linux/drivers/platform/surface/aggregator/ssh_packet_layer.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * SSH packet transport layer.
   4 *
   5 * Copyright (C) 2019-2021 Maximilian Luz <luzmaximilian@gmail.com>
   6 */
   7
   8#include <asm/unaligned.h>
   9#include <linux/atomic.h>
  10#include <linux/error-injection.h>
  11#include <linux/jiffies.h>
  12#include <linux/kfifo.h>
  13#include <linux/kref.h>
  14#include <linux/kthread.h>
  15#include <linux/ktime.h>
  16#include <linux/limits.h>
  17#include <linux/list.h>
  18#include <linux/lockdep.h>
  19#include <linux/serdev.h>
  20#include <linux/slab.h>
  21#include <linux/spinlock.h>
  22#include <linux/workqueue.h>
  23
  24#include <linux/surface_aggregator/serial_hub.h>
  25
  26#include "ssh_msgb.h"
  27#include "ssh_packet_layer.h"
  28#include "ssh_parser.h"
  29
  30#include "trace.h"
  31
  32/*
  33 * To simplify reasoning about the code below, we define a few concepts. The
  34 * system below is similar to a state-machine for packets, however, there are
  35 * too many states to explicitly write them down. To (somewhat) manage the
  36 * states and packets we rely on flags, reference counting, and some simple
  37 * concepts. State transitions are triggered by actions.
  38 *
  39 * >> Actions <<
  40 *
  41 * - submit
  42 * - transmission start (process next item in queue)
  43 * - transmission finished (guaranteed to never be parallel to transmission
  44 *   start)
  45 * - ACK received
  46 * - NAK received (this is equivalent to issuing re-submit for all pending
  47 *   packets)
  48 * - timeout (this is equivalent to re-issuing a submit or canceling)
  49 * - cancel (non-pending and pending)
  50 *
  51 * >> Data Structures, Packet Ownership, General Overview <<
  52 *
  53 * The code below employs two main data structures: The packet queue,
  54 * containing all packets scheduled for transmission, and the set of pending
  55 * packets, containing all packets awaiting an ACK.
  56 *
  57 * Shared ownership of a packet is controlled via reference counting. Inside
  58 * the transport system are a total of five packet owners:
  59 *
  60 * - the packet queue,
  61 * - the pending set,
  62 * - the transmitter thread,
  63 * - the receiver thread (via ACKing), and
  64 * - the timeout work item.
  65 *
  66 * Normal operation is as follows: The initial reference of the packet is
  67 * obtained by submitting the packet and queuing it. The receiver thread takes
  68 * packets from the queue. By doing this, it does not increment the refcount
  69 * but takes over the reference (removing it from the queue). If the packet is
  70 * sequenced (i.e. needs to be ACKed by the client), the transmitter thread
  71 * sets-up the timeout and adds the packet to the pending set before starting
  72 * to transmit it. As the timeout is handled by a reaper task, no additional
  73 * reference for it is needed. After the transmit is done, the reference held
  74 * by the transmitter thread is dropped. If the packet is unsequenced (i.e.
  75 * does not need an ACK), the packet is completed by the transmitter thread
  76 * before dropping that reference.
  77 *
  78 * On receival of an ACK, the receiver thread removes and obtains the
  79 * reference to the packet from the pending set. The receiver thread will then
  80 * complete the packet and drop its reference.
  81 *
  82 * On receival of a NAK, the receiver thread re-submits all currently pending
  83 * packets.
  84 *
  85 * Packet timeouts are detected by the timeout reaper. This is a task,
  86 * scheduled depending on the earliest packet timeout expiration date,
  87 * checking all currently pending packets if their timeout has expired. If the
  88 * timeout of a packet has expired, it is re-submitted and the number of tries
  89 * of this packet is incremented. If this number reaches its limit, the packet
  90 * will be completed with a failure.
  91 *
  92 * On transmission failure (such as repeated packet timeouts), the completion
  93 * callback is immediately run by on thread on which the error was detected.
  94 *
  95 * To ensure that a packet eventually leaves the system it is marked as
  96 * "locked" directly before it is going to be completed or when it is
  97 * canceled. Marking a packet as "locked" has the effect that passing and
  98 * creating new references of the packet is disallowed. This means that the
  99 * packet cannot be added to the queue, the pending set, and the timeout, or
 100 * be picked up by the transmitter thread or receiver thread. To remove a
 101 * packet from the system it has to be marked as locked and subsequently all
 102 * references from the data structures (queue, pending) have to be removed.
 103 * References held by threads will eventually be dropped automatically as
 104 * their execution progresses.
 105 *
 106 * Note that the packet completion callback is, in case of success and for a
 107 * sequenced packet, guaranteed to run on the receiver thread, thus providing
 108 * a way to reliably identify responses to the packet. The packet completion
 109 * callback is only run once and it does not indicate that the packet has
 110 * fully left the system (for this, one should rely on the release method,
 111 * triggered when the reference count of the packet reaches zero). In case of
 112 * re-submission (and with somewhat unlikely timing), it may be possible that
 113 * the packet is being re-transmitted while the completion callback runs.
 114 * Completion will occur both on success and internal error, as well as when
 115 * the packet is canceled.
 116 *
 117 * >> Flags <<
 118 *
 119 * Flags are used to indicate the state and progression of a packet. Some flags
 120 * have stricter guarantees than other:
 121 *
 122 * - locked
 123 *   Indicates if the packet is locked. If the packet is locked, passing and/or
 124 *   creating additional references to the packet is forbidden. The packet thus
 125 *   may not be queued, dequeued, or removed or added to the pending set. Note
 126 *   that the packet state flags may still change (e.g. it may be marked as
 127 *   ACKed, transmitted, ...).
 128 *
 129 * - completed
 130 *   Indicates if the packet completion callback has been executed or is about
 131 *   to be executed. This flag is used to ensure that the packet completion
 132 *   callback is only run once.
 133 *
 134 * - queued
 135 *   Indicates if a packet is present in the submission queue or not. This flag
 136 *   must only be modified with the queue lock held, and must be coherent to the
 137 *   presence of the packet in the queue.
 138 *
 139 * - pending
 140 *   Indicates if a packet is present in the set of pending packets or not.
 141 *   This flag must only be modified with the pending lock held, and must be
 142 *   coherent to the presence of the packet in the pending set.
 143 *
 144 * - transmitting
 145 *   Indicates if the packet is currently transmitting. In case of
 146 *   re-transmissions, it is only safe to wait on the "transmitted" completion
 147 *   after this flag has been set. The completion will be set both in success
 148 *   and error case.
 149 *
 150 * - transmitted
 151 *   Indicates if the packet has been transmitted. This flag is not cleared by
 152 *   the system, thus it indicates the first transmission only.
 153 *
 154 * - acked
 155 *   Indicates if the packet has been acknowledged by the client. There are no
 156 *   other guarantees given. For example, the packet may still be canceled
 157 *   and/or the completion may be triggered an error even though this bit is
 158 *   set. Rely on the status provided to the completion callback instead.
 159 *
 160 * - canceled
 161 *   Indicates if the packet has been canceled from the outside. There are no
 162 *   other guarantees given. Specifically, the packet may be completed by
 163 *   another part of the system before the cancellation attempts to complete it.
 164 *
 165 * >> General Notes <<
 166 *
 167 * - To avoid deadlocks, if both queue and pending locks are required, the
 168 *   pending lock must be acquired before the queue lock.
 169 *
 170 * - The packet priority must be accessed only while holding the queue lock.
 171 *
 172 * - The packet timestamp must be accessed only while holding the pending
 173 *   lock.
 174 */
 175
 176/*
 177 * SSH_PTL_MAX_PACKET_TRIES - Maximum transmission attempts for packet.
 178 *
 179 * Maximum number of transmission attempts per sequenced packet in case of
 180 * time-outs. Must be smaller than 16. If the packet times out after this
 181 * amount of tries, the packet will be completed with %-ETIMEDOUT as status
 182 * code.
 183 */
 184#define SSH_PTL_MAX_PACKET_TRIES                3
 185
 186/*
 187 * SSH_PTL_TX_TIMEOUT - Packet transmission timeout.
 188 *
 189 * Timeout in jiffies for packet transmission via the underlying serial
 190 * device. If transmitting the packet takes longer than this timeout, the
 191 * packet will be completed with -ETIMEDOUT. It will not be re-submitted.
 192 */
 193#define SSH_PTL_TX_TIMEOUT                      HZ
 194
 195/*
 196 * SSH_PTL_PACKET_TIMEOUT - Packet response timeout.
 197 *
 198 * Timeout as ktime_t delta for ACKs. If we have not received an ACK in this
 199 * time-frame after starting transmission, the packet will be re-submitted.
 200 */
 201#define SSH_PTL_PACKET_TIMEOUT                  ms_to_ktime(1000)
 202
 203/*
 204 * SSH_PTL_PACKET_TIMEOUT_RESOLUTION - Packet timeout granularity.
 205 *
 206 * Time-resolution for timeouts. Should be larger than one jiffy to avoid
 207 * direct re-scheduling of reaper work_struct.
 208 */
 209#define SSH_PTL_PACKET_TIMEOUT_RESOLUTION       ms_to_ktime(max(2000 / HZ, 50))
 210
 211/*
 212 * SSH_PTL_MAX_PENDING - Maximum number of pending packets.
 213 *
 214 * Maximum number of sequenced packets concurrently waiting for an ACK.
 215 * Packets marked as blocking will not be transmitted while this limit is
 216 * reached.
 217 */
 218#define SSH_PTL_MAX_PENDING                     1
 219
 220/*
 221 * SSH_PTL_RX_BUF_LEN - Evaluation-buffer size in bytes.
 222 */
 223#define SSH_PTL_RX_BUF_LEN                      4096
 224
 225/*
 226 * SSH_PTL_RX_FIFO_LEN - Fifo input-buffer size in bytes.
 227 */
 228#define SSH_PTL_RX_FIFO_LEN                     4096
 229
 230#ifdef CONFIG_SURFACE_AGGREGATOR_ERROR_INJECTION
 231
 232/**
 233 * ssh_ptl_should_drop_ack_packet() - Error injection hook to drop ACK packets.
 234 *
 235 * Useful to test detection and handling of automated re-transmits by the EC.
 236 * Specifically of packets that the EC considers not-ACKed but the driver
 237 * already considers ACKed (due to dropped ACK). In this case, the EC
 238 * re-transmits the packet-to-be-ACKed and the driver should detect it as
 239 * duplicate/already handled. Note that the driver should still send an ACK
 240 * for the re-transmitted packet.
 241 */
 242static noinline bool ssh_ptl_should_drop_ack_packet(void)
 243{
 244        return false;
 245}
 246ALLOW_ERROR_INJECTION(ssh_ptl_should_drop_ack_packet, TRUE);
 247
 248/**
 249 * ssh_ptl_should_drop_nak_packet() - Error injection hook to drop NAK packets.
 250 *
 251 * Useful to test/force automated (timeout-based) re-transmit by the EC.
 252 * Specifically, packets that have not reached the driver completely/with valid
 253 * checksums. Only useful in combination with receival of (injected) bad data.
 254 */
 255static noinline bool ssh_ptl_should_drop_nak_packet(void)
 256{
 257        return false;
 258}
 259ALLOW_ERROR_INJECTION(ssh_ptl_should_drop_nak_packet, TRUE);
 260
 261/**
 262 * ssh_ptl_should_drop_dsq_packet() - Error injection hook to drop sequenced
 263 * data packet.
 264 *
 265 * Useful to test re-transmit timeout of the driver. If the data packet has not
 266 * been ACKed after a certain time, the driver should re-transmit the packet up
 267 * to limited number of times defined in SSH_PTL_MAX_PACKET_TRIES.
 268 */
 269static noinline bool ssh_ptl_should_drop_dsq_packet(void)
 270{
 271        return false;
 272}
 273ALLOW_ERROR_INJECTION(ssh_ptl_should_drop_dsq_packet, TRUE);
 274
 275/**
 276 * ssh_ptl_should_fail_write() - Error injection hook to make
 277 * serdev_device_write() fail.
 278 *
 279 * Hook to simulate errors in serdev_device_write when transmitting packets.
 280 */
 281static noinline int ssh_ptl_should_fail_write(void)
 282{
 283        return 0;
 284}
 285ALLOW_ERROR_INJECTION(ssh_ptl_should_fail_write, ERRNO);
 286
 287/**
 288 * ssh_ptl_should_corrupt_tx_data() - Error injection hook to simulate invalid
 289 * data being sent to the EC.
 290 *
 291 * Hook to simulate corrupt/invalid data being sent from host (driver) to EC.
 292 * Causes the packet data to be actively corrupted by overwriting it with
 293 * pre-defined values, such that it becomes invalid, causing the EC to respond
 294 * with a NAK packet. Useful to test handling of NAK packets received by the
 295 * driver.
 296 */
 297static noinline bool ssh_ptl_should_corrupt_tx_data(void)
 298{
 299        return false;
 300}
 301ALLOW_ERROR_INJECTION(ssh_ptl_should_corrupt_tx_data, TRUE);
 302
 303/**
 304 * ssh_ptl_should_corrupt_rx_syn() - Error injection hook to simulate invalid
 305 * data being sent by the EC.
 306 *
 307 * Hook to simulate invalid SYN bytes, i.e. an invalid start of messages and
 308 * test handling thereof in the driver.
 309 */
 310static noinline bool ssh_ptl_should_corrupt_rx_syn(void)
 311{
 312        return false;
 313}
 314ALLOW_ERROR_INJECTION(ssh_ptl_should_corrupt_rx_syn, TRUE);
 315
 316/**
 317 * ssh_ptl_should_corrupt_rx_data() - Error injection hook to simulate invalid
 318 * data being sent by the EC.
 319 *
 320 * Hook to simulate invalid data/checksum of the message frame and test handling
 321 * thereof in the driver.
 322 */
 323static noinline bool ssh_ptl_should_corrupt_rx_data(void)
 324{
 325        return false;
 326}
 327ALLOW_ERROR_INJECTION(ssh_ptl_should_corrupt_rx_data, TRUE);
 328
 329static bool __ssh_ptl_should_drop_ack_packet(struct ssh_packet *packet)
 330{
 331        if (likely(!ssh_ptl_should_drop_ack_packet()))
 332                return false;
 333
 334        trace_ssam_ei_tx_drop_ack_packet(packet);
 335        ptl_info(packet->ptl, "packet error injection: dropping ACK packet %p\n",
 336                 packet);
 337
 338        return true;
 339}
 340
 341static bool __ssh_ptl_should_drop_nak_packet(struct ssh_packet *packet)
 342{
 343        if (likely(!ssh_ptl_should_drop_nak_packet()))
 344                return false;
 345
 346        trace_ssam_ei_tx_drop_nak_packet(packet);
 347        ptl_info(packet->ptl, "packet error injection: dropping NAK packet %p\n",
 348                 packet);
 349
 350        return true;
 351}
 352
 353static bool __ssh_ptl_should_drop_dsq_packet(struct ssh_packet *packet)
 354{
 355        if (likely(!ssh_ptl_should_drop_dsq_packet()))
 356                return false;
 357
 358        trace_ssam_ei_tx_drop_dsq_packet(packet);
 359        ptl_info(packet->ptl,
 360                 "packet error injection: dropping sequenced data packet %p\n",
 361                 packet);
 362
 363        return true;
 364}
 365
 366static bool ssh_ptl_should_drop_packet(struct ssh_packet *packet)
 367{
 368        /* Ignore packets that don't carry any data (i.e. flush). */
 369        if (!packet->data.ptr || !packet->data.len)
 370                return false;
 371
 372        switch (packet->data.ptr[SSH_MSGOFFSET_FRAME(type)]) {
 373        case SSH_FRAME_TYPE_ACK:
 374                return __ssh_ptl_should_drop_ack_packet(packet);
 375
 376        case SSH_FRAME_TYPE_NAK:
 377                return __ssh_ptl_should_drop_nak_packet(packet);
 378
 379        case SSH_FRAME_TYPE_DATA_SEQ:
 380                return __ssh_ptl_should_drop_dsq_packet(packet);
 381
 382        default:
 383                return false;
 384        }
 385}
 386
 387static int ssh_ptl_write_buf(struct ssh_ptl *ptl, struct ssh_packet *packet,
 388                             const unsigned char *buf, size_t count)
 389{
 390        int status;
 391
 392        status = ssh_ptl_should_fail_write();
 393        if (unlikely(status)) {
 394                trace_ssam_ei_tx_fail_write(packet, status);
 395                ptl_info(packet->ptl,
 396                         "packet error injection: simulating transmit error %d, packet %p\n",
 397                         status, packet);
 398
 399                return status;
 400        }
 401
 402        return serdev_device_write_buf(ptl->serdev, buf, count);
 403}
 404
 405static void ssh_ptl_tx_inject_invalid_data(struct ssh_packet *packet)
 406{
 407        /* Ignore packets that don't carry any data (i.e. flush). */
 408        if (!packet->data.ptr || !packet->data.len)
 409                return;
 410
 411        /* Only allow sequenced data packets to be modified. */
 412        if (packet->data.ptr[SSH_MSGOFFSET_FRAME(type)] != SSH_FRAME_TYPE_DATA_SEQ)
 413                return;
 414
 415        if (likely(!ssh_ptl_should_corrupt_tx_data()))
 416                return;
 417
 418        trace_ssam_ei_tx_corrupt_data(packet);
 419        ptl_info(packet->ptl,
 420                 "packet error injection: simulating invalid transmit data on packet %p\n",
 421                 packet);
 422
 423        /*
 424         * NB: The value 0xb3 has been chosen more or less randomly so that it
 425         * doesn't have any (major) overlap with the SYN bytes (aa 55) and is
 426         * non-trivial (i.e. non-zero, non-0xff).
 427         */
 428        memset(packet->data.ptr, 0xb3, packet->data.len);
 429}
 430
 431static void ssh_ptl_rx_inject_invalid_syn(struct ssh_ptl *ptl,
 432                                          struct ssam_span *data)
 433{
 434        struct ssam_span frame;
 435
 436        /* Check if there actually is something to corrupt. */
 437        if (!sshp_find_syn(data, &frame))
 438                return;
 439
 440        if (likely(!ssh_ptl_should_corrupt_rx_syn()))
 441                return;
 442
 443        trace_ssam_ei_rx_corrupt_syn(data->len);
 444
 445        data->ptr[1] = 0xb3;    /* Set second byte of SYN to "random" value. */
 446}
 447
 448static void ssh_ptl_rx_inject_invalid_data(struct ssh_ptl *ptl,
 449                                           struct ssam_span *frame)
 450{
 451        size_t payload_len, message_len;
 452        struct ssh_frame *sshf;
 453
 454        /* Ignore incomplete messages, will get handled once it's complete. */
 455        if (frame->len < SSH_MESSAGE_LENGTH(0))
 456                return;
 457
 458        /* Ignore incomplete messages, part 2. */
 459        payload_len = get_unaligned_le16(&frame->ptr[SSH_MSGOFFSET_FRAME(len)]);
 460        message_len = SSH_MESSAGE_LENGTH(payload_len);
 461        if (frame->len < message_len)
 462                return;
 463
 464        if (likely(!ssh_ptl_should_corrupt_rx_data()))
 465                return;
 466
 467        sshf = (struct ssh_frame *)&frame->ptr[SSH_MSGOFFSET_FRAME(type)];
 468        trace_ssam_ei_rx_corrupt_data(sshf);
 469
 470        /*
 471         * Flip bits in first byte of payload checksum. This is basically
 472         * equivalent to a payload/frame data error without us having to worry
 473         * about (the, arguably pretty small, probability of) accidental
 474         * checksum collisions.
 475         */
 476        frame->ptr[frame->len - 2] = ~frame->ptr[frame->len - 2];
 477}
 478
 479#else /* CONFIG_SURFACE_AGGREGATOR_ERROR_INJECTION */
 480
 481static inline bool ssh_ptl_should_drop_packet(struct ssh_packet *packet)
 482{
 483        return false;
 484}
 485
 486static inline int ssh_ptl_write_buf(struct ssh_ptl *ptl,
 487                                    struct ssh_packet *packet,
 488                                    const unsigned char *buf,
 489                                    size_t count)
 490{
 491        return serdev_device_write_buf(ptl->serdev, buf, count);
 492}
 493
 494static inline void ssh_ptl_tx_inject_invalid_data(struct ssh_packet *packet)
 495{
 496}
 497
 498static inline void ssh_ptl_rx_inject_invalid_syn(struct ssh_ptl *ptl,
 499                                                 struct ssam_span *data)
 500{
 501}
 502
 503static inline void ssh_ptl_rx_inject_invalid_data(struct ssh_ptl *ptl,
 504                                                  struct ssam_span *frame)
 505{
 506}
 507
 508#endif /* CONFIG_SURFACE_AGGREGATOR_ERROR_INJECTION */
 509
 510static void __ssh_ptl_packet_release(struct kref *kref)
 511{
 512        struct ssh_packet *p = container_of(kref, struct ssh_packet, refcnt);
 513
 514        trace_ssam_packet_release(p);
 515
 516        ptl_dbg_cond(p->ptl, "ptl: releasing packet %p\n", p);
 517        p->ops->release(p);
 518}
 519
 520/**
 521 * ssh_packet_get() - Increment reference count of packet.
 522 * @packet: The packet to increment the reference count of.
 523 *
 524 * Increments the reference count of the given packet. See ssh_packet_put()
 525 * for the counter-part of this function.
 526 *
 527 * Return: Returns the packet provided as input.
 528 */
 529struct ssh_packet *ssh_packet_get(struct ssh_packet *packet)
 530{
 531        if (packet)
 532                kref_get(&packet->refcnt);
 533        return packet;
 534}
 535EXPORT_SYMBOL_GPL(ssh_packet_get);
 536
 537/**
 538 * ssh_packet_put() - Decrement reference count of packet.
 539 * @packet: The packet to decrement the reference count of.
 540 *
 541 * If the reference count reaches zero, the ``release`` callback specified in
 542 * the packet's &struct ssh_packet_ops, i.e. ``packet->ops->release``, will be
 543 * called.
 544 *
 545 * See ssh_packet_get() for the counter-part of this function.
 546 */
 547void ssh_packet_put(struct ssh_packet *packet)
 548{
 549        if (packet)
 550                kref_put(&packet->refcnt, __ssh_ptl_packet_release);
 551}
 552EXPORT_SYMBOL_GPL(ssh_packet_put);
 553
 554static u8 ssh_packet_get_seq(struct ssh_packet *packet)
 555{
 556        return packet->data.ptr[SSH_MSGOFFSET_FRAME(seq)];
 557}
 558
 559/**
 560 * ssh_packet_init() - Initialize SSH packet.
 561 * @packet:   The packet to initialize.
 562 * @type:     Type-flags of the packet.
 563 * @priority: Priority of the packet. See SSH_PACKET_PRIORITY() for details.
 564 * @ops:      Packet operations.
 565 *
 566 * Initializes the given SSH packet. Sets the transmission buffer pointer to
 567 * %NULL and the transmission buffer length to zero. For data-type packets,
 568 * this buffer has to be set separately via ssh_packet_set_data() before
 569 * submission, and must contain a valid SSH message, i.e. frame with optional
 570 * payload of any type.
 571 */
 572void ssh_packet_init(struct ssh_packet *packet, unsigned long type,
 573                     u8 priority, const struct ssh_packet_ops *ops)
 574{
 575        kref_init(&packet->refcnt);
 576
 577        packet->ptl = NULL;
 578        INIT_LIST_HEAD(&packet->queue_node);
 579        INIT_LIST_HEAD(&packet->pending_node);
 580
 581        packet->state = type & SSH_PACKET_FLAGS_TY_MASK;
 582        packet->priority = priority;
 583        packet->timestamp = KTIME_MAX;
 584
 585        packet->data.ptr = NULL;
 586        packet->data.len = 0;
 587
 588        packet->ops = ops;
 589}
 590
 591static struct kmem_cache *ssh_ctrl_packet_cache;
 592
 593/**
 594 * ssh_ctrl_packet_cache_init() - Initialize the control packet cache.
 595 */
 596int ssh_ctrl_packet_cache_init(void)
 597{
 598        const unsigned int size = sizeof(struct ssh_packet) + SSH_MSG_LEN_CTRL;
 599        const unsigned int align = __alignof__(struct ssh_packet);
 600        struct kmem_cache *cache;
 601
 602        cache = kmem_cache_create("ssam_ctrl_packet", size, align, 0, NULL);
 603        if (!cache)
 604                return -ENOMEM;
 605
 606        ssh_ctrl_packet_cache = cache;
 607        return 0;
 608}
 609
 610/**
 611 * ssh_ctrl_packet_cache_destroy() - Deinitialize the control packet cache.
 612 */
 613void ssh_ctrl_packet_cache_destroy(void)
 614{
 615        kmem_cache_destroy(ssh_ctrl_packet_cache);
 616        ssh_ctrl_packet_cache = NULL;
 617}
 618
 619/**
 620 * ssh_ctrl_packet_alloc() - Allocate packet from control packet cache.
 621 * @packet: Where the pointer to the newly allocated packet should be stored.
 622 * @buffer: The buffer corresponding to this packet.
 623 * @flags:  Flags used for allocation.
 624 *
 625 * Allocates a packet and corresponding transport buffer from the control
 626 * packet cache. Sets the packet's buffer reference to the allocated buffer.
 627 * The packet must be freed via ssh_ctrl_packet_free(), which will also free
 628 * the corresponding buffer. The corresponding buffer must not be freed
 629 * separately. Intended to be used with %ssh_ptl_ctrl_packet_ops as packet
 630 * operations.
 631 *
 632 * Return: Returns zero on success, %-ENOMEM if the allocation failed.
 633 */
 634static int ssh_ctrl_packet_alloc(struct ssh_packet **packet,
 635                                 struct ssam_span *buffer, gfp_t flags)
 636{
 637        *packet = kmem_cache_alloc(ssh_ctrl_packet_cache, flags);
 638        if (!*packet)
 639                return -ENOMEM;
 640
 641        buffer->ptr = (u8 *)(*packet + 1);
 642        buffer->len = SSH_MSG_LEN_CTRL;
 643
 644        trace_ssam_ctrl_packet_alloc(*packet, buffer->len);
 645        return 0;
 646}
 647
 648/**
 649 * ssh_ctrl_packet_free() - Free packet allocated from control packet cache.
 650 * @p: The packet to free.
 651 */
 652static void ssh_ctrl_packet_free(struct ssh_packet *p)
 653{
 654        trace_ssam_ctrl_packet_free(p);
 655        kmem_cache_free(ssh_ctrl_packet_cache, p);
 656}
 657
 658static const struct ssh_packet_ops ssh_ptl_ctrl_packet_ops = {
 659        .complete = NULL,
 660        .release = ssh_ctrl_packet_free,
 661};
 662
 663static void ssh_ptl_timeout_reaper_mod(struct ssh_ptl *ptl, ktime_t now,
 664                                       ktime_t expires)
 665{
 666        unsigned long delta = msecs_to_jiffies(ktime_ms_delta(expires, now));
 667        ktime_t aexp = ktime_add(expires, SSH_PTL_PACKET_TIMEOUT_RESOLUTION);
 668
 669        spin_lock(&ptl->rtx_timeout.lock);
 670
 671        /* Re-adjust / schedule reaper only if it is above resolution delta. */
 672        if (ktime_before(aexp, ptl->rtx_timeout.expires)) {
 673                ptl->rtx_timeout.expires = expires;
 674                mod_delayed_work(system_wq, &ptl->rtx_timeout.reaper, delta);
 675        }
 676
 677        spin_unlock(&ptl->rtx_timeout.lock);
 678}
 679
 680/* Must be called with queue lock held. */
 681static void ssh_packet_next_try(struct ssh_packet *p)
 682{
 683        u8 base = ssh_packet_priority_get_base(p->priority);
 684        u8 try = ssh_packet_priority_get_try(p->priority);
 685
 686        lockdep_assert_held(&p->ptl->queue.lock);
 687
 688        /*
 689         * Ensure that we write the priority in one go via WRITE_ONCE() so we
 690         * can access it via READ_ONCE() for tracing. Note that other access
 691         * is guarded by the queue lock, so no need to use READ_ONCE() there.
 692         */
 693        WRITE_ONCE(p->priority, __SSH_PACKET_PRIORITY(base, try + 1));
 694}
 695
 696/* Must be called with queue lock held. */
 697static struct list_head *__ssh_ptl_queue_find_entrypoint(struct ssh_packet *p)
 698{
 699        struct list_head *head;
 700        struct ssh_packet *q;
 701
 702        lockdep_assert_held(&p->ptl->queue.lock);
 703
 704        /*
 705         * We generally assume that there are less control (ACK/NAK) packets
 706         * and re-submitted data packets as there are normal data packets (at
 707         * least in situations in which many packets are queued; if there
 708         * aren't many packets queued the decision on how to iterate should be
 709         * basically irrelevant; the number of control/data packets is more or
 710         * less limited via the maximum number of pending packets). Thus, when
 711         * inserting a control or re-submitted data packet, (determined by
 712         * their priority), we search from front to back. Normal data packets
 713         * are, usually queued directly at the tail of the queue, so for those
 714         * search from back to front.
 715         */
 716
 717        if (p->priority > SSH_PACKET_PRIORITY(DATA, 0)) {
 718                list_for_each(head, &p->ptl->queue.head) {
 719                        q = list_entry(head, struct ssh_packet, queue_node);
 720
 721                        if (q->priority < p->priority)
 722                                break;
 723                }
 724        } else {
 725                list_for_each_prev(head, &p->ptl->queue.head) {
 726                        q = list_entry(head, struct ssh_packet, queue_node);
 727
 728                        if (q->priority >= p->priority) {
 729                                head = head->next;
 730                                break;
 731                        }
 732                }
 733        }
 734
 735        return head;
 736}
 737
 738/* Must be called with queue lock held. */
 739static int __ssh_ptl_queue_push(struct ssh_packet *packet)
 740{
 741        struct ssh_ptl *ptl = packet->ptl;
 742        struct list_head *head;
 743
 744        lockdep_assert_held(&ptl->queue.lock);
 745
 746        if (test_bit(SSH_PTL_SF_SHUTDOWN_BIT, &ptl->state))
 747                return -ESHUTDOWN;
 748
 749        /* Avoid further transitions when canceling/completing. */
 750        if (test_bit(SSH_PACKET_SF_LOCKED_BIT, &packet->state))
 751                return -EINVAL;
 752
 753        /* If this packet has already been queued, do not add it. */
 754        if (test_and_set_bit(SSH_PACKET_SF_QUEUED_BIT, &packet->state))
 755                return -EALREADY;
 756
 757        head = __ssh_ptl_queue_find_entrypoint(packet);
 758
 759        list_add_tail(&ssh_packet_get(packet)->queue_node, head);
 760        return 0;
 761}
 762
 763static int ssh_ptl_queue_push(struct ssh_packet *packet)
 764{
 765        int status;
 766
 767        spin_lock(&packet->ptl->queue.lock);
 768        status = __ssh_ptl_queue_push(packet);
 769        spin_unlock(&packet->ptl->queue.lock);
 770
 771        return status;
 772}
 773
 774static void ssh_ptl_queue_remove(struct ssh_packet *packet)
 775{
 776        struct ssh_ptl *ptl = packet->ptl;
 777
 778        spin_lock(&ptl->queue.lock);
 779
 780        if (!test_and_clear_bit(SSH_PACKET_SF_QUEUED_BIT, &packet->state)) {
 781                spin_unlock(&ptl->queue.lock);
 782                return;
 783        }
 784
 785        list_del(&packet->queue_node);
 786
 787        spin_unlock(&ptl->queue.lock);
 788        ssh_packet_put(packet);
 789}
 790
 791static void ssh_ptl_pending_push(struct ssh_packet *p)
 792{
 793        struct ssh_ptl *ptl = p->ptl;
 794        const ktime_t timestamp = ktime_get_coarse_boottime();
 795        const ktime_t timeout = ptl->rtx_timeout.timeout;
 796
 797        /*
 798         * Note: We can get the time for the timestamp before acquiring the
 799         * lock as this is the only place we're setting it and this function
 800         * is called only from the transmitter thread. Thus it is not possible
 801         * to overwrite the timestamp with an outdated value below.
 802         */
 803
 804        spin_lock(&ptl->pending.lock);
 805
 806        /* If we are canceling/completing this packet, do not add it. */
 807        if (test_bit(SSH_PACKET_SF_LOCKED_BIT, &p->state)) {
 808                spin_unlock(&ptl->pending.lock);
 809                return;
 810        }
 811
 812        /*
 813         * On re-submission, the packet has already been added the pending
 814         * set. We still need to update the timestamp as the packet timeout is
 815         * reset for each (re-)submission.
 816         */
 817        p->timestamp = timestamp;
 818
 819        /* In case it is already pending (e.g. re-submission), do not add it. */
 820        if (!test_and_set_bit(SSH_PACKET_SF_PENDING_BIT, &p->state)) {
 821                atomic_inc(&ptl->pending.count);
 822                list_add_tail(&ssh_packet_get(p)->pending_node, &ptl->pending.head);
 823        }
 824
 825        spin_unlock(&ptl->pending.lock);
 826
 827        /* Arm/update timeout reaper. */
 828        ssh_ptl_timeout_reaper_mod(ptl, timestamp, timestamp + timeout);
 829}
 830
 831static void ssh_ptl_pending_remove(struct ssh_packet *packet)
 832{
 833        struct ssh_ptl *ptl = packet->ptl;
 834
 835        spin_lock(&ptl->pending.lock);
 836
 837        if (!test_and_clear_bit(SSH_PACKET_SF_PENDING_BIT, &packet->state)) {
 838                spin_unlock(&ptl->pending.lock);
 839                return;
 840        }
 841
 842        list_del(&packet->pending_node);
 843        atomic_dec(&ptl->pending.count);
 844
 845        spin_unlock(&ptl->pending.lock);
 846
 847        ssh_packet_put(packet);
 848}
 849
 850/* Warning: Does not check/set "completed" bit. */
 851static void __ssh_ptl_complete(struct ssh_packet *p, int status)
 852{
 853        struct ssh_ptl *ptl = READ_ONCE(p->ptl);
 854
 855        trace_ssam_packet_complete(p, status);
 856        ptl_dbg_cond(ptl, "ptl: completing packet %p (status: %d)\n", p, status);
 857
 858        if (p->ops->complete)
 859                p->ops->complete(p, status);
 860}
 861
 862static void ssh_ptl_remove_and_complete(struct ssh_packet *p, int status)
 863{
 864        /*
 865         * A call to this function should in general be preceded by
 866         * set_bit(SSH_PACKET_SF_LOCKED_BIT, &p->flags) to avoid re-adding the
 867         * packet to the structures it's going to be removed from.
 868         *
 869         * The set_bit call does not need explicit memory barriers as the
 870         * implicit barrier of the test_and_set_bit() call below ensure that the
 871         * flag is visible before we actually attempt to remove the packet.
 872         */
 873
 874        if (test_and_set_bit(SSH_PACKET_SF_COMPLETED_BIT, &p->state))
 875                return;
 876
 877        ssh_ptl_queue_remove(p);
 878        ssh_ptl_pending_remove(p);
 879
 880        __ssh_ptl_complete(p, status);
 881}
 882
 883static bool ssh_ptl_tx_can_process(struct ssh_packet *packet)
 884{
 885        struct ssh_ptl *ptl = packet->ptl;
 886
 887        if (test_bit(SSH_PACKET_TY_FLUSH_BIT, &packet->state))
 888                return !atomic_read(&ptl->pending.count);
 889
 890        /* We can always process non-blocking packets. */
 891        if (!test_bit(SSH_PACKET_TY_BLOCKING_BIT, &packet->state))
 892                return true;
 893
 894        /* If we are already waiting for this packet, send it again. */
 895        if (test_bit(SSH_PACKET_SF_PENDING_BIT, &packet->state))
 896                return true;
 897
 898        /* Otherwise: Check if we have the capacity to send. */
 899        return atomic_read(&ptl->pending.count) < SSH_PTL_MAX_PENDING;
 900}
 901
 902static struct ssh_packet *ssh_ptl_tx_pop(struct ssh_ptl *ptl)
 903{
 904        struct ssh_packet *packet = ERR_PTR(-ENOENT);
 905        struct ssh_packet *p, *n;
 906
 907        spin_lock(&ptl->queue.lock);
 908        list_for_each_entry_safe(p, n, &ptl->queue.head, queue_node) {
 909                /*
 910                 * If we are canceling or completing this packet, ignore it.
 911                 * It's going to be removed from this queue shortly.
 912                 */
 913                if (test_bit(SSH_PACKET_SF_LOCKED_BIT, &p->state))
 914                        continue;
 915
 916                /*
 917                 * Packets should be ordered non-blocking/to-be-resent first.
 918                 * If we cannot process this packet, assume that we can't
 919                 * process any following packet either and abort.
 920                 */
 921                if (!ssh_ptl_tx_can_process(p)) {
 922                        packet = ERR_PTR(-EBUSY);
 923                        break;
 924                }
 925
 926                /*
 927                 * We are allowed to change the state now. Remove it from the
 928                 * queue and mark it as being transmitted.
 929                 */
 930
 931                list_del(&p->queue_node);
 932
 933                set_bit(SSH_PACKET_SF_TRANSMITTING_BIT, &p->state);
 934                /* Ensure that state never gets zero. */
 935                smp_mb__before_atomic();
 936                clear_bit(SSH_PACKET_SF_QUEUED_BIT, &p->state);
 937
 938                /*
 939                 * Update number of tries. This directly influences the
 940                 * priority in case the packet is re-submitted (e.g. via
 941                 * timeout/NAK). Note that all reads and writes to the
 942                 * priority after the first submission are guarded by the
 943                 * queue lock.
 944                 */
 945                ssh_packet_next_try(p);
 946
 947                packet = p;
 948                break;
 949        }
 950        spin_unlock(&ptl->queue.lock);
 951
 952        return packet;
 953}
 954
 955static struct ssh_packet *ssh_ptl_tx_next(struct ssh_ptl *ptl)
 956{
 957        struct ssh_packet *p;
 958
 959        p = ssh_ptl_tx_pop(ptl);
 960        if (IS_ERR(p))
 961                return p;
 962
 963        if (test_bit(SSH_PACKET_TY_SEQUENCED_BIT, &p->state)) {
 964                ptl_dbg(ptl, "ptl: transmitting sequenced packet %p\n", p);
 965                ssh_ptl_pending_push(p);
 966        } else {
 967                ptl_dbg(ptl, "ptl: transmitting non-sequenced packet %p\n", p);
 968        }
 969
 970        return p;
 971}
 972
 973static void ssh_ptl_tx_compl_success(struct ssh_packet *packet)
 974{
 975        struct ssh_ptl *ptl = packet->ptl;
 976
 977        ptl_dbg(ptl, "ptl: successfully transmitted packet %p\n", packet);
 978
 979        /* Transition state to "transmitted". */
 980        set_bit(SSH_PACKET_SF_TRANSMITTED_BIT, &packet->state);
 981        /* Ensure that state never gets zero. */
 982        smp_mb__before_atomic();
 983        clear_bit(SSH_PACKET_SF_TRANSMITTING_BIT, &packet->state);
 984
 985        /* If the packet is unsequenced, we're done: Lock and complete. */
 986        if (!test_bit(SSH_PACKET_TY_SEQUENCED_BIT, &packet->state)) {
 987                set_bit(SSH_PACKET_SF_LOCKED_BIT, &packet->state);
 988                ssh_ptl_remove_and_complete(packet, 0);
 989        }
 990
 991        /*
 992         * Notify that a packet transmission has finished. In general we're only
 993         * waiting for one packet (if any), so wake_up_all should be fine.
 994         */
 995        wake_up_all(&ptl->tx.packet_wq);
 996}
 997
 998static void ssh_ptl_tx_compl_error(struct ssh_packet *packet, int status)
 999{
1000        /* Transmission failure: Lock the packet and try to complete it. */
1001        set_bit(SSH_PACKET_SF_LOCKED_BIT, &packet->state);
1002        /* Ensure that state never gets zero. */
1003        smp_mb__before_atomic();
1004        clear_bit(SSH_PACKET_SF_TRANSMITTING_BIT, &packet->state);
1005
1006        ptl_err(packet->ptl, "ptl: transmission error: %d\n", status);
1007        ptl_dbg(packet->ptl, "ptl: failed to transmit packet: %p\n", packet);
1008
1009        ssh_ptl_remove_and_complete(packet, status);
1010
1011        /*
1012         * Notify that a packet transmission has finished. In general we're only
1013         * waiting for one packet (if any), so wake_up_all should be fine.
1014         */
1015        wake_up_all(&packet->ptl->tx.packet_wq);
1016}
1017
1018static long ssh_ptl_tx_wait_packet(struct ssh_ptl *ptl)
1019{
1020        int status;
1021
1022        status = wait_for_completion_interruptible(&ptl->tx.thread_cplt_pkt);
1023        reinit_completion(&ptl->tx.thread_cplt_pkt);
1024
1025        /*
1026         * Ensure completion is cleared before continuing to avoid lost update
1027         * problems.
1028         */
1029        smp_mb__after_atomic();
1030
1031        return status;
1032}
1033
1034static long ssh_ptl_tx_wait_transfer(struct ssh_ptl *ptl, long timeout)
1035{
1036        long status;
1037
1038        status = wait_for_completion_interruptible_timeout(&ptl->tx.thread_cplt_tx,
1039                                                           timeout);
1040        reinit_completion(&ptl->tx.thread_cplt_tx);
1041
1042        /*
1043         * Ensure completion is cleared before continuing to avoid lost update
1044         * problems.
1045         */
1046        smp_mb__after_atomic();
1047
1048        return status;
1049}
1050
1051static int ssh_ptl_tx_packet(struct ssh_ptl *ptl, struct ssh_packet *packet)
1052{
1053        long timeout = SSH_PTL_TX_TIMEOUT;
1054        size_t offset = 0;
1055
1056        /* Note: Flush-packets don't have any data. */
1057        if (unlikely(!packet->data.ptr))
1058                return 0;
1059
1060        /* Error injection: drop packet to simulate transmission problem. */
1061        if (ssh_ptl_should_drop_packet(packet))
1062                return 0;
1063
1064        /* Error injection: simulate invalid packet data. */
1065        ssh_ptl_tx_inject_invalid_data(packet);
1066
1067        ptl_dbg(ptl, "tx: sending data (length: %zu)\n", packet->data.len);
1068        print_hex_dump_debug("tx: ", DUMP_PREFIX_OFFSET, 16, 1,
1069                             packet->data.ptr, packet->data.len, false);
1070
1071        do {
1072                ssize_t status, len;
1073                u8 *buf;
1074
1075                buf = packet->data.ptr + offset;
1076                len = packet->data.len - offset;
1077
1078                status = ssh_ptl_write_buf(ptl, packet, buf, len);
1079                if (status < 0)
1080                        return status;
1081
1082                if (status == len)
1083                        return 0;
1084
1085                offset += status;
1086
1087                timeout = ssh_ptl_tx_wait_transfer(ptl, timeout);
1088                if (kthread_should_stop() || !atomic_read(&ptl->tx.running))
1089                        return -ESHUTDOWN;
1090
1091                if (timeout < 0)
1092                        return -EINTR;
1093
1094                if (timeout == 0)
1095                        return -ETIMEDOUT;
1096        } while (true);
1097}
1098
1099static int ssh_ptl_tx_threadfn(void *data)
1100{
1101        struct ssh_ptl *ptl = data;
1102
1103        while (!kthread_should_stop() && atomic_read(&ptl->tx.running)) {
1104                struct ssh_packet *packet;
1105                int status;
1106
1107                /* Try to get the next packet. */
1108                packet = ssh_ptl_tx_next(ptl);
1109
1110                /* If no packet can be processed, we are done. */
1111                if (IS_ERR(packet)) {
1112                        ssh_ptl_tx_wait_packet(ptl);
1113                        continue;
1114                }
1115
1116                /* Transfer and complete packet. */
1117                status = ssh_ptl_tx_packet(ptl, packet);
1118                if (status)
1119                        ssh_ptl_tx_compl_error(packet, status);
1120                else
1121                        ssh_ptl_tx_compl_success(packet);
1122
1123                ssh_packet_put(packet);
1124        }
1125
1126        return 0;
1127}
1128
1129/**
1130 * ssh_ptl_tx_wakeup_packet() - Wake up packet transmitter thread for new
1131 * packet.
1132 * @ptl: The packet transport layer.
1133 *
1134 * Wakes up the packet transmitter thread, notifying it that a new packet has
1135 * arrived and is ready for transfer. If the packet transport layer has been
1136 * shut down, calls to this function will be ignored.
1137 */
1138static void ssh_ptl_tx_wakeup_packet(struct ssh_ptl *ptl)
1139{
1140        if (test_bit(SSH_PTL_SF_SHUTDOWN_BIT, &ptl->state))
1141                return;
1142
1143        complete(&ptl->tx.thread_cplt_pkt);
1144}
1145
1146/**
1147 * ssh_ptl_tx_start() - Start packet transmitter thread.
1148 * @ptl: The packet transport layer.
1149 *
1150 * Return: Returns zero on success, a negative error code on failure.
1151 */
1152int ssh_ptl_tx_start(struct ssh_ptl *ptl)
1153{
1154        atomic_set_release(&ptl->tx.running, 1);
1155
1156        ptl->tx.thread = kthread_run(ssh_ptl_tx_threadfn, ptl, "ssam_serial_hub-tx");
1157        if (IS_ERR(ptl->tx.thread))
1158                return PTR_ERR(ptl->tx.thread);
1159
1160        return 0;
1161}
1162
1163/**
1164 * ssh_ptl_tx_stop() - Stop packet transmitter thread.
1165 * @ptl: The packet transport layer.
1166 *
1167 * Return: Returns zero on success, a negative error code on failure.
1168 */
1169int ssh_ptl_tx_stop(struct ssh_ptl *ptl)
1170{
1171        int status = 0;
1172
1173        if (!IS_ERR_OR_NULL(ptl->tx.thread)) {
1174                /* Tell thread to stop. */
1175                atomic_set_release(&ptl->tx.running, 0);
1176
1177                /*
1178                 * Wake up thread in case it is paused. Do not use wakeup
1179                 * helpers as this may be called when the shutdown bit has
1180                 * already been set.
1181                 */
1182                complete(&ptl->tx.thread_cplt_pkt);
1183                complete(&ptl->tx.thread_cplt_tx);
1184
1185                /* Finally, wait for thread to stop. */
1186                status = kthread_stop(ptl->tx.thread);
1187                ptl->tx.thread = NULL;
1188        }
1189
1190        return status;
1191}
1192
1193static struct ssh_packet *ssh_ptl_ack_pop(struct ssh_ptl *ptl, u8 seq_id)
1194{
1195        struct ssh_packet *packet = ERR_PTR(-ENOENT);
1196        struct ssh_packet *p, *n;
1197
1198        spin_lock(&ptl->pending.lock);
1199        list_for_each_entry_safe(p, n, &ptl->pending.head, pending_node) {
1200                /*
1201                 * We generally expect packets to be in order, so first packet
1202                 * to be added to pending is first to be sent, is first to be
1203                 * ACKed.
1204                 */
1205                if (unlikely(ssh_packet_get_seq(p) != seq_id))
1206                        continue;
1207
1208                /*
1209                 * In case we receive an ACK while handling a transmission
1210                 * error completion. The packet will be removed shortly.
1211                 */
1212                if (unlikely(test_bit(SSH_PACKET_SF_LOCKED_BIT, &p->state))) {
1213                        packet = ERR_PTR(-EPERM);
1214                        break;
1215                }
1216
1217                /*
1218                 * Mark the packet as ACKed and remove it from pending by
1219                 * removing its node and decrementing the pending counter.
1220                 */
1221                set_bit(SSH_PACKET_SF_ACKED_BIT, &p->state);
1222                /* Ensure that state never gets zero. */
1223                smp_mb__before_atomic();
1224                clear_bit(SSH_PACKET_SF_PENDING_BIT, &p->state);
1225
1226                atomic_dec(&ptl->pending.count);
1227                list_del(&p->pending_node);
1228                packet = p;
1229
1230                break;
1231        }
1232        spin_unlock(&ptl->pending.lock);
1233
1234        return packet;
1235}
1236
1237static void ssh_ptl_wait_until_transmitted(struct ssh_packet *packet)
1238{
1239        wait_event(packet->ptl->tx.packet_wq,
1240                   test_bit(SSH_PACKET_SF_TRANSMITTED_BIT, &packet->state) ||
1241                   test_bit(SSH_PACKET_SF_LOCKED_BIT, &packet->state));
1242}
1243
1244static void ssh_ptl_acknowledge(struct ssh_ptl *ptl, u8 seq)
1245{
1246        struct ssh_packet *p;
1247
1248        p = ssh_ptl_ack_pop(ptl, seq);
1249        if (IS_ERR(p)) {
1250                if (PTR_ERR(p) == -ENOENT) {
1251                        /*
1252                         * The packet has not been found in the set of pending
1253                         * packets.
1254                         */
1255                        ptl_warn(ptl, "ptl: received ACK for non-pending packet\n");
1256                } else {
1257                        /*
1258                         * The packet is pending, but we are not allowed to take
1259                         * it because it has been locked.
1260                         */
1261                        WARN_ON(PTR_ERR(p) != -EPERM);
1262                }
1263                return;
1264        }
1265
1266        ptl_dbg(ptl, "ptl: received ACK for packet %p\n", p);
1267
1268        /*
1269         * It is possible that the packet has been transmitted, but the state
1270         * has not been updated from "transmitting" to "transmitted" yet.
1271         * In that case, we need to wait for this transition to occur in order
1272         * to determine between success or failure.
1273         *
1274         * On transmission failure, the packet will be locked after this call.
1275         * On success, the transmitted bit will be set.
1276         */
1277        ssh_ptl_wait_until_transmitted(p);
1278
1279        /*
1280         * The packet will already be locked in case of a transmission error or
1281         * cancellation. Let the transmitter or cancellation issuer complete the
1282         * packet.
1283         */
1284        if (unlikely(test_and_set_bit(SSH_PACKET_SF_LOCKED_BIT, &p->state))) {
1285                if (unlikely(!test_bit(SSH_PACKET_SF_TRANSMITTED_BIT, &p->state)))
1286                        ptl_err(ptl, "ptl: received ACK before packet had been fully transmitted\n");
1287
1288                ssh_packet_put(p);
1289                return;
1290        }
1291
1292        ssh_ptl_remove_and_complete(p, 0);
1293        ssh_packet_put(p);
1294
1295        if (atomic_read(&ptl->pending.count) < SSH_PTL_MAX_PENDING)
1296                ssh_ptl_tx_wakeup_packet(ptl);
1297}
1298
1299/**
1300 * ssh_ptl_submit() - Submit a packet to the transport layer.
1301 * @ptl: The packet transport layer to submit the packet to.
1302 * @p:   The packet to submit.
1303 *
1304 * Submits a new packet to the transport layer, queuing it to be sent. This
1305 * function should not be used for re-submission.
1306 *
1307 * Return: Returns zero on success, %-EINVAL if a packet field is invalid or
1308 * the packet has been canceled prior to submission, %-EALREADY if the packet
1309 * has already been submitted, or %-ESHUTDOWN if the packet transport layer
1310 * has been shut down.
1311 */
1312int ssh_ptl_submit(struct ssh_ptl *ptl, struct ssh_packet *p)
1313{
1314        struct ssh_ptl *ptl_old;
1315        int status;
1316
1317        trace_ssam_packet_submit(p);
1318
1319        /* Validate packet fields. */
1320        if (test_bit(SSH_PACKET_TY_FLUSH_BIT, &p->state)) {
1321                if (p->data.ptr || test_bit(SSH_PACKET_TY_SEQUENCED_BIT, &p->state))
1322                        return -EINVAL;
1323        } else if (!p->data.ptr) {
1324                return -EINVAL;
1325        }
1326
1327        /*
1328         * The ptl reference only gets set on or before the first submission.
1329         * After the first submission, it has to be read-only.
1330         *
1331         * Note that ptl may already be set from upper-layer request
1332         * submission, thus we cannot expect it to be NULL.
1333         */
1334        ptl_old = READ_ONCE(p->ptl);
1335        if (!ptl_old)
1336                WRITE_ONCE(p->ptl, ptl);
1337        else if (WARN_ON(ptl_old != ptl))
1338                return -EALREADY;       /* Submitted on different PTL. */
1339
1340        status = ssh_ptl_queue_push(p);
1341        if (status)
1342                return status;
1343
1344        if (!test_bit(SSH_PACKET_TY_BLOCKING_BIT, &p->state) ||
1345            (atomic_read(&ptl->pending.count) < SSH_PTL_MAX_PENDING))
1346                ssh_ptl_tx_wakeup_packet(ptl);
1347
1348        return 0;
1349}
1350
1351/*
1352 * __ssh_ptl_resubmit() - Re-submit a packet to the transport layer.
1353 * @packet: The packet to re-submit.
1354 *
1355 * Re-submits the given packet: Checks if it can be re-submitted and queues it
1356 * if it can, resetting the packet timestamp in the process. Must be called
1357 * with the pending lock held.
1358 *
1359 * Return: Returns %-ECANCELED if the packet has exceeded its number of tries,
1360 * %-EINVAL if the packet has been locked, %-EALREADY if the packet is already
1361 * on the queue, and %-ESHUTDOWN if the transmission layer has been shut down.
1362 */
1363static int __ssh_ptl_resubmit(struct ssh_packet *packet)
1364{
1365        int status;
1366        u8 try;
1367
1368        lockdep_assert_held(&packet->ptl->pending.lock);
1369
1370        trace_ssam_packet_resubmit(packet);
1371
1372        spin_lock(&packet->ptl->queue.lock);
1373
1374        /* Check if the packet is out of tries. */
1375        try = ssh_packet_priority_get_try(packet->priority);
1376        if (try >= SSH_PTL_MAX_PACKET_TRIES) {
1377                spin_unlock(&packet->ptl->queue.lock);
1378                return -ECANCELED;
1379        }
1380
1381        status = __ssh_ptl_queue_push(packet);
1382        if (status) {
1383                /*
1384                 * An error here indicates that the packet has either already
1385                 * been queued, been locked, or the transport layer is being
1386                 * shut down. In all cases: Ignore the error.
1387                 */
1388                spin_unlock(&packet->ptl->queue.lock);
1389                return status;
1390        }
1391
1392        packet->timestamp = KTIME_MAX;
1393
1394        spin_unlock(&packet->ptl->queue.lock);
1395        return 0;
1396}
1397
1398static void ssh_ptl_resubmit_pending(struct ssh_ptl *ptl)
1399{
1400        struct ssh_packet *p;
1401        bool resub = false;
1402
1403        /*
1404         * Note: We deliberately do not remove/attempt to cancel and complete
1405         * packets that are out of tires in this function. The packet will be
1406         * eventually canceled and completed by the timeout. Removing the packet
1407         * here could lead to overly eager cancellation if the packet has not
1408         * been re-transmitted yet but the tries-counter already updated (i.e
1409         * ssh_ptl_tx_next() removed the packet from the queue and updated the
1410         * counter, but re-transmission for the last try has not actually
1411         * started yet).
1412         */
1413
1414        spin_lock(&ptl->pending.lock);
1415
1416        /* Re-queue all pending packets. */
1417        list_for_each_entry(p, &ptl->pending.head, pending_node) {
1418                /*
1419                 * Re-submission fails if the packet is out of tries, has been
1420                 * locked, is already queued, or the layer is being shut down.
1421                 * No need to re-schedule tx-thread in those cases.
1422                 */
1423                if (!__ssh_ptl_resubmit(p))
1424                        resub = true;
1425        }
1426
1427        spin_unlock(&ptl->pending.lock);
1428
1429        if (resub)
1430                ssh_ptl_tx_wakeup_packet(ptl);
1431}
1432
1433/**
1434 * ssh_ptl_cancel() - Cancel a packet.
1435 * @p: The packet to cancel.
1436 *
1437 * Cancels a packet. There are no guarantees on when completion and release
1438 * callbacks will be called. This may occur during execution of this function
1439 * or may occur at any point later.
1440 *
1441 * Note that it is not guaranteed that the packet will actually be canceled if
1442 * the packet is concurrently completed by another process. The only guarantee
1443 * of this function is that the packet will be completed (with success,
1444 * failure, or cancellation) and released from the transport layer in a
1445 * reasonable time-frame.
1446 *
1447 * May be called before the packet has been submitted, in which case any later
1448 * packet submission fails.
1449 */
1450void ssh_ptl_cancel(struct ssh_packet *p)
1451{
1452        if (test_and_set_bit(SSH_PACKET_SF_CANCELED_BIT, &p->state))
1453                return;
1454
1455        trace_ssam_packet_cancel(p);
1456
1457        /*
1458         * Lock packet and commit with memory barrier. If this packet has
1459         * already been locked, it's going to be removed and completed by
1460         * another party, which should have precedence.
1461         */
1462        if (test_and_set_bit(SSH_PACKET_SF_LOCKED_BIT, &p->state))
1463                return;
1464
1465        /*
1466         * By marking the packet as locked and employing the implicit memory
1467         * barrier of test_and_set_bit, we have guaranteed that, at this point,
1468         * the packet cannot be added to the queue any more.
1469         *
1470         * In case the packet has never been submitted, packet->ptl is NULL. If
1471         * the packet is currently being submitted, packet->ptl may be NULL or
1472         * non-NULL. Due marking the packet as locked above and committing with
1473         * the memory barrier, we have guaranteed that, if packet->ptl is NULL,
1474         * the packet will never be added to the queue. If packet->ptl is
1475         * non-NULL, we don't have any guarantees.
1476         */
1477
1478        if (READ_ONCE(p->ptl)) {
1479                ssh_ptl_remove_and_complete(p, -ECANCELED);
1480
1481                if (atomic_read(&p->ptl->pending.count) < SSH_PTL_MAX_PENDING)
1482                        ssh_ptl_tx_wakeup_packet(p->ptl);
1483
1484        } else if (!test_and_set_bit(SSH_PACKET_SF_COMPLETED_BIT, &p->state)) {
1485                __ssh_ptl_complete(p, -ECANCELED);
1486        }
1487}
1488
1489/* Must be called with pending lock held */
1490static ktime_t ssh_packet_get_expiration(struct ssh_packet *p, ktime_t timeout)
1491{
1492        lockdep_assert_held(&p->ptl->pending.lock);
1493
1494        if (p->timestamp != KTIME_MAX)
1495                return ktime_add(p->timestamp, timeout);
1496        else
1497                return KTIME_MAX;
1498}
1499
1500static void ssh_ptl_timeout_reap(struct work_struct *work)
1501{
1502        struct ssh_ptl *ptl = to_ssh_ptl(work, rtx_timeout.reaper.work);
1503        struct ssh_packet *p, *n;
1504        LIST_HEAD(claimed);
1505        ktime_t now = ktime_get_coarse_boottime();
1506        ktime_t timeout = ptl->rtx_timeout.timeout;
1507        ktime_t next = KTIME_MAX;
1508        bool resub = false;
1509        int status;
1510
1511        trace_ssam_ptl_timeout_reap(atomic_read(&ptl->pending.count));
1512
1513        /*
1514         * Mark reaper as "not pending". This is done before checking any
1515         * packets to avoid lost-update type problems.
1516         */
1517        spin_lock(&ptl->rtx_timeout.lock);
1518        ptl->rtx_timeout.expires = KTIME_MAX;
1519        spin_unlock(&ptl->rtx_timeout.lock);
1520
1521        spin_lock(&ptl->pending.lock);
1522
1523        list_for_each_entry_safe(p, n, &ptl->pending.head, pending_node) {
1524                ktime_t expires = ssh_packet_get_expiration(p, timeout);
1525
1526                /*
1527                 * Check if the timeout hasn't expired yet. Find out next
1528                 * expiration date to be handled after this run.
1529                 */
1530                if (ktime_after(expires, now)) {
1531                        next = ktime_before(expires, next) ? expires : next;
1532                        continue;
1533                }
1534
1535                trace_ssam_packet_timeout(p);
1536
1537                status = __ssh_ptl_resubmit(p);
1538
1539                /*
1540                 * Re-submission fails if the packet is out of tries, has been
1541                 * locked, is already queued, or the layer is being shut down.
1542                 * No need to re-schedule tx-thread in those cases.
1543                 */
1544                if (!status)
1545                        resub = true;
1546
1547                /* Go to next packet if this packet is not out of tries. */
1548                if (status != -ECANCELED)
1549                        continue;
1550
1551                /* No more tries left: Cancel the packet. */
1552
1553                /*
1554                 * If someone else has locked the packet already, don't use it
1555                 * and let the other party complete it.
1556                 */
1557                if (test_and_set_bit(SSH_PACKET_SF_LOCKED_BIT, &p->state))
1558                        continue;
1559
1560                /*
1561                 * We have now marked the packet as locked. Thus it cannot be
1562                 * added to the pending list again after we've removed it here.
1563                 * We can therefore re-use the pending_node of this packet
1564                 * temporarily.
1565                 */
1566
1567                clear_bit(SSH_PACKET_SF_PENDING_BIT, &p->state);
1568
1569                atomic_dec(&ptl->pending.count);
1570                list_move_tail(&p->pending_node, &claimed);
1571        }
1572
1573        spin_unlock(&ptl->pending.lock);
1574
1575        /* Cancel and complete the packet. */
1576        list_for_each_entry_safe(p, n, &claimed, pending_node) {
1577                if (!test_and_set_bit(SSH_PACKET_SF_COMPLETED_BIT, &p->state)) {
1578                        ssh_ptl_queue_remove(p);
1579                        __ssh_ptl_complete(p, -ETIMEDOUT);
1580                }
1581
1582                /*
1583                 * Drop the reference we've obtained by removing it from
1584                 * the pending set.
1585                 */
1586                list_del(&p->pending_node);
1587                ssh_packet_put(p);
1588        }
1589
1590        /* Ensure that reaper doesn't run again immediately. */
1591        next = max(next, ktime_add(now, SSH_PTL_PACKET_TIMEOUT_RESOLUTION));
1592        if (next != KTIME_MAX)
1593                ssh_ptl_timeout_reaper_mod(ptl, now, next);
1594
1595        if (resub)
1596                ssh_ptl_tx_wakeup_packet(ptl);
1597}
1598
1599static bool ssh_ptl_rx_retransmit_check(struct ssh_ptl *ptl, u8 seq)
1600{
1601        int i;
1602
1603        /*
1604         * Check if SEQ has been seen recently (i.e. packet was
1605         * re-transmitted and we should ignore it).
1606         */
1607        for (i = 0; i < ARRAY_SIZE(ptl->rx.blocked.seqs); i++) {
1608                if (likely(ptl->rx.blocked.seqs[i] != seq))
1609                        continue;
1610
1611                ptl_dbg(ptl, "ptl: ignoring repeated data packet\n");
1612                return true;
1613        }
1614
1615        /* Update list of blocked sequence IDs. */
1616        ptl->rx.blocked.seqs[ptl->rx.blocked.offset] = seq;
1617        ptl->rx.blocked.offset = (ptl->rx.blocked.offset + 1)
1618                                  % ARRAY_SIZE(ptl->rx.blocked.seqs);
1619
1620        return false;
1621}
1622
1623static void ssh_ptl_rx_dataframe(struct ssh_ptl *ptl,
1624                                 const struct ssh_frame *frame,
1625                                 const struct ssam_span *payload)
1626{
1627        if (ssh_ptl_rx_retransmit_check(ptl, frame->seq))
1628                return;
1629
1630        ptl->ops.data_received(ptl, payload);
1631}
1632
1633static void ssh_ptl_send_ack(struct ssh_ptl *ptl, u8 seq)
1634{
1635        struct ssh_packet *packet;
1636        struct ssam_span buf;
1637        struct msgbuf msgb;
1638        int status;
1639
1640        status = ssh_ctrl_packet_alloc(&packet, &buf, GFP_KERNEL);
1641        if (status) {
1642                ptl_err(ptl, "ptl: failed to allocate ACK packet\n");
1643                return;
1644        }
1645
1646        ssh_packet_init(packet, 0, SSH_PACKET_PRIORITY(ACK, 0),
1647                        &ssh_ptl_ctrl_packet_ops);
1648
1649        msgb_init(&msgb, buf.ptr, buf.len);
1650        msgb_push_ack(&msgb, seq);
1651        ssh_packet_set_data(packet, msgb.begin, msgb_bytes_used(&msgb));
1652
1653        ssh_ptl_submit(ptl, packet);
1654        ssh_packet_put(packet);
1655}
1656
1657static void ssh_ptl_send_nak(struct ssh_ptl *ptl)
1658{
1659        struct ssh_packet *packet;
1660        struct ssam_span buf;
1661        struct msgbuf msgb;
1662        int status;
1663
1664        status = ssh_ctrl_packet_alloc(&packet, &buf, GFP_KERNEL);
1665        if (status) {
1666                ptl_err(ptl, "ptl: failed to allocate NAK packet\n");
1667                return;
1668        }
1669
1670        ssh_packet_init(packet, 0, SSH_PACKET_PRIORITY(NAK, 0),
1671                        &ssh_ptl_ctrl_packet_ops);
1672
1673        msgb_init(&msgb, buf.ptr, buf.len);
1674        msgb_push_nak(&msgb);
1675        ssh_packet_set_data(packet, msgb.begin, msgb_bytes_used(&msgb));
1676
1677        ssh_ptl_submit(ptl, packet);
1678        ssh_packet_put(packet);
1679}
1680
1681static size_t ssh_ptl_rx_eval(struct ssh_ptl *ptl, struct ssam_span *source)
1682{
1683        struct ssh_frame *frame;
1684        struct ssam_span payload;
1685        struct ssam_span aligned;
1686        bool syn_found;
1687        int status;
1688
1689        /* Error injection: Modify data to simulate corrupt SYN bytes. */
1690        ssh_ptl_rx_inject_invalid_syn(ptl, source);
1691
1692        /* Find SYN. */
1693        syn_found = sshp_find_syn(source, &aligned);
1694
1695        if (unlikely(aligned.ptr != source->ptr)) {
1696                /*
1697                 * We expect aligned.ptr == source->ptr. If this is not the
1698                 * case, then aligned.ptr > source->ptr and we've encountered
1699                 * some unexpected data where we'd expect the start of a new
1700                 * message (i.e. the SYN sequence).
1701                 *
1702                 * This can happen when a CRC check for the previous message
1703                 * failed and we start actively searching for the next one
1704                 * (via the call to sshp_find_syn() above), or the first bytes
1705                 * of a message got dropped or corrupted.
1706                 *
1707                 * In any case, we issue a warning, send a NAK to the EC to
1708                 * request re-transmission of any data we haven't acknowledged
1709                 * yet, and finally, skip everything up to the next SYN
1710                 * sequence.
1711                 */
1712
1713                ptl_warn(ptl, "rx: parser: invalid start of frame, skipping\n");
1714
1715                /*
1716                 * Notes:
1717                 * - This might send multiple NAKs in case the communication
1718                 *   starts with an invalid SYN and is broken down into multiple
1719                 *   pieces. This should generally be handled fine, we just
1720                 *   might receive duplicate data in this case, which is
1721                 *   detected when handling data frames.
1722                 * - This path will also be executed on invalid CRCs: When an
1723                 *   invalid CRC is encountered, the code below will skip data
1724                 *   until directly after the SYN. This causes the search for
1725                 *   the next SYN, which is generally not placed directly after
1726                 *   the last one.
1727                 *
1728                 *   Open question: Should we send this in case of invalid
1729                 *   payload CRCs if the frame-type is non-sequential (current
1730                 *   implementation) or should we drop that frame without
1731                 *   telling the EC?
1732                 */
1733                ssh_ptl_send_nak(ptl);
1734        }
1735
1736        if (unlikely(!syn_found))
1737                return aligned.ptr - source->ptr;
1738
1739        /* Error injection: Modify data to simulate corruption. */
1740        ssh_ptl_rx_inject_invalid_data(ptl, &aligned);
1741
1742        /* Parse and validate frame. */
1743        status = sshp_parse_frame(&ptl->serdev->dev, &aligned, &frame, &payload,
1744                                  SSH_PTL_RX_BUF_LEN);
1745        if (status)     /* Invalid frame: skip to next SYN. */
1746                return aligned.ptr - source->ptr + sizeof(u16);
1747        if (!frame)     /* Not enough data. */
1748                return aligned.ptr - source->ptr;
1749
1750        trace_ssam_rx_frame_received(frame);
1751
1752        switch (frame->type) {
1753        case SSH_FRAME_TYPE_ACK:
1754                ssh_ptl_acknowledge(ptl, frame->seq);
1755                break;
1756
1757        case SSH_FRAME_TYPE_NAK:
1758                ssh_ptl_resubmit_pending(ptl);
1759                break;
1760
1761        case SSH_FRAME_TYPE_DATA_SEQ:
1762                ssh_ptl_send_ack(ptl, frame->seq);
1763                fallthrough;
1764
1765        case SSH_FRAME_TYPE_DATA_NSQ:
1766                ssh_ptl_rx_dataframe(ptl, frame, &payload);
1767                break;
1768
1769        default:
1770                ptl_warn(ptl, "ptl: received frame with unknown type %#04x\n",
1771                         frame->type);
1772                break;
1773        }
1774
1775        return aligned.ptr - source->ptr + SSH_MESSAGE_LENGTH(payload.len);
1776}
1777
1778static int ssh_ptl_rx_threadfn(void *data)
1779{
1780        struct ssh_ptl *ptl = data;
1781
1782        while (true) {
1783                struct ssam_span span;
1784                size_t offs = 0;
1785                size_t n;
1786
1787                wait_event_interruptible(ptl->rx.wq,
1788                                         !kfifo_is_empty(&ptl->rx.fifo) ||
1789                                         kthread_should_stop());
1790                if (kthread_should_stop())
1791                        break;
1792
1793                /* Copy from fifo to evaluation buffer. */
1794                n = sshp_buf_read_from_fifo(&ptl->rx.buf, &ptl->rx.fifo);
1795
1796                ptl_dbg(ptl, "rx: received data (size: %zu)\n", n);
1797                print_hex_dump_debug("rx: ", DUMP_PREFIX_OFFSET, 16, 1,
1798                                     ptl->rx.buf.ptr + ptl->rx.buf.len - n,
1799                                     n, false);
1800
1801                /* Parse until we need more bytes or buffer is empty. */
1802                while (offs < ptl->rx.buf.len) {
1803                        sshp_buf_span_from(&ptl->rx.buf, offs, &span);
1804                        n = ssh_ptl_rx_eval(ptl, &span);
1805                        if (n == 0)
1806                                break;  /* Need more bytes. */
1807
1808                        offs += n;
1809                }
1810
1811                /* Throw away the evaluated parts. */
1812                sshp_buf_drop(&ptl->rx.buf, offs);
1813        }
1814
1815        return 0;
1816}
1817
1818static void ssh_ptl_rx_wakeup(struct ssh_ptl *ptl)
1819{
1820        wake_up(&ptl->rx.wq);
1821}
1822
1823/**
1824 * ssh_ptl_rx_start() - Start packet transport layer receiver thread.
1825 * @ptl: The packet transport layer.
1826 *
1827 * Return: Returns zero on success, a negative error code on failure.
1828 */
1829int ssh_ptl_rx_start(struct ssh_ptl *ptl)
1830{
1831        if (ptl->rx.thread)
1832                return 0;
1833
1834        ptl->rx.thread = kthread_run(ssh_ptl_rx_threadfn, ptl,
1835                                     "ssam_serial_hub-rx");
1836        if (IS_ERR(ptl->rx.thread))
1837                return PTR_ERR(ptl->rx.thread);
1838
1839        return 0;
1840}
1841
1842/**
1843 * ssh_ptl_rx_stop() - Stop packet transport layer receiver thread.
1844 * @ptl: The packet transport layer.
1845 *
1846 * Return: Returns zero on success, a negative error code on failure.
1847 */
1848int ssh_ptl_rx_stop(struct ssh_ptl *ptl)
1849{
1850        int status = 0;
1851
1852        if (ptl->rx.thread) {
1853                status = kthread_stop(ptl->rx.thread);
1854                ptl->rx.thread = NULL;
1855        }
1856
1857        return status;
1858}
1859
1860/**
1861 * ssh_ptl_rx_rcvbuf() - Push data from lower-layer transport to the packet
1862 * layer.
1863 * @ptl: The packet transport layer.
1864 * @buf: Pointer to the data to push to the layer.
1865 * @n:   Size of the data to push to the layer, in bytes.
1866 *
1867 * Pushes data from a lower-layer transport to the receiver fifo buffer of the
1868 * packet layer and notifies the receiver thread. Calls to this function are
1869 * ignored once the packet layer has been shut down.
1870 *
1871 * Return: Returns the number of bytes transferred (positive or zero) on
1872 * success. Returns %-ESHUTDOWN if the packet layer has been shut down.
1873 */
1874int ssh_ptl_rx_rcvbuf(struct ssh_ptl *ptl, const u8 *buf, size_t n)
1875{
1876        int used;
1877
1878        if (test_bit(SSH_PTL_SF_SHUTDOWN_BIT, &ptl->state))
1879                return -ESHUTDOWN;
1880
1881        used = kfifo_in(&ptl->rx.fifo, buf, n);
1882        if (used)
1883                ssh_ptl_rx_wakeup(ptl);
1884
1885        return used;
1886}
1887
1888/**
1889 * ssh_ptl_shutdown() - Shut down the packet transport layer.
1890 * @ptl: The packet transport layer.
1891 *
1892 * Shuts down the packet transport layer, removing and canceling all queued
1893 * and pending packets. Packets canceled by this operation will be completed
1894 * with %-ESHUTDOWN as status. Receiver and transmitter threads will be
1895 * stopped.
1896 *
1897 * As a result of this function, the transport layer will be marked as shut
1898 * down. Submission of packets after the transport layer has been shut down
1899 * will fail with %-ESHUTDOWN.
1900 */
1901void ssh_ptl_shutdown(struct ssh_ptl *ptl)
1902{
1903        LIST_HEAD(complete_q);
1904        LIST_HEAD(complete_p);
1905        struct ssh_packet *p, *n;
1906        int status;
1907
1908        /* Ensure that no new packets (including ACK/NAK) can be submitted. */
1909        set_bit(SSH_PTL_SF_SHUTDOWN_BIT, &ptl->state);
1910        /*
1911         * Ensure that the layer gets marked as shut-down before actually
1912         * stopping it. In combination with the check in ssh_ptl_queue_push(),
1913         * this guarantees that no new packets can be added and all already
1914         * queued packets are properly canceled. In combination with the check
1915         * in ssh_ptl_rx_rcvbuf(), this guarantees that received data is
1916         * properly cut off.
1917         */
1918        smp_mb__after_atomic();
1919
1920        status = ssh_ptl_rx_stop(ptl);
1921        if (status)
1922                ptl_err(ptl, "ptl: failed to stop receiver thread\n");
1923
1924        status = ssh_ptl_tx_stop(ptl);
1925        if (status)
1926                ptl_err(ptl, "ptl: failed to stop transmitter thread\n");
1927
1928        cancel_delayed_work_sync(&ptl->rtx_timeout.reaper);
1929
1930        /*
1931         * At this point, all threads have been stopped. This means that the
1932         * only references to packets from inside the system are in the queue
1933         * and pending set.
1934         *
1935         * Note: We still need locks here because someone could still be
1936         * canceling packets.
1937         *
1938         * Note 2: We can re-use queue_node (or pending_node) if we mark the
1939         * packet as locked an then remove it from the queue (or pending set
1940         * respectively). Marking the packet as locked avoids re-queuing
1941         * (which should already be prevented by having stopped the treads...)
1942         * and not setting QUEUED_BIT (or PENDING_BIT) prevents removal from a
1943         * new list via other threads (e.g. cancellation).
1944         *
1945         * Note 3: There may be overlap between complete_p and complete_q.
1946         * This is handled via test_and_set_bit() on the "completed" flag
1947         * (also handles cancellation).
1948         */
1949
1950        /* Mark queued packets as locked and move them to complete_q. */
1951        spin_lock(&ptl->queue.lock);
1952        list_for_each_entry_safe(p, n, &ptl->queue.head, queue_node) {
1953                set_bit(SSH_PACKET_SF_LOCKED_BIT, &p->state);
1954                /* Ensure that state does not get zero. */
1955                smp_mb__before_atomic();
1956                clear_bit(SSH_PACKET_SF_QUEUED_BIT, &p->state);
1957
1958                list_move_tail(&p->queue_node, &complete_q);
1959        }
1960        spin_unlock(&ptl->queue.lock);
1961
1962        /* Mark pending packets as locked and move them to complete_p. */
1963        spin_lock(&ptl->pending.lock);
1964        list_for_each_entry_safe(p, n, &ptl->pending.head, pending_node) {
1965                set_bit(SSH_PACKET_SF_LOCKED_BIT, &p->state);
1966                /* Ensure that state does not get zero. */
1967                smp_mb__before_atomic();
1968                clear_bit(SSH_PACKET_SF_PENDING_BIT, &p->state);
1969
1970                list_move_tail(&p->pending_node, &complete_q);
1971        }
1972        atomic_set(&ptl->pending.count, 0);
1973        spin_unlock(&ptl->pending.lock);
1974
1975        /* Complete and drop packets on complete_q. */
1976        list_for_each_entry(p, &complete_q, queue_node) {
1977                if (!test_and_set_bit(SSH_PACKET_SF_COMPLETED_BIT, &p->state))
1978                        __ssh_ptl_complete(p, -ESHUTDOWN);
1979
1980                ssh_packet_put(p);
1981        }
1982
1983        /* Complete and drop packets on complete_p. */
1984        list_for_each_entry(p, &complete_p, pending_node) {
1985                if (!test_and_set_bit(SSH_PACKET_SF_COMPLETED_BIT, &p->state))
1986                        __ssh_ptl_complete(p, -ESHUTDOWN);
1987
1988                ssh_packet_put(p);
1989        }
1990
1991        /*
1992         * At this point we have guaranteed that the system doesn't reference
1993         * any packets any more.
1994         */
1995}
1996
1997/**
1998 * ssh_ptl_init() - Initialize packet transport layer.
1999 * @ptl:    The packet transport layer to initialize.
2000 * @serdev: The underlying serial device, i.e. the lower-level transport.
2001 * @ops:    Packet layer operations.
2002 *
2003 * Initializes the given packet transport layer. Transmitter and receiver
2004 * threads must be started separately via ssh_ptl_tx_start() and
2005 * ssh_ptl_rx_start(), after the packet-layer has been initialized and the
2006 * lower-level transport layer has been set up.
2007 *
2008 * Return: Returns zero on success and a nonzero error code on failure.
2009 */
2010int ssh_ptl_init(struct ssh_ptl *ptl, struct serdev_device *serdev,
2011                 struct ssh_ptl_ops *ops)
2012{
2013        int i, status;
2014
2015        ptl->serdev = serdev;
2016        ptl->state = 0;
2017
2018        spin_lock_init(&ptl->queue.lock);
2019        INIT_LIST_HEAD(&ptl->queue.head);
2020
2021        spin_lock_init(&ptl->pending.lock);
2022        INIT_LIST_HEAD(&ptl->pending.head);
2023        atomic_set_release(&ptl->pending.count, 0);
2024
2025        ptl->tx.thread = NULL;
2026        atomic_set(&ptl->tx.running, 0);
2027        init_completion(&ptl->tx.thread_cplt_pkt);
2028        init_completion(&ptl->tx.thread_cplt_tx);
2029        init_waitqueue_head(&ptl->tx.packet_wq);
2030
2031        ptl->rx.thread = NULL;
2032        init_waitqueue_head(&ptl->rx.wq);
2033
2034        spin_lock_init(&ptl->rtx_timeout.lock);
2035        ptl->rtx_timeout.timeout = SSH_PTL_PACKET_TIMEOUT;
2036        ptl->rtx_timeout.expires = KTIME_MAX;
2037        INIT_DELAYED_WORK(&ptl->rtx_timeout.reaper, ssh_ptl_timeout_reap);
2038
2039        ptl->ops = *ops;
2040
2041        /* Initialize list of recent/blocked SEQs with invalid sequence IDs. */
2042        for (i = 0; i < ARRAY_SIZE(ptl->rx.blocked.seqs); i++)
2043                ptl->rx.blocked.seqs[i] = U16_MAX;
2044        ptl->rx.blocked.offset = 0;
2045
2046        status = kfifo_alloc(&ptl->rx.fifo, SSH_PTL_RX_FIFO_LEN, GFP_KERNEL);
2047        if (status)
2048                return status;
2049
2050        status = sshp_buf_alloc(&ptl->rx.buf, SSH_PTL_RX_BUF_LEN, GFP_KERNEL);
2051        if (status)
2052                kfifo_free(&ptl->rx.fifo);
2053
2054        return status;
2055}
2056
2057/**
2058 * ssh_ptl_destroy() - Deinitialize packet transport layer.
2059 * @ptl: The packet transport layer to deinitialize.
2060 *
2061 * Deinitializes the given packet transport layer and frees resources
2062 * associated with it. If receiver and/or transmitter threads have been
2063 * started, the layer must first be shut down via ssh_ptl_shutdown() before
2064 * this function can be called.
2065 */
2066void ssh_ptl_destroy(struct ssh_ptl *ptl)
2067{
2068        kfifo_free(&ptl->rx.fifo);
2069        sshp_buf_free(&ptl->rx.buf);
2070}
2071