linux/drivers/rtc/rtc-cmos.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
   4 *
   5 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
   6 * Copyright (C) 2006 David Brownell (convert to new framework)
   7 */
   8
   9/*
  10 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
  11 * That defined the register interface now provided by all PCs, some
  12 * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
  13 * integrate an MC146818 clone in their southbridge, and boards use
  14 * that instead of discrete clones like the DS12887 or M48T86.  There
  15 * are also clones that connect using the LPC bus.
  16 *
  17 * That register API is also used directly by various other drivers
  18 * (notably for integrated NVRAM), infrastructure (x86 has code to
  19 * bypass the RTC framework, directly reading the RTC during boot
  20 * and updating minutes/seconds for systems using NTP synch) and
  21 * utilities (like userspace 'hwclock', if no /dev node exists).
  22 *
  23 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
  24 * interrupts disabled, holding the global rtc_lock, to exclude those
  25 * other drivers and utilities on correctly configured systems.
  26 */
  27
  28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  29
  30#include <linux/kernel.h>
  31#include <linux/module.h>
  32#include <linux/init.h>
  33#include <linux/interrupt.h>
  34#include <linux/spinlock.h>
  35#include <linux/platform_device.h>
  36#include <linux/log2.h>
  37#include <linux/pm.h>
  38#include <linux/of.h>
  39#include <linux/of_platform.h>
  40#ifdef CONFIG_X86
  41#include <asm/i8259.h>
  42#include <asm/processor.h>
  43#include <linux/dmi.h>
  44#endif
  45
  46/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
  47#include <linux/mc146818rtc.h>
  48
  49#ifdef CONFIG_ACPI
  50/*
  51 * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
  52 *
  53 * If cleared, ACPI SCI is only used to wake up the system from suspend
  54 *
  55 * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
  56 */
  57
  58static bool use_acpi_alarm;
  59module_param(use_acpi_alarm, bool, 0444);
  60
  61static inline int cmos_use_acpi_alarm(void)
  62{
  63        return use_acpi_alarm;
  64}
  65#else /* !CONFIG_ACPI */
  66
  67static inline int cmos_use_acpi_alarm(void)
  68{
  69        return 0;
  70}
  71#endif
  72
  73struct cmos_rtc {
  74        struct rtc_device       *rtc;
  75        struct device           *dev;
  76        int                     irq;
  77        struct resource         *iomem;
  78        time64_t                alarm_expires;
  79
  80        void                    (*wake_on)(struct device *);
  81        void                    (*wake_off)(struct device *);
  82
  83        u8                      enabled_wake;
  84        u8                      suspend_ctrl;
  85
  86        /* newer hardware extends the original register set */
  87        u8                      day_alrm;
  88        u8                      mon_alrm;
  89        u8                      century;
  90
  91        struct rtc_wkalrm       saved_wkalrm;
  92};
  93
  94/* both platform and pnp busses use negative numbers for invalid irqs */
  95#define is_valid_irq(n)         ((n) > 0)
  96
  97static const char driver_name[] = "rtc_cmos";
  98
  99/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
 100 * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
 101 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
 102 */
 103#define RTC_IRQMASK     (RTC_PF | RTC_AF | RTC_UF)
 104
 105static inline int is_intr(u8 rtc_intr)
 106{
 107        if (!(rtc_intr & RTC_IRQF))
 108                return 0;
 109        return rtc_intr & RTC_IRQMASK;
 110}
 111
 112/*----------------------------------------------------------------*/
 113
 114/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
 115 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
 116 * used in a broken "legacy replacement" mode.  The breakage includes
 117 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
 118 * other (better) use.
 119 *
 120 * When that broken mode is in use, platform glue provides a partial
 121 * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
 122 * want to use HPET for anything except those IRQs though...
 123 */
 124#ifdef CONFIG_HPET_EMULATE_RTC
 125#include <asm/hpet.h>
 126#else
 127
 128static inline int is_hpet_enabled(void)
 129{
 130        return 0;
 131}
 132
 133static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
 134{
 135        return 0;
 136}
 137
 138static inline int hpet_set_rtc_irq_bit(unsigned long mask)
 139{
 140        return 0;
 141}
 142
 143static inline int
 144hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
 145{
 146        return 0;
 147}
 148
 149static inline int hpet_set_periodic_freq(unsigned long freq)
 150{
 151        return 0;
 152}
 153
 154static inline int hpet_rtc_dropped_irq(void)
 155{
 156        return 0;
 157}
 158
 159static inline int hpet_rtc_timer_init(void)
 160{
 161        return 0;
 162}
 163
 164extern irq_handler_t hpet_rtc_interrupt;
 165
 166static inline int hpet_register_irq_handler(irq_handler_t handler)
 167{
 168        return 0;
 169}
 170
 171static inline int hpet_unregister_irq_handler(irq_handler_t handler)
 172{
 173        return 0;
 174}
 175
 176#endif
 177
 178/* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
 179static inline int use_hpet_alarm(void)
 180{
 181        return is_hpet_enabled() && !cmos_use_acpi_alarm();
 182}
 183
 184/*----------------------------------------------------------------*/
 185
 186#ifdef RTC_PORT
 187
 188/* Most newer x86 systems have two register banks, the first used
 189 * for RTC and NVRAM and the second only for NVRAM.  Caller must
 190 * own rtc_lock ... and we won't worry about access during NMI.
 191 */
 192#define can_bank2       true
 193
 194static inline unsigned char cmos_read_bank2(unsigned char addr)
 195{
 196        outb(addr, RTC_PORT(2));
 197        return inb(RTC_PORT(3));
 198}
 199
 200static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
 201{
 202        outb(addr, RTC_PORT(2));
 203        outb(val, RTC_PORT(3));
 204}
 205
 206#else
 207
 208#define can_bank2       false
 209
 210static inline unsigned char cmos_read_bank2(unsigned char addr)
 211{
 212        return 0;
 213}
 214
 215static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
 216{
 217}
 218
 219#endif
 220
 221/*----------------------------------------------------------------*/
 222
 223static int cmos_read_time(struct device *dev, struct rtc_time *t)
 224{
 225        /*
 226         * If pm_trace abused the RTC for storage, set the timespec to 0,
 227         * which tells the caller that this RTC value is unusable.
 228         */
 229        if (!pm_trace_rtc_valid())
 230                return -EIO;
 231
 232        /* REVISIT:  if the clock has a "century" register, use
 233         * that instead of the heuristic in mc146818_get_time().
 234         * That'll make Y3K compatility (year > 2070) easy!
 235         */
 236        mc146818_get_time(t);
 237        return 0;
 238}
 239
 240static int cmos_set_time(struct device *dev, struct rtc_time *t)
 241{
 242        /* REVISIT:  set the "century" register if available
 243         *
 244         * NOTE: this ignores the issue whereby updating the seconds
 245         * takes effect exactly 500ms after we write the register.
 246         * (Also queueing and other delays before we get this far.)
 247         */
 248        return mc146818_set_time(t);
 249}
 250
 251static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
 252{
 253        struct cmos_rtc *cmos = dev_get_drvdata(dev);
 254        unsigned char   rtc_control;
 255
 256        /* This not only a rtc_op, but also called directly */
 257        if (!is_valid_irq(cmos->irq))
 258                return -EIO;
 259
 260        /* Basic alarms only support hour, minute, and seconds fields.
 261         * Some also support day and month, for alarms up to a year in
 262         * the future.
 263         */
 264
 265        spin_lock_irq(&rtc_lock);
 266        t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
 267        t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
 268        t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
 269
 270        if (cmos->day_alrm) {
 271                /* ignore upper bits on readback per ACPI spec */
 272                t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
 273                if (!t->time.tm_mday)
 274                        t->time.tm_mday = -1;
 275
 276                if (cmos->mon_alrm) {
 277                        t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
 278                        if (!t->time.tm_mon)
 279                                t->time.tm_mon = -1;
 280                }
 281        }
 282
 283        rtc_control = CMOS_READ(RTC_CONTROL);
 284        spin_unlock_irq(&rtc_lock);
 285
 286        if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
 287                if (((unsigned)t->time.tm_sec) < 0x60)
 288                        t->time.tm_sec = bcd2bin(t->time.tm_sec);
 289                else
 290                        t->time.tm_sec = -1;
 291                if (((unsigned)t->time.tm_min) < 0x60)
 292                        t->time.tm_min = bcd2bin(t->time.tm_min);
 293                else
 294                        t->time.tm_min = -1;
 295                if (((unsigned)t->time.tm_hour) < 0x24)
 296                        t->time.tm_hour = bcd2bin(t->time.tm_hour);
 297                else
 298                        t->time.tm_hour = -1;
 299
 300                if (cmos->day_alrm) {
 301                        if (((unsigned)t->time.tm_mday) <= 0x31)
 302                                t->time.tm_mday = bcd2bin(t->time.tm_mday);
 303                        else
 304                                t->time.tm_mday = -1;
 305
 306                        if (cmos->mon_alrm) {
 307                                if (((unsigned)t->time.tm_mon) <= 0x12)
 308                                        t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
 309                                else
 310                                        t->time.tm_mon = -1;
 311                        }
 312                }
 313        }
 314
 315        t->enabled = !!(rtc_control & RTC_AIE);
 316        t->pending = 0;
 317
 318        return 0;
 319}
 320
 321static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
 322{
 323        unsigned char   rtc_intr;
 324
 325        /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
 326         * allegedly some older rtcs need that to handle irqs properly
 327         */
 328        rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
 329
 330        if (use_hpet_alarm())
 331                return;
 332
 333        rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
 334        if (is_intr(rtc_intr))
 335                rtc_update_irq(cmos->rtc, 1, rtc_intr);
 336}
 337
 338static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
 339{
 340        unsigned char   rtc_control;
 341
 342        /* flush any pending IRQ status, notably for update irqs,
 343         * before we enable new IRQs
 344         */
 345        rtc_control = CMOS_READ(RTC_CONTROL);
 346        cmos_checkintr(cmos, rtc_control);
 347
 348        rtc_control |= mask;
 349        CMOS_WRITE(rtc_control, RTC_CONTROL);
 350        if (use_hpet_alarm())
 351                hpet_set_rtc_irq_bit(mask);
 352
 353        if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
 354                if (cmos->wake_on)
 355                        cmos->wake_on(cmos->dev);
 356        }
 357
 358        cmos_checkintr(cmos, rtc_control);
 359}
 360
 361static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
 362{
 363        unsigned char   rtc_control;
 364
 365        rtc_control = CMOS_READ(RTC_CONTROL);
 366        rtc_control &= ~mask;
 367        CMOS_WRITE(rtc_control, RTC_CONTROL);
 368        if (use_hpet_alarm())
 369                hpet_mask_rtc_irq_bit(mask);
 370
 371        if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
 372                if (cmos->wake_off)
 373                        cmos->wake_off(cmos->dev);
 374        }
 375
 376        cmos_checkintr(cmos, rtc_control);
 377}
 378
 379static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
 380{
 381        struct cmos_rtc *cmos = dev_get_drvdata(dev);
 382        struct rtc_time now;
 383
 384        cmos_read_time(dev, &now);
 385
 386        if (!cmos->day_alrm) {
 387                time64_t t_max_date;
 388                time64_t t_alrm;
 389
 390                t_max_date = rtc_tm_to_time64(&now);
 391                t_max_date += 24 * 60 * 60 - 1;
 392                t_alrm = rtc_tm_to_time64(&t->time);
 393                if (t_alrm > t_max_date) {
 394                        dev_err(dev,
 395                                "Alarms can be up to one day in the future\n");
 396                        return -EINVAL;
 397                }
 398        } else if (!cmos->mon_alrm) {
 399                struct rtc_time max_date = now;
 400                time64_t t_max_date;
 401                time64_t t_alrm;
 402                int max_mday;
 403
 404                if (max_date.tm_mon == 11) {
 405                        max_date.tm_mon = 0;
 406                        max_date.tm_year += 1;
 407                } else {
 408                        max_date.tm_mon += 1;
 409                }
 410                max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
 411                if (max_date.tm_mday > max_mday)
 412                        max_date.tm_mday = max_mday;
 413
 414                t_max_date = rtc_tm_to_time64(&max_date);
 415                t_max_date -= 1;
 416                t_alrm = rtc_tm_to_time64(&t->time);
 417                if (t_alrm > t_max_date) {
 418                        dev_err(dev,
 419                                "Alarms can be up to one month in the future\n");
 420                        return -EINVAL;
 421                }
 422        } else {
 423                struct rtc_time max_date = now;
 424                time64_t t_max_date;
 425                time64_t t_alrm;
 426                int max_mday;
 427
 428                max_date.tm_year += 1;
 429                max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
 430                if (max_date.tm_mday > max_mday)
 431                        max_date.tm_mday = max_mday;
 432
 433                t_max_date = rtc_tm_to_time64(&max_date);
 434                t_max_date -= 1;
 435                t_alrm = rtc_tm_to_time64(&t->time);
 436                if (t_alrm > t_max_date) {
 437                        dev_err(dev,
 438                                "Alarms can be up to one year in the future\n");
 439                        return -EINVAL;
 440                }
 441        }
 442
 443        return 0;
 444}
 445
 446static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
 447{
 448        struct cmos_rtc *cmos = dev_get_drvdata(dev);
 449        unsigned char mon, mday, hrs, min, sec, rtc_control;
 450        int ret;
 451
 452        /* This not only a rtc_op, but also called directly */
 453        if (!is_valid_irq(cmos->irq))
 454                return -EIO;
 455
 456        ret = cmos_validate_alarm(dev, t);
 457        if (ret < 0)
 458                return ret;
 459
 460        mon = t->time.tm_mon + 1;
 461        mday = t->time.tm_mday;
 462        hrs = t->time.tm_hour;
 463        min = t->time.tm_min;
 464        sec = t->time.tm_sec;
 465
 466        rtc_control = CMOS_READ(RTC_CONTROL);
 467        if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
 468                /* Writing 0xff means "don't care" or "match all".  */
 469                mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
 470                mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
 471                hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
 472                min = (min < 60) ? bin2bcd(min) : 0xff;
 473                sec = (sec < 60) ? bin2bcd(sec) : 0xff;
 474        }
 475
 476        spin_lock_irq(&rtc_lock);
 477
 478        /* next rtc irq must not be from previous alarm setting */
 479        cmos_irq_disable(cmos, RTC_AIE);
 480
 481        /* update alarm */
 482        CMOS_WRITE(hrs, RTC_HOURS_ALARM);
 483        CMOS_WRITE(min, RTC_MINUTES_ALARM);
 484        CMOS_WRITE(sec, RTC_SECONDS_ALARM);
 485
 486        /* the system may support an "enhanced" alarm */
 487        if (cmos->day_alrm) {
 488                CMOS_WRITE(mday, cmos->day_alrm);
 489                if (cmos->mon_alrm)
 490                        CMOS_WRITE(mon, cmos->mon_alrm);
 491        }
 492
 493        if (use_hpet_alarm()) {
 494                /*
 495                 * FIXME the HPET alarm glue currently ignores day_alrm
 496                 * and mon_alrm ...
 497                 */
 498                hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min,
 499                                    t->time.tm_sec);
 500        }
 501
 502        if (t->enabled)
 503                cmos_irq_enable(cmos, RTC_AIE);
 504
 505        spin_unlock_irq(&rtc_lock);
 506
 507        cmos->alarm_expires = rtc_tm_to_time64(&t->time);
 508
 509        return 0;
 510}
 511
 512static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
 513{
 514        struct cmos_rtc *cmos = dev_get_drvdata(dev);
 515        unsigned long   flags;
 516
 517        spin_lock_irqsave(&rtc_lock, flags);
 518
 519        if (enabled)
 520                cmos_irq_enable(cmos, RTC_AIE);
 521        else
 522                cmos_irq_disable(cmos, RTC_AIE);
 523
 524        spin_unlock_irqrestore(&rtc_lock, flags);
 525        return 0;
 526}
 527
 528#if IS_ENABLED(CONFIG_RTC_INTF_PROC)
 529
 530static int cmos_procfs(struct device *dev, struct seq_file *seq)
 531{
 532        struct cmos_rtc *cmos = dev_get_drvdata(dev);
 533        unsigned char   rtc_control, valid;
 534
 535        spin_lock_irq(&rtc_lock);
 536        rtc_control = CMOS_READ(RTC_CONTROL);
 537        valid = CMOS_READ(RTC_VALID);
 538        spin_unlock_irq(&rtc_lock);
 539
 540        /* NOTE:  at least ICH6 reports battery status using a different
 541         * (non-RTC) bit; and SQWE is ignored on many current systems.
 542         */
 543        seq_printf(seq,
 544                   "periodic_IRQ\t: %s\n"
 545                   "update_IRQ\t: %s\n"
 546                   "HPET_emulated\t: %s\n"
 547                   // "square_wave\t: %s\n"
 548                   "BCD\t\t: %s\n"
 549                   "DST_enable\t: %s\n"
 550                   "periodic_freq\t: %d\n"
 551                   "batt_status\t: %s\n",
 552                   (rtc_control & RTC_PIE) ? "yes" : "no",
 553                   (rtc_control & RTC_UIE) ? "yes" : "no",
 554                   use_hpet_alarm() ? "yes" : "no",
 555                   // (rtc_control & RTC_SQWE) ? "yes" : "no",
 556                   (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
 557                   (rtc_control & RTC_DST_EN) ? "yes" : "no",
 558                   cmos->rtc->irq_freq,
 559                   (valid & RTC_VRT) ? "okay" : "dead");
 560
 561        return 0;
 562}
 563
 564#else
 565#define cmos_procfs     NULL
 566#endif
 567
 568static const struct rtc_class_ops cmos_rtc_ops = {
 569        .read_time              = cmos_read_time,
 570        .set_time               = cmos_set_time,
 571        .read_alarm             = cmos_read_alarm,
 572        .set_alarm              = cmos_set_alarm,
 573        .proc                   = cmos_procfs,
 574        .alarm_irq_enable       = cmos_alarm_irq_enable,
 575};
 576
 577/*----------------------------------------------------------------*/
 578
 579/*
 580 * All these chips have at least 64 bytes of address space, shared by
 581 * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
 582 * by boot firmware.  Modern chips have 128 or 256 bytes.
 583 */
 584
 585#define NVRAM_OFFSET    (RTC_REG_D + 1)
 586
 587static int cmos_nvram_read(void *priv, unsigned int off, void *val,
 588                           size_t count)
 589{
 590        unsigned char *buf = val;
 591        int     retval;
 592
 593        off += NVRAM_OFFSET;
 594        spin_lock_irq(&rtc_lock);
 595        for (retval = 0; count; count--, off++, retval++) {
 596                if (off < 128)
 597                        *buf++ = CMOS_READ(off);
 598                else if (can_bank2)
 599                        *buf++ = cmos_read_bank2(off);
 600                else
 601                        break;
 602        }
 603        spin_unlock_irq(&rtc_lock);
 604
 605        return retval;
 606}
 607
 608static int cmos_nvram_write(void *priv, unsigned int off, void *val,
 609                            size_t count)
 610{
 611        struct cmos_rtc *cmos = priv;
 612        unsigned char   *buf = val;
 613        int             retval;
 614
 615        /* NOTE:  on at least PCs and Ataris, the boot firmware uses a
 616         * checksum on part of the NVRAM data.  That's currently ignored
 617         * here.  If userspace is smart enough to know what fields of
 618         * NVRAM to update, updating checksums is also part of its job.
 619         */
 620        off += NVRAM_OFFSET;
 621        spin_lock_irq(&rtc_lock);
 622        for (retval = 0; count; count--, off++, retval++) {
 623                /* don't trash RTC registers */
 624                if (off == cmos->day_alrm
 625                                || off == cmos->mon_alrm
 626                                || off == cmos->century)
 627                        buf++;
 628                else if (off < 128)
 629                        CMOS_WRITE(*buf++, off);
 630                else if (can_bank2)
 631                        cmos_write_bank2(*buf++, off);
 632                else
 633                        break;
 634        }
 635        spin_unlock_irq(&rtc_lock);
 636
 637        return retval;
 638}
 639
 640/*----------------------------------------------------------------*/
 641
 642static struct cmos_rtc  cmos_rtc;
 643
 644static irqreturn_t cmos_interrupt(int irq, void *p)
 645{
 646        u8              irqstat;
 647        u8              rtc_control;
 648
 649        spin_lock(&rtc_lock);
 650
 651        /* When the HPET interrupt handler calls us, the interrupt
 652         * status is passed as arg1 instead of the irq number.  But
 653         * always clear irq status, even when HPET is in the way.
 654         *
 655         * Note that HPET and RTC are almost certainly out of phase,
 656         * giving different IRQ status ...
 657         */
 658        irqstat = CMOS_READ(RTC_INTR_FLAGS);
 659        rtc_control = CMOS_READ(RTC_CONTROL);
 660        if (use_hpet_alarm())
 661                irqstat = (unsigned long)irq & 0xF0;
 662
 663        /* If we were suspended, RTC_CONTROL may not be accurate since the
 664         * bios may have cleared it.
 665         */
 666        if (!cmos_rtc.suspend_ctrl)
 667                irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
 668        else
 669                irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
 670
 671        /* All Linux RTC alarms should be treated as if they were oneshot.
 672         * Similar code may be needed in system wakeup paths, in case the
 673         * alarm woke the system.
 674         */
 675        if (irqstat & RTC_AIE) {
 676                cmos_rtc.suspend_ctrl &= ~RTC_AIE;
 677                rtc_control &= ~RTC_AIE;
 678                CMOS_WRITE(rtc_control, RTC_CONTROL);
 679                if (use_hpet_alarm())
 680                        hpet_mask_rtc_irq_bit(RTC_AIE);
 681                CMOS_READ(RTC_INTR_FLAGS);
 682        }
 683        spin_unlock(&rtc_lock);
 684
 685        if (is_intr(irqstat)) {
 686                rtc_update_irq(p, 1, irqstat);
 687                return IRQ_HANDLED;
 688        } else
 689                return IRQ_NONE;
 690}
 691
 692#ifdef  CONFIG_PNP
 693#define INITSECTION
 694
 695#else
 696#define INITSECTION     __init
 697#endif
 698
 699static int INITSECTION
 700cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
 701{
 702        struct cmos_rtc_board_info      *info = dev_get_platdata(dev);
 703        int                             retval = 0;
 704        unsigned char                   rtc_control;
 705        unsigned                        address_space;
 706        u32                             flags = 0;
 707        struct nvmem_config nvmem_cfg = {
 708                .name = "cmos_nvram",
 709                .word_size = 1,
 710                .stride = 1,
 711                .reg_read = cmos_nvram_read,
 712                .reg_write = cmos_nvram_write,
 713                .priv = &cmos_rtc,
 714        };
 715
 716        /* there can be only one ... */
 717        if (cmos_rtc.dev)
 718                return -EBUSY;
 719
 720        if (!ports)
 721                return -ENODEV;
 722
 723        /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
 724         *
 725         * REVISIT non-x86 systems may instead use memory space resources
 726         * (needing ioremap etc), not i/o space resources like this ...
 727         */
 728        if (RTC_IOMAPPED)
 729                ports = request_region(ports->start, resource_size(ports),
 730                                       driver_name);
 731        else
 732                ports = request_mem_region(ports->start, resource_size(ports),
 733                                           driver_name);
 734        if (!ports) {
 735                dev_dbg(dev, "i/o registers already in use\n");
 736                return -EBUSY;
 737        }
 738
 739        cmos_rtc.irq = rtc_irq;
 740        cmos_rtc.iomem = ports;
 741
 742        /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
 743         * driver did, but don't reject unknown configs.   Old hardware
 744         * won't address 128 bytes.  Newer chips have multiple banks,
 745         * though they may not be listed in one I/O resource.
 746         */
 747#if     defined(CONFIG_ATARI)
 748        address_space = 64;
 749#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
 750                        || defined(__sparc__) || defined(__mips__) \
 751                        || defined(__powerpc__)
 752        address_space = 128;
 753#else
 754#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
 755        address_space = 128;
 756#endif
 757        if (can_bank2 && ports->end > (ports->start + 1))
 758                address_space = 256;
 759
 760        /* For ACPI systems extension info comes from the FADT.  On others,
 761         * board specific setup provides it as appropriate.  Systems where
 762         * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
 763         * some almost-clones) can provide hooks to make that behave.
 764         *
 765         * Note that ACPI doesn't preclude putting these registers into
 766         * "extended" areas of the chip, including some that we won't yet
 767         * expect CMOS_READ and friends to handle.
 768         */
 769        if (info) {
 770                if (info->flags)
 771                        flags = info->flags;
 772                if (info->address_space)
 773                        address_space = info->address_space;
 774
 775                if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
 776                        cmos_rtc.day_alrm = info->rtc_day_alarm;
 777                if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
 778                        cmos_rtc.mon_alrm = info->rtc_mon_alarm;
 779                if (info->rtc_century && info->rtc_century < 128)
 780                        cmos_rtc.century = info->rtc_century;
 781
 782                if (info->wake_on && info->wake_off) {
 783                        cmos_rtc.wake_on = info->wake_on;
 784                        cmos_rtc.wake_off = info->wake_off;
 785                }
 786        }
 787
 788        cmos_rtc.dev = dev;
 789        dev_set_drvdata(dev, &cmos_rtc);
 790
 791        cmos_rtc.rtc = devm_rtc_allocate_device(dev);
 792        if (IS_ERR(cmos_rtc.rtc)) {
 793                retval = PTR_ERR(cmos_rtc.rtc);
 794                goto cleanup0;
 795        }
 796
 797        rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
 798
 799        spin_lock_irq(&rtc_lock);
 800
 801        /* Ensure that the RTC is accessible. Bit 6 must be 0! */
 802        if ((CMOS_READ(RTC_VALID) & 0x40) != 0) {
 803                spin_unlock_irq(&rtc_lock);
 804                dev_warn(dev, "not accessible\n");
 805                retval = -ENXIO;
 806                goto cleanup1;
 807        }
 808
 809        if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
 810                /* force periodic irq to CMOS reset default of 1024Hz;
 811                 *
 812                 * REVISIT it's been reported that at least one x86_64 ALI
 813                 * mobo doesn't use 32KHz here ... for portability we might
 814                 * need to do something about other clock frequencies.
 815                 */
 816                cmos_rtc.rtc->irq_freq = 1024;
 817                if (use_hpet_alarm())
 818                        hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
 819                CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
 820        }
 821
 822        /* disable irqs */
 823        if (is_valid_irq(rtc_irq))
 824                cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
 825
 826        rtc_control = CMOS_READ(RTC_CONTROL);
 827
 828        spin_unlock_irq(&rtc_lock);
 829
 830        if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
 831                dev_warn(dev, "only 24-hr supported\n");
 832                retval = -ENXIO;
 833                goto cleanup1;
 834        }
 835
 836        if (use_hpet_alarm())
 837                hpet_rtc_timer_init();
 838
 839        if (is_valid_irq(rtc_irq)) {
 840                irq_handler_t rtc_cmos_int_handler;
 841
 842                if (use_hpet_alarm()) {
 843                        rtc_cmos_int_handler = hpet_rtc_interrupt;
 844                        retval = hpet_register_irq_handler(cmos_interrupt);
 845                        if (retval) {
 846                                hpet_mask_rtc_irq_bit(RTC_IRQMASK);
 847                                dev_warn(dev, "hpet_register_irq_handler "
 848                                                " failed in rtc_init().");
 849                                goto cleanup1;
 850                        }
 851                } else
 852                        rtc_cmos_int_handler = cmos_interrupt;
 853
 854                retval = request_irq(rtc_irq, rtc_cmos_int_handler,
 855                                0, dev_name(&cmos_rtc.rtc->dev),
 856                                cmos_rtc.rtc);
 857                if (retval < 0) {
 858                        dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
 859                        goto cleanup1;
 860                }
 861        } else {
 862                clear_bit(RTC_FEATURE_ALARM, cmos_rtc.rtc->features);
 863        }
 864
 865        cmos_rtc.rtc->ops = &cmos_rtc_ops;
 866
 867        retval = devm_rtc_register_device(cmos_rtc.rtc);
 868        if (retval)
 869                goto cleanup2;
 870
 871        /* Set the sync offset for the periodic 11min update correct */
 872        cmos_rtc.rtc->set_offset_nsec = NSEC_PER_SEC / 2;
 873
 874        /* export at least the first block of NVRAM */
 875        nvmem_cfg.size = address_space - NVRAM_OFFSET;
 876        devm_rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg);
 877
 878        dev_info(dev, "%s%s, %d bytes nvram%s\n",
 879                 !is_valid_irq(rtc_irq) ? "no alarms" :
 880                 cmos_rtc.mon_alrm ? "alarms up to one year" :
 881                 cmos_rtc.day_alrm ? "alarms up to one month" :
 882                 "alarms up to one day",
 883                 cmos_rtc.century ? ", y3k" : "",
 884                 nvmem_cfg.size,
 885                 use_hpet_alarm() ? ", hpet irqs" : "");
 886
 887        return 0;
 888
 889cleanup2:
 890        if (is_valid_irq(rtc_irq))
 891                free_irq(rtc_irq, cmos_rtc.rtc);
 892cleanup1:
 893        cmos_rtc.dev = NULL;
 894cleanup0:
 895        if (RTC_IOMAPPED)
 896                release_region(ports->start, resource_size(ports));
 897        else
 898                release_mem_region(ports->start, resource_size(ports));
 899        return retval;
 900}
 901
 902static void cmos_do_shutdown(int rtc_irq)
 903{
 904        spin_lock_irq(&rtc_lock);
 905        if (is_valid_irq(rtc_irq))
 906                cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
 907        spin_unlock_irq(&rtc_lock);
 908}
 909
 910static void cmos_do_remove(struct device *dev)
 911{
 912        struct cmos_rtc *cmos = dev_get_drvdata(dev);
 913        struct resource *ports;
 914
 915        cmos_do_shutdown(cmos->irq);
 916
 917        if (is_valid_irq(cmos->irq)) {
 918                free_irq(cmos->irq, cmos->rtc);
 919                if (use_hpet_alarm())
 920                        hpet_unregister_irq_handler(cmos_interrupt);
 921        }
 922
 923        cmos->rtc = NULL;
 924
 925        ports = cmos->iomem;
 926        if (RTC_IOMAPPED)
 927                release_region(ports->start, resource_size(ports));
 928        else
 929                release_mem_region(ports->start, resource_size(ports));
 930        cmos->iomem = NULL;
 931
 932        cmos->dev = NULL;
 933}
 934
 935static int cmos_aie_poweroff(struct device *dev)
 936{
 937        struct cmos_rtc *cmos = dev_get_drvdata(dev);
 938        struct rtc_time now;
 939        time64_t t_now;
 940        int retval = 0;
 941        unsigned char rtc_control;
 942
 943        if (!cmos->alarm_expires)
 944                return -EINVAL;
 945
 946        spin_lock_irq(&rtc_lock);
 947        rtc_control = CMOS_READ(RTC_CONTROL);
 948        spin_unlock_irq(&rtc_lock);
 949
 950        /* We only care about the situation where AIE is disabled. */
 951        if (rtc_control & RTC_AIE)
 952                return -EBUSY;
 953
 954        cmos_read_time(dev, &now);
 955        t_now = rtc_tm_to_time64(&now);
 956
 957        /*
 958         * When enabling "RTC wake-up" in BIOS setup, the machine reboots
 959         * automatically right after shutdown on some buggy boxes.
 960         * This automatic rebooting issue won't happen when the alarm
 961         * time is larger than now+1 seconds.
 962         *
 963         * If the alarm time is equal to now+1 seconds, the issue can be
 964         * prevented by cancelling the alarm.
 965         */
 966        if (cmos->alarm_expires == t_now + 1) {
 967                struct rtc_wkalrm alarm;
 968
 969                /* Cancel the AIE timer by configuring the past time. */
 970                rtc_time64_to_tm(t_now - 1, &alarm.time);
 971                alarm.enabled = 0;
 972                retval = cmos_set_alarm(dev, &alarm);
 973        } else if (cmos->alarm_expires > t_now + 1) {
 974                retval = -EBUSY;
 975        }
 976
 977        return retval;
 978}
 979
 980static int cmos_suspend(struct device *dev)
 981{
 982        struct cmos_rtc *cmos = dev_get_drvdata(dev);
 983        unsigned char   tmp;
 984
 985        /* only the alarm might be a wakeup event source */
 986        spin_lock_irq(&rtc_lock);
 987        cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
 988        if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
 989                unsigned char   mask;
 990
 991                if (device_may_wakeup(dev))
 992                        mask = RTC_IRQMASK & ~RTC_AIE;
 993                else
 994                        mask = RTC_IRQMASK;
 995                tmp &= ~mask;
 996                CMOS_WRITE(tmp, RTC_CONTROL);
 997                if (use_hpet_alarm())
 998                        hpet_mask_rtc_irq_bit(mask);
 999                cmos_checkintr(cmos, tmp);
1000        }
1001        spin_unlock_irq(&rtc_lock);
1002
1003        if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
1004                cmos->enabled_wake = 1;
1005                if (cmos->wake_on)
1006                        cmos->wake_on(dev);
1007                else
1008                        enable_irq_wake(cmos->irq);
1009        }
1010
1011        memset(&cmos->saved_wkalrm, 0, sizeof(struct rtc_wkalrm));
1012        cmos_read_alarm(dev, &cmos->saved_wkalrm);
1013
1014        dev_dbg(dev, "suspend%s, ctrl %02x\n",
1015                        (tmp & RTC_AIE) ? ", alarm may wake" : "",
1016                        tmp);
1017
1018        return 0;
1019}
1020
1021/* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1022 * after a detour through G3 "mechanical off", although the ACPI spec
1023 * says wakeup should only work from G1/S4 "hibernate".  To most users,
1024 * distinctions between S4 and S5 are pointless.  So when the hardware
1025 * allows, don't draw that distinction.
1026 */
1027static inline int cmos_poweroff(struct device *dev)
1028{
1029        if (!IS_ENABLED(CONFIG_PM))
1030                return -ENOSYS;
1031
1032        return cmos_suspend(dev);
1033}
1034
1035static void cmos_check_wkalrm(struct device *dev)
1036{
1037        struct cmos_rtc *cmos = dev_get_drvdata(dev);
1038        struct rtc_wkalrm current_alarm;
1039        time64_t t_now;
1040        time64_t t_current_expires;
1041        time64_t t_saved_expires;
1042        struct rtc_time now;
1043
1044        /* Check if we have RTC Alarm armed */
1045        if (!(cmos->suspend_ctrl & RTC_AIE))
1046                return;
1047
1048        cmos_read_time(dev, &now);
1049        t_now = rtc_tm_to_time64(&now);
1050
1051        /*
1052         * ACPI RTC wake event is cleared after resume from STR,
1053         * ACK the rtc irq here
1054         */
1055        if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1056                cmos_interrupt(0, (void *)cmos->rtc);
1057                return;
1058        }
1059
1060        memset(&current_alarm, 0, sizeof(struct rtc_wkalrm));
1061        cmos_read_alarm(dev, &current_alarm);
1062        t_current_expires = rtc_tm_to_time64(&current_alarm.time);
1063        t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1064        if (t_current_expires != t_saved_expires ||
1065            cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1066                cmos_set_alarm(dev, &cmos->saved_wkalrm);
1067        }
1068}
1069
1070static void cmos_check_acpi_rtc_status(struct device *dev,
1071                                       unsigned char *rtc_control);
1072
1073static int __maybe_unused cmos_resume(struct device *dev)
1074{
1075        struct cmos_rtc *cmos = dev_get_drvdata(dev);
1076        unsigned char tmp;
1077
1078        if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1079                if (cmos->wake_off)
1080                        cmos->wake_off(dev);
1081                else
1082                        disable_irq_wake(cmos->irq);
1083                cmos->enabled_wake = 0;
1084        }
1085
1086        /* The BIOS might have changed the alarm, restore it */
1087        cmos_check_wkalrm(dev);
1088
1089        spin_lock_irq(&rtc_lock);
1090        tmp = cmos->suspend_ctrl;
1091        cmos->suspend_ctrl = 0;
1092        /* re-enable any irqs previously active */
1093        if (tmp & RTC_IRQMASK) {
1094                unsigned char   mask;
1095
1096                if (device_may_wakeup(dev) && use_hpet_alarm())
1097                        hpet_rtc_timer_init();
1098
1099                do {
1100                        CMOS_WRITE(tmp, RTC_CONTROL);
1101                        if (use_hpet_alarm())
1102                                hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1103
1104                        mask = CMOS_READ(RTC_INTR_FLAGS);
1105                        mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1106                        if (!use_hpet_alarm() || !is_intr(mask))
1107                                break;
1108
1109                        /* force one-shot behavior if HPET blocked
1110                         * the wake alarm's irq
1111                         */
1112                        rtc_update_irq(cmos->rtc, 1, mask);
1113                        tmp &= ~RTC_AIE;
1114                        hpet_mask_rtc_irq_bit(RTC_AIE);
1115                } while (mask & RTC_AIE);
1116
1117                if (tmp & RTC_AIE)
1118                        cmos_check_acpi_rtc_status(dev, &tmp);
1119        }
1120        spin_unlock_irq(&rtc_lock);
1121
1122        dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1123
1124        return 0;
1125}
1126
1127static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1128
1129/*----------------------------------------------------------------*/
1130
1131/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1132 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1133 * probably list them in similar PNPBIOS tables; so PNP is more common.
1134 *
1135 * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
1136 * predate even PNPBIOS should set up platform_bus devices.
1137 */
1138
1139#ifdef  CONFIG_ACPI
1140
1141#include <linux/acpi.h>
1142
1143static u32 rtc_handler(void *context)
1144{
1145        struct device *dev = context;
1146        struct cmos_rtc *cmos = dev_get_drvdata(dev);
1147        unsigned char rtc_control = 0;
1148        unsigned char rtc_intr;
1149        unsigned long flags;
1150
1151
1152        /*
1153         * Always update rtc irq when ACPI is used as RTC Alarm.
1154         * Or else, ACPI SCI is enabled during suspend/resume only,
1155         * update rtc irq in that case.
1156         */
1157        if (cmos_use_acpi_alarm())
1158                cmos_interrupt(0, (void *)cmos->rtc);
1159        else {
1160                /* Fix me: can we use cmos_interrupt() here as well? */
1161                spin_lock_irqsave(&rtc_lock, flags);
1162                if (cmos_rtc.suspend_ctrl)
1163                        rtc_control = CMOS_READ(RTC_CONTROL);
1164                if (rtc_control & RTC_AIE) {
1165                        cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1166                        CMOS_WRITE(rtc_control, RTC_CONTROL);
1167                        rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1168                        rtc_update_irq(cmos->rtc, 1, rtc_intr);
1169                }
1170                spin_unlock_irqrestore(&rtc_lock, flags);
1171        }
1172
1173        pm_wakeup_hard_event(dev);
1174        acpi_clear_event(ACPI_EVENT_RTC);
1175        acpi_disable_event(ACPI_EVENT_RTC, 0);
1176        return ACPI_INTERRUPT_HANDLED;
1177}
1178
1179static inline void rtc_wake_setup(struct device *dev)
1180{
1181        acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1182        /*
1183         * After the RTC handler is installed, the Fixed_RTC event should
1184         * be disabled. Only when the RTC alarm is set will it be enabled.
1185         */
1186        acpi_clear_event(ACPI_EVENT_RTC);
1187        acpi_disable_event(ACPI_EVENT_RTC, 0);
1188}
1189
1190static void rtc_wake_on(struct device *dev)
1191{
1192        acpi_clear_event(ACPI_EVENT_RTC);
1193        acpi_enable_event(ACPI_EVENT_RTC, 0);
1194}
1195
1196static void rtc_wake_off(struct device *dev)
1197{
1198        acpi_disable_event(ACPI_EVENT_RTC, 0);
1199}
1200
1201#ifdef CONFIG_X86
1202/* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */
1203static void use_acpi_alarm_quirks(void)
1204{
1205        if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1206                return;
1207
1208        if (!(acpi_gbl_FADT.flags & ACPI_FADT_LOW_POWER_S0))
1209                return;
1210
1211        if (!is_hpet_enabled())
1212                return;
1213
1214        if (dmi_get_bios_year() < 2015)
1215                return;
1216
1217        use_acpi_alarm = true;
1218}
1219#else
1220static inline void use_acpi_alarm_quirks(void) { }
1221#endif
1222
1223/* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1224 * its device node and pass extra config data.  This helps its driver use
1225 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1226 * that this board's RTC is wakeup-capable (per ACPI spec).
1227 */
1228static struct cmos_rtc_board_info acpi_rtc_info;
1229
1230static void cmos_wake_setup(struct device *dev)
1231{
1232        if (acpi_disabled)
1233                return;
1234
1235        use_acpi_alarm_quirks();
1236
1237        rtc_wake_setup(dev);
1238        acpi_rtc_info.wake_on = rtc_wake_on;
1239        acpi_rtc_info.wake_off = rtc_wake_off;
1240
1241        /* workaround bug in some ACPI tables */
1242        if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1243                dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1244                        acpi_gbl_FADT.month_alarm);
1245                acpi_gbl_FADT.month_alarm = 0;
1246        }
1247
1248        acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1249        acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1250        acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1251
1252        /* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1253        if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1254                dev_info(dev, "RTC can wake from S4\n");
1255
1256        dev->platform_data = &acpi_rtc_info;
1257
1258        /* RTC always wakes from S1/S2/S3, and often S4/STD */
1259        device_init_wakeup(dev, 1);
1260}
1261
1262static void cmos_check_acpi_rtc_status(struct device *dev,
1263                                       unsigned char *rtc_control)
1264{
1265        struct cmos_rtc *cmos = dev_get_drvdata(dev);
1266        acpi_event_status rtc_status;
1267        acpi_status status;
1268
1269        if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1270                return;
1271
1272        status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1273        if (ACPI_FAILURE(status)) {
1274                dev_err(dev, "Could not get RTC status\n");
1275        } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1276                unsigned char mask;
1277                *rtc_control &= ~RTC_AIE;
1278                CMOS_WRITE(*rtc_control, RTC_CONTROL);
1279                mask = CMOS_READ(RTC_INTR_FLAGS);
1280                rtc_update_irq(cmos->rtc, 1, mask);
1281        }
1282}
1283
1284#else
1285
1286static void cmos_wake_setup(struct device *dev)
1287{
1288}
1289
1290static void cmos_check_acpi_rtc_status(struct device *dev,
1291                                       unsigned char *rtc_control)
1292{
1293}
1294
1295#endif
1296
1297#ifdef  CONFIG_PNP
1298
1299#include <linux/pnp.h>
1300
1301static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1302{
1303        cmos_wake_setup(&pnp->dev);
1304
1305        if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1306                unsigned int irq = 0;
1307#ifdef CONFIG_X86
1308                /* Some machines contain a PNP entry for the RTC, but
1309                 * don't define the IRQ. It should always be safe to
1310                 * hardcode it on systems with a legacy PIC.
1311                 */
1312                if (nr_legacy_irqs())
1313                        irq = RTC_IRQ;
1314#endif
1315                return cmos_do_probe(&pnp->dev,
1316                                pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1317        } else {
1318                return cmos_do_probe(&pnp->dev,
1319                                pnp_get_resource(pnp, IORESOURCE_IO, 0),
1320                                pnp_irq(pnp, 0));
1321        }
1322}
1323
1324static void cmos_pnp_remove(struct pnp_dev *pnp)
1325{
1326        cmos_do_remove(&pnp->dev);
1327}
1328
1329static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1330{
1331        struct device *dev = &pnp->dev;
1332        struct cmos_rtc *cmos = dev_get_drvdata(dev);
1333
1334        if (system_state == SYSTEM_POWER_OFF) {
1335                int retval = cmos_poweroff(dev);
1336
1337                if (cmos_aie_poweroff(dev) < 0 && !retval)
1338                        return;
1339        }
1340
1341        cmos_do_shutdown(cmos->irq);
1342}
1343
1344static const struct pnp_device_id rtc_ids[] = {
1345        { .id = "PNP0b00", },
1346        { .id = "PNP0b01", },
1347        { .id = "PNP0b02", },
1348        { },
1349};
1350MODULE_DEVICE_TABLE(pnp, rtc_ids);
1351
1352static struct pnp_driver cmos_pnp_driver = {
1353        .name           = driver_name,
1354        .id_table       = rtc_ids,
1355        .probe          = cmos_pnp_probe,
1356        .remove         = cmos_pnp_remove,
1357        .shutdown       = cmos_pnp_shutdown,
1358
1359        /* flag ensures resume() gets called, and stops syslog spam */
1360        .flags          = PNP_DRIVER_RES_DO_NOT_CHANGE,
1361        .driver         = {
1362                        .pm = &cmos_pm_ops,
1363        },
1364};
1365
1366#endif  /* CONFIG_PNP */
1367
1368#ifdef CONFIG_OF
1369static const struct of_device_id of_cmos_match[] = {
1370        {
1371                .compatible = "motorola,mc146818",
1372        },
1373        { },
1374};
1375MODULE_DEVICE_TABLE(of, of_cmos_match);
1376
1377static __init void cmos_of_init(struct platform_device *pdev)
1378{
1379        struct device_node *node = pdev->dev.of_node;
1380        const __be32 *val;
1381
1382        if (!node)
1383                return;
1384
1385        val = of_get_property(node, "ctrl-reg", NULL);
1386        if (val)
1387                CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1388
1389        val = of_get_property(node, "freq-reg", NULL);
1390        if (val)
1391                CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1392}
1393#else
1394static inline void cmos_of_init(struct platform_device *pdev) {}
1395#endif
1396/*----------------------------------------------------------------*/
1397
1398/* Platform setup should have set up an RTC device, when PNP is
1399 * unavailable ... this could happen even on (older) PCs.
1400 */
1401
1402static int __init cmos_platform_probe(struct platform_device *pdev)
1403{
1404        struct resource *resource;
1405        int irq;
1406
1407        cmos_of_init(pdev);
1408        cmos_wake_setup(&pdev->dev);
1409
1410        if (RTC_IOMAPPED)
1411                resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1412        else
1413                resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1414        irq = platform_get_irq(pdev, 0);
1415        if (irq < 0)
1416                irq = -1;
1417
1418        return cmos_do_probe(&pdev->dev, resource, irq);
1419}
1420
1421static int cmos_platform_remove(struct platform_device *pdev)
1422{
1423        cmos_do_remove(&pdev->dev);
1424        return 0;
1425}
1426
1427static void cmos_platform_shutdown(struct platform_device *pdev)
1428{
1429        struct device *dev = &pdev->dev;
1430        struct cmos_rtc *cmos = dev_get_drvdata(dev);
1431
1432        if (system_state == SYSTEM_POWER_OFF) {
1433                int retval = cmos_poweroff(dev);
1434
1435                if (cmos_aie_poweroff(dev) < 0 && !retval)
1436                        return;
1437        }
1438
1439        cmos_do_shutdown(cmos->irq);
1440}
1441
1442/* work with hotplug and coldplug */
1443MODULE_ALIAS("platform:rtc_cmos");
1444
1445static struct platform_driver cmos_platform_driver = {
1446        .remove         = cmos_platform_remove,
1447        .shutdown       = cmos_platform_shutdown,
1448        .driver = {
1449                .name           = driver_name,
1450                .pm             = &cmos_pm_ops,
1451                .of_match_table = of_match_ptr(of_cmos_match),
1452        }
1453};
1454
1455#ifdef CONFIG_PNP
1456static bool pnp_driver_registered;
1457#endif
1458static bool platform_driver_registered;
1459
1460static int __init cmos_init(void)
1461{
1462        int retval = 0;
1463
1464#ifdef  CONFIG_PNP
1465        retval = pnp_register_driver(&cmos_pnp_driver);
1466        if (retval == 0)
1467                pnp_driver_registered = true;
1468#endif
1469
1470        if (!cmos_rtc.dev) {
1471                retval = platform_driver_probe(&cmos_platform_driver,
1472                                               cmos_platform_probe);
1473                if (retval == 0)
1474                        platform_driver_registered = true;
1475        }
1476
1477        if (retval == 0)
1478                return 0;
1479
1480#ifdef  CONFIG_PNP
1481        if (pnp_driver_registered)
1482                pnp_unregister_driver(&cmos_pnp_driver);
1483#endif
1484        return retval;
1485}
1486module_init(cmos_init);
1487
1488static void __exit cmos_exit(void)
1489{
1490#ifdef  CONFIG_PNP
1491        if (pnp_driver_registered)
1492                pnp_unregister_driver(&cmos_pnp_driver);
1493#endif
1494        if (platform_driver_registered)
1495                platform_driver_unregister(&cmos_platform_driver);
1496}
1497module_exit(cmos_exit);
1498
1499
1500MODULE_AUTHOR("David Brownell");
1501MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1502MODULE_LICENSE("GPL");
1503