linux/drivers/net/wireless/ralink/rt2x00/rt73usb.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3        Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
   4        <http://rt2x00.serialmonkey.com>
   5
   6 */
   7
   8/*
   9        Module: rt73usb
  10        Abstract: rt73usb device specific routines.
  11        Supported chipsets: rt2571W & rt2671.
  12 */
  13
  14#include <linux/crc-itu-t.h>
  15#include <linux/delay.h>
  16#include <linux/etherdevice.h>
  17#include <linux/kernel.h>
  18#include <linux/module.h>
  19#include <linux/slab.h>
  20#include <linux/usb.h>
  21
  22#include "rt2x00.h"
  23#include "rt2x00usb.h"
  24#include "rt73usb.h"
  25
  26/*
  27 * Allow hardware encryption to be disabled.
  28 */
  29static bool modparam_nohwcrypt;
  30module_param_named(nohwcrypt, modparam_nohwcrypt, bool, 0444);
  31MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  32
  33/*
  34 * Register access.
  35 * All access to the CSR registers will go through the methods
  36 * rt2x00usb_register_read and rt2x00usb_register_write.
  37 * BBP and RF register require indirect register access,
  38 * and use the CSR registers BBPCSR and RFCSR to achieve this.
  39 * These indirect registers work with busy bits,
  40 * and we will try maximal REGISTER_BUSY_COUNT times to access
  41 * the register while taking a REGISTER_BUSY_DELAY us delay
  42 * between each attampt. When the busy bit is still set at that time,
  43 * the access attempt is considered to have failed,
  44 * and we will print an error.
  45 * The _lock versions must be used if you already hold the csr_mutex
  46 */
  47#define WAIT_FOR_BBP(__dev, __reg) \
  48        rt2x00usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
  49#define WAIT_FOR_RF(__dev, __reg) \
  50        rt2x00usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
  51
  52static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev,
  53                              const unsigned int word, const u8 value)
  54{
  55        u32 reg;
  56
  57        mutex_lock(&rt2x00dev->csr_mutex);
  58
  59        /*
  60         * Wait until the BBP becomes available, afterwards we
  61         * can safely write the new data into the register.
  62         */
  63        if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  64                reg = 0;
  65                rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
  66                rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
  67                rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
  68                rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
  69
  70                rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
  71        }
  72
  73        mutex_unlock(&rt2x00dev->csr_mutex);
  74}
  75
  76static u8 rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev,
  77                           const unsigned int word)
  78{
  79        u32 reg;
  80        u8 value;
  81
  82        mutex_lock(&rt2x00dev->csr_mutex);
  83
  84        /*
  85         * Wait until the BBP becomes available, afterwards we
  86         * can safely write the read request into the register.
  87         * After the data has been written, we wait until hardware
  88         * returns the correct value, if at any time the register
  89         * doesn't become available in time, reg will be 0xffffffff
  90         * which means we return 0xff to the caller.
  91         */
  92        if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  93                reg = 0;
  94                rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
  95                rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
  96                rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
  97
  98                rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
  99
 100                WAIT_FOR_BBP(rt2x00dev, &reg);
 101        }
 102
 103        value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
 104
 105        mutex_unlock(&rt2x00dev->csr_mutex);
 106
 107        return value;
 108}
 109
 110static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev,
 111                             const unsigned int word, const u32 value)
 112{
 113        u32 reg;
 114
 115        mutex_lock(&rt2x00dev->csr_mutex);
 116
 117        /*
 118         * Wait until the RF becomes available, afterwards we
 119         * can safely write the new data into the register.
 120         */
 121        if (WAIT_FOR_RF(rt2x00dev, &reg)) {
 122                reg = 0;
 123                rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
 124                /*
 125                 * RF5225 and RF2527 contain 21 bits per RF register value,
 126                 * all others contain 20 bits.
 127                 */
 128                rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS,
 129                                   20 + (rt2x00_rf(rt2x00dev, RF5225) ||
 130                                         rt2x00_rf(rt2x00dev, RF2527)));
 131                rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
 132                rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
 133
 134                rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR4, reg);
 135                rt2x00_rf_write(rt2x00dev, word, value);
 136        }
 137
 138        mutex_unlock(&rt2x00dev->csr_mutex);
 139}
 140
 141#ifdef CONFIG_RT2X00_LIB_DEBUGFS
 142static const struct rt2x00debug rt73usb_rt2x00debug = {
 143        .owner  = THIS_MODULE,
 144        .csr    = {
 145                .read           = rt2x00usb_register_read,
 146                .write          = rt2x00usb_register_write,
 147                .flags          = RT2X00DEBUGFS_OFFSET,
 148                .word_base      = CSR_REG_BASE,
 149                .word_size      = sizeof(u32),
 150                .word_count     = CSR_REG_SIZE / sizeof(u32),
 151        },
 152        .eeprom = {
 153                .read           = rt2x00_eeprom_read,
 154                .write          = rt2x00_eeprom_write,
 155                .word_base      = EEPROM_BASE,
 156                .word_size      = sizeof(u16),
 157                .word_count     = EEPROM_SIZE / sizeof(u16),
 158        },
 159        .bbp    = {
 160                .read           = rt73usb_bbp_read,
 161                .write          = rt73usb_bbp_write,
 162                .word_base      = BBP_BASE,
 163                .word_size      = sizeof(u8),
 164                .word_count     = BBP_SIZE / sizeof(u8),
 165        },
 166        .rf     = {
 167                .read           = rt2x00_rf_read,
 168                .write          = rt73usb_rf_write,
 169                .word_base      = RF_BASE,
 170                .word_size      = sizeof(u32),
 171                .word_count     = RF_SIZE / sizeof(u32),
 172        },
 173};
 174#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
 175
 176static int rt73usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
 177{
 178        u32 reg;
 179
 180        reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR13);
 181        return rt2x00_get_field32(reg, MAC_CSR13_VAL7);
 182}
 183
 184#ifdef CONFIG_RT2X00_LIB_LEDS
 185static void rt73usb_brightness_set(struct led_classdev *led_cdev,
 186                                   enum led_brightness brightness)
 187{
 188        struct rt2x00_led *led =
 189           container_of(led_cdev, struct rt2x00_led, led_dev);
 190        unsigned int enabled = brightness != LED_OFF;
 191        unsigned int a_mode =
 192            (enabled && led->rt2x00dev->curr_band == NL80211_BAND_5GHZ);
 193        unsigned int bg_mode =
 194            (enabled && led->rt2x00dev->curr_band == NL80211_BAND_2GHZ);
 195
 196        if (led->type == LED_TYPE_RADIO) {
 197                rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
 198                                   MCU_LEDCS_RADIO_STATUS, enabled);
 199
 200                rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
 201                                            0, led->rt2x00dev->led_mcu_reg,
 202                                            REGISTER_TIMEOUT);
 203        } else if (led->type == LED_TYPE_ASSOC) {
 204                rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
 205                                   MCU_LEDCS_LINK_BG_STATUS, bg_mode);
 206                rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
 207                                   MCU_LEDCS_LINK_A_STATUS, a_mode);
 208
 209                rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
 210                                            0, led->rt2x00dev->led_mcu_reg,
 211                                            REGISTER_TIMEOUT);
 212        } else if (led->type == LED_TYPE_QUALITY) {
 213                /*
 214                 * The brightness is divided into 6 levels (0 - 5),
 215                 * this means we need to convert the brightness
 216                 * argument into the matching level within that range.
 217                 */
 218                rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
 219                                            brightness / (LED_FULL / 6),
 220                                            led->rt2x00dev->led_mcu_reg,
 221                                            REGISTER_TIMEOUT);
 222        }
 223}
 224
 225static int rt73usb_blink_set(struct led_classdev *led_cdev,
 226                             unsigned long *delay_on,
 227                             unsigned long *delay_off)
 228{
 229        struct rt2x00_led *led =
 230            container_of(led_cdev, struct rt2x00_led, led_dev);
 231        u32 reg;
 232
 233        reg = rt2x00usb_register_read(led->rt2x00dev, MAC_CSR14);
 234        rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
 235        rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
 236        rt2x00usb_register_write(led->rt2x00dev, MAC_CSR14, reg);
 237
 238        return 0;
 239}
 240
 241static void rt73usb_init_led(struct rt2x00_dev *rt2x00dev,
 242                             struct rt2x00_led *led,
 243                             enum led_type type)
 244{
 245        led->rt2x00dev = rt2x00dev;
 246        led->type = type;
 247        led->led_dev.brightness_set = rt73usb_brightness_set;
 248        led->led_dev.blink_set = rt73usb_blink_set;
 249        led->flags = LED_INITIALIZED;
 250}
 251#endif /* CONFIG_RT2X00_LIB_LEDS */
 252
 253/*
 254 * Configuration handlers.
 255 */
 256static int rt73usb_config_shared_key(struct rt2x00_dev *rt2x00dev,
 257                                     struct rt2x00lib_crypto *crypto,
 258                                     struct ieee80211_key_conf *key)
 259{
 260        struct hw_key_entry key_entry;
 261        struct rt2x00_field32 field;
 262        u32 mask;
 263        u32 reg;
 264
 265        if (crypto->cmd == SET_KEY) {
 266                /*
 267                 * rt2x00lib can't determine the correct free
 268                 * key_idx for shared keys. We have 1 register
 269                 * with key valid bits. The goal is simple, read
 270                 * the register, if that is full we have no slots
 271                 * left.
 272                 * Note that each BSS is allowed to have up to 4
 273                 * shared keys, so put a mask over the allowed
 274                 * entries.
 275                 */
 276                mask = (0xf << crypto->bssidx);
 277
 278                reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR0);
 279                reg &= mask;
 280
 281                if (reg && reg == mask)
 282                        return -ENOSPC;
 283
 284                key->hw_key_idx += reg ? ffz(reg) : 0;
 285
 286                /*
 287                 * Upload key to hardware
 288                 */
 289                memcpy(key_entry.key, crypto->key,
 290                       sizeof(key_entry.key));
 291                memcpy(key_entry.tx_mic, crypto->tx_mic,
 292                       sizeof(key_entry.tx_mic));
 293                memcpy(key_entry.rx_mic, crypto->rx_mic,
 294                       sizeof(key_entry.rx_mic));
 295
 296                reg = SHARED_KEY_ENTRY(key->hw_key_idx);
 297                rt2x00usb_register_multiwrite(rt2x00dev, reg,
 298                                              &key_entry, sizeof(key_entry));
 299
 300                /*
 301                 * The cipher types are stored over 2 registers.
 302                 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
 303                 * bssidx 1 and 2 keys are stored in SEC_CSR5.
 304                 * Using the correct defines correctly will cause overhead,
 305                 * so just calculate the correct offset.
 306                 */
 307                if (key->hw_key_idx < 8) {
 308                        field.bit_offset = (3 * key->hw_key_idx);
 309                        field.bit_mask = 0x7 << field.bit_offset;
 310
 311                        reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR1);
 312                        rt2x00_set_field32(&reg, field, crypto->cipher);
 313                        rt2x00usb_register_write(rt2x00dev, SEC_CSR1, reg);
 314                } else {
 315                        field.bit_offset = (3 * (key->hw_key_idx - 8));
 316                        field.bit_mask = 0x7 << field.bit_offset;
 317
 318                        reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR5);
 319                        rt2x00_set_field32(&reg, field, crypto->cipher);
 320                        rt2x00usb_register_write(rt2x00dev, SEC_CSR5, reg);
 321                }
 322
 323                /*
 324                 * The driver does not support the IV/EIV generation
 325                 * in hardware. However it doesn't support the IV/EIV
 326                 * inside the ieee80211 frame either, but requires it
 327                 * to be provided separately for the descriptor.
 328                 * rt2x00lib will cut the IV/EIV data out of all frames
 329                 * given to us by mac80211, but we must tell mac80211
 330                 * to generate the IV/EIV data.
 331                 */
 332                key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
 333        }
 334
 335        /*
 336         * SEC_CSR0 contains only single-bit fields to indicate
 337         * a particular key is valid. Because using the FIELD32()
 338         * defines directly will cause a lot of overhead we use
 339         * a calculation to determine the correct bit directly.
 340         */
 341        mask = 1 << key->hw_key_idx;
 342
 343        reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR0);
 344        if (crypto->cmd == SET_KEY)
 345                reg |= mask;
 346        else if (crypto->cmd == DISABLE_KEY)
 347                reg &= ~mask;
 348        rt2x00usb_register_write(rt2x00dev, SEC_CSR0, reg);
 349
 350        return 0;
 351}
 352
 353static int rt73usb_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
 354                                       struct rt2x00lib_crypto *crypto,
 355                                       struct ieee80211_key_conf *key)
 356{
 357        struct hw_pairwise_ta_entry addr_entry;
 358        struct hw_key_entry key_entry;
 359        u32 mask;
 360        u32 reg;
 361
 362        if (crypto->cmd == SET_KEY) {
 363                /*
 364                 * rt2x00lib can't determine the correct free
 365                 * key_idx for pairwise keys. We have 2 registers
 366                 * with key valid bits. The goal is simple, read
 367                 * the first register, if that is full move to
 368                 * the next register.
 369                 * When both registers are full, we drop the key,
 370                 * otherwise we use the first invalid entry.
 371                 */
 372                reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR2);
 373                if (reg && reg == ~0) {
 374                        key->hw_key_idx = 32;
 375                        reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR3);
 376                        if (reg && reg == ~0)
 377                                return -ENOSPC;
 378                }
 379
 380                key->hw_key_idx += reg ? ffz(reg) : 0;
 381
 382                /*
 383                 * Upload key to hardware
 384                 */
 385                memcpy(key_entry.key, crypto->key,
 386                       sizeof(key_entry.key));
 387                memcpy(key_entry.tx_mic, crypto->tx_mic,
 388                       sizeof(key_entry.tx_mic));
 389                memcpy(key_entry.rx_mic, crypto->rx_mic,
 390                       sizeof(key_entry.rx_mic));
 391
 392                reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
 393                rt2x00usb_register_multiwrite(rt2x00dev, reg,
 394                                              &key_entry, sizeof(key_entry));
 395
 396                /*
 397                 * Send the address and cipher type to the hardware register.
 398                 */
 399                memset(&addr_entry, 0, sizeof(addr_entry));
 400                memcpy(&addr_entry, crypto->address, ETH_ALEN);
 401                addr_entry.cipher = crypto->cipher;
 402
 403                reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
 404                rt2x00usb_register_multiwrite(rt2x00dev, reg,
 405                                            &addr_entry, sizeof(addr_entry));
 406
 407                /*
 408                 * Enable pairwise lookup table for given BSS idx,
 409                 * without this received frames will not be decrypted
 410                 * by the hardware.
 411                 */
 412                reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR4);
 413                reg |= (1 << crypto->bssidx);
 414                rt2x00usb_register_write(rt2x00dev, SEC_CSR4, reg);
 415
 416                /*
 417                 * The driver does not support the IV/EIV generation
 418                 * in hardware. However it doesn't support the IV/EIV
 419                 * inside the ieee80211 frame either, but requires it
 420                 * to be provided separately for the descriptor.
 421                 * rt2x00lib will cut the IV/EIV data out of all frames
 422                 * given to us by mac80211, but we must tell mac80211
 423                 * to generate the IV/EIV data.
 424                 */
 425                key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
 426        }
 427
 428        /*
 429         * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
 430         * a particular key is valid. Because using the FIELD32()
 431         * defines directly will cause a lot of overhead we use
 432         * a calculation to determine the correct bit directly.
 433         */
 434        if (key->hw_key_idx < 32) {
 435                mask = 1 << key->hw_key_idx;
 436
 437                reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR2);
 438                if (crypto->cmd == SET_KEY)
 439                        reg |= mask;
 440                else if (crypto->cmd == DISABLE_KEY)
 441                        reg &= ~mask;
 442                rt2x00usb_register_write(rt2x00dev, SEC_CSR2, reg);
 443        } else {
 444                mask = 1 << (key->hw_key_idx - 32);
 445
 446                reg = rt2x00usb_register_read(rt2x00dev, SEC_CSR3);
 447                if (crypto->cmd == SET_KEY)
 448                        reg |= mask;
 449                else if (crypto->cmd == DISABLE_KEY)
 450                        reg &= ~mask;
 451                rt2x00usb_register_write(rt2x00dev, SEC_CSR3, reg);
 452        }
 453
 454        return 0;
 455}
 456
 457static void rt73usb_config_filter(struct rt2x00_dev *rt2x00dev,
 458                                  const unsigned int filter_flags)
 459{
 460        u32 reg;
 461
 462        /*
 463         * Start configuration steps.
 464         * Note that the version error will always be dropped
 465         * and broadcast frames will always be accepted since
 466         * there is no filter for it at this time.
 467         */
 468        reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR0);
 469        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
 470                           !(filter_flags & FIF_FCSFAIL));
 471        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
 472                           !(filter_flags & FIF_PLCPFAIL));
 473        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
 474                           !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
 475        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
 476                           !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
 477        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
 478                           !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
 479                           !rt2x00dev->intf_ap_count);
 480        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
 481        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
 482                           !(filter_flags & FIF_ALLMULTI));
 483        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
 484        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
 485                           !(filter_flags & FIF_CONTROL));
 486        rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
 487}
 488
 489static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev,
 490                                struct rt2x00_intf *intf,
 491                                struct rt2x00intf_conf *conf,
 492                                const unsigned int flags)
 493{
 494        u32 reg;
 495
 496        if (flags & CONFIG_UPDATE_TYPE) {
 497                /*
 498                 * Enable synchronisation.
 499                 */
 500                reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9);
 501                rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
 502                rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
 503        }
 504
 505        if (flags & CONFIG_UPDATE_MAC) {
 506                reg = le32_to_cpu(conf->mac[1]);
 507                rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
 508                conf->mac[1] = cpu_to_le32(reg);
 509
 510                rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR2,
 511                                            conf->mac, sizeof(conf->mac));
 512        }
 513
 514        if (flags & CONFIG_UPDATE_BSSID) {
 515                reg = le32_to_cpu(conf->bssid[1]);
 516                rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
 517                conf->bssid[1] = cpu_to_le32(reg);
 518
 519                rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR4,
 520                                            conf->bssid, sizeof(conf->bssid));
 521        }
 522}
 523
 524static void rt73usb_config_erp(struct rt2x00_dev *rt2x00dev,
 525                               struct rt2x00lib_erp *erp,
 526                               u32 changed)
 527{
 528        u32 reg;
 529
 530        reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR0);
 531        rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
 532        rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
 533        rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
 534
 535        if (changed & BSS_CHANGED_ERP_PREAMBLE) {
 536                reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR4);
 537                rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
 538                rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
 539                                   !!erp->short_preamble);
 540                rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
 541        }
 542
 543        if (changed & BSS_CHANGED_BASIC_RATES)
 544                rt2x00usb_register_write(rt2x00dev, TXRX_CSR5,
 545                                         erp->basic_rates);
 546
 547        if (changed & BSS_CHANGED_BEACON_INT) {
 548                reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9);
 549                rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
 550                                   erp->beacon_int * 16);
 551                rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
 552        }
 553
 554        if (changed & BSS_CHANGED_ERP_SLOT) {
 555                reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR9);
 556                rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
 557                rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
 558
 559                reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR8);
 560                rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
 561                rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
 562                rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
 563                rt2x00usb_register_write(rt2x00dev, MAC_CSR8, reg);
 564        }
 565}
 566
 567static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
 568                                      struct antenna_setup *ant)
 569{
 570        u8 r3;
 571        u8 r4;
 572        u8 r77;
 573        u8 temp;
 574
 575        r3 = rt73usb_bbp_read(rt2x00dev, 3);
 576        r4 = rt73usb_bbp_read(rt2x00dev, 4);
 577        r77 = rt73usb_bbp_read(rt2x00dev, 77);
 578
 579        rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
 580
 581        /*
 582         * Configure the RX antenna.
 583         */
 584        switch (ant->rx) {
 585        case ANTENNA_HW_DIVERSITY:
 586                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
 587                temp = !rt2x00_has_cap_frame_type(rt2x00dev) &&
 588                       (rt2x00dev->curr_band != NL80211_BAND_5GHZ);
 589                rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp);
 590                break;
 591        case ANTENNA_A:
 592                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 593                rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
 594                if (rt2x00dev->curr_band == NL80211_BAND_5GHZ)
 595                        rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 596                else
 597                        rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 598                break;
 599        case ANTENNA_B:
 600        default:
 601                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 602                rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
 603                if (rt2x00dev->curr_band == NL80211_BAND_5GHZ)
 604                        rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 605                else
 606                        rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 607                break;
 608        }
 609
 610        rt73usb_bbp_write(rt2x00dev, 77, r77);
 611        rt73usb_bbp_write(rt2x00dev, 3, r3);
 612        rt73usb_bbp_write(rt2x00dev, 4, r4);
 613}
 614
 615static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
 616                                      struct antenna_setup *ant)
 617{
 618        u8 r3;
 619        u8 r4;
 620        u8 r77;
 621
 622        r3 = rt73usb_bbp_read(rt2x00dev, 3);
 623        r4 = rt73usb_bbp_read(rt2x00dev, 4);
 624        r77 = rt73usb_bbp_read(rt2x00dev, 77);
 625
 626        rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
 627        rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
 628                          !rt2x00_has_cap_frame_type(rt2x00dev));
 629
 630        /*
 631         * Configure the RX antenna.
 632         */
 633        switch (ant->rx) {
 634        case ANTENNA_HW_DIVERSITY:
 635                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
 636                break;
 637        case ANTENNA_A:
 638                rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 639                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 640                break;
 641        case ANTENNA_B:
 642        default:
 643                rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 644                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 645                break;
 646        }
 647
 648        rt73usb_bbp_write(rt2x00dev, 77, r77);
 649        rt73usb_bbp_write(rt2x00dev, 3, r3);
 650        rt73usb_bbp_write(rt2x00dev, 4, r4);
 651}
 652
 653struct antenna_sel {
 654        u8 word;
 655        /*
 656         * value[0] -> non-LNA
 657         * value[1] -> LNA
 658         */
 659        u8 value[2];
 660};
 661
 662static const struct antenna_sel antenna_sel_a[] = {
 663        { 96,  { 0x58, 0x78 } },
 664        { 104, { 0x38, 0x48 } },
 665        { 75,  { 0xfe, 0x80 } },
 666        { 86,  { 0xfe, 0x80 } },
 667        { 88,  { 0xfe, 0x80 } },
 668        { 35,  { 0x60, 0x60 } },
 669        { 97,  { 0x58, 0x58 } },
 670        { 98,  { 0x58, 0x58 } },
 671};
 672
 673static const struct antenna_sel antenna_sel_bg[] = {
 674        { 96,  { 0x48, 0x68 } },
 675        { 104, { 0x2c, 0x3c } },
 676        { 75,  { 0xfe, 0x80 } },
 677        { 86,  { 0xfe, 0x80 } },
 678        { 88,  { 0xfe, 0x80 } },
 679        { 35,  { 0x50, 0x50 } },
 680        { 97,  { 0x48, 0x48 } },
 681        { 98,  { 0x48, 0x48 } },
 682};
 683
 684static void rt73usb_config_ant(struct rt2x00_dev *rt2x00dev,
 685                               struct antenna_setup *ant)
 686{
 687        const struct antenna_sel *sel;
 688        unsigned int lna;
 689        unsigned int i;
 690        u32 reg;
 691
 692        /*
 693         * We should never come here because rt2x00lib is supposed
 694         * to catch this and send us the correct antenna explicitely.
 695         */
 696        BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
 697               ant->tx == ANTENNA_SW_DIVERSITY);
 698
 699        if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
 700                sel = antenna_sel_a;
 701                lna = rt2x00_has_cap_external_lna_a(rt2x00dev);
 702        } else {
 703                sel = antenna_sel_bg;
 704                lna = rt2x00_has_cap_external_lna_bg(rt2x00dev);
 705        }
 706
 707        for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
 708                rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
 709
 710        reg = rt2x00usb_register_read(rt2x00dev, PHY_CSR0);
 711
 712        rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
 713                           (rt2x00dev->curr_band == NL80211_BAND_2GHZ));
 714        rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
 715                           (rt2x00dev->curr_band == NL80211_BAND_5GHZ));
 716
 717        rt2x00usb_register_write(rt2x00dev, PHY_CSR0, reg);
 718
 719        if (rt2x00_rf(rt2x00dev, RF5226) || rt2x00_rf(rt2x00dev, RF5225))
 720                rt73usb_config_antenna_5x(rt2x00dev, ant);
 721        else if (rt2x00_rf(rt2x00dev, RF2528) || rt2x00_rf(rt2x00dev, RF2527))
 722                rt73usb_config_antenna_2x(rt2x00dev, ant);
 723}
 724
 725static void rt73usb_config_lna_gain(struct rt2x00_dev *rt2x00dev,
 726                                    struct rt2x00lib_conf *libconf)
 727{
 728        u16 eeprom;
 729        short lna_gain = 0;
 730
 731        if (libconf->conf->chandef.chan->band == NL80211_BAND_2GHZ) {
 732                if (rt2x00_has_cap_external_lna_bg(rt2x00dev))
 733                        lna_gain += 14;
 734
 735                eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG);
 736                lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
 737        } else {
 738                eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A);
 739                lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
 740        }
 741
 742        rt2x00dev->lna_gain = lna_gain;
 743}
 744
 745static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev,
 746                                   struct rf_channel *rf, const int txpower)
 747{
 748        u8 r3;
 749        u8 r94;
 750        u8 smart;
 751
 752        rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 753        rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
 754
 755        smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
 756
 757        r3 = rt73usb_bbp_read(rt2x00dev, 3);
 758        rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
 759        rt73usb_bbp_write(rt2x00dev, 3, r3);
 760
 761        r94 = 6;
 762        if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
 763                r94 += txpower - MAX_TXPOWER;
 764        else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
 765                r94 += txpower;
 766        rt73usb_bbp_write(rt2x00dev, 94, r94);
 767
 768        rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
 769        rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
 770        rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
 771        rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
 772
 773        rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
 774        rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
 775        rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
 776        rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
 777
 778        rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
 779        rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
 780        rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
 781        rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
 782
 783        udelay(10);
 784}
 785
 786static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev,
 787                                   const int txpower)
 788{
 789        struct rf_channel rf;
 790
 791        rf.rf1 = rt2x00_rf_read(rt2x00dev, 1);
 792        rf.rf2 = rt2x00_rf_read(rt2x00dev, 2);
 793        rf.rf3 = rt2x00_rf_read(rt2x00dev, 3);
 794        rf.rf4 = rt2x00_rf_read(rt2x00dev, 4);
 795
 796        rt73usb_config_channel(rt2x00dev, &rf, txpower);
 797}
 798
 799static void rt73usb_config_retry_limit(struct rt2x00_dev *rt2x00dev,
 800                                       struct rt2x00lib_conf *libconf)
 801{
 802        u32 reg;
 803
 804        reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR4);
 805        rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
 806        rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
 807        rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
 808        rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
 809                           libconf->conf->long_frame_max_tx_count);
 810        rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
 811                           libconf->conf->short_frame_max_tx_count);
 812        rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
 813}
 814
 815static void rt73usb_config_ps(struct rt2x00_dev *rt2x00dev,
 816                                struct rt2x00lib_conf *libconf)
 817{
 818        enum dev_state state =
 819            (libconf->conf->flags & IEEE80211_CONF_PS) ?
 820                STATE_SLEEP : STATE_AWAKE;
 821        u32 reg;
 822
 823        if (state == STATE_SLEEP) {
 824                reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR11);
 825                rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
 826                                   rt2x00dev->beacon_int - 10);
 827                rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
 828                                   libconf->conf->listen_interval - 1);
 829                rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
 830
 831                /* We must first disable autowake before it can be enabled */
 832                rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
 833                rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
 834
 835                rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
 836                rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
 837
 838                rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
 839                                            USB_MODE_SLEEP, REGISTER_TIMEOUT);
 840        } else {
 841                reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR11);
 842                rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
 843                rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
 844                rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
 845                rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
 846                rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
 847
 848                rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
 849                                            USB_MODE_WAKEUP, REGISTER_TIMEOUT);
 850        }
 851}
 852
 853static void rt73usb_config(struct rt2x00_dev *rt2x00dev,
 854                           struct rt2x00lib_conf *libconf,
 855                           const unsigned int flags)
 856{
 857        /* Always recalculate LNA gain before changing configuration */
 858        rt73usb_config_lna_gain(rt2x00dev, libconf);
 859
 860        if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
 861                rt73usb_config_channel(rt2x00dev, &libconf->rf,
 862                                       libconf->conf->power_level);
 863        if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
 864            !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
 865                rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level);
 866        if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
 867                rt73usb_config_retry_limit(rt2x00dev, libconf);
 868        if (flags & IEEE80211_CONF_CHANGE_PS)
 869                rt73usb_config_ps(rt2x00dev, libconf);
 870}
 871
 872/*
 873 * Link tuning
 874 */
 875static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev,
 876                               struct link_qual *qual)
 877{
 878        u32 reg;
 879
 880        /*
 881         * Update FCS error count from register.
 882         */
 883        reg = rt2x00usb_register_read(rt2x00dev, STA_CSR0);
 884        qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
 885
 886        /*
 887         * Update False CCA count from register.
 888         */
 889        reg = rt2x00usb_register_read(rt2x00dev, STA_CSR1);
 890        qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
 891}
 892
 893static inline void rt73usb_set_vgc(struct rt2x00_dev *rt2x00dev,
 894                                   struct link_qual *qual, u8 vgc_level)
 895{
 896        if (qual->vgc_level != vgc_level) {
 897                rt73usb_bbp_write(rt2x00dev, 17, vgc_level);
 898                qual->vgc_level = vgc_level;
 899                qual->vgc_level_reg = vgc_level;
 900        }
 901}
 902
 903static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
 904                                struct link_qual *qual)
 905{
 906        rt73usb_set_vgc(rt2x00dev, qual, 0x20);
 907}
 908
 909static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev,
 910                               struct link_qual *qual, const u32 count)
 911{
 912        u8 up_bound;
 913        u8 low_bound;
 914
 915        /*
 916         * Determine r17 bounds.
 917         */
 918        if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
 919                low_bound = 0x28;
 920                up_bound = 0x48;
 921
 922                if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
 923                        low_bound += 0x10;
 924                        up_bound += 0x10;
 925                }
 926        } else {
 927                if (qual->rssi > -82) {
 928                        low_bound = 0x1c;
 929                        up_bound = 0x40;
 930                } else if (qual->rssi > -84) {
 931                        low_bound = 0x1c;
 932                        up_bound = 0x20;
 933                } else {
 934                        low_bound = 0x1c;
 935                        up_bound = 0x1c;
 936                }
 937
 938                if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) {
 939                        low_bound += 0x14;
 940                        up_bound += 0x10;
 941                }
 942        }
 943
 944        /*
 945         * If we are not associated, we should go straight to the
 946         * dynamic CCA tuning.
 947         */
 948        if (!rt2x00dev->intf_associated)
 949                goto dynamic_cca_tune;
 950
 951        /*
 952         * Special big-R17 for very short distance
 953         */
 954        if (qual->rssi > -35) {
 955                rt73usb_set_vgc(rt2x00dev, qual, 0x60);
 956                return;
 957        }
 958
 959        /*
 960         * Special big-R17 for short distance
 961         */
 962        if (qual->rssi >= -58) {
 963                rt73usb_set_vgc(rt2x00dev, qual, up_bound);
 964                return;
 965        }
 966
 967        /*
 968         * Special big-R17 for middle-short distance
 969         */
 970        if (qual->rssi >= -66) {
 971                rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x10);
 972                return;
 973        }
 974
 975        /*
 976         * Special mid-R17 for middle distance
 977         */
 978        if (qual->rssi >= -74) {
 979                rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x08);
 980                return;
 981        }
 982
 983        /*
 984         * Special case: Change up_bound based on the rssi.
 985         * Lower up_bound when rssi is weaker then -74 dBm.
 986         */
 987        up_bound -= 2 * (-74 - qual->rssi);
 988        if (low_bound > up_bound)
 989                up_bound = low_bound;
 990
 991        if (qual->vgc_level > up_bound) {
 992                rt73usb_set_vgc(rt2x00dev, qual, up_bound);
 993                return;
 994        }
 995
 996dynamic_cca_tune:
 997
 998        /*
 999         * r17 does not yet exceed upper limit, continue and base
1000         * the r17 tuning on the false CCA count.
1001         */
1002        if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1003                rt73usb_set_vgc(rt2x00dev, qual,
1004                                min_t(u8, qual->vgc_level + 4, up_bound));
1005        else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1006                rt73usb_set_vgc(rt2x00dev, qual,
1007                                max_t(u8, qual->vgc_level - 4, low_bound));
1008}
1009
1010/*
1011 * Queue handlers.
1012 */
1013static void rt73usb_start_queue(struct data_queue *queue)
1014{
1015        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1016        u32 reg;
1017
1018        switch (queue->qid) {
1019        case QID_RX:
1020                reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR0);
1021                rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1022                rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1023                break;
1024        case QID_BEACON:
1025                reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9);
1026                rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1027                rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1028                rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1029                rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1030                break;
1031        default:
1032                break;
1033        }
1034}
1035
1036static void rt73usb_stop_queue(struct data_queue *queue)
1037{
1038        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1039        u32 reg;
1040
1041        switch (queue->qid) {
1042        case QID_RX:
1043                reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR0);
1044                rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
1045                rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1046                break;
1047        case QID_BEACON:
1048                reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9);
1049                rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1050                rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1051                rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1052                rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1053                break;
1054        default:
1055                break;
1056        }
1057}
1058
1059/*
1060 * Firmware functions
1061 */
1062static char *rt73usb_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1063{
1064        return FIRMWARE_RT2571;
1065}
1066
1067static int rt73usb_check_firmware(struct rt2x00_dev *rt2x00dev,
1068                                  const u8 *data, const size_t len)
1069{
1070        u16 fw_crc;
1071        u16 crc;
1072
1073        /*
1074         * Only support 2kb firmware files.
1075         */
1076        if (len != 2048)
1077                return FW_BAD_LENGTH;
1078
1079        /*
1080         * The last 2 bytes in the firmware array are the crc checksum itself,
1081         * this means that we should never pass those 2 bytes to the crc
1082         * algorithm.
1083         */
1084        fw_crc = (data[len - 2] << 8 | data[len - 1]);
1085
1086        /*
1087         * Use the crc itu-t algorithm.
1088         */
1089        crc = crc_itu_t(0, data, len - 2);
1090        crc = crc_itu_t_byte(crc, 0);
1091        crc = crc_itu_t_byte(crc, 0);
1092
1093        return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1094}
1095
1096static int rt73usb_load_firmware(struct rt2x00_dev *rt2x00dev,
1097                                 const u8 *data, const size_t len)
1098{
1099        unsigned int i;
1100        int status;
1101        u32 reg;
1102
1103        /*
1104         * Wait for stable hardware.
1105         */
1106        for (i = 0; i < 100; i++) {
1107                reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR0);
1108                if (reg)
1109                        break;
1110                msleep(1);
1111        }
1112
1113        if (!reg) {
1114                rt2x00_err(rt2x00dev, "Unstable hardware\n");
1115                return -EBUSY;
1116        }
1117
1118        /*
1119         * Write firmware to device.
1120         */
1121        rt2x00usb_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, data, len);
1122
1123        /*
1124         * Send firmware request to device to load firmware,
1125         * we need to specify a long timeout time.
1126         */
1127        status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE,
1128                                             0, USB_MODE_FIRMWARE,
1129                                             REGISTER_TIMEOUT_FIRMWARE);
1130        if (status < 0) {
1131                rt2x00_err(rt2x00dev, "Failed to write Firmware to device\n");
1132                return status;
1133        }
1134
1135        return 0;
1136}
1137
1138/*
1139 * Initialization functions.
1140 */
1141static int rt73usb_init_registers(struct rt2x00_dev *rt2x00dev)
1142{
1143        u32 reg;
1144
1145        reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR0);
1146        rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1147        rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1148        rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1149        rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1150
1151        reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR1);
1152        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1153        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1154        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1155        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1156        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1157        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1158        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1159        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1160        rt2x00usb_register_write(rt2x00dev, TXRX_CSR1, reg);
1161
1162        /*
1163         * CCK TXD BBP registers
1164         */
1165        reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR2);
1166        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1167        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1168        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1169        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1170        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1171        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1172        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1173        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1174        rt2x00usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1175
1176        /*
1177         * OFDM TXD BBP registers
1178         */
1179        reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR3);
1180        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1181        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1182        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1183        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1184        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1185        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1186        rt2x00usb_register_write(rt2x00dev, TXRX_CSR3, reg);
1187
1188        reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR7);
1189        rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1190        rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1191        rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1192        rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1193        rt2x00usb_register_write(rt2x00dev, TXRX_CSR7, reg);
1194
1195        reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR8);
1196        rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1197        rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1198        rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1199        rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1200        rt2x00usb_register_write(rt2x00dev, TXRX_CSR8, reg);
1201
1202        reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9);
1203        rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1204        rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1205        rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1206        rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1207        rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1208        rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1209        rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1210
1211        rt2x00usb_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1212
1213        reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR6);
1214        rt2x00_set_field32(&reg, MAC_CSR6_MAX_FRAME_UNIT, 0xfff);
1215        rt2x00usb_register_write(rt2x00dev, MAC_CSR6, reg);
1216
1217        rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00000718);
1218
1219        if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1220                return -EBUSY;
1221
1222        rt2x00usb_register_write(rt2x00dev, MAC_CSR13, 0x00007f00);
1223
1224        /*
1225         * Invalidate all Shared Keys (SEC_CSR0),
1226         * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1227         */
1228        rt2x00usb_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1229        rt2x00usb_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1230        rt2x00usb_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1231
1232        reg = 0x000023b0;
1233        if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527))
1234                rt2x00_set_field32(&reg, PHY_CSR1_RF_RPI, 1);
1235        rt2x00usb_register_write(rt2x00dev, PHY_CSR1, reg);
1236
1237        rt2x00usb_register_write(rt2x00dev, PHY_CSR5, 0x00040a06);
1238        rt2x00usb_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1239        rt2x00usb_register_write(rt2x00dev, PHY_CSR7, 0x00000408);
1240
1241        reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR9);
1242        rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1243        rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
1244
1245        /*
1246         * Clear all beacons
1247         * For the Beacon base registers we only need to clear
1248         * the first byte since that byte contains the VALID and OWNER
1249         * bits which (when set to 0) will invalidate the entire beacon.
1250         */
1251        rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1252        rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1253        rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1254        rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1255
1256        /*
1257         * We must clear the error counters.
1258         * These registers are cleared on read,
1259         * so we may pass a useless variable to store the value.
1260         */
1261        reg = rt2x00usb_register_read(rt2x00dev, STA_CSR0);
1262        reg = rt2x00usb_register_read(rt2x00dev, STA_CSR1);
1263        reg = rt2x00usb_register_read(rt2x00dev, STA_CSR2);
1264
1265        /*
1266         * Reset MAC and BBP registers.
1267         */
1268        reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR1);
1269        rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1270        rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1271        rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1272
1273        reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR1);
1274        rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1275        rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1276        rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1277
1278        reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR1);
1279        rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1280        rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1281
1282        return 0;
1283}
1284
1285static int rt73usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1286{
1287        unsigned int i;
1288        u8 value;
1289
1290        for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
1291                value = rt73usb_bbp_read(rt2x00dev, 0);
1292                if ((value != 0xff) && (value != 0x00))
1293                        return 0;
1294                udelay(REGISTER_BUSY_DELAY);
1295        }
1296
1297        rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1298        return -EACCES;
1299}
1300
1301static int rt73usb_init_bbp(struct rt2x00_dev *rt2x00dev)
1302{
1303        unsigned int i;
1304        u16 eeprom;
1305        u8 reg_id;
1306        u8 value;
1307
1308        if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev)))
1309                return -EACCES;
1310
1311        rt73usb_bbp_write(rt2x00dev, 3, 0x80);
1312        rt73usb_bbp_write(rt2x00dev, 15, 0x30);
1313        rt73usb_bbp_write(rt2x00dev, 21, 0xc8);
1314        rt73usb_bbp_write(rt2x00dev, 22, 0x38);
1315        rt73usb_bbp_write(rt2x00dev, 23, 0x06);
1316        rt73usb_bbp_write(rt2x00dev, 24, 0xfe);
1317        rt73usb_bbp_write(rt2x00dev, 25, 0x0a);
1318        rt73usb_bbp_write(rt2x00dev, 26, 0x0d);
1319        rt73usb_bbp_write(rt2x00dev, 32, 0x0b);
1320        rt73usb_bbp_write(rt2x00dev, 34, 0x12);
1321        rt73usb_bbp_write(rt2x00dev, 37, 0x07);
1322        rt73usb_bbp_write(rt2x00dev, 39, 0xf8);
1323        rt73usb_bbp_write(rt2x00dev, 41, 0x60);
1324        rt73usb_bbp_write(rt2x00dev, 53, 0x10);
1325        rt73usb_bbp_write(rt2x00dev, 54, 0x18);
1326        rt73usb_bbp_write(rt2x00dev, 60, 0x10);
1327        rt73usb_bbp_write(rt2x00dev, 61, 0x04);
1328        rt73usb_bbp_write(rt2x00dev, 62, 0x04);
1329        rt73usb_bbp_write(rt2x00dev, 75, 0xfe);
1330        rt73usb_bbp_write(rt2x00dev, 86, 0xfe);
1331        rt73usb_bbp_write(rt2x00dev, 88, 0xfe);
1332        rt73usb_bbp_write(rt2x00dev, 90, 0x0f);
1333        rt73usb_bbp_write(rt2x00dev, 99, 0x00);
1334        rt73usb_bbp_write(rt2x00dev, 102, 0x16);
1335        rt73usb_bbp_write(rt2x00dev, 107, 0x04);
1336
1337        for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1338                eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
1339
1340                if (eeprom != 0xffff && eeprom != 0x0000) {
1341                        reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1342                        value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1343                        rt73usb_bbp_write(rt2x00dev, reg_id, value);
1344                }
1345        }
1346
1347        return 0;
1348}
1349
1350/*
1351 * Device state switch handlers.
1352 */
1353static int rt73usb_enable_radio(struct rt2x00_dev *rt2x00dev)
1354{
1355        /*
1356         * Initialize all registers.
1357         */
1358        if (unlikely(rt73usb_init_registers(rt2x00dev) ||
1359                     rt73usb_init_bbp(rt2x00dev)))
1360                return -EIO;
1361
1362        return 0;
1363}
1364
1365static void rt73usb_disable_radio(struct rt2x00_dev *rt2x00dev)
1366{
1367        rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1368
1369        /*
1370         * Disable synchronisation.
1371         */
1372        rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, 0);
1373
1374        rt2x00usb_disable_radio(rt2x00dev);
1375}
1376
1377static int rt73usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1378{
1379        u32 reg, reg2;
1380        unsigned int i;
1381        char put_to_sleep;
1382
1383        put_to_sleep = (state != STATE_AWAKE);
1384
1385        reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR12);
1386        rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1387        rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1388        rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1389
1390        /*
1391         * Device is not guaranteed to be in the requested state yet.
1392         * We must wait until the register indicates that the
1393         * device has entered the correct state.
1394         */
1395        for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1396                reg2 = rt2x00usb_register_read(rt2x00dev, MAC_CSR12);
1397                state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1398                if (state == !put_to_sleep)
1399                        return 0;
1400                rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1401                msleep(10);
1402        }
1403
1404        return -EBUSY;
1405}
1406
1407static int rt73usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1408                                    enum dev_state state)
1409{
1410        int retval = 0;
1411
1412        switch (state) {
1413        case STATE_RADIO_ON:
1414                retval = rt73usb_enable_radio(rt2x00dev);
1415                break;
1416        case STATE_RADIO_OFF:
1417                rt73usb_disable_radio(rt2x00dev);
1418                break;
1419        case STATE_RADIO_IRQ_ON:
1420        case STATE_RADIO_IRQ_OFF:
1421                /* No support, but no error either */
1422                break;
1423        case STATE_DEEP_SLEEP:
1424        case STATE_SLEEP:
1425        case STATE_STANDBY:
1426        case STATE_AWAKE:
1427                retval = rt73usb_set_state(rt2x00dev, state);
1428                break;
1429        default:
1430                retval = -ENOTSUPP;
1431                break;
1432        }
1433
1434        if (unlikely(retval))
1435                rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1436                           state, retval);
1437
1438        return retval;
1439}
1440
1441/*
1442 * TX descriptor initialization
1443 */
1444static void rt73usb_write_tx_desc(struct queue_entry *entry,
1445                                  struct txentry_desc *txdesc)
1446{
1447        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1448        __le32 *txd = (__le32 *) entry->skb->data;
1449        u32 word;
1450
1451        /*
1452         * Start writing the descriptor words.
1453         */
1454        word = rt2x00_desc_read(txd, 0);
1455        rt2x00_set_field32(&word, TXD_W0_BURST,
1456                           test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1457        rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1458        rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1459                           test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1460        rt2x00_set_field32(&word, TXD_W0_ACK,
1461                           test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1462        rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1463                           test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1464        rt2x00_set_field32(&word, TXD_W0_OFDM,
1465                           (txdesc->rate_mode == RATE_MODE_OFDM));
1466        rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1467        rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1468                           test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1469        rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1470                           test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1471        rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1472                           test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1473        rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1474        rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1475        rt2x00_set_field32(&word, TXD_W0_BURST2,
1476                           test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1477        rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1478        rt2x00_desc_write(txd, 0, word);
1479
1480        word = rt2x00_desc_read(txd, 1);
1481        rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1482        rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1483        rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1484        rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1485        rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1486        rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1487                           test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1488        rt2x00_desc_write(txd, 1, word);
1489
1490        word = rt2x00_desc_read(txd, 2);
1491        rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1492        rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1493        rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1494                           txdesc->u.plcp.length_low);
1495        rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1496                           txdesc->u.plcp.length_high);
1497        rt2x00_desc_write(txd, 2, word);
1498
1499        if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1500                _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1501                _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1502        }
1503
1504        word = rt2x00_desc_read(txd, 5);
1505        rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1506                           TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1507        rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1508        rt2x00_desc_write(txd, 5, word);
1509
1510        /*
1511         * Register descriptor details in skb frame descriptor.
1512         */
1513        skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1514        skbdesc->desc = txd;
1515        skbdesc->desc_len = TXD_DESC_SIZE;
1516}
1517
1518/*
1519 * TX data initialization
1520 */
1521static void rt73usb_write_beacon(struct queue_entry *entry,
1522                                 struct txentry_desc *txdesc)
1523{
1524        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1525        unsigned int beacon_base;
1526        unsigned int padding_len;
1527        u32 orig_reg, reg;
1528
1529        /*
1530         * Disable beaconing while we are reloading the beacon data,
1531         * otherwise we might be sending out invalid data.
1532         */
1533        reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9);
1534        orig_reg = reg;
1535        rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1536        rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1537
1538        /*
1539         * Add space for the descriptor in front of the skb.
1540         */
1541        skb_push(entry->skb, TXD_DESC_SIZE);
1542        memset(entry->skb->data, 0, TXD_DESC_SIZE);
1543
1544        /*
1545         * Write the TX descriptor for the beacon.
1546         */
1547        rt73usb_write_tx_desc(entry, txdesc);
1548
1549        /*
1550         * Dump beacon to userspace through debugfs.
1551         */
1552        rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
1553
1554        /*
1555         * Write entire beacon with descriptor and padding to register.
1556         */
1557        padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
1558        if (padding_len && skb_pad(entry->skb, padding_len)) {
1559                rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
1560                /* skb freed by skb_pad() on failure */
1561                entry->skb = NULL;
1562                rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
1563                return;
1564        }
1565
1566        beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1567        rt2x00usb_register_multiwrite(rt2x00dev, beacon_base, entry->skb->data,
1568                                      entry->skb->len + padding_len);
1569
1570        /*
1571         * Enable beaconing again.
1572         *
1573         * For Wi-Fi faily generated beacons between participating stations.
1574         * Set TBTT phase adaptive adjustment step to 8us (default 16us)
1575         */
1576        rt2x00usb_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1577
1578        rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1579        rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1580
1581        /*
1582         * Clean up the beacon skb.
1583         */
1584        dev_kfree_skb(entry->skb);
1585        entry->skb = NULL;
1586}
1587
1588static void rt73usb_clear_beacon(struct queue_entry *entry)
1589{
1590        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1591        unsigned int beacon_base;
1592        u32 orig_reg, reg;
1593
1594        /*
1595         * Disable beaconing while we are reloading the beacon data,
1596         * otherwise we might be sending out invalid data.
1597         */
1598        orig_reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR9);
1599        reg = orig_reg;
1600        rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1601        rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1602
1603        /*
1604         * Clear beacon.
1605         */
1606        beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1607        rt2x00usb_register_write(rt2x00dev, beacon_base, 0);
1608
1609        /*
1610         * Restore beaconing state.
1611         */
1612        rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
1613}
1614
1615static int rt73usb_get_tx_data_len(struct queue_entry *entry)
1616{
1617        int length;
1618
1619        /*
1620         * The length _must_ be a multiple of 4,
1621         * but it must _not_ be a multiple of the USB packet size.
1622         */
1623        length = roundup(entry->skb->len, 4);
1624        length += (4 * !(length % entry->queue->usb_maxpacket));
1625
1626        return length;
1627}
1628
1629/*
1630 * RX control handlers
1631 */
1632static int rt73usb_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1633{
1634        u8 offset = rt2x00dev->lna_gain;
1635        u8 lna;
1636
1637        lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1638        switch (lna) {
1639        case 3:
1640                offset += 90;
1641                break;
1642        case 2:
1643                offset += 74;
1644                break;
1645        case 1:
1646                offset += 64;
1647                break;
1648        default:
1649                return 0;
1650        }
1651
1652        if (rt2x00dev->curr_band == NL80211_BAND_5GHZ) {
1653                if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
1654                        if (lna == 3 || lna == 2)
1655                                offset += 10;
1656                } else {
1657                        if (lna == 3)
1658                                offset += 6;
1659                        else if (lna == 2)
1660                                offset += 8;
1661                }
1662        }
1663
1664        return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1665}
1666
1667static void rt73usb_fill_rxdone(struct queue_entry *entry,
1668                                struct rxdone_entry_desc *rxdesc)
1669{
1670        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1671        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1672        __le32 *rxd = (__le32 *)entry->skb->data;
1673        u32 word0;
1674        u32 word1;
1675
1676        /*
1677         * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1678         * frame data in rt2x00usb.
1679         */
1680        memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1681        rxd = (__le32 *)skbdesc->desc;
1682
1683        /*
1684         * It is now safe to read the descriptor on all architectures.
1685         */
1686        word0 = rt2x00_desc_read(rxd, 0);
1687        word1 = rt2x00_desc_read(rxd, 1);
1688
1689        if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1690                rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1691
1692        rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1693        rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1694
1695        if (rxdesc->cipher != CIPHER_NONE) {
1696                rxdesc->iv[0] = _rt2x00_desc_read(rxd, 2);
1697                rxdesc->iv[1] = _rt2x00_desc_read(rxd, 3);
1698                rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1699
1700                rxdesc->icv = _rt2x00_desc_read(rxd, 4);
1701                rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
1702
1703                /*
1704                 * Hardware has stripped IV/EIV data from 802.11 frame during
1705                 * decryption. It has provided the data separately but rt2x00lib
1706                 * should decide if it should be reinserted.
1707                 */
1708                rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1709
1710                /*
1711                 * The hardware has already checked the Michael Mic and has
1712                 * stripped it from the frame. Signal this to mac80211.
1713                 */
1714                rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1715
1716                if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1717                        rxdesc->flags |= RX_FLAG_DECRYPTED;
1718                else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1719                        rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1720        }
1721
1722        /*
1723         * Obtain the status about this packet.
1724         * When frame was received with an OFDM bitrate,
1725         * the signal is the PLCP value. If it was received with
1726         * a CCK bitrate the signal is the rate in 100kbit/s.
1727         */
1728        rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1729        rxdesc->rssi = rt73usb_agc_to_rssi(rt2x00dev, word1);
1730        rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1731
1732        if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1733                rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1734        else
1735                rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1736        if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1737                rxdesc->dev_flags |= RXDONE_MY_BSS;
1738
1739        /*
1740         * Set skb pointers, and update frame information.
1741         */
1742        skb_pull(entry->skb, entry->queue->desc_size);
1743        skb_trim(entry->skb, rxdesc->size);
1744}
1745
1746/*
1747 * Device probe functions.
1748 */
1749static int rt73usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1750{
1751        u16 word;
1752        u8 *mac;
1753        s8 value;
1754
1755        rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1756
1757        /*
1758         * Start validation of the data that has been read.
1759         */
1760        mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1761        rt2x00lib_set_mac_address(rt2x00dev, mac);
1762
1763        word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1764        if (word == 0xffff) {
1765                rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1766                rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1767                                   ANTENNA_B);
1768                rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1769                                   ANTENNA_B);
1770                rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
1771                rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1772                rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1773                rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5226);
1774                rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1775                rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1776        }
1777
1778        word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
1779        if (word == 0xffff) {
1780                rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA, 0);
1781                rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1782                rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1783        }
1784
1785        word = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED);
1786        if (word == 0xffff) {
1787                rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_G, 0);
1788                rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_A, 0);
1789                rt2x00_set_field16(&word, EEPROM_LED_POLARITY_ACT, 0);
1790                rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_0, 0);
1791                rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_1, 0);
1792                rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_2, 0);
1793                rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_3, 0);
1794                rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_4, 0);
1795                rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
1796                                   LED_MODE_DEFAULT);
1797                rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
1798                rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word);
1799        }
1800
1801        word = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ);
1802        if (word == 0xffff) {
1803                rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
1804                rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
1805                rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
1806                rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word);
1807        }
1808
1809        word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG);
1810        if (word == 0xffff) {
1811                rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1812                rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1813                rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1814                rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
1815        } else {
1816                value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
1817                if (value < -10 || value > 10)
1818                        rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1819                value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
1820                if (value < -10 || value > 10)
1821                        rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1822                rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1823        }
1824
1825        word = rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A);
1826        if (word == 0xffff) {
1827                rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1828                rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1829                rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1830                rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
1831        } else {
1832                value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
1833                if (value < -10 || value > 10)
1834                        rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1835                value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
1836                if (value < -10 || value > 10)
1837                        rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1838                rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1839        }
1840
1841        return 0;
1842}
1843
1844static int rt73usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1845{
1846        u32 reg;
1847        u16 value;
1848        u16 eeprom;
1849
1850        /*
1851         * Read EEPROM word for configuration.
1852         */
1853        eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1854
1855        /*
1856         * Identify RF chipset.
1857         */
1858        value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1859        reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR0);
1860        rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
1861                        value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
1862
1863        if (!rt2x00_rt(rt2x00dev, RT2573) || (rt2x00_rev(rt2x00dev) == 0)) {
1864                rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
1865                return -ENODEV;
1866        }
1867
1868        if (!rt2x00_rf(rt2x00dev, RF5226) &&
1869            !rt2x00_rf(rt2x00dev, RF2528) &&
1870            !rt2x00_rf(rt2x00dev, RF5225) &&
1871            !rt2x00_rf(rt2x00dev, RF2527)) {
1872                rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1873                return -ENODEV;
1874        }
1875
1876        /*
1877         * Identify default antenna configuration.
1878         */
1879        rt2x00dev->default_ant.tx =
1880            rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1881        rt2x00dev->default_ant.rx =
1882            rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1883
1884        /*
1885         * Read the Frame type.
1886         */
1887        if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
1888                __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
1889
1890        /*
1891         * Detect if this device has an hardware controlled radio.
1892         */
1893        if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1894                __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1895
1896        /*
1897         * Read frequency offset.
1898         */
1899        eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ);
1900        rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
1901
1902        /*
1903         * Read external LNA informations.
1904         */
1905        eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
1906
1907        if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA)) {
1908                __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
1909                __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
1910        }
1911
1912        /*
1913         * Store led settings, for correct led behaviour.
1914         */
1915#ifdef CONFIG_RT2X00_LIB_LEDS
1916        eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_LED);
1917
1918        rt73usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1919        rt73usb_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
1920        if (value == LED_MODE_SIGNAL_STRENGTH)
1921                rt73usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1922                                 LED_TYPE_QUALITY);
1923
1924        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
1925        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
1926                           rt2x00_get_field16(eeprom,
1927                                              EEPROM_LED_POLARITY_GPIO_0));
1928        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
1929                           rt2x00_get_field16(eeprom,
1930                                              EEPROM_LED_POLARITY_GPIO_1));
1931        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
1932                           rt2x00_get_field16(eeprom,
1933                                              EEPROM_LED_POLARITY_GPIO_2));
1934        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
1935                           rt2x00_get_field16(eeprom,
1936                                              EEPROM_LED_POLARITY_GPIO_3));
1937        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
1938                           rt2x00_get_field16(eeprom,
1939                                              EEPROM_LED_POLARITY_GPIO_4));
1940        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
1941                           rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
1942        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
1943                           rt2x00_get_field16(eeprom,
1944                                              EEPROM_LED_POLARITY_RDY_G));
1945        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
1946                           rt2x00_get_field16(eeprom,
1947                                              EEPROM_LED_POLARITY_RDY_A));
1948#endif /* CONFIG_RT2X00_LIB_LEDS */
1949
1950        return 0;
1951}
1952
1953/*
1954 * RF value list for RF2528
1955 * Supports: 2.4 GHz
1956 */
1957static const struct rf_channel rf_vals_bg_2528[] = {
1958        { 1,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1959        { 2,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1960        { 3,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1961        { 4,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1962        { 5,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1963        { 6,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1964        { 7,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1965        { 8,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1966        { 9,  0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1967        { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1968        { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1969        { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1970        { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1971        { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1972};
1973
1974/*
1975 * RF value list for RF5226
1976 * Supports: 2.4 GHz & 5.2 GHz
1977 */
1978static const struct rf_channel rf_vals_5226[] = {
1979        { 1,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1980        { 2,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1981        { 3,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1982        { 4,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1983        { 5,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1984        { 6,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1985        { 7,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1986        { 8,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1987        { 9,  0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1988        { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1989        { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1990        { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1991        { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1992        { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1993
1994        /* 802.11 UNI / HyperLan 2 */
1995        { 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 },
1996        { 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 },
1997        { 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b },
1998        { 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 },
1999        { 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b },
2000        { 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 },
2001        { 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 },
2002        { 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b },
2003
2004        /* 802.11 HyperLan 2 */
2005        { 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 },
2006        { 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b },
2007        { 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 },
2008        { 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b },
2009        { 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 },
2010        { 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 },
2011        { 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b },
2012        { 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 },
2013        { 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b },
2014        { 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 },
2015
2016        /* 802.11 UNII */
2017        { 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 },
2018        { 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f },
2019        { 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 },
2020        { 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 },
2021        { 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f },
2022        { 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 },
2023
2024        /* MMAC(Japan)J52 ch 34,38,42,46 */
2025        { 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b },
2026        { 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 },
2027        { 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b },
2028        { 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 },
2029};
2030
2031/*
2032 * RF value list for RF5225 & RF2527
2033 * Supports: 2.4 GHz & 5.2 GHz
2034 */
2035static const struct rf_channel rf_vals_5225_2527[] = {
2036        { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2037        { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2038        { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2039        { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2040        { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2041        { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2042        { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2043        { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2044        { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2045        { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2046        { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2047        { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2048        { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2049        { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2050
2051        /* 802.11 UNI / HyperLan 2 */
2052        { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2053        { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2054        { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2055        { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2056        { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2057        { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2058        { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2059        { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2060
2061        /* 802.11 HyperLan 2 */
2062        { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2063        { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2064        { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2065        { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2066        { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2067        { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2068        { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2069        { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2070        { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2071        { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2072
2073        /* 802.11 UNII */
2074        { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2075        { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2076        { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2077        { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2078        { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2079        { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2080
2081        /* MMAC(Japan)J52 ch 34,38,42,46 */
2082        { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2083        { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2084        { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2085        { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2086};
2087
2088
2089static int rt73usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2090{
2091        struct hw_mode_spec *spec = &rt2x00dev->spec;
2092        struct channel_info *info;
2093        char *tx_power;
2094        unsigned int i;
2095
2096        /*
2097         * Initialize all hw fields.
2098         *
2099         * Don't set IEEE80211_HOST_BROADCAST_PS_BUFFERING unless we are
2100         * capable of sending the buffered frames out after the DTIM
2101         * transmission using rt2x00lib_beacondone. This will send out
2102         * multicast and broadcast traffic immediately instead of buffering it
2103         * infinitly and thus dropping it after some time.
2104         */
2105        ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
2106        ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
2107        ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
2108
2109        SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2110        SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2111                                rt2x00_eeprom_addr(rt2x00dev,
2112                                                   EEPROM_MAC_ADDR_0));
2113
2114        /*
2115         * Initialize hw_mode information.
2116         */
2117        spec->supported_bands = SUPPORT_BAND_2GHZ;
2118        spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2119
2120        if (rt2x00_rf(rt2x00dev, RF2528)) {
2121                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2528);
2122                spec->channels = rf_vals_bg_2528;
2123        } else if (rt2x00_rf(rt2x00dev, RF5226)) {
2124                spec->supported_bands |= SUPPORT_BAND_5GHZ;
2125                spec->num_channels = ARRAY_SIZE(rf_vals_5226);
2126                spec->channels = rf_vals_5226;
2127        } else if (rt2x00_rf(rt2x00dev, RF2527)) {
2128                spec->num_channels = 14;
2129                spec->channels = rf_vals_5225_2527;
2130        } else if (rt2x00_rf(rt2x00dev, RF5225)) {
2131                spec->supported_bands |= SUPPORT_BAND_5GHZ;
2132                spec->num_channels = ARRAY_SIZE(rf_vals_5225_2527);
2133                spec->channels = rf_vals_5225_2527;
2134        }
2135
2136        /*
2137         * Create channel information array
2138         */
2139        info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2140        if (!info)
2141                return -ENOMEM;
2142
2143        spec->channels_info = info;
2144
2145        tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2146        for (i = 0; i < 14; i++) {
2147                info[i].max_power = MAX_TXPOWER;
2148                info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2149        }
2150
2151        if (spec->num_channels > 14) {
2152                tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2153                for (i = 14; i < spec->num_channels; i++) {
2154                        info[i].max_power = MAX_TXPOWER;
2155                        info[i].default_power1 =
2156                                        TXPOWER_FROM_DEV(tx_power[i - 14]);
2157                }
2158        }
2159
2160        return 0;
2161}
2162
2163static int rt73usb_probe_hw(struct rt2x00_dev *rt2x00dev)
2164{
2165        int retval;
2166        u32 reg;
2167
2168        /*
2169         * Allocate eeprom data.
2170         */
2171        retval = rt73usb_validate_eeprom(rt2x00dev);
2172        if (retval)
2173                return retval;
2174
2175        retval = rt73usb_init_eeprom(rt2x00dev);
2176        if (retval)
2177                return retval;
2178
2179        /*
2180         * Enable rfkill polling by setting GPIO direction of the
2181         * rfkill switch GPIO pin correctly.
2182         */
2183        reg = rt2x00usb_register_read(rt2x00dev, MAC_CSR13);
2184        rt2x00_set_field32(&reg, MAC_CSR13_DIR7, 0);
2185        rt2x00usb_register_write(rt2x00dev, MAC_CSR13, reg);
2186
2187        /*
2188         * Initialize hw specifications.
2189         */
2190        retval = rt73usb_probe_hw_mode(rt2x00dev);
2191        if (retval)
2192                return retval;
2193
2194        /*
2195         * This device has multiple filters for control frames,
2196         * but has no a separate filter for PS Poll frames.
2197         */
2198        __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
2199
2200        /*
2201         * This device requires firmware.
2202         */
2203        __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
2204        if (!modparam_nohwcrypt)
2205                __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
2206        __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
2207        __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
2208
2209        /*
2210         * Set the rssi offset.
2211         */
2212        rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2213
2214        return 0;
2215}
2216
2217/*
2218 * IEEE80211 stack callback functions.
2219 */
2220static int rt73usb_conf_tx(struct ieee80211_hw *hw,
2221                           struct ieee80211_vif *vif, u16 queue_idx,
2222                           const struct ieee80211_tx_queue_params *params)
2223{
2224        struct rt2x00_dev *rt2x00dev = hw->priv;
2225        struct data_queue *queue;
2226        struct rt2x00_field32 field;
2227        int retval;
2228        u32 reg;
2229        u32 offset;
2230
2231        /*
2232         * First pass the configuration through rt2x00lib, that will
2233         * update the queue settings and validate the input. After that
2234         * we are free to update the registers based on the value
2235         * in the queue parameter.
2236         */
2237        retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params);
2238        if (retval)
2239                return retval;
2240
2241        /*
2242         * We only need to perform additional register initialization
2243         * for WMM queues/
2244         */
2245        if (queue_idx >= 4)
2246                return 0;
2247
2248        queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
2249
2250        /* Update WMM TXOP register */
2251        offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2252        field.bit_offset = (queue_idx & 1) * 16;
2253        field.bit_mask = 0xffff << field.bit_offset;
2254
2255        reg = rt2x00usb_register_read(rt2x00dev, offset);
2256        rt2x00_set_field32(&reg, field, queue->txop);
2257        rt2x00usb_register_write(rt2x00dev, offset, reg);
2258
2259        /* Update WMM registers */
2260        field.bit_offset = queue_idx * 4;
2261        field.bit_mask = 0xf << field.bit_offset;
2262
2263        reg = rt2x00usb_register_read(rt2x00dev, AIFSN_CSR);
2264        rt2x00_set_field32(&reg, field, queue->aifs);
2265        rt2x00usb_register_write(rt2x00dev, AIFSN_CSR, reg);
2266
2267        reg = rt2x00usb_register_read(rt2x00dev, CWMIN_CSR);
2268        rt2x00_set_field32(&reg, field, queue->cw_min);
2269        rt2x00usb_register_write(rt2x00dev, CWMIN_CSR, reg);
2270
2271        reg = rt2x00usb_register_read(rt2x00dev, CWMAX_CSR);
2272        rt2x00_set_field32(&reg, field, queue->cw_max);
2273        rt2x00usb_register_write(rt2x00dev, CWMAX_CSR, reg);
2274
2275        return 0;
2276}
2277
2278static u64 rt73usb_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
2279{
2280        struct rt2x00_dev *rt2x00dev = hw->priv;
2281        u64 tsf;
2282        u32 reg;
2283
2284        reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR13);
2285        tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2286        reg = rt2x00usb_register_read(rt2x00dev, TXRX_CSR12);
2287        tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2288
2289        return tsf;
2290}
2291
2292static const struct ieee80211_ops rt73usb_mac80211_ops = {
2293        .tx                     = rt2x00mac_tx,
2294        .start                  = rt2x00mac_start,
2295        .stop                   = rt2x00mac_stop,
2296        .add_interface          = rt2x00mac_add_interface,
2297        .remove_interface       = rt2x00mac_remove_interface,
2298        .config                 = rt2x00mac_config,
2299        .configure_filter       = rt2x00mac_configure_filter,
2300        .set_tim                = rt2x00mac_set_tim,
2301        .set_key                = rt2x00mac_set_key,
2302        .sw_scan_start          = rt2x00mac_sw_scan_start,
2303        .sw_scan_complete       = rt2x00mac_sw_scan_complete,
2304        .get_stats              = rt2x00mac_get_stats,
2305        .bss_info_changed       = rt2x00mac_bss_info_changed,
2306        .conf_tx                = rt73usb_conf_tx,
2307        .get_tsf                = rt73usb_get_tsf,
2308        .rfkill_poll            = rt2x00mac_rfkill_poll,
2309        .flush                  = rt2x00mac_flush,
2310        .set_antenna            = rt2x00mac_set_antenna,
2311        .get_antenna            = rt2x00mac_get_antenna,
2312        .get_ringparam          = rt2x00mac_get_ringparam,
2313        .tx_frames_pending      = rt2x00mac_tx_frames_pending,
2314};
2315
2316static const struct rt2x00lib_ops rt73usb_rt2x00_ops = {
2317        .probe_hw               = rt73usb_probe_hw,
2318        .get_firmware_name      = rt73usb_get_firmware_name,
2319        .check_firmware         = rt73usb_check_firmware,
2320        .load_firmware          = rt73usb_load_firmware,
2321        .initialize             = rt2x00usb_initialize,
2322        .uninitialize           = rt2x00usb_uninitialize,
2323        .clear_entry            = rt2x00usb_clear_entry,
2324        .set_device_state       = rt73usb_set_device_state,
2325        .rfkill_poll            = rt73usb_rfkill_poll,
2326        .link_stats             = rt73usb_link_stats,
2327        .reset_tuner            = rt73usb_reset_tuner,
2328        .link_tuner             = rt73usb_link_tuner,
2329        .watchdog               = rt2x00usb_watchdog,
2330        .start_queue            = rt73usb_start_queue,
2331        .kick_queue             = rt2x00usb_kick_queue,
2332        .stop_queue             = rt73usb_stop_queue,
2333        .flush_queue            = rt2x00usb_flush_queue,
2334        .write_tx_desc          = rt73usb_write_tx_desc,
2335        .write_beacon           = rt73usb_write_beacon,
2336        .clear_beacon           = rt73usb_clear_beacon,
2337        .get_tx_data_len        = rt73usb_get_tx_data_len,
2338        .fill_rxdone            = rt73usb_fill_rxdone,
2339        .config_shared_key      = rt73usb_config_shared_key,
2340        .config_pairwise_key    = rt73usb_config_pairwise_key,
2341        .config_filter          = rt73usb_config_filter,
2342        .config_intf            = rt73usb_config_intf,
2343        .config_erp             = rt73usb_config_erp,
2344        .config_ant             = rt73usb_config_ant,
2345        .config                 = rt73usb_config,
2346};
2347
2348static void rt73usb_queue_init(struct data_queue *queue)
2349{
2350        switch (queue->qid) {
2351        case QID_RX:
2352                queue->limit = 32;
2353                queue->data_size = DATA_FRAME_SIZE;
2354                queue->desc_size = RXD_DESC_SIZE;
2355                queue->priv_size = sizeof(struct queue_entry_priv_usb);
2356                break;
2357
2358        case QID_AC_VO:
2359        case QID_AC_VI:
2360        case QID_AC_BE:
2361        case QID_AC_BK:
2362                queue->limit = 32;
2363                queue->data_size = DATA_FRAME_SIZE;
2364                queue->desc_size = TXD_DESC_SIZE;
2365                queue->priv_size = sizeof(struct queue_entry_priv_usb);
2366                break;
2367
2368        case QID_BEACON:
2369                queue->limit = 4;
2370                queue->data_size = MGMT_FRAME_SIZE;
2371                queue->desc_size = TXINFO_SIZE;
2372                queue->priv_size = sizeof(struct queue_entry_priv_usb);
2373                break;
2374
2375        case QID_ATIM:
2376        default:
2377                BUG();
2378                break;
2379        }
2380}
2381
2382static const struct rt2x00_ops rt73usb_ops = {
2383        .name                   = KBUILD_MODNAME,
2384        .max_ap_intf            = 4,
2385        .eeprom_size            = EEPROM_SIZE,
2386        .rf_size                = RF_SIZE,
2387        .tx_queues              = NUM_TX_QUEUES,
2388        .queue_init             = rt73usb_queue_init,
2389        .lib                    = &rt73usb_rt2x00_ops,
2390        .hw                     = &rt73usb_mac80211_ops,
2391#ifdef CONFIG_RT2X00_LIB_DEBUGFS
2392        .debugfs                = &rt73usb_rt2x00debug,
2393#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2394};
2395
2396/*
2397 * rt73usb module information.
2398 */
2399static const struct usb_device_id rt73usb_device_table[] = {
2400        /* AboCom */
2401        { USB_DEVICE(0x07b8, 0xb21b) },
2402        { USB_DEVICE(0x07b8, 0xb21c) },
2403        { USB_DEVICE(0x07b8, 0xb21d) },
2404        { USB_DEVICE(0x07b8, 0xb21e) },
2405        { USB_DEVICE(0x07b8, 0xb21f) },
2406        /* AL */
2407        { USB_DEVICE(0x14b2, 0x3c10) },
2408        /* Amigo */
2409        { USB_DEVICE(0x148f, 0x9021) },
2410        { USB_DEVICE(0x0eb0, 0x9021) },
2411        /* AMIT  */
2412        { USB_DEVICE(0x18c5, 0x0002) },
2413        /* Askey */
2414        { USB_DEVICE(0x1690, 0x0722) },
2415        /* ASUS */
2416        { USB_DEVICE(0x0b05, 0x1723) },
2417        { USB_DEVICE(0x0b05, 0x1724) },
2418        /* Belkin */
2419        { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050B ver. 3.x */
2420        { USB_DEVICE(0x050d, 0x705a) },
2421        { USB_DEVICE(0x050d, 0x905b) },
2422        { USB_DEVICE(0x050d, 0x905c) },
2423        /* Billionton */
2424        { USB_DEVICE(0x1631, 0xc019) },
2425        { USB_DEVICE(0x08dd, 0x0120) },
2426        /* Buffalo */
2427        { USB_DEVICE(0x0411, 0x00d8) },
2428        { USB_DEVICE(0x0411, 0x00d9) },
2429        { USB_DEVICE(0x0411, 0x00e6) },
2430        { USB_DEVICE(0x0411, 0x00f4) },
2431        { USB_DEVICE(0x0411, 0x0116) },
2432        { USB_DEVICE(0x0411, 0x0119) },
2433        { USB_DEVICE(0x0411, 0x0137) },
2434        /* CEIVA */
2435        { USB_DEVICE(0x178d, 0x02be) },
2436        /* CNet */
2437        { USB_DEVICE(0x1371, 0x9022) },
2438        { USB_DEVICE(0x1371, 0x9032) },
2439        /* Conceptronic */
2440        { USB_DEVICE(0x14b2, 0x3c22) },
2441        /* Corega */
2442        { USB_DEVICE(0x07aa, 0x002e) },
2443        /* D-Link */
2444        { USB_DEVICE(0x07d1, 0x3c03) },
2445        { USB_DEVICE(0x07d1, 0x3c04) },
2446        { USB_DEVICE(0x07d1, 0x3c06) },
2447        { USB_DEVICE(0x07d1, 0x3c07) },
2448        /* Edimax */
2449        { USB_DEVICE(0x7392, 0x7318) },
2450        { USB_DEVICE(0x7392, 0x7618) },
2451        /* EnGenius */
2452        { USB_DEVICE(0x1740, 0x3701) },
2453        /* Gemtek */
2454        { USB_DEVICE(0x15a9, 0x0004) },
2455        /* Gigabyte */
2456        { USB_DEVICE(0x1044, 0x8008) },
2457        { USB_DEVICE(0x1044, 0x800a) },
2458        /* Huawei-3Com */
2459        { USB_DEVICE(0x1472, 0x0009) },
2460        /* Hercules */
2461        { USB_DEVICE(0x06f8, 0xe002) },
2462        { USB_DEVICE(0x06f8, 0xe010) },
2463        { USB_DEVICE(0x06f8, 0xe020) },
2464        /* Linksys */
2465        { USB_DEVICE(0x13b1, 0x0020) },
2466        { USB_DEVICE(0x13b1, 0x0023) },
2467        { USB_DEVICE(0x13b1, 0x0028) },
2468        /* MSI */
2469        { USB_DEVICE(0x0db0, 0x4600) },
2470        { USB_DEVICE(0x0db0, 0x6877) },
2471        { USB_DEVICE(0x0db0, 0x6874) },
2472        { USB_DEVICE(0x0db0, 0xa861) },
2473        { USB_DEVICE(0x0db0, 0xa874) },
2474        /* Ovislink */
2475        { USB_DEVICE(0x1b75, 0x7318) },
2476        /* Ralink */
2477        { USB_DEVICE(0x04bb, 0x093d) },
2478        { USB_DEVICE(0x148f, 0x2573) },
2479        { USB_DEVICE(0x148f, 0x2671) },
2480        { USB_DEVICE(0x0812, 0x3101) },
2481        /* Qcom */
2482        { USB_DEVICE(0x18e8, 0x6196) },
2483        { USB_DEVICE(0x18e8, 0x6229) },
2484        { USB_DEVICE(0x18e8, 0x6238) },
2485        /* Samsung */
2486        { USB_DEVICE(0x04e8, 0x4471) },
2487        /* Senao */
2488        { USB_DEVICE(0x1740, 0x7100) },
2489        /* Sitecom */
2490        { USB_DEVICE(0x0df6, 0x0024) },
2491        { USB_DEVICE(0x0df6, 0x0027) },
2492        { USB_DEVICE(0x0df6, 0x002f) },
2493        { USB_DEVICE(0x0df6, 0x90ac) },
2494        { USB_DEVICE(0x0df6, 0x9712) },
2495        /* Surecom */
2496        { USB_DEVICE(0x0769, 0x31f3) },
2497        /* Tilgin */
2498        { USB_DEVICE(0x6933, 0x5001) },
2499        /* Philips */
2500        { USB_DEVICE(0x0471, 0x200a) },
2501        /* Planex */
2502        { USB_DEVICE(0x2019, 0xab01) },
2503        { USB_DEVICE(0x2019, 0xab50) },
2504        /* WideTell */
2505        { USB_DEVICE(0x7167, 0x3840) },
2506        /* Zcom */
2507        { USB_DEVICE(0x0cde, 0x001c) },
2508        /* ZyXEL */
2509        { USB_DEVICE(0x0586, 0x3415) },
2510        { 0, }
2511};
2512
2513MODULE_AUTHOR(DRV_PROJECT);
2514MODULE_VERSION(DRV_VERSION);
2515MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver.");
2516MODULE_DEVICE_TABLE(usb, rt73usb_device_table);
2517MODULE_FIRMWARE(FIRMWARE_RT2571);
2518MODULE_LICENSE("GPL");
2519
2520static int rt73usb_probe(struct usb_interface *usb_intf,
2521                         const struct usb_device_id *id)
2522{
2523        return rt2x00usb_probe(usb_intf, &rt73usb_ops);
2524}
2525
2526static struct usb_driver rt73usb_driver = {
2527        .name           = KBUILD_MODNAME,
2528        .id_table       = rt73usb_device_table,
2529        .probe          = rt73usb_probe,
2530        .disconnect     = rt2x00usb_disconnect,
2531        .suspend        = rt2x00usb_suspend,
2532        .resume         = rt2x00usb_resume,
2533        .reset_resume   = rt2x00usb_resume,
2534        .disable_hub_initiated_lpm = 1,
2535};
2536
2537module_usb_driver(rt73usb_driver);
2538