linux/drivers/scsi/hpsa.c
<<
>>
Prefs
   1/*
   2 *    Disk Array driver for HP Smart Array SAS controllers
   3 *    Copyright (c) 2019-2020 Microchip Technology Inc. and its subsidiaries
   4 *    Copyright 2016 Microsemi Corporation
   5 *    Copyright 2014-2015 PMC-Sierra, Inc.
   6 *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
   7 *
   8 *    This program is free software; you can redistribute it and/or modify
   9 *    it under the terms of the GNU General Public License as published by
  10 *    the Free Software Foundation; version 2 of the License.
  11 *
  12 *    This program is distributed in the hope that it will be useful,
  13 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  15 *    NON INFRINGEMENT.  See the GNU General Public License for more details.
  16 *
  17 *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
  18 *
  19 */
  20
  21#include <linux/module.h>
  22#include <linux/interrupt.h>
  23#include <linux/types.h>
  24#include <linux/pci.h>
  25#include <linux/kernel.h>
  26#include <linux/slab.h>
  27#include <linux/delay.h>
  28#include <linux/fs.h>
  29#include <linux/timer.h>
  30#include <linux/init.h>
  31#include <linux/spinlock.h>
  32#include <linux/compat.h>
  33#include <linux/blktrace_api.h>
  34#include <linux/uaccess.h>
  35#include <linux/io.h>
  36#include <linux/dma-mapping.h>
  37#include <linux/completion.h>
  38#include <linux/moduleparam.h>
  39#include <scsi/scsi.h>
  40#include <scsi/scsi_cmnd.h>
  41#include <scsi/scsi_device.h>
  42#include <scsi/scsi_host.h>
  43#include <scsi/scsi_tcq.h>
  44#include <scsi/scsi_eh.h>
  45#include <scsi/scsi_transport_sas.h>
  46#include <scsi/scsi_dbg.h>
  47#include <linux/cciss_ioctl.h>
  48#include <linux/string.h>
  49#include <linux/bitmap.h>
  50#include <linux/atomic.h>
  51#include <linux/jiffies.h>
  52#include <linux/percpu-defs.h>
  53#include <linux/percpu.h>
  54#include <asm/unaligned.h>
  55#include <asm/div64.h>
  56#include "hpsa_cmd.h"
  57#include "hpsa.h"
  58
  59/*
  60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
  61 * with an optional trailing '-' followed by a byte value (0-255).
  62 */
  63#define HPSA_DRIVER_VERSION "3.4.20-200"
  64#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
  65#define HPSA "hpsa"
  66
  67/* How long to wait for CISS doorbell communication */
  68#define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
  69#define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
  70#define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
  71#define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
  72#define MAX_IOCTL_CONFIG_WAIT 1000
  73
  74/*define how many times we will try a command because of bus resets */
  75#define MAX_CMD_RETRIES 3
  76/* How long to wait before giving up on a command */
  77#define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
  78
  79/* Embedded module documentation macros - see modules.h */
  80MODULE_AUTHOR("Hewlett-Packard Company");
  81MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
  82        HPSA_DRIVER_VERSION);
  83MODULE_VERSION(HPSA_DRIVER_VERSION);
  84MODULE_LICENSE("GPL");
  85MODULE_ALIAS("cciss");
  86
  87static int hpsa_simple_mode;
  88module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
  89MODULE_PARM_DESC(hpsa_simple_mode,
  90        "Use 'simple mode' rather than 'performant mode'");
  91
  92/* define the PCI info for the cards we can control */
  93static const struct pci_device_id hpsa_pci_device_id[] = {
  94        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
  95        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
  96        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
  97        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
  98        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
  99        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
 100        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
 101        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
 102        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
 103        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
 104        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
 105        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
 106        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
 107        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
 108        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
 109        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
 110        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
 111        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
 112        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
 113        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
 114        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
 115        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
 116        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
 117        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
 118        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
 119        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
 120        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
 121        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
 122        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
 123        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
 124        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
 125        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
 126        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
 127        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
 128        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
 129        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
 130        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
 131        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
 132        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
 133        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
 134        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
 135        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
 136        {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
 137        {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
 138        {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
 139        {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
 140        {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
 141        {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
 142        {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
 143        {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
 144        {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
 145        {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
 146        {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
 147        {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
 148                PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
 149        {PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,  PCI_ANY_ID, PCI_ANY_ID,
 150                PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
 151        {0,}
 152};
 153
 154MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
 155
 156/*  board_id = Subsystem Device ID & Vendor ID
 157 *  product = Marketing Name for the board
 158 *  access = Address of the struct of function pointers
 159 */
 160static struct board_type products[] = {
 161        {0x40700E11, "Smart Array 5300", &SA5A_access},
 162        {0x40800E11, "Smart Array 5i", &SA5B_access},
 163        {0x40820E11, "Smart Array 532", &SA5B_access},
 164        {0x40830E11, "Smart Array 5312", &SA5B_access},
 165        {0x409A0E11, "Smart Array 641", &SA5A_access},
 166        {0x409B0E11, "Smart Array 642", &SA5A_access},
 167        {0x409C0E11, "Smart Array 6400", &SA5A_access},
 168        {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
 169        {0x40910E11, "Smart Array 6i", &SA5A_access},
 170        {0x3225103C, "Smart Array P600", &SA5A_access},
 171        {0x3223103C, "Smart Array P800", &SA5A_access},
 172        {0x3234103C, "Smart Array P400", &SA5A_access},
 173        {0x3235103C, "Smart Array P400i", &SA5A_access},
 174        {0x3211103C, "Smart Array E200i", &SA5A_access},
 175        {0x3212103C, "Smart Array E200", &SA5A_access},
 176        {0x3213103C, "Smart Array E200i", &SA5A_access},
 177        {0x3214103C, "Smart Array E200i", &SA5A_access},
 178        {0x3215103C, "Smart Array E200i", &SA5A_access},
 179        {0x3237103C, "Smart Array E500", &SA5A_access},
 180        {0x323D103C, "Smart Array P700m", &SA5A_access},
 181        {0x3241103C, "Smart Array P212", &SA5_access},
 182        {0x3243103C, "Smart Array P410", &SA5_access},
 183        {0x3245103C, "Smart Array P410i", &SA5_access},
 184        {0x3247103C, "Smart Array P411", &SA5_access},
 185        {0x3249103C, "Smart Array P812", &SA5_access},
 186        {0x324A103C, "Smart Array P712m", &SA5_access},
 187        {0x324B103C, "Smart Array P711m", &SA5_access},
 188        {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
 189        {0x3350103C, "Smart Array P222", &SA5_access},
 190        {0x3351103C, "Smart Array P420", &SA5_access},
 191        {0x3352103C, "Smart Array P421", &SA5_access},
 192        {0x3353103C, "Smart Array P822", &SA5_access},
 193        {0x3354103C, "Smart Array P420i", &SA5_access},
 194        {0x3355103C, "Smart Array P220i", &SA5_access},
 195        {0x3356103C, "Smart Array P721m", &SA5_access},
 196        {0x1920103C, "Smart Array P430i", &SA5_access},
 197        {0x1921103C, "Smart Array P830i", &SA5_access},
 198        {0x1922103C, "Smart Array P430", &SA5_access},
 199        {0x1923103C, "Smart Array P431", &SA5_access},
 200        {0x1924103C, "Smart Array P830", &SA5_access},
 201        {0x1925103C, "Smart Array P831", &SA5_access},
 202        {0x1926103C, "Smart Array P731m", &SA5_access},
 203        {0x1928103C, "Smart Array P230i", &SA5_access},
 204        {0x1929103C, "Smart Array P530", &SA5_access},
 205        {0x21BD103C, "Smart Array P244br", &SA5_access},
 206        {0x21BE103C, "Smart Array P741m", &SA5_access},
 207        {0x21BF103C, "Smart HBA H240ar", &SA5_access},
 208        {0x21C0103C, "Smart Array P440ar", &SA5_access},
 209        {0x21C1103C, "Smart Array P840ar", &SA5_access},
 210        {0x21C2103C, "Smart Array P440", &SA5_access},
 211        {0x21C3103C, "Smart Array P441", &SA5_access},
 212        {0x21C4103C, "Smart Array", &SA5_access},
 213        {0x21C5103C, "Smart Array P841", &SA5_access},
 214        {0x21C6103C, "Smart HBA H244br", &SA5_access},
 215        {0x21C7103C, "Smart HBA H240", &SA5_access},
 216        {0x21C8103C, "Smart HBA H241", &SA5_access},
 217        {0x21C9103C, "Smart Array", &SA5_access},
 218        {0x21CA103C, "Smart Array P246br", &SA5_access},
 219        {0x21CB103C, "Smart Array P840", &SA5_access},
 220        {0x21CC103C, "Smart Array", &SA5_access},
 221        {0x21CD103C, "Smart Array", &SA5_access},
 222        {0x21CE103C, "Smart HBA", &SA5_access},
 223        {0x05809005, "SmartHBA-SA", &SA5_access},
 224        {0x05819005, "SmartHBA-SA 8i", &SA5_access},
 225        {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
 226        {0x05839005, "SmartHBA-SA 8e", &SA5_access},
 227        {0x05849005, "SmartHBA-SA 16i", &SA5_access},
 228        {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
 229        {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
 230        {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
 231        {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
 232        {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
 233        {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
 234        {0xFFFF103C, "Unknown Smart Array", &SA5_access},
 235};
 236
 237static struct scsi_transport_template *hpsa_sas_transport_template;
 238static int hpsa_add_sas_host(struct ctlr_info *h);
 239static void hpsa_delete_sas_host(struct ctlr_info *h);
 240static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
 241                        struct hpsa_scsi_dev_t *device);
 242static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
 243static struct hpsa_scsi_dev_t
 244        *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
 245                struct sas_rphy *rphy);
 246
 247#define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
 248static const struct scsi_cmnd hpsa_cmd_busy;
 249#define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
 250static const struct scsi_cmnd hpsa_cmd_idle;
 251static int number_of_controllers;
 252
 253static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
 254static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
 255static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
 256                      void __user *arg);
 257static int hpsa_passthru_ioctl(struct ctlr_info *h,
 258                               IOCTL_Command_struct *iocommand);
 259static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
 260                                   BIG_IOCTL_Command_struct *ioc);
 261
 262#ifdef CONFIG_COMPAT
 263static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
 264        void __user *arg);
 265#endif
 266
 267static void cmd_free(struct ctlr_info *h, struct CommandList *c);
 268static struct CommandList *cmd_alloc(struct ctlr_info *h);
 269static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
 270static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
 271                                            struct scsi_cmnd *scmd);
 272static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
 273        void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
 274        int cmd_type);
 275static void hpsa_free_cmd_pool(struct ctlr_info *h);
 276#define VPD_PAGE (1 << 8)
 277#define HPSA_SIMPLE_ERROR_BITS 0x03
 278
 279static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
 280static void hpsa_scan_start(struct Scsi_Host *);
 281static int hpsa_scan_finished(struct Scsi_Host *sh,
 282        unsigned long elapsed_time);
 283static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
 284
 285static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
 286static int hpsa_slave_alloc(struct scsi_device *sdev);
 287static int hpsa_slave_configure(struct scsi_device *sdev);
 288static void hpsa_slave_destroy(struct scsi_device *sdev);
 289
 290static void hpsa_update_scsi_devices(struct ctlr_info *h);
 291static int check_for_unit_attention(struct ctlr_info *h,
 292        struct CommandList *c);
 293static void check_ioctl_unit_attention(struct ctlr_info *h,
 294        struct CommandList *c);
 295/* performant mode helper functions */
 296static void calc_bucket_map(int *bucket, int num_buckets,
 297        int nsgs, int min_blocks, u32 *bucket_map);
 298static void hpsa_free_performant_mode(struct ctlr_info *h);
 299static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
 300static inline u32 next_command(struct ctlr_info *h, u8 q);
 301static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
 302                               u32 *cfg_base_addr, u64 *cfg_base_addr_index,
 303                               u64 *cfg_offset);
 304static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
 305                                    unsigned long *memory_bar);
 306static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
 307                                bool *legacy_board);
 308static int wait_for_device_to_become_ready(struct ctlr_info *h,
 309                                           unsigned char lunaddr[],
 310                                           int reply_queue);
 311static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
 312                                     int wait_for_ready);
 313static inline void finish_cmd(struct CommandList *c);
 314static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
 315#define BOARD_NOT_READY 0
 316#define BOARD_READY 1
 317static void hpsa_drain_accel_commands(struct ctlr_info *h);
 318static void hpsa_flush_cache(struct ctlr_info *h);
 319static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
 320        struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
 321        u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
 322static void hpsa_command_resubmit_worker(struct work_struct *work);
 323static u32 lockup_detected(struct ctlr_info *h);
 324static int detect_controller_lockup(struct ctlr_info *h);
 325static void hpsa_disable_rld_caching(struct ctlr_info *h);
 326static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
 327        struct ReportExtendedLUNdata *buf, int bufsize);
 328static bool hpsa_vpd_page_supported(struct ctlr_info *h,
 329        unsigned char scsi3addr[], u8 page);
 330static int hpsa_luns_changed(struct ctlr_info *h);
 331static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
 332                               struct hpsa_scsi_dev_t *dev,
 333                               unsigned char *scsi3addr);
 334
 335static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
 336{
 337        unsigned long *priv = shost_priv(sdev->host);
 338        return (struct ctlr_info *) *priv;
 339}
 340
 341static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
 342{
 343        unsigned long *priv = shost_priv(sh);
 344        return (struct ctlr_info *) *priv;
 345}
 346
 347static inline bool hpsa_is_cmd_idle(struct CommandList *c)
 348{
 349        return c->scsi_cmd == SCSI_CMD_IDLE;
 350}
 351
 352/* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
 353static void decode_sense_data(const u8 *sense_data, int sense_data_len,
 354                        u8 *sense_key, u8 *asc, u8 *ascq)
 355{
 356        struct scsi_sense_hdr sshdr;
 357        bool rc;
 358
 359        *sense_key = -1;
 360        *asc = -1;
 361        *ascq = -1;
 362
 363        if (sense_data_len < 1)
 364                return;
 365
 366        rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
 367        if (rc) {
 368                *sense_key = sshdr.sense_key;
 369                *asc = sshdr.asc;
 370                *ascq = sshdr.ascq;
 371        }
 372}
 373
 374static int check_for_unit_attention(struct ctlr_info *h,
 375        struct CommandList *c)
 376{
 377        u8 sense_key, asc, ascq;
 378        int sense_len;
 379
 380        if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
 381                sense_len = sizeof(c->err_info->SenseInfo);
 382        else
 383                sense_len = c->err_info->SenseLen;
 384
 385        decode_sense_data(c->err_info->SenseInfo, sense_len,
 386                                &sense_key, &asc, &ascq);
 387        if (sense_key != UNIT_ATTENTION || asc == 0xff)
 388                return 0;
 389
 390        switch (asc) {
 391        case STATE_CHANGED:
 392                dev_warn(&h->pdev->dev,
 393                        "%s: a state change detected, command retried\n",
 394                        h->devname);
 395                break;
 396        case LUN_FAILED:
 397                dev_warn(&h->pdev->dev,
 398                        "%s: LUN failure detected\n", h->devname);
 399                break;
 400        case REPORT_LUNS_CHANGED:
 401                dev_warn(&h->pdev->dev,
 402                        "%s: report LUN data changed\n", h->devname);
 403        /*
 404         * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
 405         * target (array) devices.
 406         */
 407                break;
 408        case POWER_OR_RESET:
 409                dev_warn(&h->pdev->dev,
 410                        "%s: a power on or device reset detected\n",
 411                        h->devname);
 412                break;
 413        case UNIT_ATTENTION_CLEARED:
 414                dev_warn(&h->pdev->dev,
 415                        "%s: unit attention cleared by another initiator\n",
 416                        h->devname);
 417                break;
 418        default:
 419                dev_warn(&h->pdev->dev,
 420                        "%s: unknown unit attention detected\n",
 421                        h->devname);
 422                break;
 423        }
 424        return 1;
 425}
 426
 427static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
 428{
 429        if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
 430                (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
 431                 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
 432                return 0;
 433        dev_warn(&h->pdev->dev, HPSA "device busy");
 434        return 1;
 435}
 436
 437static u32 lockup_detected(struct ctlr_info *h);
 438static ssize_t host_show_lockup_detected(struct device *dev,
 439                struct device_attribute *attr, char *buf)
 440{
 441        int ld;
 442        struct ctlr_info *h;
 443        struct Scsi_Host *shost = class_to_shost(dev);
 444
 445        h = shost_to_hba(shost);
 446        ld = lockup_detected(h);
 447
 448        return sprintf(buf, "ld=%d\n", ld);
 449}
 450
 451static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
 452                                         struct device_attribute *attr,
 453                                         const char *buf, size_t count)
 454{
 455        int status, len;
 456        struct ctlr_info *h;
 457        struct Scsi_Host *shost = class_to_shost(dev);
 458        char tmpbuf[10];
 459
 460        if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
 461                return -EACCES;
 462        len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
 463        strncpy(tmpbuf, buf, len);
 464        tmpbuf[len] = '\0';
 465        if (sscanf(tmpbuf, "%d", &status) != 1)
 466                return -EINVAL;
 467        h = shost_to_hba(shost);
 468        h->acciopath_status = !!status;
 469        dev_warn(&h->pdev->dev,
 470                "hpsa: HP SSD Smart Path %s via sysfs update.\n",
 471                h->acciopath_status ? "enabled" : "disabled");
 472        return count;
 473}
 474
 475static ssize_t host_store_raid_offload_debug(struct device *dev,
 476                                         struct device_attribute *attr,
 477                                         const char *buf, size_t count)
 478{
 479        int debug_level, len;
 480        struct ctlr_info *h;
 481        struct Scsi_Host *shost = class_to_shost(dev);
 482        char tmpbuf[10];
 483
 484        if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
 485                return -EACCES;
 486        len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
 487        strncpy(tmpbuf, buf, len);
 488        tmpbuf[len] = '\0';
 489        if (sscanf(tmpbuf, "%d", &debug_level) != 1)
 490                return -EINVAL;
 491        if (debug_level < 0)
 492                debug_level = 0;
 493        h = shost_to_hba(shost);
 494        h->raid_offload_debug = debug_level;
 495        dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
 496                h->raid_offload_debug);
 497        return count;
 498}
 499
 500static ssize_t host_store_rescan(struct device *dev,
 501                                 struct device_attribute *attr,
 502                                 const char *buf, size_t count)
 503{
 504        struct ctlr_info *h;
 505        struct Scsi_Host *shost = class_to_shost(dev);
 506        h = shost_to_hba(shost);
 507        hpsa_scan_start(h->scsi_host);
 508        return count;
 509}
 510
 511static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device)
 512{
 513        device->offload_enabled = 0;
 514        device->offload_to_be_enabled = 0;
 515}
 516
 517static ssize_t host_show_firmware_revision(struct device *dev,
 518             struct device_attribute *attr, char *buf)
 519{
 520        struct ctlr_info *h;
 521        struct Scsi_Host *shost = class_to_shost(dev);
 522        unsigned char *fwrev;
 523
 524        h = shost_to_hba(shost);
 525        if (!h->hba_inquiry_data)
 526                return 0;
 527        fwrev = &h->hba_inquiry_data[32];
 528        return snprintf(buf, 20, "%c%c%c%c\n",
 529                fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
 530}
 531
 532static ssize_t host_show_commands_outstanding(struct device *dev,
 533             struct device_attribute *attr, char *buf)
 534{
 535        struct Scsi_Host *shost = class_to_shost(dev);
 536        struct ctlr_info *h = shost_to_hba(shost);
 537
 538        return snprintf(buf, 20, "%d\n",
 539                        atomic_read(&h->commands_outstanding));
 540}
 541
 542static ssize_t host_show_transport_mode(struct device *dev,
 543        struct device_attribute *attr, char *buf)
 544{
 545        struct ctlr_info *h;
 546        struct Scsi_Host *shost = class_to_shost(dev);
 547
 548        h = shost_to_hba(shost);
 549        return snprintf(buf, 20, "%s\n",
 550                h->transMethod & CFGTBL_Trans_Performant ?
 551                        "performant" : "simple");
 552}
 553
 554static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
 555        struct device_attribute *attr, char *buf)
 556{
 557        struct ctlr_info *h;
 558        struct Scsi_Host *shost = class_to_shost(dev);
 559
 560        h = shost_to_hba(shost);
 561        return snprintf(buf, 30, "HP SSD Smart Path %s\n",
 562                (h->acciopath_status == 1) ?  "enabled" : "disabled");
 563}
 564
 565/* List of controllers which cannot be hard reset on kexec with reset_devices */
 566static u32 unresettable_controller[] = {
 567        0x324a103C, /* Smart Array P712m */
 568        0x324b103C, /* Smart Array P711m */
 569        0x3223103C, /* Smart Array P800 */
 570        0x3234103C, /* Smart Array P400 */
 571        0x3235103C, /* Smart Array P400i */
 572        0x3211103C, /* Smart Array E200i */
 573        0x3212103C, /* Smart Array E200 */
 574        0x3213103C, /* Smart Array E200i */
 575        0x3214103C, /* Smart Array E200i */
 576        0x3215103C, /* Smart Array E200i */
 577        0x3237103C, /* Smart Array E500 */
 578        0x323D103C, /* Smart Array P700m */
 579        0x40800E11, /* Smart Array 5i */
 580        0x409C0E11, /* Smart Array 6400 */
 581        0x409D0E11, /* Smart Array 6400 EM */
 582        0x40700E11, /* Smart Array 5300 */
 583        0x40820E11, /* Smart Array 532 */
 584        0x40830E11, /* Smart Array 5312 */
 585        0x409A0E11, /* Smart Array 641 */
 586        0x409B0E11, /* Smart Array 642 */
 587        0x40910E11, /* Smart Array 6i */
 588};
 589
 590/* List of controllers which cannot even be soft reset */
 591static u32 soft_unresettable_controller[] = {
 592        0x40800E11, /* Smart Array 5i */
 593        0x40700E11, /* Smart Array 5300 */
 594        0x40820E11, /* Smart Array 532 */
 595        0x40830E11, /* Smart Array 5312 */
 596        0x409A0E11, /* Smart Array 641 */
 597        0x409B0E11, /* Smart Array 642 */
 598        0x40910E11, /* Smart Array 6i */
 599        /* Exclude 640x boards.  These are two pci devices in one slot
 600         * which share a battery backed cache module.  One controls the
 601         * cache, the other accesses the cache through the one that controls
 602         * it.  If we reset the one controlling the cache, the other will
 603         * likely not be happy.  Just forbid resetting this conjoined mess.
 604         * The 640x isn't really supported by hpsa anyway.
 605         */
 606        0x409C0E11, /* Smart Array 6400 */
 607        0x409D0E11, /* Smart Array 6400 EM */
 608};
 609
 610static int board_id_in_array(u32 a[], int nelems, u32 board_id)
 611{
 612        int i;
 613
 614        for (i = 0; i < nelems; i++)
 615                if (a[i] == board_id)
 616                        return 1;
 617        return 0;
 618}
 619
 620static int ctlr_is_hard_resettable(u32 board_id)
 621{
 622        return !board_id_in_array(unresettable_controller,
 623                        ARRAY_SIZE(unresettable_controller), board_id);
 624}
 625
 626static int ctlr_is_soft_resettable(u32 board_id)
 627{
 628        return !board_id_in_array(soft_unresettable_controller,
 629                        ARRAY_SIZE(soft_unresettable_controller), board_id);
 630}
 631
 632static int ctlr_is_resettable(u32 board_id)
 633{
 634        return ctlr_is_hard_resettable(board_id) ||
 635                ctlr_is_soft_resettable(board_id);
 636}
 637
 638static ssize_t host_show_resettable(struct device *dev,
 639        struct device_attribute *attr, char *buf)
 640{
 641        struct ctlr_info *h;
 642        struct Scsi_Host *shost = class_to_shost(dev);
 643
 644        h = shost_to_hba(shost);
 645        return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
 646}
 647
 648static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
 649{
 650        return (scsi3addr[3] & 0xC0) == 0x40;
 651}
 652
 653static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
 654        "1(+0)ADM", "UNKNOWN", "PHYS DRV"
 655};
 656#define HPSA_RAID_0     0
 657#define HPSA_RAID_4     1
 658#define HPSA_RAID_1     2       /* also used for RAID 10 */
 659#define HPSA_RAID_5     3       /* also used for RAID 50 */
 660#define HPSA_RAID_51    4
 661#define HPSA_RAID_6     5       /* also used for RAID 60 */
 662#define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
 663#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
 664#define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
 665
 666static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
 667{
 668        return !device->physical_device;
 669}
 670
 671static ssize_t raid_level_show(struct device *dev,
 672             struct device_attribute *attr, char *buf)
 673{
 674        ssize_t l = 0;
 675        unsigned char rlevel;
 676        struct ctlr_info *h;
 677        struct scsi_device *sdev;
 678        struct hpsa_scsi_dev_t *hdev;
 679        unsigned long flags;
 680
 681        sdev = to_scsi_device(dev);
 682        h = sdev_to_hba(sdev);
 683        spin_lock_irqsave(&h->lock, flags);
 684        hdev = sdev->hostdata;
 685        if (!hdev) {
 686                spin_unlock_irqrestore(&h->lock, flags);
 687                return -ENODEV;
 688        }
 689
 690        /* Is this even a logical drive? */
 691        if (!is_logical_device(hdev)) {
 692                spin_unlock_irqrestore(&h->lock, flags);
 693                l = snprintf(buf, PAGE_SIZE, "N/A\n");
 694                return l;
 695        }
 696
 697        rlevel = hdev->raid_level;
 698        spin_unlock_irqrestore(&h->lock, flags);
 699        if (rlevel > RAID_UNKNOWN)
 700                rlevel = RAID_UNKNOWN;
 701        l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
 702        return l;
 703}
 704
 705static ssize_t lunid_show(struct device *dev,
 706             struct device_attribute *attr, char *buf)
 707{
 708        struct ctlr_info *h;
 709        struct scsi_device *sdev;
 710        struct hpsa_scsi_dev_t *hdev;
 711        unsigned long flags;
 712        unsigned char lunid[8];
 713
 714        sdev = to_scsi_device(dev);
 715        h = sdev_to_hba(sdev);
 716        spin_lock_irqsave(&h->lock, flags);
 717        hdev = sdev->hostdata;
 718        if (!hdev) {
 719                spin_unlock_irqrestore(&h->lock, flags);
 720                return -ENODEV;
 721        }
 722        memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
 723        spin_unlock_irqrestore(&h->lock, flags);
 724        return snprintf(buf, 20, "0x%8phN\n", lunid);
 725}
 726
 727static ssize_t unique_id_show(struct device *dev,
 728             struct device_attribute *attr, char *buf)
 729{
 730        struct ctlr_info *h;
 731        struct scsi_device *sdev;
 732        struct hpsa_scsi_dev_t *hdev;
 733        unsigned long flags;
 734        unsigned char sn[16];
 735
 736        sdev = to_scsi_device(dev);
 737        h = sdev_to_hba(sdev);
 738        spin_lock_irqsave(&h->lock, flags);
 739        hdev = sdev->hostdata;
 740        if (!hdev) {
 741                spin_unlock_irqrestore(&h->lock, flags);
 742                return -ENODEV;
 743        }
 744        memcpy(sn, hdev->device_id, sizeof(sn));
 745        spin_unlock_irqrestore(&h->lock, flags);
 746        return snprintf(buf, 16 * 2 + 2,
 747                        "%02X%02X%02X%02X%02X%02X%02X%02X"
 748                        "%02X%02X%02X%02X%02X%02X%02X%02X\n",
 749                        sn[0], sn[1], sn[2], sn[3],
 750                        sn[4], sn[5], sn[6], sn[7],
 751                        sn[8], sn[9], sn[10], sn[11],
 752                        sn[12], sn[13], sn[14], sn[15]);
 753}
 754
 755static ssize_t sas_address_show(struct device *dev,
 756              struct device_attribute *attr, char *buf)
 757{
 758        struct ctlr_info *h;
 759        struct scsi_device *sdev;
 760        struct hpsa_scsi_dev_t *hdev;
 761        unsigned long flags;
 762        u64 sas_address;
 763
 764        sdev = to_scsi_device(dev);
 765        h = sdev_to_hba(sdev);
 766        spin_lock_irqsave(&h->lock, flags);
 767        hdev = sdev->hostdata;
 768        if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
 769                spin_unlock_irqrestore(&h->lock, flags);
 770                return -ENODEV;
 771        }
 772        sas_address = hdev->sas_address;
 773        spin_unlock_irqrestore(&h->lock, flags);
 774
 775        return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
 776}
 777
 778static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
 779             struct device_attribute *attr, char *buf)
 780{
 781        struct ctlr_info *h;
 782        struct scsi_device *sdev;
 783        struct hpsa_scsi_dev_t *hdev;
 784        unsigned long flags;
 785        int offload_enabled;
 786
 787        sdev = to_scsi_device(dev);
 788        h = sdev_to_hba(sdev);
 789        spin_lock_irqsave(&h->lock, flags);
 790        hdev = sdev->hostdata;
 791        if (!hdev) {
 792                spin_unlock_irqrestore(&h->lock, flags);
 793                return -ENODEV;
 794        }
 795        offload_enabled = hdev->offload_enabled;
 796        spin_unlock_irqrestore(&h->lock, flags);
 797
 798        if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
 799                return snprintf(buf, 20, "%d\n", offload_enabled);
 800        else
 801                return snprintf(buf, 40, "%s\n",
 802                                "Not applicable for a controller");
 803}
 804
 805#define MAX_PATHS 8
 806static ssize_t path_info_show(struct device *dev,
 807             struct device_attribute *attr, char *buf)
 808{
 809        struct ctlr_info *h;
 810        struct scsi_device *sdev;
 811        struct hpsa_scsi_dev_t *hdev;
 812        unsigned long flags;
 813        int i;
 814        int output_len = 0;
 815        u8 box;
 816        u8 bay;
 817        u8 path_map_index = 0;
 818        char *active;
 819        unsigned char phys_connector[2];
 820
 821        sdev = to_scsi_device(dev);
 822        h = sdev_to_hba(sdev);
 823        spin_lock_irqsave(&h->devlock, flags);
 824        hdev = sdev->hostdata;
 825        if (!hdev) {
 826                spin_unlock_irqrestore(&h->devlock, flags);
 827                return -ENODEV;
 828        }
 829
 830        bay = hdev->bay;
 831        for (i = 0; i < MAX_PATHS; i++) {
 832                path_map_index = 1<<i;
 833                if (i == hdev->active_path_index)
 834                        active = "Active";
 835                else if (hdev->path_map & path_map_index)
 836                        active = "Inactive";
 837                else
 838                        continue;
 839
 840                output_len += scnprintf(buf + output_len,
 841                                PAGE_SIZE - output_len,
 842                                "[%d:%d:%d:%d] %20.20s ",
 843                                h->scsi_host->host_no,
 844                                hdev->bus, hdev->target, hdev->lun,
 845                                scsi_device_type(hdev->devtype));
 846
 847                if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
 848                        output_len += scnprintf(buf + output_len,
 849                                                PAGE_SIZE - output_len,
 850                                                "%s\n", active);
 851                        continue;
 852                }
 853
 854                box = hdev->box[i];
 855                memcpy(&phys_connector, &hdev->phys_connector[i],
 856                        sizeof(phys_connector));
 857                if (phys_connector[0] < '0')
 858                        phys_connector[0] = '0';
 859                if (phys_connector[1] < '0')
 860                        phys_connector[1] = '0';
 861                output_len += scnprintf(buf + output_len,
 862                                PAGE_SIZE - output_len,
 863                                "PORT: %.2s ",
 864                                phys_connector);
 865                if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
 866                        hdev->expose_device) {
 867                        if (box == 0 || box == 0xFF) {
 868                                output_len += scnprintf(buf + output_len,
 869                                        PAGE_SIZE - output_len,
 870                                        "BAY: %hhu %s\n",
 871                                        bay, active);
 872                        } else {
 873                                output_len += scnprintf(buf + output_len,
 874                                        PAGE_SIZE - output_len,
 875                                        "BOX: %hhu BAY: %hhu %s\n",
 876                                        box, bay, active);
 877                        }
 878                } else if (box != 0 && box != 0xFF) {
 879                        output_len += scnprintf(buf + output_len,
 880                                PAGE_SIZE - output_len, "BOX: %hhu %s\n",
 881                                box, active);
 882                } else
 883                        output_len += scnprintf(buf + output_len,
 884                                PAGE_SIZE - output_len, "%s\n", active);
 885        }
 886
 887        spin_unlock_irqrestore(&h->devlock, flags);
 888        return output_len;
 889}
 890
 891static ssize_t host_show_ctlr_num(struct device *dev,
 892        struct device_attribute *attr, char *buf)
 893{
 894        struct ctlr_info *h;
 895        struct Scsi_Host *shost = class_to_shost(dev);
 896
 897        h = shost_to_hba(shost);
 898        return snprintf(buf, 20, "%d\n", h->ctlr);
 899}
 900
 901static ssize_t host_show_legacy_board(struct device *dev,
 902        struct device_attribute *attr, char *buf)
 903{
 904        struct ctlr_info *h;
 905        struct Scsi_Host *shost = class_to_shost(dev);
 906
 907        h = shost_to_hba(shost);
 908        return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
 909}
 910
 911static DEVICE_ATTR_RO(raid_level);
 912static DEVICE_ATTR_RO(lunid);
 913static DEVICE_ATTR_RO(unique_id);
 914static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
 915static DEVICE_ATTR_RO(sas_address);
 916static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
 917                        host_show_hp_ssd_smart_path_enabled, NULL);
 918static DEVICE_ATTR_RO(path_info);
 919static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
 920                host_show_hp_ssd_smart_path_status,
 921                host_store_hp_ssd_smart_path_status);
 922static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
 923                        host_store_raid_offload_debug);
 924static DEVICE_ATTR(firmware_revision, S_IRUGO,
 925        host_show_firmware_revision, NULL);
 926static DEVICE_ATTR(commands_outstanding, S_IRUGO,
 927        host_show_commands_outstanding, NULL);
 928static DEVICE_ATTR(transport_mode, S_IRUGO,
 929        host_show_transport_mode, NULL);
 930static DEVICE_ATTR(resettable, S_IRUGO,
 931        host_show_resettable, NULL);
 932static DEVICE_ATTR(lockup_detected, S_IRUGO,
 933        host_show_lockup_detected, NULL);
 934static DEVICE_ATTR(ctlr_num, S_IRUGO,
 935        host_show_ctlr_num, NULL);
 936static DEVICE_ATTR(legacy_board, S_IRUGO,
 937        host_show_legacy_board, NULL);
 938
 939static struct device_attribute *hpsa_sdev_attrs[] = {
 940        &dev_attr_raid_level,
 941        &dev_attr_lunid,
 942        &dev_attr_unique_id,
 943        &dev_attr_hp_ssd_smart_path_enabled,
 944        &dev_attr_path_info,
 945        &dev_attr_sas_address,
 946        NULL,
 947};
 948
 949static struct device_attribute *hpsa_shost_attrs[] = {
 950        &dev_attr_rescan,
 951        &dev_attr_firmware_revision,
 952        &dev_attr_commands_outstanding,
 953        &dev_attr_transport_mode,
 954        &dev_attr_resettable,
 955        &dev_attr_hp_ssd_smart_path_status,
 956        &dev_attr_raid_offload_debug,
 957        &dev_attr_lockup_detected,
 958        &dev_attr_ctlr_num,
 959        &dev_attr_legacy_board,
 960        NULL,
 961};
 962
 963#define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_DRIVER +\
 964                                 HPSA_MAX_CONCURRENT_PASSTHRUS)
 965
 966static struct scsi_host_template hpsa_driver_template = {
 967        .module                 = THIS_MODULE,
 968        .name                   = HPSA,
 969        .proc_name              = HPSA,
 970        .queuecommand           = hpsa_scsi_queue_command,
 971        .scan_start             = hpsa_scan_start,
 972        .scan_finished          = hpsa_scan_finished,
 973        .change_queue_depth     = hpsa_change_queue_depth,
 974        .this_id                = -1,
 975        .eh_device_reset_handler = hpsa_eh_device_reset_handler,
 976        .ioctl                  = hpsa_ioctl,
 977        .slave_alloc            = hpsa_slave_alloc,
 978        .slave_configure        = hpsa_slave_configure,
 979        .slave_destroy          = hpsa_slave_destroy,
 980#ifdef CONFIG_COMPAT
 981        .compat_ioctl           = hpsa_compat_ioctl,
 982#endif
 983        .sdev_attrs = hpsa_sdev_attrs,
 984        .shost_attrs = hpsa_shost_attrs,
 985        .max_sectors = 2048,
 986        .no_write_same = 1,
 987};
 988
 989static inline u32 next_command(struct ctlr_info *h, u8 q)
 990{
 991        u32 a;
 992        struct reply_queue_buffer *rq = &h->reply_queue[q];
 993
 994        if (h->transMethod & CFGTBL_Trans_io_accel1)
 995                return h->access.command_completed(h, q);
 996
 997        if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
 998                return h->access.command_completed(h, q);
 999
1000        if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
1001                a = rq->head[rq->current_entry];
1002                rq->current_entry++;
1003                atomic_dec(&h->commands_outstanding);
1004        } else {
1005                a = FIFO_EMPTY;
1006        }
1007        /* Check for wraparound */
1008        if (rq->current_entry == h->max_commands) {
1009                rq->current_entry = 0;
1010                rq->wraparound ^= 1;
1011        }
1012        return a;
1013}
1014
1015/*
1016 * There are some special bits in the bus address of the
1017 * command that we have to set for the controller to know
1018 * how to process the command:
1019 *
1020 * Normal performant mode:
1021 * bit 0: 1 means performant mode, 0 means simple mode.
1022 * bits 1-3 = block fetch table entry
1023 * bits 4-6 = command type (== 0)
1024 *
1025 * ioaccel1 mode:
1026 * bit 0 = "performant mode" bit.
1027 * bits 1-3 = block fetch table entry
1028 * bits 4-6 = command type (== 110)
1029 * (command type is needed because ioaccel1 mode
1030 * commands are submitted through the same register as normal
1031 * mode commands, so this is how the controller knows whether
1032 * the command is normal mode or ioaccel1 mode.)
1033 *
1034 * ioaccel2 mode:
1035 * bit 0 = "performant mode" bit.
1036 * bits 1-4 = block fetch table entry (note extra bit)
1037 * bits 4-6 = not needed, because ioaccel2 mode has
1038 * a separate special register for submitting commands.
1039 */
1040
1041/*
1042 * set_performant_mode: Modify the tag for cciss performant
1043 * set bit 0 for pull model, bits 3-1 for block fetch
1044 * register number
1045 */
1046#define DEFAULT_REPLY_QUEUE (-1)
1047static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1048                                        int reply_queue)
1049{
1050        if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1051                c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1052                if (unlikely(!h->msix_vectors))
1053                        return;
1054                c->Header.ReplyQueue = reply_queue;
1055        }
1056}
1057
1058static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1059                                                struct CommandList *c,
1060                                                int reply_queue)
1061{
1062        struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1063
1064        /*
1065         * Tell the controller to post the reply to the queue for this
1066         * processor.  This seems to give the best I/O throughput.
1067         */
1068        cp->ReplyQueue = reply_queue;
1069        /*
1070         * Set the bits in the address sent down to include:
1071         *  - performant mode bit (bit 0)
1072         *  - pull count (bits 1-3)
1073         *  - command type (bits 4-6)
1074         */
1075        c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1076                                        IOACCEL1_BUSADDR_CMDTYPE;
1077}
1078
1079static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1080                                                struct CommandList *c,
1081                                                int reply_queue)
1082{
1083        struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1084                &h->ioaccel2_cmd_pool[c->cmdindex];
1085
1086        /* Tell the controller to post the reply to the queue for this
1087         * processor.  This seems to give the best I/O throughput.
1088         */
1089        cp->reply_queue = reply_queue;
1090        /* Set the bits in the address sent down to include:
1091         *  - performant mode bit not used in ioaccel mode 2
1092         *  - pull count (bits 0-3)
1093         *  - command type isn't needed for ioaccel2
1094         */
1095        c->busaddr |= h->ioaccel2_blockFetchTable[0];
1096}
1097
1098static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1099                                                struct CommandList *c,
1100                                                int reply_queue)
1101{
1102        struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1103
1104        /*
1105         * Tell the controller to post the reply to the queue for this
1106         * processor.  This seems to give the best I/O throughput.
1107         */
1108        cp->reply_queue = reply_queue;
1109        /*
1110         * Set the bits in the address sent down to include:
1111         *  - performant mode bit not used in ioaccel mode 2
1112         *  - pull count (bits 0-3)
1113         *  - command type isn't needed for ioaccel2
1114         */
1115        c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1116}
1117
1118static int is_firmware_flash_cmd(u8 *cdb)
1119{
1120        return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1121}
1122
1123/*
1124 * During firmware flash, the heartbeat register may not update as frequently
1125 * as it should.  So we dial down lockup detection during firmware flash. and
1126 * dial it back up when firmware flash completes.
1127 */
1128#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1129#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1130#define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1131static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1132                struct CommandList *c)
1133{
1134        if (!is_firmware_flash_cmd(c->Request.CDB))
1135                return;
1136        atomic_inc(&h->firmware_flash_in_progress);
1137        h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1138}
1139
1140static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1141                struct CommandList *c)
1142{
1143        if (is_firmware_flash_cmd(c->Request.CDB) &&
1144                atomic_dec_and_test(&h->firmware_flash_in_progress))
1145                h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1146}
1147
1148static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1149        struct CommandList *c, int reply_queue)
1150{
1151        dial_down_lockup_detection_during_fw_flash(h, c);
1152        atomic_inc(&h->commands_outstanding);
1153        /*
1154         * Check to see if the command is being retried.
1155         */
1156        if (c->device && !c->retry_pending)
1157                atomic_inc(&c->device->commands_outstanding);
1158
1159        reply_queue = h->reply_map[raw_smp_processor_id()];
1160        switch (c->cmd_type) {
1161        case CMD_IOACCEL1:
1162                set_ioaccel1_performant_mode(h, c, reply_queue);
1163                writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1164                break;
1165        case CMD_IOACCEL2:
1166                set_ioaccel2_performant_mode(h, c, reply_queue);
1167                writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1168                break;
1169        case IOACCEL2_TMF:
1170                set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1171                writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1172                break;
1173        default:
1174                set_performant_mode(h, c, reply_queue);
1175                h->access.submit_command(h, c);
1176        }
1177}
1178
1179static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1180{
1181        __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1182}
1183
1184static inline int is_hba_lunid(unsigned char scsi3addr[])
1185{
1186        return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1187}
1188
1189static inline int is_scsi_rev_5(struct ctlr_info *h)
1190{
1191        if (!h->hba_inquiry_data)
1192                return 0;
1193        if ((h->hba_inquiry_data[2] & 0x07) == 5)
1194                return 1;
1195        return 0;
1196}
1197
1198static int hpsa_find_target_lun(struct ctlr_info *h,
1199        unsigned char scsi3addr[], int bus, int *target, int *lun)
1200{
1201        /* finds an unused bus, target, lun for a new physical device
1202         * assumes h->devlock is held
1203         */
1204        int i, found = 0;
1205        DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1206
1207        bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1208
1209        for (i = 0; i < h->ndevices; i++) {
1210                if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1211                        __set_bit(h->dev[i]->target, lun_taken);
1212        }
1213
1214        i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1215        if (i < HPSA_MAX_DEVICES) {
1216                /* *bus = 1; */
1217                *target = i;
1218                *lun = 0;
1219                found = 1;
1220        }
1221        return !found;
1222}
1223
1224static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1225        struct hpsa_scsi_dev_t *dev, char *description)
1226{
1227#define LABEL_SIZE 25
1228        char label[LABEL_SIZE];
1229
1230        if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1231                return;
1232
1233        switch (dev->devtype) {
1234        case TYPE_RAID:
1235                snprintf(label, LABEL_SIZE, "controller");
1236                break;
1237        case TYPE_ENCLOSURE:
1238                snprintf(label, LABEL_SIZE, "enclosure");
1239                break;
1240        case TYPE_DISK:
1241        case TYPE_ZBC:
1242                if (dev->external)
1243                        snprintf(label, LABEL_SIZE, "external");
1244                else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1245                        snprintf(label, LABEL_SIZE, "%s",
1246                                raid_label[PHYSICAL_DRIVE]);
1247                else
1248                        snprintf(label, LABEL_SIZE, "RAID-%s",
1249                                dev->raid_level > RAID_UNKNOWN ? "?" :
1250                                raid_label[dev->raid_level]);
1251                break;
1252        case TYPE_ROM:
1253                snprintf(label, LABEL_SIZE, "rom");
1254                break;
1255        case TYPE_TAPE:
1256                snprintf(label, LABEL_SIZE, "tape");
1257                break;
1258        case TYPE_MEDIUM_CHANGER:
1259                snprintf(label, LABEL_SIZE, "changer");
1260                break;
1261        default:
1262                snprintf(label, LABEL_SIZE, "UNKNOWN");
1263                break;
1264        }
1265
1266        dev_printk(level, &h->pdev->dev,
1267                        "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1268                        h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1269                        description,
1270                        scsi_device_type(dev->devtype),
1271                        dev->vendor,
1272                        dev->model,
1273                        label,
1274                        dev->offload_config ? '+' : '-',
1275                        dev->offload_to_be_enabled ? '+' : '-',
1276                        dev->expose_device);
1277}
1278
1279/* Add an entry into h->dev[] array. */
1280static int hpsa_scsi_add_entry(struct ctlr_info *h,
1281                struct hpsa_scsi_dev_t *device,
1282                struct hpsa_scsi_dev_t *added[], int *nadded)
1283{
1284        /* assumes h->devlock is held */
1285        int n = h->ndevices;
1286        int i;
1287        unsigned char addr1[8], addr2[8];
1288        struct hpsa_scsi_dev_t *sd;
1289
1290        if (n >= HPSA_MAX_DEVICES) {
1291                dev_err(&h->pdev->dev, "too many devices, some will be "
1292                        "inaccessible.\n");
1293                return -1;
1294        }
1295
1296        /* physical devices do not have lun or target assigned until now. */
1297        if (device->lun != -1)
1298                /* Logical device, lun is already assigned. */
1299                goto lun_assigned;
1300
1301        /* If this device a non-zero lun of a multi-lun device
1302         * byte 4 of the 8-byte LUN addr will contain the logical
1303         * unit no, zero otherwise.
1304         */
1305        if (device->scsi3addr[4] == 0) {
1306                /* This is not a non-zero lun of a multi-lun device */
1307                if (hpsa_find_target_lun(h, device->scsi3addr,
1308                        device->bus, &device->target, &device->lun) != 0)
1309                        return -1;
1310                goto lun_assigned;
1311        }
1312
1313        /* This is a non-zero lun of a multi-lun device.
1314         * Search through our list and find the device which
1315         * has the same 8 byte LUN address, excepting byte 4 and 5.
1316         * Assign the same bus and target for this new LUN.
1317         * Use the logical unit number from the firmware.
1318         */
1319        memcpy(addr1, device->scsi3addr, 8);
1320        addr1[4] = 0;
1321        addr1[5] = 0;
1322        for (i = 0; i < n; i++) {
1323                sd = h->dev[i];
1324                memcpy(addr2, sd->scsi3addr, 8);
1325                addr2[4] = 0;
1326                addr2[5] = 0;
1327                /* differ only in byte 4 and 5? */
1328                if (memcmp(addr1, addr2, 8) == 0) {
1329                        device->bus = sd->bus;
1330                        device->target = sd->target;
1331                        device->lun = device->scsi3addr[4];
1332                        break;
1333                }
1334        }
1335        if (device->lun == -1) {
1336                dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1337                        " suspect firmware bug or unsupported hardware "
1338                        "configuration.\n");
1339                return -1;
1340        }
1341
1342lun_assigned:
1343
1344        h->dev[n] = device;
1345        h->ndevices++;
1346        added[*nadded] = device;
1347        (*nadded)++;
1348        hpsa_show_dev_msg(KERN_INFO, h, device,
1349                device->expose_device ? "added" : "masked");
1350        return 0;
1351}
1352
1353/*
1354 * Called during a scan operation.
1355 *
1356 * Update an entry in h->dev[] array.
1357 */
1358static void hpsa_scsi_update_entry(struct ctlr_info *h,
1359        int entry, struct hpsa_scsi_dev_t *new_entry)
1360{
1361        /* assumes h->devlock is held */
1362        BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1363
1364        /* Raid level changed. */
1365        h->dev[entry]->raid_level = new_entry->raid_level;
1366
1367        /*
1368         * ioacccel_handle may have changed for a dual domain disk
1369         */
1370        h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1371
1372        /* Raid offload parameters changed.  Careful about the ordering. */
1373        if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1374                /*
1375                 * if drive is newly offload_enabled, we want to copy the
1376                 * raid map data first.  If previously offload_enabled and
1377                 * offload_config were set, raid map data had better be
1378                 * the same as it was before. If raid map data has changed
1379                 * then it had better be the case that
1380                 * h->dev[entry]->offload_enabled is currently 0.
1381                 */
1382                h->dev[entry]->raid_map = new_entry->raid_map;
1383                h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1384        }
1385        if (new_entry->offload_to_be_enabled) {
1386                h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1387                wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1388        }
1389        h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1390        h->dev[entry]->offload_config = new_entry->offload_config;
1391        h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1392        h->dev[entry]->queue_depth = new_entry->queue_depth;
1393
1394        /*
1395         * We can turn off ioaccel offload now, but need to delay turning
1396         * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1397         * can't do that until all the devices are updated.
1398         */
1399        h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1400
1401        /*
1402         * turn ioaccel off immediately if told to do so.
1403         */
1404        if (!new_entry->offload_to_be_enabled)
1405                h->dev[entry]->offload_enabled = 0;
1406
1407        hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1408}
1409
1410/* Replace an entry from h->dev[] array. */
1411static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1412        int entry, struct hpsa_scsi_dev_t *new_entry,
1413        struct hpsa_scsi_dev_t *added[], int *nadded,
1414        struct hpsa_scsi_dev_t *removed[], int *nremoved)
1415{
1416        /* assumes h->devlock is held */
1417        BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1418        removed[*nremoved] = h->dev[entry];
1419        (*nremoved)++;
1420
1421        /*
1422         * New physical devices won't have target/lun assigned yet
1423         * so we need to preserve the values in the slot we are replacing.
1424         */
1425        if (new_entry->target == -1) {
1426                new_entry->target = h->dev[entry]->target;
1427                new_entry->lun = h->dev[entry]->lun;
1428        }
1429
1430        h->dev[entry] = new_entry;
1431        added[*nadded] = new_entry;
1432        (*nadded)++;
1433
1434        hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1435}
1436
1437/* Remove an entry from h->dev[] array. */
1438static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1439        struct hpsa_scsi_dev_t *removed[], int *nremoved)
1440{
1441        /* assumes h->devlock is held */
1442        int i;
1443        struct hpsa_scsi_dev_t *sd;
1444
1445        BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1446
1447        sd = h->dev[entry];
1448        removed[*nremoved] = h->dev[entry];
1449        (*nremoved)++;
1450
1451        for (i = entry; i < h->ndevices-1; i++)
1452                h->dev[i] = h->dev[i+1];
1453        h->ndevices--;
1454        hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1455}
1456
1457#define SCSI3ADDR_EQ(a, b) ( \
1458        (a)[7] == (b)[7] && \
1459        (a)[6] == (b)[6] && \
1460        (a)[5] == (b)[5] && \
1461        (a)[4] == (b)[4] && \
1462        (a)[3] == (b)[3] && \
1463        (a)[2] == (b)[2] && \
1464        (a)[1] == (b)[1] && \
1465        (a)[0] == (b)[0])
1466
1467static void fixup_botched_add(struct ctlr_info *h,
1468        struct hpsa_scsi_dev_t *added)
1469{
1470        /* called when scsi_add_device fails in order to re-adjust
1471         * h->dev[] to match the mid layer's view.
1472         */
1473        unsigned long flags;
1474        int i, j;
1475
1476        spin_lock_irqsave(&h->lock, flags);
1477        for (i = 0; i < h->ndevices; i++) {
1478                if (h->dev[i] == added) {
1479                        for (j = i; j < h->ndevices-1; j++)
1480                                h->dev[j] = h->dev[j+1];
1481                        h->ndevices--;
1482                        break;
1483                }
1484        }
1485        spin_unlock_irqrestore(&h->lock, flags);
1486        kfree(added);
1487}
1488
1489static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1490        struct hpsa_scsi_dev_t *dev2)
1491{
1492        /* we compare everything except lun and target as these
1493         * are not yet assigned.  Compare parts likely
1494         * to differ first
1495         */
1496        if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1497                sizeof(dev1->scsi3addr)) != 0)
1498                return 0;
1499        if (memcmp(dev1->device_id, dev2->device_id,
1500                sizeof(dev1->device_id)) != 0)
1501                return 0;
1502        if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1503                return 0;
1504        if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1505                return 0;
1506        if (dev1->devtype != dev2->devtype)
1507                return 0;
1508        if (dev1->bus != dev2->bus)
1509                return 0;
1510        return 1;
1511}
1512
1513static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1514        struct hpsa_scsi_dev_t *dev2)
1515{
1516        /* Device attributes that can change, but don't mean
1517         * that the device is a different device, nor that the OS
1518         * needs to be told anything about the change.
1519         */
1520        if (dev1->raid_level != dev2->raid_level)
1521                return 1;
1522        if (dev1->offload_config != dev2->offload_config)
1523                return 1;
1524        if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1525                return 1;
1526        if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1527                if (dev1->queue_depth != dev2->queue_depth)
1528                        return 1;
1529        /*
1530         * This can happen for dual domain devices. An active
1531         * path change causes the ioaccel handle to change
1532         *
1533         * for example note the handle differences between p0 and p1
1534         * Device                    WWN               ,WWN hash,Handle
1535         * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1536         *      p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1537         */
1538        if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1539                return 1;
1540        return 0;
1541}
1542
1543/* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1544 * and return needle location in *index.  If scsi3addr matches, but not
1545 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1546 * location in *index.
1547 * In the case of a minor device attribute change, such as RAID level, just
1548 * return DEVICE_UPDATED, along with the updated device's location in index.
1549 * If needle not found, return DEVICE_NOT_FOUND.
1550 */
1551static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1552        struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1553        int *index)
1554{
1555        int i;
1556#define DEVICE_NOT_FOUND 0
1557#define DEVICE_CHANGED 1
1558#define DEVICE_SAME 2
1559#define DEVICE_UPDATED 3
1560        if (needle == NULL)
1561                return DEVICE_NOT_FOUND;
1562
1563        for (i = 0; i < haystack_size; i++) {
1564                if (haystack[i] == NULL) /* previously removed. */
1565                        continue;
1566                if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1567                        *index = i;
1568                        if (device_is_the_same(needle, haystack[i])) {
1569                                if (device_updated(needle, haystack[i]))
1570                                        return DEVICE_UPDATED;
1571                                return DEVICE_SAME;
1572                        } else {
1573                                /* Keep offline devices offline */
1574                                if (needle->volume_offline)
1575                                        return DEVICE_NOT_FOUND;
1576                                return DEVICE_CHANGED;
1577                        }
1578                }
1579        }
1580        *index = -1;
1581        return DEVICE_NOT_FOUND;
1582}
1583
1584static void hpsa_monitor_offline_device(struct ctlr_info *h,
1585                                        unsigned char scsi3addr[])
1586{
1587        struct offline_device_entry *device;
1588        unsigned long flags;
1589
1590        /* Check to see if device is already on the list */
1591        spin_lock_irqsave(&h->offline_device_lock, flags);
1592        list_for_each_entry(device, &h->offline_device_list, offline_list) {
1593                if (memcmp(device->scsi3addr, scsi3addr,
1594                        sizeof(device->scsi3addr)) == 0) {
1595                        spin_unlock_irqrestore(&h->offline_device_lock, flags);
1596                        return;
1597                }
1598        }
1599        spin_unlock_irqrestore(&h->offline_device_lock, flags);
1600
1601        /* Device is not on the list, add it. */
1602        device = kmalloc(sizeof(*device), GFP_KERNEL);
1603        if (!device)
1604                return;
1605
1606        memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1607        spin_lock_irqsave(&h->offline_device_lock, flags);
1608        list_add_tail(&device->offline_list, &h->offline_device_list);
1609        spin_unlock_irqrestore(&h->offline_device_lock, flags);
1610}
1611
1612/* Print a message explaining various offline volume states */
1613static void hpsa_show_volume_status(struct ctlr_info *h,
1614        struct hpsa_scsi_dev_t *sd)
1615{
1616        if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1617                dev_info(&h->pdev->dev,
1618                        "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1619                        h->scsi_host->host_no,
1620                        sd->bus, sd->target, sd->lun);
1621        switch (sd->volume_offline) {
1622        case HPSA_LV_OK:
1623                break;
1624        case HPSA_LV_UNDERGOING_ERASE:
1625                dev_info(&h->pdev->dev,
1626                        "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1627                        h->scsi_host->host_no,
1628                        sd->bus, sd->target, sd->lun);
1629                break;
1630        case HPSA_LV_NOT_AVAILABLE:
1631                dev_info(&h->pdev->dev,
1632                        "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1633                        h->scsi_host->host_no,
1634                        sd->bus, sd->target, sd->lun);
1635                break;
1636        case HPSA_LV_UNDERGOING_RPI:
1637                dev_info(&h->pdev->dev,
1638                        "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1639                        h->scsi_host->host_no,
1640                        sd->bus, sd->target, sd->lun);
1641                break;
1642        case HPSA_LV_PENDING_RPI:
1643                dev_info(&h->pdev->dev,
1644                        "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1645                        h->scsi_host->host_no,
1646                        sd->bus, sd->target, sd->lun);
1647                break;
1648        case HPSA_LV_ENCRYPTED_NO_KEY:
1649                dev_info(&h->pdev->dev,
1650                        "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1651                        h->scsi_host->host_no,
1652                        sd->bus, sd->target, sd->lun);
1653                break;
1654        case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1655                dev_info(&h->pdev->dev,
1656                        "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1657                        h->scsi_host->host_no,
1658                        sd->bus, sd->target, sd->lun);
1659                break;
1660        case HPSA_LV_UNDERGOING_ENCRYPTION:
1661                dev_info(&h->pdev->dev,
1662                        "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1663                        h->scsi_host->host_no,
1664                        sd->bus, sd->target, sd->lun);
1665                break;
1666        case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1667                dev_info(&h->pdev->dev,
1668                        "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1669                        h->scsi_host->host_no,
1670                        sd->bus, sd->target, sd->lun);
1671                break;
1672        case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1673                dev_info(&h->pdev->dev,
1674                        "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1675                        h->scsi_host->host_no,
1676                        sd->bus, sd->target, sd->lun);
1677                break;
1678        case HPSA_LV_PENDING_ENCRYPTION:
1679                dev_info(&h->pdev->dev,
1680                        "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1681                        h->scsi_host->host_no,
1682                        sd->bus, sd->target, sd->lun);
1683                break;
1684        case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1685                dev_info(&h->pdev->dev,
1686                        "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1687                        h->scsi_host->host_no,
1688                        sd->bus, sd->target, sd->lun);
1689                break;
1690        }
1691}
1692
1693/*
1694 * Figure the list of physical drive pointers for a logical drive with
1695 * raid offload configured.
1696 */
1697static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1698                                struct hpsa_scsi_dev_t *dev[], int ndevices,
1699                                struct hpsa_scsi_dev_t *logical_drive)
1700{
1701        struct raid_map_data *map = &logical_drive->raid_map;
1702        struct raid_map_disk_data *dd = &map->data[0];
1703        int i, j;
1704        int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1705                                le16_to_cpu(map->metadata_disks_per_row);
1706        int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1707                                le16_to_cpu(map->layout_map_count) *
1708                                total_disks_per_row;
1709        int nphys_disk = le16_to_cpu(map->layout_map_count) *
1710                                total_disks_per_row;
1711        int qdepth;
1712
1713        if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1714                nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1715
1716        logical_drive->nphysical_disks = nraid_map_entries;
1717
1718        qdepth = 0;
1719        for (i = 0; i < nraid_map_entries; i++) {
1720                logical_drive->phys_disk[i] = NULL;
1721                if (!logical_drive->offload_config)
1722                        continue;
1723                for (j = 0; j < ndevices; j++) {
1724                        if (dev[j] == NULL)
1725                                continue;
1726                        if (dev[j]->devtype != TYPE_DISK &&
1727                            dev[j]->devtype != TYPE_ZBC)
1728                                continue;
1729                        if (is_logical_device(dev[j]))
1730                                continue;
1731                        if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1732                                continue;
1733
1734                        logical_drive->phys_disk[i] = dev[j];
1735                        if (i < nphys_disk)
1736                                qdepth = min(h->nr_cmds, qdepth +
1737                                    logical_drive->phys_disk[i]->queue_depth);
1738                        break;
1739                }
1740
1741                /*
1742                 * This can happen if a physical drive is removed and
1743                 * the logical drive is degraded.  In that case, the RAID
1744                 * map data will refer to a physical disk which isn't actually
1745                 * present.  And in that case offload_enabled should already
1746                 * be 0, but we'll turn it off here just in case
1747                 */
1748                if (!logical_drive->phys_disk[i]) {
1749                        dev_warn(&h->pdev->dev,
1750                                "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1751                                __func__,
1752                                h->scsi_host->host_no, logical_drive->bus,
1753                                logical_drive->target, logical_drive->lun);
1754                        hpsa_turn_off_ioaccel_for_device(logical_drive);
1755                        logical_drive->queue_depth = 8;
1756                }
1757        }
1758        if (nraid_map_entries)
1759                /*
1760                 * This is correct for reads, too high for full stripe writes,
1761                 * way too high for partial stripe writes
1762                 */
1763                logical_drive->queue_depth = qdepth;
1764        else {
1765                if (logical_drive->external)
1766                        logical_drive->queue_depth = EXTERNAL_QD;
1767                else
1768                        logical_drive->queue_depth = h->nr_cmds;
1769        }
1770}
1771
1772static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1773                                struct hpsa_scsi_dev_t *dev[], int ndevices)
1774{
1775        int i;
1776
1777        for (i = 0; i < ndevices; i++) {
1778                if (dev[i] == NULL)
1779                        continue;
1780                if (dev[i]->devtype != TYPE_DISK &&
1781                    dev[i]->devtype != TYPE_ZBC)
1782                        continue;
1783                if (!is_logical_device(dev[i]))
1784                        continue;
1785
1786                /*
1787                 * If offload is currently enabled, the RAID map and
1788                 * phys_disk[] assignment *better* not be changing
1789                 * because we would be changing ioaccel phsy_disk[] pointers
1790                 * on a ioaccel volume processing I/O requests.
1791                 *
1792                 * If an ioaccel volume status changed, initially because it was
1793                 * re-configured and thus underwent a transformation, or
1794                 * a drive failed, we would have received a state change
1795                 * request and ioaccel should have been turned off. When the
1796                 * transformation completes, we get another state change
1797                 * request to turn ioaccel back on. In this case, we need
1798                 * to update the ioaccel information.
1799                 *
1800                 * Thus: If it is not currently enabled, but will be after
1801                 * the scan completes, make sure the ioaccel pointers
1802                 * are up to date.
1803                 */
1804
1805                if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1806                        hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1807        }
1808}
1809
1810static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1811{
1812        int rc = 0;
1813
1814        if (!h->scsi_host)
1815                return 1;
1816
1817        if (is_logical_device(device)) /* RAID */
1818                rc = scsi_add_device(h->scsi_host, device->bus,
1819                                        device->target, device->lun);
1820        else /* HBA */
1821                rc = hpsa_add_sas_device(h->sas_host, device);
1822
1823        return rc;
1824}
1825
1826static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1827                                                struct hpsa_scsi_dev_t *dev)
1828{
1829        int i;
1830        int count = 0;
1831
1832        for (i = 0; i < h->nr_cmds; i++) {
1833                struct CommandList *c = h->cmd_pool + i;
1834                int refcount = atomic_inc_return(&c->refcount);
1835
1836                if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1837                                dev->scsi3addr)) {
1838                        unsigned long flags;
1839
1840                        spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1841                        if (!hpsa_is_cmd_idle(c))
1842                                ++count;
1843                        spin_unlock_irqrestore(&h->lock, flags);
1844                }
1845
1846                cmd_free(h, c);
1847        }
1848
1849        return count;
1850}
1851
1852#define NUM_WAIT 20
1853static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1854                                                struct hpsa_scsi_dev_t *device)
1855{
1856        int cmds = 0;
1857        int waits = 0;
1858        int num_wait = NUM_WAIT;
1859
1860        if (device->external)
1861                num_wait = HPSA_EH_PTRAID_TIMEOUT;
1862
1863        while (1) {
1864                cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1865                if (cmds == 0)
1866                        break;
1867                if (++waits > num_wait)
1868                        break;
1869                msleep(1000);
1870        }
1871
1872        if (waits > num_wait) {
1873                dev_warn(&h->pdev->dev,
1874                        "%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1875                        __func__,
1876                        h->scsi_host->host_no,
1877                        device->bus, device->target, device->lun, cmds);
1878        }
1879}
1880
1881static void hpsa_remove_device(struct ctlr_info *h,
1882                        struct hpsa_scsi_dev_t *device)
1883{
1884        struct scsi_device *sdev = NULL;
1885
1886        if (!h->scsi_host)
1887                return;
1888
1889        /*
1890         * Allow for commands to drain
1891         */
1892        device->removed = 1;
1893        hpsa_wait_for_outstanding_commands_for_dev(h, device);
1894
1895        if (is_logical_device(device)) { /* RAID */
1896                sdev = scsi_device_lookup(h->scsi_host, device->bus,
1897                                                device->target, device->lun);
1898                if (sdev) {
1899                        scsi_remove_device(sdev);
1900                        scsi_device_put(sdev);
1901                } else {
1902                        /*
1903                         * We don't expect to get here.  Future commands
1904                         * to this device will get a selection timeout as
1905                         * if the device were gone.
1906                         */
1907                        hpsa_show_dev_msg(KERN_WARNING, h, device,
1908                                        "didn't find device for removal.");
1909                }
1910        } else { /* HBA */
1911
1912                hpsa_remove_sas_device(device);
1913        }
1914}
1915
1916static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1917        struct hpsa_scsi_dev_t *sd[], int nsds)
1918{
1919        /* sd contains scsi3 addresses and devtypes, and inquiry
1920         * data.  This function takes what's in sd to be the current
1921         * reality and updates h->dev[] to reflect that reality.
1922         */
1923        int i, entry, device_change, changes = 0;
1924        struct hpsa_scsi_dev_t *csd;
1925        unsigned long flags;
1926        struct hpsa_scsi_dev_t **added, **removed;
1927        int nadded, nremoved;
1928
1929        /*
1930         * A reset can cause a device status to change
1931         * re-schedule the scan to see what happened.
1932         */
1933        spin_lock_irqsave(&h->reset_lock, flags);
1934        if (h->reset_in_progress) {
1935                h->drv_req_rescan = 1;
1936                spin_unlock_irqrestore(&h->reset_lock, flags);
1937                return;
1938        }
1939        spin_unlock_irqrestore(&h->reset_lock, flags);
1940
1941        added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1942        removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1943
1944        if (!added || !removed) {
1945                dev_warn(&h->pdev->dev, "out of memory in "
1946                        "adjust_hpsa_scsi_table\n");
1947                goto free_and_out;
1948        }
1949
1950        spin_lock_irqsave(&h->devlock, flags);
1951
1952        /* find any devices in h->dev[] that are not in
1953         * sd[] and remove them from h->dev[], and for any
1954         * devices which have changed, remove the old device
1955         * info and add the new device info.
1956         * If minor device attributes change, just update
1957         * the existing device structure.
1958         */
1959        i = 0;
1960        nremoved = 0;
1961        nadded = 0;
1962        while (i < h->ndevices) {
1963                csd = h->dev[i];
1964                device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1965                if (device_change == DEVICE_NOT_FOUND) {
1966                        changes++;
1967                        hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1968                        continue; /* remove ^^^, hence i not incremented */
1969                } else if (device_change == DEVICE_CHANGED) {
1970                        changes++;
1971                        hpsa_scsi_replace_entry(h, i, sd[entry],
1972                                added, &nadded, removed, &nremoved);
1973                        /* Set it to NULL to prevent it from being freed
1974                         * at the bottom of hpsa_update_scsi_devices()
1975                         */
1976                        sd[entry] = NULL;
1977                } else if (device_change == DEVICE_UPDATED) {
1978                        hpsa_scsi_update_entry(h, i, sd[entry]);
1979                }
1980                i++;
1981        }
1982
1983        /* Now, make sure every device listed in sd[] is also
1984         * listed in h->dev[], adding them if they aren't found
1985         */
1986
1987        for (i = 0; i < nsds; i++) {
1988                if (!sd[i]) /* if already added above. */
1989                        continue;
1990
1991                /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1992                 * as the SCSI mid-layer does not handle such devices well.
1993                 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1994                 * at 160Hz, and prevents the system from coming up.
1995                 */
1996                if (sd[i]->volume_offline) {
1997                        hpsa_show_volume_status(h, sd[i]);
1998                        hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1999                        continue;
2000                }
2001
2002                device_change = hpsa_scsi_find_entry(sd[i], h->dev,
2003                                        h->ndevices, &entry);
2004                if (device_change == DEVICE_NOT_FOUND) {
2005                        changes++;
2006                        if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
2007                                break;
2008                        sd[i] = NULL; /* prevent from being freed later. */
2009                } else if (device_change == DEVICE_CHANGED) {
2010                        /* should never happen... */
2011                        changes++;
2012                        dev_warn(&h->pdev->dev,
2013                                "device unexpectedly changed.\n");
2014                        /* but if it does happen, we just ignore that device */
2015                }
2016        }
2017        hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2018
2019        /*
2020         * Now that h->dev[]->phys_disk[] is coherent, we can enable
2021         * any logical drives that need it enabled.
2022         *
2023         * The raid map should be current by now.
2024         *
2025         * We are updating the device list used for I/O requests.
2026         */
2027        for (i = 0; i < h->ndevices; i++) {
2028                if (h->dev[i] == NULL)
2029                        continue;
2030                h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2031        }
2032
2033        spin_unlock_irqrestore(&h->devlock, flags);
2034
2035        /* Monitor devices which are in one of several NOT READY states to be
2036         * brought online later. This must be done without holding h->devlock,
2037         * so don't touch h->dev[]
2038         */
2039        for (i = 0; i < nsds; i++) {
2040                if (!sd[i]) /* if already added above. */
2041                        continue;
2042                if (sd[i]->volume_offline)
2043                        hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2044        }
2045
2046        /* Don't notify scsi mid layer of any changes the first time through
2047         * (or if there are no changes) scsi_scan_host will do it later the
2048         * first time through.
2049         */
2050        if (!changes)
2051                goto free_and_out;
2052
2053        /* Notify scsi mid layer of any removed devices */
2054        for (i = 0; i < nremoved; i++) {
2055                if (removed[i] == NULL)
2056                        continue;
2057                if (removed[i]->expose_device)
2058                        hpsa_remove_device(h, removed[i]);
2059                kfree(removed[i]);
2060                removed[i] = NULL;
2061        }
2062
2063        /* Notify scsi mid layer of any added devices */
2064        for (i = 0; i < nadded; i++) {
2065                int rc = 0;
2066
2067                if (added[i] == NULL)
2068                        continue;
2069                if (!(added[i]->expose_device))
2070                        continue;
2071                rc = hpsa_add_device(h, added[i]);
2072                if (!rc)
2073                        continue;
2074                dev_warn(&h->pdev->dev,
2075                        "addition failed %d, device not added.", rc);
2076                /* now we have to remove it from h->dev,
2077                 * since it didn't get added to scsi mid layer
2078                 */
2079                fixup_botched_add(h, added[i]);
2080                h->drv_req_rescan = 1;
2081        }
2082
2083free_and_out:
2084        kfree(added);
2085        kfree(removed);
2086}
2087
2088/*
2089 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2090 * Assume's h->devlock is held.
2091 */
2092static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2093        int bus, int target, int lun)
2094{
2095        int i;
2096        struct hpsa_scsi_dev_t *sd;
2097
2098        for (i = 0; i < h->ndevices; i++) {
2099                sd = h->dev[i];
2100                if (sd->bus == bus && sd->target == target && sd->lun == lun)
2101                        return sd;
2102        }
2103        return NULL;
2104}
2105
2106static int hpsa_slave_alloc(struct scsi_device *sdev)
2107{
2108        struct hpsa_scsi_dev_t *sd = NULL;
2109        unsigned long flags;
2110        struct ctlr_info *h;
2111
2112        h = sdev_to_hba(sdev);
2113        spin_lock_irqsave(&h->devlock, flags);
2114        if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2115                struct scsi_target *starget;
2116                struct sas_rphy *rphy;
2117
2118                starget = scsi_target(sdev);
2119                rphy = target_to_rphy(starget);
2120                sd = hpsa_find_device_by_sas_rphy(h, rphy);
2121                if (sd) {
2122                        sd->target = sdev_id(sdev);
2123                        sd->lun = sdev->lun;
2124                }
2125        }
2126        if (!sd)
2127                sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2128                                        sdev_id(sdev), sdev->lun);
2129
2130        if (sd && sd->expose_device) {
2131                atomic_set(&sd->ioaccel_cmds_out, 0);
2132                sdev->hostdata = sd;
2133        } else
2134                sdev->hostdata = NULL;
2135        spin_unlock_irqrestore(&h->devlock, flags);
2136        return 0;
2137}
2138
2139/* configure scsi device based on internal per-device structure */
2140#define CTLR_TIMEOUT (120 * HZ)
2141static int hpsa_slave_configure(struct scsi_device *sdev)
2142{
2143        struct hpsa_scsi_dev_t *sd;
2144        int queue_depth;
2145
2146        sd = sdev->hostdata;
2147        sdev->no_uld_attach = !sd || !sd->expose_device;
2148
2149        if (sd) {
2150                sd->was_removed = 0;
2151                queue_depth = sd->queue_depth != 0 ?
2152                                sd->queue_depth : sdev->host->can_queue;
2153                if (sd->external) {
2154                        queue_depth = EXTERNAL_QD;
2155                        sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2156                        blk_queue_rq_timeout(sdev->request_queue,
2157                                                HPSA_EH_PTRAID_TIMEOUT);
2158                }
2159                if (is_hba_lunid(sd->scsi3addr)) {
2160                        sdev->eh_timeout = CTLR_TIMEOUT;
2161                        blk_queue_rq_timeout(sdev->request_queue, CTLR_TIMEOUT);
2162                }
2163        } else {
2164                queue_depth = sdev->host->can_queue;
2165        }
2166
2167        scsi_change_queue_depth(sdev, queue_depth);
2168
2169        return 0;
2170}
2171
2172static void hpsa_slave_destroy(struct scsi_device *sdev)
2173{
2174        struct hpsa_scsi_dev_t *hdev = NULL;
2175
2176        hdev = sdev->hostdata;
2177
2178        if (hdev)
2179                hdev->was_removed = 1;
2180}
2181
2182static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2183{
2184        int i;
2185
2186        if (!h->ioaccel2_cmd_sg_list)
2187                return;
2188        for (i = 0; i < h->nr_cmds; i++) {
2189                kfree(h->ioaccel2_cmd_sg_list[i]);
2190                h->ioaccel2_cmd_sg_list[i] = NULL;
2191        }
2192        kfree(h->ioaccel2_cmd_sg_list);
2193        h->ioaccel2_cmd_sg_list = NULL;
2194}
2195
2196static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2197{
2198        int i;
2199
2200        if (h->chainsize <= 0)
2201                return 0;
2202
2203        h->ioaccel2_cmd_sg_list =
2204                kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2205                                        GFP_KERNEL);
2206        if (!h->ioaccel2_cmd_sg_list)
2207                return -ENOMEM;
2208        for (i = 0; i < h->nr_cmds; i++) {
2209                h->ioaccel2_cmd_sg_list[i] =
2210                        kmalloc_array(h->maxsgentries,
2211                                      sizeof(*h->ioaccel2_cmd_sg_list[i]),
2212                                      GFP_KERNEL);
2213                if (!h->ioaccel2_cmd_sg_list[i])
2214                        goto clean;
2215        }
2216        return 0;
2217
2218clean:
2219        hpsa_free_ioaccel2_sg_chain_blocks(h);
2220        return -ENOMEM;
2221}
2222
2223static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2224{
2225        int i;
2226
2227        if (!h->cmd_sg_list)
2228                return;
2229        for (i = 0; i < h->nr_cmds; i++) {
2230                kfree(h->cmd_sg_list[i]);
2231                h->cmd_sg_list[i] = NULL;
2232        }
2233        kfree(h->cmd_sg_list);
2234        h->cmd_sg_list = NULL;
2235}
2236
2237static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2238{
2239        int i;
2240
2241        if (h->chainsize <= 0)
2242                return 0;
2243
2244        h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2245                                 GFP_KERNEL);
2246        if (!h->cmd_sg_list)
2247                return -ENOMEM;
2248
2249        for (i = 0; i < h->nr_cmds; i++) {
2250                h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2251                                                  sizeof(*h->cmd_sg_list[i]),
2252                                                  GFP_KERNEL);
2253                if (!h->cmd_sg_list[i])
2254                        goto clean;
2255
2256        }
2257        return 0;
2258
2259clean:
2260        hpsa_free_sg_chain_blocks(h);
2261        return -ENOMEM;
2262}
2263
2264static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2265        struct io_accel2_cmd *cp, struct CommandList *c)
2266{
2267        struct ioaccel2_sg_element *chain_block;
2268        u64 temp64;
2269        u32 chain_size;
2270
2271        chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2272        chain_size = le32_to_cpu(cp->sg[0].length);
2273        temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2274                                DMA_TO_DEVICE);
2275        if (dma_mapping_error(&h->pdev->dev, temp64)) {
2276                /* prevent subsequent unmapping */
2277                cp->sg->address = 0;
2278                return -1;
2279        }
2280        cp->sg->address = cpu_to_le64(temp64);
2281        return 0;
2282}
2283
2284static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2285        struct io_accel2_cmd *cp)
2286{
2287        struct ioaccel2_sg_element *chain_sg;
2288        u64 temp64;
2289        u32 chain_size;
2290
2291        chain_sg = cp->sg;
2292        temp64 = le64_to_cpu(chain_sg->address);
2293        chain_size = le32_to_cpu(cp->sg[0].length);
2294        dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2295}
2296
2297static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2298        struct CommandList *c)
2299{
2300        struct SGDescriptor *chain_sg, *chain_block;
2301        u64 temp64;
2302        u32 chain_len;
2303
2304        chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2305        chain_block = h->cmd_sg_list[c->cmdindex];
2306        chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2307        chain_len = sizeof(*chain_sg) *
2308                (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2309        chain_sg->Len = cpu_to_le32(chain_len);
2310        temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2311                                DMA_TO_DEVICE);
2312        if (dma_mapping_error(&h->pdev->dev, temp64)) {
2313                /* prevent subsequent unmapping */
2314                chain_sg->Addr = cpu_to_le64(0);
2315                return -1;
2316        }
2317        chain_sg->Addr = cpu_to_le64(temp64);
2318        return 0;
2319}
2320
2321static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2322        struct CommandList *c)
2323{
2324        struct SGDescriptor *chain_sg;
2325
2326        if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2327                return;
2328
2329        chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2330        dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2331                        le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2332}
2333
2334
2335/* Decode the various types of errors on ioaccel2 path.
2336 * Return 1 for any error that should generate a RAID path retry.
2337 * Return 0 for errors that don't require a RAID path retry.
2338 */
2339static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2340                                        struct CommandList *c,
2341                                        struct scsi_cmnd *cmd,
2342                                        struct io_accel2_cmd *c2,
2343                                        struct hpsa_scsi_dev_t *dev)
2344{
2345        int data_len;
2346        int retry = 0;
2347        u32 ioaccel2_resid = 0;
2348
2349        switch (c2->error_data.serv_response) {
2350        case IOACCEL2_SERV_RESPONSE_COMPLETE:
2351                switch (c2->error_data.status) {
2352                case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2353                        if (cmd)
2354                                cmd->result = 0;
2355                        break;
2356                case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2357                        cmd->result |= SAM_STAT_CHECK_CONDITION;
2358                        if (c2->error_data.data_present !=
2359                                        IOACCEL2_SENSE_DATA_PRESENT) {
2360                                memset(cmd->sense_buffer, 0,
2361                                        SCSI_SENSE_BUFFERSIZE);
2362                                break;
2363                        }
2364                        /* copy the sense data */
2365                        data_len = c2->error_data.sense_data_len;
2366                        if (data_len > SCSI_SENSE_BUFFERSIZE)
2367                                data_len = SCSI_SENSE_BUFFERSIZE;
2368                        if (data_len > sizeof(c2->error_data.sense_data_buff))
2369                                data_len =
2370                                        sizeof(c2->error_data.sense_data_buff);
2371                        memcpy(cmd->sense_buffer,
2372                                c2->error_data.sense_data_buff, data_len);
2373                        retry = 1;
2374                        break;
2375                case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2376                        retry = 1;
2377                        break;
2378                case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2379                        retry = 1;
2380                        break;
2381                case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2382                        retry = 1;
2383                        break;
2384                case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2385                        retry = 1;
2386                        break;
2387                default:
2388                        retry = 1;
2389                        break;
2390                }
2391                break;
2392        case IOACCEL2_SERV_RESPONSE_FAILURE:
2393                switch (c2->error_data.status) {
2394                case IOACCEL2_STATUS_SR_IO_ERROR:
2395                case IOACCEL2_STATUS_SR_IO_ABORTED:
2396                case IOACCEL2_STATUS_SR_OVERRUN:
2397                        retry = 1;
2398                        break;
2399                case IOACCEL2_STATUS_SR_UNDERRUN:
2400                        cmd->result = (DID_OK << 16);           /* host byte */
2401                        ioaccel2_resid = get_unaligned_le32(
2402                                                &c2->error_data.resid_cnt[0]);
2403                        scsi_set_resid(cmd, ioaccel2_resid);
2404                        break;
2405                case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2406                case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2407                case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2408                        /*
2409                         * Did an HBA disk disappear? We will eventually
2410                         * get a state change event from the controller but
2411                         * in the meantime, we need to tell the OS that the
2412                         * HBA disk is no longer there and stop I/O
2413                         * from going down. This allows the potential re-insert
2414                         * of the disk to get the same device node.
2415                         */
2416                        if (dev->physical_device && dev->expose_device) {
2417                                cmd->result = DID_NO_CONNECT << 16;
2418                                dev->removed = 1;
2419                                h->drv_req_rescan = 1;
2420                                dev_warn(&h->pdev->dev,
2421                                        "%s: device is gone!\n", __func__);
2422                        } else
2423                                /*
2424                                 * Retry by sending down the RAID path.
2425                                 * We will get an event from ctlr to
2426                                 * trigger rescan regardless.
2427                                 */
2428                                retry = 1;
2429                        break;
2430                default:
2431                        retry = 1;
2432                }
2433                break;
2434        case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2435                break;
2436        case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2437                break;
2438        case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2439                retry = 1;
2440                break;
2441        case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2442                break;
2443        default:
2444                retry = 1;
2445                break;
2446        }
2447
2448        if (dev->in_reset)
2449                retry = 0;
2450
2451        return retry;   /* retry on raid path? */
2452}
2453
2454static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2455                struct CommandList *c)
2456{
2457        struct hpsa_scsi_dev_t *dev = c->device;
2458
2459        /*
2460         * Reset c->scsi_cmd here so that the reset handler will know
2461         * this command has completed.  Then, check to see if the handler is
2462         * waiting for this command, and, if so, wake it.
2463         */
2464        c->scsi_cmd = SCSI_CMD_IDLE;
2465        mb();   /* Declare command idle before checking for pending events. */
2466        if (dev) {
2467                atomic_dec(&dev->commands_outstanding);
2468                if (dev->in_reset &&
2469                        atomic_read(&dev->commands_outstanding) <= 0)
2470                        wake_up_all(&h->event_sync_wait_queue);
2471        }
2472}
2473
2474static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2475                                      struct CommandList *c)
2476{
2477        hpsa_cmd_resolve_events(h, c);
2478        cmd_tagged_free(h, c);
2479}
2480
2481static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2482                struct CommandList *c, struct scsi_cmnd *cmd)
2483{
2484        hpsa_cmd_resolve_and_free(h, c);
2485        if (cmd && cmd->scsi_done)
2486                cmd->scsi_done(cmd);
2487}
2488
2489static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2490{
2491        INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2492        queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2493}
2494
2495static void process_ioaccel2_completion(struct ctlr_info *h,
2496                struct CommandList *c, struct scsi_cmnd *cmd,
2497                struct hpsa_scsi_dev_t *dev)
2498{
2499        struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2500
2501        /* check for good status */
2502        if (likely(c2->error_data.serv_response == 0 &&
2503                        c2->error_data.status == 0)) {
2504                cmd->result = 0;
2505                return hpsa_cmd_free_and_done(h, c, cmd);
2506        }
2507
2508        /*
2509         * Any RAID offload error results in retry which will use
2510         * the normal I/O path so the controller can handle whatever is
2511         * wrong.
2512         */
2513        if (is_logical_device(dev) &&
2514                c2->error_data.serv_response ==
2515                        IOACCEL2_SERV_RESPONSE_FAILURE) {
2516                if (c2->error_data.status ==
2517                        IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2518                        hpsa_turn_off_ioaccel_for_device(dev);
2519                }
2520
2521                if (dev->in_reset) {
2522                        cmd->result = DID_RESET << 16;
2523                        return hpsa_cmd_free_and_done(h, c, cmd);
2524                }
2525
2526                return hpsa_retry_cmd(h, c);
2527        }
2528
2529        if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2530                return hpsa_retry_cmd(h, c);
2531
2532        return hpsa_cmd_free_and_done(h, c, cmd);
2533}
2534
2535/* Returns 0 on success, < 0 otherwise. */
2536static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2537                                        struct CommandList *cp)
2538{
2539        u8 tmf_status = cp->err_info->ScsiStatus;
2540
2541        switch (tmf_status) {
2542        case CISS_TMF_COMPLETE:
2543                /*
2544                 * CISS_TMF_COMPLETE never happens, instead,
2545                 * ei->CommandStatus == 0 for this case.
2546                 */
2547        case CISS_TMF_SUCCESS:
2548                return 0;
2549        case CISS_TMF_INVALID_FRAME:
2550        case CISS_TMF_NOT_SUPPORTED:
2551        case CISS_TMF_FAILED:
2552        case CISS_TMF_WRONG_LUN:
2553        case CISS_TMF_OVERLAPPED_TAG:
2554                break;
2555        default:
2556                dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2557                                tmf_status);
2558                break;
2559        }
2560        return -tmf_status;
2561}
2562
2563static void complete_scsi_command(struct CommandList *cp)
2564{
2565        struct scsi_cmnd *cmd;
2566        struct ctlr_info *h;
2567        struct ErrorInfo *ei;
2568        struct hpsa_scsi_dev_t *dev;
2569        struct io_accel2_cmd *c2;
2570
2571        u8 sense_key;
2572        u8 asc;      /* additional sense code */
2573        u8 ascq;     /* additional sense code qualifier */
2574        unsigned long sense_data_size;
2575
2576        ei = cp->err_info;
2577        cmd = cp->scsi_cmd;
2578        h = cp->h;
2579
2580        if (!cmd->device) {
2581                cmd->result = DID_NO_CONNECT << 16;
2582                return hpsa_cmd_free_and_done(h, cp, cmd);
2583        }
2584
2585        dev = cmd->device->hostdata;
2586        if (!dev) {
2587                cmd->result = DID_NO_CONNECT << 16;
2588                return hpsa_cmd_free_and_done(h, cp, cmd);
2589        }
2590        c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2591
2592        scsi_dma_unmap(cmd); /* undo the DMA mappings */
2593        if ((cp->cmd_type == CMD_SCSI) &&
2594                (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2595                hpsa_unmap_sg_chain_block(h, cp);
2596
2597        if ((cp->cmd_type == CMD_IOACCEL2) &&
2598                (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2599                hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2600
2601        cmd->result = (DID_OK << 16);           /* host byte */
2602
2603        /* SCSI command has already been cleaned up in SML */
2604        if (dev->was_removed) {
2605                hpsa_cmd_resolve_and_free(h, cp);
2606                return;
2607        }
2608
2609        if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2610                if (dev->physical_device && dev->expose_device &&
2611                        dev->removed) {
2612                        cmd->result = DID_NO_CONNECT << 16;
2613                        return hpsa_cmd_free_and_done(h, cp, cmd);
2614                }
2615                if (likely(cp->phys_disk != NULL))
2616                        atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2617        }
2618
2619        /*
2620         * We check for lockup status here as it may be set for
2621         * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2622         * fail_all_oustanding_cmds()
2623         */
2624        if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2625                /* DID_NO_CONNECT will prevent a retry */
2626                cmd->result = DID_NO_CONNECT << 16;
2627                return hpsa_cmd_free_and_done(h, cp, cmd);
2628        }
2629
2630        if (cp->cmd_type == CMD_IOACCEL2)
2631                return process_ioaccel2_completion(h, cp, cmd, dev);
2632
2633        scsi_set_resid(cmd, ei->ResidualCnt);
2634        if (ei->CommandStatus == 0)
2635                return hpsa_cmd_free_and_done(h, cp, cmd);
2636
2637        /* For I/O accelerator commands, copy over some fields to the normal
2638         * CISS header used below for error handling.
2639         */
2640        if (cp->cmd_type == CMD_IOACCEL1) {
2641                struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2642                cp->Header.SGList = scsi_sg_count(cmd);
2643                cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2644                cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2645                        IOACCEL1_IOFLAGS_CDBLEN_MASK;
2646                cp->Header.tag = c->tag;
2647                memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2648                memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2649
2650                /* Any RAID offload error results in retry which will use
2651                 * the normal I/O path so the controller can handle whatever's
2652                 * wrong.
2653                 */
2654                if (is_logical_device(dev)) {
2655                        if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2656                                dev->offload_enabled = 0;
2657                        return hpsa_retry_cmd(h, cp);
2658                }
2659        }
2660
2661        /* an error has occurred */
2662        switch (ei->CommandStatus) {
2663
2664        case CMD_TARGET_STATUS:
2665                cmd->result |= ei->ScsiStatus;
2666                /* copy the sense data */
2667                if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2668                        sense_data_size = SCSI_SENSE_BUFFERSIZE;
2669                else
2670                        sense_data_size = sizeof(ei->SenseInfo);
2671                if (ei->SenseLen < sense_data_size)
2672                        sense_data_size = ei->SenseLen;
2673                memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2674                if (ei->ScsiStatus)
2675                        decode_sense_data(ei->SenseInfo, sense_data_size,
2676                                &sense_key, &asc, &ascq);
2677                if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2678                        switch (sense_key) {
2679                        case ABORTED_COMMAND:
2680                                cmd->result |= DID_SOFT_ERROR << 16;
2681                                break;
2682                        case UNIT_ATTENTION:
2683                                if (asc == 0x3F && ascq == 0x0E)
2684                                        h->drv_req_rescan = 1;
2685                                break;
2686                        case ILLEGAL_REQUEST:
2687                                if (asc == 0x25 && ascq == 0x00) {
2688                                        dev->removed = 1;
2689                                        cmd->result = DID_NO_CONNECT << 16;
2690                                }
2691                                break;
2692                        }
2693                        break;
2694                }
2695                /* Problem was not a check condition
2696                 * Pass it up to the upper layers...
2697                 */
2698                if (ei->ScsiStatus) {
2699                        dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2700                                "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2701                                "Returning result: 0x%x\n",
2702                                cp, ei->ScsiStatus,
2703                                sense_key, asc, ascq,
2704                                cmd->result);
2705                } else {  /* scsi status is zero??? How??? */
2706                        dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2707                                "Returning no connection.\n", cp),
2708
2709                        /* Ordinarily, this case should never happen,
2710                         * but there is a bug in some released firmware
2711                         * revisions that allows it to happen if, for
2712                         * example, a 4100 backplane loses power and
2713                         * the tape drive is in it.  We assume that
2714                         * it's a fatal error of some kind because we
2715                         * can't show that it wasn't. We will make it
2716                         * look like selection timeout since that is
2717                         * the most common reason for this to occur,
2718                         * and it's severe enough.
2719                         */
2720
2721                        cmd->result = DID_NO_CONNECT << 16;
2722                }
2723                break;
2724
2725        case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2726                break;
2727        case CMD_DATA_OVERRUN:
2728                dev_warn(&h->pdev->dev,
2729                        "CDB %16phN data overrun\n", cp->Request.CDB);
2730                break;
2731        case CMD_INVALID: {
2732                /* print_bytes(cp, sizeof(*cp), 1, 0);
2733                print_cmd(cp); */
2734                /* We get CMD_INVALID if you address a non-existent device
2735                 * instead of a selection timeout (no response).  You will
2736                 * see this if you yank out a drive, then try to access it.
2737                 * This is kind of a shame because it means that any other
2738                 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2739                 * missing target. */
2740                cmd->result = DID_NO_CONNECT << 16;
2741        }
2742                break;
2743        case CMD_PROTOCOL_ERR:
2744                cmd->result = DID_ERROR << 16;
2745                dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2746                                cp->Request.CDB);
2747                break;
2748        case CMD_HARDWARE_ERR:
2749                cmd->result = DID_ERROR << 16;
2750                dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2751                        cp->Request.CDB);
2752                break;
2753        case CMD_CONNECTION_LOST:
2754                cmd->result = DID_ERROR << 16;
2755                dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2756                        cp->Request.CDB);
2757                break;
2758        case CMD_ABORTED:
2759                cmd->result = DID_ABORT << 16;
2760                break;
2761        case CMD_ABORT_FAILED:
2762                cmd->result = DID_ERROR << 16;
2763                dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2764                        cp->Request.CDB);
2765                break;
2766        case CMD_UNSOLICITED_ABORT:
2767                cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2768                dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2769                        cp->Request.CDB);
2770                break;
2771        case CMD_TIMEOUT:
2772                cmd->result = DID_TIME_OUT << 16;
2773                dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2774                        cp->Request.CDB);
2775                break;
2776        case CMD_UNABORTABLE:
2777                cmd->result = DID_ERROR << 16;
2778                dev_warn(&h->pdev->dev, "Command unabortable\n");
2779                break;
2780        case CMD_TMF_STATUS:
2781                if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2782                        cmd->result = DID_ERROR << 16;
2783                break;
2784        case CMD_IOACCEL_DISABLED:
2785                /* This only handles the direct pass-through case since RAID
2786                 * offload is handled above.  Just attempt a retry.
2787                 */
2788                cmd->result = DID_SOFT_ERROR << 16;
2789                dev_warn(&h->pdev->dev,
2790                                "cp %p had HP SSD Smart Path error\n", cp);
2791                break;
2792        default:
2793                cmd->result = DID_ERROR << 16;
2794                dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2795                                cp, ei->CommandStatus);
2796        }
2797
2798        return hpsa_cmd_free_and_done(h, cp, cmd);
2799}
2800
2801static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2802                int sg_used, enum dma_data_direction data_direction)
2803{
2804        int i;
2805
2806        for (i = 0; i < sg_used; i++)
2807                dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2808                                le32_to_cpu(c->SG[i].Len),
2809                                data_direction);
2810}
2811
2812static int hpsa_map_one(struct pci_dev *pdev,
2813                struct CommandList *cp,
2814                unsigned char *buf,
2815                size_t buflen,
2816                enum dma_data_direction data_direction)
2817{
2818        u64 addr64;
2819
2820        if (buflen == 0 || data_direction == DMA_NONE) {
2821                cp->Header.SGList = 0;
2822                cp->Header.SGTotal = cpu_to_le16(0);
2823                return 0;
2824        }
2825
2826        addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2827        if (dma_mapping_error(&pdev->dev, addr64)) {
2828                /* Prevent subsequent unmap of something never mapped */
2829                cp->Header.SGList = 0;
2830                cp->Header.SGTotal = cpu_to_le16(0);
2831                return -1;
2832        }
2833        cp->SG[0].Addr = cpu_to_le64(addr64);
2834        cp->SG[0].Len = cpu_to_le32(buflen);
2835        cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2836        cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2837        cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2838        return 0;
2839}
2840
2841#define NO_TIMEOUT ((unsigned long) -1)
2842#define DEFAULT_TIMEOUT 30000 /* milliseconds */
2843static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2844        struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2845{
2846        DECLARE_COMPLETION_ONSTACK(wait);
2847
2848        c->waiting = &wait;
2849        __enqueue_cmd_and_start_io(h, c, reply_queue);
2850        if (timeout_msecs == NO_TIMEOUT) {
2851                /* TODO: get rid of this no-timeout thing */
2852                wait_for_completion_io(&wait);
2853                return IO_OK;
2854        }
2855        if (!wait_for_completion_io_timeout(&wait,
2856                                        msecs_to_jiffies(timeout_msecs))) {
2857                dev_warn(&h->pdev->dev, "Command timed out.\n");
2858                return -ETIMEDOUT;
2859        }
2860        return IO_OK;
2861}
2862
2863static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2864                                   int reply_queue, unsigned long timeout_msecs)
2865{
2866        if (unlikely(lockup_detected(h))) {
2867                c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2868                return IO_OK;
2869        }
2870        return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2871}
2872
2873static u32 lockup_detected(struct ctlr_info *h)
2874{
2875        int cpu;
2876        u32 rc, *lockup_detected;
2877
2878        cpu = get_cpu();
2879        lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2880        rc = *lockup_detected;
2881        put_cpu();
2882        return rc;
2883}
2884
2885#define MAX_DRIVER_CMD_RETRIES 25
2886static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2887                struct CommandList *c, enum dma_data_direction data_direction,
2888                unsigned long timeout_msecs)
2889{
2890        int backoff_time = 10, retry_count = 0;
2891        int rc;
2892
2893        do {
2894                memset(c->err_info, 0, sizeof(*c->err_info));
2895                rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2896                                                  timeout_msecs);
2897                if (rc)
2898                        break;
2899                retry_count++;
2900                if (retry_count > 3) {
2901                        msleep(backoff_time);
2902                        if (backoff_time < 1000)
2903                                backoff_time *= 2;
2904                }
2905        } while ((check_for_unit_attention(h, c) ||
2906                        check_for_busy(h, c)) &&
2907                        retry_count <= MAX_DRIVER_CMD_RETRIES);
2908        hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2909        if (retry_count > MAX_DRIVER_CMD_RETRIES)
2910                rc = -EIO;
2911        return rc;
2912}
2913
2914static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2915                                struct CommandList *c)
2916{
2917        const u8 *cdb = c->Request.CDB;
2918        const u8 *lun = c->Header.LUN.LunAddrBytes;
2919
2920        dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2921                 txt, lun, cdb);
2922}
2923
2924static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2925                        struct CommandList *cp)
2926{
2927        const struct ErrorInfo *ei = cp->err_info;
2928        struct device *d = &cp->h->pdev->dev;
2929        u8 sense_key, asc, ascq;
2930        int sense_len;
2931
2932        switch (ei->CommandStatus) {
2933        case CMD_TARGET_STATUS:
2934                if (ei->SenseLen > sizeof(ei->SenseInfo))
2935                        sense_len = sizeof(ei->SenseInfo);
2936                else
2937                        sense_len = ei->SenseLen;
2938                decode_sense_data(ei->SenseInfo, sense_len,
2939                                        &sense_key, &asc, &ascq);
2940                hpsa_print_cmd(h, "SCSI status", cp);
2941                if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2942                        dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2943                                sense_key, asc, ascq);
2944                else
2945                        dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2946                if (ei->ScsiStatus == 0)
2947                        dev_warn(d, "SCSI status is abnormally zero.  "
2948                        "(probably indicates selection timeout "
2949                        "reported incorrectly due to a known "
2950                        "firmware bug, circa July, 2001.)\n");
2951                break;
2952        case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2953                break;
2954        case CMD_DATA_OVERRUN:
2955                hpsa_print_cmd(h, "overrun condition", cp);
2956                break;
2957        case CMD_INVALID: {
2958                /* controller unfortunately reports SCSI passthru's
2959                 * to non-existent targets as invalid commands.
2960                 */
2961                hpsa_print_cmd(h, "invalid command", cp);
2962                dev_warn(d, "probably means device no longer present\n");
2963                }
2964                break;
2965        case CMD_PROTOCOL_ERR:
2966                hpsa_print_cmd(h, "protocol error", cp);
2967                break;
2968        case CMD_HARDWARE_ERR:
2969                hpsa_print_cmd(h, "hardware error", cp);
2970                break;
2971        case CMD_CONNECTION_LOST:
2972                hpsa_print_cmd(h, "connection lost", cp);
2973                break;
2974        case CMD_ABORTED:
2975                hpsa_print_cmd(h, "aborted", cp);
2976                break;
2977        case CMD_ABORT_FAILED:
2978                hpsa_print_cmd(h, "abort failed", cp);
2979                break;
2980        case CMD_UNSOLICITED_ABORT:
2981                hpsa_print_cmd(h, "unsolicited abort", cp);
2982                break;
2983        case CMD_TIMEOUT:
2984                hpsa_print_cmd(h, "timed out", cp);
2985                break;
2986        case CMD_UNABORTABLE:
2987                hpsa_print_cmd(h, "unabortable", cp);
2988                break;
2989        case CMD_CTLR_LOCKUP:
2990                hpsa_print_cmd(h, "controller lockup detected", cp);
2991                break;
2992        default:
2993                hpsa_print_cmd(h, "unknown status", cp);
2994                dev_warn(d, "Unknown command status %x\n",
2995                                ei->CommandStatus);
2996        }
2997}
2998
2999static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
3000                                        u8 page, u8 *buf, size_t bufsize)
3001{
3002        int rc = IO_OK;
3003        struct CommandList *c;
3004        struct ErrorInfo *ei;
3005
3006        c = cmd_alloc(h);
3007        if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
3008                        page, scsi3addr, TYPE_CMD)) {
3009                rc = -1;
3010                goto out;
3011        }
3012        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3013                        NO_TIMEOUT);
3014        if (rc)
3015                goto out;
3016        ei = c->err_info;
3017        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3018                hpsa_scsi_interpret_error(h, c);
3019                rc = -1;
3020        }
3021out:
3022        cmd_free(h, c);
3023        return rc;
3024}
3025
3026static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3027                                                u8 *scsi3addr)
3028{
3029        u8 *buf;
3030        u64 sa = 0;
3031        int rc = 0;
3032
3033        buf = kzalloc(1024, GFP_KERNEL);
3034        if (!buf)
3035                return 0;
3036
3037        rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3038                                        buf, 1024);
3039
3040        if (rc)
3041                goto out;
3042
3043        sa = get_unaligned_be64(buf+12);
3044
3045out:
3046        kfree(buf);
3047        return sa;
3048}
3049
3050static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3051                        u16 page, unsigned char *buf,
3052                        unsigned char bufsize)
3053{
3054        int rc = IO_OK;
3055        struct CommandList *c;
3056        struct ErrorInfo *ei;
3057
3058        c = cmd_alloc(h);
3059
3060        if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3061                        page, scsi3addr, TYPE_CMD)) {
3062                rc = -1;
3063                goto out;
3064        }
3065        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3066                        NO_TIMEOUT);
3067        if (rc)
3068                goto out;
3069        ei = c->err_info;
3070        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3071                hpsa_scsi_interpret_error(h, c);
3072                rc = -1;
3073        }
3074out:
3075        cmd_free(h, c);
3076        return rc;
3077}
3078
3079static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3080        u8 reset_type, int reply_queue)
3081{
3082        int rc = IO_OK;
3083        struct CommandList *c;
3084        struct ErrorInfo *ei;
3085
3086        c = cmd_alloc(h);
3087        c->device = dev;
3088
3089        /* fill_cmd can't fail here, no data buffer to map. */
3090        (void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3091        rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3092        if (rc) {
3093                dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3094                goto out;
3095        }
3096        /* no unmap needed here because no data xfer. */
3097
3098        ei = c->err_info;
3099        if (ei->CommandStatus != 0) {
3100                hpsa_scsi_interpret_error(h, c);
3101                rc = -1;
3102        }
3103out:
3104        cmd_free(h, c);
3105        return rc;
3106}
3107
3108static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3109                               struct hpsa_scsi_dev_t *dev,
3110                               unsigned char *scsi3addr)
3111{
3112        int i;
3113        bool match = false;
3114        struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3115        struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3116
3117        if (hpsa_is_cmd_idle(c))
3118                return false;
3119
3120        switch (c->cmd_type) {
3121        case CMD_SCSI:
3122        case CMD_IOCTL_PEND:
3123                match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3124                                sizeof(c->Header.LUN.LunAddrBytes));
3125                break;
3126
3127        case CMD_IOACCEL1:
3128        case CMD_IOACCEL2:
3129                if (c->phys_disk == dev) {
3130                        /* HBA mode match */
3131                        match = true;
3132                } else {
3133                        /* Possible RAID mode -- check each phys dev. */
3134                        /* FIXME:  Do we need to take out a lock here?  If
3135                         * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3136                         * instead. */
3137                        for (i = 0; i < dev->nphysical_disks && !match; i++) {
3138                                /* FIXME: an alternate test might be
3139                                 *
3140                                 * match = dev->phys_disk[i]->ioaccel_handle
3141                                 *              == c2->scsi_nexus;      */
3142                                match = dev->phys_disk[i] == c->phys_disk;
3143                        }
3144                }
3145                break;
3146
3147        case IOACCEL2_TMF:
3148                for (i = 0; i < dev->nphysical_disks && !match; i++) {
3149                        match = dev->phys_disk[i]->ioaccel_handle ==
3150                                        le32_to_cpu(ac->it_nexus);
3151                }
3152                break;
3153
3154        case 0:         /* The command is in the middle of being initialized. */
3155                match = false;
3156                break;
3157
3158        default:
3159                dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3160                        c->cmd_type);
3161                BUG();
3162        }
3163
3164        return match;
3165}
3166
3167static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3168        u8 reset_type, int reply_queue)
3169{
3170        int rc = 0;
3171
3172        /* We can really only handle one reset at a time */
3173        if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3174                dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3175                return -EINTR;
3176        }
3177
3178        rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3179        if (!rc) {
3180                /* incremented by sending the reset request */
3181                atomic_dec(&dev->commands_outstanding);
3182                wait_event(h->event_sync_wait_queue,
3183                        atomic_read(&dev->commands_outstanding) <= 0 ||
3184                        lockup_detected(h));
3185        }
3186
3187        if (unlikely(lockup_detected(h))) {
3188                dev_warn(&h->pdev->dev,
3189                         "Controller lockup detected during reset wait\n");
3190                rc = -ENODEV;
3191        }
3192
3193        if (!rc)
3194                rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3195
3196        mutex_unlock(&h->reset_mutex);
3197        return rc;
3198}
3199
3200static void hpsa_get_raid_level(struct ctlr_info *h,
3201        unsigned char *scsi3addr, unsigned char *raid_level)
3202{
3203        int rc;
3204        unsigned char *buf;
3205
3206        *raid_level = RAID_UNKNOWN;
3207        buf = kzalloc(64, GFP_KERNEL);
3208        if (!buf)
3209                return;
3210
3211        if (!hpsa_vpd_page_supported(h, scsi3addr,
3212                HPSA_VPD_LV_DEVICE_GEOMETRY))
3213                goto exit;
3214
3215        rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3216                HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3217
3218        if (rc == 0)
3219                *raid_level = buf[8];
3220        if (*raid_level > RAID_UNKNOWN)
3221                *raid_level = RAID_UNKNOWN;
3222exit:
3223        kfree(buf);
3224        return;
3225}
3226
3227#define HPSA_MAP_DEBUG
3228#ifdef HPSA_MAP_DEBUG
3229static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3230                                struct raid_map_data *map_buff)
3231{
3232        struct raid_map_disk_data *dd = &map_buff->data[0];
3233        int map, row, col;
3234        u16 map_cnt, row_cnt, disks_per_row;
3235
3236        if (rc != 0)
3237                return;
3238
3239        /* Show details only if debugging has been activated. */
3240        if (h->raid_offload_debug < 2)
3241                return;
3242
3243        dev_info(&h->pdev->dev, "structure_size = %u\n",
3244                                le32_to_cpu(map_buff->structure_size));
3245        dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3246                        le32_to_cpu(map_buff->volume_blk_size));
3247        dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3248                        le64_to_cpu(map_buff->volume_blk_cnt));
3249        dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3250                        map_buff->phys_blk_shift);
3251        dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3252                        map_buff->parity_rotation_shift);
3253        dev_info(&h->pdev->dev, "strip_size = %u\n",
3254                        le16_to_cpu(map_buff->strip_size));
3255        dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3256                        le64_to_cpu(map_buff->disk_starting_blk));
3257        dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3258                        le64_to_cpu(map_buff->disk_blk_cnt));
3259        dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3260                        le16_to_cpu(map_buff->data_disks_per_row));
3261        dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3262                        le16_to_cpu(map_buff->metadata_disks_per_row));
3263        dev_info(&h->pdev->dev, "row_cnt = %u\n",
3264                        le16_to_cpu(map_buff->row_cnt));
3265        dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3266                        le16_to_cpu(map_buff->layout_map_count));
3267        dev_info(&h->pdev->dev, "flags = 0x%x\n",
3268                        le16_to_cpu(map_buff->flags));
3269        dev_info(&h->pdev->dev, "encryption = %s\n",
3270                        le16_to_cpu(map_buff->flags) &
3271                        RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3272        dev_info(&h->pdev->dev, "dekindex = %u\n",
3273                        le16_to_cpu(map_buff->dekindex));
3274        map_cnt = le16_to_cpu(map_buff->layout_map_count);
3275        for (map = 0; map < map_cnt; map++) {
3276                dev_info(&h->pdev->dev, "Map%u:\n", map);
3277                row_cnt = le16_to_cpu(map_buff->row_cnt);
3278                for (row = 0; row < row_cnt; row++) {
3279                        dev_info(&h->pdev->dev, "  Row%u:\n", row);
3280                        disks_per_row =
3281                                le16_to_cpu(map_buff->data_disks_per_row);
3282                        for (col = 0; col < disks_per_row; col++, dd++)
3283                                dev_info(&h->pdev->dev,
3284                                        "    D%02u: h=0x%04x xor=%u,%u\n",
3285                                        col, dd->ioaccel_handle,
3286                                        dd->xor_mult[0], dd->xor_mult[1]);
3287                        disks_per_row =
3288                                le16_to_cpu(map_buff->metadata_disks_per_row);
3289                        for (col = 0; col < disks_per_row; col++, dd++)
3290                                dev_info(&h->pdev->dev,
3291                                        "    M%02u: h=0x%04x xor=%u,%u\n",
3292                                        col, dd->ioaccel_handle,
3293                                        dd->xor_mult[0], dd->xor_mult[1]);
3294                }
3295        }
3296}
3297#else
3298static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3299                        __attribute__((unused)) int rc,
3300                        __attribute__((unused)) struct raid_map_data *map_buff)
3301{
3302}
3303#endif
3304
3305static int hpsa_get_raid_map(struct ctlr_info *h,
3306        unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3307{
3308        int rc = 0;
3309        struct CommandList *c;
3310        struct ErrorInfo *ei;
3311
3312        c = cmd_alloc(h);
3313
3314        if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3315                        sizeof(this_device->raid_map), 0,
3316                        scsi3addr, TYPE_CMD)) {
3317                dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3318                cmd_free(h, c);
3319                return -1;
3320        }
3321        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3322                        NO_TIMEOUT);
3323        if (rc)
3324                goto out;
3325        ei = c->err_info;
3326        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3327                hpsa_scsi_interpret_error(h, c);
3328                rc = -1;
3329                goto out;
3330        }
3331        cmd_free(h, c);
3332
3333        /* @todo in the future, dynamically allocate RAID map memory */
3334        if (le32_to_cpu(this_device->raid_map.structure_size) >
3335                                sizeof(this_device->raid_map)) {
3336                dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3337                rc = -1;
3338        }
3339        hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3340        return rc;
3341out:
3342        cmd_free(h, c);
3343        return rc;
3344}
3345
3346static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3347                unsigned char scsi3addr[], u16 bmic_device_index,
3348                struct bmic_sense_subsystem_info *buf, size_t bufsize)
3349{
3350        int rc = IO_OK;
3351        struct CommandList *c;
3352        struct ErrorInfo *ei;
3353
3354        c = cmd_alloc(h);
3355
3356        rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3357                0, RAID_CTLR_LUNID, TYPE_CMD);
3358        if (rc)
3359                goto out;
3360
3361        c->Request.CDB[2] = bmic_device_index & 0xff;
3362        c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3363
3364        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3365                        NO_TIMEOUT);
3366        if (rc)
3367                goto out;
3368        ei = c->err_info;
3369        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3370                hpsa_scsi_interpret_error(h, c);
3371                rc = -1;
3372        }
3373out:
3374        cmd_free(h, c);
3375        return rc;
3376}
3377
3378static int hpsa_bmic_id_controller(struct ctlr_info *h,
3379        struct bmic_identify_controller *buf, size_t bufsize)
3380{
3381        int rc = IO_OK;
3382        struct CommandList *c;
3383        struct ErrorInfo *ei;
3384
3385        c = cmd_alloc(h);
3386
3387        rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3388                0, RAID_CTLR_LUNID, TYPE_CMD);
3389        if (rc)
3390                goto out;
3391
3392        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3393                        NO_TIMEOUT);
3394        if (rc)
3395                goto out;
3396        ei = c->err_info;
3397        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3398                hpsa_scsi_interpret_error(h, c);
3399                rc = -1;
3400        }
3401out:
3402        cmd_free(h, c);
3403        return rc;
3404}
3405
3406static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3407                unsigned char scsi3addr[], u16 bmic_device_index,
3408                struct bmic_identify_physical_device *buf, size_t bufsize)
3409{
3410        int rc = IO_OK;
3411        struct CommandList *c;
3412        struct ErrorInfo *ei;
3413
3414        c = cmd_alloc(h);
3415        rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3416                0, RAID_CTLR_LUNID, TYPE_CMD);
3417        if (rc)
3418                goto out;
3419
3420        c->Request.CDB[2] = bmic_device_index & 0xff;
3421        c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3422
3423        hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3424                                                NO_TIMEOUT);
3425        ei = c->err_info;
3426        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3427                hpsa_scsi_interpret_error(h, c);
3428                rc = -1;
3429        }
3430out:
3431        cmd_free(h, c);
3432
3433        return rc;
3434}
3435
3436/*
3437 * get enclosure information
3438 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3439 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3440 * Uses id_physical_device to determine the box_index.
3441 */
3442static void hpsa_get_enclosure_info(struct ctlr_info *h,
3443                        unsigned char *scsi3addr,
3444                        struct ReportExtendedLUNdata *rlep, int rle_index,
3445                        struct hpsa_scsi_dev_t *encl_dev)
3446{
3447        int rc = -1;
3448        struct CommandList *c = NULL;
3449        struct ErrorInfo *ei = NULL;
3450        struct bmic_sense_storage_box_params *bssbp = NULL;
3451        struct bmic_identify_physical_device *id_phys = NULL;
3452        struct ext_report_lun_entry *rle;
3453        u16 bmic_device_index = 0;
3454
3455        if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
3456                return;
3457
3458        rle = &rlep->LUN[rle_index];
3459
3460        encl_dev->eli =
3461                hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3462
3463        bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3464
3465        if (encl_dev->target == -1 || encl_dev->lun == -1) {
3466                rc = IO_OK;
3467                goto out;
3468        }
3469
3470        if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3471                rc = IO_OK;
3472                goto out;
3473        }
3474
3475        bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3476        if (!bssbp)
3477                goto out;
3478
3479        id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3480        if (!id_phys)
3481                goto out;
3482
3483        rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3484                                                id_phys, sizeof(*id_phys));
3485        if (rc) {
3486                dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3487                        __func__, encl_dev->external, bmic_device_index);
3488                goto out;
3489        }
3490
3491        c = cmd_alloc(h);
3492
3493        rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3494                        sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3495
3496        if (rc)
3497                goto out;
3498
3499        if (id_phys->phys_connector[1] == 'E')
3500                c->Request.CDB[5] = id_phys->box_index;
3501        else
3502                c->Request.CDB[5] = 0;
3503
3504        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3505                                                NO_TIMEOUT);
3506        if (rc)
3507                goto out;
3508
3509        ei = c->err_info;
3510        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3511                rc = -1;
3512                goto out;
3513        }
3514
3515        encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3516        memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3517                bssbp->phys_connector, sizeof(bssbp->phys_connector));
3518
3519        rc = IO_OK;
3520out:
3521        kfree(bssbp);
3522        kfree(id_phys);
3523
3524        if (c)
3525                cmd_free(h, c);
3526
3527        if (rc != IO_OK)
3528                hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3529                        "Error, could not get enclosure information");
3530}
3531
3532static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3533                                                unsigned char *scsi3addr)
3534{
3535        struct ReportExtendedLUNdata *physdev;
3536        u32 nphysicals;
3537        u64 sa = 0;
3538        int i;
3539
3540        physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3541        if (!physdev)
3542                return 0;
3543
3544        if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3545                dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3546                kfree(physdev);
3547                return 0;
3548        }
3549        nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3550
3551        for (i = 0; i < nphysicals; i++)
3552                if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3553                        sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3554                        break;
3555                }
3556
3557        kfree(physdev);
3558
3559        return sa;
3560}
3561
3562static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3563                                        struct hpsa_scsi_dev_t *dev)
3564{
3565        int rc;
3566        u64 sa = 0;
3567
3568        if (is_hba_lunid(scsi3addr)) {
3569                struct bmic_sense_subsystem_info *ssi;
3570
3571                ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3572                if (!ssi)
3573                        return;
3574
3575                rc = hpsa_bmic_sense_subsystem_information(h,
3576                                        scsi3addr, 0, ssi, sizeof(*ssi));
3577                if (rc == 0) {
3578                        sa = get_unaligned_be64(ssi->primary_world_wide_id);
3579                        h->sas_address = sa;
3580                }
3581
3582                kfree(ssi);
3583        } else
3584                sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3585
3586        dev->sas_address = sa;
3587}
3588
3589static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3590        struct ReportExtendedLUNdata *physdev)
3591{
3592        u32 nphysicals;
3593        int i;
3594
3595        if (h->discovery_polling)
3596                return;
3597
3598        nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3599
3600        for (i = 0; i < nphysicals; i++) {
3601                if (physdev->LUN[i].device_type ==
3602                        BMIC_DEVICE_TYPE_CONTROLLER
3603                        && !is_hba_lunid(physdev->LUN[i].lunid)) {
3604                        dev_info(&h->pdev->dev,
3605                                "External controller present, activate discovery polling and disable rld caching\n");
3606                        hpsa_disable_rld_caching(h);
3607                        h->discovery_polling = 1;
3608                        break;
3609                }
3610        }
3611}
3612
3613/* Get a device id from inquiry page 0x83 */
3614static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3615        unsigned char scsi3addr[], u8 page)
3616{
3617        int rc;
3618        int i;
3619        int pages;
3620        unsigned char *buf, bufsize;
3621
3622        buf = kzalloc(256, GFP_KERNEL);
3623        if (!buf)
3624                return false;
3625
3626        /* Get the size of the page list first */
3627        rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3628                                VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3629                                buf, HPSA_VPD_HEADER_SZ);
3630        if (rc != 0)
3631                goto exit_unsupported;
3632        pages = buf[3];
3633        if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3634                bufsize = pages + HPSA_VPD_HEADER_SZ;
3635        else
3636                bufsize = 255;
3637
3638        /* Get the whole VPD page list */
3639        rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3640                                VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3641                                buf, bufsize);
3642        if (rc != 0)
3643                goto exit_unsupported;
3644
3645        pages = buf[3];
3646        for (i = 1; i <= pages; i++)
3647                if (buf[3 + i] == page)
3648                        goto exit_supported;
3649exit_unsupported:
3650        kfree(buf);
3651        return false;
3652exit_supported:
3653        kfree(buf);
3654        return true;
3655}
3656
3657/*
3658 * Called during a scan operation.
3659 * Sets ioaccel status on the new device list, not the existing device list
3660 *
3661 * The device list used during I/O will be updated later in
3662 * adjust_hpsa_scsi_table.
3663 */
3664static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3665        unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3666{
3667        int rc;
3668        unsigned char *buf;
3669        u8 ioaccel_status;
3670
3671        this_device->offload_config = 0;
3672        this_device->offload_enabled = 0;
3673        this_device->offload_to_be_enabled = 0;
3674
3675        buf = kzalloc(64, GFP_KERNEL);
3676        if (!buf)
3677                return;
3678        if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3679                goto out;
3680        rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3681                        VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3682        if (rc != 0)
3683                goto out;
3684
3685#define IOACCEL_STATUS_BYTE 4
3686#define OFFLOAD_CONFIGURED_BIT 0x01
3687#define OFFLOAD_ENABLED_BIT 0x02
3688        ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3689        this_device->offload_config =
3690                !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3691        if (this_device->offload_config) {
3692                bool offload_enabled =
3693                        !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3694                /*
3695                 * Check to see if offload can be enabled.
3696                 */
3697                if (offload_enabled) {
3698                        rc = hpsa_get_raid_map(h, scsi3addr, this_device);
3699                        if (rc) /* could not load raid_map */
3700                                goto out;
3701                        this_device->offload_to_be_enabled = 1;
3702                }
3703        }
3704
3705out:
3706        kfree(buf);
3707        return;
3708}
3709
3710/* Get the device id from inquiry page 0x83 */
3711static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3712        unsigned char *device_id, int index, int buflen)
3713{
3714        int rc;
3715        unsigned char *buf;
3716
3717        /* Does controller have VPD for device id? */
3718        if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3719                return 1; /* not supported */
3720
3721        buf = kzalloc(64, GFP_KERNEL);
3722        if (!buf)
3723                return -ENOMEM;
3724
3725        rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3726                                        HPSA_VPD_LV_DEVICE_ID, buf, 64);
3727        if (rc == 0) {
3728                if (buflen > 16)
3729                        buflen = 16;
3730                memcpy(device_id, &buf[8], buflen);
3731        }
3732
3733        kfree(buf);
3734
3735        return rc; /*0 - got id,  otherwise, didn't */
3736}
3737
3738static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3739                void *buf, int bufsize,
3740                int extended_response)
3741{
3742        int rc = IO_OK;
3743        struct CommandList *c;
3744        unsigned char scsi3addr[8];
3745        struct ErrorInfo *ei;
3746
3747        c = cmd_alloc(h);
3748
3749        /* address the controller */
3750        memset(scsi3addr, 0, sizeof(scsi3addr));
3751        if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3752                buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3753                rc = -EAGAIN;
3754                goto out;
3755        }
3756        if (extended_response)
3757                c->Request.CDB[1] = extended_response;
3758        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3759                        NO_TIMEOUT);
3760        if (rc)
3761                goto out;
3762        ei = c->err_info;
3763        if (ei->CommandStatus != 0 &&
3764            ei->CommandStatus != CMD_DATA_UNDERRUN) {
3765                hpsa_scsi_interpret_error(h, c);
3766                rc = -EIO;
3767        } else {
3768                struct ReportLUNdata *rld = buf;
3769
3770                if (rld->extended_response_flag != extended_response) {
3771                        if (!h->legacy_board) {
3772                                dev_err(&h->pdev->dev,
3773                                        "report luns requested format %u, got %u\n",
3774                                        extended_response,
3775                                        rld->extended_response_flag);
3776                                rc = -EINVAL;
3777                        } else
3778                                rc = -EOPNOTSUPP;
3779                }
3780        }
3781out:
3782        cmd_free(h, c);
3783        return rc;
3784}
3785
3786static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3787                struct ReportExtendedLUNdata *buf, int bufsize)
3788{
3789        int rc;
3790        struct ReportLUNdata *lbuf;
3791
3792        rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3793                                      HPSA_REPORT_PHYS_EXTENDED);
3794        if (!rc || rc != -EOPNOTSUPP)
3795                return rc;
3796
3797        /* REPORT PHYS EXTENDED is not supported */
3798        lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3799        if (!lbuf)
3800                return -ENOMEM;
3801
3802        rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3803        if (!rc) {
3804                int i;
3805                u32 nphys;
3806
3807                /* Copy ReportLUNdata header */
3808                memcpy(buf, lbuf, 8);
3809                nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3810                for (i = 0; i < nphys; i++)
3811                        memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3812        }
3813        kfree(lbuf);
3814        return rc;
3815}
3816
3817static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3818                struct ReportLUNdata *buf, int bufsize)
3819{
3820        return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3821}
3822
3823static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3824        int bus, int target, int lun)
3825{
3826        device->bus = bus;
3827        device->target = target;
3828        device->lun = lun;
3829}
3830
3831/* Use VPD inquiry to get details of volume status */
3832static int hpsa_get_volume_status(struct ctlr_info *h,
3833                                        unsigned char scsi3addr[])
3834{
3835        int rc;
3836        int status;
3837        int size;
3838        unsigned char *buf;
3839
3840        buf = kzalloc(64, GFP_KERNEL);
3841        if (!buf)
3842                return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3843
3844        /* Does controller have VPD for logical volume status? */
3845        if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3846                goto exit_failed;
3847
3848        /* Get the size of the VPD return buffer */
3849        rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3850                                        buf, HPSA_VPD_HEADER_SZ);
3851        if (rc != 0)
3852                goto exit_failed;
3853        size = buf[3];
3854
3855        /* Now get the whole VPD buffer */
3856        rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3857                                        buf, size + HPSA_VPD_HEADER_SZ);
3858        if (rc != 0)
3859                goto exit_failed;
3860        status = buf[4]; /* status byte */
3861
3862        kfree(buf);
3863        return status;
3864exit_failed:
3865        kfree(buf);
3866        return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3867}
3868
3869/* Determine offline status of a volume.
3870 * Return either:
3871 *  0 (not offline)
3872 *  0xff (offline for unknown reasons)
3873 *  # (integer code indicating one of several NOT READY states
3874 *     describing why a volume is to be kept offline)
3875 */
3876static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3877                                        unsigned char scsi3addr[])
3878{
3879        struct CommandList *c;
3880        unsigned char *sense;
3881        u8 sense_key, asc, ascq;
3882        int sense_len;
3883        int rc, ldstat = 0;
3884#define ASC_LUN_NOT_READY 0x04
3885#define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3886#define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3887
3888        c = cmd_alloc(h);
3889
3890        (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3891        rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3892                                        NO_TIMEOUT);
3893        if (rc) {
3894                cmd_free(h, c);
3895                return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3896        }
3897        sense = c->err_info->SenseInfo;
3898        if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3899                sense_len = sizeof(c->err_info->SenseInfo);
3900        else
3901                sense_len = c->err_info->SenseLen;
3902        decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3903        cmd_free(h, c);
3904
3905        /* Determine the reason for not ready state */
3906        ldstat = hpsa_get_volume_status(h, scsi3addr);
3907
3908        /* Keep volume offline in certain cases: */
3909        switch (ldstat) {
3910        case HPSA_LV_FAILED:
3911        case HPSA_LV_UNDERGOING_ERASE:
3912        case HPSA_LV_NOT_AVAILABLE:
3913        case HPSA_LV_UNDERGOING_RPI:
3914        case HPSA_LV_PENDING_RPI:
3915        case HPSA_LV_ENCRYPTED_NO_KEY:
3916        case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3917        case HPSA_LV_UNDERGOING_ENCRYPTION:
3918        case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3919        case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3920                return ldstat;
3921        case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3922                /* If VPD status page isn't available,
3923                 * use ASC/ASCQ to determine state
3924                 */
3925                if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3926                        (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3927                        return ldstat;
3928                break;
3929        default:
3930                break;
3931        }
3932        return HPSA_LV_OK;
3933}
3934
3935static int hpsa_update_device_info(struct ctlr_info *h,
3936        unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3937        unsigned char *is_OBDR_device)
3938{
3939
3940#define OBDR_SIG_OFFSET 43
3941#define OBDR_TAPE_SIG "$DR-10"
3942#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3943#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3944
3945        unsigned char *inq_buff;
3946        unsigned char *obdr_sig;
3947        int rc = 0;
3948
3949        inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3950        if (!inq_buff) {
3951                rc = -ENOMEM;
3952                goto bail_out;
3953        }
3954
3955        /* Do an inquiry to the device to see what it is. */
3956        if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3957                (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3958                dev_err(&h->pdev->dev,
3959                        "%s: inquiry failed, device will be skipped.\n",
3960                        __func__);
3961                rc = HPSA_INQUIRY_FAILED;
3962                goto bail_out;
3963        }
3964
3965        scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3966        scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3967
3968        this_device->devtype = (inq_buff[0] & 0x1f);
3969        memcpy(this_device->scsi3addr, scsi3addr, 8);
3970        memcpy(this_device->vendor, &inq_buff[8],
3971                sizeof(this_device->vendor));
3972        memcpy(this_device->model, &inq_buff[16],
3973                sizeof(this_device->model));
3974        this_device->rev = inq_buff[2];
3975        memset(this_device->device_id, 0,
3976                sizeof(this_device->device_id));
3977        if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3978                sizeof(this_device->device_id)) < 0) {
3979                dev_err(&h->pdev->dev,
3980                        "hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3981                        h->ctlr, __func__,
3982                        h->scsi_host->host_no,
3983                        this_device->bus, this_device->target,
3984                        this_device->lun,
3985                        scsi_device_type(this_device->devtype),
3986                        this_device->model);
3987                rc = HPSA_LV_FAILED;
3988                goto bail_out;
3989        }
3990
3991        if ((this_device->devtype == TYPE_DISK ||
3992                this_device->devtype == TYPE_ZBC) &&
3993                is_logical_dev_addr_mode(scsi3addr)) {
3994                unsigned char volume_offline;
3995
3996                hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3997                if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3998                        hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3999                volume_offline = hpsa_volume_offline(h, scsi3addr);
4000                if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
4001                    h->legacy_board) {
4002                        /*
4003                         * Legacy boards might not support volume status
4004                         */
4005                        dev_info(&h->pdev->dev,
4006                                 "C0:T%d:L%d Volume status not available, assuming online.\n",
4007                                 this_device->target, this_device->lun);
4008                        volume_offline = 0;
4009                }
4010                this_device->volume_offline = volume_offline;
4011                if (volume_offline == HPSA_LV_FAILED) {
4012                        rc = HPSA_LV_FAILED;
4013                        dev_err(&h->pdev->dev,
4014                                "%s: LV failed, device will be skipped.\n",
4015                                __func__);
4016                        goto bail_out;
4017                }
4018        } else {
4019                this_device->raid_level = RAID_UNKNOWN;
4020                this_device->offload_config = 0;
4021                hpsa_turn_off_ioaccel_for_device(this_device);
4022                this_device->hba_ioaccel_enabled = 0;
4023                this_device->volume_offline = 0;
4024                this_device->queue_depth = h->nr_cmds;
4025        }
4026
4027        if (this_device->external)
4028                this_device->queue_depth = EXTERNAL_QD;
4029
4030        if (is_OBDR_device) {
4031                /* See if this is a One-Button-Disaster-Recovery device
4032                 * by looking for "$DR-10" at offset 43 in inquiry data.
4033                 */
4034                obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4035                *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4036                                        strncmp(obdr_sig, OBDR_TAPE_SIG,
4037                                                OBDR_SIG_LEN) == 0);
4038        }
4039        kfree(inq_buff);
4040        return 0;
4041
4042bail_out:
4043        kfree(inq_buff);
4044        return rc;
4045}
4046
4047/*
4048 * Helper function to assign bus, target, lun mapping of devices.
4049 * Logical drive target and lun are assigned at this time, but
4050 * physical device lun and target assignment are deferred (assigned
4051 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4052*/
4053static void figure_bus_target_lun(struct ctlr_info *h,
4054        u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4055{
4056        u32 lunid = get_unaligned_le32(lunaddrbytes);
4057
4058        if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4059                /* physical device, target and lun filled in later */
4060                if (is_hba_lunid(lunaddrbytes)) {
4061                        int bus = HPSA_HBA_BUS;
4062
4063                        if (!device->rev)
4064                                bus = HPSA_LEGACY_HBA_BUS;
4065                        hpsa_set_bus_target_lun(device,
4066                                        bus, 0, lunid & 0x3fff);
4067                } else
4068                        /* defer target, lun assignment for physical devices */
4069                        hpsa_set_bus_target_lun(device,
4070                                        HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4071                return;
4072        }
4073        /* It's a logical device */
4074        if (device->external) {
4075                hpsa_set_bus_target_lun(device,
4076                        HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4077                        lunid & 0x00ff);
4078                return;
4079        }
4080        hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4081                                0, lunid & 0x3fff);
4082}
4083
4084static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4085        int i, int nphysicals, int nlocal_logicals)
4086{
4087        /* In report logicals, local logicals are listed first,
4088        * then any externals.
4089        */
4090        int logicals_start = nphysicals + (raid_ctlr_position == 0);
4091
4092        if (i == raid_ctlr_position)
4093                return 0;
4094
4095        if (i < logicals_start)
4096                return 0;
4097
4098        /* i is in logicals range, but still within local logicals */
4099        if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4100                return 0;
4101
4102        return 1; /* it's an external lun */
4103}
4104
4105/*
4106 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4107 * logdev.  The number of luns in physdev and logdev are returned in
4108 * *nphysicals and *nlogicals, respectively.
4109 * Returns 0 on success, -1 otherwise.
4110 */
4111static int hpsa_gather_lun_info(struct ctlr_info *h,
4112        struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4113        struct ReportLUNdata *logdev, u32 *nlogicals)
4114{
4115        if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4116                dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4117                return -1;
4118        }
4119        *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4120        if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4121                dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4122                        HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4123                *nphysicals = HPSA_MAX_PHYS_LUN;
4124        }
4125        if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4126                dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4127                return -1;
4128        }
4129        *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4130        /* Reject Logicals in excess of our max capability. */
4131        if (*nlogicals > HPSA_MAX_LUN) {
4132                dev_warn(&h->pdev->dev,
4133                        "maximum logical LUNs (%d) exceeded.  "
4134                        "%d LUNs ignored.\n", HPSA_MAX_LUN,
4135                        *nlogicals - HPSA_MAX_LUN);
4136                *nlogicals = HPSA_MAX_LUN;
4137        }
4138        if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4139                dev_warn(&h->pdev->dev,
4140                        "maximum logical + physical LUNs (%d) exceeded. "
4141                        "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4142                        *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4143                *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4144        }
4145        return 0;
4146}
4147
4148static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4149        int i, int nphysicals, int nlogicals,
4150        struct ReportExtendedLUNdata *physdev_list,
4151        struct ReportLUNdata *logdev_list)
4152{
4153        /* Helper function, figure out where the LUN ID info is coming from
4154         * given index i, lists of physical and logical devices, where in
4155         * the list the raid controller is supposed to appear (first or last)
4156         */
4157
4158        int logicals_start = nphysicals + (raid_ctlr_position == 0);
4159        int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4160
4161        if (i == raid_ctlr_position)
4162                return RAID_CTLR_LUNID;
4163
4164        if (i < logicals_start)
4165                return &physdev_list->LUN[i -
4166                                (raid_ctlr_position == 0)].lunid[0];
4167
4168        if (i < last_device)
4169                return &logdev_list->LUN[i - nphysicals -
4170                        (raid_ctlr_position == 0)][0];
4171        BUG();
4172        return NULL;
4173}
4174
4175/* get physical drive ioaccel handle and queue depth */
4176static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4177                struct hpsa_scsi_dev_t *dev,
4178                struct ReportExtendedLUNdata *rlep, int rle_index,
4179                struct bmic_identify_physical_device *id_phys)
4180{
4181        int rc;
4182        struct ext_report_lun_entry *rle;
4183
4184        if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4185                return;
4186
4187        rle = &rlep->LUN[rle_index];
4188
4189        dev->ioaccel_handle = rle->ioaccel_handle;
4190        if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4191                dev->hba_ioaccel_enabled = 1;
4192        memset(id_phys, 0, sizeof(*id_phys));
4193        rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4194                        GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4195                        sizeof(*id_phys));
4196        if (!rc)
4197                /* Reserve space for FW operations */
4198#define DRIVE_CMDS_RESERVED_FOR_FW 2
4199#define DRIVE_QUEUE_DEPTH 7
4200                dev->queue_depth =
4201                        le16_to_cpu(id_phys->current_queue_depth_limit) -
4202                                DRIVE_CMDS_RESERVED_FOR_FW;
4203        else
4204                dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4205}
4206
4207static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4208        struct ReportExtendedLUNdata *rlep, int rle_index,
4209        struct bmic_identify_physical_device *id_phys)
4210{
4211        struct ext_report_lun_entry *rle;
4212
4213        if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4214                return;
4215
4216        rle = &rlep->LUN[rle_index];
4217
4218        if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4219                this_device->hba_ioaccel_enabled = 1;
4220
4221        memcpy(&this_device->active_path_index,
4222                &id_phys->active_path_number,
4223                sizeof(this_device->active_path_index));
4224        memcpy(&this_device->path_map,
4225                &id_phys->redundant_path_present_map,
4226                sizeof(this_device->path_map));
4227        memcpy(&this_device->box,
4228                &id_phys->alternate_paths_phys_box_on_port,
4229                sizeof(this_device->box));
4230        memcpy(&this_device->phys_connector,
4231                &id_phys->alternate_paths_phys_connector,
4232                sizeof(this_device->phys_connector));
4233        memcpy(&this_device->bay,
4234                &id_phys->phys_bay_in_box,
4235                sizeof(this_device->bay));
4236}
4237
4238/* get number of local logical disks. */
4239static int hpsa_set_local_logical_count(struct ctlr_info *h,
4240        struct bmic_identify_controller *id_ctlr,
4241        u32 *nlocals)
4242{
4243        int rc;
4244
4245        if (!id_ctlr) {
4246                dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4247                        __func__);
4248                return -ENOMEM;
4249        }
4250        memset(id_ctlr, 0, sizeof(*id_ctlr));
4251        rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4252        if (!rc)
4253                if (id_ctlr->configured_logical_drive_count < 255)
4254                        *nlocals = id_ctlr->configured_logical_drive_count;
4255                else
4256                        *nlocals = le16_to_cpu(
4257                                        id_ctlr->extended_logical_unit_count);
4258        else
4259                *nlocals = -1;
4260        return rc;
4261}
4262
4263static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4264{
4265        struct bmic_identify_physical_device *id_phys;
4266        bool is_spare = false;
4267        int rc;
4268
4269        id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4270        if (!id_phys)
4271                return false;
4272
4273        rc = hpsa_bmic_id_physical_device(h,
4274                                        lunaddrbytes,
4275                                        GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4276                                        id_phys, sizeof(*id_phys));
4277        if (rc == 0)
4278                is_spare = (id_phys->more_flags >> 6) & 0x01;
4279
4280        kfree(id_phys);
4281        return is_spare;
4282}
4283
4284#define RPL_DEV_FLAG_NON_DISK                           0x1
4285#define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4286#define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4287
4288#define BMIC_DEVICE_TYPE_ENCLOSURE  6
4289
4290static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4291                                struct ext_report_lun_entry *rle)
4292{
4293        u8 device_flags;
4294        u8 device_type;
4295
4296        if (!MASKED_DEVICE(lunaddrbytes))
4297                return false;
4298
4299        device_flags = rle->device_flags;
4300        device_type = rle->device_type;
4301
4302        if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4303                if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4304                        return false;
4305                return true;
4306        }
4307
4308        if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4309                return false;
4310
4311        if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4312                return false;
4313
4314        /*
4315         * Spares may be spun down, we do not want to
4316         * do an Inquiry to a RAID set spare drive as
4317         * that would have them spun up, that is a
4318         * performance hit because I/O to the RAID device
4319         * stops while the spin up occurs which can take
4320         * over 50 seconds.
4321         */
4322        if (hpsa_is_disk_spare(h, lunaddrbytes))
4323                return true;
4324
4325        return false;
4326}
4327
4328static void hpsa_update_scsi_devices(struct ctlr_info *h)
4329{
4330        /* the idea here is we could get notified
4331         * that some devices have changed, so we do a report
4332         * physical luns and report logical luns cmd, and adjust
4333         * our list of devices accordingly.
4334         *
4335         * The scsi3addr's of devices won't change so long as the
4336         * adapter is not reset.  That means we can rescan and
4337         * tell which devices we already know about, vs. new
4338         * devices, vs.  disappearing devices.
4339         */
4340        struct ReportExtendedLUNdata *physdev_list = NULL;
4341        struct ReportLUNdata *logdev_list = NULL;
4342        struct bmic_identify_physical_device *id_phys = NULL;
4343        struct bmic_identify_controller *id_ctlr = NULL;
4344        u32 nphysicals = 0;
4345        u32 nlogicals = 0;
4346        u32 nlocal_logicals = 0;
4347        u32 ndev_allocated = 0;
4348        struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4349        int ncurrent = 0;
4350        int i, ndevs_to_allocate;
4351        int raid_ctlr_position;
4352        bool physical_device;
4353        DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4354
4355        currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4356        physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4357        logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4358        tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4359        id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4360        id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4361
4362        if (!currentsd || !physdev_list || !logdev_list ||
4363                !tmpdevice || !id_phys || !id_ctlr) {
4364                dev_err(&h->pdev->dev, "out of memory\n");
4365                goto out;
4366        }
4367        memset(lunzerobits, 0, sizeof(lunzerobits));
4368
4369        h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4370
4371        if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4372                        logdev_list, &nlogicals)) {
4373                h->drv_req_rescan = 1;
4374                goto out;
4375        }
4376
4377        /* Set number of local logicals (non PTRAID) */
4378        if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4379                dev_warn(&h->pdev->dev,
4380                        "%s: Can't determine number of local logical devices.\n",
4381                        __func__);
4382        }
4383
4384        /* We might see up to the maximum number of logical and physical disks
4385         * plus external target devices, and a device for the local RAID
4386         * controller.
4387         */
4388        ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4389
4390        hpsa_ext_ctrl_present(h, physdev_list);
4391
4392        /* Allocate the per device structures */
4393        for (i = 0; i < ndevs_to_allocate; i++) {
4394                if (i >= HPSA_MAX_DEVICES) {
4395                        dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4396                                "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4397                                ndevs_to_allocate - HPSA_MAX_DEVICES);
4398                        break;
4399                }
4400
4401                currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4402                if (!currentsd[i]) {
4403                        h->drv_req_rescan = 1;
4404                        goto out;
4405                }
4406                ndev_allocated++;
4407        }
4408
4409        if (is_scsi_rev_5(h))
4410                raid_ctlr_position = 0;
4411        else
4412                raid_ctlr_position = nphysicals + nlogicals;
4413
4414        /* adjust our table of devices */
4415        for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4416                u8 *lunaddrbytes, is_OBDR = 0;
4417                int rc = 0;
4418                int phys_dev_index = i - (raid_ctlr_position == 0);
4419                bool skip_device = false;
4420
4421                memset(tmpdevice, 0, sizeof(*tmpdevice));
4422
4423                physical_device = i < nphysicals + (raid_ctlr_position == 0);
4424
4425                /* Figure out where the LUN ID info is coming from */
4426                lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4427                        i, nphysicals, nlogicals, physdev_list, logdev_list);
4428
4429                /* Determine if this is a lun from an external target array */
4430                tmpdevice->external =
4431                        figure_external_status(h, raid_ctlr_position, i,
4432                                                nphysicals, nlocal_logicals);
4433
4434                /*
4435                 * Skip over some devices such as a spare.
4436                 */
4437                if (phys_dev_index >= 0 && !tmpdevice->external &&
4438                        physical_device) {
4439                        skip_device = hpsa_skip_device(h, lunaddrbytes,
4440                                        &physdev_list->LUN[phys_dev_index]);
4441                        if (skip_device)
4442                                continue;
4443                }
4444
4445                /* Get device type, vendor, model, device id, raid_map */
4446                rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4447                                                        &is_OBDR);
4448                if (rc == -ENOMEM) {
4449                        dev_warn(&h->pdev->dev,
4450                                "Out of memory, rescan deferred.\n");
4451                        h->drv_req_rescan = 1;
4452                        goto out;
4453                }
4454                if (rc) {
4455                        h->drv_req_rescan = 1;
4456                        continue;
4457                }
4458
4459                figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4460                this_device = currentsd[ncurrent];
4461
4462                *this_device = *tmpdevice;
4463                this_device->physical_device = physical_device;
4464
4465                /*
4466                 * Expose all devices except for physical devices that
4467                 * are masked.
4468                 */
4469                if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4470                        this_device->expose_device = 0;
4471                else
4472                        this_device->expose_device = 1;
4473
4474
4475                /*
4476                 * Get the SAS address for physical devices that are exposed.
4477                 */
4478                if (this_device->physical_device && this_device->expose_device)
4479                        hpsa_get_sas_address(h, lunaddrbytes, this_device);
4480
4481                switch (this_device->devtype) {
4482                case TYPE_ROM:
4483                        /* We don't *really* support actual CD-ROM devices,
4484                         * just "One Button Disaster Recovery" tape drive
4485                         * which temporarily pretends to be a CD-ROM drive.
4486                         * So we check that the device is really an OBDR tape
4487                         * device by checking for "$DR-10" in bytes 43-48 of
4488                         * the inquiry data.
4489                         */
4490                        if (is_OBDR)
4491                                ncurrent++;
4492                        break;
4493                case TYPE_DISK:
4494                case TYPE_ZBC:
4495                        if (this_device->physical_device) {
4496                                /* The disk is in HBA mode. */
4497                                /* Never use RAID mapper in HBA mode. */
4498                                this_device->offload_enabled = 0;
4499                                hpsa_get_ioaccel_drive_info(h, this_device,
4500                                        physdev_list, phys_dev_index, id_phys);
4501                                hpsa_get_path_info(this_device,
4502                                        physdev_list, phys_dev_index, id_phys);
4503                        }
4504                        ncurrent++;
4505                        break;
4506                case TYPE_TAPE:
4507                case TYPE_MEDIUM_CHANGER:
4508                        ncurrent++;
4509                        break;
4510                case TYPE_ENCLOSURE:
4511                        if (!this_device->external)
4512                                hpsa_get_enclosure_info(h, lunaddrbytes,
4513                                                physdev_list, phys_dev_index,
4514                                                this_device);
4515                        ncurrent++;
4516                        break;
4517                case TYPE_RAID:
4518                        /* Only present the Smartarray HBA as a RAID controller.
4519                         * If it's a RAID controller other than the HBA itself
4520                         * (an external RAID controller, MSA500 or similar)
4521                         * don't present it.
4522                         */
4523                        if (!is_hba_lunid(lunaddrbytes))
4524                                break;
4525                        ncurrent++;
4526                        break;
4527                default:
4528                        break;
4529                }
4530                if (ncurrent >= HPSA_MAX_DEVICES)
4531                        break;
4532        }
4533
4534        if (h->sas_host == NULL) {
4535                int rc = 0;
4536
4537                rc = hpsa_add_sas_host(h);
4538                if (rc) {
4539                        dev_warn(&h->pdev->dev,
4540                                "Could not add sas host %d\n", rc);
4541                        goto out;
4542                }
4543        }
4544
4545        adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4546out:
4547        kfree(tmpdevice);
4548        for (i = 0; i < ndev_allocated; i++)
4549                kfree(currentsd[i]);
4550        kfree(currentsd);
4551        kfree(physdev_list);
4552        kfree(logdev_list);
4553        kfree(id_ctlr);
4554        kfree(id_phys);
4555}
4556
4557static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4558                                   struct scatterlist *sg)
4559{
4560        u64 addr64 = (u64) sg_dma_address(sg);
4561        unsigned int len = sg_dma_len(sg);
4562
4563        desc->Addr = cpu_to_le64(addr64);
4564        desc->Len = cpu_to_le32(len);
4565        desc->Ext = 0;
4566}
4567
4568/*
4569 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4570 * dma mapping  and fills in the scatter gather entries of the
4571 * hpsa command, cp.
4572 */
4573static int hpsa_scatter_gather(struct ctlr_info *h,
4574                struct CommandList *cp,
4575                struct scsi_cmnd *cmd)
4576{
4577        struct scatterlist *sg;
4578        int use_sg, i, sg_limit, chained;
4579        struct SGDescriptor *curr_sg;
4580
4581        BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4582
4583        use_sg = scsi_dma_map(cmd);
4584        if (use_sg < 0)
4585                return use_sg;
4586
4587        if (!use_sg)
4588                goto sglist_finished;
4589
4590        /*
4591         * If the number of entries is greater than the max for a single list,
4592         * then we have a chained list; we will set up all but one entry in the
4593         * first list (the last entry is saved for link information);
4594         * otherwise, we don't have a chained list and we'll set up at each of
4595         * the entries in the one list.
4596         */
4597        curr_sg = cp->SG;
4598        chained = use_sg > h->max_cmd_sg_entries;
4599        sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4600        scsi_for_each_sg(cmd, sg, sg_limit, i) {
4601                hpsa_set_sg_descriptor(curr_sg, sg);
4602                curr_sg++;
4603        }
4604
4605        if (chained) {
4606                /*
4607                 * Continue with the chained list.  Set curr_sg to the chained
4608                 * list.  Modify the limit to the total count less the entries
4609                 * we've already set up.  Resume the scan at the list entry
4610                 * where the previous loop left off.
4611                 */
4612                curr_sg = h->cmd_sg_list[cp->cmdindex];
4613                sg_limit = use_sg - sg_limit;
4614                for_each_sg(sg, sg, sg_limit, i) {
4615                        hpsa_set_sg_descriptor(curr_sg, sg);
4616                        curr_sg++;
4617                }
4618        }
4619
4620        /* Back the pointer up to the last entry and mark it as "last". */
4621        (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4622
4623        if (use_sg + chained > h->maxSG)
4624                h->maxSG = use_sg + chained;
4625
4626        if (chained) {
4627                cp->Header.SGList = h->max_cmd_sg_entries;
4628                cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4629                if (hpsa_map_sg_chain_block(h, cp)) {
4630                        scsi_dma_unmap(cmd);
4631                        return -1;
4632                }
4633                return 0;
4634        }
4635
4636sglist_finished:
4637
4638        cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4639        cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4640        return 0;
4641}
4642
4643static inline void warn_zero_length_transfer(struct ctlr_info *h,
4644                                                u8 *cdb, int cdb_len,
4645                                                const char *func)
4646{
4647        dev_warn(&h->pdev->dev,
4648                 "%s: Blocking zero-length request: CDB:%*phN\n",
4649                 func, cdb_len, cdb);
4650}
4651
4652#define IO_ACCEL_INELIGIBLE 1
4653/* zero-length transfers trigger hardware errors. */
4654static bool is_zero_length_transfer(u8 *cdb)
4655{
4656        u32 block_cnt;
4657
4658        /* Block zero-length transfer sizes on certain commands. */
4659        switch (cdb[0]) {
4660        case READ_10:
4661        case WRITE_10:
4662        case VERIFY:            /* 0x2F */
4663        case WRITE_VERIFY:      /* 0x2E */
4664                block_cnt = get_unaligned_be16(&cdb[7]);
4665                break;
4666        case READ_12:
4667        case WRITE_12:
4668        case VERIFY_12: /* 0xAF */
4669        case WRITE_VERIFY_12:   /* 0xAE */
4670                block_cnt = get_unaligned_be32(&cdb[6]);
4671                break;
4672        case READ_16:
4673        case WRITE_16:
4674        case VERIFY_16:         /* 0x8F */
4675                block_cnt = get_unaligned_be32(&cdb[10]);
4676                break;
4677        default:
4678                return false;
4679        }
4680
4681        return block_cnt == 0;
4682}
4683
4684static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4685{
4686        int is_write = 0;
4687        u32 block;
4688        u32 block_cnt;
4689
4690        /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4691        switch (cdb[0]) {
4692        case WRITE_6:
4693        case WRITE_12:
4694                is_write = 1;
4695                fallthrough;
4696        case READ_6:
4697        case READ_12:
4698                if (*cdb_len == 6) {
4699                        block = (((cdb[1] & 0x1F) << 16) |
4700                                (cdb[2] << 8) |
4701                                cdb[3]);
4702                        block_cnt = cdb[4];
4703                        if (block_cnt == 0)
4704                                block_cnt = 256;
4705                } else {
4706                        BUG_ON(*cdb_len != 12);
4707                        block = get_unaligned_be32(&cdb[2]);
4708                        block_cnt = get_unaligned_be32(&cdb[6]);
4709                }
4710                if (block_cnt > 0xffff)
4711                        return IO_ACCEL_INELIGIBLE;
4712
4713                cdb[0] = is_write ? WRITE_10 : READ_10;
4714                cdb[1] = 0;
4715                cdb[2] = (u8) (block >> 24);
4716                cdb[3] = (u8) (block >> 16);
4717                cdb[4] = (u8) (block >> 8);
4718                cdb[5] = (u8) (block);
4719                cdb[6] = 0;
4720                cdb[7] = (u8) (block_cnt >> 8);
4721                cdb[8] = (u8) (block_cnt);
4722                cdb[9] = 0;
4723                *cdb_len = 10;
4724                break;
4725        }
4726        return 0;
4727}
4728
4729static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4730        struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4731        u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4732{
4733        struct scsi_cmnd *cmd = c->scsi_cmd;
4734        struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4735        unsigned int len;
4736        unsigned int total_len = 0;
4737        struct scatterlist *sg;
4738        u64 addr64;
4739        int use_sg, i;
4740        struct SGDescriptor *curr_sg;
4741        u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4742
4743        /* TODO: implement chaining support */
4744        if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4745                atomic_dec(&phys_disk->ioaccel_cmds_out);
4746                return IO_ACCEL_INELIGIBLE;
4747        }
4748
4749        BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4750
4751        if (is_zero_length_transfer(cdb)) {
4752                warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4753                atomic_dec(&phys_disk->ioaccel_cmds_out);
4754                return IO_ACCEL_INELIGIBLE;
4755        }
4756
4757        if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4758                atomic_dec(&phys_disk->ioaccel_cmds_out);
4759                return IO_ACCEL_INELIGIBLE;
4760        }
4761
4762        c->cmd_type = CMD_IOACCEL1;
4763
4764        /* Adjust the DMA address to point to the accelerated command buffer */
4765        c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4766                                (c->cmdindex * sizeof(*cp));
4767        BUG_ON(c->busaddr & 0x0000007F);
4768
4769        use_sg = scsi_dma_map(cmd);
4770        if (use_sg < 0) {
4771                atomic_dec(&phys_disk->ioaccel_cmds_out);
4772                return use_sg;
4773        }
4774
4775        if (use_sg) {
4776                curr_sg = cp->SG;
4777                scsi_for_each_sg(cmd, sg, use_sg, i) {
4778                        addr64 = (u64) sg_dma_address(sg);
4779                        len  = sg_dma_len(sg);
4780                        total_len += len;
4781                        curr_sg->Addr = cpu_to_le64(addr64);
4782                        curr_sg->Len = cpu_to_le32(len);
4783                        curr_sg->Ext = cpu_to_le32(0);
4784                        curr_sg++;
4785                }
4786                (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4787
4788                switch (cmd->sc_data_direction) {
4789                case DMA_TO_DEVICE:
4790                        control |= IOACCEL1_CONTROL_DATA_OUT;
4791                        break;
4792                case DMA_FROM_DEVICE:
4793                        control |= IOACCEL1_CONTROL_DATA_IN;
4794                        break;
4795                case DMA_NONE:
4796                        control |= IOACCEL1_CONTROL_NODATAXFER;
4797                        break;
4798                default:
4799                        dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4800                        cmd->sc_data_direction);
4801                        BUG();
4802                        break;
4803                }
4804        } else {
4805                control |= IOACCEL1_CONTROL_NODATAXFER;
4806        }
4807
4808        c->Header.SGList = use_sg;
4809        /* Fill out the command structure to submit */
4810        cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4811        cp->transfer_len = cpu_to_le32(total_len);
4812        cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4813                        (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4814        cp->control = cpu_to_le32(control);
4815        memcpy(cp->CDB, cdb, cdb_len);
4816        memcpy(cp->CISS_LUN, scsi3addr, 8);
4817        /* Tag was already set at init time. */
4818        enqueue_cmd_and_start_io(h, c);
4819        return 0;
4820}
4821
4822/*
4823 * Queue a command directly to a device behind the controller using the
4824 * I/O accelerator path.
4825 */
4826static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4827        struct CommandList *c)
4828{
4829        struct scsi_cmnd *cmd = c->scsi_cmd;
4830        struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4831
4832        if (!dev)
4833                return -1;
4834
4835        c->phys_disk = dev;
4836
4837        if (dev->in_reset)
4838                return -1;
4839
4840        return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4841                cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4842}
4843
4844/*
4845 * Set encryption parameters for the ioaccel2 request
4846 */
4847static void set_encrypt_ioaccel2(struct ctlr_info *h,
4848        struct CommandList *c, struct io_accel2_cmd *cp)
4849{
4850        struct scsi_cmnd *cmd = c->scsi_cmd;
4851        struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4852        struct raid_map_data *map = &dev->raid_map;
4853        u64 first_block;
4854
4855        /* Are we doing encryption on this device */
4856        if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4857                return;
4858        /* Set the data encryption key index. */
4859        cp->dekindex = map->dekindex;
4860
4861        /* Set the encryption enable flag, encoded into direction field. */
4862        cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4863
4864        /* Set encryption tweak values based on logical block address
4865         * If block size is 512, tweak value is LBA.
4866         * For other block sizes, tweak is (LBA * block size)/ 512)
4867         */
4868        switch (cmd->cmnd[0]) {
4869        /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4870        case READ_6:
4871        case WRITE_6:
4872                first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4873                                (cmd->cmnd[2] << 8) |
4874                                cmd->cmnd[3]);
4875                break;
4876        case WRITE_10:
4877        case READ_10:
4878        /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4879        case WRITE_12:
4880        case READ_12:
4881                first_block = get_unaligned_be32(&cmd->cmnd[2]);
4882                break;
4883        case WRITE_16:
4884        case READ_16:
4885                first_block = get_unaligned_be64(&cmd->cmnd[2]);
4886                break;
4887        default:
4888                dev_err(&h->pdev->dev,
4889                        "ERROR: %s: size (0x%x) not supported for encryption\n",
4890                        __func__, cmd->cmnd[0]);
4891                BUG();
4892                break;
4893        }
4894
4895        if (le32_to_cpu(map->volume_blk_size) != 512)
4896                first_block = first_block *
4897                                le32_to_cpu(map->volume_blk_size)/512;
4898
4899        cp->tweak_lower = cpu_to_le32(first_block);
4900        cp->tweak_upper = cpu_to_le32(first_block >> 32);
4901}
4902
4903static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4904        struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4905        u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4906{
4907        struct scsi_cmnd *cmd = c->scsi_cmd;
4908        struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4909        struct ioaccel2_sg_element *curr_sg;
4910        int use_sg, i;
4911        struct scatterlist *sg;
4912        u64 addr64;
4913        u32 len;
4914        u32 total_len = 0;
4915
4916        if (!cmd->device)
4917                return -1;
4918
4919        if (!cmd->device->hostdata)
4920                return -1;
4921
4922        BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4923
4924        if (is_zero_length_transfer(cdb)) {
4925                warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4926                atomic_dec(&phys_disk->ioaccel_cmds_out);
4927                return IO_ACCEL_INELIGIBLE;
4928        }
4929
4930        if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4931                atomic_dec(&phys_disk->ioaccel_cmds_out);
4932                return IO_ACCEL_INELIGIBLE;
4933        }
4934
4935        c->cmd_type = CMD_IOACCEL2;
4936        /* Adjust the DMA address to point to the accelerated command buffer */
4937        c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4938                                (c->cmdindex * sizeof(*cp));
4939        BUG_ON(c->busaddr & 0x0000007F);
4940
4941        memset(cp, 0, sizeof(*cp));
4942        cp->IU_type = IOACCEL2_IU_TYPE;
4943
4944        use_sg = scsi_dma_map(cmd);
4945        if (use_sg < 0) {
4946                atomic_dec(&phys_disk->ioaccel_cmds_out);
4947                return use_sg;
4948        }
4949
4950        if (use_sg) {
4951                curr_sg = cp->sg;
4952                if (use_sg > h->ioaccel_maxsg) {
4953                        addr64 = le64_to_cpu(
4954                                h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4955                        curr_sg->address = cpu_to_le64(addr64);
4956                        curr_sg->length = 0;
4957                        curr_sg->reserved[0] = 0;
4958                        curr_sg->reserved[1] = 0;
4959                        curr_sg->reserved[2] = 0;
4960                        curr_sg->chain_indicator = IOACCEL2_CHAIN;
4961
4962                        curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4963                }
4964                scsi_for_each_sg(cmd, sg, use_sg, i) {
4965                        addr64 = (u64) sg_dma_address(sg);
4966                        len  = sg_dma_len(sg);
4967                        total_len += len;
4968                        curr_sg->address = cpu_to_le64(addr64);
4969                        curr_sg->length = cpu_to_le32(len);
4970                        curr_sg->reserved[0] = 0;
4971                        curr_sg->reserved[1] = 0;
4972                        curr_sg->reserved[2] = 0;
4973                        curr_sg->chain_indicator = 0;
4974                        curr_sg++;
4975                }
4976
4977                /*
4978                 * Set the last s/g element bit
4979                 */
4980                (curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4981
4982                switch (cmd->sc_data_direction) {
4983                case DMA_TO_DEVICE:
4984                        cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4985                        cp->direction |= IOACCEL2_DIR_DATA_OUT;
4986                        break;
4987                case DMA_FROM_DEVICE:
4988                        cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4989                        cp->direction |= IOACCEL2_DIR_DATA_IN;
4990                        break;
4991                case DMA_NONE:
4992                        cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4993                        cp->direction |= IOACCEL2_DIR_NO_DATA;
4994                        break;
4995                default:
4996                        dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4997                                cmd->sc_data_direction);
4998                        BUG();
4999                        break;
5000                }
5001        } else {
5002                cp->direction &= ~IOACCEL2_DIRECTION_MASK;
5003                cp->direction |= IOACCEL2_DIR_NO_DATA;
5004        }
5005
5006        /* Set encryption parameters, if necessary */
5007        set_encrypt_ioaccel2(h, c, cp);
5008
5009        cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
5010        cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5011        memcpy(cp->cdb, cdb, sizeof(cp->cdb));
5012
5013        cp->data_len = cpu_to_le32(total_len);
5014        cp->err_ptr = cpu_to_le64(c->busaddr +
5015                        offsetof(struct io_accel2_cmd, error_data));
5016        cp->err_len = cpu_to_le32(sizeof(cp->error_data));
5017
5018        /* fill in sg elements */
5019        if (use_sg > h->ioaccel_maxsg) {
5020                cp->sg_count = 1;
5021                cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
5022                if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
5023                        atomic_dec(&phys_disk->ioaccel_cmds_out);
5024                        scsi_dma_unmap(cmd);
5025                        return -1;
5026                }
5027        } else
5028                cp->sg_count = (u8) use_sg;
5029
5030        if (phys_disk->in_reset) {
5031                cmd->result = DID_RESET << 16;
5032                return -1;
5033        }
5034
5035        enqueue_cmd_and_start_io(h, c);
5036        return 0;
5037}
5038
5039/*
5040 * Queue a command to the correct I/O accelerator path.
5041 */
5042static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5043        struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5044        u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5045{
5046        if (!c->scsi_cmd->device)
5047                return -1;
5048
5049        if (!c->scsi_cmd->device->hostdata)
5050                return -1;
5051
5052        if (phys_disk->in_reset)
5053                return -1;
5054
5055        /* Try to honor the device's queue depth */
5056        if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5057                                        phys_disk->queue_depth) {
5058                atomic_dec(&phys_disk->ioaccel_cmds_out);
5059                return IO_ACCEL_INELIGIBLE;
5060        }
5061        if (h->transMethod & CFGTBL_Trans_io_accel1)
5062                return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5063                                                cdb, cdb_len, scsi3addr,
5064                                                phys_disk);
5065        else
5066                return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5067                                                cdb, cdb_len, scsi3addr,
5068                                                phys_disk);
5069}
5070
5071static void raid_map_helper(struct raid_map_data *map,
5072                int offload_to_mirror, u32 *map_index, u32 *current_group)
5073{
5074        if (offload_to_mirror == 0)  {
5075                /* use physical disk in the first mirrored group. */
5076                *map_index %= le16_to_cpu(map->data_disks_per_row);
5077                return;
5078        }
5079        do {
5080                /* determine mirror group that *map_index indicates */
5081                *current_group = *map_index /
5082                        le16_to_cpu(map->data_disks_per_row);
5083                if (offload_to_mirror == *current_group)
5084                        continue;
5085                if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5086                        /* select map index from next group */
5087                        *map_index += le16_to_cpu(map->data_disks_per_row);
5088                        (*current_group)++;
5089                } else {
5090                        /* select map index from first group */
5091                        *map_index %= le16_to_cpu(map->data_disks_per_row);
5092                        *current_group = 0;
5093                }
5094        } while (offload_to_mirror != *current_group);
5095}
5096
5097/*
5098 * Attempt to perform offload RAID mapping for a logical volume I/O.
5099 */
5100static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5101        struct CommandList *c)
5102{
5103        struct scsi_cmnd *cmd = c->scsi_cmd;
5104        struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5105        struct raid_map_data *map = &dev->raid_map;
5106        struct raid_map_disk_data *dd = &map->data[0];
5107        int is_write = 0;
5108        u32 map_index;
5109        u64 first_block, last_block;
5110        u32 block_cnt;
5111        u32 blocks_per_row;
5112        u64 first_row, last_row;
5113        u32 first_row_offset, last_row_offset;
5114        u32 first_column, last_column;
5115        u64 r0_first_row, r0_last_row;
5116        u32 r5or6_blocks_per_row;
5117        u64 r5or6_first_row, r5or6_last_row;
5118        u32 r5or6_first_row_offset, r5or6_last_row_offset;
5119        u32 r5or6_first_column, r5or6_last_column;
5120        u32 total_disks_per_row;
5121        u32 stripesize;
5122        u32 first_group, last_group, current_group;
5123        u32 map_row;
5124        u32 disk_handle;
5125        u64 disk_block;
5126        u32 disk_block_cnt;
5127        u8 cdb[16];
5128        u8 cdb_len;
5129        u16 strip_size;
5130#if BITS_PER_LONG == 32
5131        u64 tmpdiv;
5132#endif
5133        int offload_to_mirror;
5134
5135        if (!dev)
5136                return -1;
5137
5138        if (dev->in_reset)
5139                return -1;
5140
5141        /* check for valid opcode, get LBA and block count */
5142        switch (cmd->cmnd[0]) {
5143        case WRITE_6:
5144                is_write = 1;
5145                fallthrough;
5146        case READ_6:
5147                first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5148                                (cmd->cmnd[2] << 8) |
5149                                cmd->cmnd[3]);
5150                block_cnt = cmd->cmnd[4];
5151                if (block_cnt == 0)
5152                        block_cnt = 256;
5153                break;
5154        case WRITE_10:
5155                is_write = 1;
5156                fallthrough;
5157        case READ_10:
5158                first_block =
5159                        (((u64) cmd->cmnd[2]) << 24) |
5160                        (((u64) cmd->cmnd[3]) << 16) |
5161                        (((u64) cmd->cmnd[4]) << 8) |
5162                        cmd->cmnd[5];
5163                block_cnt =
5164                        (((u32) cmd->cmnd[7]) << 8) |
5165                        cmd->cmnd[8];
5166                break;
5167        case WRITE_12:
5168                is_write = 1;
5169                fallthrough;
5170        case READ_12:
5171                first_block =
5172                        (((u64) cmd->cmnd[2]) << 24) |
5173                        (((u64) cmd->cmnd[3]) << 16) |
5174                        (((u64) cmd->cmnd[4]) << 8) |
5175                        cmd->cmnd[5];
5176                block_cnt =
5177                        (((u32) cmd->cmnd[6]) << 24) |
5178                        (((u32) cmd->cmnd[7]) << 16) |
5179                        (((u32) cmd->cmnd[8]) << 8) |
5180                cmd->cmnd[9];
5181                break;
5182        case WRITE_16:
5183                is_write = 1;
5184                fallthrough;
5185        case READ_16:
5186                first_block =
5187                        (((u64) cmd->cmnd[2]) << 56) |
5188                        (((u64) cmd->cmnd[3]) << 48) |
5189                        (((u64) cmd->cmnd[4]) << 40) |
5190                        (((u64) cmd->cmnd[5]) << 32) |
5191                        (((u64) cmd->cmnd[6]) << 24) |
5192                        (((u64) cmd->cmnd[7]) << 16) |
5193                        (((u64) cmd->cmnd[8]) << 8) |
5194                        cmd->cmnd[9];
5195                block_cnt =
5196                        (((u32) cmd->cmnd[10]) << 24) |
5197                        (((u32) cmd->cmnd[11]) << 16) |
5198                        (((u32) cmd->cmnd[12]) << 8) |
5199                        cmd->cmnd[13];
5200                break;
5201        default:
5202                return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5203        }
5204        last_block = first_block + block_cnt - 1;
5205
5206        /* check for write to non-RAID-0 */
5207        if (is_write && dev->raid_level != 0)
5208                return IO_ACCEL_INELIGIBLE;
5209
5210        /* check for invalid block or wraparound */
5211        if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5212                last_block < first_block)
5213                return IO_ACCEL_INELIGIBLE;
5214
5215        /* calculate stripe information for the request */
5216        blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5217                                le16_to_cpu(map->strip_size);
5218        strip_size = le16_to_cpu(map->strip_size);
5219#if BITS_PER_LONG == 32
5220        tmpdiv = first_block;
5221        (void) do_div(tmpdiv, blocks_per_row);
5222        first_row = tmpdiv;
5223        tmpdiv = last_block;
5224        (void) do_div(tmpdiv, blocks_per_row);
5225        last_row = tmpdiv;
5226        first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5227        last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5228        tmpdiv = first_row_offset;
5229        (void) do_div(tmpdiv, strip_size);
5230        first_column = tmpdiv;
5231        tmpdiv = last_row_offset;
5232        (void) do_div(tmpdiv, strip_size);
5233        last_column = tmpdiv;
5234#else
5235        first_row = first_block / blocks_per_row;
5236        last_row = last_block / blocks_per_row;
5237        first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5238        last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5239        first_column = first_row_offset / strip_size;
5240        last_column = last_row_offset / strip_size;
5241#endif
5242
5243        /* if this isn't a single row/column then give to the controller */
5244        if ((first_row != last_row) || (first_column != last_column))
5245                return IO_ACCEL_INELIGIBLE;
5246
5247        /* proceeding with driver mapping */
5248        total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5249                                le16_to_cpu(map->metadata_disks_per_row);
5250        map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5251                                le16_to_cpu(map->row_cnt);
5252        map_index = (map_row * total_disks_per_row) + first_column;
5253
5254        switch (dev->raid_level) {
5255        case HPSA_RAID_0:
5256                break; /* nothing special to do */
5257        case HPSA_RAID_1:
5258                /* Handles load balance across RAID 1 members.
5259                 * (2-drive R1 and R10 with even # of drives.)
5260                 * Appropriate for SSDs, not optimal for HDDs
5261                 * Ensure we have the correct raid_map.
5262                 */
5263                if (le16_to_cpu(map->layout_map_count) != 2) {
5264                        hpsa_turn_off_ioaccel_for_device(dev);
5265                        return IO_ACCEL_INELIGIBLE;
5266                }
5267                if (dev->offload_to_mirror)
5268                        map_index += le16_to_cpu(map->data_disks_per_row);
5269                dev->offload_to_mirror = !dev->offload_to_mirror;
5270                break;
5271        case HPSA_RAID_ADM:
5272                /* Handles N-way mirrors  (R1-ADM)
5273                 * and R10 with # of drives divisible by 3.)
5274                 * Ensure we have the correct raid_map.
5275                 */
5276                if (le16_to_cpu(map->layout_map_count) != 3) {
5277                        hpsa_turn_off_ioaccel_for_device(dev);
5278                        return IO_ACCEL_INELIGIBLE;
5279                }
5280
5281                offload_to_mirror = dev->offload_to_mirror;
5282                raid_map_helper(map, offload_to_mirror,
5283                                &map_index, &current_group);
5284                /* set mirror group to use next time */
5285                offload_to_mirror =
5286                        (offload_to_mirror >=
5287                        le16_to_cpu(map->layout_map_count) - 1)
5288                        ? 0 : offload_to_mirror + 1;
5289                dev->offload_to_mirror = offload_to_mirror;
5290                /* Avoid direct use of dev->offload_to_mirror within this
5291                 * function since multiple threads might simultaneously
5292                 * increment it beyond the range of dev->layout_map_count -1.
5293                 */
5294                break;
5295        case HPSA_RAID_5:
5296        case HPSA_RAID_6:
5297                if (le16_to_cpu(map->layout_map_count) <= 1)
5298                        break;
5299
5300                /* Verify first and last block are in same RAID group */
5301                r5or6_blocks_per_row =
5302                        le16_to_cpu(map->strip_size) *
5303                        le16_to_cpu(map->data_disks_per_row);
5304                if (r5or6_blocks_per_row == 0) {
5305                        hpsa_turn_off_ioaccel_for_device(dev);
5306                        return IO_ACCEL_INELIGIBLE;
5307                }
5308                stripesize = r5or6_blocks_per_row *
5309                        le16_to_cpu(map->layout_map_count);
5310#if BITS_PER_LONG == 32
5311                tmpdiv = first_block;
5312                first_group = do_div(tmpdiv, stripesize);
5313                tmpdiv = first_group;
5314                (void) do_div(tmpdiv, r5or6_blocks_per_row);
5315                first_group = tmpdiv;
5316                tmpdiv = last_block;
5317                last_group = do_div(tmpdiv, stripesize);
5318                tmpdiv = last_group;
5319                (void) do_div(tmpdiv, r5or6_blocks_per_row);
5320                last_group = tmpdiv;
5321#else
5322                first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5323                last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5324#endif
5325                if (first_group != last_group)
5326                        return IO_ACCEL_INELIGIBLE;
5327
5328                /* Verify request is in a single row of RAID 5/6 */
5329#if BITS_PER_LONG == 32
5330                tmpdiv = first_block;
5331                (void) do_div(tmpdiv, stripesize);
5332                first_row = r5or6_first_row = r0_first_row = tmpdiv;
5333                tmpdiv = last_block;
5334                (void) do_div(tmpdiv, stripesize);
5335                r5or6_last_row = r0_last_row = tmpdiv;
5336#else
5337                first_row = r5or6_first_row = r0_first_row =
5338                                                first_block / stripesize;
5339                r5or6_last_row = r0_last_row = last_block / stripesize;
5340#endif
5341                if (r5or6_first_row != r5or6_last_row)
5342                        return IO_ACCEL_INELIGIBLE;
5343
5344
5345                /* Verify request is in a single column */
5346#if BITS_PER_LONG == 32
5347                tmpdiv = first_block;
5348                first_row_offset = do_div(tmpdiv, stripesize);
5349                tmpdiv = first_row_offset;
5350                first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5351                r5or6_first_row_offset = first_row_offset;
5352                tmpdiv = last_block;
5353                r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5354                tmpdiv = r5or6_last_row_offset;
5355                r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5356                tmpdiv = r5or6_first_row_offset;
5357                (void) do_div(tmpdiv, map->strip_size);
5358                first_column = r5or6_first_column = tmpdiv;
5359                tmpdiv = r5or6_last_row_offset;
5360                (void) do_div(tmpdiv, map->strip_size);
5361                r5or6_last_column = tmpdiv;
5362#else
5363                first_row_offset = r5or6_first_row_offset =
5364                        (u32)((first_block % stripesize) %
5365                                                r5or6_blocks_per_row);
5366
5367                r5or6_last_row_offset =
5368                        (u32)((last_block % stripesize) %
5369                                                r5or6_blocks_per_row);
5370
5371                first_column = r5or6_first_column =
5372                        r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5373                r5or6_last_column =
5374                        r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5375#endif
5376                if (r5or6_first_column != r5or6_last_column)
5377                        return IO_ACCEL_INELIGIBLE;
5378
5379                /* Request is eligible */
5380                map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5381                        le16_to_cpu(map->row_cnt);
5382
5383                map_index = (first_group *
5384                        (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5385                        (map_row * total_disks_per_row) + first_column;
5386                break;
5387        default:
5388                return IO_ACCEL_INELIGIBLE;
5389        }
5390
5391        if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5392                return IO_ACCEL_INELIGIBLE;
5393
5394        c->phys_disk = dev->phys_disk[map_index];
5395        if (!c->phys_disk)
5396                return IO_ACCEL_INELIGIBLE;
5397
5398        disk_handle = dd[map_index].ioaccel_handle;
5399        disk_block = le64_to_cpu(map->disk_starting_blk) +
5400                        first_row * le16_to_cpu(map->strip_size) +
5401                        (first_row_offset - first_column *
5402                        le16_to_cpu(map->strip_size));
5403        disk_block_cnt = block_cnt;
5404
5405        /* handle differing logical/physical block sizes */
5406        if (map->phys_blk_shift) {
5407                disk_block <<= map->phys_blk_shift;
5408                disk_block_cnt <<= map->phys_blk_shift;
5409        }
5410        BUG_ON(disk_block_cnt > 0xffff);
5411
5412        /* build the new CDB for the physical disk I/O */
5413        if (disk_block > 0xffffffff) {
5414                cdb[0] = is_write ? WRITE_16 : READ_16;
5415                cdb[1] = 0;
5416                cdb[2] = (u8) (disk_block >> 56);
5417                cdb[3] = (u8) (disk_block >> 48);
5418                cdb[4] = (u8) (disk_block >> 40);
5419                cdb[5] = (u8) (disk_block >> 32);
5420                cdb[6] = (u8) (disk_block >> 24);
5421                cdb[7] = (u8) (disk_block >> 16);
5422                cdb[8] = (u8) (disk_block >> 8);
5423                cdb[9] = (u8) (disk_block);
5424                cdb[10] = (u8) (disk_block_cnt >> 24);
5425                cdb[11] = (u8) (disk_block_cnt >> 16);
5426                cdb[12] = (u8) (disk_block_cnt >> 8);
5427                cdb[13] = (u8) (disk_block_cnt);
5428                cdb[14] = 0;
5429                cdb[15] = 0;
5430                cdb_len = 16;
5431        } else {
5432                cdb[0] = is_write ? WRITE_10 : READ_10;
5433                cdb[1] = 0;
5434                cdb[2] = (u8) (disk_block >> 24);
5435                cdb[3] = (u8) (disk_block >> 16);
5436                cdb[4] = (u8) (disk_block >> 8);
5437                cdb[5] = (u8) (disk_block);
5438                cdb[6] = 0;
5439                cdb[7] = (u8) (disk_block_cnt >> 8);
5440                cdb[8] = (u8) (disk_block_cnt);
5441                cdb[9] = 0;
5442                cdb_len = 10;
5443        }
5444        return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5445                                                dev->scsi3addr,
5446                                                dev->phys_disk[map_index]);
5447}
5448
5449/*
5450 * Submit commands down the "normal" RAID stack path
5451 * All callers to hpsa_ciss_submit must check lockup_detected
5452 * beforehand, before (opt.) and after calling cmd_alloc
5453 */
5454static int hpsa_ciss_submit(struct ctlr_info *h,
5455        struct CommandList *c, struct scsi_cmnd *cmd,
5456        struct hpsa_scsi_dev_t *dev)
5457{
5458        cmd->host_scribble = (unsigned char *) c;
5459        c->cmd_type = CMD_SCSI;
5460        c->scsi_cmd = cmd;
5461        c->Header.ReplyQueue = 0;  /* unused in simple mode */
5462        memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5463        c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5464
5465        /* Fill in the request block... */
5466
5467        c->Request.Timeout = 0;
5468        BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5469        c->Request.CDBLen = cmd->cmd_len;
5470        memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5471        switch (cmd->sc_data_direction) {
5472        case DMA_TO_DEVICE:
5473                c->Request.type_attr_dir =
5474                        TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5475                break;
5476        case DMA_FROM_DEVICE:
5477                c->Request.type_attr_dir =
5478                        TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5479                break;
5480        case DMA_NONE:
5481                c->Request.type_attr_dir =
5482                        TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5483                break;
5484        case DMA_BIDIRECTIONAL:
5485                /* This can happen if a buggy application does a scsi passthru
5486                 * and sets both inlen and outlen to non-zero. ( see
5487                 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5488                 */
5489
5490                c->Request.type_attr_dir =
5491                        TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5492                /* This is technically wrong, and hpsa controllers should
5493                 * reject it with CMD_INVALID, which is the most correct
5494                 * response, but non-fibre backends appear to let it
5495                 * slide by, and give the same results as if this field
5496                 * were set correctly.  Either way is acceptable for
5497                 * our purposes here.
5498                 */
5499
5500                break;
5501
5502        default:
5503                dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5504                        cmd->sc_data_direction);
5505                BUG();
5506                break;
5507        }
5508
5509        if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5510                hpsa_cmd_resolve_and_free(h, c);
5511                return SCSI_MLQUEUE_HOST_BUSY;
5512        }
5513
5514        if (dev->in_reset) {
5515                hpsa_cmd_resolve_and_free(h, c);
5516                return SCSI_MLQUEUE_HOST_BUSY;
5517        }
5518
5519        c->device = dev;
5520
5521        enqueue_cmd_and_start_io(h, c);
5522        /* the cmd'll come back via intr handler in complete_scsi_command()  */
5523        return 0;
5524}
5525
5526static void hpsa_cmd_init(struct ctlr_info *h, int index,
5527                                struct CommandList *c)
5528{
5529        dma_addr_t cmd_dma_handle, err_dma_handle;
5530
5531        /* Zero out all of commandlist except the last field, refcount */
5532        memset(c, 0, offsetof(struct CommandList, refcount));
5533        c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5534        cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5535        c->err_info = h->errinfo_pool + index;
5536        memset(c->err_info, 0, sizeof(*c->err_info));
5537        err_dma_handle = h->errinfo_pool_dhandle
5538            + index * sizeof(*c->err_info);
5539        c->cmdindex = index;
5540        c->busaddr = (u32) cmd_dma_handle;
5541        c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5542        c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5543        c->h = h;
5544        c->scsi_cmd = SCSI_CMD_IDLE;
5545}
5546
5547static void hpsa_preinitialize_commands(struct ctlr_info *h)
5548{
5549        int i;
5550
5551        for (i = 0; i < h->nr_cmds; i++) {
5552                struct CommandList *c = h->cmd_pool + i;
5553
5554                hpsa_cmd_init(h, i, c);
5555                atomic_set(&c->refcount, 0);
5556        }
5557}
5558
5559static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5560                                struct CommandList *c)
5561{
5562        dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5563
5564        BUG_ON(c->cmdindex != index);
5565
5566        memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5567        memset(c->err_info, 0, sizeof(*c->err_info));
5568        c->busaddr = (u32) cmd_dma_handle;
5569}
5570
5571static int hpsa_ioaccel_submit(struct ctlr_info *h,
5572                struct CommandList *c, struct scsi_cmnd *cmd,
5573                bool retry)
5574{
5575        struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5576        int rc = IO_ACCEL_INELIGIBLE;
5577
5578        if (!dev)
5579                return SCSI_MLQUEUE_HOST_BUSY;
5580
5581        if (dev->in_reset)
5582                return SCSI_MLQUEUE_HOST_BUSY;
5583
5584        if (hpsa_simple_mode)
5585                return IO_ACCEL_INELIGIBLE;
5586
5587        cmd->host_scribble = (unsigned char *) c;
5588
5589        if (dev->offload_enabled) {
5590                hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */
5591                c->cmd_type = CMD_SCSI;
5592                c->scsi_cmd = cmd;
5593                c->device = dev;
5594                if (retry) /* Resubmit but do not increment device->commands_outstanding. */
5595                        c->retry_pending = true;
5596                rc = hpsa_scsi_ioaccel_raid_map(h, c);
5597                if (rc < 0)     /* scsi_dma_map failed. */
5598                        rc = SCSI_MLQUEUE_HOST_BUSY;
5599        } else if (dev->hba_ioaccel_enabled) {
5600                hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */
5601                c->cmd_type = CMD_SCSI;
5602                c->scsi_cmd = cmd;
5603                c->device = dev;
5604                if (retry) /* Resubmit but do not increment device->commands_outstanding. */
5605                        c->retry_pending = true;
5606                rc = hpsa_scsi_ioaccel_direct_map(h, c);
5607                if (rc < 0)     /* scsi_dma_map failed. */
5608                        rc = SCSI_MLQUEUE_HOST_BUSY;
5609        }
5610        return rc;
5611}
5612
5613static void hpsa_command_resubmit_worker(struct work_struct *work)
5614{
5615        struct scsi_cmnd *cmd;
5616        struct hpsa_scsi_dev_t *dev;
5617        struct CommandList *c = container_of(work, struct CommandList, work);
5618
5619        cmd = c->scsi_cmd;
5620        dev = cmd->device->hostdata;
5621        if (!dev) {
5622                cmd->result = DID_NO_CONNECT << 16;
5623                return hpsa_cmd_free_and_done(c->h, c, cmd);
5624        }
5625
5626        if (dev->in_reset) {
5627                cmd->result = DID_RESET << 16;
5628                return hpsa_cmd_free_and_done(c->h, c, cmd);
5629        }
5630
5631        if (c->cmd_type == CMD_IOACCEL2) {
5632                struct ctlr_info *h = c->h;
5633                struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5634                int rc;
5635
5636                if (c2->error_data.serv_response ==
5637                                IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5638                        /* Resubmit with the retry_pending flag set. */
5639                        rc = hpsa_ioaccel_submit(h, c, cmd, true);
5640                        if (rc == 0)
5641                                return;
5642                        if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5643                                /*
5644                                 * If we get here, it means dma mapping failed.
5645                                 * Try again via scsi mid layer, which will
5646                                 * then get SCSI_MLQUEUE_HOST_BUSY.
5647                                 */
5648                                cmd->result = DID_IMM_RETRY << 16;
5649                                return hpsa_cmd_free_and_done(h, c, cmd);
5650                        }
5651                        /* else, fall thru and resubmit down CISS path */
5652                }
5653        }
5654        hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5655        /*
5656         * Here we have not come in though queue_command, so we
5657         * can set the retry_pending flag to true for a driver initiated
5658         * retry attempt (I.E. not a SML retry).
5659         * I.E. We are submitting a driver initiated retry.
5660         * Note: hpsa_ciss_submit does not zero out the command fields like
5661         *       ioaccel submit does.
5662         */
5663        c->retry_pending = true;
5664        if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5665                /*
5666                 * If we get here, it means dma mapping failed. Try
5667                 * again via scsi mid layer, which will then get
5668                 * SCSI_MLQUEUE_HOST_BUSY.
5669                 *
5670                 * hpsa_ciss_submit will have already freed c
5671                 * if it encountered a dma mapping failure.
5672                 */
5673                cmd->result = DID_IMM_RETRY << 16;
5674                cmd->scsi_done(cmd);
5675        }
5676}
5677
5678/* Running in struct Scsi_Host->host_lock less mode */
5679static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5680{
5681        struct ctlr_info *h;
5682        struct hpsa_scsi_dev_t *dev;
5683        struct CommandList *c;
5684        int rc = 0;
5685
5686        /* Get the ptr to our adapter structure out of cmd->host. */
5687        h = sdev_to_hba(cmd->device);
5688
5689        BUG_ON(cmd->request->tag < 0);
5690
5691        dev = cmd->device->hostdata;
5692        if (!dev) {
5693                cmd->result = DID_NO_CONNECT << 16;
5694                cmd->scsi_done(cmd);
5695                return 0;
5696        }
5697
5698        if (dev->removed) {
5699                cmd->result = DID_NO_CONNECT << 16;
5700                cmd->scsi_done(cmd);
5701                return 0;
5702        }
5703
5704        if (unlikely(lockup_detected(h))) {
5705                cmd->result = DID_NO_CONNECT << 16;
5706                cmd->scsi_done(cmd);
5707                return 0;
5708        }
5709
5710        if (dev->in_reset)
5711                return SCSI_MLQUEUE_DEVICE_BUSY;
5712
5713        c = cmd_tagged_alloc(h, cmd);
5714        if (c == NULL)
5715                return SCSI_MLQUEUE_DEVICE_BUSY;
5716
5717        /*
5718         * This is necessary because the SML doesn't zero out this field during
5719         * error recovery.
5720         */
5721        cmd->result = 0;
5722
5723        /*
5724         * Call alternate submit routine for I/O accelerated commands.
5725         * Retries always go down the normal I/O path.
5726         * Note: If cmd->retries is non-zero, then this is a SML
5727         *       initiated retry and not a driver initiated retry.
5728         *       This command has been obtained from cmd_tagged_alloc
5729         *       and is therefore a brand-new command.
5730         */
5731        if (likely(cmd->retries == 0 &&
5732                        !blk_rq_is_passthrough(cmd->request) &&
5733                        h->acciopath_status)) {
5734                /* Submit with the retry_pending flag unset. */
5735                rc = hpsa_ioaccel_submit(h, c, cmd, false);
5736                if (rc == 0)
5737                        return 0;
5738                if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5739                        hpsa_cmd_resolve_and_free(h, c);
5740                        return SCSI_MLQUEUE_HOST_BUSY;
5741                }
5742        }
5743        return hpsa_ciss_submit(h, c, cmd, dev);
5744}
5745
5746static void hpsa_scan_complete(struct ctlr_info *h)
5747{
5748        unsigned long flags;
5749
5750        spin_lock_irqsave(&h->scan_lock, flags);
5751        h->scan_finished = 1;
5752        wake_up(&h->scan_wait_queue);
5753        spin_unlock_irqrestore(&h->scan_lock, flags);
5754}
5755
5756static void hpsa_scan_start(struct Scsi_Host *sh)
5757{
5758        struct ctlr_info *h = shost_to_hba(sh);
5759        unsigned long flags;
5760
5761        /*
5762         * Don't let rescans be initiated on a controller known to be locked
5763         * up.  If the controller locks up *during* a rescan, that thread is
5764         * probably hosed, but at least we can prevent new rescan threads from
5765         * piling up on a locked up controller.
5766         */
5767        if (unlikely(lockup_detected(h)))
5768                return hpsa_scan_complete(h);
5769
5770        /*
5771         * If a scan is already waiting to run, no need to add another
5772         */
5773        spin_lock_irqsave(&h->scan_lock, flags);
5774        if (h->scan_waiting) {
5775                spin_unlock_irqrestore(&h->scan_lock, flags);
5776                return;
5777        }
5778
5779        spin_unlock_irqrestore(&h->scan_lock, flags);
5780
5781        /* wait until any scan already in progress is finished. */
5782        while (1) {
5783                spin_lock_irqsave(&h->scan_lock, flags);
5784                if (h->scan_finished)
5785                        break;
5786                h->scan_waiting = 1;
5787                spin_unlock_irqrestore(&h->scan_lock, flags);
5788                wait_event(h->scan_wait_queue, h->scan_finished);
5789                /* Note: We don't need to worry about a race between this
5790                 * thread and driver unload because the midlayer will
5791                 * have incremented the reference count, so unload won't
5792                 * happen if we're in here.
5793                 */
5794        }
5795        h->scan_finished = 0; /* mark scan as in progress */
5796        h->scan_waiting = 0;
5797        spin_unlock_irqrestore(&h->scan_lock, flags);
5798
5799        if (unlikely(lockup_detected(h)))
5800                return hpsa_scan_complete(h);
5801
5802        /*
5803         * Do the scan after a reset completion
5804         */
5805        spin_lock_irqsave(&h->reset_lock, flags);
5806        if (h->reset_in_progress) {
5807                h->drv_req_rescan = 1;
5808                spin_unlock_irqrestore(&h->reset_lock, flags);
5809                hpsa_scan_complete(h);
5810                return;
5811        }
5812        spin_unlock_irqrestore(&h->reset_lock, flags);
5813
5814        hpsa_update_scsi_devices(h);
5815
5816        hpsa_scan_complete(h);
5817}
5818
5819static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5820{
5821        struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5822
5823        if (!logical_drive)
5824                return -ENODEV;
5825
5826        if (qdepth < 1)
5827                qdepth = 1;
5828        else if (qdepth > logical_drive->queue_depth)
5829                qdepth = logical_drive->queue_depth;
5830
5831        return scsi_change_queue_depth(sdev, qdepth);
5832}
5833
5834static int hpsa_scan_finished(struct Scsi_Host *sh,
5835        unsigned long elapsed_time)
5836{
5837        struct ctlr_info *h = shost_to_hba(sh);
5838        unsigned long flags;
5839        int finished;
5840
5841        spin_lock_irqsave(&h->scan_lock, flags);
5842        finished = h->scan_finished;
5843        spin_unlock_irqrestore(&h->scan_lock, flags);
5844        return finished;
5845}
5846
5847static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5848{
5849        struct Scsi_Host *sh;
5850
5851        sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5852        if (sh == NULL) {
5853                dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5854                return -ENOMEM;
5855        }
5856
5857        sh->io_port = 0;
5858        sh->n_io_port = 0;
5859        sh->this_id = -1;
5860        sh->max_channel = 3;
5861        sh->max_cmd_len = MAX_COMMAND_SIZE;
5862        sh->max_lun = HPSA_MAX_LUN;
5863        sh->max_id = HPSA_MAX_LUN;
5864        sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5865        sh->cmd_per_lun = sh->can_queue;
5866        sh->sg_tablesize = h->maxsgentries;
5867        sh->transportt = hpsa_sas_transport_template;
5868        sh->hostdata[0] = (unsigned long) h;
5869        sh->irq = pci_irq_vector(h->pdev, 0);
5870        sh->unique_id = sh->irq;
5871
5872        h->scsi_host = sh;
5873        return 0;
5874}
5875
5876static int hpsa_scsi_add_host(struct ctlr_info *h)
5877{
5878        int rv;
5879
5880        rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5881        if (rv) {
5882                dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5883                return rv;
5884        }
5885        scsi_scan_host(h->scsi_host);
5886        return 0;
5887}
5888
5889/*
5890 * The block layer has already gone to the trouble of picking out a unique,
5891 * small-integer tag for this request.  We use an offset from that value as
5892 * an index to select our command block.  (The offset allows us to reserve the
5893 * low-numbered entries for our own uses.)
5894 */
5895static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5896{
5897        int idx = scmd->request->tag;
5898
5899        if (idx < 0)
5900                return idx;
5901
5902        /* Offset to leave space for internal cmds. */
5903        return idx += HPSA_NRESERVED_CMDS;
5904}
5905
5906/*
5907 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5908 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5909 */
5910static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5911                                struct CommandList *c, unsigned char lunaddr[],
5912                                int reply_queue)
5913{
5914        int rc;
5915
5916        /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5917        (void) fill_cmd(c, TEST_UNIT_READY, h,
5918                        NULL, 0, 0, lunaddr, TYPE_CMD);
5919        rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5920        if (rc)
5921                return rc;
5922        /* no unmap needed here because no data xfer. */
5923
5924        /* Check if the unit is already ready. */
5925        if (c->err_info->CommandStatus == CMD_SUCCESS)
5926                return 0;
5927
5928        /*
5929         * The first command sent after reset will receive "unit attention" to
5930         * indicate that the LUN has been reset...this is actually what we're
5931         * looking for (but, success is good too).
5932         */
5933        if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5934                c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5935                        (c->err_info->SenseInfo[2] == NO_SENSE ||
5936                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5937                return 0;
5938
5939        return 1;
5940}
5941
5942/*
5943 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5944 * returns zero when the unit is ready, and non-zero when giving up.
5945 */
5946static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5947                                struct CommandList *c,
5948                                unsigned char lunaddr[], int reply_queue)
5949{
5950        int rc;
5951        int count = 0;
5952        int waittime = 1; /* seconds */
5953
5954        /* Send test unit ready until device ready, or give up. */
5955        for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5956
5957                /*
5958                 * Wait for a bit.  do this first, because if we send
5959                 * the TUR right away, the reset will just abort it.
5960                 */
5961                msleep(1000 * waittime);
5962
5963                rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5964                if (!rc)
5965                        break;
5966
5967                /* Increase wait time with each try, up to a point. */
5968                if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5969                        waittime *= 2;
5970
5971                dev_warn(&h->pdev->dev,
5972                         "waiting %d secs for device to become ready.\n",
5973                         waittime);
5974        }
5975
5976        return rc;
5977}
5978
5979static int wait_for_device_to_become_ready(struct ctlr_info *h,
5980                                           unsigned char lunaddr[],
5981                                           int reply_queue)
5982{
5983        int first_queue;
5984        int last_queue;
5985        int rq;
5986        int rc = 0;
5987        struct CommandList *c;
5988
5989        c = cmd_alloc(h);
5990
5991        /*
5992         * If no specific reply queue was requested, then send the TUR
5993         * repeatedly, requesting a reply on each reply queue; otherwise execute
5994         * the loop exactly once using only the specified queue.
5995         */
5996        if (reply_queue == DEFAULT_REPLY_QUEUE) {
5997                first_queue = 0;
5998                last_queue = h->nreply_queues - 1;
5999        } else {
6000                first_queue = reply_queue;
6001                last_queue = reply_queue;
6002        }
6003
6004        for (rq = first_queue; rq <= last_queue; rq++) {
6005                rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
6006                if (rc)
6007                        break;
6008        }
6009
6010        if (rc)
6011                dev_warn(&h->pdev->dev, "giving up on device.\n");
6012        else
6013                dev_warn(&h->pdev->dev, "device is ready.\n");
6014
6015        cmd_free(h, c);
6016        return rc;
6017}
6018
6019/* Need at least one of these error handlers to keep ../scsi/hosts.c from
6020 * complaining.  Doing a host- or bus-reset can't do anything good here.
6021 */
6022static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
6023{
6024        int rc = SUCCESS;
6025        int i;
6026        struct ctlr_info *h;
6027        struct hpsa_scsi_dev_t *dev = NULL;
6028        u8 reset_type;
6029        char msg[48];
6030        unsigned long flags;
6031
6032        /* find the controller to which the command to be aborted was sent */
6033        h = sdev_to_hba(scsicmd->device);
6034        if (h == NULL) /* paranoia */
6035                return FAILED;
6036
6037        spin_lock_irqsave(&h->reset_lock, flags);
6038        h->reset_in_progress = 1;
6039        spin_unlock_irqrestore(&h->reset_lock, flags);
6040
6041        if (lockup_detected(h)) {
6042                rc = FAILED;
6043                goto return_reset_status;
6044        }
6045
6046        dev = scsicmd->device->hostdata;
6047        if (!dev) {
6048                dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
6049                rc = FAILED;
6050                goto return_reset_status;
6051        }
6052
6053        if (dev->devtype == TYPE_ENCLOSURE) {
6054                rc = SUCCESS;
6055                goto return_reset_status;
6056        }
6057
6058        /* if controller locked up, we can guarantee command won't complete */
6059        if (lockup_detected(h)) {
6060                snprintf(msg, sizeof(msg),
6061                         "cmd %d RESET FAILED, lockup detected",
6062                         hpsa_get_cmd_index(scsicmd));
6063                hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6064                rc = FAILED;
6065                goto return_reset_status;
6066        }
6067
6068        /* this reset request might be the result of a lockup; check */
6069        if (detect_controller_lockup(h)) {
6070                snprintf(msg, sizeof(msg),
6071                         "cmd %d RESET FAILED, new lockup detected",
6072                         hpsa_get_cmd_index(scsicmd));
6073                hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6074                rc = FAILED;
6075                goto return_reset_status;
6076        }
6077
6078        /* Do not attempt on controller */
6079        if (is_hba_lunid(dev->scsi3addr)) {
6080                rc = SUCCESS;
6081                goto return_reset_status;
6082        }
6083
6084        if (is_logical_dev_addr_mode(dev->scsi3addr))
6085                reset_type = HPSA_DEVICE_RESET_MSG;
6086        else
6087                reset_type = HPSA_PHYS_TARGET_RESET;
6088
6089        sprintf(msg, "resetting %s",
6090                reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6091        hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6092
6093        /*
6094         * wait to see if any commands will complete before sending reset
6095         */
6096        dev->in_reset = true; /* block any new cmds from OS for this device */
6097        for (i = 0; i < 10; i++) {
6098                if (atomic_read(&dev->commands_outstanding) > 0)
6099                        msleep(1000);
6100                else
6101                        break;
6102        }
6103
6104        /* send a reset to the SCSI LUN which the command was sent to */
6105        rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6106        if (rc == 0)
6107                rc = SUCCESS;
6108        else
6109                rc = FAILED;
6110
6111        sprintf(msg, "reset %s %s",
6112                reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6113                rc == SUCCESS ? "completed successfully" : "failed");
6114        hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6115
6116return_reset_status:
6117        spin_lock_irqsave(&h->reset_lock, flags);
6118        h->reset_in_progress = 0;
6119        if (dev)
6120                dev->in_reset = false;
6121        spin_unlock_irqrestore(&h->reset_lock, flags);
6122        return rc;
6123}
6124
6125/*
6126 * For operations with an associated SCSI command, a command block is allocated
6127 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6128 * block request tag as an index into a table of entries.  cmd_tagged_free() is
6129 * the complement, although cmd_free() may be called instead.
6130 * This function is only called for new requests from queue_command.
6131 */
6132static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6133                                            struct scsi_cmnd *scmd)
6134{
6135        int idx = hpsa_get_cmd_index(scmd);
6136        struct CommandList *c = h->cmd_pool + idx;
6137
6138        if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6139                dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6140                        idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6141                /* The index value comes from the block layer, so if it's out of
6142                 * bounds, it's probably not our bug.
6143                 */
6144                BUG();
6145        }
6146
6147        if (unlikely(!hpsa_is_cmd_idle(c))) {
6148                /*
6149                 * We expect that the SCSI layer will hand us a unique tag
6150                 * value.  Thus, there should never be a collision here between
6151                 * two requests...because if the selected command isn't idle
6152                 * then someone is going to be very disappointed.
6153                 */
6154                if (idx != h->last_collision_tag) { /* Print once per tag */
6155                        dev_warn(&h->pdev->dev,
6156                                "%s: tag collision (tag=%d)\n", __func__, idx);
6157                        if (scmd)
6158                                scsi_print_command(scmd);
6159                        h->last_collision_tag = idx;
6160                }
6161                return NULL;
6162        }
6163
6164        atomic_inc(&c->refcount);
6165        hpsa_cmd_partial_init(h, idx, c);
6166
6167        /*
6168         * This is a new command obtained from queue_command so
6169         * there have not been any driver initiated retry attempts.
6170         */
6171        c->retry_pending = false;
6172
6173        return c;
6174}
6175
6176static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6177{
6178        /*
6179         * Release our reference to the block.  We don't need to do anything
6180         * else to free it, because it is accessed by index.
6181         */
6182        (void)atomic_dec(&c->refcount);
6183}
6184
6185/*
6186 * For operations that cannot sleep, a command block is allocated at init,
6187 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6188 * which ones are free or in use.  Lock must be held when calling this.
6189 * cmd_free() is the complement.
6190 * This function never gives up and returns NULL.  If it hangs,
6191 * another thread must call cmd_free() to free some tags.
6192 */
6193
6194static struct CommandList *cmd_alloc(struct ctlr_info *h)
6195{
6196        struct CommandList *c;
6197        int refcount, i;
6198        int offset = 0;
6199
6200        /*
6201         * There is some *extremely* small but non-zero chance that that
6202         * multiple threads could get in here, and one thread could
6203         * be scanning through the list of bits looking for a free
6204         * one, but the free ones are always behind him, and other
6205         * threads sneak in behind him and eat them before he can
6206         * get to them, so that while there is always a free one, a
6207         * very unlucky thread might be starved anyway, never able to
6208         * beat the other threads.  In reality, this happens so
6209         * infrequently as to be indistinguishable from never.
6210         *
6211         * Note that we start allocating commands before the SCSI host structure
6212         * is initialized.  Since the search starts at bit zero, this
6213         * all works, since we have at least one command structure available;
6214         * however, it means that the structures with the low indexes have to be
6215         * reserved for driver-initiated requests, while requests from the block
6216         * layer will use the higher indexes.
6217         */
6218
6219        for (;;) {
6220                i = find_next_zero_bit(h->cmd_pool_bits,
6221                                        HPSA_NRESERVED_CMDS,
6222                                        offset);
6223                if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6224                        offset = 0;
6225                        continue;
6226                }
6227                c = h->cmd_pool + i;
6228                refcount = atomic_inc_return(&c->refcount);
6229                if (unlikely(refcount > 1)) {
6230                        cmd_free(h, c); /* already in use */
6231                        offset = (i + 1) % HPSA_NRESERVED_CMDS;
6232                        continue;
6233                }
6234                set_bit(i & (BITS_PER_LONG - 1),
6235                        h->cmd_pool_bits + (i / BITS_PER_LONG));
6236                break; /* it's ours now. */
6237        }
6238        hpsa_cmd_partial_init(h, i, c);
6239        c->device = NULL;
6240
6241        /*
6242         * cmd_alloc is for "internal" commands and they are never
6243         * retried.
6244         */
6245        c->retry_pending = false;
6246
6247        return c;
6248}
6249
6250/*
6251 * This is the complementary operation to cmd_alloc().  Note, however, in some
6252 * corner cases it may also be used to free blocks allocated by
6253 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6254 * the clear-bit is harmless.
6255 */
6256static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6257{
6258        if (atomic_dec_and_test(&c->refcount)) {
6259                int i;
6260
6261                i = c - h->cmd_pool;
6262                clear_bit(i & (BITS_PER_LONG - 1),
6263                          h->cmd_pool_bits + (i / BITS_PER_LONG));
6264        }
6265}
6266
6267#ifdef CONFIG_COMPAT
6268
6269static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6270        void __user *arg)
6271{
6272        struct ctlr_info *h = sdev_to_hba(dev);
6273        IOCTL32_Command_struct __user *arg32 = arg;
6274        IOCTL_Command_struct arg64;
6275        int err;
6276        u32 cp;
6277
6278        if (!arg)
6279                return -EINVAL;
6280
6281        memset(&arg64, 0, sizeof(arg64));
6282        if (copy_from_user(&arg64, arg32, offsetof(IOCTL_Command_struct, buf)))
6283                return -EFAULT;
6284        if (get_user(cp, &arg32->buf))
6285                return -EFAULT;
6286        arg64.buf = compat_ptr(cp);
6287
6288        if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6289                return -EAGAIN;
6290        err = hpsa_passthru_ioctl(h, &arg64);
6291        atomic_inc(&h->passthru_cmds_avail);
6292        if (err)
6293                return err;
6294        if (copy_to_user(&arg32->error_info, &arg64.error_info,
6295                         sizeof(arg32->error_info)))
6296                return -EFAULT;
6297        return 0;
6298}
6299
6300static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6301        unsigned int cmd, void __user *arg)
6302{
6303        struct ctlr_info *h = sdev_to_hba(dev);
6304        BIG_IOCTL32_Command_struct __user *arg32 = arg;
6305        BIG_IOCTL_Command_struct arg64;
6306        int err;
6307        u32 cp;
6308
6309        if (!arg)
6310                return -EINVAL;
6311        memset(&arg64, 0, sizeof(arg64));
6312        if (copy_from_user(&arg64, arg32,
6313                           offsetof(BIG_IOCTL32_Command_struct, buf)))
6314                return -EFAULT;
6315        if (get_user(cp, &arg32->buf))
6316                return -EFAULT;
6317        arg64.buf = compat_ptr(cp);
6318
6319        if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6320                return -EAGAIN;
6321        err = hpsa_big_passthru_ioctl(h, &arg64);
6322        atomic_inc(&h->passthru_cmds_avail);
6323        if (err)
6324                return err;
6325        if (copy_to_user(&arg32->error_info, &arg64.error_info,
6326                         sizeof(arg32->error_info)))
6327                return -EFAULT;
6328        return 0;
6329}
6330
6331static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6332                             void __user *arg)
6333{
6334        switch (cmd) {
6335        case CCISS_GETPCIINFO:
6336        case CCISS_GETINTINFO:
6337        case CCISS_SETINTINFO:
6338        case CCISS_GETNODENAME:
6339        case CCISS_SETNODENAME:
6340        case CCISS_GETHEARTBEAT:
6341        case CCISS_GETBUSTYPES:
6342        case CCISS_GETFIRMVER:
6343        case CCISS_GETDRIVVER:
6344        case CCISS_REVALIDVOLS:
6345        case CCISS_DEREGDISK:
6346        case CCISS_REGNEWDISK:
6347        case CCISS_REGNEWD:
6348        case CCISS_RESCANDISK:
6349        case CCISS_GETLUNINFO:
6350                return hpsa_ioctl(dev, cmd, arg);
6351
6352        case CCISS_PASSTHRU32:
6353                return hpsa_ioctl32_passthru(dev, cmd, arg);
6354        case CCISS_BIG_PASSTHRU32:
6355                return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6356
6357        default:
6358                return -ENOIOCTLCMD;
6359        }
6360}
6361#endif
6362
6363static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6364{
6365        struct hpsa_pci_info pciinfo;
6366
6367        if (!argp)
6368                return -EINVAL;
6369        pciinfo.domain = pci_domain_nr(h->pdev->bus);
6370        pciinfo.bus = h->pdev->bus->number;
6371        pciinfo.dev_fn = h->pdev->devfn;
6372        pciinfo.board_id = h->board_id;
6373        if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6374                return -EFAULT;
6375        return 0;
6376}
6377
6378static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6379{
6380        DriverVer_type DriverVer;
6381        unsigned char vmaj, vmin, vsubmin;
6382        int rc;
6383
6384        rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6385                &vmaj, &vmin, &vsubmin);
6386        if (rc != 3) {
6387                dev_info(&h->pdev->dev, "driver version string '%s' "
6388                        "unrecognized.", HPSA_DRIVER_VERSION);
6389                vmaj = 0;
6390                vmin = 0;
6391                vsubmin = 0;
6392        }
6393        DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6394        if (!argp)
6395                return -EINVAL;
6396        if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6397                return -EFAULT;
6398        return 0;
6399}
6400
6401static int hpsa_passthru_ioctl(struct ctlr_info *h,
6402                               IOCTL_Command_struct *iocommand)
6403{
6404        struct CommandList *c;
6405        char *buff = NULL;
6406        u64 temp64;
6407        int rc = 0;
6408
6409        if (!capable(CAP_SYS_RAWIO))
6410                return -EPERM;
6411        if ((iocommand->buf_size < 1) &&
6412            (iocommand->Request.Type.Direction != XFER_NONE)) {
6413                return -EINVAL;
6414        }
6415        if (iocommand->buf_size > 0) {
6416                buff = kmalloc(iocommand->buf_size, GFP_KERNEL);
6417                if (buff == NULL)
6418                        return -ENOMEM;
6419                if (iocommand->Request.Type.Direction & XFER_WRITE) {
6420                        /* Copy the data into the buffer we created */
6421                        if (copy_from_user(buff, iocommand->buf,
6422                                iocommand->buf_size)) {
6423                                rc = -EFAULT;
6424                                goto out_kfree;
6425                        }
6426                } else {
6427                        memset(buff, 0, iocommand->buf_size);
6428                }
6429        }
6430        c = cmd_alloc(h);
6431
6432        /* Fill in the command type */
6433        c->cmd_type = CMD_IOCTL_PEND;
6434        c->scsi_cmd = SCSI_CMD_BUSY;
6435        /* Fill in Command Header */
6436        c->Header.ReplyQueue = 0; /* unused in simple mode */
6437        if (iocommand->buf_size > 0) {  /* buffer to fill */
6438                c->Header.SGList = 1;
6439                c->Header.SGTotal = cpu_to_le16(1);
6440        } else  { /* no buffers to fill */
6441                c->Header.SGList = 0;
6442                c->Header.SGTotal = cpu_to_le16(0);
6443        }
6444        memcpy(&c->Header.LUN, &iocommand->LUN_info, sizeof(c->Header.LUN));
6445
6446        /* Fill in Request block */
6447        memcpy(&c->Request, &iocommand->Request,
6448                sizeof(c->Request));
6449
6450        /* Fill in the scatter gather information */
6451        if (iocommand->buf_size > 0) {
6452                temp64 = dma_map_single(&h->pdev->dev, buff,
6453                        iocommand->buf_size, DMA_BIDIRECTIONAL);
6454                if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6455                        c->SG[0].Addr = cpu_to_le64(0);
6456                        c->SG[0].Len = cpu_to_le32(0);
6457                        rc = -ENOMEM;
6458                        goto out;
6459                }
6460                c->SG[0].Addr = cpu_to_le64(temp64);
6461                c->SG[0].Len = cpu_to_le32(iocommand->buf_size);
6462                c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6463        }
6464        rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6465                                        NO_TIMEOUT);
6466        if (iocommand->buf_size > 0)
6467                hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6468        check_ioctl_unit_attention(h, c);
6469        if (rc) {
6470                rc = -EIO;
6471                goto out;
6472        }
6473
6474        /* Copy the error information out */
6475        memcpy(&iocommand->error_info, c->err_info,
6476                sizeof(iocommand->error_info));
6477        if ((iocommand->Request.Type.Direction & XFER_READ) &&
6478                iocommand->buf_size > 0) {
6479                /* Copy the data out of the buffer we created */
6480                if (copy_to_user(iocommand->buf, buff, iocommand->buf_size)) {
6481                        rc = -EFAULT;
6482                        goto out;
6483                }
6484        }
6485out:
6486        cmd_free(h, c);
6487out_kfree:
6488        kfree(buff);
6489        return rc;
6490}
6491
6492static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
6493                                   BIG_IOCTL_Command_struct *ioc)
6494{
6495        struct CommandList *c;
6496        unsigned char **buff = NULL;
6497        int *buff_size = NULL;
6498        u64 temp64;
6499        BYTE sg_used = 0;
6500        int status = 0;
6501        u32 left;
6502        u32 sz;
6503        BYTE __user *data_ptr;
6504
6505        if (!capable(CAP_SYS_RAWIO))
6506                return -EPERM;
6507
6508        if ((ioc->buf_size < 1) &&
6509            (ioc->Request.Type.Direction != XFER_NONE))
6510                return -EINVAL;
6511        /* Check kmalloc limits  using all SGs */
6512        if (ioc->malloc_size > MAX_KMALLOC_SIZE)
6513                return -EINVAL;
6514        if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD)
6515                return -EINVAL;
6516        buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6517        if (!buff) {
6518                status = -ENOMEM;
6519                goto cleanup1;
6520        }
6521        buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6522        if (!buff_size) {
6523                status = -ENOMEM;
6524                goto cleanup1;
6525        }
6526        left = ioc->buf_size;
6527        data_ptr = ioc->buf;
6528        while (left) {
6529                sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6530                buff_size[sg_used] = sz;
6531                buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6532                if (buff[sg_used] == NULL) {
6533                        status = -ENOMEM;
6534                        goto cleanup1;
6535                }
6536                if (ioc->Request.Type.Direction & XFER_WRITE) {
6537                        if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6538                                status = -EFAULT;
6539                                goto cleanup1;
6540                        }
6541                } else
6542                        memset(buff[sg_used], 0, sz);
6543                left -= sz;
6544                data_ptr += sz;
6545                sg_used++;
6546        }
6547        c = cmd_alloc(h);
6548
6549        c->cmd_type = CMD_IOCTL_PEND;
6550        c->scsi_cmd = SCSI_CMD_BUSY;
6551        c->Header.ReplyQueue = 0;
6552        c->Header.SGList = (u8) sg_used;
6553        c->Header.SGTotal = cpu_to_le16(sg_used);
6554        memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6555        memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6556        if (ioc->buf_size > 0) {
6557                int i;
6558                for (i = 0; i < sg_used; i++) {
6559                        temp64 = dma_map_single(&h->pdev->dev, buff[i],
6560                                    buff_size[i], DMA_BIDIRECTIONAL);
6561                        if (dma_mapping_error(&h->pdev->dev,
6562                                                        (dma_addr_t) temp64)) {
6563                                c->SG[i].Addr = cpu_to_le64(0);
6564                                c->SG[i].Len = cpu_to_le32(0);
6565                                hpsa_pci_unmap(h->pdev, c, i,
6566                                        DMA_BIDIRECTIONAL);
6567                                status = -ENOMEM;
6568                                goto cleanup0;
6569                        }
6570                        c->SG[i].Addr = cpu_to_le64(temp64);
6571                        c->SG[i].Len = cpu_to_le32(buff_size[i]);
6572                        c->SG[i].Ext = cpu_to_le32(0);
6573                }
6574                c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6575        }
6576        status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6577                                                NO_TIMEOUT);
6578        if (sg_used)
6579                hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6580        check_ioctl_unit_attention(h, c);
6581        if (status) {
6582                status = -EIO;
6583                goto cleanup0;
6584        }
6585
6586        /* Copy the error information out */
6587        memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6588        if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6589                int i;
6590
6591                /* Copy the data out of the buffer we created */
6592                BYTE __user *ptr = ioc->buf;
6593                for (i = 0; i < sg_used; i++) {
6594                        if (copy_to_user(ptr, buff[i], buff_size[i])) {
6595                                status = -EFAULT;
6596                                goto cleanup0;
6597                        }
6598                        ptr += buff_size[i];
6599                }
6600        }
6601        status = 0;
6602cleanup0:
6603        cmd_free(h, c);
6604cleanup1:
6605        if (buff) {
6606                int i;
6607
6608                for (i = 0; i < sg_used; i++)
6609                        kfree(buff[i]);
6610                kfree(buff);
6611        }
6612        kfree(buff_size);
6613        return status;
6614}
6615
6616static void check_ioctl_unit_attention(struct ctlr_info *h,
6617        struct CommandList *c)
6618{
6619        if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6620                        c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6621                (void) check_for_unit_attention(h, c);
6622}
6623
6624/*
6625 * ioctl
6626 */
6627static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6628                      void __user *argp)
6629{
6630        struct ctlr_info *h = sdev_to_hba(dev);
6631        int rc;
6632
6633        switch (cmd) {
6634        case CCISS_DEREGDISK:
6635        case CCISS_REGNEWDISK:
6636        case CCISS_REGNEWD:
6637                hpsa_scan_start(h->scsi_host);
6638                return 0;
6639        case CCISS_GETPCIINFO:
6640                return hpsa_getpciinfo_ioctl(h, argp);
6641        case CCISS_GETDRIVVER:
6642                return hpsa_getdrivver_ioctl(h, argp);
6643        case CCISS_PASSTHRU: {
6644                IOCTL_Command_struct iocommand;
6645
6646                if (!argp)
6647                        return -EINVAL;
6648                if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6649                        return -EFAULT;
6650                if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6651                        return -EAGAIN;
6652                rc = hpsa_passthru_ioctl(h, &iocommand);
6653                atomic_inc(&h->passthru_cmds_avail);
6654                if (!rc && copy_to_user(argp, &iocommand, sizeof(iocommand)))
6655                        rc = -EFAULT;
6656                return rc;
6657        }
6658        case CCISS_BIG_PASSTHRU: {
6659                BIG_IOCTL_Command_struct ioc;
6660                if (!argp)
6661                        return -EINVAL;
6662                if (copy_from_user(&ioc, argp, sizeof(ioc)))
6663                        return -EFAULT;
6664                if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6665                        return -EAGAIN;
6666                rc = hpsa_big_passthru_ioctl(h, &ioc);
6667                atomic_inc(&h->passthru_cmds_avail);
6668                if (!rc && copy_to_user(argp, &ioc, sizeof(ioc)))
6669                        rc = -EFAULT;
6670                return rc;
6671        }
6672        default:
6673                return -ENOTTY;
6674        }
6675}
6676
6677static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6678{
6679        struct CommandList *c;
6680
6681        c = cmd_alloc(h);
6682
6683        /* fill_cmd can't fail here, no data buffer to map */
6684        (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6685                RAID_CTLR_LUNID, TYPE_MSG);
6686        c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6687        c->waiting = NULL;
6688        enqueue_cmd_and_start_io(h, c);
6689        /* Don't wait for completion, the reset won't complete.  Don't free
6690         * the command either.  This is the last command we will send before
6691         * re-initializing everything, so it doesn't matter and won't leak.
6692         */
6693        return;
6694}
6695
6696static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6697        void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6698        int cmd_type)
6699{
6700        enum dma_data_direction dir = DMA_NONE;
6701
6702        c->cmd_type = CMD_IOCTL_PEND;
6703        c->scsi_cmd = SCSI_CMD_BUSY;
6704        c->Header.ReplyQueue = 0;
6705        if (buff != NULL && size > 0) {
6706                c->Header.SGList = 1;
6707                c->Header.SGTotal = cpu_to_le16(1);
6708        } else {
6709                c->Header.SGList = 0;
6710                c->Header.SGTotal = cpu_to_le16(0);
6711        }
6712        memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6713
6714        if (cmd_type == TYPE_CMD) {
6715                switch (cmd) {
6716                case HPSA_INQUIRY:
6717                        /* are we trying to read a vital product page */
6718                        if (page_code & VPD_PAGE) {
6719                                c->Request.CDB[1] = 0x01;
6720                                c->Request.CDB[2] = (page_code & 0xff);
6721                        }
6722                        c->Request.CDBLen = 6;
6723                        c->Request.type_attr_dir =
6724                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6725                        c->Request.Timeout = 0;
6726                        c->Request.CDB[0] = HPSA_INQUIRY;
6727                        c->Request.CDB[4] = size & 0xFF;
6728                        break;
6729                case RECEIVE_DIAGNOSTIC:
6730                        c->Request.CDBLen = 6;
6731                        c->Request.type_attr_dir =
6732                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6733                        c->Request.Timeout = 0;
6734                        c->Request.CDB[0] = cmd;
6735                        c->Request.CDB[1] = 1;
6736                        c->Request.CDB[2] = 1;
6737                        c->Request.CDB[3] = (size >> 8) & 0xFF;
6738                        c->Request.CDB[4] = size & 0xFF;
6739                        break;
6740                case HPSA_REPORT_LOG:
6741                case HPSA_REPORT_PHYS:
6742                        /* Talking to controller so It's a physical command
6743                           mode = 00 target = 0.  Nothing to write.
6744                         */
6745                        c->Request.CDBLen = 12;
6746                        c->Request.type_attr_dir =
6747                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6748                        c->Request.Timeout = 0;
6749                        c->Request.CDB[0] = cmd;
6750                        c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6751                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6752                        c->Request.CDB[8] = (size >> 8) & 0xFF;
6753                        c->Request.CDB[9] = size & 0xFF;
6754                        break;
6755                case BMIC_SENSE_DIAG_OPTIONS:
6756                        c->Request.CDBLen = 16;
6757                        c->Request.type_attr_dir =
6758                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6759                        c->Request.Timeout = 0;
6760                        /* Spec says this should be BMIC_WRITE */
6761                        c->Request.CDB[0] = BMIC_READ;
6762                        c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6763                        break;
6764                case BMIC_SET_DIAG_OPTIONS:
6765                        c->Request.CDBLen = 16;
6766                        c->Request.type_attr_dir =
6767                                        TYPE_ATTR_DIR(cmd_type,
6768                                                ATTR_SIMPLE, XFER_WRITE);
6769                        c->Request.Timeout = 0;
6770                        c->Request.CDB[0] = BMIC_WRITE;
6771                        c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6772                        break;
6773                case HPSA_CACHE_FLUSH:
6774                        c->Request.CDBLen = 12;
6775                        c->Request.type_attr_dir =
6776                                        TYPE_ATTR_DIR(cmd_type,
6777                                                ATTR_SIMPLE, XFER_WRITE);
6778                        c->Request.Timeout = 0;
6779                        c->Request.CDB[0] = BMIC_WRITE;
6780                        c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6781                        c->Request.CDB[7] = (size >> 8) & 0xFF;
6782                        c->Request.CDB[8] = size & 0xFF;
6783                        break;
6784                case TEST_UNIT_READY:
6785                        c->Request.CDBLen = 6;
6786                        c->Request.type_attr_dir =
6787                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6788                        c->Request.Timeout = 0;
6789                        break;
6790                case HPSA_GET_RAID_MAP:
6791                        c->Request.CDBLen = 12;
6792                        c->Request.type_attr_dir =
6793                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6794                        c->Request.Timeout = 0;
6795                        c->Request.CDB[0] = HPSA_CISS_READ;
6796                        c->Request.CDB[1] = cmd;
6797                        c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6798                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6799                        c->Request.CDB[8] = (size >> 8) & 0xFF;
6800                        c->Request.CDB[9] = size & 0xFF;
6801                        break;
6802                case BMIC_SENSE_CONTROLLER_PARAMETERS:
6803                        c->Request.CDBLen = 10;
6804                        c->Request.type_attr_dir =
6805                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6806                        c->Request.Timeout = 0;
6807                        c->Request.CDB[0] = BMIC_READ;
6808                        c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6809                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6810                        c->Request.CDB[8] = (size >> 8) & 0xFF;
6811                        break;
6812                case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6813                        c->Request.CDBLen = 10;
6814                        c->Request.type_attr_dir =
6815                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6816                        c->Request.Timeout = 0;
6817                        c->Request.CDB[0] = BMIC_READ;
6818                        c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6819                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6820                        c->Request.CDB[8] = (size >> 8) & 0XFF;
6821                        break;
6822                case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6823                        c->Request.CDBLen = 10;
6824                        c->Request.type_attr_dir =
6825                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6826                        c->Request.Timeout = 0;
6827                        c->Request.CDB[0] = BMIC_READ;
6828                        c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6829                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6830                        c->Request.CDB[8] = (size >> 8) & 0XFF;
6831                        break;
6832                case BMIC_SENSE_STORAGE_BOX_PARAMS:
6833                        c->Request.CDBLen = 10;
6834                        c->Request.type_attr_dir =
6835                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6836                        c->Request.Timeout = 0;
6837                        c->Request.CDB[0] = BMIC_READ;
6838                        c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6839                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6840                        c->Request.CDB[8] = (size >> 8) & 0XFF;
6841                        break;
6842                case BMIC_IDENTIFY_CONTROLLER:
6843                        c->Request.CDBLen = 10;
6844                        c->Request.type_attr_dir =
6845                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6846                        c->Request.Timeout = 0;
6847                        c->Request.CDB[0] = BMIC_READ;
6848                        c->Request.CDB[1] = 0;
6849                        c->Request.CDB[2] = 0;
6850                        c->Request.CDB[3] = 0;
6851                        c->Request.CDB[4] = 0;
6852                        c->Request.CDB[5] = 0;
6853                        c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6854                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6855                        c->Request.CDB[8] = (size >> 8) & 0XFF;
6856                        c->Request.CDB[9] = 0;
6857                        break;
6858                default:
6859                        dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6860                        BUG();
6861                }
6862        } else if (cmd_type == TYPE_MSG) {
6863                switch (cmd) {
6864
6865                case  HPSA_PHYS_TARGET_RESET:
6866                        c->Request.CDBLen = 16;
6867                        c->Request.type_attr_dir =
6868                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6869                        c->Request.Timeout = 0; /* Don't time out */
6870                        memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6871                        c->Request.CDB[0] = HPSA_RESET;
6872                        c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6873                        /* Physical target reset needs no control bytes 4-7*/
6874                        c->Request.CDB[4] = 0x00;
6875                        c->Request.CDB[5] = 0x00;
6876                        c->Request.CDB[6] = 0x00;
6877                        c->Request.CDB[7] = 0x00;
6878                        break;
6879                case  HPSA_DEVICE_RESET_MSG:
6880                        c->Request.CDBLen = 16;
6881                        c->Request.type_attr_dir =
6882                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6883                        c->Request.Timeout = 0; /* Don't time out */
6884                        memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6885                        c->Request.CDB[0] =  cmd;
6886                        c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6887                        /* If bytes 4-7 are zero, it means reset the */
6888                        /* LunID device */
6889                        c->Request.CDB[4] = 0x00;
6890                        c->Request.CDB[5] = 0x00;
6891                        c->Request.CDB[6] = 0x00;
6892                        c->Request.CDB[7] = 0x00;
6893                        break;
6894                default:
6895                        dev_warn(&h->pdev->dev, "unknown message type %d\n",
6896                                cmd);
6897                        BUG();
6898                }
6899        } else {
6900                dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6901                BUG();
6902        }
6903
6904        switch (GET_DIR(c->Request.type_attr_dir)) {
6905        case XFER_READ:
6906                dir = DMA_FROM_DEVICE;
6907                break;
6908        case XFER_WRITE:
6909                dir = DMA_TO_DEVICE;
6910                break;
6911        case XFER_NONE:
6912                dir = DMA_NONE;
6913                break;
6914        default:
6915                dir = DMA_BIDIRECTIONAL;
6916        }
6917        if (hpsa_map_one(h->pdev, c, buff, size, dir))
6918                return -1;
6919        return 0;
6920}
6921
6922/*
6923 * Map (physical) PCI mem into (virtual) kernel space
6924 */
6925static void __iomem *remap_pci_mem(ulong base, ulong size)
6926{
6927        ulong page_base = ((ulong) base) & PAGE_MASK;
6928        ulong page_offs = ((ulong) base) - page_base;
6929        void __iomem *page_remapped = ioremap(page_base,
6930                page_offs + size);
6931
6932        return page_remapped ? (page_remapped + page_offs) : NULL;
6933}
6934
6935static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6936{
6937        return h->access.command_completed(h, q);
6938}
6939
6940static inline bool interrupt_pending(struct ctlr_info *h)
6941{
6942        return h->access.intr_pending(h);
6943}
6944
6945static inline long interrupt_not_for_us(struct ctlr_info *h)
6946{
6947        return (h->access.intr_pending(h) == 0) ||
6948                (h->interrupts_enabled == 0);
6949}
6950
6951static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6952        u32 raw_tag)
6953{
6954        if (unlikely(tag_index >= h->nr_cmds)) {
6955                dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6956                return 1;
6957        }
6958        return 0;
6959}
6960
6961static inline void finish_cmd(struct CommandList *c)
6962{
6963        dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6964        if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6965                        || c->cmd_type == CMD_IOACCEL2))
6966                complete_scsi_command(c);
6967        else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6968                complete(c->waiting);
6969}
6970
6971/* process completion of an indexed ("direct lookup") command */
6972static inline void process_indexed_cmd(struct ctlr_info *h,
6973        u32 raw_tag)
6974{
6975        u32 tag_index;
6976        struct CommandList *c;
6977
6978        tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6979        if (!bad_tag(h, tag_index, raw_tag)) {
6980                c = h->cmd_pool + tag_index;
6981                finish_cmd(c);
6982        }
6983}
6984
6985/* Some controllers, like p400, will give us one interrupt
6986 * after a soft reset, even if we turned interrupts off.
6987 * Only need to check for this in the hpsa_xxx_discard_completions
6988 * functions.
6989 */
6990static int ignore_bogus_interrupt(struct ctlr_info *h)
6991{
6992        if (likely(!reset_devices))
6993                return 0;
6994
6995        if (likely(h->interrupts_enabled))
6996                return 0;
6997
6998        dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6999                "(known firmware bug.)  Ignoring.\n");
7000
7001        return 1;
7002}
7003
7004/*
7005 * Convert &h->q[x] (passed to interrupt handlers) back to h.
7006 * Relies on (h-q[x] == x) being true for x such that
7007 * 0 <= x < MAX_REPLY_QUEUES.
7008 */
7009static struct ctlr_info *queue_to_hba(u8 *queue)
7010{
7011        return container_of((queue - *queue), struct ctlr_info, q[0]);
7012}
7013
7014static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7015{
7016        struct ctlr_info *h = queue_to_hba(queue);
7017        u8 q = *(u8 *) queue;
7018        u32 raw_tag;
7019
7020        if (ignore_bogus_interrupt(h))
7021                return IRQ_NONE;
7022
7023        if (interrupt_not_for_us(h))
7024                return IRQ_NONE;
7025        h->last_intr_timestamp = get_jiffies_64();
7026        while (interrupt_pending(h)) {
7027                raw_tag = get_next_completion(h, q);
7028                while (raw_tag != FIFO_EMPTY)
7029                        raw_tag = next_command(h, q);
7030        }
7031        return IRQ_HANDLED;
7032}
7033
7034static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7035{
7036        struct ctlr_info *h = queue_to_hba(queue);
7037        u32 raw_tag;
7038        u8 q = *(u8 *) queue;
7039
7040        if (ignore_bogus_interrupt(h))
7041                return IRQ_NONE;
7042
7043        h->last_intr_timestamp = get_jiffies_64();
7044        raw_tag = get_next_completion(h, q);
7045        while (raw_tag != FIFO_EMPTY)
7046                raw_tag = next_command(h, q);
7047        return IRQ_HANDLED;
7048}
7049
7050static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7051{
7052        struct ctlr_info *h = queue_to_hba((u8 *) queue);
7053        u32 raw_tag;
7054        u8 q = *(u8 *) queue;
7055
7056        if (interrupt_not_for_us(h))
7057                return IRQ_NONE;
7058        h->last_intr_timestamp = get_jiffies_64();
7059        while (interrupt_pending(h)) {
7060                raw_tag = get_next_completion(h, q);
7061                while (raw_tag != FIFO_EMPTY) {
7062                        process_indexed_cmd(h, raw_tag);
7063                        raw_tag = next_command(h, q);
7064                }
7065        }
7066        return IRQ_HANDLED;
7067}
7068
7069static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7070{
7071        struct ctlr_info *h = queue_to_hba(queue);
7072        u32 raw_tag;
7073        u8 q = *(u8 *) queue;
7074
7075        h->last_intr_timestamp = get_jiffies_64();
7076        raw_tag = get_next_completion(h, q);
7077        while (raw_tag != FIFO_EMPTY) {
7078                process_indexed_cmd(h, raw_tag);
7079                raw_tag = next_command(h, q);
7080        }
7081        return IRQ_HANDLED;
7082}
7083
7084/* Send a message CDB to the firmware. Careful, this only works
7085 * in simple mode, not performant mode due to the tag lookup.
7086 * We only ever use this immediately after a controller reset.
7087 */
7088static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7089                        unsigned char type)
7090{
7091        struct Command {
7092                struct CommandListHeader CommandHeader;
7093                struct RequestBlock Request;
7094                struct ErrDescriptor ErrorDescriptor;
7095        };
7096        struct Command *cmd;
7097        static const size_t cmd_sz = sizeof(*cmd) +
7098                                        sizeof(cmd->ErrorDescriptor);
7099        dma_addr_t paddr64;
7100        __le32 paddr32;
7101        u32 tag;
7102        void __iomem *vaddr;
7103        int i, err;
7104
7105        vaddr = pci_ioremap_bar(pdev, 0);
7106        if (vaddr == NULL)
7107                return -ENOMEM;
7108
7109        /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7110         * CCISS commands, so they must be allocated from the lower 4GiB of
7111         * memory.
7112         */
7113        err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7114        if (err) {
7115                iounmap(vaddr);
7116                return err;
7117        }
7118
7119        cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7120        if (cmd == NULL) {
7121                iounmap(vaddr);
7122                return -ENOMEM;
7123        }
7124
7125        /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7126         * although there's no guarantee, we assume that the address is at
7127         * least 4-byte aligned (most likely, it's page-aligned).
7128         */
7129        paddr32 = cpu_to_le32(paddr64);
7130
7131        cmd->CommandHeader.ReplyQueue = 0;
7132        cmd->CommandHeader.SGList = 0;
7133        cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7134        cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7135        memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7136
7137        cmd->Request.CDBLen = 16;
7138        cmd->Request.type_attr_dir =
7139                        TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7140        cmd->Request.Timeout = 0; /* Don't time out */
7141        cmd->Request.CDB[0] = opcode;
7142        cmd->Request.CDB[1] = type;
7143        memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7144        cmd->ErrorDescriptor.Addr =
7145                        cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7146        cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7147
7148        writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7149
7150        for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7151                tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7152                if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7153                        break;
7154                msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7155        }
7156
7157        iounmap(vaddr);
7158
7159        /* we leak the DMA buffer here ... no choice since the controller could
7160         *  still complete the command.
7161         */
7162        if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7163                dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7164                        opcode, type);
7165                return -ETIMEDOUT;
7166        }
7167
7168        dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7169
7170        if (tag & HPSA_ERROR_BIT) {
7171                dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7172                        opcode, type);
7173                return -EIO;
7174        }
7175
7176        dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7177                opcode, type);
7178        return 0;
7179}
7180
7181#define hpsa_noop(p) hpsa_message(p, 3, 0)
7182
7183static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7184        void __iomem *vaddr, u32 use_doorbell)
7185{
7186
7187        if (use_doorbell) {
7188                /* For everything after the P600, the PCI power state method
7189                 * of resetting the controller doesn't work, so we have this
7190                 * other way using the doorbell register.
7191                 */
7192                dev_info(&pdev->dev, "using doorbell to reset controller\n");
7193                writel(use_doorbell, vaddr + SA5_DOORBELL);
7194
7195                /* PMC hardware guys tell us we need a 10 second delay after
7196                 * doorbell reset and before any attempt to talk to the board
7197                 * at all to ensure that this actually works and doesn't fall
7198                 * over in some weird corner cases.
7199                 */
7200                msleep(10000);
7201        } else { /* Try to do it the PCI power state way */
7202
7203                /* Quoting from the Open CISS Specification: "The Power
7204                 * Management Control/Status Register (CSR) controls the power
7205                 * state of the device.  The normal operating state is D0,
7206                 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7207                 * the controller, place the interface device in D3 then to D0,
7208                 * this causes a secondary PCI reset which will reset the
7209                 * controller." */
7210
7211                int rc = 0;
7212
7213                dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7214
7215                /* enter the D3hot power management state */
7216                rc = pci_set_power_state(pdev, PCI_D3hot);
7217                if (rc)
7218                        return rc;
7219
7220                msleep(500);
7221
7222                /* enter the D0 power management state */
7223                rc = pci_set_power_state(pdev, PCI_D0);
7224                if (rc)
7225                        return rc;
7226
7227                /*
7228                 * The P600 requires a small delay when changing states.
7229                 * Otherwise we may think the board did not reset and we bail.
7230                 * This for kdump only and is particular to the P600.
7231                 */
7232                msleep(500);
7233        }
7234        return 0;
7235}
7236
7237static void init_driver_version(char *driver_version, int len)
7238{
7239        memset(driver_version, 0, len);
7240        strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7241}
7242
7243static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7244{
7245        char *driver_version;
7246        int i, size = sizeof(cfgtable->driver_version);
7247
7248        driver_version = kmalloc(size, GFP_KERNEL);
7249        if (!driver_version)
7250                return -ENOMEM;
7251
7252        init_driver_version(driver_version, size);
7253        for (i = 0; i < size; i++)
7254                writeb(driver_version[i], &cfgtable->driver_version[i]);
7255        kfree(driver_version);
7256        return 0;
7257}
7258
7259static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7260                                          unsigned char *driver_ver)
7261{
7262        int i;
7263
7264        for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7265                driver_ver[i] = readb(&cfgtable->driver_version[i]);
7266}
7267
7268static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7269{
7270
7271        char *driver_ver, *old_driver_ver;
7272        int rc, size = sizeof(cfgtable->driver_version);
7273
7274        old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7275        if (!old_driver_ver)
7276                return -ENOMEM;
7277        driver_ver = old_driver_ver + size;
7278
7279        /* After a reset, the 32 bytes of "driver version" in the cfgtable
7280         * should have been changed, otherwise we know the reset failed.
7281         */
7282        init_driver_version(old_driver_ver, size);
7283        read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7284        rc = !memcmp(driver_ver, old_driver_ver, size);
7285        kfree(old_driver_ver);
7286        return rc;
7287}
7288/* This does a hard reset of the controller using PCI power management
7289 * states or the using the doorbell register.
7290 */
7291static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7292{
7293        u64 cfg_offset;
7294        u32 cfg_base_addr;
7295        u64 cfg_base_addr_index;
7296        void __iomem *vaddr;
7297        unsigned long paddr;
7298        u32 misc_fw_support;
7299        int rc;
7300        struct CfgTable __iomem *cfgtable;
7301        u32 use_doorbell;
7302        u16 command_register;
7303
7304        /* For controllers as old as the P600, this is very nearly
7305         * the same thing as
7306         *
7307         * pci_save_state(pci_dev);
7308         * pci_set_power_state(pci_dev, PCI_D3hot);
7309         * pci_set_power_state(pci_dev, PCI_D0);
7310         * pci_restore_state(pci_dev);
7311         *
7312         * For controllers newer than the P600, the pci power state
7313         * method of resetting doesn't work so we have another way
7314         * using the doorbell register.
7315         */
7316
7317        if (!ctlr_is_resettable(board_id)) {
7318                dev_warn(&pdev->dev, "Controller not resettable\n");
7319                return -ENODEV;
7320        }
7321
7322        /* if controller is soft- but not hard resettable... */
7323        if (!ctlr_is_hard_resettable(board_id))
7324                return -ENOTSUPP; /* try soft reset later. */
7325
7326        /* Save the PCI command register */
7327        pci_read_config_word(pdev, 4, &command_register);
7328        pci_save_state(pdev);
7329
7330        /* find the first memory BAR, so we can find the cfg table */
7331        rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7332        if (rc)
7333                return rc;
7334        vaddr = remap_pci_mem(paddr, 0x250);
7335        if (!vaddr)
7336                return -ENOMEM;
7337
7338        /* find cfgtable in order to check if reset via doorbell is supported */
7339        rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7340                                        &cfg_base_addr_index, &cfg_offset);
7341        if (rc)
7342                goto unmap_vaddr;
7343        cfgtable = remap_pci_mem(pci_resource_start(pdev,
7344                       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7345        if (!cfgtable) {
7346                rc = -ENOMEM;
7347                goto unmap_vaddr;
7348        }
7349        rc = write_driver_ver_to_cfgtable(cfgtable);
7350        if (rc)
7351                goto unmap_cfgtable;
7352
7353        /* If reset via doorbell register is supported, use that.
7354         * There are two such methods.  Favor the newest method.
7355         */
7356        misc_fw_support = readl(&cfgtable->misc_fw_support);
7357        use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7358        if (use_doorbell) {
7359                use_doorbell = DOORBELL_CTLR_RESET2;
7360        } else {
7361                use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7362                if (use_doorbell) {
7363                        dev_warn(&pdev->dev,
7364                                "Soft reset not supported. Firmware update is required.\n");
7365                        rc = -ENOTSUPP; /* try soft reset */
7366                        goto unmap_cfgtable;
7367                }
7368        }
7369
7370        rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7371        if (rc)
7372                goto unmap_cfgtable;
7373
7374        pci_restore_state(pdev);
7375        pci_write_config_word(pdev, 4, command_register);
7376
7377        /* Some devices (notably the HP Smart Array 5i Controller)
7378           need a little pause here */
7379        msleep(HPSA_POST_RESET_PAUSE_MSECS);
7380
7381        rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7382        if (rc) {
7383                dev_warn(&pdev->dev,
7384                        "Failed waiting for board to become ready after hard reset\n");
7385                goto unmap_cfgtable;
7386        }
7387
7388        rc = controller_reset_failed(vaddr);
7389        if (rc < 0)
7390                goto unmap_cfgtable;
7391        if (rc) {
7392                dev_warn(&pdev->dev, "Unable to successfully reset "
7393                        "controller. Will try soft reset.\n");
7394                rc = -ENOTSUPP;
7395        } else {
7396                dev_info(&pdev->dev, "board ready after hard reset.\n");
7397        }
7398
7399unmap_cfgtable:
7400        iounmap(cfgtable);
7401
7402unmap_vaddr:
7403        iounmap(vaddr);
7404        return rc;
7405}
7406
7407/*
7408 *  We cannot read the structure directly, for portability we must use
7409 *   the io functions.
7410 *   This is for debug only.
7411 */
7412static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7413{
7414#ifdef HPSA_DEBUG
7415        int i;
7416        char temp_name[17];
7417
7418        dev_info(dev, "Controller Configuration information\n");
7419        dev_info(dev, "------------------------------------\n");
7420        for (i = 0; i < 4; i++)
7421                temp_name[i] = readb(&(tb->Signature[i]));
7422        temp_name[4] = '\0';
7423        dev_info(dev, "   Signature = %s\n", temp_name);
7424        dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7425        dev_info(dev, "   Transport methods supported = 0x%x\n",
7426               readl(&(tb->TransportSupport)));
7427        dev_info(dev, "   Transport methods active = 0x%x\n",
7428               readl(&(tb->TransportActive)));
7429        dev_info(dev, "   Requested transport Method = 0x%x\n",
7430               readl(&(tb->HostWrite.TransportRequest)));
7431        dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7432               readl(&(tb->HostWrite.CoalIntDelay)));
7433        dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7434               readl(&(tb->HostWrite.CoalIntCount)));
7435        dev_info(dev, "   Max outstanding commands = %d\n",
7436               readl(&(tb->CmdsOutMax)));
7437        dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7438        for (i = 0; i < 16; i++)
7439                temp_name[i] = readb(&(tb->ServerName[i]));
7440        temp_name[16] = '\0';
7441        dev_info(dev, "   Server Name = %s\n", temp_name);
7442        dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7443                readl(&(tb->HeartBeat)));
7444#endif                          /* HPSA_DEBUG */
7445}
7446
7447static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7448{
7449        int i, offset, mem_type, bar_type;
7450
7451        if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7452                return 0;
7453        offset = 0;
7454        for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7455                bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7456                if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7457                        offset += 4;
7458                else {
7459                        mem_type = pci_resource_flags(pdev, i) &
7460                            PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7461                        switch (mem_type) {
7462                        case PCI_BASE_ADDRESS_MEM_TYPE_32:
7463                        case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7464                                offset += 4;    /* 32 bit */
7465                                break;
7466                        case PCI_BASE_ADDRESS_MEM_TYPE_64:
7467                                offset += 8;
7468                                break;
7469                        default:        /* reserved in PCI 2.2 */
7470                                dev_warn(&pdev->dev,
7471                                       "base address is invalid\n");
7472                                return -1;
7473                        }
7474                }
7475                if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7476                        return i + 1;
7477        }
7478        return -1;
7479}
7480
7481static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7482{
7483        pci_free_irq_vectors(h->pdev);
7484        h->msix_vectors = 0;
7485}
7486
7487static void hpsa_setup_reply_map(struct ctlr_info *h)
7488{
7489        const struct cpumask *mask;
7490        unsigned int queue, cpu;
7491
7492        for (queue = 0; queue < h->msix_vectors; queue++) {
7493                mask = pci_irq_get_affinity(h->pdev, queue);
7494                if (!mask)
7495                        goto fallback;
7496
7497                for_each_cpu(cpu, mask)
7498                        h->reply_map[cpu] = queue;
7499        }
7500        return;
7501
7502fallback:
7503        for_each_possible_cpu(cpu)
7504                h->reply_map[cpu] = 0;
7505}
7506
7507/* If MSI/MSI-X is supported by the kernel we will try to enable it on
7508 * controllers that are capable. If not, we use legacy INTx mode.
7509 */
7510static int hpsa_interrupt_mode(struct ctlr_info *h)
7511{
7512        unsigned int flags = PCI_IRQ_LEGACY;
7513        int ret;
7514
7515        /* Some boards advertise MSI but don't really support it */
7516        switch (h->board_id) {
7517        case 0x40700E11:
7518        case 0x40800E11:
7519        case 0x40820E11:
7520        case 0x40830E11:
7521                break;
7522        default:
7523                ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7524                                PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7525                if (ret > 0) {
7526                        h->msix_vectors = ret;
7527                        return 0;
7528                }
7529
7530                flags |= PCI_IRQ_MSI;
7531                break;
7532        }
7533
7534        ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7535        if (ret < 0)
7536                return ret;
7537        return 0;
7538}
7539
7540static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7541                                bool *legacy_board)
7542{
7543        int i;
7544        u32 subsystem_vendor_id, subsystem_device_id;
7545
7546        subsystem_vendor_id = pdev->subsystem_vendor;
7547        subsystem_device_id = pdev->subsystem_device;
7548        *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7549                    subsystem_vendor_id;
7550
7551        if (legacy_board)
7552                *legacy_board = false;
7553        for (i = 0; i < ARRAY_SIZE(products); i++)
7554                if (*board_id == products[i].board_id) {
7555                        if (products[i].access != &SA5A_access &&
7556                            products[i].access != &SA5B_access)
7557                                return i;
7558                        dev_warn(&pdev->dev,
7559                                 "legacy board ID: 0x%08x\n",
7560                                 *board_id);
7561                        if (legacy_board)
7562                            *legacy_board = true;
7563                        return i;
7564                }
7565
7566        dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7567        if (legacy_board)
7568                *legacy_board = true;
7569        return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7570}
7571
7572static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7573                                    unsigned long *memory_bar)
7574{
7575        int i;
7576
7577        for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7578                if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7579                        /* addressing mode bits already removed */
7580                        *memory_bar = pci_resource_start(pdev, i);
7581                        dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7582                                *memory_bar);
7583                        return 0;
7584                }
7585        dev_warn(&pdev->dev, "no memory BAR found\n");
7586        return -ENODEV;
7587}
7588
7589static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7590                                     int wait_for_ready)
7591{
7592        int i, iterations;
7593        u32 scratchpad;
7594        if (wait_for_ready)
7595                iterations = HPSA_BOARD_READY_ITERATIONS;
7596        else
7597                iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7598
7599        for (i = 0; i < iterations; i++) {
7600                scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7601                if (wait_for_ready) {
7602                        if (scratchpad == HPSA_FIRMWARE_READY)
7603                                return 0;
7604                } else {
7605                        if (scratchpad != HPSA_FIRMWARE_READY)
7606                                return 0;
7607                }
7608                msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7609        }
7610        dev_warn(&pdev->dev, "board not ready, timed out.\n");
7611        return -ENODEV;
7612}
7613
7614static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7615                               u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7616                               u64 *cfg_offset)
7617{
7618        *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7619        *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7620        *cfg_base_addr &= (u32) 0x0000ffff;
7621        *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7622        if (*cfg_base_addr_index == -1) {
7623                dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7624                return -ENODEV;
7625        }
7626        return 0;
7627}
7628
7629static void hpsa_free_cfgtables(struct ctlr_info *h)
7630{
7631        if (h->transtable) {
7632                iounmap(h->transtable);
7633                h->transtable = NULL;
7634        }
7635        if (h->cfgtable) {
7636                iounmap(h->cfgtable);
7637                h->cfgtable = NULL;
7638        }
7639}
7640
7641/* Find and map CISS config table and transfer table
7642+ * several items must be unmapped (freed) later
7643+ * */
7644static int hpsa_find_cfgtables(struct ctlr_info *h)
7645{
7646        u64 cfg_offset;
7647        u32 cfg_base_addr;
7648        u64 cfg_base_addr_index;
7649        u32 trans_offset;
7650        int rc;
7651
7652        rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7653                &cfg_base_addr_index, &cfg_offset);
7654        if (rc)
7655                return rc;
7656        h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7657                       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7658        if (!h->cfgtable) {
7659                dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7660                return -ENOMEM;
7661        }
7662        rc = write_driver_ver_to_cfgtable(h->cfgtable);
7663        if (rc)
7664                return rc;
7665        /* Find performant mode table. */
7666        trans_offset = readl(&h->cfgtable->TransMethodOffset);
7667        h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7668                                cfg_base_addr_index)+cfg_offset+trans_offset,
7669                                sizeof(*h->transtable));
7670        if (!h->transtable) {
7671                dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7672                hpsa_free_cfgtables(h);
7673                return -ENOMEM;
7674        }
7675        return 0;
7676}
7677
7678static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7679{
7680#define MIN_MAX_COMMANDS 16
7681        BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7682
7683        h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7684
7685        /* Limit commands in memory limited kdump scenario. */
7686        if (reset_devices && h->max_commands > 32)
7687                h->max_commands = 32;
7688
7689        if (h->max_commands < MIN_MAX_COMMANDS) {
7690                dev_warn(&h->pdev->dev,
7691                        "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7692                        h->max_commands,
7693                        MIN_MAX_COMMANDS);
7694                h->max_commands = MIN_MAX_COMMANDS;
7695        }
7696}
7697
7698/* If the controller reports that the total max sg entries is greater than 512,
7699 * then we know that chained SG blocks work.  (Original smart arrays did not
7700 * support chained SG blocks and would return zero for max sg entries.)
7701 */
7702static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7703{
7704        return h->maxsgentries > 512;
7705}
7706
7707/* Interrogate the hardware for some limits:
7708 * max commands, max SG elements without chaining, and with chaining,
7709 * SG chain block size, etc.
7710 */
7711static void hpsa_find_board_params(struct ctlr_info *h)
7712{
7713        hpsa_get_max_perf_mode_cmds(h);
7714        h->nr_cmds = h->max_commands;
7715        h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7716        h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7717        if (hpsa_supports_chained_sg_blocks(h)) {
7718                /* Limit in-command s/g elements to 32 save dma'able memory. */
7719                h->max_cmd_sg_entries = 32;
7720                h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7721                h->maxsgentries--; /* save one for chain pointer */
7722        } else {
7723                /*
7724                 * Original smart arrays supported at most 31 s/g entries
7725                 * embedded inline in the command (trying to use more
7726                 * would lock up the controller)
7727                 */
7728                h->max_cmd_sg_entries = 31;
7729                h->maxsgentries = 31; /* default to traditional values */
7730                h->chainsize = 0;
7731        }
7732
7733        /* Find out what task management functions are supported and cache */
7734        h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7735        if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7736                dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7737        if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7738                dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7739        if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7740                dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7741}
7742
7743static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7744{
7745        if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7746                dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7747                return false;
7748        }
7749        return true;
7750}
7751
7752static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7753{
7754        u32 driver_support;
7755
7756        driver_support = readl(&(h->cfgtable->driver_support));
7757        /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7758#ifdef CONFIG_X86
7759        driver_support |= ENABLE_SCSI_PREFETCH;
7760#endif
7761        driver_support |= ENABLE_UNIT_ATTN;
7762        writel(driver_support, &(h->cfgtable->driver_support));
7763}
7764
7765/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7766 * in a prefetch beyond physical memory.
7767 */
7768static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7769{
7770        u32 dma_prefetch;
7771
7772        if (h->board_id != 0x3225103C)
7773                return;
7774        dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7775        dma_prefetch |= 0x8000;
7776        writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7777}
7778
7779static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7780{
7781        int i;
7782        u32 doorbell_value;
7783        unsigned long flags;
7784        /* wait until the clear_event_notify bit 6 is cleared by controller. */
7785        for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7786                spin_lock_irqsave(&h->lock, flags);
7787                doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7788                spin_unlock_irqrestore(&h->lock, flags);
7789                if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7790                        goto done;
7791                /* delay and try again */
7792                msleep(CLEAR_EVENT_WAIT_INTERVAL);
7793        }
7794        return -ENODEV;
7795done:
7796        return 0;
7797}
7798
7799static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7800{
7801        int i;
7802        u32 doorbell_value;
7803        unsigned long flags;
7804
7805        /* under certain very rare conditions, this can take awhile.
7806         * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7807         * as we enter this code.)
7808         */
7809        for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7810                if (h->remove_in_progress)
7811                        goto done;
7812                spin_lock_irqsave(&h->lock, flags);
7813                doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7814                spin_unlock_irqrestore(&h->lock, flags);
7815                if (!(doorbell_value & CFGTBL_ChangeReq))
7816                        goto done;
7817                /* delay and try again */
7818                msleep(MODE_CHANGE_WAIT_INTERVAL);
7819        }
7820        return -ENODEV;
7821done:
7822        return 0;
7823}
7824
7825/* return -ENODEV or other reason on error, 0 on success */
7826static int hpsa_enter_simple_mode(struct ctlr_info *h)
7827{
7828        u32 trans_support;
7829
7830        trans_support = readl(&(h->cfgtable->TransportSupport));
7831        if (!(trans_support & SIMPLE_MODE))
7832                return -ENOTSUPP;
7833
7834        h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7835
7836        /* Update the field, and then ring the doorbell */
7837        writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7838        writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7839        writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7840        if (hpsa_wait_for_mode_change_ack(h))
7841                goto error;
7842        print_cfg_table(&h->pdev->dev, h->cfgtable);
7843        if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7844                goto error;
7845        h->transMethod = CFGTBL_Trans_Simple;
7846        return 0;
7847error:
7848        dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7849        return -ENODEV;
7850}
7851
7852/* free items allocated or mapped by hpsa_pci_init */
7853static void hpsa_free_pci_init(struct ctlr_info *h)
7854{
7855        hpsa_free_cfgtables(h);                 /* pci_init 4 */
7856        iounmap(h->vaddr);                      /* pci_init 3 */
7857        h->vaddr = NULL;
7858        hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7859        /*
7860         * call pci_disable_device before pci_release_regions per
7861         * Documentation/driver-api/pci/pci.rst
7862         */
7863        pci_disable_device(h->pdev);            /* pci_init 1 */
7864        pci_release_regions(h->pdev);           /* pci_init 2 */
7865}
7866
7867/* several items must be freed later */
7868static int hpsa_pci_init(struct ctlr_info *h)
7869{
7870        int prod_index, err;
7871        bool legacy_board;
7872
7873        prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7874        if (prod_index < 0)
7875                return prod_index;
7876        h->product_name = products[prod_index].product_name;
7877        h->access = *(products[prod_index].access);
7878        h->legacy_board = legacy_board;
7879        pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7880                               PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7881
7882        err = pci_enable_device(h->pdev);
7883        if (err) {
7884                dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7885                pci_disable_device(h->pdev);
7886                return err;
7887        }
7888
7889        err = pci_request_regions(h->pdev, HPSA);
7890        if (err) {
7891                dev_err(&h->pdev->dev,
7892                        "failed to obtain PCI resources\n");
7893                pci_disable_device(h->pdev);
7894                return err;
7895        }
7896
7897        pci_set_master(h->pdev);
7898
7899        err = hpsa_interrupt_mode(h);
7900        if (err)
7901                goto clean1;
7902
7903        /* setup mapping between CPU and reply queue */
7904        hpsa_setup_reply_map(h);
7905
7906        err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7907        if (err)
7908                goto clean2;    /* intmode+region, pci */
7909        h->vaddr = remap_pci_mem(h->paddr, 0x250);
7910        if (!h->vaddr) {
7911                dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7912                err = -ENOMEM;
7913                goto clean2;    /* intmode+region, pci */
7914        }
7915        err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7916        if (err)
7917                goto clean3;    /* vaddr, intmode+region, pci */
7918        err = hpsa_find_cfgtables(h);
7919        if (err)
7920                goto clean3;    /* vaddr, intmode+region, pci */
7921        hpsa_find_board_params(h);
7922
7923        if (!hpsa_CISS_signature_present(h)) {
7924                err = -ENODEV;
7925                goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7926        }
7927        hpsa_set_driver_support_bits(h);
7928        hpsa_p600_dma_prefetch_quirk(h);
7929        err = hpsa_enter_simple_mode(h);
7930        if (err)
7931                goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7932        return 0;
7933
7934clean4: /* cfgtables, vaddr, intmode+region, pci */
7935        hpsa_free_cfgtables(h);
7936clean3: /* vaddr, intmode+region, pci */
7937        iounmap(h->vaddr);
7938        h->vaddr = NULL;
7939clean2: /* intmode+region, pci */
7940        hpsa_disable_interrupt_mode(h);
7941clean1:
7942        /*
7943         * call pci_disable_device before pci_release_regions per
7944         * Documentation/driver-api/pci/pci.rst
7945         */
7946        pci_disable_device(h->pdev);
7947        pci_release_regions(h->pdev);
7948        return err;
7949}
7950
7951static void hpsa_hba_inquiry(struct ctlr_info *h)
7952{
7953        int rc;
7954
7955#define HBA_INQUIRY_BYTE_COUNT 64
7956        h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7957        if (!h->hba_inquiry_data)
7958                return;
7959        rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7960                h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7961        if (rc != 0) {
7962                kfree(h->hba_inquiry_data);
7963                h->hba_inquiry_data = NULL;
7964        }
7965}
7966
7967static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7968{
7969        int rc, i;
7970        void __iomem *vaddr;
7971
7972        if (!reset_devices)
7973                return 0;
7974
7975        /* kdump kernel is loading, we don't know in which state is
7976         * the pci interface. The dev->enable_cnt is equal zero
7977         * so we call enable+disable, wait a while and switch it on.
7978         */
7979        rc = pci_enable_device(pdev);
7980        if (rc) {
7981                dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7982                return -ENODEV;
7983        }
7984        pci_disable_device(pdev);
7985        msleep(260);                    /* a randomly chosen number */
7986        rc = pci_enable_device(pdev);
7987        if (rc) {
7988                dev_warn(&pdev->dev, "failed to enable device.\n");
7989                return -ENODEV;
7990        }
7991
7992        pci_set_master(pdev);
7993
7994        vaddr = pci_ioremap_bar(pdev, 0);
7995        if (vaddr == NULL) {
7996                rc = -ENOMEM;
7997                goto out_disable;
7998        }
7999        writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
8000        iounmap(vaddr);
8001
8002        /* Reset the controller with a PCI power-cycle or via doorbell */
8003        rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
8004
8005        /* -ENOTSUPP here means we cannot reset the controller
8006         * but it's already (and still) up and running in
8007         * "performant mode".  Or, it might be 640x, which can't reset
8008         * due to concerns about shared bbwc between 6402/6404 pair.
8009         */
8010        if (rc)
8011                goto out_disable;
8012
8013        /* Now try to get the controller to respond to a no-op */
8014        dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8015        for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8016                if (hpsa_noop(pdev) == 0)
8017                        break;
8018                else
8019                        dev_warn(&pdev->dev, "no-op failed%s\n",
8020                                        (i < 11 ? "; re-trying" : ""));
8021        }
8022
8023out_disable:
8024
8025        pci_disable_device(pdev);
8026        return rc;
8027}
8028
8029static void hpsa_free_cmd_pool(struct ctlr_info *h)
8030{
8031        kfree(h->cmd_pool_bits);
8032        h->cmd_pool_bits = NULL;
8033        if (h->cmd_pool) {
8034                dma_free_coherent(&h->pdev->dev,
8035                                h->nr_cmds * sizeof(struct CommandList),
8036                                h->cmd_pool,
8037                                h->cmd_pool_dhandle);
8038                h->cmd_pool = NULL;
8039                h->cmd_pool_dhandle = 0;
8040        }
8041        if (h->errinfo_pool) {
8042                dma_free_coherent(&h->pdev->dev,
8043                                h->nr_cmds * sizeof(struct ErrorInfo),
8044                                h->errinfo_pool,
8045                                h->errinfo_pool_dhandle);
8046                h->errinfo_pool = NULL;
8047                h->errinfo_pool_dhandle = 0;
8048        }
8049}
8050
8051static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8052{
8053        h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
8054                                   sizeof(unsigned long),
8055                                   GFP_KERNEL);
8056        h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
8057                    h->nr_cmds * sizeof(*h->cmd_pool),
8058                    &h->cmd_pool_dhandle, GFP_KERNEL);
8059        h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8060                    h->nr_cmds * sizeof(*h->errinfo_pool),
8061                    &h->errinfo_pool_dhandle, GFP_KERNEL);
8062        if ((h->cmd_pool_bits == NULL)
8063            || (h->cmd_pool == NULL)
8064            || (h->errinfo_pool == NULL)) {
8065                dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8066                goto clean_up;
8067        }
8068        hpsa_preinitialize_commands(h);
8069        return 0;
8070clean_up:
8071        hpsa_free_cmd_pool(h);
8072        return -ENOMEM;
8073}
8074
8075/* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8076static void hpsa_free_irqs(struct ctlr_info *h)
8077{
8078        int i;
8079        int irq_vector = 0;
8080
8081        if (hpsa_simple_mode)
8082                irq_vector = h->intr_mode;
8083
8084        if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8085                /* Single reply queue, only one irq to free */
8086                free_irq(pci_irq_vector(h->pdev, irq_vector),
8087                                &h->q[h->intr_mode]);
8088                h->q[h->intr_mode] = 0;
8089                return;
8090        }
8091
8092        for (i = 0; i < h->msix_vectors; i++) {
8093                free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8094                h->q[i] = 0;
8095        }
8096        for (; i < MAX_REPLY_QUEUES; i++)
8097                h->q[i] = 0;
8098}
8099
8100/* returns 0 on success; cleans up and returns -Enn on error */
8101static int hpsa_request_irqs(struct ctlr_info *h,
8102        irqreturn_t (*msixhandler)(int, void *),
8103        irqreturn_t (*intxhandler)(int, void *))
8104{
8105        int rc, i;
8106        int irq_vector = 0;
8107
8108        if (hpsa_simple_mode)
8109                irq_vector = h->intr_mode;
8110
8111        /*
8112         * initialize h->q[x] = x so that interrupt handlers know which
8113         * queue to process.
8114         */
8115        for (i = 0; i < MAX_REPLY_QUEUES; i++)
8116                h->q[i] = (u8) i;
8117
8118        if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8119                /* If performant mode and MSI-X, use multiple reply queues */
8120                for (i = 0; i < h->msix_vectors; i++) {
8121                        sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8122                        rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8123                                        0, h->intrname[i],
8124                                        &h->q[i]);
8125                        if (rc) {
8126                                int j;
8127
8128                                dev_err(&h->pdev->dev,
8129                                        "failed to get irq %d for %s\n",
8130                                       pci_irq_vector(h->pdev, i), h->devname);
8131                                for (j = 0; j < i; j++) {
8132                                        free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8133                                        h->q[j] = 0;
8134                                }
8135                                for (; j < MAX_REPLY_QUEUES; j++)
8136                                        h->q[j] = 0;
8137                                return rc;
8138                        }
8139                }
8140        } else {
8141                /* Use single reply pool */
8142                if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8143                        sprintf(h->intrname[0], "%s-msi%s", h->devname,
8144                                h->msix_vectors ? "x" : "");
8145                        rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8146                                msixhandler, 0,
8147                                h->intrname[0],
8148                                &h->q[h->intr_mode]);
8149                } else {
8150                        sprintf(h->intrname[h->intr_mode],
8151                                "%s-intx", h->devname);
8152                        rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8153                                intxhandler, IRQF_SHARED,
8154                                h->intrname[0],
8155                                &h->q[h->intr_mode]);
8156                }
8157        }
8158        if (rc) {
8159                dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8160                       pci_irq_vector(h->pdev, irq_vector), h->devname);
8161                hpsa_free_irqs(h);
8162                return -ENODEV;
8163        }
8164        return 0;
8165}
8166
8167static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8168{
8169        int rc;
8170        hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8171
8172        dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8173        rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8174        if (rc) {
8175                dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8176                return rc;
8177        }
8178
8179        dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8180        rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8181        if (rc) {
8182                dev_warn(&h->pdev->dev, "Board failed to become ready "
8183                        "after soft reset.\n");
8184                return rc;
8185        }
8186
8187        return 0;
8188}
8189
8190static void hpsa_free_reply_queues(struct ctlr_info *h)
8191{
8192        int i;
8193
8194        for (i = 0; i < h->nreply_queues; i++) {
8195                if (!h->reply_queue[i].head)
8196                        continue;
8197                dma_free_coherent(&h->pdev->dev,
8198                                        h->reply_queue_size,
8199                                        h->reply_queue[i].head,
8200                                        h->reply_queue[i].busaddr);
8201                h->reply_queue[i].head = NULL;
8202                h->reply_queue[i].busaddr = 0;
8203        }
8204        h->reply_queue_size = 0;
8205}
8206
8207static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8208{
8209        hpsa_free_performant_mode(h);           /* init_one 7 */
8210        hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8211        hpsa_free_cmd_pool(h);                  /* init_one 5 */
8212        hpsa_free_irqs(h);                      /* init_one 4 */
8213        scsi_host_put(h->scsi_host);            /* init_one 3 */
8214        h->scsi_host = NULL;                    /* init_one 3 */
8215        hpsa_free_pci_init(h);                  /* init_one 2_5 */
8216        free_percpu(h->lockup_detected);        /* init_one 2 */
8217        h->lockup_detected = NULL;              /* init_one 2 */
8218        if (h->resubmit_wq) {
8219                destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8220                h->resubmit_wq = NULL;
8221        }
8222        if (h->rescan_ctlr_wq) {
8223                destroy_workqueue(h->rescan_ctlr_wq);
8224                h->rescan_ctlr_wq = NULL;
8225        }
8226        if (h->monitor_ctlr_wq) {
8227                destroy_workqueue(h->monitor_ctlr_wq);
8228                h->monitor_ctlr_wq = NULL;
8229        }
8230
8231        kfree(h);                               /* init_one 1 */
8232}
8233
8234/* Called when controller lockup detected. */
8235static void fail_all_outstanding_cmds(struct ctlr_info *h)
8236{
8237        int i, refcount;
8238        struct CommandList *c;
8239        int failcount = 0;
8240
8241        flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8242        for (i = 0; i < h->nr_cmds; i++) {
8243                c = h->cmd_pool + i;
8244                refcount = atomic_inc_return(&c->refcount);
8245                if (refcount > 1) {
8246                        c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8247                        finish_cmd(c);
8248                        atomic_dec(&h->commands_outstanding);
8249                        failcount++;
8250                }
8251                cmd_free(h, c);
8252        }
8253        dev_warn(&h->pdev->dev,
8254                "failed %d commands in fail_all\n", failcount);
8255}
8256
8257static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8258{
8259        int cpu;
8260
8261        for_each_online_cpu(cpu) {
8262                u32 *lockup_detected;
8263                lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8264                *lockup_detected = value;
8265        }
8266        wmb(); /* be sure the per-cpu variables are out to memory */
8267}
8268
8269static void controller_lockup_detected(struct ctlr_info *h)
8270{
8271        unsigned long flags;
8272        u32 lockup_detected;
8273
8274        h->access.set_intr_mask(h, HPSA_INTR_OFF);
8275        spin_lock_irqsave(&h->lock, flags);
8276        lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8277        if (!lockup_detected) {
8278                /* no heartbeat, but controller gave us a zero. */
8279                dev_warn(&h->pdev->dev,
8280                        "lockup detected after %d but scratchpad register is zero\n",
8281                        h->heartbeat_sample_interval / HZ);
8282                lockup_detected = 0xffffffff;
8283        }
8284        set_lockup_detected_for_all_cpus(h, lockup_detected);
8285        spin_unlock_irqrestore(&h->lock, flags);
8286        dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8287                        lockup_detected, h->heartbeat_sample_interval / HZ);
8288        if (lockup_detected == 0xffff0000) {
8289                dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8290                writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8291        }
8292        pci_disable_device(h->pdev);
8293        fail_all_outstanding_cmds(h);
8294}
8295
8296static int detect_controller_lockup(struct ctlr_info *h)
8297{
8298        u64 now;
8299        u32 heartbeat;
8300        unsigned long flags;
8301
8302        now = get_jiffies_64();
8303        /* If we've received an interrupt recently, we're ok. */
8304        if (time_after64(h->last_intr_timestamp +
8305                                (h->heartbeat_sample_interval), now))
8306                return false;
8307
8308        /*
8309         * If we've already checked the heartbeat recently, we're ok.
8310         * This could happen if someone sends us a signal. We
8311         * otherwise don't care about signals in this thread.
8312         */
8313        if (time_after64(h->last_heartbeat_timestamp +
8314                                (h->heartbeat_sample_interval), now))
8315                return false;
8316
8317        /* If heartbeat has not changed since we last looked, we're not ok. */
8318        spin_lock_irqsave(&h->lock, flags);
8319        heartbeat = readl(&h->cfgtable->HeartBeat);
8320        spin_unlock_irqrestore(&h->lock, flags);
8321        if (h->last_heartbeat == heartbeat) {
8322                controller_lockup_detected(h);
8323                return true;
8324        }
8325
8326        /* We're ok. */
8327        h->last_heartbeat = heartbeat;
8328        h->last_heartbeat_timestamp = now;
8329        return false;
8330}
8331
8332/*
8333 * Set ioaccel status for all ioaccel volumes.
8334 *
8335 * Called from monitor controller worker (hpsa_event_monitor_worker)
8336 *
8337 * A Volume (or Volumes that comprise an Array set) may be undergoing a
8338 * transformation, so we will be turning off ioaccel for all volumes that
8339 * make up the Array.
8340 */
8341static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8342{
8343        int rc;
8344        int i;
8345        u8 ioaccel_status;
8346        unsigned char *buf;
8347        struct hpsa_scsi_dev_t *device;
8348
8349        if (!h)
8350                return;
8351
8352        buf = kmalloc(64, GFP_KERNEL);
8353        if (!buf)
8354                return;
8355
8356        /*
8357         * Run through current device list used during I/O requests.
8358         */
8359        for (i = 0; i < h->ndevices; i++) {
8360                int offload_to_be_enabled = 0;
8361                int offload_config = 0;
8362
8363                device = h->dev[i];
8364
8365                if (!device)
8366                        continue;
8367                if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8368                                                HPSA_VPD_LV_IOACCEL_STATUS))
8369                        continue;
8370
8371                memset(buf, 0, 64);
8372
8373                rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8374                                        VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8375                                        buf, 64);
8376                if (rc != 0)
8377                        continue;
8378
8379                ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8380
8381                /*
8382                 * Check if offload is still configured on
8383                 */
8384                offload_config =
8385                                !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8386                /*
8387                 * If offload is configured on, check to see if ioaccel
8388                 * needs to be enabled.
8389                 */
8390                if (offload_config)
8391                        offload_to_be_enabled =
8392                                !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8393
8394                /*
8395                 * If ioaccel is to be re-enabled, re-enable later during the
8396                 * scan operation so the driver can get a fresh raidmap
8397                 * before turning ioaccel back on.
8398                 */
8399                if (offload_to_be_enabled)
8400                        continue;
8401
8402                /*
8403                 * Immediately turn off ioaccel for any volume the
8404                 * controller tells us to. Some of the reasons could be:
8405                 *    transformation - change to the LVs of an Array.
8406                 *    degraded volume - component failure
8407                 */
8408                hpsa_turn_off_ioaccel_for_device(device);
8409        }
8410
8411        kfree(buf);
8412}
8413
8414static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8415{
8416        char *event_type;
8417
8418        if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8419                return;
8420
8421        /* Ask the controller to clear the events we're handling. */
8422        if ((h->transMethod & (CFGTBL_Trans_io_accel1
8423                        | CFGTBL_Trans_io_accel2)) &&
8424                (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8425                 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8426
8427                if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8428                        event_type = "state change";
8429                if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8430                        event_type = "configuration change";
8431                /* Stop sending new RAID offload reqs via the IO accelerator */
8432                scsi_block_requests(h->scsi_host);
8433                hpsa_set_ioaccel_status(h);
8434                hpsa_drain_accel_commands(h);
8435                /* Set 'accelerator path config change' bit */
8436                dev_warn(&h->pdev->dev,
8437                        "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8438                        h->events, event_type);
8439                writel(h->events, &(h->cfgtable->clear_event_notify));
8440                /* Set the "clear event notify field update" bit 6 */
8441                writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8442                /* Wait until ctlr clears 'clear event notify field', bit 6 */
8443                hpsa_wait_for_clear_event_notify_ack(h);
8444                scsi_unblock_requests(h->scsi_host);
8445        } else {
8446                /* Acknowledge controller notification events. */
8447                writel(h->events, &(h->cfgtable->clear_event_notify));
8448                writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8449                hpsa_wait_for_clear_event_notify_ack(h);
8450        }
8451        return;
8452}
8453
8454/* Check a register on the controller to see if there are configuration
8455 * changes (added/changed/removed logical drives, etc.) which mean that
8456 * we should rescan the controller for devices.
8457 * Also check flag for driver-initiated rescan.
8458 */
8459static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8460{
8461        if (h->drv_req_rescan) {
8462                h->drv_req_rescan = 0;
8463                return 1;
8464        }
8465
8466        if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8467                return 0;
8468
8469        h->events = readl(&(h->cfgtable->event_notify));
8470        return h->events & RESCAN_REQUIRED_EVENT_BITS;
8471}
8472
8473/*
8474 * Check if any of the offline devices have become ready
8475 */
8476static int hpsa_offline_devices_ready(struct ctlr_info *h)
8477{
8478        unsigned long flags;
8479        struct offline_device_entry *d;
8480        struct list_head *this, *tmp;
8481
8482        spin_lock_irqsave(&h->offline_device_lock, flags);
8483        list_for_each_safe(this, tmp, &h->offline_device_list) {
8484                d = list_entry(this, struct offline_device_entry,
8485                                offline_list);
8486                spin_unlock_irqrestore(&h->offline_device_lock, flags);
8487                if (!hpsa_volume_offline(h, d->scsi3addr)) {
8488                        spin_lock_irqsave(&h->offline_device_lock, flags);
8489                        list_del(&d->offline_list);
8490                        spin_unlock_irqrestore(&h->offline_device_lock, flags);
8491                        return 1;
8492                }
8493                spin_lock_irqsave(&h->offline_device_lock, flags);
8494        }
8495        spin_unlock_irqrestore(&h->offline_device_lock, flags);
8496        return 0;
8497}
8498
8499static int hpsa_luns_changed(struct ctlr_info *h)
8500{
8501        int rc = 1; /* assume there are changes */
8502        struct ReportLUNdata *logdev = NULL;
8503
8504        /* if we can't find out if lun data has changed,
8505         * assume that it has.
8506         */
8507
8508        if (!h->lastlogicals)
8509                return rc;
8510
8511        logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8512        if (!logdev)
8513                return rc;
8514
8515        if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8516                dev_warn(&h->pdev->dev,
8517                        "report luns failed, can't track lun changes.\n");
8518                goto out;
8519        }
8520        if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8521                dev_info(&h->pdev->dev,
8522                        "Lun changes detected.\n");
8523                memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8524                goto out;
8525        } else
8526                rc = 0; /* no changes detected. */
8527out:
8528        kfree(logdev);
8529        return rc;
8530}
8531
8532static void hpsa_perform_rescan(struct ctlr_info *h)
8533{
8534        struct Scsi_Host *sh = NULL;
8535        unsigned long flags;
8536
8537        /*
8538         * Do the scan after the reset
8539         */
8540        spin_lock_irqsave(&h->reset_lock, flags);
8541        if (h->reset_in_progress) {
8542                h->drv_req_rescan = 1;
8543                spin_unlock_irqrestore(&h->reset_lock, flags);
8544                return;
8545        }
8546        spin_unlock_irqrestore(&h->reset_lock, flags);
8547
8548        sh = scsi_host_get(h->scsi_host);
8549        if (sh != NULL) {
8550                hpsa_scan_start(sh);
8551                scsi_host_put(sh);
8552                h->drv_req_rescan = 0;
8553        }
8554}
8555
8556/*
8557 * watch for controller events
8558 */
8559static void hpsa_event_monitor_worker(struct work_struct *work)
8560{
8561        struct ctlr_info *h = container_of(to_delayed_work(work),
8562                                        struct ctlr_info, event_monitor_work);
8563        unsigned long flags;
8564
8565        spin_lock_irqsave(&h->lock, flags);
8566        if (h->remove_in_progress) {
8567                spin_unlock_irqrestore(&h->lock, flags);
8568                return;
8569        }
8570        spin_unlock_irqrestore(&h->lock, flags);
8571
8572        if (hpsa_ctlr_needs_rescan(h)) {
8573                hpsa_ack_ctlr_events(h);
8574                hpsa_perform_rescan(h);
8575        }
8576
8577        spin_lock_irqsave(&h->lock, flags);
8578        if (!h->remove_in_progress)
8579                queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8580                                HPSA_EVENT_MONITOR_INTERVAL);
8581        spin_unlock_irqrestore(&h->lock, flags);
8582}
8583
8584static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8585{
8586        unsigned long flags;
8587        struct ctlr_info *h = container_of(to_delayed_work(work),
8588                                        struct ctlr_info, rescan_ctlr_work);
8589
8590        spin_lock_irqsave(&h->lock, flags);
8591        if (h->remove_in_progress) {
8592                spin_unlock_irqrestore(&h->lock, flags);
8593                return;
8594        }
8595        spin_unlock_irqrestore(&h->lock, flags);
8596
8597        if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8598                hpsa_perform_rescan(h);
8599        } else if (h->discovery_polling) {
8600                if (hpsa_luns_changed(h)) {
8601                        dev_info(&h->pdev->dev,
8602                                "driver discovery polling rescan.\n");
8603                        hpsa_perform_rescan(h);
8604                }
8605        }
8606        spin_lock_irqsave(&h->lock, flags);
8607        if (!h->remove_in_progress)
8608                queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8609                                h->heartbeat_sample_interval);
8610        spin_unlock_irqrestore(&h->lock, flags);
8611}
8612
8613static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8614{
8615        unsigned long flags;
8616        struct ctlr_info *h = container_of(to_delayed_work(work),
8617                                        struct ctlr_info, monitor_ctlr_work);
8618
8619        detect_controller_lockup(h);
8620        if (lockup_detected(h))
8621                return;
8622
8623        spin_lock_irqsave(&h->lock, flags);
8624        if (!h->remove_in_progress)
8625                queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8626                                h->heartbeat_sample_interval);
8627        spin_unlock_irqrestore(&h->lock, flags);
8628}
8629
8630static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8631                                                char *name)
8632{
8633        struct workqueue_struct *wq = NULL;
8634
8635        wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8636        if (!wq)
8637                dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8638
8639        return wq;
8640}
8641
8642static void hpda_free_ctlr_info(struct ctlr_info *h)
8643{
8644        kfree(h->reply_map);
8645        kfree(h);
8646}
8647
8648static struct ctlr_info *hpda_alloc_ctlr_info(void)
8649{
8650        struct ctlr_info *h;
8651
8652        h = kzalloc(sizeof(*h), GFP_KERNEL);
8653        if (!h)
8654                return NULL;
8655
8656        h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8657        if (!h->reply_map) {
8658                kfree(h);
8659                return NULL;
8660        }
8661        return h;
8662}
8663
8664static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8665{
8666        int rc;
8667        struct ctlr_info *h;
8668        int try_soft_reset = 0;
8669        unsigned long flags;
8670        u32 board_id;
8671
8672        if (number_of_controllers == 0)
8673                printk(KERN_INFO DRIVER_NAME "\n");
8674
8675        rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8676        if (rc < 0) {
8677                dev_warn(&pdev->dev, "Board ID not found\n");
8678                return rc;
8679        }
8680
8681        rc = hpsa_init_reset_devices(pdev, board_id);
8682        if (rc) {
8683                if (rc != -ENOTSUPP)
8684                        return rc;
8685                /* If the reset fails in a particular way (it has no way to do
8686                 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8687                 * a soft reset once we get the controller configured up to the
8688                 * point that it can accept a command.
8689                 */
8690                try_soft_reset = 1;
8691                rc = 0;
8692        }
8693
8694reinit_after_soft_reset:
8695
8696        /* Command structures must be aligned on a 32-byte boundary because
8697         * the 5 lower bits of the address are used by the hardware. and by
8698         * the driver.  See comments in hpsa.h for more info.
8699         */
8700        BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8701        h = hpda_alloc_ctlr_info();
8702        if (!h) {
8703                dev_err(&pdev->dev, "Failed to allocate controller head\n");
8704                return -ENOMEM;
8705        }
8706
8707        h->pdev = pdev;
8708
8709        h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8710        INIT_LIST_HEAD(&h->offline_device_list);
8711        spin_lock_init(&h->lock);
8712        spin_lock_init(&h->offline_device_lock);
8713        spin_lock_init(&h->scan_lock);
8714        spin_lock_init(&h->reset_lock);
8715        atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8716
8717        /* Allocate and clear per-cpu variable lockup_detected */
8718        h->lockup_detected = alloc_percpu(u32);
8719        if (!h->lockup_detected) {
8720                dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8721                rc = -ENOMEM;
8722                goto clean1;    /* aer/h */
8723        }
8724        set_lockup_detected_for_all_cpus(h, 0);
8725
8726        rc = hpsa_pci_init(h);
8727        if (rc)
8728                goto clean2;    /* lu, aer/h */
8729
8730        /* relies on h-> settings made by hpsa_pci_init, including
8731         * interrupt_mode h->intr */
8732        rc = hpsa_scsi_host_alloc(h);
8733        if (rc)
8734                goto clean2_5;  /* pci, lu, aer/h */
8735
8736        sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8737        h->ctlr = number_of_controllers;
8738        number_of_controllers++;
8739
8740        /* configure PCI DMA stuff */
8741        rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8742        if (rc != 0) {
8743                rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8744                if (rc != 0) {
8745                        dev_err(&pdev->dev, "no suitable DMA available\n");
8746                        goto clean3;    /* shost, pci, lu, aer/h */
8747                }
8748        }
8749
8750        /* make sure the board interrupts are off */
8751        h->access.set_intr_mask(h, HPSA_INTR_OFF);
8752
8753        rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8754        if (rc)
8755                goto clean3;    /* shost, pci, lu, aer/h */
8756        rc = hpsa_alloc_cmd_pool(h);
8757        if (rc)
8758                goto clean4;    /* irq, shost, pci, lu, aer/h */
8759        rc = hpsa_alloc_sg_chain_blocks(h);
8760        if (rc)
8761                goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8762        init_waitqueue_head(&h->scan_wait_queue);
8763        init_waitqueue_head(&h->event_sync_wait_queue);
8764        mutex_init(&h->reset_mutex);
8765        h->scan_finished = 1; /* no scan currently in progress */
8766        h->scan_waiting = 0;
8767
8768        pci_set_drvdata(pdev, h);
8769        h->ndevices = 0;
8770
8771        spin_lock_init(&h->devlock);
8772        rc = hpsa_put_ctlr_into_performant_mode(h);
8773        if (rc)
8774                goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8775
8776        /* create the resubmit workqueue */
8777        h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8778        if (!h->rescan_ctlr_wq) {
8779                rc = -ENOMEM;
8780                goto clean7;
8781        }
8782
8783        h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8784        if (!h->resubmit_wq) {
8785                rc = -ENOMEM;
8786                goto clean7;    /* aer/h */
8787        }
8788
8789        h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8790        if (!h->monitor_ctlr_wq) {
8791                rc = -ENOMEM;
8792                goto clean7;
8793        }
8794
8795        /*
8796         * At this point, the controller is ready to take commands.
8797         * Now, if reset_devices and the hard reset didn't work, try
8798         * the soft reset and see if that works.
8799         */
8800        if (try_soft_reset) {
8801
8802                /* This is kind of gross.  We may or may not get a completion
8803                 * from the soft reset command, and if we do, then the value
8804                 * from the fifo may or may not be valid.  So, we wait 10 secs
8805                 * after the reset throwing away any completions we get during
8806                 * that time.  Unregister the interrupt handler and register
8807                 * fake ones to scoop up any residual completions.
8808                 */
8809                spin_lock_irqsave(&h->lock, flags);
8810                h->access.set_intr_mask(h, HPSA_INTR_OFF);
8811                spin_unlock_irqrestore(&h->lock, flags);
8812                hpsa_free_irqs(h);
8813                rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8814                                        hpsa_intx_discard_completions);
8815                if (rc) {
8816                        dev_warn(&h->pdev->dev,
8817                                "Failed to request_irq after soft reset.\n");
8818                        /*
8819                         * cannot goto clean7 or free_irqs will be called
8820                         * again. Instead, do its work
8821                         */
8822                        hpsa_free_performant_mode(h);   /* clean7 */
8823                        hpsa_free_sg_chain_blocks(h);   /* clean6 */
8824                        hpsa_free_cmd_pool(h);          /* clean5 */
8825                        /*
8826                         * skip hpsa_free_irqs(h) clean4 since that
8827                         * was just called before request_irqs failed
8828                         */
8829                        goto clean3;
8830                }
8831
8832                rc = hpsa_kdump_soft_reset(h);
8833                if (rc)
8834                        /* Neither hard nor soft reset worked, we're hosed. */
8835                        goto clean7;
8836
8837                dev_info(&h->pdev->dev, "Board READY.\n");
8838                dev_info(&h->pdev->dev,
8839                        "Waiting for stale completions to drain.\n");
8840                h->access.set_intr_mask(h, HPSA_INTR_ON);
8841                msleep(10000);
8842                h->access.set_intr_mask(h, HPSA_INTR_OFF);
8843
8844                rc = controller_reset_failed(h->cfgtable);
8845                if (rc)
8846                        dev_info(&h->pdev->dev,
8847                                "Soft reset appears to have failed.\n");
8848
8849                /* since the controller's reset, we have to go back and re-init
8850                 * everything.  Easiest to just forget what we've done and do it
8851                 * all over again.
8852                 */
8853                hpsa_undo_allocations_after_kdump_soft_reset(h);
8854                try_soft_reset = 0;
8855                if (rc)
8856                        /* don't goto clean, we already unallocated */
8857                        return -ENODEV;
8858
8859                goto reinit_after_soft_reset;
8860        }
8861
8862        /* Enable Accelerated IO path at driver layer */
8863        h->acciopath_status = 1;
8864        /* Disable discovery polling.*/
8865        h->discovery_polling = 0;
8866
8867
8868        /* Turn the interrupts on so we can service requests */
8869        h->access.set_intr_mask(h, HPSA_INTR_ON);
8870
8871        hpsa_hba_inquiry(h);
8872
8873        h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8874        if (!h->lastlogicals)
8875                dev_info(&h->pdev->dev,
8876                        "Can't track change to report lun data\n");
8877
8878        /* hook into SCSI subsystem */
8879        rc = hpsa_scsi_add_host(h);
8880        if (rc)
8881                goto clean8; /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8882
8883        /* Monitor the controller for firmware lockups */
8884        h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8885        INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8886        schedule_delayed_work(&h->monitor_ctlr_work,
8887                                h->heartbeat_sample_interval);
8888        INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8889        queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8890                                h->heartbeat_sample_interval);
8891        INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8892        schedule_delayed_work(&h->event_monitor_work,
8893                                HPSA_EVENT_MONITOR_INTERVAL);
8894        return 0;
8895
8896clean8: /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8897        kfree(h->lastlogicals);
8898clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8899        hpsa_free_performant_mode(h);
8900        h->access.set_intr_mask(h, HPSA_INTR_OFF);
8901clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8902        hpsa_free_sg_chain_blocks(h);
8903clean5: /* cmd, irq, shost, pci, lu, aer/h */
8904        hpsa_free_cmd_pool(h);
8905clean4: /* irq, shost, pci, lu, aer/h */
8906        hpsa_free_irqs(h);
8907clean3: /* shost, pci, lu, aer/h */
8908        scsi_host_put(h->scsi_host);
8909        h->scsi_host = NULL;
8910clean2_5: /* pci, lu, aer/h */
8911        hpsa_free_pci_init(h);
8912clean2: /* lu, aer/h */
8913        if (h->lockup_detected) {
8914                free_percpu(h->lockup_detected);
8915                h->lockup_detected = NULL;
8916        }
8917clean1: /* wq/aer/h */
8918        if (h->resubmit_wq) {
8919                destroy_workqueue(h->resubmit_wq);
8920                h->resubmit_wq = NULL;
8921        }
8922        if (h->rescan_ctlr_wq) {
8923                destroy_workqueue(h->rescan_ctlr_wq);
8924                h->rescan_ctlr_wq = NULL;
8925        }
8926        if (h->monitor_ctlr_wq) {
8927                destroy_workqueue(h->monitor_ctlr_wq);
8928                h->monitor_ctlr_wq = NULL;
8929        }
8930        kfree(h);
8931        return rc;
8932}
8933
8934static void hpsa_flush_cache(struct ctlr_info *h)
8935{
8936        char *flush_buf;
8937        struct CommandList *c;
8938        int rc;
8939
8940        if (unlikely(lockup_detected(h)))
8941                return;
8942        flush_buf = kzalloc(4, GFP_KERNEL);
8943        if (!flush_buf)
8944                return;
8945
8946        c = cmd_alloc(h);
8947
8948        if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8949                RAID_CTLR_LUNID, TYPE_CMD)) {
8950                goto out;
8951        }
8952        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8953                        DEFAULT_TIMEOUT);
8954        if (rc)
8955                goto out;
8956        if (c->err_info->CommandStatus != 0)
8957out:
8958                dev_warn(&h->pdev->dev,
8959                        "error flushing cache on controller\n");
8960        cmd_free(h, c);
8961        kfree(flush_buf);
8962}
8963
8964/* Make controller gather fresh report lun data each time we
8965 * send down a report luns request
8966 */
8967static void hpsa_disable_rld_caching(struct ctlr_info *h)
8968{
8969        u32 *options;
8970        struct CommandList *c;
8971        int rc;
8972
8973        /* Don't bother trying to set diag options if locked up */
8974        if (unlikely(h->lockup_detected))
8975                return;
8976
8977        options = kzalloc(sizeof(*options), GFP_KERNEL);
8978        if (!options)
8979                return;
8980
8981        c = cmd_alloc(h);
8982
8983        /* first, get the current diag options settings */
8984        if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8985                RAID_CTLR_LUNID, TYPE_CMD))
8986                goto errout;
8987
8988        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8989                        NO_TIMEOUT);
8990        if ((rc != 0) || (c->err_info->CommandStatus != 0))
8991                goto errout;
8992
8993        /* Now, set the bit for disabling the RLD caching */
8994        *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8995
8996        if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8997                RAID_CTLR_LUNID, TYPE_CMD))
8998                goto errout;
8999
9000        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
9001                        NO_TIMEOUT);
9002        if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9003                goto errout;
9004
9005        /* Now verify that it got set: */
9006        if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9007                RAID_CTLR_LUNID, TYPE_CMD))
9008                goto errout;
9009
9010        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
9011                        NO_TIMEOUT);
9012        if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9013                goto errout;
9014
9015        if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
9016                goto out;
9017
9018errout:
9019        dev_err(&h->pdev->dev,
9020                        "Error: failed to disable report lun data caching.\n");
9021out:
9022        cmd_free(h, c);
9023        kfree(options);
9024}
9025
9026static void __hpsa_shutdown(struct pci_dev *pdev)
9027{
9028        struct ctlr_info *h;
9029
9030        h = pci_get_drvdata(pdev);
9031        /* Turn board interrupts off  and send the flush cache command
9032         * sendcmd will turn off interrupt, and send the flush...
9033         * To write all data in the battery backed cache to disks
9034         */
9035        hpsa_flush_cache(h);
9036        h->access.set_intr_mask(h, HPSA_INTR_OFF);
9037        hpsa_free_irqs(h);                      /* init_one 4 */
9038        hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
9039}
9040
9041static void hpsa_shutdown(struct pci_dev *pdev)
9042{
9043        __hpsa_shutdown(pdev);
9044        pci_disable_device(pdev);
9045}
9046
9047static void hpsa_free_device_info(struct ctlr_info *h)
9048{
9049        int i;
9050
9051        for (i = 0; i < h->ndevices; i++) {
9052                kfree(h->dev[i]);
9053                h->dev[i] = NULL;
9054        }
9055}
9056
9057static void hpsa_remove_one(struct pci_dev *pdev)
9058{
9059        struct ctlr_info *h;
9060        unsigned long flags;
9061
9062        if (pci_get_drvdata(pdev) == NULL) {
9063                dev_err(&pdev->dev, "unable to remove device\n");
9064                return;
9065        }
9066        h = pci_get_drvdata(pdev);
9067
9068        /* Get rid of any controller monitoring work items */
9069        spin_lock_irqsave(&h->lock, flags);
9070        h->remove_in_progress = 1;
9071        spin_unlock_irqrestore(&h->lock, flags);
9072        cancel_delayed_work_sync(&h->monitor_ctlr_work);
9073        cancel_delayed_work_sync(&h->rescan_ctlr_work);
9074        cancel_delayed_work_sync(&h->event_monitor_work);
9075        destroy_workqueue(h->rescan_ctlr_wq);
9076        destroy_workqueue(h->resubmit_wq);
9077        destroy_workqueue(h->monitor_ctlr_wq);
9078
9079        hpsa_delete_sas_host(h);
9080
9081        /*
9082         * Call before disabling interrupts.
9083         * scsi_remove_host can trigger I/O operations especially
9084         * when multipath is enabled. There can be SYNCHRONIZE CACHE
9085         * operations which cannot complete and will hang the system.
9086         */
9087        if (h->scsi_host)
9088                scsi_remove_host(h->scsi_host);         /* init_one 8 */
9089        /* includes hpsa_free_irqs - init_one 4 */
9090        /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9091        __hpsa_shutdown(pdev);
9092
9093        hpsa_free_device_info(h);               /* scan */
9094
9095        kfree(h->hba_inquiry_data);                     /* init_one 10 */
9096        h->hba_inquiry_data = NULL;                     /* init_one 10 */
9097        hpsa_free_ioaccel2_sg_chain_blocks(h);
9098        hpsa_free_performant_mode(h);                   /* init_one 7 */
9099        hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
9100        hpsa_free_cmd_pool(h);                          /* init_one 5 */
9101        kfree(h->lastlogicals);
9102
9103        /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9104
9105        scsi_host_put(h->scsi_host);                    /* init_one 3 */
9106        h->scsi_host = NULL;                            /* init_one 3 */
9107
9108        /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9109        hpsa_free_pci_init(h);                          /* init_one 2.5 */
9110
9111        free_percpu(h->lockup_detected);                /* init_one 2 */
9112        h->lockup_detected = NULL;                      /* init_one 2 */
9113        /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
9114
9115        hpda_free_ctlr_info(h);                         /* init_one 1 */
9116}
9117
9118static int __maybe_unused hpsa_suspend(
9119        __attribute__((unused)) struct device *dev)
9120{
9121        return -ENOSYS;
9122}
9123
9124static int __maybe_unused hpsa_resume
9125        (__attribute__((unused)) struct device *dev)
9126{
9127        return -ENOSYS;
9128}
9129
9130static SIMPLE_DEV_PM_OPS(hpsa_pm_ops, hpsa_suspend, hpsa_resume);
9131
9132static struct pci_driver hpsa_pci_driver = {
9133        .name = HPSA,
9134        .probe = hpsa_init_one,
9135        .remove = hpsa_remove_one,
9136        .id_table = hpsa_pci_device_id, /* id_table */
9137        .shutdown = hpsa_shutdown,
9138        .driver.pm = &hpsa_pm_ops,
9139};
9140
9141/* Fill in bucket_map[], given nsgs (the max number of
9142 * scatter gather elements supported) and bucket[],
9143 * which is an array of 8 integers.  The bucket[] array
9144 * contains 8 different DMA transfer sizes (in 16
9145 * byte increments) which the controller uses to fetch
9146 * commands.  This function fills in bucket_map[], which
9147 * maps a given number of scatter gather elements to one of
9148 * the 8 DMA transfer sizes.  The point of it is to allow the
9149 * controller to only do as much DMA as needed to fetch the
9150 * command, with the DMA transfer size encoded in the lower
9151 * bits of the command address.
9152 */
9153static void  calc_bucket_map(int bucket[], int num_buckets,
9154        int nsgs, int min_blocks, u32 *bucket_map)
9155{
9156        int i, j, b, size;
9157
9158        /* Note, bucket_map must have nsgs+1 entries. */
9159        for (i = 0; i <= nsgs; i++) {
9160                /* Compute size of a command with i SG entries */
9161                size = i + min_blocks;
9162                b = num_buckets; /* Assume the biggest bucket */
9163                /* Find the bucket that is just big enough */
9164                for (j = 0; j < num_buckets; j++) {
9165                        if (bucket[j] >= size) {
9166                                b = j;
9167                                break;
9168                        }
9169                }
9170                /* for a command with i SG entries, use bucket b. */
9171                bucket_map[i] = b;
9172        }
9173}
9174
9175/*
9176 * return -ENODEV on err, 0 on success (or no action)
9177 * allocates numerous items that must be freed later
9178 */
9179static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9180{
9181        int i;
9182        unsigned long register_value;
9183        unsigned long transMethod = CFGTBL_Trans_Performant |
9184                        (trans_support & CFGTBL_Trans_use_short_tags) |
9185                                CFGTBL_Trans_enable_directed_msix |
9186                        (trans_support & (CFGTBL_Trans_io_accel1 |
9187                                CFGTBL_Trans_io_accel2));
9188        struct access_method access = SA5_performant_access;
9189
9190        /* This is a bit complicated.  There are 8 registers on
9191         * the controller which we write to to tell it 8 different
9192         * sizes of commands which there may be.  It's a way of
9193         * reducing the DMA done to fetch each command.  Encoded into
9194         * each command's tag are 3 bits which communicate to the controller
9195         * which of the eight sizes that command fits within.  The size of
9196         * each command depends on how many scatter gather entries there are.
9197         * Each SG entry requires 16 bytes.  The eight registers are programmed
9198         * with the number of 16-byte blocks a command of that size requires.
9199         * The smallest command possible requires 5 such 16 byte blocks.
9200         * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9201         * blocks.  Note, this only extends to the SG entries contained
9202         * within the command block, and does not extend to chained blocks
9203         * of SG elements.   bft[] contains the eight values we write to
9204         * the registers.  They are not evenly distributed, but have more
9205         * sizes for small commands, and fewer sizes for larger commands.
9206         */
9207        int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9208#define MIN_IOACCEL2_BFT_ENTRY 5
9209#define HPSA_IOACCEL2_HEADER_SZ 4
9210        int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9211                        13, 14, 15, 16, 17, 18, 19,
9212                        HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9213        BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9214        BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9215        BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9216                                 16 * MIN_IOACCEL2_BFT_ENTRY);
9217        BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9218        BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9219        /*  5 = 1 s/g entry or 4k
9220         *  6 = 2 s/g entry or 8k
9221         *  8 = 4 s/g entry or 16k
9222         * 10 = 6 s/g entry or 24k
9223         */
9224
9225        /* If the controller supports either ioaccel method then
9226         * we can also use the RAID stack submit path that does not
9227         * perform the superfluous readl() after each command submission.
9228         */
9229        if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9230                access = SA5_performant_access_no_read;
9231
9232        /* Controller spec: zero out this buffer. */
9233        for (i = 0; i < h->nreply_queues; i++)
9234                memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9235
9236        bft[7] = SG_ENTRIES_IN_CMD + 4;
9237        calc_bucket_map(bft, ARRAY_SIZE(bft),
9238                                SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9239        for (i = 0; i < 8; i++)
9240                writel(bft[i], &h->transtable->BlockFetch[i]);
9241
9242        /* size of controller ring buffer */
9243        writel(h->max_commands, &h->transtable->RepQSize);
9244        writel(h->nreply_queues, &h->transtable->RepQCount);
9245        writel(0, &h->transtable->RepQCtrAddrLow32);
9246        writel(0, &h->transtable->RepQCtrAddrHigh32);
9247
9248        for (i = 0; i < h->nreply_queues; i++) {
9249                writel(0, &h->transtable->RepQAddr[i].upper);
9250                writel(h->reply_queue[i].busaddr,
9251                        &h->transtable->RepQAddr[i].lower);
9252        }
9253
9254        writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9255        writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9256        /*
9257         * enable outbound interrupt coalescing in accelerator mode;
9258         */
9259        if (trans_support & CFGTBL_Trans_io_accel1) {
9260                access = SA5_ioaccel_mode1_access;
9261                writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9262                writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9263        } else
9264                if (trans_support & CFGTBL_Trans_io_accel2)
9265                        access = SA5_ioaccel_mode2_access;
9266        writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9267        if (hpsa_wait_for_mode_change_ack(h)) {
9268                dev_err(&h->pdev->dev,
9269                        "performant mode problem - doorbell timeout\n");
9270                return -ENODEV;
9271        }
9272        register_value = readl(&(h->cfgtable->TransportActive));
9273        if (!(register_value & CFGTBL_Trans_Performant)) {
9274                dev_err(&h->pdev->dev,
9275                        "performant mode problem - transport not active\n");
9276                return -ENODEV;
9277        }
9278        /* Change the access methods to the performant access methods */
9279        h->access = access;
9280        h->transMethod = transMethod;
9281
9282        if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9283                (trans_support & CFGTBL_Trans_io_accel2)))
9284                return 0;
9285
9286        if (trans_support & CFGTBL_Trans_io_accel1) {
9287                /* Set up I/O accelerator mode */
9288                for (i = 0; i < h->nreply_queues; i++) {
9289                        writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9290                        h->reply_queue[i].current_entry =
9291                                readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9292                }
9293                bft[7] = h->ioaccel_maxsg + 8;
9294                calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9295                                h->ioaccel1_blockFetchTable);
9296
9297                /* initialize all reply queue entries to unused */
9298                for (i = 0; i < h->nreply_queues; i++)
9299                        memset(h->reply_queue[i].head,
9300                                (u8) IOACCEL_MODE1_REPLY_UNUSED,
9301                                h->reply_queue_size);
9302
9303                /* set all the constant fields in the accelerator command
9304                 * frames once at init time to save CPU cycles later.
9305                 */
9306                for (i = 0; i < h->nr_cmds; i++) {
9307                        struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9308
9309                        cp->function = IOACCEL1_FUNCTION_SCSIIO;
9310                        cp->err_info = (u32) (h->errinfo_pool_dhandle +
9311                                        (i * sizeof(struct ErrorInfo)));
9312                        cp->err_info_len = sizeof(struct ErrorInfo);
9313                        cp->sgl_offset = IOACCEL1_SGLOFFSET;
9314                        cp->host_context_flags =
9315                                cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9316                        cp->timeout_sec = 0;
9317                        cp->ReplyQueue = 0;
9318                        cp->tag =
9319                                cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9320                        cp->host_addr =
9321                                cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9322                                        (i * sizeof(struct io_accel1_cmd)));
9323                }
9324        } else if (trans_support & CFGTBL_Trans_io_accel2) {
9325                u64 cfg_offset, cfg_base_addr_index;
9326                u32 bft2_offset, cfg_base_addr;
9327
9328                hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9329                                    &cfg_base_addr_index, &cfg_offset);
9330                BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9331                bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9332                calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9333                                4, h->ioaccel2_blockFetchTable);
9334                bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9335                BUILD_BUG_ON(offsetof(struct CfgTable,
9336                                io_accel_request_size_offset) != 0xb8);
9337                h->ioaccel2_bft2_regs =
9338                        remap_pci_mem(pci_resource_start(h->pdev,
9339                                        cfg_base_addr_index) +
9340                                        cfg_offset + bft2_offset,
9341                                        ARRAY_SIZE(bft2) *
9342                                        sizeof(*h->ioaccel2_bft2_regs));
9343                for (i = 0; i < ARRAY_SIZE(bft2); i++)
9344                        writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9345        }
9346        writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9347        if (hpsa_wait_for_mode_change_ack(h)) {
9348                dev_err(&h->pdev->dev,
9349                        "performant mode problem - enabling ioaccel mode\n");
9350                return -ENODEV;
9351        }
9352        return 0;
9353}
9354
9355/* Free ioaccel1 mode command blocks and block fetch table */
9356static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9357{
9358        if (h->ioaccel_cmd_pool) {
9359                dma_free_coherent(&h->pdev->dev,
9360                                  h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9361                                  h->ioaccel_cmd_pool,
9362                                  h->ioaccel_cmd_pool_dhandle);
9363                h->ioaccel_cmd_pool = NULL;
9364                h->ioaccel_cmd_pool_dhandle = 0;
9365        }
9366        kfree(h->ioaccel1_blockFetchTable);
9367        h->ioaccel1_blockFetchTable = NULL;
9368}
9369
9370/* Allocate ioaccel1 mode command blocks and block fetch table */
9371static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9372{
9373        h->ioaccel_maxsg =
9374                readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9375        if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9376                h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9377
9378        /* Command structures must be aligned on a 128-byte boundary
9379         * because the 7 lower bits of the address are used by the
9380         * hardware.
9381         */
9382        BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9383                        IOACCEL1_COMMANDLIST_ALIGNMENT);
9384        h->ioaccel_cmd_pool =
9385                dma_alloc_coherent(&h->pdev->dev,
9386                        h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9387                        &h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9388
9389        h->ioaccel1_blockFetchTable =
9390                kmalloc(((h->ioaccel_maxsg + 1) *
9391                                sizeof(u32)), GFP_KERNEL);
9392
9393        if ((h->ioaccel_cmd_pool == NULL) ||
9394                (h->ioaccel1_blockFetchTable == NULL))
9395                goto clean_up;
9396
9397        memset(h->ioaccel_cmd_pool, 0,
9398                h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9399        return 0;
9400
9401clean_up:
9402        hpsa_free_ioaccel1_cmd_and_bft(h);
9403        return -ENOMEM;
9404}
9405
9406/* Free ioaccel2 mode command blocks and block fetch table */
9407static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9408{
9409        hpsa_free_ioaccel2_sg_chain_blocks(h);
9410
9411        if (h->ioaccel2_cmd_pool) {
9412                dma_free_coherent(&h->pdev->dev,
9413                                  h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9414                                  h->ioaccel2_cmd_pool,
9415                                  h->ioaccel2_cmd_pool_dhandle);
9416                h->ioaccel2_cmd_pool = NULL;
9417                h->ioaccel2_cmd_pool_dhandle = 0;
9418        }
9419        kfree(h->ioaccel2_blockFetchTable);
9420        h->ioaccel2_blockFetchTable = NULL;
9421}
9422
9423/* Allocate ioaccel2 mode command blocks and block fetch table */
9424static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9425{
9426        int rc;
9427
9428        /* Allocate ioaccel2 mode command blocks and block fetch table */
9429
9430        h->ioaccel_maxsg =
9431                readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9432        if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9433                h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9434
9435        BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9436                        IOACCEL2_COMMANDLIST_ALIGNMENT);
9437        h->ioaccel2_cmd_pool =
9438                dma_alloc_coherent(&h->pdev->dev,
9439                        h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9440                        &h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9441
9442        h->ioaccel2_blockFetchTable =
9443                kmalloc(((h->ioaccel_maxsg + 1) *
9444                                sizeof(u32)), GFP_KERNEL);
9445
9446        if ((h->ioaccel2_cmd_pool == NULL) ||
9447                (h->ioaccel2_blockFetchTable == NULL)) {
9448                rc = -ENOMEM;
9449                goto clean_up;
9450        }
9451
9452        rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9453        if (rc)
9454                goto clean_up;
9455
9456        memset(h->ioaccel2_cmd_pool, 0,
9457                h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9458        return 0;
9459
9460clean_up:
9461        hpsa_free_ioaccel2_cmd_and_bft(h);
9462        return rc;
9463}
9464
9465/* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9466static void hpsa_free_performant_mode(struct ctlr_info *h)
9467{
9468        kfree(h->blockFetchTable);
9469        h->blockFetchTable = NULL;
9470        hpsa_free_reply_queues(h);
9471        hpsa_free_ioaccel1_cmd_and_bft(h);
9472        hpsa_free_ioaccel2_cmd_and_bft(h);
9473}
9474
9475/* return -ENODEV on error, 0 on success (or no action)
9476 * allocates numerous items that must be freed later
9477 */
9478static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9479{
9480        u32 trans_support;
9481        unsigned long transMethod = CFGTBL_Trans_Performant |
9482                                        CFGTBL_Trans_use_short_tags;
9483        int i, rc;
9484
9485        if (hpsa_simple_mode)
9486                return 0;
9487
9488        trans_support = readl(&(h->cfgtable->TransportSupport));
9489        if (!(trans_support & PERFORMANT_MODE))
9490                return 0;
9491
9492        /* Check for I/O accelerator mode support */
9493        if (trans_support & CFGTBL_Trans_io_accel1) {
9494                transMethod |= CFGTBL_Trans_io_accel1 |
9495                                CFGTBL_Trans_enable_directed_msix;
9496                rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9497                if (rc)
9498                        return rc;
9499        } else if (trans_support & CFGTBL_Trans_io_accel2) {
9500                transMethod |= CFGTBL_Trans_io_accel2 |
9501                                CFGTBL_Trans_enable_directed_msix;
9502                rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9503                if (rc)
9504                        return rc;
9505        }
9506
9507        h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9508        hpsa_get_max_perf_mode_cmds(h);
9509        /* Performant mode ring buffer and supporting data structures */
9510        h->reply_queue_size = h->max_commands * sizeof(u64);
9511
9512        for (i = 0; i < h->nreply_queues; i++) {
9513                h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9514                                                h->reply_queue_size,
9515                                                &h->reply_queue[i].busaddr,
9516                                                GFP_KERNEL);
9517                if (!h->reply_queue[i].head) {
9518                        rc = -ENOMEM;
9519                        goto clean1;    /* rq, ioaccel */
9520                }
9521                h->reply_queue[i].size = h->max_commands;
9522                h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9523                h->reply_queue[i].current_entry = 0;
9524        }
9525
9526        /* Need a block fetch table for performant mode */
9527        h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9528                                sizeof(u32)), GFP_KERNEL);
9529        if (!h->blockFetchTable) {
9530                rc = -ENOMEM;
9531                goto clean1;    /* rq, ioaccel */
9532        }
9533
9534        rc = hpsa_enter_performant_mode(h, trans_support);
9535        if (rc)
9536                goto clean2;    /* bft, rq, ioaccel */
9537        return 0;
9538
9539clean2: /* bft, rq, ioaccel */
9540        kfree(h->blockFetchTable);
9541        h->blockFetchTable = NULL;
9542clean1: /* rq, ioaccel */
9543        hpsa_free_reply_queues(h);
9544        hpsa_free_ioaccel1_cmd_and_bft(h);
9545        hpsa_free_ioaccel2_cmd_and_bft(h);
9546        return rc;
9547}
9548
9549static int is_accelerated_cmd(struct CommandList *c)
9550{
9551        return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9552}
9553
9554static void hpsa_drain_accel_commands(struct ctlr_info *h)
9555{
9556        struct CommandList *c = NULL;
9557        int i, accel_cmds_out;
9558        int refcount;
9559
9560        do { /* wait for all outstanding ioaccel commands to drain out */
9561                accel_cmds_out = 0;
9562                for (i = 0; i < h->nr_cmds; i++) {
9563                        c = h->cmd_pool + i;
9564                        refcount = atomic_inc_return(&c->refcount);
9565                        if (refcount > 1) /* Command is allocated */
9566                                accel_cmds_out += is_accelerated_cmd(c);
9567                        cmd_free(h, c);
9568                }
9569                if (accel_cmds_out <= 0)
9570                        break;
9571                msleep(100);
9572        } while (1);
9573}
9574
9575static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9576                                struct hpsa_sas_port *hpsa_sas_port)
9577{
9578        struct hpsa_sas_phy *hpsa_sas_phy;
9579        struct sas_phy *phy;
9580
9581        hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9582        if (!hpsa_sas_phy)
9583                return NULL;
9584
9585        phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9586                hpsa_sas_port->next_phy_index);
9587        if (!phy) {
9588                kfree(hpsa_sas_phy);
9589                return NULL;
9590        }
9591
9592        hpsa_sas_port->next_phy_index++;
9593        hpsa_sas_phy->phy = phy;
9594        hpsa_sas_phy->parent_port = hpsa_sas_port;
9595
9596        return hpsa_sas_phy;
9597}
9598
9599static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9600{
9601        struct sas_phy *phy = hpsa_sas_phy->phy;
9602
9603        sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9604        if (hpsa_sas_phy->added_to_port)
9605                list_del(&hpsa_sas_phy->phy_list_entry);
9606        sas_phy_delete(phy);
9607        kfree(hpsa_sas_phy);
9608}
9609
9610static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9611{
9612        int rc;
9613        struct hpsa_sas_port *hpsa_sas_port;
9614        struct sas_phy *phy;
9615        struct sas_identify *identify;
9616
9617        hpsa_sas_port = hpsa_sas_phy->parent_port;
9618        phy = hpsa_sas_phy->phy;
9619
9620        identify = &phy->identify;
9621        memset(identify, 0, sizeof(*identify));
9622        identify->sas_address = hpsa_sas_port->sas_address;
9623        identify->device_type = SAS_END_DEVICE;
9624        identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9625        identify->target_port_protocols = SAS_PROTOCOL_STP;
9626        phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9627        phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9628        phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9629        phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9630        phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9631
9632        rc = sas_phy_add(hpsa_sas_phy->phy);
9633        if (rc)
9634                return rc;
9635
9636        sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9637        list_add_tail(&hpsa_sas_phy->phy_list_entry,
9638                        &hpsa_sas_port->phy_list_head);
9639        hpsa_sas_phy->added_to_port = true;
9640
9641        return 0;
9642}
9643
9644static int
9645        hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9646                                struct sas_rphy *rphy)
9647{
9648        struct sas_identify *identify;
9649
9650        identify = &rphy->identify;
9651        identify->sas_address = hpsa_sas_port->sas_address;
9652        identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9653        identify->target_port_protocols = SAS_PROTOCOL_STP;
9654
9655        return sas_rphy_add(rphy);
9656}
9657
9658static struct hpsa_sas_port
9659        *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9660                                u64 sas_address)
9661{
9662        int rc;
9663        struct hpsa_sas_port *hpsa_sas_port;
9664        struct sas_port *port;
9665
9666        hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9667        if (!hpsa_sas_port)
9668                return NULL;
9669
9670        INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9671        hpsa_sas_port->parent_node = hpsa_sas_node;
9672
9673        port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9674        if (!port)
9675                goto free_hpsa_port;
9676
9677        rc = sas_port_add(port);
9678        if (rc)
9679                goto free_sas_port;
9680
9681        hpsa_sas_port->port = port;
9682        hpsa_sas_port->sas_address = sas_address;
9683        list_add_tail(&hpsa_sas_port->port_list_entry,
9684                        &hpsa_sas_node->port_list_head);
9685
9686        return hpsa_sas_port;
9687
9688free_sas_port:
9689        sas_port_free(port);
9690free_hpsa_port:
9691        kfree(hpsa_sas_port);
9692
9693        return NULL;
9694}
9695
9696static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9697{
9698        struct hpsa_sas_phy *hpsa_sas_phy;
9699        struct hpsa_sas_phy *next;
9700
9701        list_for_each_entry_safe(hpsa_sas_phy, next,
9702                        &hpsa_sas_port->phy_list_head, phy_list_entry)
9703                hpsa_free_sas_phy(hpsa_sas_phy);
9704
9705        sas_port_delete(hpsa_sas_port->port);
9706        list_del(&hpsa_sas_port->port_list_entry);
9707        kfree(hpsa_sas_port);
9708}
9709
9710static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9711{
9712        struct hpsa_sas_node *hpsa_sas_node;
9713
9714        hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9715        if (hpsa_sas_node) {
9716                hpsa_sas_node->parent_dev = parent_dev;
9717                INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9718        }
9719
9720        return hpsa_sas_node;
9721}
9722
9723static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9724{
9725        struct hpsa_sas_port *hpsa_sas_port;
9726        struct hpsa_sas_port *next;
9727
9728        if (!hpsa_sas_node)
9729                return;
9730
9731        list_for_each_entry_safe(hpsa_sas_port, next,
9732                        &hpsa_sas_node->port_list_head, port_list_entry)
9733                hpsa_free_sas_port(hpsa_sas_port);
9734
9735        kfree(hpsa_sas_node);
9736}
9737
9738static struct hpsa_scsi_dev_t
9739        *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9740                                        struct sas_rphy *rphy)
9741{
9742        int i;
9743        struct hpsa_scsi_dev_t *device;
9744
9745        for (i = 0; i < h->ndevices; i++) {
9746                device = h->dev[i];
9747                if (!device->sas_port)
9748                        continue;
9749                if (device->sas_port->rphy == rphy)
9750                        return device;
9751        }
9752
9753        return NULL;
9754}
9755
9756static int hpsa_add_sas_host(struct ctlr_info *h)
9757{
9758        int rc;
9759        struct device *parent_dev;
9760        struct hpsa_sas_node *hpsa_sas_node;
9761        struct hpsa_sas_port *hpsa_sas_port;
9762        struct hpsa_sas_phy *hpsa_sas_phy;
9763
9764        parent_dev = &h->scsi_host->shost_dev;
9765
9766        hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9767        if (!hpsa_sas_node)
9768                return -ENOMEM;
9769
9770        hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9771        if (!hpsa_sas_port) {
9772                rc = -ENODEV;
9773                goto free_sas_node;
9774        }
9775
9776        hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9777        if (!hpsa_sas_phy) {
9778                rc = -ENODEV;
9779                goto free_sas_port;
9780        }
9781
9782        rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9783        if (rc)
9784                goto free_sas_phy;
9785
9786        h->sas_host = hpsa_sas_node;
9787
9788        return 0;
9789
9790free_sas_phy:
9791        hpsa_free_sas_phy(hpsa_sas_phy);
9792free_sas_port:
9793        hpsa_free_sas_port(hpsa_sas_port);
9794free_sas_node:
9795        hpsa_free_sas_node(hpsa_sas_node);
9796
9797        return rc;
9798}
9799
9800static void hpsa_delete_sas_host(struct ctlr_info *h)
9801{
9802        hpsa_free_sas_node(h->sas_host);
9803}
9804
9805static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9806                                struct hpsa_scsi_dev_t *device)
9807{
9808        int rc;
9809        struct hpsa_sas_port *hpsa_sas_port;
9810        struct sas_rphy *rphy;
9811
9812        hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9813        if (!hpsa_sas_port)
9814                return -ENOMEM;
9815
9816        rphy = sas_end_device_alloc(hpsa_sas_port->port);
9817        if (!rphy) {
9818                rc = -ENODEV;
9819                goto free_sas_port;
9820        }
9821
9822        hpsa_sas_port->rphy = rphy;
9823        device->sas_port = hpsa_sas_port;
9824
9825        rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9826        if (rc)
9827                goto free_sas_port;
9828
9829        return 0;
9830
9831free_sas_port:
9832        hpsa_free_sas_port(hpsa_sas_port);
9833        device->sas_port = NULL;
9834
9835        return rc;
9836}
9837
9838static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9839{
9840        if (device->sas_port) {
9841                hpsa_free_sas_port(device->sas_port);
9842                device->sas_port = NULL;
9843        }
9844}
9845
9846static int
9847hpsa_sas_get_linkerrors(struct sas_phy *phy)
9848{
9849        return 0;
9850}
9851
9852static int
9853hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9854{
9855        struct Scsi_Host *shost = phy_to_shost(rphy);
9856        struct ctlr_info *h;
9857        struct hpsa_scsi_dev_t *sd;
9858
9859        if (!shost)
9860                return -ENXIO;
9861
9862        h = shost_to_hba(shost);
9863
9864        if (!h)
9865                return -ENXIO;
9866
9867        sd = hpsa_find_device_by_sas_rphy(h, rphy);
9868        if (!sd)
9869                return -ENXIO;
9870
9871        *identifier = sd->eli;
9872
9873        return 0;
9874}
9875
9876static int
9877hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9878{
9879        return -ENXIO;
9880}
9881
9882static int
9883hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9884{
9885        return 0;
9886}
9887
9888static int
9889hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9890{
9891        return 0;
9892}
9893
9894static int
9895hpsa_sas_phy_setup(struct sas_phy *phy)
9896{
9897        return 0;
9898}
9899
9900static void
9901hpsa_sas_phy_release(struct sas_phy *phy)
9902{
9903}
9904
9905static int
9906hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9907{
9908        return -EINVAL;
9909}
9910
9911static struct sas_function_template hpsa_sas_transport_functions = {
9912        .get_linkerrors = hpsa_sas_get_linkerrors,
9913        .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9914        .get_bay_identifier = hpsa_sas_get_bay_identifier,
9915        .phy_reset = hpsa_sas_phy_reset,
9916        .phy_enable = hpsa_sas_phy_enable,
9917        .phy_setup = hpsa_sas_phy_setup,
9918        .phy_release = hpsa_sas_phy_release,
9919        .set_phy_speed = hpsa_sas_phy_speed,
9920};
9921
9922/*
9923 *  This is it.  Register the PCI driver information for the cards we control
9924 *  the OS will call our registered routines when it finds one of our cards.
9925 */
9926static int __init hpsa_init(void)
9927{
9928        int rc;
9929
9930        hpsa_sas_transport_template =
9931                sas_attach_transport(&hpsa_sas_transport_functions);
9932        if (!hpsa_sas_transport_template)
9933                return -ENODEV;
9934
9935        rc = pci_register_driver(&hpsa_pci_driver);
9936
9937        if (rc)
9938                sas_release_transport(hpsa_sas_transport_template);
9939
9940        return rc;
9941}
9942
9943static void __exit hpsa_cleanup(void)
9944{
9945        pci_unregister_driver(&hpsa_pci_driver);
9946        sas_release_transport(hpsa_sas_transport_template);
9947}
9948
9949static void __attribute__((unused)) verify_offsets(void)
9950{
9951#define VERIFY_OFFSET(member, offset) \
9952        BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9953
9954        VERIFY_OFFSET(structure_size, 0);
9955        VERIFY_OFFSET(volume_blk_size, 4);
9956        VERIFY_OFFSET(volume_blk_cnt, 8);
9957        VERIFY_OFFSET(phys_blk_shift, 16);
9958        VERIFY_OFFSET(parity_rotation_shift, 17);
9959        VERIFY_OFFSET(strip_size, 18);
9960        VERIFY_OFFSET(disk_starting_blk, 20);
9961        VERIFY_OFFSET(disk_blk_cnt, 28);
9962        VERIFY_OFFSET(data_disks_per_row, 36);
9963        VERIFY_OFFSET(metadata_disks_per_row, 38);
9964        VERIFY_OFFSET(row_cnt, 40);
9965        VERIFY_OFFSET(layout_map_count, 42);
9966        VERIFY_OFFSET(flags, 44);
9967        VERIFY_OFFSET(dekindex, 46);
9968        /* VERIFY_OFFSET(reserved, 48 */
9969        VERIFY_OFFSET(data, 64);
9970
9971#undef VERIFY_OFFSET
9972
9973#define VERIFY_OFFSET(member, offset) \
9974        BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9975
9976        VERIFY_OFFSET(IU_type, 0);
9977        VERIFY_OFFSET(direction, 1);
9978        VERIFY_OFFSET(reply_queue, 2);
9979        /* VERIFY_OFFSET(reserved1, 3);  */
9980        VERIFY_OFFSET(scsi_nexus, 4);
9981        VERIFY_OFFSET(Tag, 8);
9982        VERIFY_OFFSET(cdb, 16);
9983        VERIFY_OFFSET(cciss_lun, 32);
9984        VERIFY_OFFSET(data_len, 40);
9985        VERIFY_OFFSET(cmd_priority_task_attr, 44);
9986        VERIFY_OFFSET(sg_count, 45);
9987        /* VERIFY_OFFSET(reserved3 */
9988        VERIFY_OFFSET(err_ptr, 48);
9989        VERIFY_OFFSET(err_len, 56);
9990        /* VERIFY_OFFSET(reserved4  */
9991        VERIFY_OFFSET(sg, 64);
9992
9993#undef VERIFY_OFFSET
9994
9995#define VERIFY_OFFSET(member, offset) \
9996        BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9997
9998        VERIFY_OFFSET(dev_handle, 0x00);
9999        VERIFY_OFFSET(reserved1, 0x02);
10000        VERIFY_OFFSET(function, 0x03);
10001        VERIFY_OFFSET(reserved2, 0x04);
10002        VERIFY_OFFSET(err_info, 0x0C);
10003        VERIFY_OFFSET(reserved3, 0x10);
10004        VERIFY_OFFSET(err_info_len, 0x12);
10005        VERIFY_OFFSET(reserved4, 0x13);
10006        VERIFY_OFFSET(sgl_offset, 0x14);
10007        VERIFY_OFFSET(reserved5, 0x15);
10008        VERIFY_OFFSET(transfer_len, 0x1C);
10009        VERIFY_OFFSET(reserved6, 0x20);
10010        VERIFY_OFFSET(io_flags, 0x24);
10011        VERIFY_OFFSET(reserved7, 0x26);
10012        VERIFY_OFFSET(LUN, 0x34);
10013        VERIFY_OFFSET(control, 0x3C);
10014        VERIFY_OFFSET(CDB, 0x40);
10015        VERIFY_OFFSET(reserved8, 0x50);
10016        VERIFY_OFFSET(host_context_flags, 0x60);
10017        VERIFY_OFFSET(timeout_sec, 0x62);
10018        VERIFY_OFFSET(ReplyQueue, 0x64);
10019        VERIFY_OFFSET(reserved9, 0x65);
10020        VERIFY_OFFSET(tag, 0x68);
10021        VERIFY_OFFSET(host_addr, 0x70);
10022        VERIFY_OFFSET(CISS_LUN, 0x78);
10023        VERIFY_OFFSET(SG, 0x78 + 8);
10024#undef VERIFY_OFFSET
10025}
10026
10027module_init(hpsa_init);
10028module_exit(hpsa_cleanup);
10029