linux/drivers/nvme/target/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Common code for the NVMe target.
   4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
   5 */
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7#include <linux/module.h>
   8#include <linux/random.h>
   9#include <linux/rculist.h>
  10#include <linux/pci-p2pdma.h>
  11#include <linux/scatterlist.h>
  12
  13#define CREATE_TRACE_POINTS
  14#include "trace.h"
  15
  16#include "nvmet.h"
  17
  18struct workqueue_struct *buffered_io_wq;
  19struct workqueue_struct *zbd_wq;
  20static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
  21static DEFINE_IDA(cntlid_ida);
  22
  23/*
  24 * This read/write semaphore is used to synchronize access to configuration
  25 * information on a target system that will result in discovery log page
  26 * information change for at least one host.
  27 * The full list of resources to protected by this semaphore is:
  28 *
  29 *  - subsystems list
  30 *  - per-subsystem allowed hosts list
  31 *  - allow_any_host subsystem attribute
  32 *  - nvmet_genctr
  33 *  - the nvmet_transports array
  34 *
  35 * When updating any of those lists/structures write lock should be obtained,
  36 * while when reading (popolating discovery log page or checking host-subsystem
  37 * link) read lock is obtained to allow concurrent reads.
  38 */
  39DECLARE_RWSEM(nvmet_config_sem);
  40
  41u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
  42u64 nvmet_ana_chgcnt;
  43DECLARE_RWSEM(nvmet_ana_sem);
  44
  45inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
  46{
  47        switch (errno) {
  48        case 0:
  49                return NVME_SC_SUCCESS;
  50        case -ENOSPC:
  51                req->error_loc = offsetof(struct nvme_rw_command, length);
  52                return NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
  53        case -EREMOTEIO:
  54                req->error_loc = offsetof(struct nvme_rw_command, slba);
  55                return  NVME_SC_LBA_RANGE | NVME_SC_DNR;
  56        case -EOPNOTSUPP:
  57                req->error_loc = offsetof(struct nvme_common_command, opcode);
  58                switch (req->cmd->common.opcode) {
  59                case nvme_cmd_dsm:
  60                case nvme_cmd_write_zeroes:
  61                        return NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
  62                default:
  63                        return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
  64                }
  65                break;
  66        case -ENODATA:
  67                req->error_loc = offsetof(struct nvme_rw_command, nsid);
  68                return NVME_SC_ACCESS_DENIED;
  69        case -EIO:
  70                fallthrough;
  71        default:
  72                req->error_loc = offsetof(struct nvme_common_command, opcode);
  73                return NVME_SC_INTERNAL | NVME_SC_DNR;
  74        }
  75}
  76
  77u16 nvmet_report_invalid_opcode(struct nvmet_req *req)
  78{
  79        pr_debug("unhandled cmd %d on qid %d\n", req->cmd->common.opcode,
  80                 req->sq->qid);
  81
  82        req->error_loc = offsetof(struct nvme_common_command, opcode);
  83        return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
  84}
  85
  86static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
  87                const char *subsysnqn);
  88
  89u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
  90                size_t len)
  91{
  92        if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
  93                req->error_loc = offsetof(struct nvme_common_command, dptr);
  94                return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
  95        }
  96        return 0;
  97}
  98
  99u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
 100{
 101        if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
 102                req->error_loc = offsetof(struct nvme_common_command, dptr);
 103                return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
 104        }
 105        return 0;
 106}
 107
 108u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
 109{
 110        if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
 111                req->error_loc = offsetof(struct nvme_common_command, dptr);
 112                return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
 113        }
 114        return 0;
 115}
 116
 117static u32 nvmet_max_nsid(struct nvmet_subsys *subsys)
 118{
 119        struct nvmet_ns *cur;
 120        unsigned long idx;
 121        u32 nsid = 0;
 122
 123        xa_for_each(&subsys->namespaces, idx, cur)
 124                nsid = cur->nsid;
 125
 126        return nsid;
 127}
 128
 129static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
 130{
 131        return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
 132}
 133
 134static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl)
 135{
 136        struct nvmet_req *req;
 137
 138        mutex_lock(&ctrl->lock);
 139        while (ctrl->nr_async_event_cmds) {
 140                req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
 141                mutex_unlock(&ctrl->lock);
 142                nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR);
 143                mutex_lock(&ctrl->lock);
 144        }
 145        mutex_unlock(&ctrl->lock);
 146}
 147
 148static void nvmet_async_events_process(struct nvmet_ctrl *ctrl)
 149{
 150        struct nvmet_async_event *aen;
 151        struct nvmet_req *req;
 152
 153        mutex_lock(&ctrl->lock);
 154        while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) {
 155                aen = list_first_entry(&ctrl->async_events,
 156                                       struct nvmet_async_event, entry);
 157                req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
 158                nvmet_set_result(req, nvmet_async_event_result(aen));
 159
 160                list_del(&aen->entry);
 161                kfree(aen);
 162
 163                mutex_unlock(&ctrl->lock);
 164                trace_nvmet_async_event(ctrl, req->cqe->result.u32);
 165                nvmet_req_complete(req, 0);
 166                mutex_lock(&ctrl->lock);
 167        }
 168        mutex_unlock(&ctrl->lock);
 169}
 170
 171static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
 172{
 173        struct nvmet_async_event *aen, *tmp;
 174
 175        mutex_lock(&ctrl->lock);
 176        list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) {
 177                list_del(&aen->entry);
 178                kfree(aen);
 179        }
 180        mutex_unlock(&ctrl->lock);
 181}
 182
 183static void nvmet_async_event_work(struct work_struct *work)
 184{
 185        struct nvmet_ctrl *ctrl =
 186                container_of(work, struct nvmet_ctrl, async_event_work);
 187
 188        nvmet_async_events_process(ctrl);
 189}
 190
 191void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
 192                u8 event_info, u8 log_page)
 193{
 194        struct nvmet_async_event *aen;
 195
 196        aen = kmalloc(sizeof(*aen), GFP_KERNEL);
 197        if (!aen)
 198                return;
 199
 200        aen->event_type = event_type;
 201        aen->event_info = event_info;
 202        aen->log_page = log_page;
 203
 204        mutex_lock(&ctrl->lock);
 205        list_add_tail(&aen->entry, &ctrl->async_events);
 206        mutex_unlock(&ctrl->lock);
 207
 208        schedule_work(&ctrl->async_event_work);
 209}
 210
 211static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
 212{
 213        u32 i;
 214
 215        mutex_lock(&ctrl->lock);
 216        if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
 217                goto out_unlock;
 218
 219        for (i = 0; i < ctrl->nr_changed_ns; i++) {
 220                if (ctrl->changed_ns_list[i] == nsid)
 221                        goto out_unlock;
 222        }
 223
 224        if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
 225                ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
 226                ctrl->nr_changed_ns = U32_MAX;
 227                goto out_unlock;
 228        }
 229
 230        ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
 231out_unlock:
 232        mutex_unlock(&ctrl->lock);
 233}
 234
 235void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
 236{
 237        struct nvmet_ctrl *ctrl;
 238
 239        lockdep_assert_held(&subsys->lock);
 240
 241        list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
 242                nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
 243                if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
 244                        continue;
 245                nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
 246                                NVME_AER_NOTICE_NS_CHANGED,
 247                                NVME_LOG_CHANGED_NS);
 248        }
 249}
 250
 251void nvmet_send_ana_event(struct nvmet_subsys *subsys,
 252                struct nvmet_port *port)
 253{
 254        struct nvmet_ctrl *ctrl;
 255
 256        mutex_lock(&subsys->lock);
 257        list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
 258                if (port && ctrl->port != port)
 259                        continue;
 260                if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
 261                        continue;
 262                nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
 263                                NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
 264        }
 265        mutex_unlock(&subsys->lock);
 266}
 267
 268void nvmet_port_send_ana_event(struct nvmet_port *port)
 269{
 270        struct nvmet_subsys_link *p;
 271
 272        down_read(&nvmet_config_sem);
 273        list_for_each_entry(p, &port->subsystems, entry)
 274                nvmet_send_ana_event(p->subsys, port);
 275        up_read(&nvmet_config_sem);
 276}
 277
 278int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
 279{
 280        int ret = 0;
 281
 282        down_write(&nvmet_config_sem);
 283        if (nvmet_transports[ops->type])
 284                ret = -EINVAL;
 285        else
 286                nvmet_transports[ops->type] = ops;
 287        up_write(&nvmet_config_sem);
 288
 289        return ret;
 290}
 291EXPORT_SYMBOL_GPL(nvmet_register_transport);
 292
 293void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
 294{
 295        down_write(&nvmet_config_sem);
 296        nvmet_transports[ops->type] = NULL;
 297        up_write(&nvmet_config_sem);
 298}
 299EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
 300
 301void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
 302{
 303        struct nvmet_ctrl *ctrl;
 304
 305        mutex_lock(&subsys->lock);
 306        list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
 307                if (ctrl->port == port)
 308                        ctrl->ops->delete_ctrl(ctrl);
 309        }
 310        mutex_unlock(&subsys->lock);
 311}
 312
 313int nvmet_enable_port(struct nvmet_port *port)
 314{
 315        const struct nvmet_fabrics_ops *ops;
 316        int ret;
 317
 318        lockdep_assert_held(&nvmet_config_sem);
 319
 320        ops = nvmet_transports[port->disc_addr.trtype];
 321        if (!ops) {
 322                up_write(&nvmet_config_sem);
 323                request_module("nvmet-transport-%d", port->disc_addr.trtype);
 324                down_write(&nvmet_config_sem);
 325                ops = nvmet_transports[port->disc_addr.trtype];
 326                if (!ops) {
 327                        pr_err("transport type %d not supported\n",
 328                                port->disc_addr.trtype);
 329                        return -EINVAL;
 330                }
 331        }
 332
 333        if (!try_module_get(ops->owner))
 334                return -EINVAL;
 335
 336        /*
 337         * If the user requested PI support and the transport isn't pi capable,
 338         * don't enable the port.
 339         */
 340        if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) {
 341                pr_err("T10-PI is not supported by transport type %d\n",
 342                       port->disc_addr.trtype);
 343                ret = -EINVAL;
 344                goto out_put;
 345        }
 346
 347        ret = ops->add_port(port);
 348        if (ret)
 349                goto out_put;
 350
 351        /* If the transport didn't set inline_data_size, then disable it. */
 352        if (port->inline_data_size < 0)
 353                port->inline_data_size = 0;
 354
 355        port->enabled = true;
 356        port->tr_ops = ops;
 357        return 0;
 358
 359out_put:
 360        module_put(ops->owner);
 361        return ret;
 362}
 363
 364void nvmet_disable_port(struct nvmet_port *port)
 365{
 366        const struct nvmet_fabrics_ops *ops;
 367
 368        lockdep_assert_held(&nvmet_config_sem);
 369
 370        port->enabled = false;
 371        port->tr_ops = NULL;
 372
 373        ops = nvmet_transports[port->disc_addr.trtype];
 374        ops->remove_port(port);
 375        module_put(ops->owner);
 376}
 377
 378static void nvmet_keep_alive_timer(struct work_struct *work)
 379{
 380        struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
 381                        struct nvmet_ctrl, ka_work);
 382        bool reset_tbkas = ctrl->reset_tbkas;
 383
 384        ctrl->reset_tbkas = false;
 385        if (reset_tbkas) {
 386                pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
 387                        ctrl->cntlid);
 388                schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
 389                return;
 390        }
 391
 392        pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
 393                ctrl->cntlid, ctrl->kato);
 394
 395        nvmet_ctrl_fatal_error(ctrl);
 396}
 397
 398void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
 399{
 400        if (unlikely(ctrl->kato == 0))
 401                return;
 402
 403        pr_debug("ctrl %d start keep-alive timer for %d secs\n",
 404                ctrl->cntlid, ctrl->kato);
 405
 406        schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
 407}
 408
 409void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
 410{
 411        if (unlikely(ctrl->kato == 0))
 412                return;
 413
 414        pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
 415
 416        cancel_delayed_work_sync(&ctrl->ka_work);
 417}
 418
 419u16 nvmet_req_find_ns(struct nvmet_req *req)
 420{
 421        u32 nsid = le32_to_cpu(req->cmd->common.nsid);
 422
 423        req->ns = xa_load(&nvmet_req_subsys(req)->namespaces, nsid);
 424        if (unlikely(!req->ns)) {
 425                req->error_loc = offsetof(struct nvme_common_command, nsid);
 426                return NVME_SC_INVALID_NS | NVME_SC_DNR;
 427        }
 428
 429        percpu_ref_get(&req->ns->ref);
 430        return NVME_SC_SUCCESS;
 431}
 432
 433static void nvmet_destroy_namespace(struct percpu_ref *ref)
 434{
 435        struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
 436
 437        complete(&ns->disable_done);
 438}
 439
 440void nvmet_put_namespace(struct nvmet_ns *ns)
 441{
 442        percpu_ref_put(&ns->ref);
 443}
 444
 445static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
 446{
 447        nvmet_bdev_ns_disable(ns);
 448        nvmet_file_ns_disable(ns);
 449}
 450
 451static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
 452{
 453        int ret;
 454        struct pci_dev *p2p_dev;
 455
 456        if (!ns->use_p2pmem)
 457                return 0;
 458
 459        if (!ns->bdev) {
 460                pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
 461                return -EINVAL;
 462        }
 463
 464        if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) {
 465                pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
 466                       ns->device_path);
 467                return -EINVAL;
 468        }
 469
 470        if (ns->p2p_dev) {
 471                ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
 472                if (ret < 0)
 473                        return -EINVAL;
 474        } else {
 475                /*
 476                 * Right now we just check that there is p2pmem available so
 477                 * we can report an error to the user right away if there
 478                 * is not. We'll find the actual device to use once we
 479                 * setup the controller when the port's device is available.
 480                 */
 481
 482                p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
 483                if (!p2p_dev) {
 484                        pr_err("no peer-to-peer memory is available for %s\n",
 485                               ns->device_path);
 486                        return -EINVAL;
 487                }
 488
 489                pci_dev_put(p2p_dev);
 490        }
 491
 492        return 0;
 493}
 494
 495/*
 496 * Note: ctrl->subsys->lock should be held when calling this function
 497 */
 498static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
 499                                    struct nvmet_ns *ns)
 500{
 501        struct device *clients[2];
 502        struct pci_dev *p2p_dev;
 503        int ret;
 504
 505        if (!ctrl->p2p_client || !ns->use_p2pmem)
 506                return;
 507
 508        if (ns->p2p_dev) {
 509                ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
 510                if (ret < 0)
 511                        return;
 512
 513                p2p_dev = pci_dev_get(ns->p2p_dev);
 514        } else {
 515                clients[0] = ctrl->p2p_client;
 516                clients[1] = nvmet_ns_dev(ns);
 517
 518                p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
 519                if (!p2p_dev) {
 520                        pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
 521                               dev_name(ctrl->p2p_client), ns->device_path);
 522                        return;
 523                }
 524        }
 525
 526        ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
 527        if (ret < 0)
 528                pci_dev_put(p2p_dev);
 529
 530        pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
 531                ns->nsid);
 532}
 533
 534void nvmet_ns_revalidate(struct nvmet_ns *ns)
 535{
 536        loff_t oldsize = ns->size;
 537
 538        if (ns->bdev)
 539                nvmet_bdev_ns_revalidate(ns);
 540        else
 541                nvmet_file_ns_revalidate(ns);
 542
 543        if (oldsize != ns->size)
 544                nvmet_ns_changed(ns->subsys, ns->nsid);
 545}
 546
 547int nvmet_ns_enable(struct nvmet_ns *ns)
 548{
 549        struct nvmet_subsys *subsys = ns->subsys;
 550        struct nvmet_ctrl *ctrl;
 551        int ret;
 552
 553        mutex_lock(&subsys->lock);
 554        ret = 0;
 555
 556        if (nvmet_passthru_ctrl(subsys)) {
 557                pr_info("cannot enable both passthru and regular namespaces for a single subsystem");
 558                goto out_unlock;
 559        }
 560
 561        if (ns->enabled)
 562                goto out_unlock;
 563
 564        ret = -EMFILE;
 565        if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
 566                goto out_unlock;
 567
 568        ret = nvmet_bdev_ns_enable(ns);
 569        if (ret == -ENOTBLK)
 570                ret = nvmet_file_ns_enable(ns);
 571        if (ret)
 572                goto out_unlock;
 573
 574        ret = nvmet_p2pmem_ns_enable(ns);
 575        if (ret)
 576                goto out_dev_disable;
 577
 578        list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
 579                nvmet_p2pmem_ns_add_p2p(ctrl, ns);
 580
 581        ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
 582                                0, GFP_KERNEL);
 583        if (ret)
 584                goto out_dev_put;
 585
 586        if (ns->nsid > subsys->max_nsid)
 587                subsys->max_nsid = ns->nsid;
 588
 589        ret = xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL);
 590        if (ret)
 591                goto out_restore_subsys_maxnsid;
 592
 593        subsys->nr_namespaces++;
 594
 595        nvmet_ns_changed(subsys, ns->nsid);
 596        ns->enabled = true;
 597        ret = 0;
 598out_unlock:
 599        mutex_unlock(&subsys->lock);
 600        return ret;
 601
 602out_restore_subsys_maxnsid:
 603        subsys->max_nsid = nvmet_max_nsid(subsys);
 604        percpu_ref_exit(&ns->ref);
 605out_dev_put:
 606        list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
 607                pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
 608out_dev_disable:
 609        nvmet_ns_dev_disable(ns);
 610        goto out_unlock;
 611}
 612
 613void nvmet_ns_disable(struct nvmet_ns *ns)
 614{
 615        struct nvmet_subsys *subsys = ns->subsys;
 616        struct nvmet_ctrl *ctrl;
 617
 618        mutex_lock(&subsys->lock);
 619        if (!ns->enabled)
 620                goto out_unlock;
 621
 622        ns->enabled = false;
 623        xa_erase(&ns->subsys->namespaces, ns->nsid);
 624        if (ns->nsid == subsys->max_nsid)
 625                subsys->max_nsid = nvmet_max_nsid(subsys);
 626
 627        list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
 628                pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
 629
 630        mutex_unlock(&subsys->lock);
 631
 632        /*
 633         * Now that we removed the namespaces from the lookup list, we
 634         * can kill the per_cpu ref and wait for any remaining references
 635         * to be dropped, as well as a RCU grace period for anyone only
 636         * using the namepace under rcu_read_lock().  Note that we can't
 637         * use call_rcu here as we need to ensure the namespaces have
 638         * been fully destroyed before unloading the module.
 639         */
 640        percpu_ref_kill(&ns->ref);
 641        synchronize_rcu();
 642        wait_for_completion(&ns->disable_done);
 643        percpu_ref_exit(&ns->ref);
 644
 645        mutex_lock(&subsys->lock);
 646
 647        subsys->nr_namespaces--;
 648        nvmet_ns_changed(subsys, ns->nsid);
 649        nvmet_ns_dev_disable(ns);
 650out_unlock:
 651        mutex_unlock(&subsys->lock);
 652}
 653
 654void nvmet_ns_free(struct nvmet_ns *ns)
 655{
 656        nvmet_ns_disable(ns);
 657
 658        down_write(&nvmet_ana_sem);
 659        nvmet_ana_group_enabled[ns->anagrpid]--;
 660        up_write(&nvmet_ana_sem);
 661
 662        kfree(ns->device_path);
 663        kfree(ns);
 664}
 665
 666struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
 667{
 668        struct nvmet_ns *ns;
 669
 670        ns = kzalloc(sizeof(*ns), GFP_KERNEL);
 671        if (!ns)
 672                return NULL;
 673
 674        init_completion(&ns->disable_done);
 675
 676        ns->nsid = nsid;
 677        ns->subsys = subsys;
 678
 679        down_write(&nvmet_ana_sem);
 680        ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
 681        nvmet_ana_group_enabled[ns->anagrpid]++;
 682        up_write(&nvmet_ana_sem);
 683
 684        uuid_gen(&ns->uuid);
 685        ns->buffered_io = false;
 686        ns->csi = NVME_CSI_NVM;
 687
 688        return ns;
 689}
 690
 691static void nvmet_update_sq_head(struct nvmet_req *req)
 692{
 693        if (req->sq->size) {
 694                u32 old_sqhd, new_sqhd;
 695
 696                do {
 697                        old_sqhd = req->sq->sqhd;
 698                        new_sqhd = (old_sqhd + 1) % req->sq->size;
 699                } while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) !=
 700                                        old_sqhd);
 701        }
 702        req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
 703}
 704
 705static void nvmet_set_error(struct nvmet_req *req, u16 status)
 706{
 707        struct nvmet_ctrl *ctrl = req->sq->ctrl;
 708        struct nvme_error_slot *new_error_slot;
 709        unsigned long flags;
 710
 711        req->cqe->status = cpu_to_le16(status << 1);
 712
 713        if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
 714                return;
 715
 716        spin_lock_irqsave(&ctrl->error_lock, flags);
 717        ctrl->err_counter++;
 718        new_error_slot =
 719                &ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
 720
 721        new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
 722        new_error_slot->sqid = cpu_to_le16(req->sq->qid);
 723        new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
 724        new_error_slot->status_field = cpu_to_le16(status << 1);
 725        new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
 726        new_error_slot->lba = cpu_to_le64(req->error_slba);
 727        new_error_slot->nsid = req->cmd->common.nsid;
 728        spin_unlock_irqrestore(&ctrl->error_lock, flags);
 729
 730        /* set the more bit for this request */
 731        req->cqe->status |= cpu_to_le16(1 << 14);
 732}
 733
 734static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
 735{
 736        if (!req->sq->sqhd_disabled)
 737                nvmet_update_sq_head(req);
 738        req->cqe->sq_id = cpu_to_le16(req->sq->qid);
 739        req->cqe->command_id = req->cmd->common.command_id;
 740
 741        if (unlikely(status))
 742                nvmet_set_error(req, status);
 743
 744        trace_nvmet_req_complete(req);
 745
 746        if (req->ns)
 747                nvmet_put_namespace(req->ns);
 748        req->ops->queue_response(req);
 749}
 750
 751void nvmet_req_complete(struct nvmet_req *req, u16 status)
 752{
 753        __nvmet_req_complete(req, status);
 754        percpu_ref_put(&req->sq->ref);
 755}
 756EXPORT_SYMBOL_GPL(nvmet_req_complete);
 757
 758void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
 759                u16 qid, u16 size)
 760{
 761        cq->qid = qid;
 762        cq->size = size;
 763}
 764
 765void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
 766                u16 qid, u16 size)
 767{
 768        sq->sqhd = 0;
 769        sq->qid = qid;
 770        sq->size = size;
 771
 772        ctrl->sqs[qid] = sq;
 773}
 774
 775static void nvmet_confirm_sq(struct percpu_ref *ref)
 776{
 777        struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
 778
 779        complete(&sq->confirm_done);
 780}
 781
 782void nvmet_sq_destroy(struct nvmet_sq *sq)
 783{
 784        struct nvmet_ctrl *ctrl = sq->ctrl;
 785
 786        /*
 787         * If this is the admin queue, complete all AERs so that our
 788         * queue doesn't have outstanding requests on it.
 789         */
 790        if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq)
 791                nvmet_async_events_failall(ctrl);
 792        percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
 793        wait_for_completion(&sq->confirm_done);
 794        wait_for_completion(&sq->free_done);
 795        percpu_ref_exit(&sq->ref);
 796
 797        if (ctrl) {
 798                /*
 799                 * The teardown flow may take some time, and the host may not
 800                 * send us keep-alive during this period, hence reset the
 801                 * traffic based keep-alive timer so we don't trigger a
 802                 * controller teardown as a result of a keep-alive expiration.
 803                 */
 804                ctrl->reset_tbkas = true;
 805                nvmet_ctrl_put(ctrl);
 806                sq->ctrl = NULL; /* allows reusing the queue later */
 807        }
 808}
 809EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
 810
 811static void nvmet_sq_free(struct percpu_ref *ref)
 812{
 813        struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
 814
 815        complete(&sq->free_done);
 816}
 817
 818int nvmet_sq_init(struct nvmet_sq *sq)
 819{
 820        int ret;
 821
 822        ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
 823        if (ret) {
 824                pr_err("percpu_ref init failed!\n");
 825                return ret;
 826        }
 827        init_completion(&sq->free_done);
 828        init_completion(&sq->confirm_done);
 829
 830        return 0;
 831}
 832EXPORT_SYMBOL_GPL(nvmet_sq_init);
 833
 834static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
 835                struct nvmet_ns *ns)
 836{
 837        enum nvme_ana_state state = port->ana_state[ns->anagrpid];
 838
 839        if (unlikely(state == NVME_ANA_INACCESSIBLE))
 840                return NVME_SC_ANA_INACCESSIBLE;
 841        if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
 842                return NVME_SC_ANA_PERSISTENT_LOSS;
 843        if (unlikely(state == NVME_ANA_CHANGE))
 844                return NVME_SC_ANA_TRANSITION;
 845        return 0;
 846}
 847
 848static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
 849{
 850        if (unlikely(req->ns->readonly)) {
 851                switch (req->cmd->common.opcode) {
 852                case nvme_cmd_read:
 853                case nvme_cmd_flush:
 854                        break;
 855                default:
 856                        return NVME_SC_NS_WRITE_PROTECTED;
 857                }
 858        }
 859
 860        return 0;
 861}
 862
 863static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
 864{
 865        u16 ret;
 866
 867        ret = nvmet_check_ctrl_status(req);
 868        if (unlikely(ret))
 869                return ret;
 870
 871        if (nvmet_req_passthru_ctrl(req))
 872                return nvmet_parse_passthru_io_cmd(req);
 873
 874        ret = nvmet_req_find_ns(req);
 875        if (unlikely(ret))
 876                return ret;
 877
 878        ret = nvmet_check_ana_state(req->port, req->ns);
 879        if (unlikely(ret)) {
 880                req->error_loc = offsetof(struct nvme_common_command, nsid);
 881                return ret;
 882        }
 883        ret = nvmet_io_cmd_check_access(req);
 884        if (unlikely(ret)) {
 885                req->error_loc = offsetof(struct nvme_common_command, nsid);
 886                return ret;
 887        }
 888
 889        switch (req->ns->csi) {
 890        case NVME_CSI_NVM:
 891                if (req->ns->file)
 892                        return nvmet_file_parse_io_cmd(req);
 893                return nvmet_bdev_parse_io_cmd(req);
 894        case NVME_CSI_ZNS:
 895                if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
 896                        return nvmet_bdev_zns_parse_io_cmd(req);
 897                return NVME_SC_INVALID_IO_CMD_SET;
 898        default:
 899                return NVME_SC_INVALID_IO_CMD_SET;
 900        }
 901}
 902
 903bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
 904                struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
 905{
 906        u8 flags = req->cmd->common.flags;
 907        u16 status;
 908
 909        req->cq = cq;
 910        req->sq = sq;
 911        req->ops = ops;
 912        req->sg = NULL;
 913        req->metadata_sg = NULL;
 914        req->sg_cnt = 0;
 915        req->metadata_sg_cnt = 0;
 916        req->transfer_len = 0;
 917        req->metadata_len = 0;
 918        req->cqe->status = 0;
 919        req->cqe->sq_head = 0;
 920        req->ns = NULL;
 921        req->error_loc = NVMET_NO_ERROR_LOC;
 922        req->error_slba = 0;
 923
 924        /* no support for fused commands yet */
 925        if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
 926                req->error_loc = offsetof(struct nvme_common_command, flags);
 927                status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
 928                goto fail;
 929        }
 930
 931        /*
 932         * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
 933         * contains an address of a single contiguous physical buffer that is
 934         * byte aligned.
 935         */
 936        if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
 937                req->error_loc = offsetof(struct nvme_common_command, flags);
 938                status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
 939                goto fail;
 940        }
 941
 942        if (unlikely(!req->sq->ctrl))
 943                /* will return an error for any non-connect command: */
 944                status = nvmet_parse_connect_cmd(req);
 945        else if (likely(req->sq->qid != 0))
 946                status = nvmet_parse_io_cmd(req);
 947        else
 948                status = nvmet_parse_admin_cmd(req);
 949
 950        if (status)
 951                goto fail;
 952
 953        trace_nvmet_req_init(req, req->cmd);
 954
 955        if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
 956                status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
 957                goto fail;
 958        }
 959
 960        if (sq->ctrl)
 961                sq->ctrl->reset_tbkas = true;
 962
 963        return true;
 964
 965fail:
 966        __nvmet_req_complete(req, status);
 967        return false;
 968}
 969EXPORT_SYMBOL_GPL(nvmet_req_init);
 970
 971void nvmet_req_uninit(struct nvmet_req *req)
 972{
 973        percpu_ref_put(&req->sq->ref);
 974        if (req->ns)
 975                nvmet_put_namespace(req->ns);
 976}
 977EXPORT_SYMBOL_GPL(nvmet_req_uninit);
 978
 979bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len)
 980{
 981        if (unlikely(len != req->transfer_len)) {
 982                req->error_loc = offsetof(struct nvme_common_command, dptr);
 983                nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
 984                return false;
 985        }
 986
 987        return true;
 988}
 989EXPORT_SYMBOL_GPL(nvmet_check_transfer_len);
 990
 991bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len)
 992{
 993        if (unlikely(data_len > req->transfer_len)) {
 994                req->error_loc = offsetof(struct nvme_common_command, dptr);
 995                nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
 996                return false;
 997        }
 998
 999        return true;
1000}
1001
1002static unsigned int nvmet_data_transfer_len(struct nvmet_req *req)
1003{
1004        return req->transfer_len - req->metadata_len;
1005}
1006
1007static int nvmet_req_alloc_p2pmem_sgls(struct pci_dev *p2p_dev,
1008                struct nvmet_req *req)
1009{
1010        req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
1011                        nvmet_data_transfer_len(req));
1012        if (!req->sg)
1013                goto out_err;
1014
1015        if (req->metadata_len) {
1016                req->metadata_sg = pci_p2pmem_alloc_sgl(p2p_dev,
1017                                &req->metadata_sg_cnt, req->metadata_len);
1018                if (!req->metadata_sg)
1019                        goto out_free_sg;
1020        }
1021
1022        req->p2p_dev = p2p_dev;
1023
1024        return 0;
1025out_free_sg:
1026        pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1027out_err:
1028        return -ENOMEM;
1029}
1030
1031static struct pci_dev *nvmet_req_find_p2p_dev(struct nvmet_req *req)
1032{
1033        if (!IS_ENABLED(CONFIG_PCI_P2PDMA) ||
1034            !req->sq->ctrl || !req->sq->qid || !req->ns)
1035                return NULL;
1036        return radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, req->ns->nsid);
1037}
1038
1039int nvmet_req_alloc_sgls(struct nvmet_req *req)
1040{
1041        struct pci_dev *p2p_dev = nvmet_req_find_p2p_dev(req);
1042
1043        if (p2p_dev && !nvmet_req_alloc_p2pmem_sgls(p2p_dev, req))
1044                return 0;
1045
1046        req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL,
1047                            &req->sg_cnt);
1048        if (unlikely(!req->sg))
1049                goto out;
1050
1051        if (req->metadata_len) {
1052                req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL,
1053                                             &req->metadata_sg_cnt);
1054                if (unlikely(!req->metadata_sg))
1055                        goto out_free;
1056        }
1057
1058        return 0;
1059out_free:
1060        sgl_free(req->sg);
1061out:
1062        return -ENOMEM;
1063}
1064EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls);
1065
1066void nvmet_req_free_sgls(struct nvmet_req *req)
1067{
1068        if (req->p2p_dev) {
1069                pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1070                if (req->metadata_sg)
1071                        pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg);
1072                req->p2p_dev = NULL;
1073        } else {
1074                sgl_free(req->sg);
1075                if (req->metadata_sg)
1076                        sgl_free(req->metadata_sg);
1077        }
1078
1079        req->sg = NULL;
1080        req->metadata_sg = NULL;
1081        req->sg_cnt = 0;
1082        req->metadata_sg_cnt = 0;
1083}
1084EXPORT_SYMBOL_GPL(nvmet_req_free_sgls);
1085
1086static inline bool nvmet_cc_en(u32 cc)
1087{
1088        return (cc >> NVME_CC_EN_SHIFT) & 0x1;
1089}
1090
1091static inline u8 nvmet_cc_css(u32 cc)
1092{
1093        return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
1094}
1095
1096static inline u8 nvmet_cc_mps(u32 cc)
1097{
1098        return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
1099}
1100
1101static inline u8 nvmet_cc_ams(u32 cc)
1102{
1103        return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
1104}
1105
1106static inline u8 nvmet_cc_shn(u32 cc)
1107{
1108        return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
1109}
1110
1111static inline u8 nvmet_cc_iosqes(u32 cc)
1112{
1113        return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
1114}
1115
1116static inline u8 nvmet_cc_iocqes(u32 cc)
1117{
1118        return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1119}
1120
1121static inline bool nvmet_css_supported(u8 cc_css)
1122{
1123        switch (cc_css <<= NVME_CC_CSS_SHIFT) {
1124        case NVME_CC_CSS_NVM:
1125        case NVME_CC_CSS_CSI:
1126                return true;
1127        default:
1128                return false;
1129        }
1130}
1131
1132static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1133{
1134        lockdep_assert_held(&ctrl->lock);
1135
1136        /*
1137         * Only I/O controllers should verify iosqes,iocqes.
1138         * Strictly speaking, the spec says a discovery controller
1139         * should verify iosqes,iocqes are zeroed, however that
1140         * would break backwards compatibility, so don't enforce it.
1141         */
1142        if (ctrl->subsys->type != NVME_NQN_DISC &&
1143            (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1144             nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES)) {
1145                ctrl->csts = NVME_CSTS_CFS;
1146                return;
1147        }
1148
1149        if (nvmet_cc_mps(ctrl->cc) != 0 ||
1150            nvmet_cc_ams(ctrl->cc) != 0 ||
1151            !nvmet_css_supported(nvmet_cc_css(ctrl->cc))) {
1152                ctrl->csts = NVME_CSTS_CFS;
1153                return;
1154        }
1155
1156        ctrl->csts = NVME_CSTS_RDY;
1157
1158        /*
1159         * Controllers that are not yet enabled should not really enforce the
1160         * keep alive timeout, but we still want to track a timeout and cleanup
1161         * in case a host died before it enabled the controller.  Hence, simply
1162         * reset the keep alive timer when the controller is enabled.
1163         */
1164        if (ctrl->kato)
1165                mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ);
1166}
1167
1168static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1169{
1170        lockdep_assert_held(&ctrl->lock);
1171
1172        /* XXX: tear down queues? */
1173        ctrl->csts &= ~NVME_CSTS_RDY;
1174        ctrl->cc = 0;
1175}
1176
1177void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1178{
1179        u32 old;
1180
1181        mutex_lock(&ctrl->lock);
1182        old = ctrl->cc;
1183        ctrl->cc = new;
1184
1185        if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1186                nvmet_start_ctrl(ctrl);
1187        if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1188                nvmet_clear_ctrl(ctrl);
1189        if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1190                nvmet_clear_ctrl(ctrl);
1191                ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1192        }
1193        if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1194                ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1195        mutex_unlock(&ctrl->lock);
1196}
1197
1198static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1199{
1200        /* command sets supported: NVMe command set: */
1201        ctrl->cap = (1ULL << 37);
1202        /* Controller supports one or more I/O Command Sets */
1203        ctrl->cap |= (1ULL << 43);
1204        /* CC.EN timeout in 500msec units: */
1205        ctrl->cap |= (15ULL << 24);
1206        /* maximum queue entries supported: */
1207        ctrl->cap |= NVMET_QUEUE_SIZE - 1;
1208}
1209
1210struct nvmet_ctrl *nvmet_ctrl_find_get(const char *subsysnqn,
1211                                       const char *hostnqn, u16 cntlid,
1212                                       struct nvmet_req *req)
1213{
1214        struct nvmet_ctrl *ctrl = NULL;
1215        struct nvmet_subsys *subsys;
1216
1217        subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1218        if (!subsys) {
1219                pr_warn("connect request for invalid subsystem %s!\n",
1220                        subsysnqn);
1221                req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1222                goto out;
1223        }
1224
1225        mutex_lock(&subsys->lock);
1226        list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1227                if (ctrl->cntlid == cntlid) {
1228                        if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1229                                pr_warn("hostnqn mismatch.\n");
1230                                continue;
1231                        }
1232                        if (!kref_get_unless_zero(&ctrl->ref))
1233                                continue;
1234
1235                        /* ctrl found */
1236                        goto found;
1237                }
1238        }
1239
1240        ctrl = NULL; /* ctrl not found */
1241        pr_warn("could not find controller %d for subsys %s / host %s\n",
1242                cntlid, subsysnqn, hostnqn);
1243        req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1244
1245found:
1246        mutex_unlock(&subsys->lock);
1247        nvmet_subsys_put(subsys);
1248out:
1249        return ctrl;
1250}
1251
1252u16 nvmet_check_ctrl_status(struct nvmet_req *req)
1253{
1254        if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1255                pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1256                       req->cmd->common.opcode, req->sq->qid);
1257                return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1258        }
1259
1260        if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1261                pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1262                       req->cmd->common.opcode, req->sq->qid);
1263                return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1264        }
1265        return 0;
1266}
1267
1268bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1269{
1270        struct nvmet_host_link *p;
1271
1272        lockdep_assert_held(&nvmet_config_sem);
1273
1274        if (subsys->allow_any_host)
1275                return true;
1276
1277        if (subsys->type == NVME_NQN_DISC) /* allow all access to disc subsys */
1278                return true;
1279
1280        list_for_each_entry(p, &subsys->hosts, entry) {
1281                if (!strcmp(nvmet_host_name(p->host), hostnqn))
1282                        return true;
1283        }
1284
1285        return false;
1286}
1287
1288/*
1289 * Note: ctrl->subsys->lock should be held when calling this function
1290 */
1291static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1292                struct nvmet_req *req)
1293{
1294        struct nvmet_ns *ns;
1295        unsigned long idx;
1296
1297        if (!req->p2p_client)
1298                return;
1299
1300        ctrl->p2p_client = get_device(req->p2p_client);
1301
1302        xa_for_each(&ctrl->subsys->namespaces, idx, ns)
1303                nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1304}
1305
1306/*
1307 * Note: ctrl->subsys->lock should be held when calling this function
1308 */
1309static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1310{
1311        struct radix_tree_iter iter;
1312        void __rcu **slot;
1313
1314        radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1315                pci_dev_put(radix_tree_deref_slot(slot));
1316
1317        put_device(ctrl->p2p_client);
1318}
1319
1320static void nvmet_fatal_error_handler(struct work_struct *work)
1321{
1322        struct nvmet_ctrl *ctrl =
1323                        container_of(work, struct nvmet_ctrl, fatal_err_work);
1324
1325        pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1326        ctrl->ops->delete_ctrl(ctrl);
1327}
1328
1329u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
1330                struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
1331{
1332        struct nvmet_subsys *subsys;
1333        struct nvmet_ctrl *ctrl;
1334        int ret;
1335        u16 status;
1336
1337        status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1338        subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1339        if (!subsys) {
1340                pr_warn("connect request for invalid subsystem %s!\n",
1341                        subsysnqn);
1342                req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1343                req->error_loc = offsetof(struct nvme_common_command, dptr);
1344                goto out;
1345        }
1346
1347        down_read(&nvmet_config_sem);
1348        if (!nvmet_host_allowed(subsys, hostnqn)) {
1349                pr_info("connect by host %s for subsystem %s not allowed\n",
1350                        hostnqn, subsysnqn);
1351                req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1352                up_read(&nvmet_config_sem);
1353                status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
1354                req->error_loc = offsetof(struct nvme_common_command, dptr);
1355                goto out_put_subsystem;
1356        }
1357        up_read(&nvmet_config_sem);
1358
1359        status = NVME_SC_INTERNAL;
1360        ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1361        if (!ctrl)
1362                goto out_put_subsystem;
1363        mutex_init(&ctrl->lock);
1364
1365        nvmet_init_cap(ctrl);
1366
1367        ctrl->port = req->port;
1368
1369        INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1370        INIT_LIST_HEAD(&ctrl->async_events);
1371        INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1372        INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1373        INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
1374
1375        memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
1376        memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
1377
1378        kref_init(&ctrl->ref);
1379        ctrl->subsys = subsys;
1380        WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1381
1382        ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1383                        sizeof(__le32), GFP_KERNEL);
1384        if (!ctrl->changed_ns_list)
1385                goto out_free_ctrl;
1386
1387        ctrl->sqs = kcalloc(subsys->max_qid + 1,
1388                        sizeof(struct nvmet_sq *),
1389                        GFP_KERNEL);
1390        if (!ctrl->sqs)
1391                goto out_free_changed_ns_list;
1392
1393        if (subsys->cntlid_min > subsys->cntlid_max)
1394                goto out_free_sqs;
1395
1396        ret = ida_simple_get(&cntlid_ida,
1397                             subsys->cntlid_min, subsys->cntlid_max,
1398                             GFP_KERNEL);
1399        if (ret < 0) {
1400                status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
1401                goto out_free_sqs;
1402        }
1403        ctrl->cntlid = ret;
1404
1405        ctrl->ops = req->ops;
1406
1407        /*
1408         * Discovery controllers may use some arbitrary high value
1409         * in order to cleanup stale discovery sessions
1410         */
1411        if ((ctrl->subsys->type == NVME_NQN_DISC) && !kato)
1412                kato = NVMET_DISC_KATO_MS;
1413
1414        /* keep-alive timeout in seconds */
1415        ctrl->kato = DIV_ROUND_UP(kato, 1000);
1416
1417        ctrl->err_counter = 0;
1418        spin_lock_init(&ctrl->error_lock);
1419
1420        nvmet_start_keep_alive_timer(ctrl);
1421
1422        mutex_lock(&subsys->lock);
1423        list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1424        nvmet_setup_p2p_ns_map(ctrl, req);
1425        mutex_unlock(&subsys->lock);
1426
1427        *ctrlp = ctrl;
1428        return 0;
1429
1430out_free_sqs:
1431        kfree(ctrl->sqs);
1432out_free_changed_ns_list:
1433        kfree(ctrl->changed_ns_list);
1434out_free_ctrl:
1435        kfree(ctrl);
1436out_put_subsystem:
1437        nvmet_subsys_put(subsys);
1438out:
1439        return status;
1440}
1441
1442static void nvmet_ctrl_free(struct kref *ref)
1443{
1444        struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1445        struct nvmet_subsys *subsys = ctrl->subsys;
1446
1447        mutex_lock(&subsys->lock);
1448        nvmet_release_p2p_ns_map(ctrl);
1449        list_del(&ctrl->subsys_entry);
1450        mutex_unlock(&subsys->lock);
1451
1452        nvmet_stop_keep_alive_timer(ctrl);
1453
1454        flush_work(&ctrl->async_event_work);
1455        cancel_work_sync(&ctrl->fatal_err_work);
1456
1457        ida_simple_remove(&cntlid_ida, ctrl->cntlid);
1458
1459        nvmet_async_events_free(ctrl);
1460        kfree(ctrl->sqs);
1461        kfree(ctrl->changed_ns_list);
1462        kfree(ctrl);
1463
1464        nvmet_subsys_put(subsys);
1465}
1466
1467void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1468{
1469        kref_put(&ctrl->ref, nvmet_ctrl_free);
1470}
1471
1472void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1473{
1474        mutex_lock(&ctrl->lock);
1475        if (!(ctrl->csts & NVME_CSTS_CFS)) {
1476                ctrl->csts |= NVME_CSTS_CFS;
1477                schedule_work(&ctrl->fatal_err_work);
1478        }
1479        mutex_unlock(&ctrl->lock);
1480}
1481EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1482
1483static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1484                const char *subsysnqn)
1485{
1486        struct nvmet_subsys_link *p;
1487
1488        if (!port)
1489                return NULL;
1490
1491        if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1492                if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1493                        return NULL;
1494                return nvmet_disc_subsys;
1495        }
1496
1497        down_read(&nvmet_config_sem);
1498        list_for_each_entry(p, &port->subsystems, entry) {
1499                if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1500                                NVMF_NQN_SIZE)) {
1501                        if (!kref_get_unless_zero(&p->subsys->ref))
1502                                break;
1503                        up_read(&nvmet_config_sem);
1504                        return p->subsys;
1505                }
1506        }
1507        up_read(&nvmet_config_sem);
1508        return NULL;
1509}
1510
1511struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1512                enum nvme_subsys_type type)
1513{
1514        struct nvmet_subsys *subsys;
1515        char serial[NVMET_SN_MAX_SIZE / 2];
1516        int ret;
1517
1518        subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1519        if (!subsys)
1520                return ERR_PTR(-ENOMEM);
1521
1522        subsys->ver = NVMET_DEFAULT_VS;
1523        /* generate a random serial number as our controllers are ephemeral: */
1524        get_random_bytes(&serial, sizeof(serial));
1525        bin2hex(subsys->serial, &serial, sizeof(serial));
1526
1527        subsys->model_number = kstrdup(NVMET_DEFAULT_CTRL_MODEL, GFP_KERNEL);
1528        if (!subsys->model_number) {
1529                ret = -ENOMEM;
1530                goto free_subsys;
1531        }
1532
1533        switch (type) {
1534        case NVME_NQN_NVME:
1535                subsys->max_qid = NVMET_NR_QUEUES;
1536                break;
1537        case NVME_NQN_DISC:
1538                subsys->max_qid = 0;
1539                break;
1540        default:
1541                pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1542                ret = -EINVAL;
1543                goto free_mn;
1544        }
1545        subsys->type = type;
1546        subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1547                        GFP_KERNEL);
1548        if (!subsys->subsysnqn) {
1549                ret = -ENOMEM;
1550                goto free_mn;
1551        }
1552        subsys->cntlid_min = NVME_CNTLID_MIN;
1553        subsys->cntlid_max = NVME_CNTLID_MAX;
1554        kref_init(&subsys->ref);
1555
1556        mutex_init(&subsys->lock);
1557        xa_init(&subsys->namespaces);
1558        INIT_LIST_HEAD(&subsys->ctrls);
1559        INIT_LIST_HEAD(&subsys->hosts);
1560
1561        return subsys;
1562
1563free_mn:
1564        kfree(subsys->model_number);
1565free_subsys:
1566        kfree(subsys);
1567        return ERR_PTR(ret);
1568}
1569
1570static void nvmet_subsys_free(struct kref *ref)
1571{
1572        struct nvmet_subsys *subsys =
1573                container_of(ref, struct nvmet_subsys, ref);
1574
1575        WARN_ON_ONCE(!xa_empty(&subsys->namespaces));
1576
1577        xa_destroy(&subsys->namespaces);
1578        nvmet_passthru_subsys_free(subsys);
1579
1580        kfree(subsys->subsysnqn);
1581        kfree(subsys->model_number);
1582        kfree(subsys);
1583}
1584
1585void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1586{
1587        struct nvmet_ctrl *ctrl;
1588
1589        mutex_lock(&subsys->lock);
1590        list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1591                ctrl->ops->delete_ctrl(ctrl);
1592        mutex_unlock(&subsys->lock);
1593}
1594
1595void nvmet_subsys_put(struct nvmet_subsys *subsys)
1596{
1597        kref_put(&subsys->ref, nvmet_subsys_free);
1598}
1599
1600static int __init nvmet_init(void)
1601{
1602        int error;
1603
1604        nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1605
1606        zbd_wq = alloc_workqueue("nvmet-zbd-wq", WQ_MEM_RECLAIM, 0);
1607        if (!zbd_wq)
1608                return -ENOMEM;
1609
1610        buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1611                        WQ_MEM_RECLAIM, 0);
1612        if (!buffered_io_wq) {
1613                error = -ENOMEM;
1614                goto out_free_zbd_work_queue;
1615        }
1616
1617        error = nvmet_init_discovery();
1618        if (error)
1619                goto out_free_work_queue;
1620
1621        error = nvmet_init_configfs();
1622        if (error)
1623                goto out_exit_discovery;
1624        return 0;
1625
1626out_exit_discovery:
1627        nvmet_exit_discovery();
1628out_free_work_queue:
1629        destroy_workqueue(buffered_io_wq);
1630out_free_zbd_work_queue:
1631        destroy_workqueue(zbd_wq);
1632        return error;
1633}
1634
1635static void __exit nvmet_exit(void)
1636{
1637        nvmet_exit_configfs();
1638        nvmet_exit_discovery();
1639        ida_destroy(&cntlid_ida);
1640        destroy_workqueue(buffered_io_wq);
1641        destroy_workqueue(zbd_wq);
1642
1643        BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1644        BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1645}
1646
1647module_init(nvmet_init);
1648module_exit(nvmet_exit);
1649
1650MODULE_LICENSE("GPL v2");
1651