                /* nothing */
1420                break;
1421        }
1422}
1423
1424static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
1425                          struct iwl_mvm_rx_phy_data *phy_data,
1426                          u32 rate_n_flags, u16 phy_info, int queue)
1427{
1428        struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1429        struct ieee80211_radiotap_he *he = NULL;
1430        struct ieee80211_radiotap_he_mu *he_mu = NULL;
1431        u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1432        u8 stbc, ltf;
1433        static const struct ieee80211_radiotap_he known = {
1434                .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
1435                                     IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
1436                                     IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
1437                                     IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
1438                .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
1439                                     IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
1440        };
1441        static const struct ieee80211_radiotap_he_mu mu_known = {
1442                .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
1443                                      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
1444                                      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
1445                                      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
1446                .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
1447                                      IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
1448        };
1449
1450        he = skb_put_data(skb, &known, sizeof(known));
1451        rx_status->flag |= RX_FLAG_RADIOTAP_HE;
1452
1453        if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
1454            phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
1455                he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
1456                rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
1457        }
1458
1459        /* report the AMPDU-EOF bit on single frames */
1460        if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1461                rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1462                rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1463                if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1464                        rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1465        }
1466
1467        if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1468                iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
1469                                           rate_n_flags, queue);
1470
1471        /* update aggregation data for monitor sake on default queue */
1472        if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1473            (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1474                bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1475
1476                /* toggle is switched whenever new aggregation starts */
1477                if (toggle_bit != mvm->ampdu_toggle) {
1478                        rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1479                        if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1480                                rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1481                }
1482        }
1483
1484        if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
1485            rate_n_flags & RATE_MCS_HE_106T_MSK) {
1486                rx_status->bw = RATE_INFO_BW_HE_RU;
1487                rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1488        }
1489
1490        /* actually data is filled in mac80211 */
1491        if (he_type == RATE_MCS_HE_TYPE_SU ||
1492            he_type == RATE_MCS_HE_TYPE_EXT_SU)
1493                he->data1 |=
1494                        cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1495
1496        stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS;
1497        rx_status->nss =
1498                ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
1499                                        RATE_VHT_MCS_NSS_POS) + 1;
1500        rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1501        rx_status->encoding = RX_ENC_HE;
1502        rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1503        if (rate_n_flags & RATE_MCS_BF_MSK)
1504                rx_status->enc_flags |= RX_ENC_FLAG_BF;
1505
1506        rx_status->he_dcm =
1507                !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
1508
1509#define CHECK_TYPE(F)                                                   \
1510        BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=        \
1511                     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1512
1513        CHECK_TYPE(SU);
1514        CHECK_TYPE(EXT_SU);
1515        CHECK_TYPE(MU);
1516        CHECK_TYPE(TRIG);
1517
1518        he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
1519
1520        if (rate_n_flags & RATE_MCS_BF_MSK)
1521                he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
1522
1523        switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
1524                RATE_MCS_HE_GI_LTF_POS) {
1525        case 0:
1526                if (he_type == RATE_MCS_HE_TYPE_TRIG)
1527                        rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1528                else
1529                        rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1530                if (he_type == RATE_MCS_HE_TYPE_MU)
1531                        ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1532                else
1533                        ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1534                break;
1535        case 1:
1536                if (he_type == RATE_MCS_HE_TYPE_TRIG)
1537                        rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1538                else
1539                        rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1540                ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1541                break;
1542        case 2:
1543                if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1544                        rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1545                        ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1546                } else {
1547                        rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1548                        ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1549                }
1550                break;
1551        case 3:
1552                if ((he_type == RATE_MCS_HE_TYPE_SU ||
1553                     he_type == RATE_MCS_HE_TYPE_EXT_SU) &&
1554                    rate_n_flags & RATE_MCS_SGI_MSK)
1555                        rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1556                else
1557                        rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1558                ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1559                break;
1560        }
1561
1562        he->data5 |= le16_encode_bits(ltf,
1563                                      IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
1564}
1565
1566static void iwl_mvm_decode_lsig(struct sk_buff *skb,
1567                                struct iwl_mvm_rx_phy_data *phy_data)
1568{
1569        struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1570        struct ieee80211_radiotap_lsig *lsig;
1571
1572        switch (phy_data->info_type) {
1573        case IWL_RX_PHY_INFO_TYPE_HT:
1574        case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1575        case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1576        case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1577        case IWL_RX_PHY_INFO_TYPE_HE_SU:
1578        case IWL_RX_PHY_INFO_TYPE_HE_MU:
1579        case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1580        case IWL_RX_PHY_INFO_TYPE_HE_TB:
1581                lsig = skb_put(skb, sizeof(*lsig));
1582                lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
1583                lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
1584                                                             IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
1585                                               IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
1586                rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
1587                break;
1588        default:
1589                break;
1590        }
1591}
1592
1593static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)
1594{
1595        switch (phy_band) {
1596        case PHY_BAND_24:
1597                return NL80211_BAND_2GHZ;
1598        case PHY_BAND_5:
1599                return NL80211_BAND_5GHZ;
1600        case PHY_BAND_6:
1601                return NL80211_BAND_6GHZ;
1602        default:
1603                WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band);
1604                return NL80211_BAND_5GHZ;
1605        }
1606}
1607
1608struct iwl_rx_sta_csa {
1609        bool all_sta_unblocked;
1610        struct ieee80211_vif *vif;
1611};
1612
1613static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta)
1614{
1615        struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1616        struct iwl_rx_sta_csa *rx_sta_csa = data;
1617
1618        if (mvmsta->vif != rx_sta_csa->vif)
1619                return;
1620
1621        if (mvmsta->disable_tx)
1622                rx_sta_csa->all_sta_unblocked = false;
1623}
1624
1625void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
1626                        struct iwl_rx_cmd_buffer *rxb, int queue)
1627{
1628        struct ieee80211_rx_status *rx_status;
1629        struct iwl_rx_packet *pkt = rxb_addr(rxb);
1630        struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
1631        struct ieee80211_hdr *hdr;
1632        u32 len;
1633        u32 pkt_len = iwl_rx_packet_payload_len(pkt);
1634        u32 rate_n_flags, gp2_on_air_rise;
1635        u16 phy_info;
1636        struct ieee80211_sta *sta = NULL;
1637        struct sk_buff *skb;
1638        u8 crypt_len = 0, channel, energy_a, energy_b;
1639        size_t desc_size;
1640        struct iwl_mvm_rx_phy_data phy_data = {
1641                .info_type = IWL_RX_PHY_INFO_TYPE_NONE,
1642        };
1643        bool csi = false;
1644
1645        if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
1646                return;
1647
1648        if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1649                desc_size = sizeof(*desc);
1650        else
1651                desc_size = IWL_RX_DESC_SIZE_V1;
1652
1653        if (unlikely(pkt_len < desc_size)) {
1654                IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n");
1655                return;
1656        }
1657
1658        if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
1659                rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
1660                channel = desc->v3.channel;
1661                gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
1662                energy_a = desc->v3.energy_a;
1663                energy_b = desc->v3.energy_b;
1664
1665                phy_data.d0 = desc->v3.phy_data0;
1666                phy_data.d1 = desc->v3.phy_data1;
1667                phy_data.d2 = desc->v3.phy_data2;
1668                phy_data.d3 = desc->v3.phy_data3;
1669        } else {
1670                rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
1671                channel = desc->v1.channel;
1672                gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
1673                energy_a = desc->v1.energy_a;
1674                energy_b = desc->v1.energy_b;
1675
1676                phy_data.d0 = desc->v1.phy_data0;
1677                phy_data.d1 = desc->v1.phy_data1;
1678                phy_data.d2 = desc->v1.phy_data2;
1679                phy_data.d3 = desc->v1.phy_data3;
1680        }
1681
1682        len = le16_to_cpu(desc->mpdu_len);
1683
1684        if (unlikely(len + desc_size > pkt_len)) {
1685                IWL_DEBUG_DROP(mvm, "FW lied about packet len\n");
1686                return;
1687        }
1688
1689        phy_info = le16_to_cpu(desc->phy_info);
1690        phy_data.d4 = desc->phy_data4;
1691
1692        if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1693                phy_data.info_type =
1694                        le32_get_bits(phy_data.d1,
1695                                      IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1696
1697        hdr = (void *)(pkt->data + desc_size);
1698        /* Dont use dev_alloc_skb(), we'll have enough headroom once
1699         * ieee80211_hdr pulled.
1700         */
1701        skb = alloc_skb(128, GFP_ATOMIC);
1702        if (!skb) {
1703                IWL_ERR(mvm, "alloc_skb failed\n");
1704                return;
1705        }
1706
1707        if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
1708                /*
1709                 * If the device inserted padding it means that (it thought)
1710                 * the 802.11 header wasn't a multiple of 4 bytes long. In
1711                 * this case, reserve two bytes at the start of the SKB to
1712                 * align the payload properly in case we end up copying it.
1713                 */
1714                skb_reserve(skb, 2);
1715        }
1716
1717        rx_status = IEEE80211_SKB_RXCB(skb);
1718
1719        /* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1720        switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1721        case RATE_MCS_CHAN_WIDTH_20:
1722                break;
1723        case RATE_MCS_CHAN_WIDTH_40:
1724                rx_status->bw = RATE_INFO_BW_40;
1725                break;
1726        case RATE_MCS_CHAN_WIDTH_80:
1727                rx_status->bw = RATE_INFO_BW_80;
1728                break;
1729        case RATE_MCS_CHAN_WIDTH_160:
1730                rx_status->bw = RATE_INFO_BW_160;
1731                break;
1732        }
1733
1734        if (rate_n_flags & RATE_MCS_HE_MSK)
1735                iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
1736                              phy_info, queue);
1737
1738        iwl_mvm_decode_lsig(skb, &phy_data);
1739
1740        /*
1741         * Keep packets with CRC errors (and with overrun) for monitor mode
1742         * (otherwise the firmware discards them) but mark them as bad.
1743         */
1744        if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) ||
1745            !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
1746                IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
1747                             le32_to_cpu(desc->status));
1748                rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
1749        }
1750        /* set the preamble flag if appropriate */
1751        if (rate_n_flags & RATE_MCS_CCK_MSK &&
1752            phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
1753                rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
1754
1755        if (likely(!(phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
1756                u64 tsf_on_air_rise;
1757
1758                if (mvm->trans->trans_cfg->device_family >=
1759                    IWL_DEVICE_FAMILY_AX210)
1760                        tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
1761                else
1762                        tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
1763
1764                rx_status->mactime = tsf_on_air_rise;
1765                /* TSF as indicated by the firmware is at INA time */
1766                rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
1767        }
1768
1769        rx_status->device_timestamp = gp2_on_air_rise;
1770        if (iwl_mvm_is_band_in_rx_supported(mvm)) {
1771                u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx);
1772
1773                rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band);
1774        } else {
1775                rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
1776                        NL80211_BAND_2GHZ;
1777        }
1778        rx_status->freq = ieee80211_channel_to_frequency(channel,
1779                                                         rx_status->band);
1780        iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
1781                                    energy_b);
1782
1783        /* update aggregation data for monitor sake on default queue */
1784        if (!queue && (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1785                bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1786
1787                rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1788                /*
1789                 * Toggle is switched whenever new aggregation starts. Make
1790                 * sure ampdu_reference is never 0 so we can later use it to
1791                 * see if the frame was really part of an A-MPDU or not.
1792                 */
1793                if (toggle_bit != mvm->ampdu_toggle) {
1794                        mvm->ampdu_ref++;
1795                        if (mvm->ampdu_ref == 0)
1796                                mvm->ampdu_ref++;
1797                        mvm->ampdu_toggle = toggle_bit;
1798                }
1799                rx_status->ampdu_reference = mvm->ampdu_ref;
1800        }
1801
1802        if (unlikely(mvm->monitor_on))
1803                iwl_mvm_add_rtap_sniffer_config(mvm, skb);
1804
1805        rcu_read_lock();
1806
1807        if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
1808                u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID);
1809
1810                if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) {
1811                        sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
1812                        if (IS_ERR(sta))
1813                                sta = NULL;
1814                }
1815        } else if (!is_multicast_ether_addr(hdr->addr2)) {
1816                /*
1817                 * This is fine since we prevent two stations with the same
1818                 * address from being added.
1819                 */
1820                sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
1821        }
1822
1823        if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_info, desc,
1824                              le32_to_cpu(pkt->len_n_flags), queue,
1825                              &crypt_len)) {
1826                kfree_skb(skb);
1827                goto out;
1828        }
1829
1830        if (sta) {
1831                struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1832                struct ieee80211_vif *tx_blocked_vif =
1833                        rcu_dereference(mvm->csa_tx_blocked_vif);
1834                u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
1835                               IWL_RX_MPDU_REORDER_BAID_MASK) >>
1836                               IWL_RX_MPDU_REORDER_BAID_SHIFT);
1837                struct iwl_fw_dbg_trigger_tlv *trig;
1838                struct ieee80211_vif *vif = mvmsta->vif;
1839
1840                if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
1841                    !is_multicast_ether_addr(hdr->addr1) &&
1842                    ieee80211_is_data(hdr->frame_control) &&
1843                    time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
1844                        schedule_delayed_work(&mvm->tcm.work, 0);
1845
1846                /*
1847                 * We have tx blocked stations (with CS bit). If we heard
1848                 * frames from a blocked station on a new channel we can
1849                 * TX to it again.
1850                 */
1851                if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
1852                        struct iwl_mvm_vif *mvmvif =
1853                                iwl_mvm_vif_from_mac80211(tx_blocked_vif);
1854                        struct iwl_rx_sta_csa rx_sta_csa = {
1855                                .all_sta_unblocked = true,
1856                                .vif = tx_blocked_vif,
1857                        };
1858
1859                        if (mvmvif->csa_target_freq == rx_status->freq)
1860                                iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
1861                                                                 false);
1862                        ieee80211_iterate_stations_atomic(mvm->hw,
1863                                                          iwl_mvm_rx_get_sta_block_tx,
1864                                                          &rx_sta_csa);
1865
1866                        if (rx_sta_csa.all_sta_unblocked) {
1867                                RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL);
1868                                /* Unblock BCAST / MCAST station */
1869                                iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false);
1870                                cancel_delayed_work_sync(&mvm->cs_tx_unblock_dwork);
1871                        }
1872                }
1873
1874                rs_update_last_rssi(mvm, mvmsta, rx_status);
1875
1876                trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
1877                                             ieee80211_vif_to_wdev(vif),
1878                                             FW_DBG_TRIGGER_RSSI);
1879
1880                if (trig && ieee80211_is_beacon(hdr->frame_control)) {
1881                        struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
1882                        s32 rssi;
1883
1884                        rssi_trig = (void *)trig->data;
1885                        rssi = le32_to_cpu(rssi_trig->rssi);
1886
1887                        if (rx_status->signal < rssi)
1888                                iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
1889                                                        NULL);
1890                }
1891
1892                if (ieee80211_is_data(hdr->frame_control))
1893                        iwl_mvm_rx_csum(mvm, sta, skb, pkt);
1894
1895                if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
1896                        kfree_skb(skb);
1897                        goto out;
1898                }
1899
1900                /*
1901                 * Our hardware de-aggregates AMSDUs but copies the mac header
1902                 * as it to the de-aggregated MPDUs. We need to turn off the
1903                 * AMSDU bit in the QoS control ourselves.
1904                 * In addition, HW reverses addr3 and addr4 - reverse it back.
1905                 */
1906                if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
1907                    !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
1908                        u8 *qc = ieee80211_get_qos_ctl(hdr);
1909
1910                        *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1911
1912                        if (mvm->trans->trans_cfg->device_family ==
1913                            IWL_DEVICE_FAMILY_9000) {
1914                                iwl_mvm_flip_address(hdr->addr3);
1915
1916                                if (ieee80211_has_a4(hdr->frame_control))
1917                                        iwl_mvm_flip_address(hdr->addr4);
1918                        }
1919                }
1920                if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
1921                        u32 reorder_data = le32_to_cpu(desc->reorder_data);
1922
1923                        iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
1924                }
1925        }
1926
1927        if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
1928            rate_n_flags & RATE_MCS_SGI_MSK)
1929                rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1930        if (rate_n_flags & RATE_HT_MCS_GF_MSK)
1931                rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
1932        if (rate_n_flags & RATE_MCS_LDPC_MSK)
1933                rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1934        if (rate_n_flags & RATE_MCS_HT_MSK) {
1935                u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1936                                RATE_MCS_STBC_POS;
1937                rx_status->encoding = RX_ENC_HT;
1938                rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
1939                rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1940        } else if (rate_n_flags & RATE_MCS_VHT_MSK) {
1941                u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1942                                RATE_MCS_STBC_POS;
1943                rx_status->nss =
1944                        ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
1945                                                RATE_VHT_MCS_NSS_POS) + 1;
1946                rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1947                rx_status->encoding = RX_ENC_VHT;
1948                rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1949                if (rate_n_flags & RATE_MCS_BF_MSK)
1950                        rx_status->enc_flags |= RX_ENC_FLAG_BF;
1951        } else if (!(rate_n_flags & RATE_MCS_HE_MSK)) {
1952                int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
1953                                                               rx_status->band);
1954
1955                if (WARN(rate < 0 || rate > 0xFF,
1956                         "Invalid rate flags 0x%x, band %d,\n",
1957                         rate_n_flags, rx_status->band)) {
1958                        kfree_skb(skb);
1959                        goto out;
1960                }
1961                rx_status->rate_idx = rate;
1962        }
1963
1964        /* management stuff on default queue */
1965        if (!queue) {
1966                if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
1967                              ieee80211_is_probe_resp(hdr->frame_control)) &&
1968                             mvm->sched_scan_pass_all ==
1969                             SCHED_SCAN_PASS_ALL_ENABLED))
1970                        mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
1971
1972                if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
1973                             ieee80211_is_probe_resp(hdr->frame_control)))
1974                        rx_status->boottime_ns = ktime_get_boottime_ns();
1975        }
1976
1977        if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
1978                kfree_skb(skb);
1979                goto out;
1980        }
1981
1982        if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc))
1983                iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue,
1984                                                sta, csi);
1985out:
1986        rcu_read_unlock();
1987}
1988
1989void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
1990                                struct iwl_rx_cmd_buffer *rxb, int queue)
1991{
1992        struct ieee80211_rx_status *rx_status;
1993        struct iwl_rx_packet *pkt = rxb_addr(rxb);
1994        struct iwl_rx_no_data *desc = (void *)pkt->data;
1995        u32 rate_n_flags = le32_to_cpu(desc->rate);
1996        u32 gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
1997        u32 rssi = le32_to_cpu(desc->rssi);
1998        u32 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
1999        u16 phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
2000        struct ieee80211_sta *sta = NULL;
2001        struct sk_buff *skb;
2002        u8 channel, energy_a, energy_b;
2003        struct iwl_mvm_rx_phy_data phy_data = {
2004                .info_type = le32_get_bits(desc->phy_info[1],
2005                                           IWL_RX_PHY_DATA1_INFO_TYPE_MASK),
2006                .d0 = desc->phy_info[0],
2007                .d1 = desc->phy_info[1],
2008        };
2009
2010        if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*desc)))
2011                return;
2012
2013        if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2014                return;
2015
2016        energy_a = (rssi & RX_NO_DATA_CHAIN_A_MSK) >> RX_NO_DATA_CHAIN_A_POS;
2017        energy_b = (rssi & RX_NO_DATA_CHAIN_B_MSK) >> RX_NO_DATA_CHAIN_B_POS;
2018        channel = (rssi & RX_NO_DATA_CHANNEL_MSK) >> RX_NO_DATA_CHANNEL_POS;
2019
2020        /* Dont use dev_alloc_skb(), we'll have enough headroom once
2021         * ieee80211_hdr pulled.
2022         */
2023        skb = alloc_skb(128, GFP_ATOMIC);
2024        if (!skb) {
2025                IWL_ERR(mvm, "alloc_skb failed\n");
2026                return;
2027        }
2028
2029        rx_status = IEEE80211_SKB_RXCB(skb);
2030
2031        /* 0-length PSDU */
2032        rx_status->flag |= RX_FLAG_NO_PSDU;
2033
2034        switch (info_type) {
2035        case RX_NO_DATA_INFO_TYPE_NDP:
2036                rx_status->zero_length_psdu_type =
2037                        IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
2038                break;
2039        case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
2040        case RX_NO_DATA_INFO_TYPE_HE_TB_UNMATCHED:
2041                rx_status->zero_length_psdu_type =
2042                        IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
2043                break;
2044        default:
2045                rx_status->zero_length_psdu_type =
2046                        IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
2047                break;
2048        }
2049
2050        /* This may be overridden by iwl_mvm_rx_he() to HE_RU */
2051        switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
2052        case RATE_MCS_CHAN_WIDTH_20:
2053                break;
2054        case RATE_MCS_CHAN_WIDTH_40:
2055                rx_status->bw = RATE_INFO_BW_40;
2056                break;
2057        case RATE_MCS_CHAN_WIDTH_80:
2058                rx_status->bw = RATE_INFO_BW_80;
2059                break;
2060        case RATE_MCS_CHAN_WIDTH_160:
2061                rx_status->bw = RATE_INFO_BW_160;
2062                break;
2063        }
2064
2065        if (rate_n_flags & RATE_MCS_HE_MSK)
2066                iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
2067                              phy_info, queue);
2068
2069        iwl_mvm_decode_lsig(skb, &phy_data);
2070
2071        rx_status->device_timestamp = gp2_on_air_rise;
2072        rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
2073                NL80211_BAND_2GHZ;
2074        rx_status->freq = ieee80211_channel_to_frequency(channel,
2075                                                         rx_status->band);
2076        iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
2077                                    energy_b);
2078
2079        rcu_read_lock();
2080
2081        if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
2082            rate_n_flags & RATE_MCS_SGI_MSK)
2083                rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
2084        if (rate_n_flags & RATE_HT_MCS_GF_MSK)
2085                rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
2086        if (rate_n_flags & RATE_MCS_LDPC_MSK)
2087                rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
2088        if (rate_n_flags & RATE_MCS_HT_MSK) {
2089                u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
2090                                RATE_MCS_STBC_POS;
2091                rx_status->encoding = RX_ENC_HT;
2092                rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
2093                rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2094        } else if (rate_n_flags & RATE_MCS_VHT_MSK) {
2095                u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
2096                                RATE_MCS_STBC_POS;
2097                rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
2098                rx_status->encoding = RX_ENC_VHT;
2099                rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2100                if (rate_n_flags & RATE_MCS_BF_MSK)
2101                        rx_status->enc_flags |= RX_ENC_FLAG_BF;
2102                /*
2103                 * take the nss from the rx_vec since the rate_n_flags has
2104                 * only 2 bits for the nss which gives a max of 4 ss but
2105                 * there may be up to 8 spatial streams
2106                 */
2107                rx_status->nss =
2108                        le32_get_bits(desc->rx_vec[0],
2109                                      RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
2110        } else if (rate_n_flags & RATE_MCS_HE_MSK) {
2111                rx_status->nss =
2112                        le32_get_bits(desc->rx_vec[0],
2113                                      RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2114        } else {
2115                int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
2116                                                               rx_status->band);
2117
2118                if (WARN(rate < 0 || rate > 0xFF,
2119                         "Invalid rate flags 0x%x, band %d,\n",
2120                         rate_n_flags, rx_status->band)) {
2121                        kfree_skb(skb);
2122                        goto out;
2123                }
2124                rx_status->rate_idx = rate;
2125        }
2126
2127        ieee80211_rx_napi(mvm->hw, sta, skb, napi);
2128out:
2129        rcu_read_unlock();
2130}
2131
2132void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2133                              struct iwl_rx_cmd_buffer *rxb, int queue)
2134{
2135        struct iwl_rx_packet *pkt = rxb_addr(rxb);
2136        struct iwl_frame_release *release = (void *)pkt->data;
2137
2138        if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2139                return;
2140
2141        iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
2142                                          le16_to_cpu(release->nssn),
2143                                          queue, 0);
2144}
2145
2146void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2147                                  struct iwl_rx_cmd_buffer *rxb, int queue)
2148{
2149        struct iwl_rx_packet *pkt = rxb_addr(rxb);
2150        struct iwl_bar_frame_release *release = (void *)pkt->data;
2151        unsigned int baid = le32_get_bits(release->ba_info,
2152                                          IWL_BAR_FRAME_RELEASE_BAID_MASK);
2153        unsigned int nssn = le32_get_bits(release->ba_info,
2154                                          IWL_BAR_FRAME_RELEASE_NSSN_MASK);
2155        unsigned int sta_id = le32_get_bits(release->sta_tid,
2156                                            IWL_BAR_FRAME_RELEASE_STA_MASK);
2157        unsigned int tid = le32_get_bits(release->sta_tid,
2158                                         IWL_BAR_FRAME_RELEASE_TID_MASK);
2159        struct iwl_mvm_baid_data *baid_data;
2160
2161        if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2162                return;
2163
2164        if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
2165                         baid >= ARRAY_SIZE(mvm->baid_map)))
2166                return;
2167
2168        rcu_read_lock();
2169        baid_data = rcu_dereference(mvm->baid_map[baid]);
2170        if (!baid_data) {
2171                IWL_DEBUG_RX(mvm,
2172                             "Got valid BAID %d but not allocated, invalid BAR release!\n",
2173                              baid);
2174                goto out;
2175        }
2176
2177        if (WARN(tid != baid_data->tid || sta_id != baid_data->sta_id,
2178                 "baid 0x%x is mapped to sta:%d tid:%d, but BAR release received for sta:%d tid:%d\n",
2179                 baid, baid_data->sta_id, baid_data->tid, sta_id,
2180                 tid))
2181                goto out;
2182
2183        iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0);
2184out:
2185        rcu_read_unlock();
2186}
2187