linux/drivers/of/of_reserved_mem.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Device tree based initialization code for reserved memory.
   4 *
   5 * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
   6 * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
   7 *              http://www.samsung.com
   8 * Author: Marek Szyprowski <m.szyprowski@samsung.com>
   9 * Author: Josh Cartwright <joshc@codeaurora.org>
  10 */
  11
  12#define pr_fmt(fmt)     "OF: reserved mem: " fmt
  13
  14#include <linux/err.h>
  15#include <linux/of.h>
  16#include <linux/of_fdt.h>
  17#include <linux/of_platform.h>
  18#include <linux/mm.h>
  19#include <linux/sizes.h>
  20#include <linux/of_reserved_mem.h>
  21#include <linux/sort.h>
  22#include <linux/slab.h>
  23#include <linux/memblock.h>
  24
  25#include "of_private.h"
  26
  27#define MAX_RESERVED_REGIONS    64
  28static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
  29static int reserved_mem_count;
  30
  31static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
  32        phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
  33        phys_addr_t *res_base)
  34{
  35        phys_addr_t base;
  36
  37        end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
  38        align = !align ? SMP_CACHE_BYTES : align;
  39        base = memblock_find_in_range(start, end, size, align);
  40        if (!base)
  41                return -ENOMEM;
  42
  43        *res_base = base;
  44        if (nomap)
  45                return memblock_mark_nomap(base, size);
  46
  47        return memblock_reserve(base, size);
  48}
  49
  50/*
  51 * fdt_reserved_mem_save_node() - save fdt node for second pass initialization
  52 */
  53void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
  54                                      phys_addr_t base, phys_addr_t size)
  55{
  56        struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
  57
  58        if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
  59                pr_err("not enough space for all defined regions.\n");
  60                return;
  61        }
  62
  63        rmem->fdt_node = node;
  64        rmem->name = uname;
  65        rmem->base = base;
  66        rmem->size = size;
  67
  68        reserved_mem_count++;
  69        return;
  70}
  71
  72/*
  73 * __reserved_mem_alloc_size() - allocate reserved memory described by
  74 *      'size', 'alignment'  and 'alloc-ranges' properties.
  75 */
  76static int __init __reserved_mem_alloc_size(unsigned long node,
  77        const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
  78{
  79        int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
  80        phys_addr_t start = 0, end = 0;
  81        phys_addr_t base = 0, align = 0, size;
  82        int len;
  83        const __be32 *prop;
  84        bool nomap;
  85        int ret;
  86
  87        prop = of_get_flat_dt_prop(node, "size", &len);
  88        if (!prop)
  89                return -EINVAL;
  90
  91        if (len != dt_root_size_cells * sizeof(__be32)) {
  92                pr_err("invalid size property in '%s' node.\n", uname);
  93                return -EINVAL;
  94        }
  95        size = dt_mem_next_cell(dt_root_size_cells, &prop);
  96
  97        prop = of_get_flat_dt_prop(node, "alignment", &len);
  98        if (prop) {
  99                if (len != dt_root_addr_cells * sizeof(__be32)) {
 100                        pr_err("invalid alignment property in '%s' node.\n",
 101                                uname);
 102                        return -EINVAL;
 103                }
 104                align = dt_mem_next_cell(dt_root_addr_cells, &prop);
 105        }
 106
 107        nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
 108
 109        /* Need adjust the alignment to satisfy the CMA requirement */
 110        if (IS_ENABLED(CONFIG_CMA)
 111            && of_flat_dt_is_compatible(node, "shared-dma-pool")
 112            && of_get_flat_dt_prop(node, "reusable", NULL)
 113            && !nomap) {
 114                unsigned long order =
 115                        max_t(unsigned long, MAX_ORDER - 1, pageblock_order);
 116
 117                align = max(align, (phys_addr_t)PAGE_SIZE << order);
 118        }
 119
 120        prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
 121        if (prop) {
 122
 123                if (len % t_len != 0) {
 124                        pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
 125                               uname);
 126                        return -EINVAL;
 127                }
 128
 129                base = 0;
 130
 131                while (len > 0) {
 132                        start = dt_mem_next_cell(dt_root_addr_cells, &prop);
 133                        end = start + dt_mem_next_cell(dt_root_size_cells,
 134                                                       &prop);
 135
 136                        ret = early_init_dt_alloc_reserved_memory_arch(size,
 137                                        align, start, end, nomap, &base);
 138                        if (ret == 0) {
 139                                pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
 140                                        uname, &base,
 141                                        (unsigned long)(size / SZ_1M));
 142                                break;
 143                        }
 144                        len -= t_len;
 145                }
 146
 147        } else {
 148                ret = early_init_dt_alloc_reserved_memory_arch(size, align,
 149                                                        0, 0, nomap, &base);
 150                if (ret == 0)
 151                        pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
 152                                uname, &base, (unsigned long)(size / SZ_1M));
 153        }
 154
 155        if (base == 0) {
 156                pr_info("failed to allocate memory for node '%s'\n", uname);
 157                return -ENOMEM;
 158        }
 159
 160        *res_base = base;
 161        *res_size = size;
 162
 163        return 0;
 164}
 165
 166static const struct of_device_id __rmem_of_table_sentinel
 167        __used __section("__reservedmem_of_table_end");
 168
 169/*
 170 * __reserved_mem_init_node() - call region specific reserved memory init code
 171 */
 172static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
 173{
 174        extern const struct of_device_id __reservedmem_of_table[];
 175        const struct of_device_id *i;
 176        int ret = -ENOENT;
 177
 178        for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
 179                reservedmem_of_init_fn initfn = i->data;
 180                const char *compat = i->compatible;
 181
 182                if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
 183                        continue;
 184
 185                ret = initfn(rmem);
 186                if (ret == 0) {
 187                        pr_info("initialized node %s, compatible id %s\n",
 188                                rmem->name, compat);
 189                        break;
 190                }
 191        }
 192        return ret;
 193}
 194
 195static int __init __rmem_cmp(const void *a, const void *b)
 196{
 197        const struct reserved_mem *ra = a, *rb = b;
 198
 199        if (ra->base < rb->base)
 200                return -1;
 201
 202        if (ra->base > rb->base)
 203                return 1;
 204
 205        /*
 206         * Put the dynamic allocations (address == 0, size == 0) before static
 207         * allocations at address 0x0 so that overlap detection works
 208         * correctly.
 209         */
 210        if (ra->size < rb->size)
 211                return -1;
 212        if (ra->size > rb->size)
 213                return 1;
 214
 215        return 0;
 216}
 217
 218static void __init __rmem_check_for_overlap(void)
 219{
 220        int i;
 221
 222        if (reserved_mem_count < 2)
 223                return;
 224
 225        sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
 226             __rmem_cmp, NULL);
 227        for (i = 0; i < reserved_mem_count - 1; i++) {
 228                struct reserved_mem *this, *next;
 229
 230                this = &reserved_mem[i];
 231                next = &reserved_mem[i + 1];
 232
 233                if (this->base + this->size > next->base) {
 234                        phys_addr_t this_end, next_end;
 235
 236                        this_end = this->base + this->size;
 237                        next_end = next->base + next->size;
 238                        pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
 239                               this->name, &this->base, &this_end,
 240                               next->name, &next->base, &next_end);
 241                }
 242        }
 243}
 244
 245/**
 246 * fdt_init_reserved_mem() - allocate and init all saved reserved memory regions
 247 */
 248void __init fdt_init_reserved_mem(void)
 249{
 250        int i;
 251
 252        /* check for overlapping reserved regions */
 253        __rmem_check_for_overlap();
 254
 255        for (i = 0; i < reserved_mem_count; i++) {
 256                struct reserved_mem *rmem = &reserved_mem[i];
 257                unsigned long node = rmem->fdt_node;
 258                int len;
 259                const __be32 *prop;
 260                int err = 0;
 261                bool nomap;
 262
 263                nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
 264                prop = of_get_flat_dt_prop(node, "phandle", &len);
 265                if (!prop)
 266                        prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
 267                if (prop)
 268                        rmem->phandle = of_read_number(prop, len/4);
 269
 270                if (rmem->size == 0)
 271                        err = __reserved_mem_alloc_size(node, rmem->name,
 272                                                 &rmem->base, &rmem->size);
 273                if (err == 0) {
 274                        err = __reserved_mem_init_node(rmem);
 275                        if (err != 0 && err != -ENOENT) {
 276                                pr_info("node %s compatible matching fail\n",
 277                                        rmem->name);
 278                                if (nomap)
 279                                        memblock_clear_nomap(rmem->base, rmem->size);
 280                                else
 281                                        memblock_free(rmem->base, rmem->size);
 282                        }
 283                }
 284        }
 285}
 286
 287static inline struct reserved_mem *__find_rmem(struct device_node *node)
 288{
 289        unsigned int i;
 290
 291        if (!node->phandle)
 292                return NULL;
 293
 294        for (i = 0; i < reserved_mem_count; i++)
 295                if (reserved_mem[i].phandle == node->phandle)
 296                        return &reserved_mem[i];
 297        return NULL;
 298}
 299
 300struct rmem_assigned_device {
 301        struct device *dev;
 302        struct reserved_mem *rmem;
 303        struct list_head list;
 304};
 305
 306static LIST_HEAD(of_rmem_assigned_device_list);
 307static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
 308
 309/**
 310 * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
 311 *                                        given device
 312 * @dev:        Pointer to the device to configure
 313 * @np:         Pointer to the device_node with 'reserved-memory' property
 314 * @idx:        Index of selected region
 315 *
 316 * This function assigns respective DMA-mapping operations based on reserved
 317 * memory region specified by 'memory-region' property in @np node to the @dev
 318 * device. When driver needs to use more than one reserved memory region, it
 319 * should allocate child devices and initialize regions by name for each of
 320 * child device.
 321 *
 322 * Returns error code or zero on success.
 323 */
 324int of_reserved_mem_device_init_by_idx(struct device *dev,
 325                                       struct device_node *np, int idx)
 326{
 327        struct rmem_assigned_device *rd;
 328        struct device_node *target;
 329        struct reserved_mem *rmem;
 330        int ret;
 331
 332        if (!np || !dev)
 333                return -EINVAL;
 334
 335        target = of_parse_phandle(np, "memory-region", idx);
 336        if (!target)
 337                return -ENODEV;
 338
 339        if (!of_device_is_available(target)) {
 340                of_node_put(target);
 341                return 0;
 342        }
 343
 344        rmem = __find_rmem(target);
 345        of_node_put(target);
 346
 347        if (!rmem || !rmem->ops || !rmem->ops->device_init)
 348                return -EINVAL;
 349
 350        rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
 351        if (!rd)
 352                return -ENOMEM;
 353
 354        ret = rmem->ops->device_init(rmem, dev);
 355        if (ret == 0) {
 356                rd->dev = dev;
 357                rd->rmem = rmem;
 358
 359                mutex_lock(&of_rmem_assigned_device_mutex);
 360                list_add(&rd->list, &of_rmem_assigned_device_list);
 361                mutex_unlock(&of_rmem_assigned_device_mutex);
 362
 363                dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
 364        } else {
 365                kfree(rd);
 366        }
 367
 368        return ret;
 369}
 370EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
 371
 372/**
 373 * of_reserved_mem_device_init_by_name() - assign named reserved memory region
 374 *                                         to given device
 375 * @dev: pointer to the device to configure
 376 * @np: pointer to the device node with 'memory-region' property
 377 * @name: name of the selected memory region
 378 *
 379 * Returns: 0 on success or a negative error-code on failure.
 380 */
 381int of_reserved_mem_device_init_by_name(struct device *dev,
 382                                        struct device_node *np,
 383                                        const char *name)
 384{
 385        int idx = of_property_match_string(np, "memory-region-names", name);
 386
 387        return of_reserved_mem_device_init_by_idx(dev, np, idx);
 388}
 389EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_name);
 390
 391/**
 392 * of_reserved_mem_device_release() - release reserved memory device structures
 393 * @dev:        Pointer to the device to deconfigure
 394 *
 395 * This function releases structures allocated for memory region handling for
 396 * the given device.
 397 */
 398void of_reserved_mem_device_release(struct device *dev)
 399{
 400        struct rmem_assigned_device *rd, *tmp;
 401        LIST_HEAD(release_list);
 402
 403        mutex_lock(&of_rmem_assigned_device_mutex);
 404        list_for_each_entry_safe(rd, tmp, &of_rmem_assigned_device_list, list) {
 405                if (rd->dev == dev)
 406                        list_move_tail(&rd->list, &release_list);
 407        }
 408        mutex_unlock(&of_rmem_assigned_device_mutex);
 409
 410        list_for_each_entry_safe(rd, tmp, &release_list, list) {
 411                if (rd->rmem && rd->rmem->ops && rd->rmem->ops->device_release)
 412                        rd->rmem->ops->device_release(rd->rmem, dev);
 413
 414                kfree(rd);
 415        }
 416}
 417EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
 418
 419/**
 420 * of_reserved_mem_lookup() - acquire reserved_mem from a device node
 421 * @np:         node pointer of the desired reserved-memory region
 422 *
 423 * This function allows drivers to acquire a reference to the reserved_mem
 424 * struct based on a device node handle.
 425 *
 426 * Returns a reserved_mem reference, or NULL on error.
 427 */
 428struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
 429{
 430        const char *name;
 431        int i;
 432
 433        if (!np->full_name)
 434                return NULL;
 435
 436        name = kbasename(np->full_name);
 437        for (i = 0; i < reserved_mem_count; i++)
 438                if (!strcmp(reserved_mem[i].name, name))
 439                        return &reserved_mem[i];
 440
 441        return NULL;
 442}
 443EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);
 444