linux/drivers/net/wireless/ralink/rt2x00/rt2x00queue.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3        Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
   4        Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
   5        Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
   6        <http://rt2x00.serialmonkey.com>
   7
   8 */
   9
  10/*
  11        Module: rt2x00lib
  12        Abstract: rt2x00 queue specific routines.
  13 */
  14
  15#include <linux/slab.h>
  16#include <linux/kernel.h>
  17#include <linux/module.h>
  18#include <linux/dma-mapping.h>
  19
  20#include "rt2x00.h"
  21#include "rt2x00lib.h"
  22
  23struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry, gfp_t gfp)
  24{
  25        struct data_queue *queue = entry->queue;
  26        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  27        struct sk_buff *skb;
  28        struct skb_frame_desc *skbdesc;
  29        unsigned int frame_size;
  30        unsigned int head_size = 0;
  31        unsigned int tail_size = 0;
  32
  33        /*
  34         * The frame size includes descriptor size, because the
  35         * hardware directly receive the frame into the skbuffer.
  36         */
  37        frame_size = queue->data_size + queue->desc_size + queue->winfo_size;
  38
  39        /*
  40         * The payload should be aligned to a 4-byte boundary,
  41         * this means we need at least 3 bytes for moving the frame
  42         * into the correct offset.
  43         */
  44        head_size = 4;
  45
  46        /*
  47         * For IV/EIV/ICV assembly we must make sure there is
  48         * at least 8 bytes bytes available in headroom for IV/EIV
  49         * and 8 bytes for ICV data as tailroon.
  50         */
  51        if (rt2x00_has_cap_hw_crypto(rt2x00dev)) {
  52                head_size += 8;
  53                tail_size += 8;
  54        }
  55
  56        /*
  57         * Allocate skbuffer.
  58         */
  59        skb = __dev_alloc_skb(frame_size + head_size + tail_size, gfp);
  60        if (!skb)
  61                return NULL;
  62
  63        /*
  64         * Make sure we not have a frame with the requested bytes
  65         * available in the head and tail.
  66         */
  67        skb_reserve(skb, head_size);
  68        skb_put(skb, frame_size);
  69
  70        /*
  71         * Populate skbdesc.
  72         */
  73        skbdesc = get_skb_frame_desc(skb);
  74        memset(skbdesc, 0, sizeof(*skbdesc));
  75
  76        if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA)) {
  77                dma_addr_t skb_dma;
  78
  79                skb_dma = dma_map_single(rt2x00dev->dev, skb->data, skb->len,
  80                                         DMA_FROM_DEVICE);
  81                if (unlikely(dma_mapping_error(rt2x00dev->dev, skb_dma))) {
  82                        dev_kfree_skb_any(skb);
  83                        return NULL;
  84                }
  85
  86                skbdesc->skb_dma = skb_dma;
  87                skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
  88        }
  89
  90        return skb;
  91}
  92
  93int rt2x00queue_map_txskb(struct queue_entry *entry)
  94{
  95        struct device *dev = entry->queue->rt2x00dev->dev;
  96        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  97
  98        skbdesc->skb_dma =
  99            dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE);
 100
 101        if (unlikely(dma_mapping_error(dev, skbdesc->skb_dma)))
 102                return -ENOMEM;
 103
 104        skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
 105        rt2x00lib_dmadone(entry);
 106        return 0;
 107}
 108EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
 109
 110void rt2x00queue_unmap_skb(struct queue_entry *entry)
 111{
 112        struct device *dev = entry->queue->rt2x00dev->dev;
 113        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 114
 115        if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
 116                dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
 117                                 DMA_FROM_DEVICE);
 118                skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
 119        } else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
 120                dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
 121                                 DMA_TO_DEVICE);
 122                skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
 123        }
 124}
 125EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
 126
 127void rt2x00queue_free_skb(struct queue_entry *entry)
 128{
 129        if (!entry->skb)
 130                return;
 131
 132        rt2x00queue_unmap_skb(entry);
 133        dev_kfree_skb_any(entry->skb);
 134        entry->skb = NULL;
 135}
 136
 137void rt2x00queue_align_frame(struct sk_buff *skb)
 138{
 139        unsigned int frame_length = skb->len;
 140        unsigned int align = ALIGN_SIZE(skb, 0);
 141
 142        if (!align)
 143                return;
 144
 145        skb_push(skb, align);
 146        memmove(skb->data, skb->data + align, frame_length);
 147        skb_trim(skb, frame_length);
 148}
 149
 150/*
 151 * H/W needs L2 padding between the header and the paylod if header size
 152 * is not 4 bytes aligned.
 153 */
 154void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int hdr_len)
 155{
 156        unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0;
 157
 158        if (!l2pad)
 159                return;
 160
 161        skb_push(skb, l2pad);
 162        memmove(skb->data, skb->data + l2pad, hdr_len);
 163}
 164
 165void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int hdr_len)
 166{
 167        unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0;
 168
 169        if (!l2pad)
 170                return;
 171
 172        memmove(skb->data + l2pad, skb->data, hdr_len);
 173        skb_pull(skb, l2pad);
 174}
 175
 176static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev *rt2x00dev,
 177                                                 struct sk_buff *skb,
 178                                                 struct txentry_desc *txdesc)
 179{
 180        struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
 181        struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
 182        struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
 183        u16 seqno;
 184
 185        if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
 186                return;
 187
 188        __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
 189
 190        if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_SW_SEQNO)) {
 191                /*
 192                 * rt2800 has a H/W (or F/W) bug, device incorrectly increase
 193                 * seqno on retransmitted data (non-QOS) and management frames.
 194                 * To workaround the problem let's generate seqno in software.
 195                 * Except for beacons which are transmitted periodically by H/W
 196                 * hence hardware has to assign seqno for them.
 197                 */
 198                if (ieee80211_is_beacon(hdr->frame_control)) {
 199                        __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
 200                        /* H/W will generate sequence number */
 201                        return;
 202                }
 203
 204                __clear_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
 205        }
 206
 207        /*
 208         * The hardware is not able to insert a sequence number. Assign a
 209         * software generated one here.
 210         *
 211         * This is wrong because beacons are not getting sequence
 212         * numbers assigned properly.
 213         *
 214         * A secondary problem exists for drivers that cannot toggle
 215         * sequence counting per-frame, since those will override the
 216         * sequence counter given by mac80211.
 217         */
 218        if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
 219                seqno = atomic_add_return(0x10, &intf->seqno);
 220        else
 221                seqno = atomic_read(&intf->seqno);
 222
 223        hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
 224        hdr->seq_ctrl |= cpu_to_le16(seqno);
 225}
 226
 227static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev *rt2x00dev,
 228                                                  struct sk_buff *skb,
 229                                                  struct txentry_desc *txdesc,
 230                                                  const struct rt2x00_rate *hwrate)
 231{
 232        struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
 233        struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
 234        unsigned int data_length;
 235        unsigned int duration;
 236        unsigned int residual;
 237
 238        /*
 239         * Determine with what IFS priority this frame should be send.
 240         * Set ifs to IFS_SIFS when the this is not the first fragment,
 241         * or this fragment came after RTS/CTS.
 242         */
 243        if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
 244                txdesc->u.plcp.ifs = IFS_BACKOFF;
 245        else
 246                txdesc->u.plcp.ifs = IFS_SIFS;
 247
 248        /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
 249        data_length = skb->len + 4;
 250        data_length += rt2x00crypto_tx_overhead(rt2x00dev, skb);
 251
 252        /*
 253         * PLCP setup
 254         * Length calculation depends on OFDM/CCK rate.
 255         */
 256        txdesc->u.plcp.signal = hwrate->plcp;
 257        txdesc->u.plcp.service = 0x04;
 258
 259        if (hwrate->flags & DEV_RATE_OFDM) {
 260                txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f;
 261                txdesc->u.plcp.length_low = data_length & 0x3f;
 262        } else {
 263                /*
 264                 * Convert length to microseconds.
 265                 */
 266                residual = GET_DURATION_RES(data_length, hwrate->bitrate);
 267                duration = GET_DURATION(data_length, hwrate->bitrate);
 268
 269                if (residual != 0) {
 270                        duration++;
 271
 272                        /*
 273                         * Check if we need to set the Length Extension
 274                         */
 275                        if (hwrate->bitrate == 110 && residual <= 30)
 276                                txdesc->u.plcp.service |= 0x80;
 277                }
 278
 279                txdesc->u.plcp.length_high = (duration >> 8) & 0xff;
 280                txdesc->u.plcp.length_low = duration & 0xff;
 281
 282                /*
 283                 * When preamble is enabled we should set the
 284                 * preamble bit for the signal.
 285                 */
 286                if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
 287                        txdesc->u.plcp.signal |= 0x08;
 288        }
 289}
 290
 291static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev *rt2x00dev,
 292                                                struct sk_buff *skb,
 293                                                struct txentry_desc *txdesc,
 294                                                struct ieee80211_sta *sta,
 295                                                const struct rt2x00_rate *hwrate)
 296{
 297        struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
 298        struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
 299        struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
 300        struct rt2x00_sta *sta_priv = NULL;
 301        u8 density = 0;
 302
 303        if (sta) {
 304                sta_priv = sta_to_rt2x00_sta(sta);
 305                txdesc->u.ht.wcid = sta_priv->wcid;
 306                density = sta->ht_cap.ampdu_density;
 307        }
 308
 309        /*
 310         * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the
 311         * mcs rate to be used
 312         */
 313        if (txrate->flags & IEEE80211_TX_RC_MCS) {
 314                txdesc->u.ht.mcs = txrate->idx;
 315
 316                /*
 317                 * MIMO PS should be set to 1 for STA's using dynamic SM PS
 318                 * when using more then one tx stream (>MCS7).
 319                 */
 320                if (sta && txdesc->u.ht.mcs > 7 &&
 321                    sta->smps_mode == IEEE80211_SMPS_DYNAMIC)
 322                        __set_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags);
 323        } else {
 324                txdesc->u.ht.mcs = rt2x00_get_rate_mcs(hwrate->mcs);
 325                if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
 326                        txdesc->u.ht.mcs |= 0x08;
 327        }
 328
 329        if (test_bit(CONFIG_HT_DISABLED, &rt2x00dev->flags)) {
 330                if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
 331                        txdesc->u.ht.txop = TXOP_SIFS;
 332                else
 333                        txdesc->u.ht.txop = TXOP_BACKOFF;
 334
 335                /* Left zero on all other settings. */
 336                return;
 337        }
 338
 339        /*
 340         * Only one STBC stream is supported for now.
 341         */
 342        if (tx_info->flags & IEEE80211_TX_CTL_STBC)
 343                txdesc->u.ht.stbc = 1;
 344
 345        /*
 346         * This frame is eligible for an AMPDU, however, don't aggregate
 347         * frames that are intended to probe a specific tx rate.
 348         */
 349        if (tx_info->flags & IEEE80211_TX_CTL_AMPDU &&
 350            !(tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)) {
 351                __set_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags);
 352                txdesc->u.ht.mpdu_density = density;
 353                txdesc->u.ht.ba_size = 7; /* FIXME: What value is needed? */
 354        }
 355
 356        /*
 357         * Set 40Mhz mode if necessary (for legacy rates this will
 358         * duplicate the frame to both channels).
 359         */
 360        if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH ||
 361            txrate->flags & IEEE80211_TX_RC_DUP_DATA)
 362                __set_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags);
 363        if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
 364                __set_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags);
 365
 366        /*
 367         * Determine IFS values
 368         * - Use TXOP_BACKOFF for management frames except beacons
 369         * - Use TXOP_SIFS for fragment bursts
 370         * - Use TXOP_HTTXOP for everything else
 371         *
 372         * Note: rt2800 devices won't use CTS protection (if used)
 373         * for frames not transmitted with TXOP_HTTXOP
 374         */
 375        if (ieee80211_is_mgmt(hdr->frame_control) &&
 376            !ieee80211_is_beacon(hdr->frame_control))
 377                txdesc->u.ht.txop = TXOP_BACKOFF;
 378        else if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
 379                txdesc->u.ht.txop = TXOP_SIFS;
 380        else
 381                txdesc->u.ht.txop = TXOP_HTTXOP;
 382}
 383
 384static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev *rt2x00dev,
 385                                             struct sk_buff *skb,
 386                                             struct txentry_desc *txdesc,
 387                                             struct ieee80211_sta *sta)
 388{
 389        struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
 390        struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
 391        struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
 392        struct ieee80211_rate *rate;
 393        const struct rt2x00_rate *hwrate = NULL;
 394
 395        memset(txdesc, 0, sizeof(*txdesc));
 396
 397        /*
 398         * Header and frame information.
 399         */
 400        txdesc->length = skb->len;
 401        txdesc->header_length = ieee80211_get_hdrlen_from_skb(skb);
 402
 403        /*
 404         * Check whether this frame is to be acked.
 405         */
 406        if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
 407                __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
 408
 409        /*
 410         * Check if this is a RTS/CTS frame
 411         */
 412        if (ieee80211_is_rts(hdr->frame_control) ||
 413            ieee80211_is_cts(hdr->frame_control)) {
 414                __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
 415                if (ieee80211_is_rts(hdr->frame_control))
 416                        __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
 417                else
 418                        __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
 419                if (tx_info->control.rts_cts_rate_idx >= 0)
 420                        rate =
 421                            ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
 422        }
 423
 424        /*
 425         * Determine retry information.
 426         */
 427        txdesc->retry_limit = tx_info->control.rates[0].count - 1;
 428        if (txdesc->retry_limit >= rt2x00dev->long_retry)
 429                __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
 430
 431        /*
 432         * Check if more fragments are pending
 433         */
 434        if (ieee80211_has_morefrags(hdr->frame_control)) {
 435                __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
 436                __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
 437        }
 438
 439        /*
 440         * Check if more frames (!= fragments) are pending
 441         */
 442        if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
 443                __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
 444
 445        /*
 446         * Beacons and probe responses require the tsf timestamp
 447         * to be inserted into the frame.
 448         */
 449        if ((ieee80211_is_beacon(hdr->frame_control) ||
 450             ieee80211_is_probe_resp(hdr->frame_control)) &&
 451            !(tx_info->flags & IEEE80211_TX_CTL_INJECTED))
 452                __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
 453
 454        if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
 455            !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags))
 456                __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
 457
 458        /*
 459         * Determine rate modulation.
 460         */
 461        if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
 462                txdesc->rate_mode = RATE_MODE_HT_GREENFIELD;
 463        else if (txrate->flags & IEEE80211_TX_RC_MCS)
 464                txdesc->rate_mode = RATE_MODE_HT_MIX;
 465        else {
 466                rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
 467                hwrate = rt2x00_get_rate(rate->hw_value);
 468                if (hwrate->flags & DEV_RATE_OFDM)
 469                        txdesc->rate_mode = RATE_MODE_OFDM;
 470                else
 471                        txdesc->rate_mode = RATE_MODE_CCK;
 472        }
 473
 474        /*
 475         * Apply TX descriptor handling by components
 476         */
 477        rt2x00crypto_create_tx_descriptor(rt2x00dev, skb, txdesc);
 478        rt2x00queue_create_tx_descriptor_seq(rt2x00dev, skb, txdesc);
 479
 480        if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_HT_TX_DESC))
 481                rt2x00queue_create_tx_descriptor_ht(rt2x00dev, skb, txdesc,
 482                                                   sta, hwrate);
 483        else
 484                rt2x00queue_create_tx_descriptor_plcp(rt2x00dev, skb, txdesc,
 485                                                      hwrate);
 486}
 487
 488static int rt2x00queue_write_tx_data(struct queue_entry *entry,
 489                                     struct txentry_desc *txdesc)
 490{
 491        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 492
 493        /*
 494         * This should not happen, we already checked the entry
 495         * was ours. When the hardware disagrees there has been
 496         * a queue corruption!
 497         */
 498        if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
 499                     rt2x00dev->ops->lib->get_entry_state(entry))) {
 500                rt2x00_err(rt2x00dev,
 501                           "Corrupt queue %d, accessing entry which is not ours\n"
 502                           "Please file bug report to %s\n",
 503                           entry->queue->qid, DRV_PROJECT);
 504                return -EINVAL;
 505        }
 506
 507        /*
 508         * Add the requested extra tx headroom in front of the skb.
 509         */
 510        skb_push(entry->skb, rt2x00dev->extra_tx_headroom);
 511        memset(entry->skb->data, 0, rt2x00dev->extra_tx_headroom);
 512
 513        /*
 514         * Call the driver's write_tx_data function, if it exists.
 515         */
 516        if (rt2x00dev->ops->lib->write_tx_data)
 517                rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
 518
 519        /*
 520         * Map the skb to DMA.
 521         */
 522        if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA) &&
 523            rt2x00queue_map_txskb(entry))
 524                return -ENOMEM;
 525
 526        return 0;
 527}
 528
 529static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
 530                                            struct txentry_desc *txdesc)
 531{
 532        struct data_queue *queue = entry->queue;
 533
 534        queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
 535
 536        /*
 537         * All processing on the frame has been completed, this means
 538         * it is now ready to be dumped to userspace through debugfs.
 539         */
 540        rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry);
 541}
 542
 543static void rt2x00queue_kick_tx_queue(struct data_queue *queue,
 544                                      struct txentry_desc *txdesc)
 545{
 546        /*
 547         * Check if we need to kick the queue, there are however a few rules
 548         *      1) Don't kick unless this is the last in frame in a burst.
 549         *         When the burst flag is set, this frame is always followed
 550         *         by another frame which in some way are related to eachother.
 551         *         This is true for fragments, RTS or CTS-to-self frames.
 552         *      2) Rule 1 can be broken when the available entries
 553         *         in the queue are less then a certain threshold.
 554         */
 555        if (rt2x00queue_threshold(queue) ||
 556            !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
 557                queue->rt2x00dev->ops->lib->kick_queue(queue);
 558}
 559
 560static void rt2x00queue_bar_check(struct queue_entry *entry)
 561{
 562        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 563        struct ieee80211_bar *bar = (void *) (entry->skb->data +
 564                                    rt2x00dev->extra_tx_headroom);
 565        struct rt2x00_bar_list_entry *bar_entry;
 566
 567        if (likely(!ieee80211_is_back_req(bar->frame_control)))
 568                return;
 569
 570        bar_entry = kmalloc(sizeof(*bar_entry), GFP_ATOMIC);
 571
 572        /*
 573         * If the alloc fails we still send the BAR out but just don't track
 574         * it in our bar list. And as a result we will report it to mac80211
 575         * back as failed.
 576         */
 577        if (!bar_entry)
 578                return;
 579
 580        bar_entry->entry = entry;
 581        bar_entry->block_acked = 0;
 582
 583        /*
 584         * Copy the relevant parts of the 802.11 BAR into out check list
 585         * such that we can use RCU for less-overhead in the RX path since
 586         * sending BARs and processing the according BlockAck should be
 587         * the exception.
 588         */
 589        memcpy(bar_entry->ra, bar->ra, sizeof(bar->ra));
 590        memcpy(bar_entry->ta, bar->ta, sizeof(bar->ta));
 591        bar_entry->control = bar->control;
 592        bar_entry->start_seq_num = bar->start_seq_num;
 593
 594        /*
 595         * Insert BAR into our BAR check list.
 596         */
 597        spin_lock_bh(&rt2x00dev->bar_list_lock);
 598        list_add_tail_rcu(&bar_entry->list, &rt2x00dev->bar_list);
 599        spin_unlock_bh(&rt2x00dev->bar_list_lock);
 600}
 601
 602int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
 603                               struct ieee80211_sta *sta, bool local)
 604{
 605        struct ieee80211_tx_info *tx_info;
 606        struct queue_entry *entry;
 607        struct txentry_desc txdesc;
 608        struct skb_frame_desc *skbdesc;
 609        u8 rate_idx, rate_flags;
 610        int ret = 0;
 611
 612        /*
 613         * Copy all TX descriptor information into txdesc,
 614         * after that we are free to use the skb->cb array
 615         * for our information.
 616         */
 617        rt2x00queue_create_tx_descriptor(queue->rt2x00dev, skb, &txdesc, sta);
 618
 619        /*
 620         * All information is retrieved from the skb->cb array,
 621         * now we should claim ownership of the driver part of that
 622         * array, preserving the bitrate index and flags.
 623         */
 624        tx_info = IEEE80211_SKB_CB(skb);
 625        rate_idx = tx_info->control.rates[0].idx;
 626        rate_flags = tx_info->control.rates[0].flags;
 627        skbdesc = get_skb_frame_desc(skb);
 628        memset(skbdesc, 0, sizeof(*skbdesc));
 629        skbdesc->tx_rate_idx = rate_idx;
 630        skbdesc->tx_rate_flags = rate_flags;
 631
 632        if (local)
 633                skbdesc->flags |= SKBDESC_NOT_MAC80211;
 634
 635        /*
 636         * When hardware encryption is supported, and this frame
 637         * is to be encrypted, we should strip the IV/EIV data from
 638         * the frame so we can provide it to the driver separately.
 639         */
 640        if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
 641            !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
 642                if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_COPY_IV))
 643                        rt2x00crypto_tx_copy_iv(skb, &txdesc);
 644                else
 645                        rt2x00crypto_tx_remove_iv(skb, &txdesc);
 646        }
 647
 648        /*
 649         * When DMA allocation is required we should guarantee to the
 650         * driver that the DMA is aligned to a 4-byte boundary.
 651         * However some drivers require L2 padding to pad the payload
 652         * rather then the header. This could be a requirement for
 653         * PCI and USB devices, while header alignment only is valid
 654         * for PCI devices.
 655         */
 656        if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_L2PAD))
 657                rt2x00queue_insert_l2pad(skb, txdesc.header_length);
 658        else if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_DMA))
 659                rt2x00queue_align_frame(skb);
 660
 661        /*
 662         * That function must be called with bh disabled.
 663         */
 664        spin_lock(&queue->tx_lock);
 665
 666        if (unlikely(rt2x00queue_full(queue))) {
 667                rt2x00_dbg(queue->rt2x00dev, "Dropping frame due to full tx queue %d\n",
 668                           queue->qid);
 669                ret = -ENOBUFS;
 670                goto out;
 671        }
 672
 673        entry = rt2x00queue_get_entry(queue, Q_INDEX);
 674
 675        if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA,
 676                                      &entry->flags))) {
 677                rt2x00_err(queue->rt2x00dev,
 678                           "Arrived at non-free entry in the non-full queue %d\n"
 679                           "Please file bug report to %s\n",
 680                           queue->qid, DRV_PROJECT);
 681                ret = -EINVAL;
 682                goto out;
 683        }
 684
 685        entry->skb = skb;
 686
 687        /*
 688         * It could be possible that the queue was corrupted and this
 689         * call failed. Since we always return NETDEV_TX_OK to mac80211,
 690         * this frame will simply be dropped.
 691         */
 692        if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
 693                clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
 694                entry->skb = NULL;
 695                ret = -EIO;
 696                goto out;
 697        }
 698
 699        /*
 700         * Put BlockAckReqs into our check list for driver BA processing.
 701         */
 702        rt2x00queue_bar_check(entry);
 703
 704        set_bit(ENTRY_DATA_PENDING, &entry->flags);
 705
 706        rt2x00queue_index_inc(entry, Q_INDEX);
 707        rt2x00queue_write_tx_descriptor(entry, &txdesc);
 708        rt2x00queue_kick_tx_queue(queue, &txdesc);
 709
 710out:
 711        /*
 712         * Pausing queue has to be serialized with rt2x00lib_txdone(), so we
 713         * do this under queue->tx_lock. Bottom halve was already disabled
 714         * before ieee80211_xmit() call.
 715         */
 716        if (rt2x00queue_threshold(queue))
 717                rt2x00queue_pause_queue(queue);
 718
 719        spin_unlock(&queue->tx_lock);
 720        return ret;
 721}
 722
 723int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev,
 724                             struct ieee80211_vif *vif)
 725{
 726        struct rt2x00_intf *intf = vif_to_intf(vif);
 727
 728        if (unlikely(!intf->beacon))
 729                return -ENOBUFS;
 730
 731        /*
 732         * Clean up the beacon skb.
 733         */
 734        rt2x00queue_free_skb(intf->beacon);
 735
 736        /*
 737         * Clear beacon (single bssid devices don't need to clear the beacon
 738         * since the beacon queue will get stopped anyway).
 739         */
 740        if (rt2x00dev->ops->lib->clear_beacon)
 741                rt2x00dev->ops->lib->clear_beacon(intf->beacon);
 742
 743        return 0;
 744}
 745
 746int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
 747                              struct ieee80211_vif *vif)
 748{
 749        struct rt2x00_intf *intf = vif_to_intf(vif);
 750        struct skb_frame_desc *skbdesc;
 751        struct txentry_desc txdesc;
 752
 753        if (unlikely(!intf->beacon))
 754                return -ENOBUFS;
 755
 756        /*
 757         * Clean up the beacon skb.
 758         */
 759        rt2x00queue_free_skb(intf->beacon);
 760
 761        intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
 762        if (!intf->beacon->skb)
 763                return -ENOMEM;
 764
 765        /*
 766         * Copy all TX descriptor information into txdesc,
 767         * after that we are free to use the skb->cb array
 768         * for our information.
 769         */
 770        rt2x00queue_create_tx_descriptor(rt2x00dev, intf->beacon->skb, &txdesc, NULL);
 771
 772        /*
 773         * Fill in skb descriptor
 774         */
 775        skbdesc = get_skb_frame_desc(intf->beacon->skb);
 776        memset(skbdesc, 0, sizeof(*skbdesc));
 777
 778        /*
 779         * Send beacon to hardware.
 780         */
 781        rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
 782
 783        return 0;
 784
 785}
 786
 787bool rt2x00queue_for_each_entry(struct data_queue *queue,
 788                                enum queue_index start,
 789                                enum queue_index end,
 790                                void *data,
 791                                bool (*fn)(struct queue_entry *entry,
 792                                           void *data))
 793{
 794        unsigned long irqflags;
 795        unsigned int index_start;
 796        unsigned int index_end;
 797        unsigned int i;
 798
 799        if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
 800                rt2x00_err(queue->rt2x00dev,
 801                           "Entry requested from invalid index range (%d - %d)\n",
 802                           start, end);
 803                return true;
 804        }
 805
 806        /*
 807         * Only protect the range we are going to loop over,
 808         * if during our loop a extra entry is set to pending
 809         * it should not be kicked during this run, since it
 810         * is part of another TX operation.
 811         */
 812        spin_lock_irqsave(&queue->index_lock, irqflags);
 813        index_start = queue->index[start];
 814        index_end = queue->index[end];
 815        spin_unlock_irqrestore(&queue->index_lock, irqflags);
 816
 817        /*
 818         * Start from the TX done pointer, this guarantees that we will
 819         * send out all frames in the correct order.
 820         */
 821        if (index_start < index_end) {
 822                for (i = index_start; i < index_end; i++) {
 823                        if (fn(&queue->entries[i], data))
 824                                return true;
 825                }
 826        } else {
 827                for (i = index_start; i < queue->limit; i++) {
 828                        if (fn(&queue->entries[i], data))
 829                                return true;
 830                }
 831
 832                for (i = 0; i < index_end; i++) {
 833                        if (fn(&queue->entries[i], data))
 834                                return true;
 835                }
 836        }
 837
 838        return false;
 839}
 840EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
 841
 842struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
 843                                          enum queue_index index)
 844{
 845        struct queue_entry *entry;
 846        unsigned long irqflags;
 847
 848        if (unlikely(index >= Q_INDEX_MAX)) {
 849                rt2x00_err(queue->rt2x00dev, "Entry requested from invalid index type (%d)\n",
 850                           index);
 851                return NULL;
 852        }
 853
 854        spin_lock_irqsave(&queue->index_lock, irqflags);
 855
 856        entry = &queue->entries[queue->index[index]];
 857
 858        spin_unlock_irqrestore(&queue->index_lock, irqflags);
 859
 860        return entry;
 861}
 862EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
 863
 864void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index)
 865{
 866        struct data_queue *queue = entry->queue;
 867        unsigned long irqflags;
 868
 869        if (unlikely(index >= Q_INDEX_MAX)) {
 870                rt2x00_err(queue->rt2x00dev,
 871                           "Index change on invalid index type (%d)\n", index);
 872                return;
 873        }
 874
 875        spin_lock_irqsave(&queue->index_lock, irqflags);
 876
 877        queue->index[index]++;
 878        if (queue->index[index] >= queue->limit)
 879                queue->index[index] = 0;
 880
 881        entry->last_action = jiffies;
 882
 883        if (index == Q_INDEX) {
 884                queue->length++;
 885        } else if (index == Q_INDEX_DONE) {
 886                queue->length--;
 887                queue->count++;
 888        }
 889
 890        spin_unlock_irqrestore(&queue->index_lock, irqflags);
 891}
 892
 893static void rt2x00queue_pause_queue_nocheck(struct data_queue *queue)
 894{
 895        switch (queue->qid) {
 896        case QID_AC_VO:
 897        case QID_AC_VI:
 898        case QID_AC_BE:
 899        case QID_AC_BK:
 900                /*
 901                 * For TX queues, we have to disable the queue
 902                 * inside mac80211.
 903                 */
 904                ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid);
 905                break;
 906        default:
 907                break;
 908        }
 909}
 910void rt2x00queue_pause_queue(struct data_queue *queue)
 911{
 912        if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
 913            !test_bit(QUEUE_STARTED, &queue->flags) ||
 914            test_and_set_bit(QUEUE_PAUSED, &queue->flags))
 915                return;
 916
 917        rt2x00queue_pause_queue_nocheck(queue);
 918}
 919EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue);
 920
 921void rt2x00queue_unpause_queue(struct data_queue *queue)
 922{
 923        if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
 924            !test_bit(QUEUE_STARTED, &queue->flags) ||
 925            !test_and_clear_bit(QUEUE_PAUSED, &queue->flags))
 926                return;
 927
 928        switch (queue->qid) {
 929        case QID_AC_VO:
 930        case QID_AC_VI:
 931        case QID_AC_BE:
 932        case QID_AC_BK:
 933                /*
 934                 * For TX queues, we have to enable the queue
 935                 * inside mac80211.
 936                 */
 937                ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid);
 938                break;
 939        case QID_RX:
 940                /*
 941                 * For RX we need to kick the queue now in order to
 942                 * receive frames.
 943                 */
 944                queue->rt2x00dev->ops->lib->kick_queue(queue);
 945                break;
 946        default:
 947                break;
 948        }
 949}
 950EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue);
 951
 952void rt2x00queue_start_queue(struct data_queue *queue)
 953{
 954        mutex_lock(&queue->status_lock);
 955
 956        if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
 957            test_and_set_bit(QUEUE_STARTED, &queue->flags)) {
 958                mutex_unlock(&queue->status_lock);
 959                return;
 960        }
 961
 962        set_bit(QUEUE_PAUSED, &queue->flags);
 963
 964        queue->rt2x00dev->ops->lib->start_queue(queue);
 965
 966        rt2x00queue_unpause_queue(queue);
 967
 968        mutex_unlock(&queue->status_lock);
 969}
 970EXPORT_SYMBOL_GPL(rt2x00queue_start_queue);
 971
 972void rt2x00queue_stop_queue(struct data_queue *queue)
 973{
 974        mutex_lock(&queue->status_lock);
 975
 976        if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) {
 977                mutex_unlock(&queue->status_lock);
 978                return;
 979        }
 980
 981        rt2x00queue_pause_queue_nocheck(queue);
 982
 983        queue->rt2x00dev->ops->lib->stop_queue(queue);
 984
 985        mutex_unlock(&queue->status_lock);
 986}
 987EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue);
 988
 989void rt2x00queue_flush_queue(struct data_queue *queue, bool drop)
 990{
 991        bool tx_queue =
 992                (queue->qid == QID_AC_VO) ||
 993                (queue->qid == QID_AC_VI) ||
 994                (queue->qid == QID_AC_BE) ||
 995                (queue->qid == QID_AC_BK);
 996
 997        if (rt2x00queue_empty(queue))
 998                return;
 999
1000        /*
1001         * If we are not supposed to drop any pending
1002         * frames, this means we must force a start (=kick)
1003         * to the queue to make sure the hardware will
1004         * start transmitting.
1005         */
1006        if (!drop && tx_queue)
1007                queue->rt2x00dev->ops->lib->kick_queue(queue);
1008
1009        /*
1010         * Check if driver supports flushing, if that is the case we can
1011         * defer the flushing to the driver. Otherwise we must use the
1012         * alternative which just waits for the queue to become empty.
1013         */
1014        if (likely(queue->rt2x00dev->ops->lib->flush_queue))
1015                queue->rt2x00dev->ops->lib->flush_queue(queue, drop);
1016
1017        /*
1018         * The queue flush has failed...
1019         */
1020        if (unlikely(!rt2x00queue_empty(queue)))
1021                rt2x00_warn(queue->rt2x00dev, "Queue %d failed to flush\n",
1022                            queue->qid);
1023}
1024EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue);
1025
1026void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev)
1027{
1028        struct data_queue *queue;
1029
1030        /*
1031         * rt2x00queue_start_queue will call ieee80211_wake_queue
1032         * for each queue after is has been properly initialized.
1033         */
1034        tx_queue_for_each(rt2x00dev, queue)
1035                rt2x00queue_start_queue(queue);
1036
1037        rt2x00queue_start_queue(rt2x00dev->rx);
1038}
1039EXPORT_SYMBOL_GPL(rt2x00queue_start_queues);
1040
1041void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
1042{
1043        struct data_queue *queue;
1044
1045        /*
1046         * rt2x00queue_stop_queue will call ieee80211_stop_queue
1047         * as well, but we are completely shutting doing everything
1048         * now, so it is much safer to stop all TX queues at once,
1049         * and use rt2x00queue_stop_queue for cleaning up.
1050         */
1051        ieee80211_stop_queues(rt2x00dev->hw);
1052
1053        tx_queue_for_each(rt2x00dev, queue)
1054                rt2x00queue_stop_queue(queue);
1055
1056        rt2x00queue_stop_queue(rt2x00dev->rx);
1057}
1058EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues);
1059
1060void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop)
1061{
1062        struct data_queue *queue;
1063
1064        tx_queue_for_each(rt2x00dev, queue)
1065                rt2x00queue_flush_queue(queue, drop);
1066
1067        rt2x00queue_flush_queue(rt2x00dev->rx, drop);
1068}
1069EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues);
1070
1071static void rt2x00queue_reset(struct data_queue *queue)
1072{
1073        unsigned long irqflags;
1074        unsigned int i;
1075
1076        spin_lock_irqsave(&queue->index_lock, irqflags);
1077
1078        queue->count = 0;
1079        queue->length = 0;
1080
1081        for (i = 0; i < Q_INDEX_MAX; i++)
1082                queue->index[i] = 0;
1083
1084        spin_unlock_irqrestore(&queue->index_lock, irqflags);
1085}
1086
1087void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
1088{
1089        struct data_queue *queue;
1090        unsigned int i;
1091
1092        queue_for_each(rt2x00dev, queue) {
1093                rt2x00queue_reset(queue);
1094
1095                for (i = 0; i < queue->limit; i++)
1096                        rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
1097        }
1098}
1099
1100static int rt2x00queue_alloc_entries(struct data_queue *queue)
1101{
1102        struct queue_entry *entries;
1103        unsigned int entry_size;
1104        unsigned int i;
1105
1106        rt2x00queue_reset(queue);
1107
1108        /*
1109         * Allocate all queue entries.
1110         */
1111        entry_size = sizeof(*entries) + queue->priv_size;
1112        entries = kcalloc(queue->limit, entry_size, GFP_KERNEL);
1113        if (!entries)
1114                return -ENOMEM;
1115
1116#define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
1117        (((char *)(__base)) + ((__limit) * (__esize)) + \
1118            ((__index) * (__psize)))
1119
1120        for (i = 0; i < queue->limit; i++) {
1121                entries[i].flags = 0;
1122                entries[i].queue = queue;
1123                entries[i].skb = NULL;
1124                entries[i].entry_idx = i;
1125                entries[i].priv_data =
1126                    QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
1127                                            sizeof(*entries), queue->priv_size);
1128        }
1129
1130#undef QUEUE_ENTRY_PRIV_OFFSET
1131
1132        queue->entries = entries;
1133
1134        return 0;
1135}
1136
1137static void rt2x00queue_free_skbs(struct data_queue *queue)
1138{
1139        unsigned int i;
1140
1141        if (!queue->entries)
1142                return;
1143
1144        for (i = 0; i < queue->limit; i++) {
1145                rt2x00queue_free_skb(&queue->entries[i]);
1146        }
1147}
1148
1149static int rt2x00queue_alloc_rxskbs(struct data_queue *queue)
1150{
1151        unsigned int i;
1152        struct sk_buff *skb;
1153
1154        for (i = 0; i < queue->limit; i++) {
1155                skb = rt2x00queue_alloc_rxskb(&queue->entries[i], GFP_KERNEL);
1156                if (!skb)
1157                        return -ENOMEM;
1158                queue->entries[i].skb = skb;
1159        }
1160
1161        return 0;
1162}
1163
1164int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
1165{
1166        struct data_queue *queue;
1167        int status;
1168
1169        status = rt2x00queue_alloc_entries(rt2x00dev->rx);
1170        if (status)
1171                goto exit;
1172
1173        tx_queue_for_each(rt2x00dev, queue) {
1174                status = rt2x00queue_alloc_entries(queue);
1175                if (status)
1176                        goto exit;
1177        }
1178
1179        status = rt2x00queue_alloc_entries(rt2x00dev->bcn);
1180        if (status)
1181                goto exit;
1182
1183        if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE)) {
1184                status = rt2x00queue_alloc_entries(rt2x00dev->atim);
1185                if (status)
1186                        goto exit;
1187        }
1188
1189        status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx);
1190        if (status)
1191                goto exit;
1192
1193        return 0;
1194
1195exit:
1196        rt2x00_err(rt2x00dev, "Queue entries allocation failed\n");
1197
1198        rt2x00queue_uninitialize(rt2x00dev);
1199
1200        return status;
1201}
1202
1203void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
1204{
1205        struct data_queue *queue;
1206
1207        rt2x00queue_free_skbs(rt2x00dev->rx);
1208
1209        queue_for_each(rt2x00dev, queue) {
1210                kfree(queue->entries);
1211                queue->entries = NULL;
1212        }
1213}
1214
1215static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
1216                             struct data_queue *queue, enum data_queue_qid qid)
1217{
1218        mutex_init(&queue->status_lock);
1219        spin_lock_init(&queue->tx_lock);
1220        spin_lock_init(&queue->index_lock);
1221
1222        queue->rt2x00dev = rt2x00dev;
1223        queue->qid = qid;
1224        queue->txop = 0;
1225        queue->aifs = 2;
1226        queue->cw_min = 5;
1227        queue->cw_max = 10;
1228
1229        rt2x00dev->ops->queue_init(queue);
1230
1231        queue->threshold = DIV_ROUND_UP(queue->limit, 10);
1232}
1233
1234int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
1235{
1236        struct data_queue *queue;
1237        enum data_queue_qid qid;
1238        unsigned int req_atim =
1239            rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE);
1240
1241        /*
1242         * We need the following queues:
1243         * RX: 1
1244         * TX: ops->tx_queues
1245         * Beacon: 1
1246         * Atim: 1 (if required)
1247         */
1248        rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
1249
1250        queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL);
1251        if (!queue)
1252                return -ENOMEM;
1253
1254        /*
1255         * Initialize pointers
1256         */
1257        rt2x00dev->rx = queue;
1258        rt2x00dev->tx = &queue[1];
1259        rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
1260        rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL;
1261
1262        /*
1263         * Initialize queue parameters.
1264         * RX: qid = QID_RX
1265         * TX: qid = QID_AC_VO + index
1266         * TX: cw_min: 2^5 = 32.
1267         * TX: cw_max: 2^10 = 1024.
1268         * BCN: qid = QID_BEACON
1269         * ATIM: qid = QID_ATIM
1270         */
1271        rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
1272
1273        qid = QID_AC_VO;
1274        tx_queue_for_each(rt2x00dev, queue)
1275                rt2x00queue_init(rt2x00dev, queue, qid++);
1276
1277        rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON);
1278        if (req_atim)
1279                rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM);
1280
1281        return 0;
1282}
1283
1284void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
1285{
1286        kfree(rt2x00dev->rx);
1287        rt2x00dev->rx = NULL;
1288        rt2x00dev->tx = NULL;
1289        rt2x00dev->bcn = NULL;
1290}
1291