linux/drivers/scsi/mpt3sas/mpt3sas_base.c
<<
>>
Prefs
   1/*
   2 * This is the Fusion MPT base driver providing common API layer interface
   3 * for access to MPT (Message Passing Technology) firmware.
   4 *
   5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
   6 * Copyright (C) 2012-2014  LSI Corporation
   7 * Copyright (C) 2013-2014 Avago Technologies
   8 *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License
  12 * as published by the Free Software Foundation; either version 2
  13 * of the License, or (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 * GNU General Public License for more details.
  19 *
  20 * NO WARRANTY
  21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
  22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
  23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
  24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
  25 * solely responsible for determining the appropriateness of using and
  26 * distributing the Program and assumes all risks associated with its
  27 * exercise of rights under this Agreement, including but not limited to
  28 * the risks and costs of program errors, damage to or loss of data,
  29 * programs or equipment, and unavailability or interruption of operations.
  30
  31 * DISCLAIMER OF LIABILITY
  32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
  33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
  35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
  36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
  38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
  39
  40 * You should have received a copy of the GNU General Public License
  41 * along with this program; if not, write to the Free Software
  42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
  43 * USA.
  44 */
  45
  46#include <linux/kernel.h>
  47#include <linux/module.h>
  48#include <linux/errno.h>
  49#include <linux/init.h>
  50#include <linux/slab.h>
  51#include <linux/types.h>
  52#include <linux/pci.h>
  53#include <linux/kdev_t.h>
  54#include <linux/blkdev.h>
  55#include <linux/delay.h>
  56#include <linux/interrupt.h>
  57#include <linux/dma-mapping.h>
  58#include <linux/io.h>
  59#include <linux/time.h>
  60#include <linux/ktime.h>
  61#include <linux/kthread.h>
  62#include <asm/page.h>        /* To get host page size per arch */
  63#include <linux/aer.h>
  64
  65
  66#include "mpt3sas_base.h"
  67
  68static MPT_CALLBACK     mpt_callbacks[MPT_MAX_CALLBACKS];
  69
  70
  71#define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
  72
  73 /* maximum controller queue depth */
  74#define MAX_HBA_QUEUE_DEPTH     30000
  75#define MAX_CHAIN_DEPTH         100000
  76static int max_queue_depth = -1;
  77module_param(max_queue_depth, int, 0444);
  78MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
  79
  80static int max_sgl_entries = -1;
  81module_param(max_sgl_entries, int, 0444);
  82MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
  83
  84static int msix_disable = -1;
  85module_param(msix_disable, int, 0444);
  86MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
  87
  88static int smp_affinity_enable = 1;
  89module_param(smp_affinity_enable, int, 0444);
  90MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
  91
  92static int max_msix_vectors = -1;
  93module_param(max_msix_vectors, int, 0444);
  94MODULE_PARM_DESC(max_msix_vectors,
  95        " max msix vectors");
  96
  97static int irqpoll_weight = -1;
  98module_param(irqpoll_weight, int, 0444);
  99MODULE_PARM_DESC(irqpoll_weight,
 100        "irq poll weight (default= one fourth of HBA queue depth)");
 101
 102static int mpt3sas_fwfault_debug;
 103MODULE_PARM_DESC(mpt3sas_fwfault_debug,
 104        " enable detection of firmware fault and halt firmware - (default=0)");
 105
 106static int perf_mode = -1;
 107module_param(perf_mode, int, 0444);
 108MODULE_PARM_DESC(perf_mode,
 109        "Performance mode (only for Aero/Sea Generation), options:\n\t\t"
 110        "0 - balanced: high iops mode is enabled &\n\t\t"
 111        "interrupt coalescing is enabled only on high iops queues,\n\t\t"
 112        "1 - iops: high iops mode is disabled &\n\t\t"
 113        "interrupt coalescing is enabled on all queues,\n\t\t"
 114        "2 - latency: high iops mode is disabled &\n\t\t"
 115        "interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
 116        "\t\tdefault - default perf_mode is 'balanced'"
 117        );
 118
 119enum mpt3sas_perf_mode {
 120        MPT_PERF_MODE_DEFAULT   = -1,
 121        MPT_PERF_MODE_BALANCED  = 0,
 122        MPT_PERF_MODE_IOPS      = 1,
 123        MPT_PERF_MODE_LATENCY   = 2,
 124};
 125
 126static int
 127_base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
 128                u32 ioc_state, int timeout);
 129static int
 130_base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
 131static void
 132_base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
 133
 134/**
 135 * mpt3sas_base_check_cmd_timeout - Function
 136 *              to check timeout and command termination due
 137 *              to Host reset.
 138 *
 139 * @ioc:        per adapter object.
 140 * @status:     Status of issued command.
 141 * @mpi_request:mf request pointer.
 142 * @sz:         size of buffer.
 143 *
 144 * Return: 1/0 Reset to be done or Not
 145 */
 146u8
 147mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
 148                u8 status, void *mpi_request, int sz)
 149{
 150        u8 issue_reset = 0;
 151
 152        if (!(status & MPT3_CMD_RESET))
 153                issue_reset = 1;
 154
 155        ioc_err(ioc, "Command %s\n",
 156                issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
 157        _debug_dump_mf(mpi_request, sz);
 158
 159        return issue_reset;
 160}
 161
 162/**
 163 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
 164 * @val: ?
 165 * @kp: ?
 166 *
 167 * Return: ?
 168 */
 169static int
 170_scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
 171{
 172        int ret = param_set_int(val, kp);
 173        struct MPT3SAS_ADAPTER *ioc;
 174
 175        if (ret)
 176                return ret;
 177
 178        /* global ioc spinlock to protect controller list on list operations */
 179        pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
 180        spin_lock(&gioc_lock);
 181        list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
 182                ioc->fwfault_debug = mpt3sas_fwfault_debug;
 183        spin_unlock(&gioc_lock);
 184        return 0;
 185}
 186module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
 187        param_get_int, &mpt3sas_fwfault_debug, 0644);
 188
 189/**
 190 * _base_readl_aero - retry readl for max three times.
 191 * @addr: MPT Fusion system interface register address
 192 *
 193 * Retry the readl() for max three times if it gets zero value
 194 * while reading the system interface register.
 195 */
 196static inline u32
 197_base_readl_aero(const volatile void __iomem *addr)
 198{
 199        u32 i = 0, ret_val;
 200
 201        do {
 202                ret_val = readl(addr);
 203                i++;
 204        } while (ret_val == 0 && i < 3);
 205
 206        return ret_val;
 207}
 208
 209static inline u32
 210_base_readl(const volatile void __iomem *addr)
 211{
 212        return readl(addr);
 213}
 214
 215/**
 216 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
 217 *                                in BAR0 space.
 218 *
 219 * @ioc: per adapter object
 220 * @reply: reply message frame(lower 32bit addr)
 221 * @index: System request message index.
 222 */
 223static void
 224_base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
 225                u32 index)
 226{
 227        /*
 228         * 256 is offset within sys register.
 229         * 256 offset MPI frame starts. Max MPI frame supported is 32.
 230         * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
 231         */
 232        u16 cmd_credit = ioc->facts.RequestCredit + 1;
 233        void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
 234                        MPI_FRAME_START_OFFSET +
 235                        (cmd_credit * ioc->request_sz) + (index * sizeof(u32));
 236
 237        writel(reply, reply_free_iomem);
 238}
 239
 240/**
 241 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
 242 *                              to system/BAR0 region.
 243 *
 244 * @dst_iomem: Pointer to the destination location in BAR0 space.
 245 * @src: Pointer to the Source data.
 246 * @size: Size of data to be copied.
 247 */
 248static void
 249_base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
 250{
 251        int i;
 252        u32 *src_virt_mem = (u32 *)src;
 253
 254        for (i = 0; i < size/4; i++)
 255                writel((u32)src_virt_mem[i],
 256                                (void __iomem *)dst_iomem + (i * 4));
 257}
 258
 259/**
 260 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
 261 *
 262 * @dst_iomem: Pointer to the destination location in BAR0 space.
 263 * @src: Pointer to the Source data.
 264 * @size: Size of data to be copied.
 265 */
 266static void
 267_base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
 268{
 269        int i;
 270        u32 *src_virt_mem = (u32 *)(src);
 271
 272        for (i = 0; i < size/4; i++)
 273                writel((u32)src_virt_mem[i],
 274                        (void __iomem *)dst_iomem + (i * 4));
 275}
 276
 277/**
 278 * _base_get_chain - Calculates and Returns virtual chain address
 279 *                       for the provided smid in BAR0 space.
 280 *
 281 * @ioc: per adapter object
 282 * @smid: system request message index
 283 * @sge_chain_count: Scatter gather chain count.
 284 *
 285 * Return: the chain address.
 286 */
 287static inline void __iomem*
 288_base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
 289                u8 sge_chain_count)
 290{
 291        void __iomem *base_chain, *chain_virt;
 292        u16 cmd_credit = ioc->facts.RequestCredit + 1;
 293
 294        base_chain  = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
 295                (cmd_credit * ioc->request_sz) +
 296                REPLY_FREE_POOL_SIZE;
 297        chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
 298                        ioc->request_sz) + (sge_chain_count * ioc->request_sz);
 299        return chain_virt;
 300}
 301
 302/**
 303 * _base_get_chain_phys - Calculates and Returns physical address
 304 *                      in BAR0 for scatter gather chains, for
 305 *                      the provided smid.
 306 *
 307 * @ioc: per adapter object
 308 * @smid: system request message index
 309 * @sge_chain_count: Scatter gather chain count.
 310 *
 311 * Return: Physical chain address.
 312 */
 313static inline phys_addr_t
 314_base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
 315                u8 sge_chain_count)
 316{
 317        phys_addr_t base_chain_phys, chain_phys;
 318        u16 cmd_credit = ioc->facts.RequestCredit + 1;
 319
 320        base_chain_phys  = ioc->chip_phys + MPI_FRAME_START_OFFSET +
 321                (cmd_credit * ioc->request_sz) +
 322                REPLY_FREE_POOL_SIZE;
 323        chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
 324                        ioc->request_sz) + (sge_chain_count * ioc->request_sz);
 325        return chain_phys;
 326}
 327
 328/**
 329 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
 330 *                      buffer address for the provided smid.
 331 *                      (Each smid can have 64K starts from 17024)
 332 *
 333 * @ioc: per adapter object
 334 * @smid: system request message index
 335 *
 336 * Return: Pointer to buffer location in BAR0.
 337 */
 338
 339static void __iomem *
 340_base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
 341{
 342        u16 cmd_credit = ioc->facts.RequestCredit + 1;
 343        // Added extra 1 to reach end of chain.
 344        void __iomem *chain_end = _base_get_chain(ioc,
 345                        cmd_credit + 1,
 346                        ioc->facts.MaxChainDepth);
 347        return chain_end + (smid * 64 * 1024);
 348}
 349
 350/**
 351 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
 352 *              Host buffer Physical address for the provided smid.
 353 *              (Each smid can have 64K starts from 17024)
 354 *
 355 * @ioc: per adapter object
 356 * @smid: system request message index
 357 *
 358 * Return: Pointer to buffer location in BAR0.
 359 */
 360static phys_addr_t
 361_base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
 362{
 363        u16 cmd_credit = ioc->facts.RequestCredit + 1;
 364        phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
 365                        cmd_credit + 1,
 366                        ioc->facts.MaxChainDepth);
 367        return chain_end_phys + (smid * 64 * 1024);
 368}
 369
 370/**
 371 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
 372 *                      lookup list and Provides chain_buffer
 373 *                      address for the matching dma address.
 374 *                      (Each smid can have 64K starts from 17024)
 375 *
 376 * @ioc: per adapter object
 377 * @chain_buffer_dma: Chain buffer dma address.
 378 *
 379 * Return: Pointer to chain buffer. Or Null on Failure.
 380 */
 381static void *
 382_base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
 383                dma_addr_t chain_buffer_dma)
 384{
 385        u16 index, j;
 386        struct chain_tracker *ct;
 387
 388        for (index = 0; index < ioc->scsiio_depth; index++) {
 389                for (j = 0; j < ioc->chains_needed_per_io; j++) {
 390                        ct = &ioc->chain_lookup[index].chains_per_smid[j];
 391                        if (ct && ct->chain_buffer_dma == chain_buffer_dma)
 392                                return ct->chain_buffer;
 393                }
 394        }
 395        ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
 396        return NULL;
 397}
 398
 399/**
 400 * _clone_sg_entries -  MPI EP's scsiio and config requests
 401 *                      are handled here. Base function for
 402 *                      double buffering, before submitting
 403 *                      the requests.
 404 *
 405 * @ioc: per adapter object.
 406 * @mpi_request: mf request pointer.
 407 * @smid: system request message index.
 408 */
 409static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
 410                void *mpi_request, u16 smid)
 411{
 412        Mpi2SGESimple32_t *sgel, *sgel_next;
 413        u32  sgl_flags, sge_chain_count = 0;
 414        bool is_write = false;
 415        u16 i = 0;
 416        void __iomem *buffer_iomem;
 417        phys_addr_t buffer_iomem_phys;
 418        void __iomem *buff_ptr;
 419        phys_addr_t buff_ptr_phys;
 420        void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
 421        void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
 422        phys_addr_t dst_addr_phys;
 423        MPI2RequestHeader_t *request_hdr;
 424        struct scsi_cmnd *scmd;
 425        struct scatterlist *sg_scmd = NULL;
 426        int is_scsiio_req = 0;
 427
 428        request_hdr = (MPI2RequestHeader_t *) mpi_request;
 429
 430        if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
 431                Mpi25SCSIIORequest_t *scsiio_request =
 432                        (Mpi25SCSIIORequest_t *)mpi_request;
 433                sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
 434                is_scsiio_req = 1;
 435        } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
 436                Mpi2ConfigRequest_t  *config_req =
 437                        (Mpi2ConfigRequest_t *)mpi_request;
 438                sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
 439        } else
 440                return;
 441
 442        /* From smid we can get scsi_cmd, once we have sg_scmd,
 443         * we just need to get sg_virt and sg_next to get virtual
 444         * address associated with sgel->Address.
 445         */
 446
 447        if (is_scsiio_req) {
 448                /* Get scsi_cmd using smid */
 449                scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
 450                if (scmd == NULL) {
 451                        ioc_err(ioc, "scmd is NULL\n");
 452                        return;
 453                }
 454
 455                /* Get sg_scmd from scmd provided */
 456                sg_scmd = scsi_sglist(scmd);
 457        }
 458
 459        /*
 460         * 0 - 255      System register
 461         * 256 - 4352   MPI Frame. (This is based on maxCredit 32)
 462         * 4352 - 4864  Reply_free pool (512 byte is reserved
 463         *              considering maxCredit 32. Reply need extra
 464         *              room, for mCPU case kept four times of
 465         *              maxCredit).
 466         * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
 467         *              128 byte size = 12288)
 468         * 17152 - x    Host buffer mapped with smid.
 469         *              (Each smid can have 64K Max IO.)
 470         * BAR0+Last 1K MSIX Addr and Data
 471         * Total size in use 2113664 bytes of 4MB BAR0
 472         */
 473
 474        buffer_iomem = _base_get_buffer_bar0(ioc, smid);
 475        buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
 476
 477        buff_ptr = buffer_iomem;
 478        buff_ptr_phys = buffer_iomem_phys;
 479        WARN_ON(buff_ptr_phys > U32_MAX);
 480
 481        if (le32_to_cpu(sgel->FlagsLength) &
 482                        (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
 483                is_write = true;
 484
 485        for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
 486
 487                sgl_flags =
 488                    (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
 489
 490                switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
 491                case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
 492                        /*
 493                         * Helper function which on passing
 494                         * chain_buffer_dma returns chain_buffer. Get
 495                         * the virtual address for sgel->Address
 496                         */
 497                        sgel_next =
 498                                _base_get_chain_buffer_dma_to_chain_buffer(ioc,
 499                                                le32_to_cpu(sgel->Address));
 500                        if (sgel_next == NULL)
 501                                return;
 502                        /*
 503                         * This is coping 128 byte chain
 504                         * frame (not a host buffer)
 505                         */
 506                        dst_chain_addr[sge_chain_count] =
 507                                _base_get_chain(ioc,
 508                                        smid, sge_chain_count);
 509                        src_chain_addr[sge_chain_count] =
 510                                                (void *) sgel_next;
 511                        dst_addr_phys = _base_get_chain_phys(ioc,
 512                                                smid, sge_chain_count);
 513                        WARN_ON(dst_addr_phys > U32_MAX);
 514                        sgel->Address =
 515                                cpu_to_le32(lower_32_bits(dst_addr_phys));
 516                        sgel = sgel_next;
 517                        sge_chain_count++;
 518                        break;
 519                case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
 520                        if (is_write) {
 521                                if (is_scsiio_req) {
 522                                        _base_clone_to_sys_mem(buff_ptr,
 523                                            sg_virt(sg_scmd),
 524                                            (le32_to_cpu(sgel->FlagsLength) &
 525                                            0x00ffffff));
 526                                        /*
 527                                         * FIXME: this relies on a a zero
 528                                         * PCI mem_offset.
 529                                         */
 530                                        sgel->Address =
 531                                            cpu_to_le32((u32)buff_ptr_phys);
 532                                } else {
 533                                        _base_clone_to_sys_mem(buff_ptr,
 534                                            ioc->config_vaddr,
 535                                            (le32_to_cpu(sgel->FlagsLength) &
 536                                            0x00ffffff));
 537                                        sgel->Address =
 538                                            cpu_to_le32((u32)buff_ptr_phys);
 539                                }
 540                        }
 541                        buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
 542                            0x00ffffff);
 543                        buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
 544                            0x00ffffff);
 545                        if ((le32_to_cpu(sgel->FlagsLength) &
 546                            (MPI2_SGE_FLAGS_END_OF_BUFFER
 547                                        << MPI2_SGE_FLAGS_SHIFT)))
 548                                goto eob_clone_chain;
 549                        else {
 550                                /*
 551                                 * Every single element in MPT will have
 552                                 * associated sg_next. Better to sanity that
 553                                 * sg_next is not NULL, but it will be a bug
 554                                 * if it is null.
 555                                 */
 556                                if (is_scsiio_req) {
 557                                        sg_scmd = sg_next(sg_scmd);
 558                                        if (sg_scmd)
 559                                                sgel++;
 560                                        else
 561                                                goto eob_clone_chain;
 562                                }
 563                        }
 564                        break;
 565                }
 566        }
 567
 568eob_clone_chain:
 569        for (i = 0; i < sge_chain_count; i++) {
 570                if (is_scsiio_req)
 571                        _base_clone_to_sys_mem(dst_chain_addr[i],
 572                                src_chain_addr[i], ioc->request_sz);
 573        }
 574}
 575
 576/**
 577 *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
 578 * @arg: input argument, used to derive ioc
 579 *
 580 * Return:
 581 * 0 if controller is removed from pci subsystem.
 582 * -1 for other case.
 583 */
 584static int mpt3sas_remove_dead_ioc_func(void *arg)
 585{
 586        struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
 587        struct pci_dev *pdev;
 588
 589        if (!ioc)
 590                return -1;
 591
 592        pdev = ioc->pdev;
 593        if (!pdev)
 594                return -1;
 595        pci_stop_and_remove_bus_device_locked(pdev);
 596        return 0;
 597}
 598
 599/**
 600 * _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp.
 601 * @ioc: Per Adapter Object
 602 *
 603 * Return: nothing.
 604 */
 605static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER *ioc)
 606{
 607        Mpi26IoUnitControlRequest_t *mpi_request;
 608        Mpi26IoUnitControlReply_t *mpi_reply;
 609        u16 smid;
 610        ktime_t current_time;
 611        u64 TimeStamp = 0;
 612        u8 issue_reset = 0;
 613
 614        mutex_lock(&ioc->scsih_cmds.mutex);
 615        if (ioc->scsih_cmds.status != MPT3_CMD_NOT_USED) {
 616                ioc_err(ioc, "scsih_cmd in use %s\n", __func__);
 617                goto out;
 618        }
 619        ioc->scsih_cmds.status = MPT3_CMD_PENDING;
 620        smid = mpt3sas_base_get_smid(ioc, ioc->scsih_cb_idx);
 621        if (!smid) {
 622                ioc_err(ioc, "Failed obtaining a smid %s\n", __func__);
 623                ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
 624                goto out;
 625        }
 626        mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
 627        ioc->scsih_cmds.smid = smid;
 628        memset(mpi_request, 0, sizeof(Mpi26IoUnitControlRequest_t));
 629        mpi_request->Function = MPI2_FUNCTION_IO_UNIT_CONTROL;
 630        mpi_request->Operation = MPI26_CTRL_OP_SET_IOC_PARAMETER;
 631        mpi_request->IOCParameter = MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP;
 632        current_time = ktime_get_real();
 633        TimeStamp = ktime_to_ms(current_time);
 634        mpi_request->Reserved7 = cpu_to_le32(TimeStamp & 0xFFFFFFFF);
 635        mpi_request->IOCParameterValue = cpu_to_le32(TimeStamp >> 32);
 636        init_completion(&ioc->scsih_cmds.done);
 637        ioc->put_smid_default(ioc, smid);
 638        dinitprintk(ioc, ioc_info(ioc,
 639            "Io Unit Control Sync TimeStamp (sending), @time %lld ms\n",
 640            TimeStamp));
 641        wait_for_completion_timeout(&ioc->scsih_cmds.done,
 642                MPT3SAS_TIMESYNC_TIMEOUT_SECONDS*HZ);
 643        if (!(ioc->scsih_cmds.status & MPT3_CMD_COMPLETE)) {
 644                mpt3sas_check_cmd_timeout(ioc,
 645                    ioc->scsih_cmds.status, mpi_request,
 646                    sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset);
 647                goto issue_host_reset;
 648        }
 649        if (ioc->scsih_cmds.status & MPT3_CMD_REPLY_VALID) {
 650                mpi_reply = ioc->scsih_cmds.reply;
 651                dinitprintk(ioc, ioc_info(ioc,
 652                    "Io Unit Control sync timestamp (complete): ioc_status(0x%04x), loginfo(0x%08x)\n",
 653                    le16_to_cpu(mpi_reply->IOCStatus),
 654                    le32_to_cpu(mpi_reply->IOCLogInfo)));
 655        }
 656issue_host_reset:
 657        if (issue_reset)
 658                mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
 659        ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
 660out:
 661        mutex_unlock(&ioc->scsih_cmds.mutex);
 662}
 663
 664/**
 665 * _base_fault_reset_work - workq handling ioc fault conditions
 666 * @work: input argument, used to derive ioc
 667 *
 668 * Context: sleep.
 669 */
 670static void
 671_base_fault_reset_work(struct work_struct *work)
 672{
 673        struct MPT3SAS_ADAPTER *ioc =
 674            container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
 675        unsigned long    flags;
 676        u32 doorbell;
 677        int rc;
 678        struct task_struct *p;
 679
 680
 681        spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
 682        if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
 683                        ioc->pci_error_recovery)
 684                goto rearm_timer;
 685        spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
 686
 687        doorbell = mpt3sas_base_get_iocstate(ioc, 0);
 688        if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
 689                ioc_err(ioc, "SAS host is non-operational !!!!\n");
 690
 691                /* It may be possible that EEH recovery can resolve some of
 692                 * pci bus failure issues rather removing the dead ioc function
 693                 * by considering controller is in a non-operational state. So
 694                 * here priority is given to the EEH recovery. If it doesn't
 695                 * not resolve this issue, mpt3sas driver will consider this
 696                 * controller to non-operational state and remove the dead ioc
 697                 * function.
 698                 */
 699                if (ioc->non_operational_loop++ < 5) {
 700                        spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
 701                                                         flags);
 702                        goto rearm_timer;
 703                }
 704
 705                /*
 706                 * Call _scsih_flush_pending_cmds callback so that we flush all
 707                 * pending commands back to OS. This call is required to avoid
 708                 * deadlock at block layer. Dead IOC will fail to do diag reset,
 709                 * and this call is safe since dead ioc will never return any
 710                 * command back from HW.
 711                 */
 712                ioc->schedule_dead_ioc_flush_running_cmds(ioc);
 713                /*
 714                 * Set remove_host flag early since kernel thread will
 715                 * take some time to execute.
 716                 */
 717                ioc->remove_host = 1;
 718                /*Remove the Dead Host */
 719                p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
 720                    "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
 721                if (IS_ERR(p))
 722                        ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
 723                                __func__);
 724                else
 725                        ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
 726                                __func__);
 727                return; /* don't rearm timer */
 728        }
 729
 730        if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
 731                u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
 732                    ioc->manu_pg11.CoreDumpTOSec :
 733                    MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
 734
 735                timeout /= (FAULT_POLLING_INTERVAL/1000);
 736
 737                if (ioc->ioc_coredump_loop == 0) {
 738                        mpt3sas_print_coredump_info(ioc,
 739                            doorbell & MPI2_DOORBELL_DATA_MASK);
 740                        /* do not accept any IOs and disable the interrupts */
 741                        spin_lock_irqsave(
 742                            &ioc->ioc_reset_in_progress_lock, flags);
 743                        ioc->shost_recovery = 1;
 744                        spin_unlock_irqrestore(
 745                            &ioc->ioc_reset_in_progress_lock, flags);
 746                        mpt3sas_base_mask_interrupts(ioc);
 747                        _base_clear_outstanding_commands(ioc);
 748                }
 749
 750                ioc_info(ioc, "%s: CoreDump loop %d.",
 751                    __func__, ioc->ioc_coredump_loop);
 752
 753                /* Wait until CoreDump completes or times out */
 754                if (ioc->ioc_coredump_loop++ < timeout) {
 755                        spin_lock_irqsave(
 756                            &ioc->ioc_reset_in_progress_lock, flags);
 757                        goto rearm_timer;
 758                }
 759        }
 760
 761        if (ioc->ioc_coredump_loop) {
 762                if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
 763                        ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
 764                            __func__, ioc->ioc_coredump_loop);
 765                else
 766                        ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
 767                            __func__, ioc->ioc_coredump_loop);
 768                ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
 769        }
 770        ioc->non_operational_loop = 0;
 771        if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
 772                rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
 773                ioc_warn(ioc, "%s: hard reset: %s\n",
 774                         __func__, rc == 0 ? "success" : "failed");
 775                doorbell = mpt3sas_base_get_iocstate(ioc, 0);
 776                if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
 777                        mpt3sas_print_fault_code(ioc, doorbell &
 778                            MPI2_DOORBELL_DATA_MASK);
 779                } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
 780                    MPI2_IOC_STATE_COREDUMP)
 781                        mpt3sas_print_coredump_info(ioc, doorbell &
 782                            MPI2_DOORBELL_DATA_MASK);
 783                if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
 784                    MPI2_IOC_STATE_OPERATIONAL)
 785                        return; /* don't rearm timer */
 786        }
 787        ioc->ioc_coredump_loop = 0;
 788        if (ioc->time_sync_interval &&
 789            ++ioc->timestamp_update_count >= ioc->time_sync_interval) {
 790                ioc->timestamp_update_count = 0;
 791                _base_sync_drv_fw_timestamp(ioc);
 792        }
 793        spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
 794 rearm_timer:
 795        if (ioc->fault_reset_work_q)
 796                queue_delayed_work(ioc->fault_reset_work_q,
 797                    &ioc->fault_reset_work,
 798                    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
 799        spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
 800}
 801
 802/**
 803 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
 804 * @ioc: per adapter object
 805 *
 806 * Context: sleep.
 807 */
 808void
 809mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
 810{
 811        unsigned long    flags;
 812
 813        if (ioc->fault_reset_work_q)
 814                return;
 815
 816        ioc->timestamp_update_count = 0;
 817        /* initialize fault polling */
 818
 819        INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
 820        snprintf(ioc->fault_reset_work_q_name,
 821            sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
 822            ioc->driver_name, ioc->id);
 823        ioc->fault_reset_work_q =
 824                create_singlethread_workqueue(ioc->fault_reset_work_q_name);
 825        if (!ioc->fault_reset_work_q) {
 826                ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
 827                return;
 828        }
 829        spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
 830        if (ioc->fault_reset_work_q)
 831                queue_delayed_work(ioc->fault_reset_work_q,
 832                    &ioc->fault_reset_work,
 833                    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
 834        spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
 835}
 836
 837/**
 838 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
 839 * @ioc: per adapter object
 840 *
 841 * Context: sleep.
 842 */
 843void
 844mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
 845{
 846        unsigned long flags;
 847        struct workqueue_struct *wq;
 848
 849        spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
 850        wq = ioc->fault_reset_work_q;
 851        ioc->fault_reset_work_q = NULL;
 852        spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
 853        if (wq) {
 854                if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
 855                        flush_workqueue(wq);
 856                destroy_workqueue(wq);
 857        }
 858}
 859
 860/**
 861 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
 862 * @ioc: per adapter object
 863 * @fault_code: fault code
 864 */
 865void
 866mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
 867{
 868        ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
 869}
 870
 871/**
 872 * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
 873 * @ioc: per adapter object
 874 * @fault_code: fault code
 875 *
 876 * Return: nothing.
 877 */
 878void
 879mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
 880{
 881        ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
 882}
 883
 884/**
 885 * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
 886 * completes or times out
 887 * @ioc: per adapter object
 888 * @caller: caller function name
 889 *
 890 * Return: 0 for success, non-zero for failure.
 891 */
 892int
 893mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
 894                const char *caller)
 895{
 896        u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
 897                        ioc->manu_pg11.CoreDumpTOSec :
 898                        MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
 899
 900        int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
 901                                        timeout);
 902
 903        if (ioc_state)
 904                ioc_err(ioc,
 905                    "%s: CoreDump timed out. (ioc_state=0x%x)\n",
 906                    caller, ioc_state);
 907        else
 908                ioc_info(ioc,
 909                    "%s: CoreDump completed. (ioc_state=0x%x)\n",
 910                    caller, ioc_state);
 911
 912        return ioc_state;
 913}
 914
 915/**
 916 * mpt3sas_halt_firmware - halt's mpt controller firmware
 917 * @ioc: per adapter object
 918 *
 919 * For debugging timeout related issues.  Writing 0xCOFFEE00
 920 * to the doorbell register will halt controller firmware. With
 921 * the purpose to stop both driver and firmware, the enduser can
 922 * obtain a ring buffer from controller UART.
 923 */
 924void
 925mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
 926{
 927        u32 doorbell;
 928
 929        if (!ioc->fwfault_debug)
 930                return;
 931
 932        dump_stack();
 933
 934        doorbell = ioc->base_readl(&ioc->chip->Doorbell);
 935        if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
 936                mpt3sas_print_fault_code(ioc, doorbell &
 937                    MPI2_DOORBELL_DATA_MASK);
 938        } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
 939            MPI2_IOC_STATE_COREDUMP) {
 940                mpt3sas_print_coredump_info(ioc, doorbell &
 941                    MPI2_DOORBELL_DATA_MASK);
 942        } else {
 943                writel(0xC0FFEE00, &ioc->chip->Doorbell);
 944                ioc_err(ioc, "Firmware is halted due to command timeout\n");
 945        }
 946
 947        if (ioc->fwfault_debug == 2)
 948                for (;;)
 949                        ;
 950        else
 951                panic("panic in %s\n", __func__);
 952}
 953
 954/**
 955 * _base_sas_ioc_info - verbose translation of the ioc status
 956 * @ioc: per adapter object
 957 * @mpi_reply: reply mf payload returned from firmware
 958 * @request_hdr: request mf
 959 */
 960static void
 961_base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
 962        MPI2RequestHeader_t *request_hdr)
 963{
 964        u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
 965            MPI2_IOCSTATUS_MASK;
 966        char *desc = NULL;
 967        u16 frame_sz;
 968        char *func_str = NULL;
 969
 970        /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
 971        if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
 972            request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
 973            request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
 974                return;
 975
 976        if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
 977                return;
 978        /*
 979         * Older Firmware version doesn't support driver trigger pages.
 980         * So, skip displaying 'config invalid type' type
 981         * of error message.
 982         */
 983        if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
 984                Mpi2ConfigRequest_t *rqst = (Mpi2ConfigRequest_t *)request_hdr;
 985
 986                if ((rqst->ExtPageType ==
 987                    MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER) &&
 988                    !(ioc->logging_level & MPT_DEBUG_CONFIG)) {
 989                        return;
 990                }
 991        }
 992
 993        switch (ioc_status) {
 994
 995/****************************************************************************
 996*  Common IOCStatus values for all replies
 997****************************************************************************/
 998
 999        case MPI2_IOCSTATUS_INVALID_FUNCTION:
1000                desc = "invalid function";
1001                break;
1002        case MPI2_IOCSTATUS_BUSY:
1003                desc = "busy";
1004                break;
1005        case MPI2_IOCSTATUS_INVALID_SGL:
1006                desc = "invalid sgl";
1007                break;
1008        case MPI2_IOCSTATUS_INTERNAL_ERROR:
1009                desc = "internal error";
1010                break;
1011        case MPI2_IOCSTATUS_INVALID_VPID:
1012                desc = "invalid vpid";
1013                break;
1014        case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
1015                desc = "insufficient resources";
1016                break;
1017        case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
1018                desc = "insufficient power";
1019                break;
1020        case MPI2_IOCSTATUS_INVALID_FIELD:
1021                desc = "invalid field";
1022                break;
1023        case MPI2_IOCSTATUS_INVALID_STATE:
1024                desc = "invalid state";
1025                break;
1026        case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
1027                desc = "op state not supported";
1028                break;
1029
1030/****************************************************************************
1031*  Config IOCStatus values
1032****************************************************************************/
1033
1034        case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
1035                desc = "config invalid action";
1036                break;
1037        case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
1038                desc = "config invalid type";
1039                break;
1040        case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
1041                desc = "config invalid page";
1042                break;
1043        case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
1044                desc = "config invalid data";
1045                break;
1046        case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
1047                desc = "config no defaults";
1048                break;
1049        case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
1050                desc = "config cant commit";
1051                break;
1052
1053/****************************************************************************
1054*  SCSI IO Reply
1055****************************************************************************/
1056
1057        case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
1058        case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
1059        case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
1060        case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
1061        case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
1062        case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
1063        case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
1064        case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
1065        case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
1066        case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
1067        case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
1068        case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
1069                break;
1070
1071/****************************************************************************
1072*  For use by SCSI Initiator and SCSI Target end-to-end data protection
1073****************************************************************************/
1074
1075        case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
1076                desc = "eedp guard error";
1077                break;
1078        case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
1079                desc = "eedp ref tag error";
1080                break;
1081        case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
1082                desc = "eedp app tag error";
1083                break;
1084
1085/****************************************************************************
1086*  SCSI Target values
1087****************************************************************************/
1088
1089        case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
1090                desc = "target invalid io index";
1091                break;
1092        case MPI2_IOCSTATUS_TARGET_ABORTED:
1093                desc = "target aborted";
1094                break;
1095        case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
1096                desc = "target no conn retryable";
1097                break;
1098        case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
1099                desc = "target no connection";
1100                break;
1101        case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
1102                desc = "target xfer count mismatch";
1103                break;
1104        case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
1105                desc = "target data offset error";
1106                break;
1107        case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
1108                desc = "target too much write data";
1109                break;
1110        case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
1111                desc = "target iu too short";
1112                break;
1113        case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
1114                desc = "target ack nak timeout";
1115                break;
1116        case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
1117                desc = "target nak received";
1118                break;
1119
1120/****************************************************************************
1121*  Serial Attached SCSI values
1122****************************************************************************/
1123
1124        case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
1125                desc = "smp request failed";
1126                break;
1127        case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
1128                desc = "smp data overrun";
1129                break;
1130
1131/****************************************************************************
1132*  Diagnostic Buffer Post / Diagnostic Release values
1133****************************************************************************/
1134
1135        case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
1136                desc = "diagnostic released";
1137                break;
1138        default:
1139                break;
1140        }
1141
1142        if (!desc)
1143                return;
1144
1145        switch (request_hdr->Function) {
1146        case MPI2_FUNCTION_CONFIG:
1147                frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
1148                func_str = "config_page";
1149                break;
1150        case MPI2_FUNCTION_SCSI_TASK_MGMT:
1151                frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
1152                func_str = "task_mgmt";
1153                break;
1154        case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
1155                frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
1156                func_str = "sas_iounit_ctl";
1157                break;
1158        case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
1159                frame_sz = sizeof(Mpi2SepRequest_t);
1160                func_str = "enclosure";
1161                break;
1162        case MPI2_FUNCTION_IOC_INIT:
1163                frame_sz = sizeof(Mpi2IOCInitRequest_t);
1164                func_str = "ioc_init";
1165                break;
1166        case MPI2_FUNCTION_PORT_ENABLE:
1167                frame_sz = sizeof(Mpi2PortEnableRequest_t);
1168                func_str = "port_enable";
1169                break;
1170        case MPI2_FUNCTION_SMP_PASSTHROUGH:
1171                frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
1172                func_str = "smp_passthru";
1173                break;
1174        case MPI2_FUNCTION_NVME_ENCAPSULATED:
1175                frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
1176                    ioc->sge_size;
1177                func_str = "nvme_encapsulated";
1178                break;
1179        default:
1180                frame_sz = 32;
1181                func_str = "unknown";
1182                break;
1183        }
1184
1185        ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1186                 desc, ioc_status, request_hdr, func_str);
1187
1188        _debug_dump_mf(request_hdr, frame_sz/4);
1189}
1190
1191/**
1192 * _base_display_event_data - verbose translation of firmware asyn events
1193 * @ioc: per adapter object
1194 * @mpi_reply: reply mf payload returned from firmware
1195 */
1196static void
1197_base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1198        Mpi2EventNotificationReply_t *mpi_reply)
1199{
1200        char *desc = NULL;
1201        u16 event;
1202
1203        if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1204                return;
1205
1206        event = le16_to_cpu(mpi_reply->Event);
1207
1208        switch (event) {
1209        case MPI2_EVENT_LOG_DATA:
1210                desc = "Log Data";
1211                break;
1212        case MPI2_EVENT_STATE_CHANGE:
1213                desc = "Status Change";
1214                break;
1215        case MPI2_EVENT_HARD_RESET_RECEIVED:
1216                desc = "Hard Reset Received";
1217                break;
1218        case MPI2_EVENT_EVENT_CHANGE:
1219                desc = "Event Change";
1220                break;
1221        case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1222                desc = "Device Status Change";
1223                break;
1224        case MPI2_EVENT_IR_OPERATION_STATUS:
1225                if (!ioc->hide_ir_msg)
1226                        desc = "IR Operation Status";
1227                break;
1228        case MPI2_EVENT_SAS_DISCOVERY:
1229        {
1230                Mpi2EventDataSasDiscovery_t *event_data =
1231                    (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1232                ioc_info(ioc, "Discovery: (%s)",
1233                         event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1234                         "start" : "stop");
1235                if (event_data->DiscoveryStatus)
1236                        pr_cont(" discovery_status(0x%08x)",
1237                            le32_to_cpu(event_data->DiscoveryStatus));
1238                pr_cont("\n");
1239                return;
1240        }
1241        case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1242                desc = "SAS Broadcast Primitive";
1243                break;
1244        case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1245                desc = "SAS Init Device Status Change";
1246                break;
1247        case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1248                desc = "SAS Init Table Overflow";
1249                break;
1250        case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1251                desc = "SAS Topology Change List";
1252                break;
1253        case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1254                desc = "SAS Enclosure Device Status Change";
1255                break;
1256        case MPI2_EVENT_IR_VOLUME:
1257                if (!ioc->hide_ir_msg)
1258                        desc = "IR Volume";
1259                break;
1260        case MPI2_EVENT_IR_PHYSICAL_DISK:
1261                if (!ioc->hide_ir_msg)
1262                        desc = "IR Physical Disk";
1263                break;
1264        case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1265                if (!ioc->hide_ir_msg)
1266                        desc = "IR Configuration Change List";
1267                break;
1268        case MPI2_EVENT_LOG_ENTRY_ADDED:
1269                if (!ioc->hide_ir_msg)
1270                        desc = "Log Entry Added";
1271                break;
1272        case MPI2_EVENT_TEMP_THRESHOLD:
1273                desc = "Temperature Threshold";
1274                break;
1275        case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1276                desc = "Cable Event";
1277                break;
1278        case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1279                desc = "SAS Device Discovery Error";
1280                break;
1281        case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1282                desc = "PCIE Device Status Change";
1283                break;
1284        case MPI2_EVENT_PCIE_ENUMERATION:
1285        {
1286                Mpi26EventDataPCIeEnumeration_t *event_data =
1287                        (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1288                ioc_info(ioc, "PCIE Enumeration: (%s)",
1289                         event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1290                         "start" : "stop");
1291                if (event_data->EnumerationStatus)
1292                        pr_cont("enumeration_status(0x%08x)",
1293                                le32_to_cpu(event_data->EnumerationStatus));
1294                pr_cont("\n");
1295                return;
1296        }
1297        case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1298                desc = "PCIE Topology Change List";
1299                break;
1300        }
1301
1302        if (!desc)
1303                return;
1304
1305        ioc_info(ioc, "%s\n", desc);
1306}
1307
1308/**
1309 * _base_sas_log_info - verbose translation of firmware log info
1310 * @ioc: per adapter object
1311 * @log_info: log info
1312 */
1313static void
1314_base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
1315{
1316        union loginfo_type {
1317                u32     loginfo;
1318                struct {
1319                        u32     subcode:16;
1320                        u32     code:8;
1321                        u32     originator:4;
1322                        u32     bus_type:4;
1323                } dw;
1324        };
1325        union loginfo_type sas_loginfo;
1326        char *originator_str = NULL;
1327
1328        sas_loginfo.loginfo = log_info;
1329        if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1330                return;
1331
1332        /* each nexus loss loginfo */
1333        if (log_info == 0x31170000)
1334                return;
1335
1336        /* eat the loginfos associated with task aborts */
1337        if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1338            0x31140000 || log_info == 0x31130000))
1339                return;
1340
1341        switch (sas_loginfo.dw.originator) {
1342        case 0:
1343                originator_str = "IOP";
1344                break;
1345        case 1:
1346                originator_str = "PL";
1347                break;
1348        case 2:
1349                if (!ioc->hide_ir_msg)
1350                        originator_str = "IR";
1351                else
1352                        originator_str = "WarpDrive";
1353                break;
1354        }
1355
1356        ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1357                 log_info,
1358                 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1359}
1360
1361/**
1362 * _base_display_reply_info - handle reply descriptors depending on IOC Status
1363 * @ioc: per adapter object
1364 * @smid: system request message index
1365 * @msix_index: MSIX table index supplied by the OS
1366 * @reply: reply message frame (lower 32bit addr)
1367 */
1368static void
1369_base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1370        u32 reply)
1371{
1372        MPI2DefaultReply_t *mpi_reply;
1373        u16 ioc_status;
1374        u32 loginfo = 0;
1375
1376        mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1377        if (unlikely(!mpi_reply)) {
1378                ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1379                        __FILE__, __LINE__, __func__);
1380                return;
1381        }
1382        ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1383
1384        if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1385            (ioc->logging_level & MPT_DEBUG_REPLY)) {
1386                _base_sas_ioc_info(ioc , mpi_reply,
1387                   mpt3sas_base_get_msg_frame(ioc, smid));
1388        }
1389
1390        if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1391                loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1392                _base_sas_log_info(ioc, loginfo);
1393        }
1394
1395        if (ioc_status || loginfo) {
1396                ioc_status &= MPI2_IOCSTATUS_MASK;
1397                mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1398        }
1399}
1400
1401/**
1402 * mpt3sas_base_done - base internal command completion routine
1403 * @ioc: per adapter object
1404 * @smid: system request message index
1405 * @msix_index: MSIX table index supplied by the OS
1406 * @reply: reply message frame(lower 32bit addr)
1407 *
1408 * Return:
1409 * 1 meaning mf should be freed from _base_interrupt
1410 * 0 means the mf is freed from this function.
1411 */
1412u8
1413mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1414        u32 reply)
1415{
1416        MPI2DefaultReply_t *mpi_reply;
1417
1418        mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1419        if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1420                return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1421
1422        if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1423                return 1;
1424
1425        ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1426        if (mpi_reply) {
1427                ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1428                memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1429        }
1430        ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1431
1432        complete(&ioc->base_cmds.done);
1433        return 1;
1434}
1435
1436/**
1437 * _base_async_event - main callback handler for firmware asyn events
1438 * @ioc: per adapter object
1439 * @msix_index: MSIX table index supplied by the OS
1440 * @reply: reply message frame(lower 32bit addr)
1441 *
1442 * Return:
1443 * 1 meaning mf should be freed from _base_interrupt
1444 * 0 means the mf is freed from this function.
1445 */
1446static u8
1447_base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1448{
1449        Mpi2EventNotificationReply_t *mpi_reply;
1450        Mpi2EventAckRequest_t *ack_request;
1451        u16 smid;
1452        struct _event_ack_list *delayed_event_ack;
1453
1454        mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1455        if (!mpi_reply)
1456                return 1;
1457        if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1458                return 1;
1459
1460        _base_display_event_data(ioc, mpi_reply);
1461
1462        if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1463                goto out;
1464        smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1465        if (!smid) {
1466                delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1467                                        GFP_ATOMIC);
1468                if (!delayed_event_ack)
1469                        goto out;
1470                INIT_LIST_HEAD(&delayed_event_ack->list);
1471                delayed_event_ack->Event = mpi_reply->Event;
1472                delayed_event_ack->EventContext = mpi_reply->EventContext;
1473                list_add_tail(&delayed_event_ack->list,
1474                                &ioc->delayed_event_ack_list);
1475                dewtprintk(ioc,
1476                           ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1477                                    le16_to_cpu(mpi_reply->Event)));
1478                goto out;
1479        }
1480
1481        ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1482        memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1483        ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1484        ack_request->Event = mpi_reply->Event;
1485        ack_request->EventContext = mpi_reply->EventContext;
1486        ack_request->VF_ID = 0;  /* TODO */
1487        ack_request->VP_ID = 0;
1488        ioc->put_smid_default(ioc, smid);
1489
1490 out:
1491
1492        /* scsih callback handler */
1493        mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1494
1495        /* ctl callback handler */
1496        mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1497
1498        return 1;
1499}
1500
1501static struct scsiio_tracker *
1502_get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1503{
1504        struct scsi_cmnd *cmd;
1505
1506        if (WARN_ON(!smid) ||
1507            WARN_ON(smid >= ioc->hi_priority_smid))
1508                return NULL;
1509
1510        cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1511        if (cmd)
1512                return scsi_cmd_priv(cmd);
1513
1514        return NULL;
1515}
1516
1517/**
1518 * _base_get_cb_idx - obtain the callback index
1519 * @ioc: per adapter object
1520 * @smid: system request message index
1521 *
1522 * Return: callback index.
1523 */
1524static u8
1525_base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1526{
1527        int i;
1528        u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1529        u8 cb_idx = 0xFF;
1530
1531        if (smid < ioc->hi_priority_smid) {
1532                struct scsiio_tracker *st;
1533
1534                if (smid < ctl_smid) {
1535                        st = _get_st_from_smid(ioc, smid);
1536                        if (st)
1537                                cb_idx = st->cb_idx;
1538                } else if (smid == ctl_smid)
1539                        cb_idx = ioc->ctl_cb_idx;
1540        } else if (smid < ioc->internal_smid) {
1541                i = smid - ioc->hi_priority_smid;
1542                cb_idx = ioc->hpr_lookup[i].cb_idx;
1543        } else if (smid <= ioc->hba_queue_depth) {
1544                i = smid - ioc->internal_smid;
1545                cb_idx = ioc->internal_lookup[i].cb_idx;
1546        }
1547        return cb_idx;
1548}
1549
1550/**
1551 * mpt3sas_base_mask_interrupts - disable interrupts
1552 * @ioc: per adapter object
1553 *
1554 * Disabling ResetIRQ, Reply and Doorbell Interrupts
1555 */
1556void
1557mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1558{
1559        u32 him_register;
1560
1561        ioc->mask_interrupts = 1;
1562        him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1563        him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1564        writel(him_register, &ioc->chip->HostInterruptMask);
1565        ioc->base_readl(&ioc->chip->HostInterruptMask);
1566}
1567
1568/**
1569 * mpt3sas_base_unmask_interrupts - enable interrupts
1570 * @ioc: per adapter object
1571 *
1572 * Enabling only Reply Interrupts
1573 */
1574void
1575mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1576{
1577        u32 him_register;
1578
1579        him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1580        him_register &= ~MPI2_HIM_RIM;
1581        writel(him_register, &ioc->chip->HostInterruptMask);
1582        ioc->mask_interrupts = 0;
1583}
1584
1585union reply_descriptor {
1586        u64 word;
1587        struct {
1588                u32 low;
1589                u32 high;
1590        } u;
1591};
1592
1593static u32 base_mod64(u64 dividend, u32 divisor)
1594{
1595        u32 remainder;
1596
1597        if (!divisor)
1598                pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1599        remainder = do_div(dividend, divisor);
1600        return remainder;
1601}
1602
1603/**
1604 * _base_process_reply_queue - Process reply descriptors from reply
1605 *              descriptor post queue.
1606 * @reply_q: per IRQ's reply queue object.
1607 *
1608 * Return: number of reply descriptors processed from reply
1609 *              descriptor queue.
1610 */
1611static int
1612_base_process_reply_queue(struct adapter_reply_queue *reply_q)
1613{
1614        union reply_descriptor rd;
1615        u64 completed_cmds;
1616        u8 request_descript_type;
1617        u16 smid;
1618        u8 cb_idx;
1619        u32 reply;
1620        u8 msix_index = reply_q->msix_index;
1621        struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1622        Mpi2ReplyDescriptorsUnion_t *rpf;
1623        u8 rc;
1624
1625        completed_cmds = 0;
1626        if (!atomic_add_unless(&reply_q->busy, 1, 1))
1627                return completed_cmds;
1628
1629        rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1630        request_descript_type = rpf->Default.ReplyFlags
1631             & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1632        if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1633                atomic_dec(&reply_q->busy);
1634                return completed_cmds;
1635        }
1636
1637        cb_idx = 0xFF;
1638        do {
1639                rd.word = le64_to_cpu(rpf->Words);
1640                if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1641                        goto out;
1642                reply = 0;
1643                smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1644                if (request_descript_type ==
1645                    MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1646                    request_descript_type ==
1647                    MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1648                    request_descript_type ==
1649                    MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1650                        cb_idx = _base_get_cb_idx(ioc, smid);
1651                        if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1652                            (likely(mpt_callbacks[cb_idx] != NULL))) {
1653                                rc = mpt_callbacks[cb_idx](ioc, smid,
1654                                    msix_index, 0);
1655                                if (rc)
1656                                        mpt3sas_base_free_smid(ioc, smid);
1657                        }
1658                } else if (request_descript_type ==
1659                    MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1660                        reply = le32_to_cpu(
1661                            rpf->AddressReply.ReplyFrameAddress);
1662                        if (reply > ioc->reply_dma_max_address ||
1663                            reply < ioc->reply_dma_min_address)
1664                                reply = 0;
1665                        if (smid) {
1666                                cb_idx = _base_get_cb_idx(ioc, smid);
1667                                if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1668                                    (likely(mpt_callbacks[cb_idx] != NULL))) {
1669                                        rc = mpt_callbacks[cb_idx](ioc, smid,
1670                                            msix_index, reply);
1671                                        if (reply)
1672                                                _base_display_reply_info(ioc,
1673                                                    smid, msix_index, reply);
1674                                        if (rc)
1675                                                mpt3sas_base_free_smid(ioc,
1676                                                    smid);
1677                                }
1678                        } else {
1679                                _base_async_event(ioc, msix_index, reply);
1680                        }
1681
1682                        /* reply free queue handling */
1683                        if (reply) {
1684                                ioc->reply_free_host_index =
1685                                    (ioc->reply_free_host_index ==
1686                                    (ioc->reply_free_queue_depth - 1)) ?
1687                                    0 : ioc->reply_free_host_index + 1;
1688                                ioc->reply_free[ioc->reply_free_host_index] =
1689                                    cpu_to_le32(reply);
1690                                if (ioc->is_mcpu_endpoint)
1691                                        _base_clone_reply_to_sys_mem(ioc,
1692                                                reply,
1693                                                ioc->reply_free_host_index);
1694                                writel(ioc->reply_free_host_index,
1695                                    &ioc->chip->ReplyFreeHostIndex);
1696                        }
1697                }
1698
1699                rpf->Words = cpu_to_le64(ULLONG_MAX);
1700                reply_q->reply_post_host_index =
1701                    (reply_q->reply_post_host_index ==
1702                    (ioc->reply_post_queue_depth - 1)) ? 0 :
1703                    reply_q->reply_post_host_index + 1;
1704                request_descript_type =
1705                    reply_q->reply_post_free[reply_q->reply_post_host_index].
1706                    Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1707                completed_cmds++;
1708                /* Update the reply post host index after continuously
1709                 * processing the threshold number of Reply Descriptors.
1710                 * So that FW can find enough entries to post the Reply
1711                 * Descriptors in the reply descriptor post queue.
1712                 */
1713                if (completed_cmds >= ioc->thresh_hold) {
1714                        if (ioc->combined_reply_queue) {
1715                                writel(reply_q->reply_post_host_index |
1716                                                ((msix_index  & 7) <<
1717                                                 MPI2_RPHI_MSIX_INDEX_SHIFT),
1718                                    ioc->replyPostRegisterIndex[msix_index/8]);
1719                        } else {
1720                                writel(reply_q->reply_post_host_index |
1721                                                (msix_index <<
1722                                                 MPI2_RPHI_MSIX_INDEX_SHIFT),
1723                                                &ioc->chip->ReplyPostHostIndex);
1724                        }
1725                        if (!reply_q->irq_poll_scheduled) {
1726                                reply_q->irq_poll_scheduled = true;
1727                                irq_poll_sched(&reply_q->irqpoll);
1728                        }
1729                        atomic_dec(&reply_q->busy);
1730                        return completed_cmds;
1731                }
1732                if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1733                        goto out;
1734                if (!reply_q->reply_post_host_index)
1735                        rpf = reply_q->reply_post_free;
1736                else
1737                        rpf++;
1738        } while (1);
1739
1740 out:
1741
1742        if (!completed_cmds) {
1743                atomic_dec(&reply_q->busy);
1744                return completed_cmds;
1745        }
1746
1747        if (ioc->is_warpdrive) {
1748                writel(reply_q->reply_post_host_index,
1749                ioc->reply_post_host_index[msix_index]);
1750                atomic_dec(&reply_q->busy);
1751                return completed_cmds;
1752        }
1753
1754        /* Update Reply Post Host Index.
1755         * For those HBA's which support combined reply queue feature
1756         * 1. Get the correct Supplemental Reply Post Host Index Register.
1757         *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1758         *    Index Register address bank i.e replyPostRegisterIndex[],
1759         * 2. Then update this register with new reply host index value
1760         *    in ReplyPostIndex field and the MSIxIndex field with
1761         *    msix_index value reduced to a value between 0 and 7,
1762         *    using a modulo 8 operation. Since each Supplemental Reply Post
1763         *    Host Index Register supports 8 MSI-X vectors.
1764         *
1765         * For other HBA's just update the Reply Post Host Index register with
1766         * new reply host index value in ReplyPostIndex Field and msix_index
1767         * value in MSIxIndex field.
1768         */
1769        if (ioc->combined_reply_queue)
1770                writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1771                        MPI2_RPHI_MSIX_INDEX_SHIFT),
1772                        ioc->replyPostRegisterIndex[msix_index/8]);
1773        else
1774                writel(reply_q->reply_post_host_index | (msix_index <<
1775                        MPI2_RPHI_MSIX_INDEX_SHIFT),
1776                        &ioc->chip->ReplyPostHostIndex);
1777        atomic_dec(&reply_q->busy);
1778        return completed_cmds;
1779}
1780
1781/**
1782 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1783 * @irq: irq number (not used)
1784 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1785 *
1786 * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1787 */
1788static irqreturn_t
1789_base_interrupt(int irq, void *bus_id)
1790{
1791        struct adapter_reply_queue *reply_q = bus_id;
1792        struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1793
1794        if (ioc->mask_interrupts)
1795                return IRQ_NONE;
1796        if (reply_q->irq_poll_scheduled)
1797                return IRQ_HANDLED;
1798        return ((_base_process_reply_queue(reply_q) > 0) ?
1799                        IRQ_HANDLED : IRQ_NONE);
1800}
1801
1802/**
1803 * _base_irqpoll - IRQ poll callback handler
1804 * @irqpoll: irq_poll object
1805 * @budget: irq poll weight
1806 *
1807 * Return: number of reply descriptors processed
1808 */
1809static int
1810_base_irqpoll(struct irq_poll *irqpoll, int budget)
1811{
1812        struct adapter_reply_queue *reply_q;
1813        int num_entries = 0;
1814
1815        reply_q = container_of(irqpoll, struct adapter_reply_queue,
1816                        irqpoll);
1817        if (reply_q->irq_line_enable) {
1818                disable_irq_nosync(reply_q->os_irq);
1819                reply_q->irq_line_enable = false;
1820        }
1821        num_entries = _base_process_reply_queue(reply_q);
1822        if (num_entries < budget) {
1823                irq_poll_complete(irqpoll);
1824                reply_q->irq_poll_scheduled = false;
1825                reply_q->irq_line_enable = true;
1826                enable_irq(reply_q->os_irq);
1827                /*
1828                 * Go for one more round of processing the
1829                 * reply descriptor post queue in case the HBA
1830                 * Firmware has posted some reply descriptors
1831                 * while reenabling the IRQ.
1832                 */
1833                _base_process_reply_queue(reply_q);
1834        }
1835
1836        return num_entries;
1837}
1838
1839/**
1840 * _base_init_irqpolls - initliaze IRQ polls
1841 * @ioc: per adapter object
1842 *
1843 * Return: nothing
1844 */
1845static void
1846_base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1847{
1848        struct adapter_reply_queue *reply_q, *next;
1849
1850        if (list_empty(&ioc->reply_queue_list))
1851                return;
1852
1853        list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1854                irq_poll_init(&reply_q->irqpoll,
1855                        ioc->hba_queue_depth/4, _base_irqpoll);
1856                reply_q->irq_poll_scheduled = false;
1857                reply_q->irq_line_enable = true;
1858                reply_q->os_irq = pci_irq_vector(ioc->pdev,
1859                    reply_q->msix_index);
1860        }
1861}
1862
1863/**
1864 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1865 * @ioc: per adapter object
1866 *
1867 * Return: Whether or not MSI/X is enabled.
1868 */
1869static inline int
1870_base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1871{
1872        return (ioc->facts.IOCCapabilities &
1873            MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1874}
1875
1876/**
1877 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1878 * @ioc: per adapter object
1879 * @poll: poll over reply descriptor pools incase interrupt for
1880 *              timed-out SCSI command got delayed
1881 * Context: non-ISR context
1882 *
1883 * Called when a Task Management request has completed.
1884 */
1885void
1886mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll)
1887{
1888        struct adapter_reply_queue *reply_q;
1889
1890        /* If MSIX capability is turned off
1891         * then multi-queues are not enabled
1892         */
1893        if (!_base_is_controller_msix_enabled(ioc))
1894                return;
1895
1896        list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1897                if (ioc->shost_recovery || ioc->remove_host ||
1898                                ioc->pci_error_recovery)
1899                        return;
1900                /* TMs are on msix_index == 0 */
1901                if (reply_q->msix_index == 0)
1902                        continue;
1903                synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1904                if (reply_q->irq_poll_scheduled) {
1905                        /* Calling irq_poll_disable will wait for any pending
1906                         * callbacks to have completed.
1907                         */
1908                        irq_poll_disable(&reply_q->irqpoll);
1909                        irq_poll_enable(&reply_q->irqpoll);
1910                        /* check how the scheduled poll has ended,
1911                         * clean up only if necessary
1912                         */
1913                        if (reply_q->irq_poll_scheduled) {
1914                                reply_q->irq_poll_scheduled = false;
1915                                reply_q->irq_line_enable = true;
1916                                enable_irq(reply_q->os_irq);
1917                        }
1918                }
1919        }
1920        if (poll)
1921                _base_process_reply_queue(reply_q);
1922}
1923
1924/**
1925 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1926 * @cb_idx: callback index
1927 */
1928void
1929mpt3sas_base_release_callback_handler(u8 cb_idx)
1930{
1931        mpt_callbacks[cb_idx] = NULL;
1932}
1933
1934/**
1935 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1936 * @cb_func: callback function
1937 *
1938 * Return: Index of @cb_func.
1939 */
1940u8
1941mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1942{
1943        u8 cb_idx;
1944
1945        for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1946                if (mpt_callbacks[cb_idx] == NULL)
1947                        break;
1948
1949        mpt_callbacks[cb_idx] = cb_func;
1950        return cb_idx;
1951}
1952
1953/**
1954 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1955 */
1956void
1957mpt3sas_base_initialize_callback_handler(void)
1958{
1959        u8 cb_idx;
1960
1961        for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1962                mpt3sas_base_release_callback_handler(cb_idx);
1963}
1964
1965
1966/**
1967 * _base_build_zero_len_sge - build zero length sg entry
1968 * @ioc: per adapter object
1969 * @paddr: virtual address for SGE
1970 *
1971 * Create a zero length scatter gather entry to insure the IOCs hardware has
1972 * something to use if the target device goes brain dead and tries
1973 * to send data even when none is asked for.
1974 */
1975static void
1976_base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1977{
1978        u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1979            MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1980            MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1981            MPI2_SGE_FLAGS_SHIFT);
1982        ioc->base_add_sg_single(paddr, flags_length, -1);
1983}
1984
1985/**
1986 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1987 * @paddr: virtual address for SGE
1988 * @flags_length: SGE flags and data transfer length
1989 * @dma_addr: Physical address
1990 */
1991static void
1992_base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1993{
1994        Mpi2SGESimple32_t *sgel = paddr;
1995
1996        flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1997            MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1998        sgel->FlagsLength = cpu_to_le32(flags_length);
1999        sgel->Address = cpu_to_le32(dma_addr);
2000}
2001
2002
2003/**
2004 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
2005 * @paddr: virtual address for SGE
2006 * @flags_length: SGE flags and data transfer length
2007 * @dma_addr: Physical address
2008 */
2009static void
2010_base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2011{
2012        Mpi2SGESimple64_t *sgel = paddr;
2013
2014        flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
2015            MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2016        sgel->FlagsLength = cpu_to_le32(flags_length);
2017        sgel->Address = cpu_to_le64(dma_addr);
2018}
2019
2020/**
2021 * _base_get_chain_buffer_tracker - obtain chain tracker
2022 * @ioc: per adapter object
2023 * @scmd: SCSI commands of the IO request
2024 *
2025 * Return: chain tracker from chain_lookup table using key as
2026 * smid and smid's chain_offset.
2027 */
2028static struct chain_tracker *
2029_base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
2030                               struct scsi_cmnd *scmd)
2031{
2032        struct chain_tracker *chain_req;
2033        struct scsiio_tracker *st = scsi_cmd_priv(scmd);
2034        u16 smid = st->smid;
2035        u8 chain_offset =
2036           atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
2037
2038        if (chain_offset == ioc->chains_needed_per_io)
2039                return NULL;
2040
2041        chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
2042        atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
2043        return chain_req;
2044}
2045
2046
2047/**
2048 * _base_build_sg - build generic sg
2049 * @ioc: per adapter object
2050 * @psge: virtual address for SGE
2051 * @data_out_dma: physical address for WRITES
2052 * @data_out_sz: data xfer size for WRITES
2053 * @data_in_dma: physical address for READS
2054 * @data_in_sz: data xfer size for READS
2055 */
2056static void
2057_base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
2058        dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2059        size_t data_in_sz)
2060{
2061        u32 sgl_flags;
2062
2063        if (!data_out_sz && !data_in_sz) {
2064                _base_build_zero_len_sge(ioc, psge);
2065                return;
2066        }
2067
2068        if (data_out_sz && data_in_sz) {
2069                /* WRITE sgel first */
2070                sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2071                    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
2072                sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2073                ioc->base_add_sg_single(psge, sgl_flags |
2074                    data_out_sz, data_out_dma);
2075
2076                /* incr sgel */
2077                psge += ioc->sge_size;
2078
2079                /* READ sgel last */
2080                sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2081                    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2082                    MPI2_SGE_FLAGS_END_OF_LIST);
2083                sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2084                ioc->base_add_sg_single(psge, sgl_flags |
2085                    data_in_sz, data_in_dma);
2086        } else if (data_out_sz) /* WRITE */ {
2087                sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2088                    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2089                    MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
2090                sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2091                ioc->base_add_sg_single(psge, sgl_flags |
2092                    data_out_sz, data_out_dma);
2093        } else if (data_in_sz) /* READ */ {
2094                sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2095                    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2096                    MPI2_SGE_FLAGS_END_OF_LIST);
2097                sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2098                ioc->base_add_sg_single(psge, sgl_flags |
2099                    data_in_sz, data_in_dma);
2100        }
2101}
2102
2103/* IEEE format sgls */
2104
2105/**
2106 * _base_build_nvme_prp - This function is called for NVMe end devices to build
2107 *                        a native SGL (NVMe PRP).
2108 * @ioc: per adapter object
2109 * @smid: system request message index for getting asscociated SGL
2110 * @nvme_encap_request: the NVMe request msg frame pointer
2111 * @data_out_dma: physical address for WRITES
2112 * @data_out_sz: data xfer size for WRITES
2113 * @data_in_dma: physical address for READS
2114 * @data_in_sz: data xfer size for READS
2115 *
2116 * The native SGL is built starting in the first PRP
2117 * entry of the NVMe message (PRP1).  If the data buffer is small enough to be
2118 * described entirely using PRP1, then PRP2 is not used.  If needed, PRP2 is
2119 * used to describe a larger data buffer.  If the data buffer is too large to
2120 * describe using the two PRP entriess inside the NVMe message, then PRP1
2121 * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2122 * list located elsewhere in memory to describe the remaining data memory
2123 * segments.  The PRP list will be contiguous.
2124 *
2125 * The native SGL for NVMe devices is a Physical Region Page (PRP).  A PRP
2126 * consists of a list of PRP entries to describe a number of noncontigous
2127 * physical memory segments as a single memory buffer, just as a SGL does.  Note
2128 * however, that this function is only used by the IOCTL call, so the memory
2129 * given will be guaranteed to be contiguous.  There is no need to translate
2130 * non-contiguous SGL into a PRP in this case.  All PRPs will describe
2131 * contiguous space that is one page size each.
2132 *
2133 * Each NVMe message contains two PRP entries.  The first (PRP1) either contains
2134 * a PRP list pointer or a PRP element, depending upon the command.  PRP2
2135 * contains the second PRP element if the memory being described fits within 2
2136 * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2137 *
2138 * A PRP list pointer contains the address of a PRP list, structured as a linear
2139 * array of PRP entries.  Each PRP entry in this list describes a segment of
2140 * physical memory.
2141 *
2142 * Each 64-bit PRP entry comprises an address and an offset field.  The address
2143 * always points at the beginning of a 4KB physical memory page, and the offset
2144 * describes where within that 4KB page the memory segment begins.  Only the
2145 * first element in a PRP list may contain a non-zero offset, implying that all
2146 * memory segments following the first begin at the start of a 4KB page.
2147 *
2148 * Each PRP element normally describes 4KB of physical memory, with exceptions
2149 * for the first and last elements in the list.  If the memory being described
2150 * by the list begins at a non-zero offset within the first 4KB page, then the
2151 * first PRP element will contain a non-zero offset indicating where the region
2152 * begins within the 4KB page.  The last memory segment may end before the end
2153 * of the 4KB segment, depending upon the overall size of the memory being
2154 * described by the PRP list.
2155 *
2156 * Since PRP entries lack any indication of size, the overall data buffer length
2157 * is used to determine where the end of the data memory buffer is located, and
2158 * how many PRP entries are required to describe it.
2159 */
2160static void
2161_base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2162        Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
2163        dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2164        size_t data_in_sz)
2165{
2166        int             prp_size = NVME_PRP_SIZE;
2167        __le64          *prp_entry, *prp1_entry, *prp2_entry;
2168        __le64          *prp_page;
2169        dma_addr_t      prp_entry_dma, prp_page_dma, dma_addr;
2170        u32             offset, entry_len;
2171        u32             page_mask_result, page_mask;
2172        size_t          length;
2173        struct mpt3sas_nvme_cmd *nvme_cmd =
2174                (void *)nvme_encap_request->NVMe_Command;
2175
2176        /*
2177         * Not all commands require a data transfer. If no data, just return
2178         * without constructing any PRP.
2179         */
2180        if (!data_in_sz && !data_out_sz)
2181                return;
2182        prp1_entry = &nvme_cmd->prp1;
2183        prp2_entry = &nvme_cmd->prp2;
2184        prp_entry = prp1_entry;
2185        /*
2186         * For the PRP entries, use the specially allocated buffer of
2187         * contiguous memory.
2188         */
2189        prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
2190        prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2191
2192        /*
2193         * Check if we are within 1 entry of a page boundary we don't
2194         * want our first entry to be a PRP List entry.
2195         */
2196        page_mask = ioc->page_size - 1;
2197        page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2198        if (!page_mask_result) {
2199                /* Bump up to next page boundary. */
2200                prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2201                prp_page_dma = prp_page_dma + prp_size;
2202        }
2203
2204        /*
2205         * Set PRP physical pointer, which initially points to the current PRP
2206         * DMA memory page.
2207         */
2208        prp_entry_dma = prp_page_dma;
2209
2210        /* Get physical address and length of the data buffer. */
2211        if (data_in_sz) {
2212                dma_addr = data_in_dma;
2213                length = data_in_sz;
2214        } else {
2215                dma_addr = data_out_dma;
2216                length = data_out_sz;
2217        }
2218
2219        /* Loop while the length is not zero. */
2220        while (length) {
2221                /*
2222                 * Check if we need to put a list pointer here if we are at
2223                 * page boundary - prp_size (8 bytes).
2224                 */
2225                page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2226                if (!page_mask_result) {
2227                        /*
2228                         * This is the last entry in a PRP List, so we need to
2229                         * put a PRP list pointer here.  What this does is:
2230                         *   - bump the current memory pointer to the next
2231                         *     address, which will be the next full page.
2232                         *   - set the PRP Entry to point to that page.  This
2233                         *     is now the PRP List pointer.
2234                         *   - bump the PRP Entry pointer the start of the
2235                         *     next page.  Since all of this PRP memory is
2236                         *     contiguous, no need to get a new page - it's
2237                         *     just the next address.
2238                         */
2239                        prp_entry_dma++;
2240                        *prp_entry = cpu_to_le64(prp_entry_dma);
2241                        prp_entry++;
2242                }
2243
2244                /* Need to handle if entry will be part of a page. */
2245                offset = dma_addr & page_mask;
2246                entry_len = ioc->page_size - offset;
2247
2248                if (prp_entry == prp1_entry) {
2249                        /*
2250                         * Must fill in the first PRP pointer (PRP1) before
2251                         * moving on.
2252                         */
2253                        *prp1_entry = cpu_to_le64(dma_addr);
2254
2255                        /*
2256                         * Now point to the second PRP entry within the
2257                         * command (PRP2).
2258                         */
2259                        prp_entry = prp2_entry;
2260                } else if (prp_entry == prp2_entry) {
2261                        /*
2262                         * Should the PRP2 entry be a PRP List pointer or just
2263                         * a regular PRP pointer?  If there is more than one
2264                         * more page of data, must use a PRP List pointer.
2265                         */
2266                        if (length > ioc->page_size) {
2267                                /*
2268                                 * PRP2 will contain a PRP List pointer because
2269                                 * more PRP's are needed with this command. The
2270                                 * list will start at the beginning of the
2271                                 * contiguous buffer.
2272                                 */
2273                                *prp2_entry = cpu_to_le64(prp_entry_dma);
2274
2275                                /*
2276                                 * The next PRP Entry will be the start of the
2277                                 * first PRP List.
2278                                 */
2279                                prp_entry = prp_page;
2280                        } else {
2281                                /*
2282                                 * After this, the PRP Entries are complete.
2283                                 * This command uses 2 PRP's and no PRP list.
2284                                 */
2285                                *prp2_entry = cpu_to_le64(dma_addr);
2286                        }
2287                } else {
2288                        /*
2289                         * Put entry in list and bump the addresses.
2290                         *
2291                         * After PRP1 and PRP2 are filled in, this will fill in
2292                         * all remaining PRP entries in a PRP List, one per
2293                         * each time through the loop.
2294                         */
2295                        *prp_entry = cpu_to_le64(dma_addr);
2296                        prp_entry++;
2297                        prp_entry_dma++;
2298                }
2299
2300                /*
2301                 * Bump the phys address of the command's data buffer by the
2302                 * entry_len.
2303                 */
2304                dma_addr += entry_len;
2305
2306                /* Decrement length accounting for last partial page. */
2307                if (entry_len > length)
2308                        length = 0;
2309                else
2310                        length -= entry_len;
2311        }
2312}
2313
2314/**
2315 * base_make_prp_nvme - Prepare PRPs (Physical Region Page) -
2316 *                      SGLs specific to NVMe drives only
2317 *
2318 * @ioc:                per adapter object
2319 * @scmd:               SCSI command from the mid-layer
2320 * @mpi_request:        mpi request
2321 * @smid:               msg Index
2322 * @sge_count:          scatter gather element count.
2323 *
2324 * Return:              true: PRPs are built
2325 *                      false: IEEE SGLs needs to be built
2326 */
2327static void
2328base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2329                struct scsi_cmnd *scmd,
2330                Mpi25SCSIIORequest_t *mpi_request,
2331                u16 smid, int sge_count)
2332{
2333        int sge_len, num_prp_in_chain = 0;
2334        Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2335        __le64 *curr_buff;
2336        dma_addr_t msg_dma, sge_addr, offset;
2337        u32 page_mask, page_mask_result;
2338        struct scatterlist *sg_scmd;
2339        u32 first_prp_len;
2340        int data_len = scsi_bufflen(scmd);
2341        u32 nvme_pg_size;
2342
2343        nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2344        /*
2345         * Nvme has a very convoluted prp format.  One prp is required
2346         * for each page or partial page. Driver need to split up OS sg_list
2347         * entries if it is longer than one page or cross a page
2348         * boundary.  Driver also have to insert a PRP list pointer entry as
2349         * the last entry in each physical page of the PRP list.
2350         *
2351         * NOTE: The first PRP "entry" is actually placed in the first
2352         * SGL entry in the main message as IEEE 64 format.  The 2nd
2353         * entry in the main message is the chain element, and the rest
2354         * of the PRP entries are built in the contiguous pcie buffer.
2355         */
2356        page_mask = nvme_pg_size - 1;
2357
2358        /*
2359         * Native SGL is needed.
2360         * Put a chain element in main message frame that points to the first
2361         * chain buffer.
2362         *
2363         * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2364         *        a native SGL.
2365         */
2366
2367        /* Set main message chain element pointer */
2368        main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2369        /*
2370         * For NVMe the chain element needs to be the 2nd SG entry in the main
2371         * message.
2372         */
2373        main_chain_element = (Mpi25IeeeSgeChain64_t *)
2374                ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2375
2376        /*
2377         * For the PRP entries, use the specially allocated buffer of
2378         * contiguous memory.  Normal chain buffers can't be used
2379         * because each chain buffer would need to be the size of an OS
2380         * page (4k).
2381         */
2382        curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2383        msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2384
2385        main_chain_element->Address = cpu_to_le64(msg_dma);
2386        main_chain_element->NextChainOffset = 0;
2387        main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2388                        MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2389                        MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2390
2391        /* Build first prp, sge need not to be page aligned*/
2392        ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2393        sg_scmd = scsi_sglist(scmd);
2394        sge_addr = sg_dma_address(sg_scmd);
2395        sge_len = sg_dma_len(sg_scmd);
2396
2397        offset = sge_addr & page_mask;
2398        first_prp_len = nvme_pg_size - offset;
2399
2400        ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2401        ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2402
2403        data_len -= first_prp_len;
2404
2405        if (sge_len > first_prp_len) {
2406                sge_addr += first_prp_len;
2407                sge_len -= first_prp_len;
2408        } else if (data_len && (sge_len == first_prp_len)) {
2409                sg_scmd = sg_next(sg_scmd);
2410                sge_addr = sg_dma_address(sg_scmd);
2411                sge_len = sg_dma_len(sg_scmd);
2412        }
2413
2414        for (;;) {
2415                offset = sge_addr & page_mask;
2416
2417                /* Put PRP pointer due to page boundary*/
2418                page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2419                if (unlikely(!page_mask_result)) {
2420                        scmd_printk(KERN_NOTICE,
2421                                scmd, "page boundary curr_buff: 0x%p\n",
2422                                curr_buff);
2423                        msg_dma += 8;
2424                        *curr_buff = cpu_to_le64(msg_dma);
2425                        curr_buff++;
2426                        num_prp_in_chain++;
2427                }
2428
2429                *curr_buff = cpu_to_le64(sge_addr);
2430                curr_buff++;
2431                msg_dma += 8;
2432                num_prp_in_chain++;
2433
2434                sge_addr += nvme_pg_size;
2435                sge_len -= nvme_pg_size;
2436                data_len -= nvme_pg_size;
2437
2438                if (data_len <= 0)
2439                        break;
2440
2441                if (sge_len > 0)
2442                        continue;
2443
2444                sg_scmd = sg_next(sg_scmd);
2445                sge_addr = sg_dma_address(sg_scmd);
2446                sge_len = sg_dma_len(sg_scmd);
2447        }
2448
2449        main_chain_element->Length =
2450                cpu_to_le32(num_prp_in_chain * sizeof(u64));
2451        return;
2452}
2453
2454static bool
2455base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2456        struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2457{
2458        u32 data_length = 0;
2459        bool build_prp = true;
2460
2461        data_length = scsi_bufflen(scmd);
2462        if (pcie_device &&
2463            (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2464                build_prp = false;
2465                return build_prp;
2466        }
2467
2468        /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2469         * we built IEEE SGL
2470         */
2471        if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2472                build_prp = false;
2473
2474        return build_prp;
2475}
2476
2477/**
2478 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2479 * determine if the driver needs to build a native SGL.  If so, that native
2480 * SGL is built in the special contiguous buffers allocated especially for
2481 * PCIe SGL creation.  If the driver will not build a native SGL, return
2482 * TRUE and a normal IEEE SGL will be built.  Currently this routine
2483 * supports NVMe.
2484 * @ioc: per adapter object
2485 * @mpi_request: mf request pointer
2486 * @smid: system request message index
2487 * @scmd: scsi command
2488 * @pcie_device: points to the PCIe device's info
2489 *
2490 * Return: 0 if native SGL was built, 1 if no SGL was built
2491 */
2492static int
2493_base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2494        Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2495        struct _pcie_device *pcie_device)
2496{
2497        int sges_left;
2498
2499        /* Get the SG list pointer and info. */
2500        sges_left = scsi_dma_map(scmd);
2501        if (sges_left < 0) {
2502                sdev_printk(KERN_ERR, scmd->device,
2503                        "scsi_dma_map failed: request for %d bytes!\n",
2504                        scsi_bufflen(scmd));
2505                return 1;
2506        }
2507
2508        /* Check if we need to build a native SG list. */
2509        if (!base_is_prp_possible(ioc, pcie_device,
2510                                scmd, sges_left)) {
2511                /* We built a native SG list, just return. */
2512                goto out;
2513        }
2514
2515        /*
2516         * Build native NVMe PRP.
2517         */
2518        base_make_prp_nvme(ioc, scmd, mpi_request,
2519                        smid, sges_left);
2520
2521        return 0;
2522out:
2523        scsi_dma_unmap(scmd);
2524        return 1;
2525}
2526
2527/**
2528 * _base_add_sg_single_ieee - add sg element for IEEE format
2529 * @paddr: virtual address for SGE
2530 * @flags: SGE flags
2531 * @chain_offset: number of 128 byte elements from start of segment
2532 * @length: data transfer length
2533 * @dma_addr: Physical address
2534 */
2535static void
2536_base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2537        dma_addr_t dma_addr)
2538{
2539        Mpi25IeeeSgeChain64_t *sgel = paddr;
2540
2541        sgel->Flags = flags;
2542        sgel->NextChainOffset = chain_offset;
2543        sgel->Length = cpu_to_le32(length);
2544        sgel->Address = cpu_to_le64(dma_addr);
2545}
2546
2547/**
2548 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2549 * @ioc: per adapter object
2550 * @paddr: virtual address for SGE
2551 *
2552 * Create a zero length scatter gather entry to insure the IOCs hardware has
2553 * something to use if the target device goes brain dead and tries
2554 * to send data even when none is asked for.
2555 */
2556static void
2557_base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2558{
2559        u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2560                MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2561                MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2562
2563        _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2564}
2565
2566/**
2567 * _base_build_sg_scmd - main sg creation routine
2568 *              pcie_device is unused here!
2569 * @ioc: per adapter object
2570 * @scmd: scsi command
2571 * @smid: system request message index
2572 * @unused: unused pcie_device pointer
2573 * Context: none.
2574 *
2575 * The main routine that builds scatter gather table from a given
2576 * scsi request sent via the .queuecommand main handler.
2577 *
2578 * Return: 0 success, anything else error
2579 */
2580static int
2581_base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2582        struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2583{
2584        Mpi2SCSIIORequest_t *mpi_request;
2585        dma_addr_t chain_dma;
2586        struct scatterlist *sg_scmd;
2587        void *sg_local, *chain;
2588        u32 chain_offset;
2589        u32 chain_length;
2590        u32 chain_flags;
2591        int sges_left;
2592        u32 sges_in_segment;
2593        u32 sgl_flags;
2594        u32 sgl_flags_last_element;
2595        u32 sgl_flags_end_buffer;
2596        struct chain_tracker *chain_req;
2597
2598        mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2599
2600        /* init scatter gather flags */
2601        sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2602        if (scmd->sc_data_direction == DMA_TO_DEVICE)
2603                sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2604        sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2605            << MPI2_SGE_FLAGS_SHIFT;
2606        sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2607            MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2608            << MPI2_SGE_FLAGS_SHIFT;
2609        sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2610
2611        sg_scmd = scsi_sglist(scmd);
2612        sges_left = scsi_dma_map(scmd);
2613        if (sges_left < 0) {
2614                sdev_printk(KERN_ERR, scmd->device,
2615                 "scsi_dma_map failed: request for %d bytes!\n",
2616                 scsi_bufflen(scmd));
2617                return -ENOMEM;
2618        }
2619
2620        sg_local = &mpi_request->SGL;
2621        sges_in_segment = ioc->max_sges_in_main_message;
2622        if (sges_left <= sges_in_segment)
2623                goto fill_in_last_segment;
2624
2625        mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2626            (sges_in_segment * ioc->sge_size))/4;
2627
2628        /* fill in main message segment when there is a chain following */
2629        while (sges_in_segment) {
2630                if (sges_in_segment == 1)
2631                        ioc->base_add_sg_single(sg_local,
2632                            sgl_flags_last_element | sg_dma_len(sg_scmd),
2633                            sg_dma_address(sg_scmd));
2634                else
2635                        ioc->base_add_sg_single(sg_local, sgl_flags |
2636                            sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2637                sg_scmd = sg_next(sg_scmd);
2638                sg_local += ioc->sge_size;
2639                sges_left--;
2640                sges_in_segment--;
2641        }
2642
2643        /* initializing the chain flags and pointers */
2644        chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2645        chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2646        if (!chain_req)
2647                return -1;
2648        chain = chain_req->chain_buffer;
2649        chain_dma = chain_req->chain_buffer_dma;
2650        do {
2651                sges_in_segment = (sges_left <=
2652                    ioc->max_sges_in_chain_message) ? sges_left :
2653                    ioc->max_sges_in_chain_message;
2654                chain_offset = (sges_left == sges_in_segment) ?
2655                    0 : (sges_in_segment * ioc->sge_size)/4;
2656                chain_length = sges_in_segment * ioc->sge_size;
2657                if (chain_offset) {
2658                        chain_offset = chain_offset <<
2659                            MPI2_SGE_CHAIN_OFFSET_SHIFT;
2660                        chain_length += ioc->sge_size;
2661                }
2662                ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2663                    chain_length, chain_dma);
2664                sg_local = chain;
2665                if (!chain_offset)
2666                        goto fill_in_last_segment;
2667
2668                /* fill in chain segments */
2669                while (sges_in_segment) {
2670                        if (sges_in_segment == 1)
2671                                ioc->base_add_sg_single(sg_local,
2672                                    sgl_flags_last_element |
2673                                    sg_dma_len(sg_scmd),
2674                                    sg_dma_address(sg_scmd));
2675                        else
2676                                ioc->base_add_sg_single(sg_local, sgl_flags |
2677                                    sg_dma_len(sg_scmd),
2678                                    sg_dma_address(sg_scmd));
2679                        sg_scmd = sg_next(sg_scmd);
2680                        sg_local += ioc->sge_size;
2681                        sges_left--;
2682                        sges_in_segment--;
2683                }
2684
2685                chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2686                if (!chain_req)
2687                        return -1;
2688                chain = chain_req->chain_buffer;
2689                chain_dma = chain_req->chain_buffer_dma;
2690        } while (1);
2691
2692
2693 fill_in_last_segment:
2694
2695        /* fill the last segment */
2696        while (sges_left) {
2697                if (sges_left == 1)
2698                        ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2699                            sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2700                else
2701                        ioc->base_add_sg_single(sg_local, sgl_flags |
2702                            sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2703                sg_scmd = sg_next(sg_scmd);
2704                sg_local += ioc->sge_size;
2705                sges_left--;
2706        }
2707
2708        return 0;
2709}
2710
2711/**
2712 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2713 * @ioc: per adapter object
2714 * @scmd: scsi command
2715 * @smid: system request message index
2716 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2717 * constructed on need.
2718 * Context: none.
2719 *
2720 * The main routine that builds scatter gather table from a given
2721 * scsi request sent via the .queuecommand main handler.
2722 *
2723 * Return: 0 success, anything else error
2724 */
2725static int
2726_base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2727        struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2728{
2729        Mpi25SCSIIORequest_t *mpi_request;
2730        dma_addr_t chain_dma;
2731        struct scatterlist *sg_scmd;
2732        void *sg_local, *chain;
2733        u32 chain_offset;
2734        u32 chain_length;
2735        int sges_left;
2736        u32 sges_in_segment;
2737        u8 simple_sgl_flags;
2738        u8 simple_sgl_flags_last;
2739        u8 chain_sgl_flags;
2740        struct chain_tracker *chain_req;
2741
2742        mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2743
2744        /* init scatter gather flags */
2745        simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2746            MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2747        simple_sgl_flags_last = simple_sgl_flags |
2748            MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2749        chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2750            MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2751
2752        /* Check if we need to build a native SG list. */
2753        if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2754                        smid, scmd, pcie_device) == 0)) {
2755                /* We built a native SG list, just return. */
2756                return 0;
2757        }
2758
2759        sg_scmd = scsi_sglist(scmd);
2760        sges_left = scsi_dma_map(scmd);
2761        if (sges_left < 0) {
2762                sdev_printk(KERN_ERR, scmd->device,
2763                        "scsi_dma_map failed: request for %d bytes!\n",
2764                        scsi_bufflen(scmd));
2765                return -ENOMEM;
2766        }
2767
2768        sg_local = &mpi_request->SGL;
2769        sges_in_segment = (ioc->request_sz -
2770                   offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2771        if (sges_left <= sges_in_segment)
2772                goto fill_in_last_segment;
2773
2774        mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2775            (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2776
2777        /* fill in main message segment when there is a chain following */
2778        while (sges_in_segment > 1) {
2779                _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2780                    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2781                sg_scmd = sg_next(sg_scmd);
2782                sg_local += ioc->sge_size_ieee;
2783                sges_left--;
2784                sges_in_segment--;
2785        }
2786
2787        /* initializing the pointers */
2788        chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2789        if (!chain_req)
2790                return -1;
2791        chain = chain_req->chain_buffer;
2792        chain_dma = chain_req->chain_buffer_dma;
2793        do {
2794                sges_in_segment = (sges_left <=
2795                    ioc->max_sges_in_chain_message) ? sges_left :
2796                    ioc->max_sges_in_chain_message;
2797                chain_offset = (sges_left == sges_in_segment) ?
2798                    0 : sges_in_segment;
2799                chain_length = sges_in_segment * ioc->sge_size_ieee;
2800                if (chain_offset)
2801                        chain_length += ioc->sge_size_ieee;
2802                _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2803                    chain_offset, chain_length, chain_dma);
2804
2805                sg_local = chain;
2806                if (!chain_offset)
2807                        goto fill_in_last_segment;
2808
2809                /* fill in chain segments */
2810                while (sges_in_segment) {
2811                        _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2812                            sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2813                        sg_scmd = sg_next(sg_scmd);
2814                        sg_local += ioc->sge_size_ieee;
2815                        sges_left--;
2816                        sges_in_segment--;
2817                }
2818
2819                chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2820                if (!chain_req)
2821                        return -1;
2822                chain = chain_req->chain_buffer;
2823                chain_dma = chain_req->chain_buffer_dma;
2824        } while (1);
2825
2826
2827 fill_in_last_segment:
2828
2829        /* fill the last segment */
2830        while (sges_left > 0) {
2831                if (sges_left == 1)
2832                        _base_add_sg_single_ieee(sg_local,
2833                            simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2834                            sg_dma_address(sg_scmd));
2835                else
2836                        _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2837                            sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2838                sg_scmd = sg_next(sg_scmd);
2839                sg_local += ioc->sge_size_ieee;
2840                sges_left--;
2841        }
2842
2843        return 0;
2844}
2845
2846/**
2847 * _base_build_sg_ieee - build generic sg for IEEE format
2848 * @ioc: per adapter object
2849 * @psge: virtual address for SGE
2850 * @data_out_dma: physical address for WRITES
2851 * @data_out_sz: data xfer size for WRITES
2852 * @data_in_dma: physical address for READS
2853 * @data_in_sz: data xfer size for READS
2854 */
2855static void
2856_base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2857        dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2858        size_t data_in_sz)
2859{
2860        u8 sgl_flags;
2861
2862        if (!data_out_sz && !data_in_sz) {
2863                _base_build_zero_len_sge_ieee(ioc, psge);
2864                return;
2865        }
2866
2867        if (data_out_sz && data_in_sz) {
2868                /* WRITE sgel first */
2869                sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2870                    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2871                _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2872                    data_out_dma);
2873
2874                /* incr sgel */
2875                psge += ioc->sge_size_ieee;
2876
2877                /* READ sgel last */
2878                sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2879                _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2880                    data_in_dma);
2881        } else if (data_out_sz) /* WRITE */ {
2882                sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2883                    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2884                    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2885                _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2886                    data_out_dma);
2887        } else if (data_in_sz) /* READ */ {
2888                sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2889                    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2890                    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2891                _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2892                    data_in_dma);
2893        }
2894}
2895
2896#define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2897
2898/**
2899 * _base_config_dma_addressing - set dma addressing
2900 * @ioc: per adapter object
2901 * @pdev: PCI device struct
2902 *
2903 * Return: 0 for success, non-zero for failure.
2904 */
2905static int
2906_base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
2907{
2908        struct sysinfo s;
2909
2910        if (ioc->is_mcpu_endpoint ||
2911            sizeof(dma_addr_t) == 4 || ioc->use_32bit_dma ||
2912            dma_get_required_mask(&pdev->dev) <= 32)
2913                ioc->dma_mask = 32;
2914        /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
2915        else if (ioc->hba_mpi_version_belonged > MPI2_VERSION)
2916                ioc->dma_mask = 63;
2917        else
2918                ioc->dma_mask = 64;
2919
2920        if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(ioc->dma_mask)) ||
2921            dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(ioc->dma_mask)))
2922                return -ENODEV;
2923
2924        if (ioc->dma_mask > 32) {
2925                ioc->base_add_sg_single = &_base_add_sg_single_64;
2926                ioc->sge_size = sizeof(Mpi2SGESimple64_t);
2927        } else {
2928                ioc->base_add_sg_single = &_base_add_sg_single_32;
2929                ioc->sge_size = sizeof(Mpi2SGESimple32_t);
2930        }
2931
2932        si_meminfo(&s);
2933        ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
2934                ioc->dma_mask, convert_to_kb(s.totalram));
2935
2936        return 0;
2937}
2938
2939/**
2940 * _base_check_enable_msix - checks MSIX capabable.
2941 * @ioc: per adapter object
2942 *
2943 * Check to see if card is capable of MSIX, and set number
2944 * of available msix vectors
2945 */
2946static int
2947_base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2948{
2949        int base;
2950        u16 message_control;
2951
2952        /* Check whether controller SAS2008 B0 controller,
2953         * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
2954         */
2955        if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
2956            ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
2957                return -EINVAL;
2958        }
2959
2960        base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
2961        if (!base) {
2962                dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
2963                return -EINVAL;
2964        }
2965
2966        /* get msix vector count */
2967        /* NUMA_IO not supported for older controllers */
2968        if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
2969            ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
2970            ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
2971            ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
2972            ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
2973            ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
2974            ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
2975                ioc->msix_vector_count = 1;
2976        else {
2977                pci_read_config_word(ioc->pdev, base + 2, &message_control);
2978                ioc->msix_vector_count = (message_control & 0x3FF) + 1;
2979        }
2980        dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
2981                                  ioc->msix_vector_count));
2982        return 0;
2983}
2984
2985/**
2986 * mpt3sas_base_free_irq - free irq
2987 * @ioc: per adapter object
2988 *
2989 * Freeing respective reply_queue from the list.
2990 */
2991void
2992mpt3sas_base_free_irq(struct MPT3SAS_ADAPTER *ioc)
2993{
2994        struct adapter_reply_queue *reply_q, *next;
2995
2996        if (list_empty(&ioc->reply_queue_list))
2997                return;
2998
2999        list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
3000                list_del(&reply_q->list);
3001                if (ioc->smp_affinity_enable)
3002                        irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
3003                            reply_q->msix_index), NULL);
3004                free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
3005                         reply_q);
3006                kfree(reply_q);
3007        }
3008}
3009
3010/**
3011 * _base_request_irq - request irq
3012 * @ioc: per adapter object
3013 * @index: msix index into vector table
3014 *
3015 * Inserting respective reply_queue into the list.
3016 */
3017static int
3018_base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
3019{
3020        struct pci_dev *pdev = ioc->pdev;
3021        struct adapter_reply_queue *reply_q;
3022        int r;
3023
3024        reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
3025        if (!reply_q) {
3026                ioc_err(ioc, "unable to allocate memory %zu!\n",
3027                        sizeof(struct adapter_reply_queue));
3028                return -ENOMEM;
3029        }
3030        reply_q->ioc = ioc;
3031        reply_q->msix_index = index;
3032
3033        atomic_set(&reply_q->busy, 0);
3034        if (ioc->msix_enable)
3035                snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
3036                    ioc->driver_name, ioc->id, index);
3037        else
3038                snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
3039                    ioc->driver_name, ioc->id);
3040        r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
3041                        IRQF_SHARED, reply_q->name, reply_q);
3042        if (r) {
3043                pr_err("%s: unable to allocate interrupt %d!\n",
3044                       reply_q->name, pci_irq_vector(pdev, index));
3045                kfree(reply_q);
3046                return -EBUSY;
3047        }
3048
3049        INIT_LIST_HEAD(&reply_q->list);
3050        list_add_tail(&reply_q->list, &ioc->reply_queue_list);
3051        return 0;
3052}
3053
3054/**
3055 * _base_assign_reply_queues - assigning msix index for each cpu
3056 * @ioc: per adapter object
3057 *
3058 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
3059 *
3060 * It would nice if we could call irq_set_affinity, however it is not
3061 * an exported symbol
3062 */
3063static void
3064_base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
3065{
3066        unsigned int cpu, nr_cpus, nr_msix, index = 0;
3067        struct adapter_reply_queue *reply_q;
3068        int local_numa_node;
3069
3070        if (!_base_is_controller_msix_enabled(ioc))
3071                return;
3072
3073        if (ioc->msix_load_balance)
3074                return;
3075
3076        memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
3077
3078        nr_cpus = num_online_cpus();
3079        nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
3080                                               ioc->facts.MaxMSIxVectors);
3081        if (!nr_msix)
3082                return;
3083
3084        if (ioc->smp_affinity_enable) {
3085
3086                /*
3087                 * set irq affinity to local numa node for those irqs
3088                 * corresponding to high iops queues.
3089                 */
3090                if (ioc->high_iops_queues) {
3091                        local_numa_node = dev_to_node(&ioc->pdev->dev);
3092                        for (index = 0; index < ioc->high_iops_queues;
3093                            index++) {
3094                                irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
3095                                    index), cpumask_of_node(local_numa_node));
3096                        }
3097                }
3098
3099                list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3100                        const cpumask_t *mask;
3101
3102                        if (reply_q->msix_index < ioc->high_iops_queues)
3103                                continue;
3104
3105                        mask = pci_irq_get_affinity(ioc->pdev,
3106                            reply_q->msix_index);
3107                        if (!mask) {
3108                                ioc_warn(ioc, "no affinity for msi %x\n",
3109                                         reply_q->msix_index);
3110                                goto fall_back;
3111                        }
3112
3113                        for_each_cpu_and(cpu, mask, cpu_online_mask) {
3114                                if (cpu >= ioc->cpu_msix_table_sz)
3115                                        break;
3116                                ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3117                        }
3118                }
3119                return;
3120        }
3121
3122fall_back:
3123        cpu = cpumask_first(cpu_online_mask);
3124        nr_msix -= ioc->high_iops_queues;
3125        index = 0;
3126
3127        list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3128                unsigned int i, group = nr_cpus / nr_msix;
3129
3130                if (reply_q->msix_index < ioc->high_iops_queues)
3131                        continue;
3132
3133                if (cpu >= nr_cpus)
3134                        break;
3135
3136                if (index < nr_cpus % nr_msix)
3137                        group++;
3138
3139                for (i = 0 ; i < group ; i++) {
3140                        ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3141                        cpu = cpumask_next(cpu, cpu_online_mask);
3142                }
3143                index++;
3144        }
3145}
3146
3147/**
3148 * _base_check_and_enable_high_iops_queues - enable high iops mode
3149 * @ioc: per adapter object
3150 * @hba_msix_vector_count: msix vectors supported by HBA
3151 *
3152 * Enable high iops queues only if
3153 *  - HBA is a SEA/AERO controller and
3154 *  - MSI-Xs vector supported by the HBA is 128 and
3155 *  - total CPU count in the system >=16 and
3156 *  - loaded driver with default max_msix_vectors module parameter and
3157 *  - system booted in non kdump mode
3158 *
3159 * Return: nothing.
3160 */
3161static void
3162_base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
3163                int hba_msix_vector_count)
3164{
3165        u16 lnksta, speed;
3166
3167        if (perf_mode == MPT_PERF_MODE_IOPS ||
3168            perf_mode == MPT_PERF_MODE_LATENCY) {
3169                ioc->high_iops_queues = 0;
3170                return;
3171        }
3172
3173        if (perf_mode == MPT_PERF_MODE_DEFAULT) {
3174
3175                pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
3176                speed = lnksta & PCI_EXP_LNKSTA_CLS;
3177
3178                if (speed < 0x4) {
3179                        ioc->high_iops_queues = 0;
3180                        return;
3181                }
3182        }
3183
3184        if (!reset_devices && ioc->is_aero_ioc &&
3185            hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3186            num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3187            max_msix_vectors == -1)
3188                ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3189        else
3190                ioc->high_iops_queues = 0;
3191}
3192
3193/**
3194 * mpt3sas_base_disable_msix - disables msix
3195 * @ioc: per adapter object
3196 *
3197 */
3198void
3199mpt3sas_base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3200{
3201        if (!ioc->msix_enable)
3202                return;
3203        pci_free_irq_vectors(ioc->pdev);
3204        ioc->msix_enable = 0;
3205}
3206
3207/**
3208 * _base_alloc_irq_vectors - allocate msix vectors
3209 * @ioc: per adapter object
3210 *
3211 */
3212static int
3213_base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3214{
3215        int i, irq_flags = PCI_IRQ_MSIX;
3216        struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3217        struct irq_affinity *descp = &desc;
3218
3219        if (ioc->smp_affinity_enable)
3220                irq_flags |= PCI_IRQ_AFFINITY;
3221        else
3222                descp = NULL;
3223
3224        ioc_info(ioc, " %d %d\n", ioc->high_iops_queues,
3225            ioc->reply_queue_count);
3226
3227        i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3228            ioc->high_iops_queues,
3229            ioc->reply_queue_count, irq_flags, descp);
3230
3231        return i;
3232}
3233
3234/**
3235 * _base_enable_msix - enables msix, failback to io_apic
3236 * @ioc: per adapter object
3237 *
3238 */
3239static int
3240_base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3241{
3242        int r;
3243        int i, local_max_msix_vectors;
3244        u8 try_msix = 0;
3245
3246        ioc->msix_load_balance = false;
3247
3248        if (msix_disable == -1 || msix_disable == 0)
3249                try_msix = 1;
3250
3251        if (!try_msix)
3252                goto try_ioapic;
3253
3254        if (_base_check_enable_msix(ioc) != 0)
3255                goto try_ioapic;
3256
3257        ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3258        pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3259                ioc->cpu_count, max_msix_vectors);
3260        if (ioc->is_aero_ioc)
3261                _base_check_and_enable_high_iops_queues(ioc,
3262                        ioc->msix_vector_count);
3263        ioc->reply_queue_count =
3264                min_t(int, ioc->cpu_count + ioc->high_iops_queues,
3265                ioc->msix_vector_count);
3266
3267        if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3268                local_max_msix_vectors = (reset_devices) ? 1 : 8;
3269        else
3270                local_max_msix_vectors = max_msix_vectors;
3271
3272        if (local_max_msix_vectors > 0)
3273                ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3274                        ioc->reply_queue_count);
3275        else if (local_max_msix_vectors == 0)
3276                goto try_ioapic;
3277
3278        /*
3279         * Enable msix_load_balance only if combined reply queue mode is
3280         * disabled on SAS3 & above generation HBA devices.
3281         */
3282        if (!ioc->combined_reply_queue &&
3283            ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3284                ioc_info(ioc,
3285                    "combined ReplyQueue is off, Enabling msix load balance\n");
3286                ioc->msix_load_balance = true;
3287        }
3288
3289        /*
3290         * smp affinity setting is not need when msix load balance
3291         * is enabled.
3292         */
3293        if (ioc->msix_load_balance)
3294                ioc->smp_affinity_enable = 0;
3295
3296        r = _base_alloc_irq_vectors(ioc);
3297        if (r < 0) {
3298                ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
3299                goto try_ioapic;
3300        }
3301
3302        ioc->msix_enable = 1;
3303        ioc->reply_queue_count = r;
3304        for (i = 0; i < ioc->reply_queue_count; i++) {
3305                r = _base_request_irq(ioc, i);
3306                if (r) {
3307                        mpt3sas_base_free_irq(ioc);
3308                        mpt3sas_base_disable_msix(ioc);
3309                        goto try_ioapic;
3310                }
3311        }
3312
3313        ioc_info(ioc, "High IOPs queues : %s\n",
3314                        ioc->high_iops_queues ? "enabled" : "disabled");
3315
3316        return 0;
3317
3318/* failback to io_apic interrupt routing */
3319 try_ioapic:
3320        ioc->high_iops_queues = 0;
3321        ioc_info(ioc, "High IOPs queues : disabled\n");
3322        ioc->reply_queue_count = 1;
3323        r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
3324        if (r < 0) {
3325                dfailprintk(ioc,
3326                            ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3327                                     r));
3328        } else
3329                r = _base_request_irq(ioc, 0);
3330
3331        return r;
3332}
3333
3334/**
3335 * mpt3sas_base_unmap_resources - free controller resources
3336 * @ioc: per adapter object
3337 */
3338static void
3339mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3340{
3341        struct pci_dev *pdev = ioc->pdev;
3342
3343        dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3344
3345        mpt3sas_base_free_irq(ioc);
3346        mpt3sas_base_disable_msix(ioc);
3347
3348        kfree(ioc->replyPostRegisterIndex);
3349        ioc->replyPostRegisterIndex = NULL;
3350
3351
3352        if (ioc->chip_phys) {
3353                iounmap(ioc->chip);
3354                ioc->chip_phys = 0;
3355        }
3356
3357        if (pci_is_enabled(pdev)) {
3358                pci_release_selected_regions(ioc->pdev, ioc->bars);
3359                pci_disable_pcie_error_reporting(pdev);
3360                pci_disable_device(pdev);
3361        }
3362}
3363
3364static int
3365_base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3366
3367/**
3368 * mpt3sas_base_check_for_fault_and_issue_reset - check if IOC is in fault state
3369 *     and if it is in fault state then issue diag reset.
3370 * @ioc: per adapter object
3371 *
3372 * Return: 0 for success, non-zero for failure.
3373 */
3374int
3375mpt3sas_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3376{
3377        u32 ioc_state;
3378        int rc = -EFAULT;
3379
3380        dinitprintk(ioc, pr_info("%s\n", __func__));
3381        if (ioc->pci_error_recovery)
3382                return 0;
3383        ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3384        dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3385
3386        if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3387                mpt3sas_print_fault_code(ioc, ioc_state &
3388                    MPI2_DOORBELL_DATA_MASK);
3389                mpt3sas_base_mask_interrupts(ioc);
3390                rc = _base_diag_reset(ioc);
3391        } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
3392            MPI2_IOC_STATE_COREDUMP) {
3393                mpt3sas_print_coredump_info(ioc, ioc_state &
3394                     MPI2_DOORBELL_DATA_MASK);
3395                mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
3396                mpt3sas_base_mask_interrupts(ioc);
3397                rc = _base_diag_reset(ioc);
3398        }
3399
3400        return rc;
3401}
3402
3403/**
3404 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3405 * @ioc: per adapter object
3406 *
3407 * Return: 0 for success, non-zero for failure.
3408 */
3409int
3410mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3411{
3412        struct pci_dev *pdev = ioc->pdev;
3413        u32 memap_sz;
3414        u32 pio_sz;
3415        int i, r = 0, rc;
3416        u64 pio_chip = 0;
3417        phys_addr_t chip_phys = 0;
3418        struct adapter_reply_queue *reply_q;
3419
3420        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3421
3422        ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3423        if (pci_enable_device_mem(pdev)) {
3424                ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3425                ioc->bars = 0;
3426                return -ENODEV;
3427        }
3428
3429
3430        if (pci_request_selected_regions(pdev, ioc->bars,
3431            ioc->driver_name)) {
3432                ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3433                ioc->bars = 0;
3434                r = -ENODEV;
3435                goto out_fail;
3436        }
3437
3438/* AER (Advanced Error Reporting) hooks */
3439        pci_enable_pcie_error_reporting(pdev);
3440
3441        pci_set_master(pdev);
3442
3443
3444        if (_base_config_dma_addressing(ioc, pdev) != 0) {
3445                ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3446                r = -ENODEV;
3447                goto out_fail;
3448        }
3449
3450        for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3451             (!memap_sz || !pio_sz); i++) {
3452                if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3453                        if (pio_sz)
3454                                continue;
3455                        pio_chip = (u64)pci_resource_start(pdev, i);
3456                        pio_sz = pci_resource_len(pdev, i);
3457                } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3458                        if (memap_sz)
3459                                continue;
3460                        ioc->chip_phys = pci_resource_start(pdev, i);
3461                        chip_phys = ioc->chip_phys;
3462                        memap_sz = pci_resource_len(pdev, i);
3463                        ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3464                }
3465        }
3466
3467        if (ioc->chip == NULL) {
3468                ioc_err(ioc,
3469                    "unable to map adapter memory! or resource not found\n");
3470                r = -EINVAL;
3471                goto out_fail;
3472        }
3473
3474        mpt3sas_base_mask_interrupts(ioc);
3475
3476        r = _base_get_ioc_facts(ioc);
3477        if (r) {
3478                rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
3479                if (rc || (_base_get_ioc_facts(ioc)))
3480                        goto out_fail;
3481        }
3482
3483        if (!ioc->rdpq_array_enable_assigned) {
3484                ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3485                ioc->rdpq_array_enable_assigned = 1;
3486        }
3487
3488        r = _base_enable_msix(ioc);
3489        if (r)
3490                goto out_fail;
3491
3492        if (!ioc->is_driver_loading)
3493                _base_init_irqpolls(ioc);
3494        /* Use the Combined reply queue feature only for SAS3 C0 & higher
3495         * revision HBAs and also only when reply queue count is greater than 8
3496         */
3497        if (ioc->combined_reply_queue) {
3498                /* Determine the Supplemental Reply Post Host Index Registers
3499                 * Addresse. Supplemental Reply Post Host Index Registers
3500                 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3501                 * each register is at offset bytes of
3502                 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3503                 */
3504                ioc->replyPostRegisterIndex = kcalloc(
3505                     ioc->combined_reply_index_count,
3506                     sizeof(resource_size_t *), GFP_KERNEL);
3507                if (!ioc->replyPostRegisterIndex) {
3508                        ioc_err(ioc,
3509                            "allocation for replyPostRegisterIndex failed!\n");
3510                        r = -ENOMEM;
3511                        goto out_fail;
3512                }
3513
3514                for (i = 0; i < ioc->combined_reply_index_count; i++) {
3515                        ioc->replyPostRegisterIndex[i] = (resource_size_t *)
3516                             ((u8 __force *)&ioc->chip->Doorbell +
3517                             MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3518                             (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3519                }
3520        }
3521
3522        if (ioc->is_warpdrive) {
3523                ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3524                    &ioc->chip->ReplyPostHostIndex;
3525
3526                for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3527                        ioc->reply_post_host_index[i] =
3528                        (resource_size_t __iomem *)
3529                        ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3530                        * 4)));
3531        }
3532
3533        list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
3534                pr_info("%s: %s enabled: IRQ %d\n",
3535                        reply_q->name,
3536                        ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3537                        pci_irq_vector(ioc->pdev, reply_q->msix_index));
3538
3539        ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3540                 &chip_phys, ioc->chip, memap_sz);
3541        ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3542                 (unsigned long long)pio_chip, pio_sz);
3543
3544        /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3545        pci_save_state(pdev);
3546        return 0;
3547
3548 out_fail:
3549        mpt3sas_base_unmap_resources(ioc);
3550        return r;
3551}
3552
3553/**
3554 * mpt3sas_base_get_msg_frame - obtain request mf pointer
3555 * @ioc: per adapter object
3556 * @smid: system request message index(smid zero is invalid)
3557 *
3558 * Return: virt pointer to message frame.
3559 */
3560void *
3561mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3562{
3563        return (void *)(ioc->request + (smid * ioc->request_sz));
3564}
3565
3566/**
3567 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3568 * @ioc: per adapter object
3569 * @smid: system request message index
3570 *
3571 * Return: virt pointer to sense buffer.
3572 */
3573void *
3574mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3575{
3576        return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3577}
3578
3579/**
3580 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3581 * @ioc: per adapter object
3582 * @smid: system request message index
3583 *
3584 * Return: phys pointer to the low 32bit address of the sense buffer.
3585 */
3586__le32
3587mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3588{
3589        return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3590            SCSI_SENSE_BUFFERSIZE));
3591}
3592
3593/**
3594 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3595 * @ioc: per adapter object
3596 * @smid: system request message index
3597 *
3598 * Return: virt pointer to a PCIe SGL.
3599 */
3600void *
3601mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3602{
3603        return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3604}
3605
3606/**
3607 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3608 * @ioc: per adapter object
3609 * @smid: system request message index
3610 *
3611 * Return: phys pointer to the address of the PCIe buffer.
3612 */
3613dma_addr_t
3614mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3615{
3616        return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3617}
3618
3619/**
3620 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3621 * @ioc: per adapter object
3622 * @phys_addr: lower 32 physical addr of the reply
3623 *
3624 * Converts 32bit lower physical addr into a virt address.
3625 */
3626void *
3627mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3628{
3629        if (!phys_addr)
3630                return NULL;
3631        return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3632}
3633
3634/**
3635 * _base_get_msix_index - get the msix index
3636 * @ioc: per adapter object
3637 * @scmd: scsi_cmnd object
3638 *
3639 * Return: msix index of general reply queues,
3640 * i.e. reply queue on which IO request's reply
3641 * should be posted by the HBA firmware.
3642 */
3643static inline u8
3644_base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3645        struct scsi_cmnd *scmd)
3646{
3647        /* Enables reply_queue load balancing */
3648        if (ioc->msix_load_balance)
3649                return ioc->reply_queue_count ?
3650                    base_mod64(atomic64_add_return(1,
3651                    &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3652
3653        if (scmd && ioc->shost->nr_hw_queues > 1) {
3654                u32 tag = blk_mq_unique_tag(scmd->request);
3655
3656                return blk_mq_unique_tag_to_hwq(tag) +
3657                        ioc->high_iops_queues;
3658        }
3659
3660        return ioc->cpu_msix_table[raw_smp_processor_id()];
3661}
3662
3663/**
3664 * _base_get_high_iops_msix_index - get the msix index of
3665 *                              high iops queues
3666 * @ioc: per adapter object
3667 * @scmd: scsi_cmnd object
3668 *
3669 * Return: msix index of high iops reply queues.
3670 * i.e. high iops reply queue on which IO request's
3671 * reply should be posted by the HBA firmware.
3672 */
3673static inline u8
3674_base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3675        struct scsi_cmnd *scmd)
3676{
3677        /**
3678         * Round robin the IO interrupts among the high iops
3679         * reply queues in terms of batch count 16 when outstanding
3680         * IOs on the target device is >=8.
3681         */
3682
3683        if (scsi_device_busy(scmd->device) > MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3684                return base_mod64((
3685                    atomic64_add_return(1, &ioc->high_iops_outstanding) /
3686                    MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3687                    MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3688
3689        return _base_get_msix_index(ioc, scmd);
3690}
3691
3692/**
3693 * mpt3sas_base_get_smid - obtain a free smid from internal queue
3694 * @ioc: per adapter object
3695 * @cb_idx: callback index
3696 *
3697 * Return: smid (zero is invalid)
3698 */
3699u16
3700mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3701{
3702        unsigned long flags;
3703        struct request_tracker *request;
3704        u16 smid;
3705
3706        spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3707        if (list_empty(&ioc->internal_free_list)) {
3708                spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3709                ioc_err(ioc, "%s: smid not available\n", __func__);
3710                return 0;
3711        }
3712
3713        request = list_entry(ioc->internal_free_list.next,
3714            struct request_tracker, tracker_list);
3715        request->cb_idx = cb_idx;
3716        smid = request->smid;
3717        list_del(&request->tracker_list);
3718        spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3719        return smid;
3720}
3721
3722/**
3723 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3724 * @ioc: per adapter object
3725 * @cb_idx: callback index
3726 * @scmd: pointer to scsi command object
3727 *
3728 * Return: smid (zero is invalid)
3729 */
3730u16
3731mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3732        struct scsi_cmnd *scmd)
3733{
3734        struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3735        u16 smid;
3736        u32 tag, unique_tag;
3737
3738        unique_tag = blk_mq_unique_tag(scmd->request);
3739        tag = blk_mq_unique_tag_to_tag(unique_tag);
3740
3741        /*
3742         * Store hw queue number corresponding to the tag.
3743         * This hw queue number is used later to determine
3744         * the unique_tag using the logic below. This unique_tag
3745         * is used to retrieve the scmd pointer corresponding
3746         * to tag using scsi_host_find_tag() API.
3747         *
3748         * tag = smid - 1;
3749         * unique_tag = ioc->io_queue_num[tag] << BLK_MQ_UNIQUE_TAG_BITS | tag;
3750         */
3751        ioc->io_queue_num[tag] = blk_mq_unique_tag_to_hwq(unique_tag);
3752
3753        smid = tag + 1;
3754        request->cb_idx = cb_idx;
3755        request->smid = smid;
3756        request->scmd = scmd;
3757        INIT_LIST_HEAD(&request->chain_list);
3758        return smid;
3759}
3760
3761/**
3762 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3763 * @ioc: per adapter object
3764 * @cb_idx: callback index
3765 *
3766 * Return: smid (zero is invalid)
3767 */
3768u16
3769mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3770{
3771        unsigned long flags;
3772        struct request_tracker *request;
3773        u16 smid;
3774
3775        spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3776        if (list_empty(&ioc->hpr_free_list)) {
3777                spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3778                return 0;
3779        }
3780
3781        request = list_entry(ioc->hpr_free_list.next,
3782            struct request_tracker, tracker_list);
3783        request->cb_idx = cb_idx;
3784        smid = request->smid;
3785        list_del(&request->tracker_list);
3786        spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3787        return smid;
3788}
3789
3790static void
3791_base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3792{
3793        /*
3794         * See _wait_for_commands_to_complete() call with regards to this code.
3795         */
3796        if (ioc->shost_recovery && ioc->pending_io_count) {
3797                ioc->pending_io_count = scsi_host_busy(ioc->shost);
3798                if (ioc->pending_io_count == 0)
3799                        wake_up(&ioc->reset_wq);
3800        }
3801}
3802
3803void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
3804                           struct scsiio_tracker *st)
3805{
3806        if (WARN_ON(st->smid == 0))
3807                return;
3808        st->cb_idx = 0xFF;
3809        st->direct_io = 0;
3810        st->scmd = NULL;
3811        atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
3812        st->smid = 0;
3813}
3814
3815/**
3816 * mpt3sas_base_free_smid - put smid back on free_list
3817 * @ioc: per adapter object
3818 * @smid: system request message index
3819 */
3820void
3821mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3822{
3823        unsigned long flags;
3824        int i;
3825
3826        if (smid < ioc->hi_priority_smid) {
3827                struct scsiio_tracker *st;
3828                void *request;
3829
3830                st = _get_st_from_smid(ioc, smid);
3831                if (!st) {
3832                        _base_recovery_check(ioc);
3833                        return;
3834                }
3835
3836                /* Clear MPI request frame */
3837                request = mpt3sas_base_get_msg_frame(ioc, smid);
3838                memset(request, 0, ioc->request_sz);
3839
3840                mpt3sas_base_clear_st(ioc, st);
3841                _base_recovery_check(ioc);
3842                ioc->io_queue_num[smid - 1] = 0;
3843                return;
3844        }
3845
3846        spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3847        if (smid < ioc->internal_smid) {
3848                /* hi-priority */
3849                i = smid - ioc->hi_priority_smid;
3850                ioc->hpr_lookup[i].cb_idx = 0xFF;
3851                list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
3852        } else if (smid <= ioc->hba_queue_depth) {
3853                /* internal queue */
3854                i = smid - ioc->internal_smid;
3855                ioc->internal_lookup[i].cb_idx = 0xFF;
3856                list_add(&ioc->internal_lookup[i].tracker_list,
3857                    &ioc->internal_free_list);
3858        }
3859        spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3860}
3861
3862/**
3863 * _base_mpi_ep_writeq - 32 bit write to MMIO
3864 * @b: data payload
3865 * @addr: address in MMIO space
3866 * @writeq_lock: spin lock
3867 *
3868 * This special handling for MPI EP to take care of 32 bit
3869 * environment where its not quarenteed to send the entire word
3870 * in one transfer.
3871 */
3872static inline void
3873_base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
3874                                        spinlock_t *writeq_lock)
3875{
3876        unsigned long flags;
3877
3878        spin_lock_irqsave(writeq_lock, flags);
3879        __raw_writel((u32)(b), addr);
3880        __raw_writel((u32)(b >> 32), (addr + 4));
3881        spin_unlock_irqrestore(writeq_lock, flags);
3882}
3883
3884/**
3885 * _base_writeq - 64 bit write to MMIO
3886 * @b: data payload
3887 * @addr: address in MMIO space
3888 * @writeq_lock: spin lock
3889 *
3890 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
3891 * care of 32 bit environment where its not quarenteed to send the entire word
3892 * in one transfer.
3893 */
3894#if defined(writeq) && defined(CONFIG_64BIT)
3895static inline void
3896_base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3897{
3898        wmb();
3899        __raw_writeq(b, addr);
3900        barrier();
3901}
3902#else
3903static inline void
3904_base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3905{
3906        _base_mpi_ep_writeq(b, addr, writeq_lock);
3907}
3908#endif
3909
3910/**
3911 * _base_set_and_get_msix_index - get the msix index and assign to msix_io
3912 *                                variable of scsi tracker
3913 * @ioc: per adapter object
3914 * @smid: system request message index
3915 *
3916 * Return: msix index.
3917 */
3918static u8
3919_base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3920{
3921        struct scsiio_tracker *st = NULL;
3922
3923        if (smid < ioc->hi_priority_smid)
3924                st = _get_st_from_smid(ioc, smid);
3925
3926        if (st == NULL)
3927                return  _base_get_msix_index(ioc, NULL);
3928
3929        st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
3930        return st->msix_io;
3931}
3932
3933/**
3934 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
3935 * @ioc: per adapter object
3936 * @smid: system request message index
3937 * @handle: device handle
3938 */
3939static void
3940_base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
3941        u16 smid, u16 handle)
3942{
3943        Mpi2RequestDescriptorUnion_t descriptor;
3944        u64 *request = (u64 *)&descriptor;
3945        void *mpi_req_iomem;
3946        __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3947
3948        _clone_sg_entries(ioc, (void *) mfp, smid);
3949        mpi_req_iomem = (void __force *)ioc->chip +
3950                        MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3951        _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3952                                        ioc->request_sz);
3953        descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3954        descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3955        descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3956        descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3957        descriptor.SCSIIO.LMID = 0;
3958        _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3959            &ioc->scsi_lookup_lock);
3960}
3961
3962/**
3963 * _base_put_smid_scsi_io - send SCSI_IO request to firmware
3964 * @ioc: per adapter object
3965 * @smid: system request message index
3966 * @handle: device handle
3967 */
3968static void
3969_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
3970{
3971        Mpi2RequestDescriptorUnion_t descriptor;
3972        u64 *request = (u64 *)&descriptor;
3973
3974
3975        descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3976        descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3977        descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3978        descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3979        descriptor.SCSIIO.LMID = 0;
3980        _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3981            &ioc->scsi_lookup_lock);
3982}
3983
3984/**
3985 * _base_put_smid_fast_path - send fast path request to firmware
3986 * @ioc: per adapter object
3987 * @smid: system request message index
3988 * @handle: device handle
3989 */
3990static void
3991_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3992        u16 handle)
3993{
3994        Mpi2RequestDescriptorUnion_t descriptor;
3995        u64 *request = (u64 *)&descriptor;
3996
3997        descriptor.SCSIIO.RequestFlags =
3998            MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
3999        descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4000        descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4001        descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4002        descriptor.SCSIIO.LMID = 0;
4003        _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4004            &ioc->scsi_lookup_lock);
4005}
4006
4007/**
4008 * _base_put_smid_hi_priority - send Task Management request to firmware
4009 * @ioc: per adapter object
4010 * @smid: system request message index
4011 * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4012 */
4013static void
4014_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4015        u16 msix_task)
4016{
4017        Mpi2RequestDescriptorUnion_t descriptor;
4018        void *mpi_req_iomem;
4019        u64 *request;
4020
4021        if (ioc->is_mcpu_endpoint) {
4022                __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4023
4024                /* TBD 256 is offset within sys register. */
4025                mpi_req_iomem = (void __force *)ioc->chip
4026                                        + MPI_FRAME_START_OFFSET
4027                                        + (smid * ioc->request_sz);
4028                _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4029                                                        ioc->request_sz);
4030        }
4031
4032        request = (u64 *)&descriptor;
4033
4034        descriptor.HighPriority.RequestFlags =
4035            MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4036        descriptor.HighPriority.MSIxIndex =  msix_task;
4037        descriptor.HighPriority.SMID = cpu_to_le16(smid);
4038        descriptor.HighPriority.LMID = 0;
4039        descriptor.HighPriority.Reserved1 = 0;
4040        if (ioc->is_mcpu_endpoint)
4041                _base_mpi_ep_writeq(*request,
4042                                &ioc->chip->RequestDescriptorPostLow,
4043                                &ioc->scsi_lookup_lock);
4044        else
4045                _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4046                    &ioc->scsi_lookup_lock);
4047}
4048
4049/**
4050 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
4051 *  firmware
4052 * @ioc: per adapter object
4053 * @smid: system request message index
4054 */
4055void
4056mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4057{
4058        Mpi2RequestDescriptorUnion_t descriptor;
4059        u64 *request = (u64 *)&descriptor;
4060
4061        descriptor.Default.RequestFlags =
4062                MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
4063        descriptor.Default.MSIxIndex =  _base_set_and_get_msix_index(ioc, smid);
4064        descriptor.Default.SMID = cpu_to_le16(smid);
4065        descriptor.Default.LMID = 0;
4066        descriptor.Default.DescriptorTypeDependent = 0;
4067        _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4068            &ioc->scsi_lookup_lock);
4069}
4070
4071/**
4072 * _base_put_smid_default - Default, primarily used for config pages
4073 * @ioc: per adapter object
4074 * @smid: system request message index
4075 */
4076static void
4077_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4078{
4079        Mpi2RequestDescriptorUnion_t descriptor;
4080        void *mpi_req_iomem;
4081        u64 *request;
4082
4083        if (ioc->is_mcpu_endpoint) {
4084                __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4085
4086                _clone_sg_entries(ioc, (void *) mfp, smid);
4087                /* TBD 256 is offset within sys register */
4088                mpi_req_iomem = (void __force *)ioc->chip +
4089                        MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4090                _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4091                                                        ioc->request_sz);
4092        }
4093        request = (u64 *)&descriptor;
4094        descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4095        descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4096        descriptor.Default.SMID = cpu_to_le16(smid);
4097        descriptor.Default.LMID = 0;
4098        descriptor.Default.DescriptorTypeDependent = 0;
4099        if (ioc->is_mcpu_endpoint)
4100                _base_mpi_ep_writeq(*request,
4101                                &ioc->chip->RequestDescriptorPostLow,
4102                                &ioc->scsi_lookup_lock);
4103        else
4104                _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4105                                &ioc->scsi_lookup_lock);
4106}
4107
4108/**
4109 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4110 *   Atomic Request Descriptor
4111 * @ioc: per adapter object
4112 * @smid: system request message index
4113 * @handle: device handle, unused in this function, for function type match
4114 *
4115 * Return: nothing.
4116 */
4117static void
4118_base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4119        u16 handle)
4120{
4121        Mpi26AtomicRequestDescriptor_t descriptor;
4122        u32 *request = (u32 *)&descriptor;
4123
4124        descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4125        descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4126        descriptor.SMID = cpu_to_le16(smid);
4127
4128        writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4129}
4130
4131/**
4132 * _base_put_smid_fast_path_atomic - send fast path request to firmware
4133 * using Atomic Request Descriptor
4134 * @ioc: per adapter object
4135 * @smid: system request message index
4136 * @handle: device handle, unused in this function, for function type match
4137 * Return: nothing
4138 */
4139static void
4140_base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4141        u16 handle)
4142{
4143        Mpi26AtomicRequestDescriptor_t descriptor;
4144        u32 *request = (u32 *)&descriptor;
4145
4146        descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4147        descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4148        descriptor.SMID = cpu_to_le16(smid);
4149
4150        writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4151}
4152
4153/**
4154 * _base_put_smid_hi_priority_atomic - send Task Management request to
4155 * firmware using Atomic Request Descriptor
4156 * @ioc: per adapter object
4157 * @smid: system request message index
4158 * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4159 *
4160 * Return: nothing.
4161 */
4162static void
4163_base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4164        u16 msix_task)
4165{
4166        Mpi26AtomicRequestDescriptor_t descriptor;
4167        u32 *request = (u32 *)&descriptor;
4168
4169        descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4170        descriptor.MSIxIndex = msix_task;
4171        descriptor.SMID = cpu_to_le16(smid);
4172
4173        writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4174}
4175
4176/**
4177 * _base_put_smid_default_atomic - Default, primarily used for config pages
4178 * use Atomic Request Descriptor
4179 * @ioc: per adapter object
4180 * @smid: system request message index
4181 *
4182 * Return: nothing.
4183 */
4184static void
4185_base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4186{
4187        Mpi26AtomicRequestDescriptor_t descriptor;
4188        u32 *request = (u32 *)&descriptor;
4189
4190        descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4191        descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4192        descriptor.SMID = cpu_to_le16(smid);
4193
4194        writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4195}
4196
4197/**
4198 * _base_display_OEMs_branding - Display branding string
4199 * @ioc: per adapter object
4200 */
4201static void
4202_base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
4203{
4204        if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
4205                return;
4206
4207        switch (ioc->pdev->subsystem_vendor) {
4208        case PCI_VENDOR_ID_INTEL:
4209                switch (ioc->pdev->device) {
4210                case MPI2_MFGPAGE_DEVID_SAS2008:
4211                        switch (ioc->pdev->subsystem_device) {
4212                        case MPT2SAS_INTEL_RMS2LL080_SSDID:
4213                                ioc_info(ioc, "%s\n",
4214                                         MPT2SAS_INTEL_RMS2LL080_BRANDING);
4215                                break;
4216                        case MPT2SAS_INTEL_RMS2LL040_SSDID:
4217                                ioc_info(ioc, "%s\n",
4218                                         MPT2SAS_INTEL_RMS2LL040_BRANDING);
4219                                break;
4220                        case MPT2SAS_INTEL_SSD910_SSDID:
4221                                ioc_info(ioc, "%s\n",
4222                                         MPT2SAS_INTEL_SSD910_BRANDING);
4223                                break;
4224                        default:
4225                                ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4226                                         ioc->pdev->subsystem_device);
4227                                break;
4228                        }
4229                        break;
4230                case MPI2_MFGPAGE_DEVID_SAS2308_2:
4231                        switch (ioc->pdev->subsystem_device) {
4232                        case MPT2SAS_INTEL_RS25GB008_SSDID:
4233                                ioc_info(ioc, "%s\n",
4234                                         MPT2SAS_INTEL_RS25GB008_BRANDING);
4235                                break;
4236                        case MPT2SAS_INTEL_RMS25JB080_SSDID:
4237                                ioc_info(ioc, "%s\n",
4238                                         MPT2SAS_INTEL_RMS25JB080_BRANDING);
4239                                break;
4240                        case MPT2SAS_INTEL_RMS25JB040_SSDID:
4241                                ioc_info(ioc, "%s\n",
4242                                         MPT2SAS_INTEL_RMS25JB040_BRANDING);
4243                                break;
4244                        case MPT2SAS_INTEL_RMS25KB080_SSDID:
4245                                ioc_info(ioc, "%s\n",
4246                                         MPT2SAS_INTEL_RMS25KB080_BRANDING);
4247                                break;
4248                        case MPT2SAS_INTEL_RMS25KB040_SSDID:
4249                                ioc_info(ioc, "%s\n",
4250                                         MPT2SAS_INTEL_RMS25KB040_BRANDING);
4251                                break;
4252                        case MPT2SAS_INTEL_RMS25LB040_SSDID:
4253                                ioc_info(ioc, "%s\n",
4254                                         MPT2SAS_INTEL_RMS25LB040_BRANDING);
4255                                break;
4256                        case MPT2SAS_INTEL_RMS25LB080_SSDID:
4257                                ioc_info(ioc, "%s\n",
4258                                         MPT2SAS_INTEL_RMS25LB080_BRANDING);
4259                                break;
4260                        default:
4261                                ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4262                                         ioc->pdev->subsystem_device);
4263                                break;
4264                        }
4265                        break;
4266                case MPI25_MFGPAGE_DEVID_SAS3008:
4267                        switch (ioc->pdev->subsystem_device) {
4268                        case MPT3SAS_INTEL_RMS3JC080_SSDID:
4269                                ioc_info(ioc, "%s\n",
4270                                         MPT3SAS_INTEL_RMS3JC080_BRANDING);
4271                                break;
4272
4273                        case MPT3SAS_INTEL_RS3GC008_SSDID:
4274                                ioc_info(ioc, "%s\n",
4275                                         MPT3SAS_INTEL_RS3GC008_BRANDING);
4276                                break;
4277                        case MPT3SAS_INTEL_RS3FC044_SSDID:
4278                                ioc_info(ioc, "%s\n",
4279                                         MPT3SAS_INTEL_RS3FC044_BRANDING);
4280                                break;
4281                        case MPT3SAS_INTEL_RS3UC080_SSDID:
4282                                ioc_info(ioc, "%s\n",
4283                                         MPT3SAS_INTEL_RS3UC080_BRANDING);
4284                                break;
4285                        default:
4286                                ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4287                                         ioc->pdev->subsystem_device);
4288                                break;
4289                        }
4290                        break;
4291                default:
4292                        ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4293                                 ioc->pdev->subsystem_device);
4294                        break;
4295                }
4296                break;
4297        case PCI_VENDOR_ID_DELL:
4298                switch (ioc->pdev->device) {
4299                case MPI2_MFGPAGE_DEVID_SAS2008:
4300                        switch (ioc->pdev->subsystem_device) {
4301                        case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4302                                ioc_info(ioc, "%s\n",
4303                                         MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4304                                break;
4305                        case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4306                                ioc_info(ioc, "%s\n",
4307                                         MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4308                                break;
4309                        case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4310                                ioc_info(ioc, "%s\n",
4311                                         MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4312                                break;
4313                        case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4314                                ioc_info(ioc, "%s\n",
4315                                         MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4316                                break;
4317                        case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4318                                ioc_info(ioc, "%s\n",
4319                                         MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4320                                break;
4321                        case MPT2SAS_DELL_PERC_H200_SSDID:
4322                                ioc_info(ioc, "%s\n",
4323                                         MPT2SAS_DELL_PERC_H200_BRANDING);
4324                                break;
4325                        case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4326                                ioc_info(ioc, "%s\n",
4327                                         MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4328                                break;
4329                        default:
4330                                ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4331                                         ioc->pdev->subsystem_device);
4332                                break;
4333                        }
4334                        break;
4335                case MPI25_MFGPAGE_DEVID_SAS3008:
4336                        switch (ioc->pdev->subsystem_device) {
4337                        case MPT3SAS_DELL_12G_HBA_SSDID:
4338                                ioc_info(ioc, "%s\n",
4339                                         MPT3SAS_DELL_12G_HBA_BRANDING);
4340                                break;
4341                        default:
4342                                ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4343                                         ioc->pdev->subsystem_device);
4344                                break;
4345                        }
4346                        break;
4347                default:
4348                        ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4349                                 ioc->pdev->subsystem_device);
4350                        break;
4351                }
4352                break;
4353        case PCI_VENDOR_ID_CISCO:
4354                switch (ioc->pdev->device) {
4355                case MPI25_MFGPAGE_DEVID_SAS3008:
4356                        switch (ioc->pdev->subsystem_device) {
4357                        case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4358                                ioc_info(ioc, "%s\n",
4359                                         MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4360                                break;
4361                        case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4362                                ioc_info(ioc, "%s\n",
4363                                         MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4364                                break;
4365                        case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4366                                ioc_info(ioc, "%s\n",
4367                                         MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4368                                break;
4369                        default:
4370                                ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4371                                         ioc->pdev->subsystem_device);
4372                                break;
4373                        }
4374                        break;
4375                case MPI25_MFGPAGE_DEVID_SAS3108_1:
4376                        switch (ioc->pdev->subsystem_device) {
4377                        case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4378                                ioc_info(ioc, "%s\n",
4379                                         MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4380                                break;
4381                        case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4382                                ioc_info(ioc, "%s\n",
4383                                         MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4384                                break;
4385                        default:
4386                                ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4387                                         ioc->pdev->subsystem_device);
4388                                break;
4389                        }
4390                        break;
4391                default:
4392                        ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4393                                 ioc->pdev->subsystem_device);
4394                        break;
4395                }
4396                break;
4397        case MPT2SAS_HP_3PAR_SSVID:
4398                switch (ioc->pdev->device) {
4399                case MPI2_MFGPAGE_DEVID_SAS2004:
4400                        switch (ioc->pdev->subsystem_device) {
4401                        case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4402                                ioc_info(ioc, "%s\n",
4403                                         MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4404                                break;
4405                        default:
4406                                ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4407                                         ioc->pdev->subsystem_device);
4408                                break;
4409                        }
4410                        break;
4411                case MPI2_MFGPAGE_DEVID_SAS2308_2:
4412                        switch (ioc->pdev->subsystem_device) {
4413                        case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4414                                ioc_info(ioc, "%s\n",
4415                                         MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4416                                break;
4417                        case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4418                                ioc_info(ioc, "%s\n",
4419                                         MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4420                                break;
4421                        case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4422                                ioc_info(ioc, "%s\n",
4423                                         MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4424                                break;
4425                        case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4426                                ioc_info(ioc, "%s\n",
4427                                         MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4428                                break;
4429                        default:
4430                                ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4431                                         ioc->pdev->subsystem_device);
4432                                break;
4433                        }
4434                        break;
4435                default:
4436                        ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4437                                 ioc->pdev->subsystem_device);
4438                        break;
4439                }
4440                break;
4441        default:
4442                break;
4443        }
4444}
4445
4446/**
4447 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4448 *                              version from FW Image Header.
4449 * @ioc: per adapter object
4450 *
4451 * Return: 0 for success, non-zero for failure.
4452 */
4453        static int
4454_base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4455{
4456        Mpi2FWImageHeader_t *fw_img_hdr;
4457        Mpi26ComponentImageHeader_t *cmp_img_hdr;
4458        Mpi25FWUploadRequest_t *mpi_request;
4459        Mpi2FWUploadReply_t mpi_reply;
4460        int r = 0, issue_diag_reset = 0;
4461        u32  package_version = 0;
4462        void *fwpkg_data = NULL;
4463        dma_addr_t fwpkg_data_dma;
4464        u16 smid, ioc_status;
4465        size_t data_length;
4466
4467        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4468
4469        if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4470                ioc_err(ioc, "%s: internal command already in use\n", __func__);
4471                return -EAGAIN;
4472        }
4473
4474        data_length = sizeof(Mpi2FWImageHeader_t);
4475        fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4476                        &fwpkg_data_dma, GFP_KERNEL);
4477        if (!fwpkg_data) {
4478                ioc_err(ioc,
4479                    "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4480                        __FILE__, __LINE__, __func__);
4481                return -ENOMEM;
4482        }
4483
4484        smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4485        if (!smid) {
4486                ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4487                r = -EAGAIN;
4488                goto out;
4489        }
4490
4491        ioc->base_cmds.status = MPT3_CMD_PENDING;
4492        mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4493        ioc->base_cmds.smid = smid;
4494        memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4495        mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4496        mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4497        mpi_request->ImageSize = cpu_to_le32(data_length);
4498        ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4499                        data_length);
4500        init_completion(&ioc->base_cmds.done);
4501        ioc->put_smid_default(ioc, smid);
4502        /* Wait for 15 seconds */
4503        wait_for_completion_timeout(&ioc->base_cmds.done,
4504                        FW_IMG_HDR_READ_TIMEOUT*HZ);
4505        ioc_info(ioc, "%s: complete\n", __func__);
4506        if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4507                ioc_err(ioc, "%s: timeout\n", __func__);
4508                _debug_dump_mf(mpi_request,
4509                                sizeof(Mpi25FWUploadRequest_t)/4);
4510                issue_diag_reset = 1;
4511        } else {
4512                memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4513                if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4514                        memcpy(&mpi_reply, ioc->base_cmds.reply,
4515                                        sizeof(Mpi2FWUploadReply_t));
4516                        ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4517                                                MPI2_IOCSTATUS_MASK;
4518                        if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4519                                fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4520                                if (le32_to_cpu(fw_img_hdr->Signature) ==
4521                                    MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
4522                                        cmp_img_hdr =
4523                                            (Mpi26ComponentImageHeader_t *)
4524                                            (fwpkg_data);
4525                                        package_version =
4526                                            le32_to_cpu(
4527                                            cmp_img_hdr->ApplicationSpecific);
4528                                } else
4529                                        package_version =
4530                                            le32_to_cpu(
4531                                            fw_img_hdr->PackageVersion.Word);
4532                                if (package_version)
4533                                        ioc_info(ioc,
4534                                        "FW Package Ver(%02d.%02d.%02d.%02d)\n",
4535                                        ((package_version) & 0xFF000000) >> 24,
4536                                        ((package_version) & 0x00FF0000) >> 16,
4537                                        ((package_version) & 0x0000FF00) >> 8,
4538                                        (package_version) & 0x000000FF);
4539                        } else {
4540                                _debug_dump_mf(&mpi_reply,
4541                                                sizeof(Mpi2FWUploadReply_t)/4);
4542                        }
4543                }
4544        }
4545        ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4546out:
4547        if (fwpkg_data)
4548                dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4549                                fwpkg_data_dma);
4550        if (issue_diag_reset) {
4551                if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
4552                        return -EFAULT;
4553                if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
4554                        return -EFAULT;
4555                r = -EAGAIN;
4556        }
4557        return r;
4558}
4559
4560/**
4561 * _base_display_ioc_capabilities - Display IOC's capabilities.
4562 * @ioc: per adapter object
4563 */
4564static void
4565_base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4566{
4567        int i = 0;
4568        char desc[16];
4569        u32 iounit_pg1_flags;
4570        u32 bios_version;
4571
4572        bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
4573        strncpy(desc, ioc->manu_pg0.ChipName, 16);
4574        ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
4575                 desc,
4576                 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4577                 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4578                 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4579                 ioc->facts.FWVersion.Word & 0x000000FF,
4580                 ioc->pdev->revision,
4581                 (bios_version & 0xFF000000) >> 24,
4582                 (bios_version & 0x00FF0000) >> 16,
4583                 (bios_version & 0x0000FF00) >> 8,
4584                 bios_version & 0x000000FF);
4585
4586        _base_display_OEMs_branding(ioc);
4587
4588        if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4589                pr_info("%sNVMe", i ? "," : "");
4590                i++;
4591        }
4592
4593        ioc_info(ioc, "Protocol=(");
4594
4595        if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4596                pr_cont("Initiator");
4597                i++;
4598        }
4599
4600        if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4601                pr_cont("%sTarget", i ? "," : "");
4602                i++;
4603        }
4604
4605        i = 0;
4606        pr_cont("), Capabilities=(");
4607
4608        if (!ioc->hide_ir_msg) {
4609                if (ioc->facts.IOCCapabilities &
4610                    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4611                        pr_cont("Raid");
4612                        i++;
4613                }
4614        }
4615
4616        if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4617                pr_cont("%sTLR", i ? "," : "");
4618                i++;
4619        }
4620
4621        if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4622                pr_cont("%sMulticast", i ? "," : "");
4623                i++;
4624        }
4625
4626        if (ioc->facts.IOCCapabilities &
4627            MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4628                pr_cont("%sBIDI Target", i ? "," : "");
4629                i++;
4630        }
4631
4632        if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4633                pr_cont("%sEEDP", i ? "," : "");
4634                i++;
4635        }
4636
4637        if (ioc->facts.IOCCapabilities &
4638            MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4639                pr_cont("%sSnapshot Buffer", i ? "," : "");
4640                i++;
4641        }
4642
4643        if (ioc->facts.IOCCapabilities &
4644            MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4645                pr_cont("%sDiag Trace Buffer", i ? "," : "");
4646                i++;
4647        }
4648
4649        if (ioc->facts.IOCCapabilities &
4650            MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4651                pr_cont("%sDiag Extended Buffer", i ? "," : "");
4652                i++;
4653        }
4654
4655        if (ioc->facts.IOCCapabilities &
4656            MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4657                pr_cont("%sTask Set Full", i ? "," : "");
4658                i++;
4659        }
4660
4661        iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4662        if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4663                pr_cont("%sNCQ", i ? "," : "");
4664                i++;
4665        }
4666
4667        pr_cont(")\n");
4668}
4669
4670/**
4671 * mpt3sas_base_update_missing_delay - change the missing delay timers
4672 * @ioc: per adapter object
4673 * @device_missing_delay: amount of time till device is reported missing
4674 * @io_missing_delay: interval IO is returned when there is a missing device
4675 *
4676 * Passed on the command line, this function will modify the device missing
4677 * delay, as well as the io missing delay. This should be called at driver
4678 * load time.
4679 */
4680void
4681mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4682        u16 device_missing_delay, u8 io_missing_delay)
4683{
4684        u16 dmd, dmd_new, dmd_orignal;
4685        u8 io_missing_delay_original;
4686        u16 sz;
4687        Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4688        Mpi2ConfigReply_t mpi_reply;
4689        u8 num_phys = 0;
4690        u16 ioc_status;
4691
4692        mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4693        if (!num_phys)
4694                return;
4695
4696        sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4697            sizeof(Mpi2SasIOUnit1PhyData_t));
4698        sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4699        if (!sas_iounit_pg1) {
4700                ioc_err(ioc, "failure at %s:%d/%s()!\n",
4701                        __FILE__, __LINE__, __func__);
4702                goto out;
4703        }
4704        if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4705            sas_iounit_pg1, sz))) {
4706                ioc_err(ioc, "failure at %s:%d/%s()!\n",
4707                        __FILE__, __LINE__, __func__);
4708                goto out;
4709        }
4710        ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4711            MPI2_IOCSTATUS_MASK;
4712        if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4713                ioc_err(ioc, "failure at %s:%d/%s()!\n",
4714                        __FILE__, __LINE__, __func__);
4715                goto out;
4716        }
4717
4718        /* device missing delay */
4719        dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4720        if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4721                dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4722        else
4723                dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4724        dmd_orignal = dmd;
4725        if (device_missing_delay > 0x7F) {
4726                dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4727                    device_missing_delay;
4728                dmd = dmd / 16;
4729                dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4730        } else
4731                dmd = device_missing_delay;
4732        sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4733
4734        /* io missing delay */
4735        io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4736        sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4737
4738        if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4739            sz)) {
4740                if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4741                        dmd_new = (dmd &
4742                            MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4743                else
4744                        dmd_new =
4745                    dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4746                ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4747                         dmd_orignal, dmd_new);
4748                ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4749                         io_missing_delay_original,
4750                         io_missing_delay);
4751                ioc->device_missing_delay = dmd_new;
4752                ioc->io_missing_delay = io_missing_delay;
4753        }
4754
4755out:
4756        kfree(sas_iounit_pg1);
4757}
4758
4759/**
4760 * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4761 *    according to performance mode.
4762 * @ioc : per adapter object
4763 *
4764 * Return: zero on success; otherwise return EAGAIN error code asking the
4765 * caller to retry.
4766 */
4767static int
4768_base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4769{
4770        Mpi2IOCPage1_t ioc_pg1;
4771        Mpi2ConfigReply_t mpi_reply;
4772        int rc;
4773
4774        rc = mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4775        if (rc)
4776                return rc;
4777        memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4778
4779        switch (perf_mode) {
4780        case MPT_PERF_MODE_DEFAULT:
4781        case MPT_PERF_MODE_BALANCED:
4782                if (ioc->high_iops_queues) {
4783                        ioc_info(ioc,
4784                                "Enable interrupt coalescing only for first\t"
4785                                "%d reply queues\n",
4786                                MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
4787                        /*
4788                         * If 31st bit is zero then interrupt coalescing is
4789                         * enabled for all reply descriptor post queues.
4790                         * If 31st bit is set to one then user can
4791                         * enable/disable interrupt coalescing on per reply
4792                         * descriptor post queue group(8) basis. So to enable
4793                         * interrupt coalescing only on first reply descriptor
4794                         * post queue group 31st bit and zero th bit is enabled.
4795                         */
4796                        ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
4797                            ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
4798                        rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4799                        if (rc)
4800                                return rc;
4801                        ioc_info(ioc, "performance mode: balanced\n");
4802                        return 0;
4803                }
4804                fallthrough;
4805        case MPT_PERF_MODE_LATENCY:
4806                /*
4807                 * Enable interrupt coalescing on all reply queues
4808                 * with timeout value 0xA
4809                 */
4810                ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
4811                ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
4812                ioc_pg1.ProductSpecific = 0;
4813                rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4814                if (rc)
4815                        return rc;
4816                ioc_info(ioc, "performance mode: latency\n");
4817                break;
4818        case MPT_PERF_MODE_IOPS:
4819                /*
4820                 * Enable interrupt coalescing on all reply queues.
4821                 */
4822                ioc_info(ioc,
4823                    "performance mode: iops with coalescing timeout: 0x%x\n",
4824                    le32_to_cpu(ioc_pg1.CoalescingTimeout));
4825                ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
4826                ioc_pg1.ProductSpecific = 0;
4827                rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4828                if (rc)
4829                        return rc;
4830                break;
4831        }
4832        return 0;
4833}
4834
4835/**
4836 * _base_get_event_diag_triggers - get event diag trigger values from
4837 *                              persistent pages
4838 * @ioc : per adapter object
4839 *
4840 * Return: nothing.
4841 */
4842static int
4843_base_get_event_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
4844{
4845        Mpi26DriverTriggerPage2_t trigger_pg2;
4846        struct SL_WH_EVENT_TRIGGER_T *event_tg;
4847        MPI26_DRIVER_MPI_EVENT_TIGGER_ENTRY *mpi_event_tg;
4848        Mpi2ConfigReply_t mpi_reply;
4849        int r = 0, i = 0;
4850        u16 count = 0;
4851        u16 ioc_status;
4852
4853        r = mpt3sas_config_get_driver_trigger_pg2(ioc, &mpi_reply,
4854            &trigger_pg2);
4855        if (r)
4856                return r;
4857
4858        ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4859            MPI2_IOCSTATUS_MASK;
4860        if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4861                dinitprintk(ioc,
4862                    ioc_err(ioc,
4863                    "%s: Failed to get trigger pg2, ioc_status(0x%04x)\n",
4864                   __func__, ioc_status));
4865                return 0;
4866        }
4867
4868        if (le16_to_cpu(trigger_pg2.NumMPIEventTrigger)) {
4869                count = le16_to_cpu(trigger_pg2.NumMPIEventTrigger);
4870                count = min_t(u16, NUM_VALID_ENTRIES, count);
4871                ioc->diag_trigger_event.ValidEntries = count;
4872
4873                event_tg = &ioc->diag_trigger_event.EventTriggerEntry[0];
4874                mpi_event_tg = &trigger_pg2.MPIEventTriggers[0];
4875                for (i = 0; i < count; i++) {
4876                        event_tg->EventValue = le16_to_cpu(
4877                            mpi_event_tg->MPIEventCode);
4878                        event_tg->LogEntryQualifier = le16_to_cpu(
4879                            mpi_event_tg->MPIEventCodeSpecific);
4880                        event_tg++;
4881                        mpi_event_tg++;
4882                }
4883        }
4884        return 0;
4885}
4886
4887/**
4888 * _base_get_scsi_diag_triggers - get scsi diag trigger values from
4889 *                              persistent pages
4890 * @ioc : per adapter object
4891 *
4892 * Return: 0 on success; otherwise return failure status.
4893 */
4894static int
4895_base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
4896{
4897        Mpi26DriverTriggerPage3_t trigger_pg3;
4898        struct SL_WH_SCSI_TRIGGER_T *scsi_tg;
4899        MPI26_DRIVER_SCSI_SENSE_TIGGER_ENTRY *mpi_scsi_tg;
4900        Mpi2ConfigReply_t mpi_reply;
4901        int r = 0, i = 0;
4902        u16 count = 0;
4903        u16 ioc_status;
4904
4905        r = mpt3sas_config_get_driver_trigger_pg3(ioc, &mpi_reply,
4906            &trigger_pg3);
4907        if (r)
4908                return r;
4909
4910        ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4911            MPI2_IOCSTATUS_MASK;
4912        if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4913                dinitprintk(ioc,
4914                    ioc_err(ioc,
4915                    "%s: Failed to get trigger pg3, ioc_status(0x%04x)\n",
4916                    __func__, ioc_status));
4917                return 0;
4918        }
4919
4920        if (le16_to_cpu(trigger_pg3.NumSCSISenseTrigger)) {
4921                count = le16_to_cpu(trigger_pg3.NumSCSISenseTrigger);
4922                count = min_t(u16, NUM_VALID_ENTRIES, count);
4923                ioc->diag_trigger_scsi.ValidEntries = count;
4924
4925                scsi_tg = &ioc->diag_trigger_scsi.SCSITriggerEntry[0];
4926                mpi_scsi_tg = &trigger_pg3.SCSISenseTriggers[0];
4927                for (i = 0; i < count; i++) {
4928                        scsi_tg->ASCQ = mpi_scsi_tg->ASCQ;
4929                        scsi_tg->ASC = mpi_scsi_tg->ASC;
4930                        scsi_tg->SenseKey = mpi_scsi_tg->SenseKey;
4931
4932                        scsi_tg++;
4933                        mpi_scsi_tg++;
4934                }
4935        }
4936        return 0;
4937}
4938
4939/**
4940 * _base_get_mpi_diag_triggers - get mpi diag trigger values from
4941 *                              persistent pages
4942 * @ioc : per adapter object
4943 *
4944 * Return: 0 on success; otherwise return failure status.
4945 */
4946static int
4947_base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
4948{
4949        Mpi26DriverTriggerPage4_t trigger_pg4;
4950        struct SL_WH_MPI_TRIGGER_T *status_tg;
4951        MPI26_DRIVER_IOCSTATUS_LOGINFO_TIGGER_ENTRY *mpi_status_tg;
4952        Mpi2ConfigReply_t mpi_reply;
4953        int r = 0, i = 0;
4954        u16 count = 0;
4955        u16 ioc_status;
4956
4957        r = mpt3sas_config_get_driver_trigger_pg4(ioc, &mpi_reply,
4958            &trigger_pg4);
4959        if (r)
4960                return r;
4961
4962        ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4963            MPI2_IOCSTATUS_MASK;
4964        if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4965                dinitprintk(ioc,
4966                    ioc_err(ioc,
4967                    "%s: Failed to get trigger pg4, ioc_status(0x%04x)\n",
4968                    __func__, ioc_status));
4969                return 0;
4970        }
4971
4972        if (le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger)) {
4973                count = le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger);
4974                count = min_t(u16, NUM_VALID_ENTRIES, count);
4975                ioc->diag_trigger_mpi.ValidEntries = count;
4976
4977                status_tg = &ioc->diag_trigger_mpi.MPITriggerEntry[0];
4978                mpi_status_tg = &trigger_pg4.IOCStatusLoginfoTriggers[0];
4979
4980                for (i = 0; i < count; i++) {
4981                        status_tg->IOCStatus = le16_to_cpu(
4982                            mpi_status_tg->IOCStatus);
4983                        status_tg->IocLogInfo = le32_to_cpu(
4984                            mpi_status_tg->LogInfo);
4985
4986                        status_tg++;
4987                        mpi_status_tg++;
4988                }
4989        }
4990        return 0;
4991}
4992
4993/**
4994 * _base_get_master_diag_triggers - get master diag trigger values from
4995 *                              persistent pages
4996 * @ioc : per adapter object
4997 *
4998 * Return: nothing.
4999 */
5000static int
5001_base_get_master_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5002{
5003        Mpi26DriverTriggerPage1_t trigger_pg1;
5004        Mpi2ConfigReply_t mpi_reply;
5005        int r;
5006        u16 ioc_status;
5007
5008        r = mpt3sas_config_get_driver_trigger_pg1(ioc, &mpi_reply,
5009            &trigger_pg1);
5010        if (r)
5011                return r;
5012
5013        ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5014            MPI2_IOCSTATUS_MASK;
5015        if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5016                dinitprintk(ioc,
5017                    ioc_err(ioc,
5018                    "%s: Failed to get trigger pg1, ioc_status(0x%04x)\n",
5019                   __func__, ioc_status));
5020                return 0;
5021        }
5022
5023        if (le16_to_cpu(trigger_pg1.NumMasterTrigger))
5024                ioc->diag_trigger_master.MasterData |=
5025                    le32_to_cpu(
5026                    trigger_pg1.MasterTriggers[0].MasterTriggerFlags);
5027        return 0;
5028}
5029
5030/**
5031 * _base_check_for_trigger_pages_support - checks whether HBA FW supports
5032 *                                      driver trigger pages or not
5033 * @ioc : per adapter object
5034 * @trigger_flags : address where trigger page0's TriggerFlags value is copied
5035 *
5036 * Return: trigger flags mask if HBA FW supports driver trigger pages;
5037 * otherwise returns %-EFAULT if driver trigger pages are not supported by FW or
5038 * return EAGAIN if diag reset occurred due to FW fault and asking the
5039 * caller to retry the command.
5040 *
5041 */
5042static int
5043_base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER *ioc, u32 *trigger_flags)
5044{
5045        Mpi26DriverTriggerPage0_t trigger_pg0;
5046        int r = 0;
5047        Mpi2ConfigReply_t mpi_reply;
5048        u16 ioc_status;
5049
5050        r = mpt3sas_config_get_driver_trigger_pg0(ioc, &mpi_reply,
5051            &trigger_pg0);
5052        if (r)
5053                return r;
5054
5055        ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5056            MPI2_IOCSTATUS_MASK;
5057        if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
5058                return -EFAULT;
5059
5060        *trigger_flags = le16_to_cpu(trigger_pg0.TriggerFlags);
5061        return 0;
5062}
5063
5064/**
5065 * _base_get_diag_triggers - Retrieve diag trigger values from
5066 *                              persistent pages.
5067 * @ioc : per adapter object
5068 *
5069 * Return: zero on success; otherwise return EAGAIN error codes
5070 * asking the caller to retry.
5071 */
5072static int
5073_base_get_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5074{
5075        int trigger_flags;
5076        int r;
5077
5078        /*
5079         * Default setting of master trigger.
5080         */
5081        ioc->diag_trigger_master.MasterData =
5082            (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET);
5083
5084        r = _base_check_for_trigger_pages_support(ioc, &trigger_flags);
5085        if (r) {
5086                if (r == -EAGAIN)
5087                        return r;
5088                /*
5089                 * Don't go for error handling when FW doesn't support
5090                 * driver trigger pages.
5091                 */
5092                return 0;
5093        }
5094
5095        ioc->supports_trigger_pages = 1;
5096
5097        /*
5098         * Retrieve master diag trigger values from driver trigger pg1
5099         * if master trigger bit enabled in TriggerFlags.
5100         */
5101        if ((u16)trigger_flags &
5102            MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID) {
5103                r = _base_get_master_diag_triggers(ioc);
5104                if (r)
5105                        return r;
5106        }
5107
5108        /*
5109         * Retrieve event diag trigger values from driver trigger pg2
5110         * if event trigger bit enabled in TriggerFlags.
5111         */
5112        if ((u16)trigger_flags &
5113            MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID) {
5114                r = _base_get_event_diag_triggers(ioc);
5115                if (r)
5116                        return r;
5117        }
5118
5119        /*
5120         * Retrieve scsi diag trigger values from driver trigger pg3
5121         * if scsi trigger bit enabled in TriggerFlags.
5122         */
5123        if ((u16)trigger_flags &
5124            MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID) {
5125                r = _base_get_scsi_diag_triggers(ioc);
5126                if (r)
5127                        return r;
5128        }
5129        /*
5130         * Retrieve mpi error diag trigger values from driver trigger pg4
5131         * if loginfo trigger bit enabled in TriggerFlags.
5132         */
5133        if ((u16)trigger_flags &
5134            MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID) {
5135                r = _base_get_mpi_diag_triggers(ioc);
5136                if (r)
5137                        return r;
5138        }
5139        return 0;
5140}
5141
5142/**
5143 * _base_update_diag_trigger_pages - Update the driver trigger pages after
5144 *                      online FW update, in case updated FW supports driver
5145 *                      trigger pages.
5146 * @ioc : per adapter object
5147 *
5148 * Return: nothing.
5149 */
5150static void
5151_base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER *ioc)
5152{
5153
5154        if (ioc->diag_trigger_master.MasterData)
5155                mpt3sas_config_update_driver_trigger_pg1(ioc,
5156                    &ioc->diag_trigger_master, 1);
5157
5158        if (ioc->diag_trigger_event.ValidEntries)
5159                mpt3sas_config_update_driver_trigger_pg2(ioc,
5160                    &ioc->diag_trigger_event, 1);
5161
5162        if (ioc->diag_trigger_scsi.ValidEntries)
5163                mpt3sas_config_update_driver_trigger_pg3(ioc,
5164                    &ioc->diag_trigger_scsi, 1);
5165
5166        if (ioc->diag_trigger_mpi.ValidEntries)
5167                mpt3sas_config_update_driver_trigger_pg4(ioc,
5168                    &ioc->diag_trigger_mpi, 1);
5169}
5170
5171/**
5172 * _base_static_config_pages - static start of day config pages
5173 * @ioc: per adapter object
5174 */
5175static int
5176_base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
5177{
5178        Mpi2ConfigReply_t mpi_reply;
5179        u32 iounit_pg1_flags;
5180        int tg_flags = 0;
5181        int rc;
5182        ioc->nvme_abort_timeout = 30;
5183
5184        rc = mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply,
5185            &ioc->manu_pg0);
5186        if (rc)
5187                return rc;
5188        if (ioc->ir_firmware) {
5189                rc = mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
5190                    &ioc->manu_pg10);
5191                if (rc)
5192                        return rc;
5193        }
5194        /*
5195         * Ensure correct T10 PI operation if vendor left EEDPTagMode
5196         * flag unset in NVDATA.
5197         */
5198        rc = mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply,
5199            &ioc->manu_pg11);
5200        if (rc)
5201                return rc;
5202        if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
5203                pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
5204                    ioc->name);
5205                ioc->manu_pg11.EEDPTagMode &= ~0x3;
5206                ioc->manu_pg11.EEDPTagMode |= 0x1;
5207                mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
5208                    &ioc->manu_pg11);
5209        }
5210        if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
5211                ioc->tm_custom_handling = 1;
5212        else {
5213                ioc->tm_custom_handling = 0;
5214                if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
5215                        ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
5216                else if (ioc->manu_pg11.NVMeAbortTO >
5217                                        NVME_TASK_ABORT_MAX_TIMEOUT)
5218                        ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
5219                else
5220                        ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
5221        }
5222        ioc->time_sync_interval =
5223            ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_MASK;
5224        if (ioc->time_sync_interval) {
5225                if (ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_UNIT_MASK)
5226                        ioc->time_sync_interval =
5227                            ioc->time_sync_interval * SECONDS_PER_HOUR;
5228                else
5229                        ioc->time_sync_interval =
5230                            ioc->time_sync_interval * SECONDS_PER_MIN;
5231                dinitprintk(ioc, ioc_info(ioc,
5232                    "Driver-FW TimeSync interval is %d seconds. ManuPg11 TimeSync Unit is in %s\n",
5233                    ioc->time_sync_interval, (ioc->manu_pg11.TimeSyncInterval &
5234                    MPT3SAS_TIMESYNC_UNIT_MASK) ? "Hour" : "Minute"));
5235        } else {
5236                if (ioc->is_gen35_ioc)
5237                        ioc_warn(ioc,
5238                            "TimeSync Interval in Manuf page-11 is not enabled. Periodic Time-Sync will be disabled\n");
5239        }
5240        rc = mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
5241        if (rc)
5242                return rc;
5243        rc = mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
5244        if (rc)
5245                return rc;
5246        rc = mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
5247        if (rc)
5248                return rc;
5249        rc = mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
5250        if (rc)
5251                return rc;
5252        rc = mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5253        if (rc)
5254                return rc;
5255        rc = mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
5256        if (rc)
5257                return rc;
5258        _base_display_ioc_capabilities(ioc);
5259
5260        /*
5261         * Enable task_set_full handling in iounit_pg1 when the
5262         * facts capabilities indicate that its supported.
5263         */
5264        iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
5265        if ((ioc->facts.IOCCapabilities &
5266            MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
5267                iounit_pg1_flags &=
5268                    ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5269        else
5270                iounit_pg1_flags |=
5271                    MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5272        ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
5273        rc = mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5274        if (rc)
5275                return rc;
5276
5277        if (ioc->iounit_pg8.NumSensors)
5278                ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
5279        if (ioc->is_aero_ioc) {
5280                rc = _base_update_ioc_page1_inlinewith_perf_mode(ioc);
5281                if (rc)
5282                        return rc;
5283        }
5284        if (ioc->is_gen35_ioc) {
5285                if (ioc->is_driver_loading) {
5286                        rc = _base_get_diag_triggers(ioc);
5287                        if (rc)
5288                                return rc;
5289                } else {
5290                        /*
5291                         * In case of online HBA FW update operation,
5292                         * check whether updated FW supports the driver trigger
5293                         * pages or not.
5294                         * - If previous FW has not supported driver trigger
5295                         *   pages and newer FW supports them then update these
5296                         *   pages with current diag trigger values.
5297                         * - If previous FW has supported driver trigger pages
5298                         *   and new FW doesn't support them then disable
5299                         *   support_trigger_pages flag.
5300                         */
5301                        _base_check_for_trigger_pages_support(ioc, &tg_flags);
5302                        if (!ioc->supports_trigger_pages && tg_flags != -EFAULT)
5303                                _base_update_diag_trigger_pages(ioc);
5304                        else if (ioc->supports_trigger_pages &&
5305                            tg_flags == -EFAULT)
5306                                ioc->supports_trigger_pages = 0;
5307                }
5308        }
5309        return 0;
5310}
5311
5312/**
5313 * mpt3sas_free_enclosure_list - release memory
5314 * @ioc: per adapter object
5315 *
5316 * Free memory allocated during enclosure add.
5317 */
5318void
5319mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
5320{
5321        struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
5322
5323        /* Free enclosure list */
5324        list_for_each_entry_safe(enclosure_dev,
5325                        enclosure_dev_next, &ioc->enclosure_list, list) {
5326                list_del(&enclosure_dev->list);
5327                kfree(enclosure_dev);
5328        }
5329}
5330
5331/**
5332 * _base_release_memory_pools - release memory
5333 * @ioc: per adapter object
5334 *
5335 * Free memory allocated from _base_allocate_memory_pools.
5336 */
5337static void
5338_base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5339{
5340        int i = 0;
5341        int j = 0;
5342        int dma_alloc_count = 0;
5343        struct chain_tracker *ct;
5344        int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
5345
5346        dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5347
5348        if (ioc->request) {
5349                dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
5350                    ioc->request,  ioc->request_dma);
5351                dexitprintk(ioc,
5352                            ioc_info(ioc, "request_pool(0x%p): free\n",
5353                                     ioc->request));
5354                ioc->request = NULL;
5355        }
5356
5357        if (ioc->sense) {
5358                dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5359                dma_pool_destroy(ioc->sense_dma_pool);
5360                dexitprintk(ioc,
5361                            ioc_info(ioc, "sense_pool(0x%p): free\n",
5362                                     ioc->sense));
5363                ioc->sense = NULL;
5364        }
5365
5366        if (ioc->reply) {
5367                dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
5368                dma_pool_destroy(ioc->reply_dma_pool);
5369                dexitprintk(ioc,
5370                            ioc_info(ioc, "reply_pool(0x%p): free\n",
5371                                     ioc->reply));
5372                ioc->reply = NULL;
5373        }
5374
5375        if (ioc->reply_free) {
5376                dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
5377                    ioc->reply_free_dma);
5378                dma_pool_destroy(ioc->reply_free_dma_pool);
5379                dexitprintk(ioc,
5380                            ioc_info(ioc, "reply_free_pool(0x%p): free\n",
5381                                     ioc->reply_free));
5382                ioc->reply_free = NULL;
5383        }
5384
5385        if (ioc->reply_post) {
5386                dma_alloc_count = DIV_ROUND_UP(count,
5387                                RDPQ_MAX_INDEX_IN_ONE_CHUNK);
5388                for (i = 0; i < count; i++) {
5389                        if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
5390                            && dma_alloc_count) {
5391                                if (ioc->reply_post[i].reply_post_free) {
5392                                        dma_pool_free(
5393                                            ioc->reply_post_free_dma_pool,
5394                                            ioc->reply_post[i].reply_post_free,
5395                                        ioc->reply_post[i].reply_post_free_dma);
5396                                        dexitprintk(ioc, ioc_info(ioc,
5397                                           "reply_post_free_pool(0x%p): free\n",
5398                                           ioc->reply_post[i].reply_post_free));
5399                                        ioc->reply_post[i].reply_post_free =
5400                                                                        NULL;
5401                                }
5402                                --dma_alloc_count;
5403                        }
5404                }
5405                dma_pool_destroy(ioc->reply_post_free_dma_pool);
5406                if (ioc->reply_post_free_array &&
5407                        ioc->rdpq_array_enable) {
5408                        dma_pool_free(ioc->reply_post_free_array_dma_pool,
5409                            ioc->reply_post_free_array,
5410                            ioc->reply_post_free_array_dma);
5411                        ioc->reply_post_free_array = NULL;
5412                }
5413                dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
5414                kfree(ioc->reply_post);
5415        }
5416
5417        if (ioc->pcie_sgl_dma_pool) {
5418                for (i = 0; i < ioc->scsiio_depth; i++) {
5419                        dma_pool_free(ioc->pcie_sgl_dma_pool,
5420                                        ioc->pcie_sg_lookup[i].pcie_sgl,
5421                                        ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5422                        ioc->pcie_sg_lookup[i].pcie_sgl = NULL;
5423                }
5424                dma_pool_destroy(ioc->pcie_sgl_dma_pool);
5425        }
5426        if (ioc->config_page) {
5427                dexitprintk(ioc,
5428                            ioc_info(ioc, "config_page(0x%p): free\n",
5429                                     ioc->config_page));
5430                dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
5431                    ioc->config_page, ioc->config_page_dma);
5432        }
5433
5434        kfree(ioc->hpr_lookup);
5435        ioc->hpr_lookup = NULL;
5436        kfree(ioc->internal_lookup);
5437        ioc->internal_lookup = NULL;
5438        if (ioc->chain_lookup) {
5439                for (i = 0; i < ioc->scsiio_depth; i++) {
5440                        for (j = ioc->chains_per_prp_buffer;
5441                            j < ioc->chains_needed_per_io; j++) {
5442                                ct = &ioc->chain_lookup[i].chains_per_smid[j];
5443                                if (ct && ct->chain_buffer)
5444                                        dma_pool_free(ioc->chain_dma_pool,
5445                                                ct->chain_buffer,
5446                                                ct->chain_buffer_dma);
5447                        }
5448                        kfree(ioc->chain_lookup[i].chains_per_smid);
5449                }
5450                dma_pool_destroy(ioc->chain_dma_pool);
5451                kfree(ioc->chain_lookup);
5452                ioc->chain_lookup = NULL;
5453        }
5454
5455        kfree(ioc->io_queue_num);
5456        ioc->io_queue_num = NULL;
5457}
5458
5459/**
5460 * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
5461 *      having same upper 32bits in their base memory address.
5462 * @reply_pool_start_address: Base address of a reply queue set
5463 * @pool_sz: Size of single Reply Descriptor Post Queues pool size
5464 *
5465 * Return: 1 if reply queues in a set have a same upper 32bits in their base
5466 * memory address, else 0.
5467 */
5468
5469static int
5470mpt3sas_check_same_4gb_region(long reply_pool_start_address, u32 pool_sz)
5471{
5472        long reply_pool_end_address;
5473
5474        reply_pool_end_address = reply_pool_start_address + pool_sz;
5475
5476        if (upper_32_bits(reply_pool_start_address) ==
5477                upper_32_bits(reply_pool_end_address))
5478                return 1;
5479        else
5480                return 0;
5481}
5482
5483/**
5484 * _base_reduce_hba_queue_depth- Retry with reduced queue depth
5485 * @ioc: Adapter object
5486 *
5487 * Return: 0 for success, non-zero for failure.
5488 **/
5489static inline int
5490_base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER *ioc)
5491{
5492        int reduce_sz = 64;
5493
5494        if ((ioc->hba_queue_depth - reduce_sz) >
5495            (ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) {
5496                ioc->hba_queue_depth -= reduce_sz;
5497                return 0;
5498        } else
5499                return -ENOMEM;
5500}
5501
5502/**
5503 * _base_allocate_pcie_sgl_pool - Allocating DMA'able memory
5504 *                      for pcie sgl pools.
5505 * @ioc: Adapter object
5506 * @sz: DMA Pool size
5507 *
5508 * Return: 0 for success, non-zero for failure.
5509 */
5510
5511static int
5512_base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5513{
5514        int i = 0, j = 0;
5515        struct chain_tracker *ct;
5516
5517        ioc->pcie_sgl_dma_pool =
5518            dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz,
5519            ioc->page_size, 0);
5520        if (!ioc->pcie_sgl_dma_pool) {
5521                ioc_err(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5522                return -ENOMEM;
5523        }
5524
5525        ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5526        ioc->chains_per_prp_buffer =
5527            min(ioc->chains_per_prp_buffer, ioc->chains_needed_per_io);
5528        for (i = 0; i < ioc->scsiio_depth; i++) {
5529                ioc->pcie_sg_lookup[i].pcie_sgl =
5530                    dma_pool_alloc(ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5531                    &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5532                if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5533                        ioc_err(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5534                        return -EAGAIN;
5535                }
5536
5537                if (!mpt3sas_check_same_4gb_region(
5538                    (long)ioc->pcie_sg_lookup[i].pcie_sgl, sz)) {
5539                        ioc_err(ioc, "PCIE SGLs are not in same 4G !! pcie sgl (0x%p) dma = (0x%llx)\n",
5540                            ioc->pcie_sg_lookup[i].pcie_sgl,
5541                            (unsigned long long)
5542                            ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5543                        ioc->use_32bit_dma = true;
5544                        return -EAGAIN;
5545                }
5546
5547                for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5548                        ct = &ioc->chain_lookup[i].chains_per_smid[j];
5549                        ct->chain_buffer =
5550                            ioc->pcie_sg_lookup[i].pcie_sgl +
5551                            (j * ioc->chain_segment_sz);
5552                        ct->chain_buffer_dma =
5553                            ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5554                            (j * ioc->chain_segment_sz);
5555                }
5556        }
5557        dinitprintk(ioc, ioc_info(ioc,
5558            "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5559            ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
5560        dinitprintk(ioc, ioc_info(ioc,
5561            "Number of chains can fit in a PRP page(%d)\n",
5562            ioc->chains_per_prp_buffer));
5563        return 0;
5564}
5565
5566/**
5567 * _base_allocate_chain_dma_pool - Allocating DMA'able memory
5568 *                      for chain dma pool.
5569 * @ioc: Adapter object
5570 * @sz: DMA Pool size
5571 *
5572 * Return: 0 for success, non-zero for failure.
5573 */
5574static int
5575_base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5576{
5577        int i = 0, j = 0;
5578        struct chain_tracker *ctr;
5579
5580        ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
5581            ioc->chain_segment_sz, 16, 0);
5582        if (!ioc->chain_dma_pool)
5583                return -ENOMEM;
5584
5585        for (i = 0; i < ioc->scsiio_depth; i++) {
5586                for (j = ioc->chains_per_prp_buffer;
5587                    j < ioc->chains_needed_per_io; j++) {
5588                        ctr = &ioc->chain_lookup[i].chains_per_smid[j];
5589                        ctr->chain_buffer = dma_pool_alloc(ioc->chain_dma_pool,
5590                            GFP_KERNEL, &ctr->chain_buffer_dma);
5591                        if (!ctr->chain_buffer)
5592                                return -EAGAIN;
5593                        if (!mpt3sas_check_same_4gb_region((long)
5594                            ctr->chain_buffer, ioc->chain_segment_sz)) {
5595                                ioc_err(ioc,
5596                                    "Chain buffers are not in same 4G !!! Chain buff (0x%p) dma = (0x%llx)\n",
5597                                    ctr->chain_buffer,
5598                                    (unsigned long long)ctr->chain_buffer_dma);
5599                                ioc->use_32bit_dma = true;
5600                                return -EAGAIN;
5601                        }
5602                }
5603        }
5604        dinitprintk(ioc, ioc_info(ioc,
5605            "chain_lookup depth (%d), frame_size(%d), pool_size(%d kB)\n",
5606            ioc->scsiio_depth, ioc->chain_segment_sz, ((ioc->scsiio_depth *
5607            (ioc->chains_needed_per_io - ioc->chains_per_prp_buffer) *
5608            ioc->chain_segment_sz))/1024));
5609        return 0;
5610}
5611
5612/**
5613 * _base_allocate_sense_dma_pool - Allocating DMA'able memory
5614 *                      for sense dma pool.
5615 * @ioc: Adapter object
5616 * @sz: DMA Pool size
5617 * Return: 0 for success, non-zero for failure.
5618 */
5619static int
5620_base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5621{
5622        ioc->sense_dma_pool =
5623            dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4, 0);
5624        if (!ioc->sense_dma_pool)
5625                return -ENOMEM;
5626        ioc->sense = dma_pool_alloc(ioc->sense_dma_pool,
5627            GFP_KERNEL, &ioc->sense_dma);
5628        if (!ioc->sense)
5629                return -EAGAIN;
5630        if (!mpt3sas_check_same_4gb_region((long)ioc->sense, sz)) {
5631                dinitprintk(ioc, pr_err(
5632                    "Bad Sense Pool! sense (0x%p) sense_dma = (0x%llx)\n",
5633                    ioc->sense, (unsigned long long) ioc->sense_dma));
5634                ioc->use_32bit_dma = true;
5635                return -EAGAIN;
5636        }
5637        ioc_info(ioc,
5638            "sense pool(0x%p) - dma(0x%llx): depth(%d), element_size(%d), pool_size (%d kB)\n",
5639            ioc->sense, (unsigned long long)ioc->sense_dma,
5640            ioc->scsiio_depth, SCSI_SENSE_BUFFERSIZE, sz/1024);
5641        return 0;
5642}
5643
5644/**
5645 * _base_allocate_reply_pool - Allocating DMA'able memory
5646 *                      for reply pool.
5647 * @ioc: Adapter object
5648 * @sz: DMA Pool size
5649 * Return: 0 for success, non-zero for failure.
5650 */
5651static int
5652_base_allocate_reply_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5653{
5654        /* reply pool, 4 byte align */
5655        ioc->reply_dma_pool = dma_pool_create("reply pool",
5656            &ioc->pdev->dev, sz, 4, 0);
5657        if (!ioc->reply_dma_pool)
5658                return -ENOMEM;
5659        ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
5660            &ioc->reply_dma);
5661        if (!ioc->reply)
5662                return -EAGAIN;
5663        if (!mpt3sas_check_same_4gb_region((long)ioc->reply_free, sz)) {
5664                dinitprintk(ioc, pr_err(
5665                    "Bad Reply Pool! Reply (0x%p) Reply dma = (0x%llx)\n",
5666                    ioc->reply, (unsigned long long) ioc->reply_dma));
5667                ioc->use_32bit_dma = true;
5668                return -EAGAIN;
5669        }
5670        ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
5671        ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
5672        ioc_info(ioc,
5673            "reply pool(0x%p) - dma(0x%llx): depth(%d), frame_size(%d), pool_size(%d kB)\n",
5674            ioc->reply, (unsigned long long)ioc->reply_dma,
5675            ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024);
5676        return 0;
5677}
5678
5679/**
5680 * _base_allocate_reply_free_dma_pool - Allocating DMA'able memory
5681 *                      for reply free dma pool.
5682 * @ioc: Adapter object
5683 * @sz: DMA Pool size
5684 * Return: 0 for success, non-zero for failure.
5685 */
5686static int
5687_base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5688{
5689        /* reply free queue, 16 byte align */
5690        ioc->reply_free_dma_pool = dma_pool_create(
5691            "reply_free pool", &ioc->pdev->dev, sz, 16, 0);
5692        if (!ioc->reply_free_dma_pool)
5693                return -ENOMEM;
5694        ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool,
5695            GFP_KERNEL, &ioc->reply_free_dma);
5696        if (!ioc->reply_free)
5697                return -EAGAIN;
5698        if (!mpt3sas_check_same_4gb_region((long)ioc->reply_free, sz)) {
5699                dinitprintk(ioc,
5700                    pr_err("Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
5701                    ioc->reply_free, (unsigned long long) ioc->reply_free_dma));
5702                ioc->use_32bit_dma = true;
5703                return -EAGAIN;
5704        }
5705        memset(ioc->reply_free, 0, sz);
5706        dinitprintk(ioc, ioc_info(ioc,
5707            "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5708            ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
5709        dinitprintk(ioc, ioc_info(ioc,
5710            "reply_free_dma (0x%llx)\n",
5711            (unsigned long long)ioc->reply_free_dma));
5712        return 0;
5713}
5714
5715/**
5716 * _base_allocate_reply_post_free_array - Allocating DMA'able memory
5717 *                      for reply post free array.
5718 * @ioc: Adapter object
5719 * @reply_post_free_array_sz: DMA Pool size
5720 * Return: 0 for success, non-zero for failure.
5721 */
5722
5723static int
5724_base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER *ioc,
5725        u32 reply_post_free_array_sz)
5726{
5727        ioc->reply_post_free_array_dma_pool =
5728            dma_pool_create("reply_post_free_array pool",
5729            &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
5730        if (!ioc->reply_post_free_array_dma_pool)
5731                return -ENOMEM;
5732        ioc->reply_post_free_array =
5733            dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
5734            GFP_KERNEL, &ioc->reply_post_free_array_dma);
5735        if (!ioc->reply_post_free_array)
5736                return -EAGAIN;
5737        if (!mpt3sas_check_same_4gb_region((long)ioc->reply_post_free_array,
5738            reply_post_free_array_sz)) {
5739                dinitprintk(ioc, pr_err(
5740                    "Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
5741                    ioc->reply_free,
5742                    (unsigned long long) ioc->reply_free_dma));
5743                ioc->use_32bit_dma = true;
5744                return -EAGAIN;
5745        }
5746        return 0;
5747}
5748/**
5749 * base_alloc_rdpq_dma_pool - Allocating DMA'able memory
5750 *                     for reply queues.
5751 * @ioc: per adapter object
5752 * @sz: DMA Pool size
5753 * Return: 0 for success, non-zero for failure.
5754 */
5755static int
5756base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
5757{
5758        int i = 0;
5759        u32 dma_alloc_count = 0;
5760        int reply_post_free_sz = ioc->reply_post_queue_depth *
5761                sizeof(Mpi2DefaultReplyDescriptor_t);
5762        int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
5763
5764        ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct),
5765                        GFP_KERNEL);
5766        if (!ioc->reply_post)
5767                return -ENOMEM;
5768        /*
5769         *  For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
5770         *  VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
5771         *  be within 4GB boundary i.e reply queues in a set must have same
5772         *  upper 32-bits in their memory address. so here driver is allocating
5773         *  the DMA'able memory for reply queues according.
5774         *  Driver uses limitation of
5775         *  VENTURA_SERIES to manage INVADER_SERIES as well.
5776         */
5777        dma_alloc_count = DIV_ROUND_UP(count,
5778                                RDPQ_MAX_INDEX_IN_ONE_CHUNK);
5779        ioc->reply_post_free_dma_pool =
5780                dma_pool_create("reply_post_free pool",
5781                    &ioc->pdev->dev, sz, 16, 0);
5782        if (!ioc->reply_post_free_dma_pool)
5783                return -ENOMEM;
5784        for (i = 0; i < count; i++) {
5785                if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
5786                        ioc->reply_post[i].reply_post_free =
5787                            dma_pool_zalloc(ioc->reply_post_free_dma_pool,
5788                                GFP_KERNEL,
5789                                &ioc->reply_post[i].reply_post_free_dma);
5790                        if (!ioc->reply_post[i].reply_post_free)
5791                                return -ENOMEM;
5792                        /*
5793                         * Each set of RDPQ pool must satisfy 4gb boundary
5794                         * restriction.
5795                         * 1) Check if allocated resources for RDPQ pool are in
5796                         *      the same 4GB range.
5797                         * 2) If #1 is true, continue with 64 bit DMA.
5798                         * 3) If #1 is false, return 1. which means free all the
5799                         * resources and set DMA mask to 32 and allocate.
5800                         */
5801                        if (!mpt3sas_check_same_4gb_region(
5802                                (long)ioc->reply_post[i].reply_post_free, sz)) {
5803                                dinitprintk(ioc,
5804                                    ioc_err(ioc, "bad Replypost free pool(0x%p)"
5805                                    "reply_post_free_dma = (0x%llx)\n",
5806                                    ioc->reply_post[i].reply_post_free,
5807                                    (unsigned long long)
5808                                    ioc->reply_post[i].reply_post_free_dma));
5809                                return -EAGAIN;
5810                        }
5811                        dma_alloc_count--;
5812
5813                } else {
5814                        ioc->reply_post[i].reply_post_free =
5815                            (Mpi2ReplyDescriptorsUnion_t *)
5816                            ((long)ioc->reply_post[i-1].reply_post_free
5817                            + reply_post_free_sz);
5818                        ioc->reply_post[i].reply_post_free_dma =
5819                            (dma_addr_t)
5820                            (ioc->reply_post[i-1].reply_post_free_dma +
5821                            reply_post_free_sz);
5822                }
5823        }
5824        return 0;
5825}
5826
5827/**
5828 * _base_allocate_memory_pools - allocate start of day memory pools
5829 * @ioc: per adapter object
5830 *
5831 * Return: 0 success, anything else error.
5832 */
5833static int
5834_base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5835{
5836        struct mpt3sas_facts *facts;
5837        u16 max_sge_elements;
5838        u16 chains_needed_per_io;
5839        u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
5840        u32 retry_sz;
5841        u32 rdpq_sz = 0, sense_sz = 0;
5842        u16 max_request_credit, nvme_blocks_needed;
5843        unsigned short sg_tablesize;
5844        u16 sge_size;
5845        int i;
5846        int ret = 0, rc = 0;
5847
5848        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5849
5850
5851        retry_sz = 0;
5852        facts = &ioc->facts;
5853
5854        /* command line tunables for max sgl entries */
5855        if (max_sgl_entries != -1)
5856                sg_tablesize = max_sgl_entries;
5857        else {
5858                if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
5859                        sg_tablesize = MPT2SAS_SG_DEPTH;
5860                else
5861                        sg_tablesize = MPT3SAS_SG_DEPTH;
5862        }
5863
5864        /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
5865        if (reset_devices)
5866                sg_tablesize = min_t(unsigned short, sg_tablesize,
5867                   MPT_KDUMP_MIN_PHYS_SEGMENTS);
5868
5869        if (ioc->is_mcpu_endpoint)
5870                ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
5871        else {
5872                if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
5873                        sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
5874                else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
5875                        sg_tablesize = min_t(unsigned short, sg_tablesize,
5876                                        SG_MAX_SEGMENTS);
5877                        ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
5878                                 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
5879                }
5880                ioc->shost->sg_tablesize = sg_tablesize;
5881        }
5882
5883        ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
5884                (facts->RequestCredit / 4));
5885        if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
5886                if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
5887                                INTERNAL_SCSIIO_CMDS_COUNT)) {
5888                        ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
5889                                facts->RequestCredit);
5890                        return -ENOMEM;
5891                }
5892                ioc->internal_depth = 10;
5893        }
5894
5895        ioc->hi_priority_depth = ioc->internal_depth - (5);
5896        /* command line tunables  for max controller queue depth */
5897        if (max_queue_depth != -1 && max_queue_depth != 0) {
5898                max_request_credit = min_t(u16, max_queue_depth +
5899                        ioc->internal_depth, facts->RequestCredit);
5900                if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
5901                        max_request_credit =  MAX_HBA_QUEUE_DEPTH;
5902        } else if (reset_devices)
5903                max_request_credit = min_t(u16, facts->RequestCredit,
5904                    (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
5905        else
5906                max_request_credit = min_t(u16, facts->RequestCredit,
5907                    MAX_HBA_QUEUE_DEPTH);
5908
5909        /* Firmware maintains additional facts->HighPriorityCredit number of
5910         * credits for HiPriprity Request messages, so hba queue depth will be
5911         * sum of max_request_credit and high priority queue depth.
5912         */
5913        ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
5914
5915        /* request frame size */
5916        ioc->request_sz = facts->IOCRequestFrameSize * 4;
5917
5918        /* reply frame size */
5919        ioc->reply_sz = facts->ReplyFrameSize * 4;
5920
5921        /* chain segment size */
5922        if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
5923                if (facts->IOCMaxChainSegmentSize)
5924                        ioc->chain_segment_sz =
5925                                        facts->IOCMaxChainSegmentSize *
5926                                        MAX_CHAIN_ELEMT_SZ;
5927                else
5928                /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
5929                        ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
5930                                                    MAX_CHAIN_ELEMT_SZ;
5931        } else
5932                ioc->chain_segment_sz = ioc->request_sz;
5933
5934        /* calculate the max scatter element size */
5935        sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
5936
5937 retry_allocation:
5938        total_sz = 0;
5939        /* calculate number of sg elements left over in the 1st frame */
5940        max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
5941            sizeof(Mpi2SGEIOUnion_t)) + sge_size);
5942        ioc->max_sges_in_main_message = max_sge_elements/sge_size;
5943
5944        /* now do the same for a chain buffer */
5945        max_sge_elements = ioc->chain_segment_sz - sge_size;
5946        ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
5947
5948        /*
5949         *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
5950         */
5951        chains_needed_per_io = ((ioc->shost->sg_tablesize -
5952           ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
5953            + 1;
5954        if (chains_needed_per_io > facts->MaxChainDepth) {
5955                chains_needed_per_io = facts->MaxChainDepth;
5956                ioc->shost->sg_tablesize = min_t(u16,
5957                ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
5958                * chains_needed_per_io), ioc->shost->sg_tablesize);
5959        }
5960        ioc->chains_needed_per_io = chains_needed_per_io;
5961
5962        /* reply free queue sizing - taking into account for 64 FW events */
5963        ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
5964
5965        /* mCPU manage single counters for simplicity */
5966        if (ioc->is_mcpu_endpoint)
5967                ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
5968        else {
5969                /* calculate reply descriptor post queue depth */
5970                ioc->reply_post_queue_depth = ioc->hba_queue_depth +
5971                        ioc->reply_free_queue_depth +  1;
5972                /* align the reply post queue on the next 16 count boundary */
5973                if (ioc->reply_post_queue_depth % 16)
5974                        ioc->reply_post_queue_depth += 16 -
5975                                (ioc->reply_post_queue_depth % 16);
5976        }
5977
5978        if (ioc->reply_post_queue_depth >
5979            facts->MaxReplyDescriptorPostQueueDepth) {
5980                ioc->reply_post_queue_depth =
5981                                facts->MaxReplyDescriptorPostQueueDepth -
5982                    (facts->MaxReplyDescriptorPostQueueDepth % 16);
5983                ioc->hba_queue_depth =
5984                                ((ioc->reply_post_queue_depth - 64) / 2) - 1;
5985                ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
5986        }
5987
5988        ioc_info(ioc,
5989            "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
5990            "sge_per_io(%d), chains_per_io(%d)\n",
5991            ioc->max_sges_in_main_message,
5992            ioc->max_sges_in_chain_message,
5993            ioc->shost->sg_tablesize,
5994            ioc->chains_needed_per_io);
5995
5996        /* reply post queue, 16 byte align */
5997        reply_post_free_sz = ioc->reply_post_queue_depth *
5998            sizeof(Mpi2DefaultReplyDescriptor_t);
5999        rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
6000        if ((_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
6001            || (ioc->reply_queue_count < RDPQ_MAX_INDEX_IN_ONE_CHUNK))
6002                rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
6003        ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz);
6004        if (ret == -EAGAIN) {
6005                /*
6006                 * Free allocated bad RDPQ memory pools.
6007                 * Change dma coherent mask to 32 bit and reallocate RDPQ
6008                 */
6009                _base_release_memory_pools(ioc);
6010                ioc->use_32bit_dma = true;
6011                if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6012                        ioc_err(ioc,
6013                            "32 DMA mask failed %s\n", pci_name(ioc->pdev));
6014                        return -ENODEV;
6015                }
6016                if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz))
6017                        return -ENOMEM;
6018        } else if (ret == -ENOMEM)
6019                return -ENOMEM;
6020        total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 :
6021            DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK));
6022        ioc->scsiio_depth = ioc->hba_queue_depth -
6023            ioc->hi_priority_depth - ioc->internal_depth;
6024
6025        /* set the scsi host can_queue depth
6026         * with some internal commands that could be outstanding
6027         */
6028        ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
6029        dinitprintk(ioc,
6030                    ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
6031                             ioc->shost->can_queue));
6032
6033        /* contiguous pool for request and chains, 16 byte align, one extra "
6034         * "frame for smid=0
6035         */
6036        ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
6037        sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
6038
6039        /* hi-priority queue */
6040        sz += (ioc->hi_priority_depth * ioc->request_sz);
6041
6042        /* internal queue */
6043        sz += (ioc->internal_depth * ioc->request_sz);
6044
6045        ioc->request_dma_sz = sz;
6046        ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
6047                        &ioc->request_dma, GFP_KERNEL);
6048        if (!ioc->request) {
6049                ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
6050                        ioc->hba_queue_depth, ioc->chains_needed_per_io,
6051                        ioc->request_sz, sz / 1024);
6052                if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
6053                        goto out;
6054                retry_sz = 64;
6055                ioc->hba_queue_depth -= retry_sz;
6056                _base_release_memory_pools(ioc);
6057                goto retry_allocation;
6058        }
6059
6060        if (retry_sz)
6061                ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
6062                        ioc->hba_queue_depth, ioc->chains_needed_per_io,
6063                        ioc->request_sz, sz / 1024);
6064
6065        /* hi-priority queue */
6066        ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
6067            ioc->request_sz);
6068        ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
6069            ioc->request_sz);
6070
6071        /* internal queue */
6072        ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
6073            ioc->request_sz);
6074        ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
6075            ioc->request_sz);
6076
6077        ioc_info(ioc,
6078            "request pool(0x%p) - dma(0x%llx): "
6079            "depth(%d), frame_size(%d), pool_size(%d kB)\n",
6080            ioc->request, (unsigned long long) ioc->request_dma,
6081            ioc->hba_queue_depth, ioc->request_sz,
6082            (ioc->hba_queue_depth * ioc->request_sz) / 1024);
6083
6084        total_sz += sz;
6085
6086        dinitprintk(ioc,
6087                    ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
6088                             ioc->request, ioc->scsiio_depth));
6089
6090        ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
6091        sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
6092        ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
6093        if (!ioc->chain_lookup) {
6094                ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
6095                goto out;
6096        }
6097
6098        sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
6099        for (i = 0; i < ioc->scsiio_depth; i++) {
6100                ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
6101                if (!ioc->chain_lookup[i].chains_per_smid) {
6102                        ioc_err(ioc, "chain_lookup: kzalloc failed\n");
6103                        goto out;
6104                }
6105        }
6106
6107        /* initialize hi-priority queue smid's */
6108        ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
6109            sizeof(struct request_tracker), GFP_KERNEL);
6110        if (!ioc->hpr_lookup) {
6111                ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
6112                goto out;
6113        }
6114        ioc->hi_priority_smid = ioc->scsiio_depth + 1;
6115        dinitprintk(ioc,
6116                    ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
6117                             ioc->hi_priority,
6118                             ioc->hi_priority_depth, ioc->hi_priority_smid));
6119
6120        /* initialize internal queue smid's */
6121        ioc->internal_lookup = kcalloc(ioc->internal_depth,
6122            sizeof(struct request_tracker), GFP_KERNEL);
6123        if (!ioc->internal_lookup) {
6124                ioc_err(ioc, "internal_lookup: kcalloc failed\n");
6125                goto out;
6126        }
6127        ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
6128        dinitprintk(ioc,
6129                    ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
6130                             ioc->internal,
6131                             ioc->internal_depth, ioc->internal_smid));
6132
6133        ioc->io_queue_num = kcalloc(ioc->scsiio_depth,
6134            sizeof(u16), GFP_KERNEL);
6135        if (!ioc->io_queue_num)
6136                goto out;
6137        /*
6138         * The number of NVMe page sized blocks needed is:
6139         *     (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
6140         * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
6141         * that is placed in the main message frame.  8 is the size of each PRP
6142         * entry or PRP list pointer entry.  8 is subtracted from page_size
6143         * because of the PRP list pointer entry at the end of a page, so this
6144         * is not counted as a PRP entry.  The 1 added page is a round up.
6145         *
6146         * To avoid allocation failures due to the amount of memory that could
6147         * be required for NVMe PRP's, only each set of NVMe blocks will be
6148         * contiguous, so a new set is allocated for each possible I/O.
6149         */
6150
6151        ioc->chains_per_prp_buffer = 0;
6152        if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
6153                nvme_blocks_needed =
6154                        (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
6155                nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
6156                nvme_blocks_needed++;
6157
6158                sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
6159                ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
6160                if (!ioc->pcie_sg_lookup) {
6161                        ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
6162                        goto out;
6163                }
6164                sz = nvme_blocks_needed * ioc->page_size;
6165                rc = _base_allocate_pcie_sgl_pool(ioc, sz);
6166                if (rc == -ENOMEM)
6167                        return -ENOMEM;
6168                else if (rc == -EAGAIN)
6169                        goto try_32bit_dma;
6170                total_sz += sz * ioc->scsiio_depth;
6171        }
6172
6173        rc = _base_allocate_chain_dma_pool(ioc, ioc->chain_segment_sz);
6174        if (rc == -ENOMEM)
6175                return -ENOMEM;
6176        else if (rc == -EAGAIN)
6177                goto try_32bit_dma;
6178        total_sz += ioc->chain_segment_sz * ((ioc->chains_needed_per_io -
6179                ioc->chains_per_prp_buffer) * ioc->scsiio_depth);
6180        dinitprintk(ioc,
6181            ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
6182            ioc->chain_depth, ioc->chain_segment_sz,
6183            (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
6184        /* sense buffers, 4 byte align */
6185        sense_sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
6186        rc = _base_allocate_sense_dma_pool(ioc, sense_sz);
6187        if (rc  == -ENOMEM)
6188                return -ENOMEM;
6189        else if (rc == -EAGAIN)
6190                goto try_32bit_dma;
6191        total_sz += sense_sz;
6192        ioc_info(ioc,
6193            "sense pool(0x%p)- dma(0x%llx): depth(%d),"
6194            "element_size(%d), pool_size(%d kB)\n",
6195            ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth,
6196            SCSI_SENSE_BUFFERSIZE, sz / 1024);
6197        /* reply pool, 4 byte align */
6198        sz = ioc->reply_free_queue_depth * ioc->reply_sz;
6199        rc = _base_allocate_reply_pool(ioc, sz);
6200        if (rc == -ENOMEM)
6201                return -ENOMEM;
6202        else if (rc == -EAGAIN)
6203                goto try_32bit_dma;
6204        total_sz += sz;
6205
6206        /* reply free queue, 16 byte align */
6207        sz = ioc->reply_free_queue_depth * 4;
6208        rc = _base_allocate_reply_free_dma_pool(ioc, sz);
6209        if (rc  == -ENOMEM)
6210                return -ENOMEM;
6211        else if (rc == -EAGAIN)
6212                goto try_32bit_dma;
6213        dinitprintk(ioc,
6214                    ioc_info(ioc, "reply_free_dma (0x%llx)\n",
6215                             (unsigned long long)ioc->reply_free_dma));
6216        total_sz += sz;
6217        if (ioc->rdpq_array_enable) {
6218                reply_post_free_array_sz = ioc->reply_queue_count *
6219                    sizeof(Mpi2IOCInitRDPQArrayEntry);
6220                rc = _base_allocate_reply_post_free_array(ioc,
6221                    reply_post_free_array_sz);
6222                if (rc == -ENOMEM)
6223                        return -ENOMEM;
6224                else if (rc == -EAGAIN)
6225                        goto try_32bit_dma;
6226        }
6227        ioc->config_page_sz = 512;
6228        ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
6229                        ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
6230        if (!ioc->config_page) {
6231                ioc_err(ioc, "config page: dma_pool_alloc failed\n");
6232                goto out;
6233        }
6234
6235        ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
6236            ioc->config_page, (unsigned long long)ioc->config_page_dma,
6237            ioc->config_page_sz);
6238        total_sz += ioc->config_page_sz;
6239
6240        ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
6241                 total_sz / 1024);
6242        ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
6243                 ioc->shost->can_queue, facts->RequestCredit);
6244        ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
6245                 ioc->shost->sg_tablesize);
6246        return 0;
6247
6248try_32bit_dma:
6249        _base_release_memory_pools(ioc);
6250        if (ioc->use_32bit_dma && (ioc->dma_mask > 32)) {
6251                /* Change dma coherent mask to 32 bit and reallocate */
6252                if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6253                        pr_err("Setting 32 bit coherent DMA mask Failed %s\n",
6254                            pci_name(ioc->pdev));
6255                        return -ENODEV;
6256                }
6257        } else if (_base_reduce_hba_queue_depth(ioc) != 0)
6258                return -ENOMEM;
6259        goto retry_allocation;
6260
6261 out:
6262        return -ENOMEM;
6263}
6264
6265/**
6266 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
6267 * @ioc: Pointer to MPT_ADAPTER structure
6268 * @cooked: Request raw or cooked IOC state
6269 *
6270 * Return: all IOC Doorbell register bits if cooked==0, else just the
6271 * Doorbell bits in MPI_IOC_STATE_MASK.
6272 */
6273u32
6274mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
6275{
6276        u32 s, sc;
6277
6278        s = ioc->base_readl(&ioc->chip->Doorbell);
6279        sc = s & MPI2_IOC_STATE_MASK;
6280        return cooked ? sc : s;
6281}
6282
6283/**
6284 * _base_wait_on_iocstate - waiting on a particular ioc state
6285 * @ioc: ?
6286 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
6287 * @timeout: timeout in second
6288 *
6289 * Return: 0 for success, non-zero for failure.
6290 */
6291static int
6292_base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
6293{
6294        u32 count, cntdn;
6295        u32 current_state;
6296
6297        count = 0;
6298        cntdn = 1000 * timeout;
6299        do {
6300                current_state = mpt3sas_base_get_iocstate(ioc, 1);
6301                if (current_state == ioc_state)
6302                        return 0;
6303                if (count && current_state == MPI2_IOC_STATE_FAULT)
6304                        break;
6305                if (count && current_state == MPI2_IOC_STATE_COREDUMP)
6306                        break;
6307
6308                usleep_range(1000, 1500);
6309                count++;
6310        } while (--cntdn);
6311
6312        return current_state;
6313}
6314
6315/**
6316 * _base_dump_reg_set - This function will print hexdump of register set.
6317 * @ioc: per adapter object
6318 *
6319 * Return: nothing.
6320 */
6321static inline void
6322_base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc)
6323{
6324        unsigned int i, sz = 256;
6325        u32 __iomem *reg = (u32 __iomem *)ioc->chip;
6326
6327        ioc_info(ioc, "System Register set:\n");
6328        for (i = 0; i < (sz / sizeof(u32)); i++)
6329                pr_info("%08x: %08x\n", (i * 4), readl(&reg[i]));
6330}
6331
6332/**
6333 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
6334 * a write to the doorbell)
6335 * @ioc: per adapter object
6336 * @timeout: timeout in seconds
6337 *
6338 * Return: 0 for success, non-zero for failure.
6339 *
6340 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
6341 */
6342
6343static int
6344_base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6345{
6346        u32 cntdn, count;
6347        u32 int_status;
6348
6349        count = 0;
6350        cntdn = 1000 * timeout;
6351        do {
6352                int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6353                if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6354                        dhsprintk(ioc,
6355                                  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6356                                           __func__, count, timeout));
6357                        return 0;
6358                }
6359
6360                usleep_range(1000, 1500);
6361                count++;
6362        } while (--cntdn);
6363
6364        ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6365                __func__, count, int_status);
6366        return -EFAULT;
6367}
6368
6369static int
6370_base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6371{
6372        u32 cntdn, count;
6373        u32 int_status;
6374
6375        count = 0;
6376        cntdn = 2000 * timeout;
6377        do {
6378                int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6379                if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6380                        dhsprintk(ioc,
6381                                  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6382                                           __func__, count, timeout));
6383                        return 0;
6384                }
6385
6386                udelay(500);
6387                count++;
6388        } while (--cntdn);
6389
6390        ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6391                __func__, count, int_status);
6392        return -EFAULT;
6393
6394}
6395
6396/**
6397 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
6398 * @ioc: per adapter object
6399 * @timeout: timeout in second
6400 *
6401 * Return: 0 for success, non-zero for failure.
6402 *
6403 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
6404 * doorbell.
6405 */
6406static int
6407_base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
6408{
6409        u32 cntdn, count;
6410        u32 int_status;
6411        u32 doorbell;
6412
6413        count = 0;
6414        cntdn = 1000 * timeout;
6415        do {
6416                int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6417                if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
6418                        dhsprintk(ioc,
6419                                  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6420                                           __func__, count, timeout));
6421                        return 0;
6422                } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6423                        doorbell = ioc->base_readl(&ioc->chip->Doorbell);
6424                        if ((doorbell & MPI2_IOC_STATE_MASK) ==
6425                            MPI2_IOC_STATE_FAULT) {
6426                                mpt3sas_print_fault_code(ioc, doorbell);
6427                                return -EFAULT;
6428                        }
6429                        if ((doorbell & MPI2_IOC_STATE_MASK) ==
6430                            MPI2_IOC_STATE_COREDUMP) {
6431                                mpt3sas_print_coredump_info(ioc, doorbell);
6432                                return -EFAULT;
6433                        }
6434                } else if (int_status == 0xFFFFFFFF)
6435                        goto out;
6436
6437                usleep_range(1000, 1500);
6438                count++;
6439        } while (--cntdn);
6440
6441 out:
6442        ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6443                __func__, count, int_status);
6444        return -EFAULT;
6445}
6446
6447/**
6448 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
6449 * @ioc: per adapter object
6450 * @timeout: timeout in second
6451 *
6452 * Return: 0 for success, non-zero for failure.
6453 */
6454static int
6455_base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
6456{
6457        u32 cntdn, count;
6458        u32 doorbell_reg;
6459
6460        count = 0;
6461        cntdn = 1000 * timeout;
6462        do {
6463                doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell);
6464                if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
6465                        dhsprintk(ioc,
6466                                  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6467                                           __func__, count, timeout));
6468                        return 0;
6469                }
6470
6471                usleep_range(1000, 1500);
6472                count++;
6473        } while (--cntdn);
6474
6475        ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
6476                __func__, count, doorbell_reg);
6477        return -EFAULT;
6478}
6479
6480/**
6481 * _base_send_ioc_reset - send doorbell reset
6482 * @ioc: per adapter object
6483 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
6484 * @timeout: timeout in second
6485 *
6486 * Return: 0 for success, non-zero for failure.
6487 */
6488static int
6489_base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
6490{
6491        u32 ioc_state;
6492        int r = 0;
6493        unsigned long flags;
6494
6495        if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
6496                ioc_err(ioc, "%s: unknown reset_type\n", __func__);
6497                return -EFAULT;
6498        }
6499
6500        if (!(ioc->facts.IOCCapabilities &
6501           MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
6502                return -EFAULT;
6503
6504        ioc_info(ioc, "sending message unit reset !!\n");
6505
6506        writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
6507            &ioc->chip->Doorbell);
6508        if ((_base_wait_for_doorbell_ack(ioc, 15))) {
6509                r = -EFAULT;
6510                goto out;
6511        }
6512
6513        ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6514        if (ioc_state) {
6515                ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6516                        __func__, ioc_state);
6517                r = -EFAULT;
6518                goto out;
6519        }
6520 out:
6521        if (r != 0) {
6522                ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6523                spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6524                /*
6525                 * Wait for IOC state CoreDump to clear only during
6526                 * HBA initialization & release time.
6527                 */
6528                if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6529                    MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
6530                    ioc->fault_reset_work_q == NULL)) {
6531                        spin_unlock_irqrestore(
6532                            &ioc->ioc_reset_in_progress_lock, flags);
6533                        mpt3sas_print_coredump_info(ioc, ioc_state);
6534                        mpt3sas_base_wait_for_coredump_completion(ioc,
6535                            __func__);
6536                        spin_lock_irqsave(
6537                            &ioc->ioc_reset_in_progress_lock, flags);
6538                }
6539                spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6540        }
6541        ioc_info(ioc, "message unit reset: %s\n",
6542                 r == 0 ? "SUCCESS" : "FAILED");
6543        return r;
6544}
6545
6546/**
6547 * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
6548 * @ioc: per adapter object
6549 * @timeout: timeout in seconds
6550 *
6551 * Return: Waits up to timeout seconds for the IOC to
6552 * become operational. Returns 0 if IOC is present
6553 * and operational; otherwise returns %-EFAULT.
6554 */
6555
6556int
6557mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
6558{
6559        int wait_state_count = 0;
6560        u32 ioc_state;
6561
6562        do {
6563                ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
6564                if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
6565                        break;
6566
6567                /*
6568                 * Watchdog thread will be started after IOC Initialization, so
6569                 * no need to wait here for IOC state to become operational
6570                 * when IOC Initialization is on. Instead the driver will
6571                 * return ETIME status, so that calling function can issue
6572                 * diag reset operation and retry the command.
6573                 */
6574                if (ioc->is_driver_loading)
6575                        return -ETIME;
6576
6577                ssleep(1);
6578                ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
6579                                __func__, ++wait_state_count);
6580        } while (--timeout);
6581        if (!timeout) {
6582                ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
6583                return -EFAULT;
6584        }
6585        if (wait_state_count)
6586                ioc_info(ioc, "ioc is operational\n");
6587        return 0;
6588}
6589
6590/**
6591 * _base_handshake_req_reply_wait - send request thru doorbell interface
6592 * @ioc: per adapter object
6593 * @request_bytes: request length
6594 * @request: pointer having request payload
6595 * @reply_bytes: reply length
6596 * @reply: pointer to reply payload
6597 * @timeout: timeout in second
6598 *
6599 * Return: 0 for success, non-zero for failure.
6600 */
6601static int
6602_base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
6603        u32 *request, int reply_bytes, u16 *reply, int timeout)
6604{
6605        MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
6606        int i;
6607        u8 failed;
6608        __le32 *mfp;
6609
6610        /* make sure doorbell is not in use */
6611        if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
6612                ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
6613                return -EFAULT;
6614        }
6615
6616        /* clear pending doorbell interrupts from previous state changes */
6617        if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
6618            MPI2_HIS_IOC2SYS_DB_STATUS)
6619                writel(0, &ioc->chip->HostInterruptStatus);
6620
6621        /* send message to ioc */
6622        writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
6623            ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
6624            &ioc->chip->Doorbell);
6625
6626        if ((_base_spin_on_doorbell_int(ioc, 5))) {
6627                ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6628                        __LINE__);
6629                return -EFAULT;
6630        }
6631        writel(0, &ioc->chip->HostInterruptStatus);
6632
6633        if ((_base_wait_for_doorbell_ack(ioc, 5))) {
6634                ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
6635                        __LINE__);
6636                return -EFAULT;
6637        }
6638
6639        /* send message 32-bits at a time */
6640        for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
6641                writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
6642                if ((_base_wait_for_doorbell_ack(ioc, 5)))
6643                        failed = 1;
6644        }
6645
6646        if (failed) {
6647                ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
6648                        __LINE__);
6649                return -EFAULT;
6650        }
6651
6652        /* now wait for the reply */
6653        if ((_base_wait_for_doorbell_int(ioc, timeout))) {
6654                ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6655                        __LINE__);
6656                return -EFAULT;
6657        }
6658
6659        /* read the first two 16-bits, it gives the total length of the reply */
6660        reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
6661            & MPI2_DOORBELL_DATA_MASK);
6662        writel(0, &ioc->chip->HostInterruptStatus);
6663        if ((_base_wait_for_doorbell_int(ioc, 5))) {
6664                ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6665                        __LINE__);
6666                return -EFAULT;
6667        }
6668        reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
6669            & MPI2_DOORBELL_DATA_MASK);
6670        writel(0, &ioc->chip->HostInterruptStatus);
6671
6672        for (i = 2; i < default_reply->MsgLength * 2; i++)  {
6673                if ((_base_wait_for_doorbell_int(ioc, 5))) {
6674                        ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6675                                __LINE__);
6676                        return -EFAULT;
6677                }
6678                if (i >=  reply_bytes/2) /* overflow case */
6679                        ioc->base_readl(&ioc->chip->Doorbell);
6680                else
6681                        reply[i] = le16_to_cpu(
6682                            ioc->base_readl(&ioc->chip->Doorbell)
6683                            & MPI2_DOORBELL_DATA_MASK);
6684                writel(0, &ioc->chip->HostInterruptStatus);
6685        }
6686
6687        _base_wait_for_doorbell_int(ioc, 5);
6688        if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
6689                dhsprintk(ioc,
6690                          ioc_info(ioc, "doorbell is in use (line=%d)\n",
6691                                   __LINE__));
6692        }
6693        writel(0, &ioc->chip->HostInterruptStatus);
6694
6695        if (ioc->logging_level & MPT_DEBUG_INIT) {
6696                mfp = (__le32 *)reply;
6697                pr_info("\toffset:data\n");
6698                for (i = 0; i < reply_bytes/4; i++)
6699                        ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
6700                            le32_to_cpu(mfp[i]));
6701        }
6702        return 0;
6703}
6704
6705/**
6706 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
6707 * @ioc: per adapter object
6708 * @mpi_reply: the reply payload from FW
6709 * @mpi_request: the request payload sent to FW
6710 *
6711 * The SAS IO Unit Control Request message allows the host to perform low-level
6712 * operations, such as resets on the PHYs of the IO Unit, also allows the host
6713 * to obtain the IOC assigned device handles for a device if it has other
6714 * identifying information about the device, in addition allows the host to
6715 * remove IOC resources associated with the device.
6716 *
6717 * Return: 0 for success, non-zero for failure.
6718 */
6719int
6720mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
6721        Mpi2SasIoUnitControlReply_t *mpi_reply,
6722        Mpi2SasIoUnitControlRequest_t *mpi_request)
6723{
6724        u16 smid;
6725        u8 issue_reset = 0;
6726        int rc;
6727        void *request;
6728
6729        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6730
6731        mutex_lock(&ioc->base_cmds.mutex);
6732
6733        if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
6734                ioc_err(ioc, "%s: base_cmd in use\n", __func__);
6735                rc = -EAGAIN;
6736                goto out;
6737        }
6738
6739        rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
6740        if (rc)
6741                goto out;
6742
6743        smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6744        if (!smid) {
6745                ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6746                rc = -EAGAIN;
6747                goto out;
6748        }
6749
6750        rc = 0;
6751        ioc->base_cmds.status = MPT3_CMD_PENDING;
6752        request = mpt3sas_base_get_msg_frame(ioc, smid);
6753        ioc->base_cmds.smid = smid;
6754        memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
6755        if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
6756            mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
6757                ioc->ioc_link_reset_in_progress = 1;
6758        init_completion(&ioc->base_cmds.done);
6759        ioc->put_smid_default(ioc, smid);
6760        wait_for_completion_timeout(&ioc->base_cmds.done,
6761            msecs_to_jiffies(10000));
6762        if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
6763            mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
6764            ioc->ioc_link_reset_in_progress)
6765                ioc->ioc_link_reset_in_progress = 0;
6766        if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6767                mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
6768                    mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
6769                    issue_reset);
6770                goto issue_host_reset;
6771        }
6772        if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
6773                memcpy(mpi_reply, ioc->base_cmds.reply,
6774                    sizeof(Mpi2SasIoUnitControlReply_t));
6775        else
6776                memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
6777        ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6778        goto out;
6779
6780 issue_host_reset:
6781        if (issue_reset)
6782                mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
6783        ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6784        rc = -EFAULT;
6785 out:
6786        mutex_unlock(&ioc->base_cmds.mutex);
6787        return rc;
6788}
6789
6790/**
6791 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
6792 * @ioc: per adapter object
6793 * @mpi_reply: the reply payload from FW
6794 * @mpi_request: the request payload sent to FW
6795 *
6796 * The SCSI Enclosure Processor request message causes the IOC to
6797 * communicate with SES devices to control LED status signals.
6798 *
6799 * Return: 0 for success, non-zero for failure.
6800 */
6801int
6802mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
6803        Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
6804{
6805        u16 smid;
6806        u8 issue_reset = 0;
6807        int rc;
6808        void *request;
6809
6810        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6811
6812        mutex_lock(&ioc->base_cmds.mutex);
6813
6814        if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
6815                ioc_err(ioc, "%s: base_cmd in use\n", __func__);
6816                rc = -EAGAIN;
6817                goto out;
6818        }
6819
6820        rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
6821        if (rc)
6822                goto out;
6823
6824        smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6825        if (!smid) {
6826                ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6827                rc = -EAGAIN;
6828                goto out;
6829        }
6830
6831        rc = 0;
6832        ioc->base_cmds.status = MPT3_CMD_PENDING;
6833        request = mpt3sas_base_get_msg_frame(ioc, smid);
6834        ioc->base_cmds.smid = smid;
6835        memset(request, 0, ioc->request_sz);
6836        memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
6837        init_completion(&ioc->base_cmds.done);
6838        ioc->put_smid_default(ioc, smid);
6839        wait_for_completion_timeout(&ioc->base_cmds.done,
6840            msecs_to_jiffies(10000));
6841        if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6842                mpt3sas_check_cmd_timeout(ioc,
6843                    ioc->base_cmds.status, mpi_request,
6844                    sizeof(Mpi2SepRequest_t)/4, issue_reset);
6845                goto issue_host_reset;
6846        }
6847        if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
6848                memcpy(mpi_reply, ioc->base_cmds.reply,
6849                    sizeof(Mpi2SepReply_t));
6850        else
6851                memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
6852        ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6853        goto out;
6854
6855 issue_host_reset:
6856        if (issue_reset)
6857                mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
6858        ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6859        rc = -EFAULT;
6860 out:
6861        mutex_unlock(&ioc->base_cmds.mutex);
6862        return rc;
6863}
6864
6865/**
6866 * _base_get_port_facts - obtain port facts reply and save in ioc
6867 * @ioc: per adapter object
6868 * @port: ?
6869 *
6870 * Return: 0 for success, non-zero for failure.
6871 */
6872static int
6873_base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
6874{
6875        Mpi2PortFactsRequest_t mpi_request;
6876        Mpi2PortFactsReply_t mpi_reply;
6877        struct mpt3sas_port_facts *pfacts;
6878        int mpi_reply_sz, mpi_request_sz, r;
6879
6880        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6881
6882        mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
6883        mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
6884        memset(&mpi_request, 0, mpi_request_sz);
6885        mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
6886        mpi_request.PortNumber = port;
6887        r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
6888            (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
6889
6890        if (r != 0) {
6891                ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6892                return r;
6893        }
6894
6895        pfacts = &ioc->pfacts[port];
6896        memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
6897        pfacts->PortNumber = mpi_reply.PortNumber;
6898        pfacts->VP_ID = mpi_reply.VP_ID;
6899        pfacts->VF_ID = mpi_reply.VF_ID;
6900        pfacts->MaxPostedCmdBuffers =
6901            le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
6902
6903        return 0;
6904}
6905
6906/**
6907 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
6908 * @ioc: per adapter object
6909 * @timeout:
6910 *
6911 * Return: 0 for success, non-zero for failure.
6912 */
6913static int
6914_base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
6915{
6916        u32 ioc_state;
6917        int rc;
6918
6919        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6920
6921        if (ioc->pci_error_recovery) {
6922                dfailprintk(ioc,
6923                            ioc_info(ioc, "%s: host in pci error recovery\n",
6924                                     __func__));
6925                return -EFAULT;
6926        }
6927
6928        ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6929        dhsprintk(ioc,
6930                  ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
6931                           __func__, ioc_state));
6932
6933        if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
6934            (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
6935                return 0;
6936
6937        if (ioc_state & MPI2_DOORBELL_USED) {
6938                dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
6939                goto issue_diag_reset;
6940        }
6941
6942        if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
6943                mpt3sas_print_fault_code(ioc, ioc_state &
6944                    MPI2_DOORBELL_DATA_MASK);
6945                goto issue_diag_reset;
6946        } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6947            MPI2_IOC_STATE_COREDUMP) {
6948                ioc_info(ioc,
6949                    "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
6950                    __func__, ioc_state);
6951                return -EFAULT;
6952        }
6953
6954        ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6955        if (ioc_state) {
6956                dfailprintk(ioc,
6957                            ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6958                                     __func__, ioc_state));
6959                return -EFAULT;
6960        }
6961
6962 issue_diag_reset:
6963        rc = _base_diag_reset(ioc);
6964        return rc;
6965}
6966
6967/**
6968 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
6969 * @ioc: per adapter object
6970 *
6971 * Return: 0 for success, non-zero for failure.
6972 */
6973static int
6974_base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
6975{
6976        Mpi2IOCFactsRequest_t mpi_request;
6977        Mpi2IOCFactsReply_t mpi_reply;
6978        struct mpt3sas_facts *facts;
6979        int mpi_reply_sz, mpi_request_sz, r;
6980
6981        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6982
6983        r = _base_wait_for_iocstate(ioc, 10);
6984        if (r) {
6985                dfailprintk(ioc,
6986                            ioc_info(ioc, "%s: failed getting to correct state\n",
6987                                     __func__));
6988                return r;
6989        }
6990        mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
6991        mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
6992        memset(&mpi_request, 0, mpi_request_sz);
6993        mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
6994        r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
6995            (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
6996
6997        if (r != 0) {
6998                ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6999                return r;
7000        }
7001
7002        facts = &ioc->facts;
7003        memset(facts, 0, sizeof(struct mpt3sas_facts));
7004        facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
7005        facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
7006        facts->VP_ID = mpi_reply.VP_ID;
7007        facts->VF_ID = mpi_reply.VF_ID;
7008        facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
7009        facts->MaxChainDepth = mpi_reply.MaxChainDepth;
7010        facts->WhoInit = mpi_reply.WhoInit;
7011        facts->NumberOfPorts = mpi_reply.NumberOfPorts;
7012        facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
7013        if (ioc->msix_enable && (facts->MaxMSIxVectors <=
7014            MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
7015                ioc->combined_reply_queue = 0;
7016        facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
7017        facts->MaxReplyDescriptorPostQueueDepth =
7018            le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
7019        facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
7020        facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
7021        if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
7022                ioc->ir_firmware = 1;
7023        if ((facts->IOCCapabilities &
7024              MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
7025                ioc->rdpq_array_capable = 1;
7026        if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
7027            && ioc->is_aero_ioc)
7028                ioc->atomic_desc_capable = 1;
7029        facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
7030        facts->IOCRequestFrameSize =
7031            le16_to_cpu(mpi_reply.IOCRequestFrameSize);
7032        if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7033                facts->IOCMaxChainSegmentSize =
7034                        le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
7035        }
7036        facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
7037        facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
7038        ioc->shost->max_id = -1;
7039        facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
7040        facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
7041        facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
7042        facts->HighPriorityCredit =
7043            le16_to_cpu(mpi_reply.HighPriorityCredit);
7044        facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
7045        facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
7046        facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
7047
7048        /*
7049         * Get the Page Size from IOC Facts. If it's 0, default to 4k.
7050         */
7051        ioc->page_size = 1 << facts->CurrentHostPageSize;
7052        if (ioc->page_size == 1) {
7053                ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
7054                ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
7055        }
7056        dinitprintk(ioc,
7057                    ioc_info(ioc, "CurrentHostPageSize(%d)\n",
7058                             facts->CurrentHostPageSize));
7059
7060        dinitprintk(ioc,
7061                    ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
7062                             facts->RequestCredit, facts->MaxChainDepth));
7063        dinitprintk(ioc,
7064                    ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
7065                             facts->IOCRequestFrameSize * 4,
7066                             facts->ReplyFrameSize * 4));
7067        return 0;
7068}
7069
7070/**
7071 * _base_send_ioc_init - send ioc_init to firmware
7072 * @ioc: per adapter object
7073 *
7074 * Return: 0 for success, non-zero for failure.
7075 */
7076static int
7077_base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
7078{
7079        Mpi2IOCInitRequest_t mpi_request;
7080        Mpi2IOCInitReply_t mpi_reply;
7081        int i, r = 0;
7082        ktime_t current_time;
7083        u16 ioc_status;
7084        u32 reply_post_free_array_sz = 0;
7085
7086        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7087
7088        memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
7089        mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
7090        mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
7091        mpi_request.VF_ID = 0; /* TODO */
7092        mpi_request.VP_ID = 0;
7093        mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
7094        mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
7095        mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
7096
7097        if (_base_is_controller_msix_enabled(ioc))
7098                mpi_request.HostMSIxVectors = ioc->reply_queue_count;
7099        mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
7100        mpi_request.ReplyDescriptorPostQueueDepth =
7101            cpu_to_le16(ioc->reply_post_queue_depth);
7102        mpi_request.ReplyFreeQueueDepth =
7103            cpu_to_le16(ioc->reply_free_queue_depth);
7104
7105        mpi_request.SenseBufferAddressHigh =
7106            cpu_to_le32((u64)ioc->sense_dma >> 32);
7107        mpi_request.SystemReplyAddressHigh =
7108            cpu_to_le32((u64)ioc->reply_dma >> 32);
7109        mpi_request.SystemRequestFrameBaseAddress =
7110            cpu_to_le64((u64)ioc->request_dma);
7111        mpi_request.ReplyFreeQueueAddress =
7112            cpu_to_le64((u64)ioc->reply_free_dma);
7113
7114        if (ioc->rdpq_array_enable) {
7115                reply_post_free_array_sz = ioc->reply_queue_count *
7116                    sizeof(Mpi2IOCInitRDPQArrayEntry);
7117                memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
7118                for (i = 0; i < ioc->reply_queue_count; i++)
7119                        ioc->reply_post_free_array[i].RDPQBaseAddress =
7120                            cpu_to_le64(
7121                                (u64)ioc->reply_post[i].reply_post_free_dma);
7122                mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
7123                mpi_request.ReplyDescriptorPostQueueAddress =
7124                    cpu_to_le64((u64)ioc->reply_post_free_array_dma);
7125        } else {
7126                mpi_request.ReplyDescriptorPostQueueAddress =
7127                    cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
7128        }
7129
7130        /*
7131         * Set the flag to enable CoreDump state feature in IOC firmware.
7132         */
7133        mpi_request.ConfigurationFlags |=
7134            cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
7135
7136        /* This time stamp specifies number of milliseconds
7137         * since epoch ~ midnight January 1, 1970.
7138         */
7139        current_time = ktime_get_real();
7140        mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
7141
7142        if (ioc->logging_level & MPT_DEBUG_INIT) {
7143                __le32 *mfp;
7144                int i;
7145
7146                mfp = (__le32 *)&mpi_request;
7147                ioc_info(ioc, "\toffset:data\n");
7148                for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
7149                        ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
7150                            le32_to_cpu(mfp[i]));
7151        }
7152
7153        r = _base_handshake_req_reply_wait(ioc,
7154            sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
7155            sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30);
7156
7157        if (r != 0) {
7158                ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7159                return r;
7160        }
7161
7162        ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
7163        if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
7164            mpi_reply.IOCLogInfo) {
7165                ioc_err(ioc, "%s: failed\n", __func__);
7166                r = -EIO;
7167        }
7168
7169        /* Reset TimeSync Counter*/
7170        ioc->timestamp_update_count = 0;
7171        return r;
7172}
7173
7174/**
7175 * mpt3sas_port_enable_done - command completion routine for port enable
7176 * @ioc: per adapter object
7177 * @smid: system request message index
7178 * @msix_index: MSIX table index supplied by the OS
7179 * @reply: reply message frame(lower 32bit addr)
7180 *
7181 * Return: 1 meaning mf should be freed from _base_interrupt
7182 *          0 means the mf is freed from this function.
7183 */
7184u8
7185mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
7186        u32 reply)
7187{
7188        MPI2DefaultReply_t *mpi_reply;
7189        u16 ioc_status;
7190
7191        if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
7192                return 1;
7193
7194        mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
7195        if (!mpi_reply)
7196                return 1;
7197
7198        if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
7199                return 1;
7200
7201        ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
7202        ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
7203        ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
7204        memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
7205        ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7206        if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
7207                ioc->port_enable_failed = 1;
7208
7209        if (ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE_ASYNC) {
7210                ioc->port_enable_cmds.status &= ~MPT3_CMD_COMPLETE_ASYNC;
7211                if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
7212                        mpt3sas_port_enable_complete(ioc);
7213                        return 1;
7214                } else {
7215                        ioc->start_scan_failed = ioc_status;
7216                        ioc->start_scan = 0;
7217                        return 1;
7218                }
7219        }
7220        complete(&ioc->port_enable_cmds.done);
7221        return 1;
7222}
7223
7224/**
7225 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
7226 * @ioc: per adapter object
7227 *
7228 * Return: 0 for success, non-zero for failure.
7229 */
7230static int
7231_base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
7232{
7233        Mpi2PortEnableRequest_t *mpi_request;
7234        Mpi2PortEnableReply_t *mpi_reply;
7235        int r = 0;
7236        u16 smid;
7237        u16 ioc_status;
7238
7239        ioc_info(ioc, "sending port enable !!\n");
7240
7241        if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7242                ioc_err(ioc, "%s: internal command already in use\n", __func__);
7243                return -EAGAIN;
7244        }
7245
7246        smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7247        if (!smid) {
7248                ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7249                return -EAGAIN;
7250        }
7251
7252        ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7253        mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7254        ioc->port_enable_cmds.smid = smid;
7255        memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7256        mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7257
7258        init_completion(&ioc->port_enable_cmds.done);
7259        ioc->put_smid_default(ioc, smid);
7260        wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
7261        if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
7262                ioc_err(ioc, "%s: timeout\n", __func__);
7263                _debug_dump_mf(mpi_request,
7264                    sizeof(Mpi2PortEnableRequest_t)/4);
7265                if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
7266                        r = -EFAULT;
7267                else
7268                        r = -ETIME;
7269                goto out;
7270        }
7271
7272        mpi_reply = ioc->port_enable_cmds.reply;
7273        ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7274        if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
7275                ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
7276                        __func__, ioc_status);
7277                r = -EFAULT;
7278                goto out;
7279        }
7280
7281 out:
7282        ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7283        ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
7284        return r;
7285}
7286
7287/**
7288 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
7289 * @ioc: per adapter object
7290 *
7291 * Return: 0 for success, non-zero for failure.
7292 */
7293int
7294mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
7295{
7296        Mpi2PortEnableRequest_t *mpi_request;
7297        u16 smid;
7298
7299        ioc_info(ioc, "sending port enable !!\n");
7300
7301        if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7302                ioc_err(ioc, "%s: internal command already in use\n", __func__);
7303                return -EAGAIN;
7304        }
7305
7306        smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7307        if (!smid) {
7308                ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7309                return -EAGAIN;
7310        }
7311        ioc->drv_internal_flags |= MPT_DRV_INTERNAL_FIRST_PE_ISSUED;
7312        ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7313        ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE_ASYNC;
7314        mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7315        ioc->port_enable_cmds.smid = smid;
7316        memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7317        mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7318
7319        ioc->put_smid_default(ioc, smid);
7320        return 0;
7321}
7322
7323/**
7324 * _base_determine_wait_on_discovery - desposition
7325 * @ioc: per adapter object
7326 *
7327 * Decide whether to wait on discovery to complete. Used to either
7328 * locate boot device, or report volumes ahead of physical devices.
7329 *
7330 * Return: 1 for wait, 0 for don't wait.
7331 */
7332static int
7333_base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
7334{
7335        /* We wait for discovery to complete if IR firmware is loaded.
7336         * The sas topology events arrive before PD events, so we need time to
7337         * turn on the bit in ioc->pd_handles to indicate PD
7338         * Also, it maybe required to report Volumes ahead of physical
7339         * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
7340         */
7341        if (ioc->ir_firmware)
7342                return 1;
7343
7344        /* if no Bios, then we don't need to wait */
7345        if (!ioc->bios_pg3.BiosVersion)
7346                return 0;
7347
7348        /* Bios is present, then we drop down here.
7349         *
7350         * If there any entries in the Bios Page 2, then we wait
7351         * for discovery to complete.
7352         */
7353
7354        /* Current Boot Device */
7355        if ((ioc->bios_pg2.CurrentBootDeviceForm &
7356            MPI2_BIOSPAGE2_FORM_MASK) ==
7357            MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7358        /* Request Boot Device */
7359           (ioc->bios_pg2.ReqBootDeviceForm &
7360            MPI2_BIOSPAGE2_FORM_MASK) ==
7361            MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7362        /* Alternate Request Boot Device */
7363           (ioc->bios_pg2.ReqAltBootDeviceForm &
7364            MPI2_BIOSPAGE2_FORM_MASK) ==
7365            MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
7366                return 0;
7367
7368        return 1;
7369}
7370
7371/**
7372 * _base_unmask_events - turn on notification for this event
7373 * @ioc: per adapter object
7374 * @event: firmware event
7375 *
7376 * The mask is stored in ioc->event_masks.
7377 */
7378static void
7379_base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
7380{
7381        u32 desired_event;
7382
7383        if (event >= 128)
7384                return;
7385
7386        desired_event = (1 << (event % 32));
7387
7388        if (event < 32)
7389                ioc->event_masks[0] &= ~desired_event;
7390        else if (event < 64)
7391                ioc->event_masks[1] &= ~desired_event;
7392        else if (event < 96)
7393                ioc->event_masks[2] &= ~desired_event;
7394        else if (event < 128)
7395                ioc->event_masks[3] &= ~desired_event;
7396}
7397
7398/**
7399 * _base_event_notification - send event notification
7400 * @ioc: per adapter object
7401 *
7402 * Return: 0 for success, non-zero for failure.
7403 */
7404static int
7405_base_event_notification(struct MPT3SAS_ADAPTER *ioc)
7406{
7407        Mpi2EventNotificationRequest_t *mpi_request;
7408        u16 smid;
7409        int r = 0;
7410        int i, issue_diag_reset = 0;
7411
7412        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7413
7414        if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7415                ioc_err(ioc, "%s: internal command already in use\n", __func__);
7416                return -EAGAIN;
7417        }
7418
7419        smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7420        if (!smid) {
7421                ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7422                return -EAGAIN;
7423        }
7424        ioc->base_cmds.status = MPT3_CMD_PENDING;
7425        mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7426        ioc->base_cmds.smid = smid;
7427        memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
7428        mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
7429        mpi_request->VF_ID = 0; /* TODO */
7430        mpi_request->VP_ID = 0;
7431        for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7432                mpi_request->EventMasks[i] =
7433                    cpu_to_le32(ioc->event_masks[i]);
7434        init_completion(&ioc->base_cmds.done);
7435        ioc->put_smid_default(ioc, smid);
7436        wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
7437        if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7438                ioc_err(ioc, "%s: timeout\n", __func__);
7439                _debug_dump_mf(mpi_request,
7440                    sizeof(Mpi2EventNotificationRequest_t)/4);
7441                if (ioc->base_cmds.status & MPT3_CMD_RESET)
7442                        r = -EFAULT;
7443                else
7444                        issue_diag_reset = 1;
7445
7446        } else
7447                dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
7448        ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7449
7450        if (issue_diag_reset) {
7451                if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
7452                        return -EFAULT;
7453                if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
7454                        return -EFAULT;
7455                r = -EAGAIN;
7456        }
7457        return r;
7458}
7459
7460/**
7461 * mpt3sas_base_validate_event_type - validating event types
7462 * @ioc: per adapter object
7463 * @event_type: firmware event
7464 *
7465 * This will turn on firmware event notification when application
7466 * ask for that event. We don't mask events that are already enabled.
7467 */
7468void
7469mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
7470{
7471        int i, j;
7472        u32 event_mask, desired_event;
7473        u8 send_update_to_fw;
7474
7475        for (i = 0, send_update_to_fw = 0; i <
7476            MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
7477                event_mask = ~event_type[i];
7478                desired_event = 1;
7479                for (j = 0; j < 32; j++) {
7480                        if (!(event_mask & desired_event) &&
7481                            (ioc->event_masks[i] & desired_event)) {
7482                                ioc->event_masks[i] &= ~desired_event;
7483                                send_update_to_fw = 1;
7484                        }
7485                        desired_event = (desired_event << 1);
7486                }
7487        }
7488
7489        if (!send_update_to_fw)
7490                return;
7491
7492        mutex_lock(&ioc->base_cmds.mutex);
7493        _base_event_notification(ioc);
7494        mutex_unlock(&ioc->base_cmds.mutex);
7495}
7496
7497/**
7498 * _base_diag_reset - the "big hammer" start of day reset
7499 * @ioc: per adapter object
7500 *
7501 * Return: 0 for success, non-zero for failure.
7502 */
7503static int
7504_base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
7505{
7506        u32 host_diagnostic;
7507        u32 ioc_state;
7508        u32 count;
7509        u32 hcb_size;
7510
7511        ioc_info(ioc, "sending diag reset !!\n");
7512
7513        pci_cfg_access_lock(ioc->pdev);
7514
7515        drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
7516
7517        count = 0;
7518        do {
7519                /* Write magic sequence to WriteSequence register
7520                 * Loop until in diagnostic mode
7521                 */
7522                drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
7523                writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7524                writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
7525                writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
7526                writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
7527                writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
7528                writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
7529                writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
7530
7531                /* wait 100 msec */
7532                msleep(100);
7533
7534                if (count++ > 20) {
7535                        ioc_info(ioc,
7536                            "Stop writing magic sequence after 20 retries\n");
7537                        _base_dump_reg_set(ioc);
7538                        goto out;
7539                }
7540
7541                host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
7542                drsprintk(ioc,
7543                          ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
7544                                   count, host_diagnostic));
7545
7546        } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
7547
7548        hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
7549
7550        drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
7551        writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
7552             &ioc->chip->HostDiagnostic);
7553
7554        /*This delay allows the chip PCIe hardware time to finish reset tasks*/
7555        msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
7556
7557        /* Approximately 300 second max wait */
7558        for (count = 0; count < (300000000 /
7559                MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
7560
7561                host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
7562
7563                if (host_diagnostic == 0xFFFFFFFF) {
7564                        ioc_info(ioc,
7565                            "Invalid host diagnostic register value\n");
7566                        _base_dump_reg_set(ioc);
7567                        goto out;
7568                }
7569                if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
7570                        break;
7571
7572                msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
7573        }
7574
7575        if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
7576
7577                drsprintk(ioc,
7578                          ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
7579                host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
7580                host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
7581                writel(host_diagnostic, &ioc->chip->HostDiagnostic);
7582
7583                drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
7584                writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
7585                    &ioc->chip->HCBSize);
7586        }
7587
7588        drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
7589        writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
7590            &ioc->chip->HostDiagnostic);
7591
7592        drsprintk(ioc,
7593                  ioc_info(ioc, "disable writes to the diagnostic register\n"));
7594        writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7595
7596        drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
7597        ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
7598        if (ioc_state) {
7599                ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7600                        __func__, ioc_state);
7601                _base_dump_reg_set(ioc);
7602                goto out;
7603        }
7604
7605        pci_cfg_access_unlock(ioc->pdev);
7606        ioc_info(ioc, "diag reset: SUCCESS\n");
7607        return 0;
7608
7609 out:
7610        pci_cfg_access_unlock(ioc->pdev);
7611        ioc_err(ioc, "diag reset: FAILED\n");
7612        return -EFAULT;
7613}
7614
7615/**
7616 * mpt3sas_base_make_ioc_ready - put controller in READY state
7617 * @ioc: per adapter object
7618 * @type: FORCE_BIG_HAMMER or SOFT_RESET
7619 *
7620 * Return: 0 for success, non-zero for failure.
7621 */
7622int
7623mpt3sas_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
7624{
7625        u32 ioc_state;
7626        int rc;
7627        int count;
7628
7629        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7630
7631        if (ioc->pci_error_recovery)
7632                return 0;
7633
7634        ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7635        dhsprintk(ioc,
7636                  ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7637                           __func__, ioc_state));
7638
7639        /* if in RESET state, it should move to READY state shortly */
7640        count = 0;
7641        if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
7642                while ((ioc_state & MPI2_IOC_STATE_MASK) !=
7643                    MPI2_IOC_STATE_READY) {
7644                        if (count++ == 10) {
7645                                ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7646                                        __func__, ioc_state);
7647                                return -EFAULT;
7648                        }
7649                        ssleep(1);
7650                        ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7651                }
7652        }
7653
7654        if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
7655                return 0;
7656
7657        if (ioc_state & MPI2_DOORBELL_USED) {
7658                ioc_info(ioc, "unexpected doorbell active!\n");
7659                goto issue_diag_reset;
7660        }
7661
7662        if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7663                mpt3sas_print_fault_code(ioc, ioc_state &
7664                    MPI2_DOORBELL_DATA_MASK);
7665                goto issue_diag_reset;
7666        }
7667
7668        if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
7669                /*
7670                 * if host reset is invoked while watch dog thread is waiting
7671                 * for IOC state to be changed to Fault state then driver has
7672                 * to wait here for CoreDump state to clear otherwise reset
7673                 * will be issued to the FW and FW move the IOC state to
7674                 * reset state without copying the FW logs to coredump region.
7675                 */
7676                if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
7677                        mpt3sas_print_coredump_info(ioc, ioc_state &
7678                            MPI2_DOORBELL_DATA_MASK);
7679                        mpt3sas_base_wait_for_coredump_completion(ioc,
7680                            __func__);
7681                }
7682                goto issue_diag_reset;
7683        }
7684
7685        if (type == FORCE_BIG_HAMMER)
7686                goto issue_diag_reset;
7687
7688        if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7689                if (!(_base_send_ioc_reset(ioc,
7690                    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
7691                        return 0;
7692        }
7693
7694 issue_diag_reset:
7695        rc = _base_diag_reset(ioc);
7696        return rc;
7697}
7698
7699/**
7700 * _base_make_ioc_operational - put controller in OPERATIONAL state
7701 * @ioc: per adapter object
7702 *
7703 * Return: 0 for success, non-zero for failure.
7704 */
7705static int
7706_base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
7707{
7708        int r, i, index, rc;
7709        unsigned long   flags;
7710        u32 reply_address;
7711        u16 smid;
7712        struct _tr_list *delayed_tr, *delayed_tr_next;
7713        struct _sc_list *delayed_sc, *delayed_sc_next;
7714        struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
7715        u8 hide_flag;
7716        struct adapter_reply_queue *reply_q;
7717        Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
7718
7719        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7720
7721        /* clean the delayed target reset list */
7722        list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7723            &ioc->delayed_tr_list, list) {
7724                list_del(&delayed_tr->list);
7725                kfree(delayed_tr);
7726        }
7727
7728
7729        list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7730            &ioc->delayed_tr_volume_list, list) {
7731                list_del(&delayed_tr->list);
7732                kfree(delayed_tr);
7733        }
7734
7735        list_for_each_entry_safe(delayed_sc, delayed_sc_next,
7736            &ioc->delayed_sc_list, list) {
7737                list_del(&delayed_sc->list);
7738                kfree(delayed_sc);
7739        }
7740
7741        list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
7742            &ioc->delayed_event_ack_list, list) {
7743                list_del(&delayed_event_ack->list);
7744                kfree(delayed_event_ack);
7745        }
7746
7747        spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
7748
7749        /* hi-priority queue */
7750        INIT_LIST_HEAD(&ioc->hpr_free_list);
7751        smid = ioc->hi_priority_smid;
7752        for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
7753                ioc->hpr_lookup[i].cb_idx = 0xFF;
7754                ioc->hpr_lookup[i].smid = smid;
7755                list_add_tail(&ioc->hpr_lookup[i].tracker_list,
7756                    &ioc->hpr_free_list);
7757        }
7758
7759        /* internal queue */
7760        INIT_LIST_HEAD(&ioc->internal_free_list);
7761        smid = ioc->internal_smid;
7762        for (i = 0; i < ioc->internal_depth; i++, smid++) {
7763                ioc->internal_lookup[i].cb_idx = 0xFF;
7764                ioc->internal_lookup[i].smid = smid;
7765                list_add_tail(&ioc->internal_lookup[i].tracker_list,
7766                    &ioc->internal_free_list);
7767        }
7768
7769        spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
7770
7771        /* initialize Reply Free Queue */
7772        for (i = 0, reply_address = (u32)ioc->reply_dma ;
7773            i < ioc->reply_free_queue_depth ; i++, reply_address +=
7774            ioc->reply_sz) {
7775                ioc->reply_free[i] = cpu_to_le32(reply_address);
7776                if (ioc->is_mcpu_endpoint)
7777                        _base_clone_reply_to_sys_mem(ioc,
7778                                        reply_address, i);
7779        }
7780
7781        /* initialize reply queues */
7782        if (ioc->is_driver_loading)
7783                _base_assign_reply_queues(ioc);
7784
7785        /* initialize Reply Post Free Queue */
7786        index = 0;
7787        reply_post_free_contig = ioc->reply_post[0].reply_post_free;
7788        list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
7789                /*
7790                 * If RDPQ is enabled, switch to the next allocation.
7791                 * Otherwise advance within the contiguous region.
7792                 */
7793                if (ioc->rdpq_array_enable) {
7794                        reply_q->reply_post_free =
7795                                ioc->reply_post[index++].reply_post_free;
7796                } else {
7797                        reply_q->reply_post_free = reply_post_free_contig;
7798                        reply_post_free_contig += ioc->reply_post_queue_depth;
7799                }
7800
7801                reply_q->reply_post_host_index = 0;
7802                for (i = 0; i < ioc->reply_post_queue_depth; i++)
7803                        reply_q->reply_post_free[i].Words =
7804                            cpu_to_le64(ULLONG_MAX);
7805                if (!_base_is_controller_msix_enabled(ioc))
7806                        goto skip_init_reply_post_free_queue;
7807        }
7808 skip_init_reply_post_free_queue:
7809
7810        r = _base_send_ioc_init(ioc);
7811        if (r) {
7812                /*
7813                 * No need to check IOC state for fault state & issue
7814                 * diag reset during host reset. This check is need
7815                 * only during driver load time.
7816                 */
7817                if (!ioc->is_driver_loading)
7818                        return r;
7819
7820                rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
7821                if (rc || (_base_send_ioc_init(ioc)))
7822                        return r;
7823        }
7824
7825        /* initialize reply free host index */
7826        ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
7827        writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
7828
7829        /* initialize reply post host index */
7830        list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
7831                if (ioc->combined_reply_queue)
7832                        writel((reply_q->msix_index & 7)<<
7833                           MPI2_RPHI_MSIX_INDEX_SHIFT,
7834                           ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
7835                else
7836                        writel(reply_q->msix_index <<
7837                                MPI2_RPHI_MSIX_INDEX_SHIFT,
7838                                &ioc->chip->ReplyPostHostIndex);
7839
7840                if (!_base_is_controller_msix_enabled(ioc))
7841                        goto skip_init_reply_post_host_index;
7842        }
7843
7844 skip_init_reply_post_host_index:
7845
7846        mpt3sas_base_unmask_interrupts(ioc);
7847
7848        if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7849                r = _base_display_fwpkg_version(ioc);
7850                if (r)
7851                        return r;
7852        }
7853
7854        r = _base_static_config_pages(ioc);
7855        if (r)
7856                return r;
7857
7858        r = _base_event_notification(ioc);
7859        if (r)
7860                return r;
7861
7862        if (!ioc->shost_recovery) {
7863
7864                if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
7865                    == 0x80) {
7866                        hide_flag = (u8) (
7867                            le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
7868                            MFG_PAGE10_HIDE_SSDS_MASK);
7869                        if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
7870                                ioc->mfg_pg10_hide_flag = hide_flag;
7871                }
7872
7873                ioc->wait_for_discovery_to_complete =
7874                    _base_determine_wait_on_discovery(ioc);
7875
7876                return r; /* scan_start and scan_finished support */
7877        }
7878
7879        r = _base_send_port_enable(ioc);
7880        if (r)
7881                return r;
7882
7883        return r;
7884}
7885
7886/**
7887 * mpt3sas_base_free_resources - free resources controller resources
7888 * @ioc: per adapter object
7889 */
7890void
7891mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
7892{
7893        dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7894
7895        /* synchronizing freeing resource with pci_access_mutex lock */
7896        mutex_lock(&ioc->pci_access_mutex);
7897        if (ioc->chip_phys && ioc->chip) {
7898                mpt3sas_base_mask_interrupts(ioc);
7899                ioc->shost_recovery = 1;
7900                mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
7901                ioc->shost_recovery = 0;
7902        }
7903
7904        mpt3sas_base_unmap_resources(ioc);
7905        mutex_unlock(&ioc->pci_access_mutex);
7906        return;
7907}
7908
7909/**
7910 * mpt3sas_base_attach - attach controller instance
7911 * @ioc: per adapter object
7912 *
7913 * Return: 0 for success, non-zero for failure.
7914 */
7915int
7916mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
7917{
7918        int r, i, rc;
7919        int cpu_id, last_cpu_id = 0;
7920
7921        dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7922
7923        /* setup cpu_msix_table */
7924        ioc->cpu_count = num_online_cpus();
7925        for_each_online_cpu(cpu_id)
7926                last_cpu_id = cpu_id;
7927        ioc->cpu_msix_table_sz = last_cpu_id + 1;
7928        ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
7929        ioc->reply_queue_count = 1;
7930        if (!ioc->cpu_msix_table) {
7931                ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
7932                r = -ENOMEM;
7933                goto out_free_resources;
7934        }
7935
7936        if (ioc->is_warpdrive) {
7937                ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
7938                    sizeof(resource_size_t *), GFP_KERNEL);
7939                if (!ioc->reply_post_host_index) {
7940                        ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
7941                        r = -ENOMEM;
7942                        goto out_free_resources;
7943                }
7944        }
7945
7946        ioc->smp_affinity_enable = smp_affinity_enable;
7947
7948        ioc->rdpq_array_enable_assigned = 0;
7949        ioc->use_32bit_dma = false;
7950        ioc->dma_mask = 64;
7951        if (ioc->is_aero_ioc)
7952                ioc->base_readl = &_base_readl_aero;
7953        else
7954                ioc->base_readl = &_base_readl;
7955        r = mpt3sas_base_map_resources(ioc);
7956        if (r)
7957                goto out_free_resources;
7958
7959        pci_set_drvdata(ioc->pdev, ioc->shost);
7960        r = _base_get_ioc_facts(ioc);
7961        if (r) {
7962                rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
7963                if (rc || (_base_get_ioc_facts(ioc)))
7964                        goto out_free_resources;
7965        }
7966
7967        switch (ioc->hba_mpi_version_belonged) {
7968        case MPI2_VERSION:
7969                ioc->build_sg_scmd = &_base_build_sg_scmd;
7970                ioc->build_sg = &_base_build_sg;
7971                ioc->build_zero_len_sge = &_base_build_zero_len_sge;
7972                ioc->get_msix_index_for_smlio = &_base_get_msix_index;
7973                break;
7974        case MPI25_VERSION:
7975        case MPI26_VERSION:
7976                /*
7977                 * In SAS3.0,
7978                 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
7979                 * Target Status - all require the IEEE formatted scatter gather
7980                 * elements.
7981                 */
7982                ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
7983                ioc->build_sg = &_base_build_sg_ieee;
7984                ioc->build_nvme_prp = &_base_build_nvme_prp;
7985                ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
7986                ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
7987                if (ioc->high_iops_queues)
7988                        ioc->get_msix_index_for_smlio =
7989                                        &_base_get_high_iops_msix_index;
7990                else
7991                        ioc->get_msix_index_for_smlio = &_base_get_msix_index;
7992                break;
7993        }
7994        if (ioc->atomic_desc_capable) {
7995                ioc->put_smid_default = &_base_put_smid_default_atomic;
7996                ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
7997                ioc->put_smid_fast_path =
7998                                &_base_put_smid_fast_path_atomic;
7999                ioc->put_smid_hi_priority =
8000                                &_base_put_smid_hi_priority_atomic;
8001        } else {
8002                ioc->put_smid_default = &_base_put_smid_default;
8003                ioc->put_smid_fast_path = &_base_put_smid_fast_path;
8004                ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
8005                if (ioc->is_mcpu_endpoint)
8006                        ioc->put_smid_scsi_io =
8007                                &_base_put_smid_mpi_ep_scsi_io;
8008                else
8009                        ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
8010        }
8011        /*
8012         * These function pointers for other requests that don't
8013         * the require IEEE scatter gather elements.
8014         *
8015         * For example Configuration Pages and SAS IOUNIT Control don't.
8016         */
8017        ioc->build_sg_mpi = &_base_build_sg;
8018        ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
8019
8020        r = mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8021        if (r)
8022                goto out_free_resources;
8023
8024        ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
8025            sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
8026        if (!ioc->pfacts) {
8027                r = -ENOMEM;
8028                goto out_free_resources;
8029        }
8030
8031        for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
8032                r = _base_get_port_facts(ioc, i);
8033                if (r) {
8034                        rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8035                        if (rc || (_base_get_port_facts(ioc, i)))
8036                                goto out_free_resources;
8037                }
8038        }
8039
8040        r = _base_allocate_memory_pools(ioc);
8041        if (r)
8042                goto out_free_resources;
8043
8044        if (irqpoll_weight > 0)
8045                ioc->thresh_hold = irqpoll_weight;
8046        else
8047                ioc->thresh_hold = ioc->hba_queue_depth/4;
8048
8049        _base_init_irqpolls(ioc);
8050        init_waitqueue_head(&ioc->reset_wq);
8051
8052        /* allocate memory pd handle bitmask list */
8053        ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8054        if (ioc->facts.MaxDevHandle % 8)
8055                ioc->pd_handles_sz++;
8056        ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
8057            GFP_KERNEL);
8058        if (!ioc->pd_handles) {
8059                r = -ENOMEM;
8060                goto out_free_resources;
8061        }
8062        ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
8063            GFP_KERNEL);
8064        if (!ioc->blocking_handles) {
8065                r = -ENOMEM;
8066                goto out_free_resources;
8067        }
8068
8069        /* allocate memory for pending OS device add list */
8070        ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
8071        if (ioc->facts.MaxDevHandle % 8)
8072                ioc->pend_os_device_add_sz++;
8073        ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
8074            GFP_KERNEL);
8075        if (!ioc->pend_os_device_add) {
8076                r = -ENOMEM;
8077                goto out_free_resources;
8078        }
8079
8080        ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
8081        ioc->device_remove_in_progress =
8082                kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
8083        if (!ioc->device_remove_in_progress) {
8084                r = -ENOMEM;
8085                goto out_free_resources;
8086        }
8087
8088        ioc->fwfault_debug = mpt3sas_fwfault_debug;
8089
8090        /* base internal command bits */
8091        mutex_init(&ioc->base_cmds.mutex);
8092        ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8093        ioc->base_cmds.status = MPT3_CMD_NOT_USED;
8094
8095        /* port_enable command bits */
8096        ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8097        ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
8098
8099        /* transport internal command bits */
8100        ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8101        ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
8102        mutex_init(&ioc->transport_cmds.mutex);
8103
8104        /* scsih internal command bits */
8105        ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8106        ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
8107        mutex_init(&ioc->scsih_cmds.mutex);
8108
8109        /* task management internal command bits */
8110        ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8111        ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
8112        mutex_init(&ioc->tm_cmds.mutex);
8113
8114        /* config page internal command bits */
8115        ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8116        ioc->config_cmds.status = MPT3_CMD_NOT_USED;
8117        mutex_init(&ioc->config_cmds.mutex);
8118
8119        /* ctl module internal command bits */
8120        ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8121        ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
8122        ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
8123        mutex_init(&ioc->ctl_cmds.mutex);
8124
8125        if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
8126            !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
8127            !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
8128            !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
8129                r = -ENOMEM;
8130                goto out_free_resources;
8131        }
8132
8133        for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
8134                ioc->event_masks[i] = -1;
8135
8136        /* here we enable the events we care about */
8137        _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
8138        _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
8139        _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
8140        _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
8141        _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
8142        _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
8143        _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
8144        _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
8145        _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
8146        _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
8147        _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
8148        _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
8149        _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
8150        if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
8151                if (ioc->is_gen35_ioc) {
8152                        _base_unmask_events(ioc,
8153                                MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
8154                        _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
8155                        _base_unmask_events(ioc,
8156                                MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
8157                }
8158        }
8159        r = _base_make_ioc_operational(ioc);
8160        if (r == -EAGAIN) {
8161                r = _base_make_ioc_operational(ioc);
8162                if (r)
8163                        goto out_free_resources;
8164        }
8165
8166        /*
8167         * Copy current copy of IOCFacts in prev_fw_facts
8168         * and it will be used during online firmware upgrade.
8169         */
8170        memcpy(&ioc->prev_fw_facts, &ioc->facts,
8171            sizeof(struct mpt3sas_facts));
8172
8173        ioc->non_operational_loop = 0;
8174        ioc->ioc_coredump_loop = 0;
8175        ioc->got_task_abort_from_ioctl = 0;
8176        return 0;
8177
8178 out_free_resources:
8179
8180        ioc->remove_host = 1;
8181
8182        mpt3sas_base_free_resources(ioc);
8183        _base_release_memory_pools(ioc);
8184        pci_set_drvdata(ioc->pdev, NULL);
8185        kfree(ioc->cpu_msix_table);
8186        if (ioc->is_warpdrive)
8187                kfree(ioc->reply_post_host_index);
8188        kfree(ioc->pd_handles);
8189        kfree(ioc->blocking_handles);
8190        kfree(ioc->device_remove_in_progress);
8191        kfree(ioc->pend_os_device_add);
8192        kfree(ioc->tm_cmds.reply);
8193        kfree(ioc->transport_cmds.reply);
8194        kfree(ioc->scsih_cmds.reply);
8195        kfree(ioc->config_cmds.reply);
8196        kfree(ioc->base_cmds.reply);
8197        kfree(ioc->port_enable_cmds.reply);
8198        kfree(ioc->ctl_cmds.reply);
8199        kfree(ioc->ctl_cmds.sense);
8200        kfree(ioc->pfacts);
8201        ioc->ctl_cmds.reply = NULL;
8202        ioc->base_cmds.reply = NULL;
8203        ioc->tm_cmds.reply = NULL;
8204        ioc->scsih_cmds.reply = NULL;
8205        ioc->transport_cmds.reply = NULL;
8206        ioc->config_cmds.reply = NULL;
8207        ioc->pfacts = NULL;
8208        return r;
8209}
8210
8211
8212/**
8213 * mpt3sas_base_detach - remove controller instance
8214 * @ioc: per adapter object
8215 */
8216void
8217mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
8218{
8219        dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8220
8221        mpt3sas_base_stop_watchdog(ioc);
8222        mpt3sas_base_free_resources(ioc);
8223        _base_release_memory_pools(ioc);
8224        mpt3sas_free_enclosure_list(ioc);
8225        pci_set_drvdata(ioc->pdev, NULL);
8226        kfree(ioc->cpu_msix_table);
8227        if (ioc->is_warpdrive)
8228                kfree(ioc->reply_post_host_index);
8229        kfree(ioc->pd_handles);
8230        kfree(ioc->blocking_handles);
8231        kfree(ioc->device_remove_in_progress);
8232        kfree(ioc->pend_os_device_add);
8233        kfree(ioc->pfacts);
8234        kfree(ioc->ctl_cmds.reply);
8235        kfree(ioc->ctl_cmds.sense);
8236        kfree(ioc->base_cmds.reply);
8237        kfree(ioc->port_enable_cmds.reply);
8238        kfree(ioc->tm_cmds.reply);
8239        kfree(ioc->transport_cmds.reply);
8240        kfree(ioc->scsih_cmds.reply);
8241        kfree(ioc->config_cmds.reply);
8242}
8243
8244/**
8245 * _base_pre_reset_handler - pre reset handler
8246 * @ioc: per adapter object
8247 */
8248static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
8249{
8250        mpt3sas_scsih_pre_reset_handler(ioc);
8251        mpt3sas_ctl_pre_reset_handler(ioc);
8252        dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
8253}
8254
8255/**
8256 * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
8257 * @ioc: per adapter object
8258 */
8259static void
8260_base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
8261{
8262        dtmprintk(ioc,
8263            ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
8264        if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
8265                ioc->transport_cmds.status |= MPT3_CMD_RESET;
8266                mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
8267                complete(&ioc->transport_cmds.done);
8268        }
8269        if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
8270                ioc->base_cmds.status |= MPT3_CMD_RESET;
8271                mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
8272                complete(&ioc->base_cmds.done);
8273        }
8274        if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
8275                ioc->port_enable_failed = 1;
8276                ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
8277                mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
8278                if (ioc->is_driver_loading) {
8279                        ioc->start_scan_failed =
8280                                MPI2_IOCSTATUS_INTERNAL_ERROR;
8281                        ioc->start_scan = 0;
8282                } else {
8283                        complete(&ioc->port_enable_cmds.done);
8284                }
8285        }
8286        if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
8287                ioc->config_cmds.status |= MPT3_CMD_RESET;
8288                mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
8289                ioc->config_cmds.smid = USHRT_MAX;
8290                complete(&ioc->config_cmds.done);
8291        }
8292}
8293
8294/**
8295 * _base_clear_outstanding_commands - clear all outstanding commands
8296 * @ioc: per adapter object
8297 */
8298static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
8299{
8300        mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
8301        mpt3sas_ctl_clear_outstanding_ioctls(ioc);
8302        _base_clear_outstanding_mpt_commands(ioc);
8303}
8304
8305/**
8306 * _base_reset_done_handler - reset done handler
8307 * @ioc: per adapter object
8308 */
8309static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
8310{
8311        mpt3sas_scsih_reset_done_handler(ioc);
8312        mpt3sas_ctl_reset_done_handler(ioc);
8313        dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
8314}
8315
8316/**
8317 * mpt3sas_wait_for_commands_to_complete - reset controller
8318 * @ioc: Pointer to MPT_ADAPTER structure
8319 *
8320 * This function is waiting 10s for all pending commands to complete
8321 * prior to putting controller in reset.
8322 */
8323void
8324mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
8325{
8326        u32 ioc_state;
8327
8328        ioc->pending_io_count = 0;
8329
8330        ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8331        if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
8332                return;
8333
8334        /* pending command count */
8335        ioc->pending_io_count = scsi_host_busy(ioc->shost);
8336
8337        if (!ioc->pending_io_count)
8338                return;
8339
8340        /* wait for pending commands to complete */
8341        wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
8342}
8343
8344/**
8345 * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
8346 *     attributes during online firmware upgrade and update the corresponding
8347 *     IOC variables accordingly.
8348 *
8349 * @ioc: Pointer to MPT_ADAPTER structure
8350 */
8351static int
8352_base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
8353{
8354        u16 pd_handles_sz;
8355        void *pd_handles = NULL, *blocking_handles = NULL;
8356        void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
8357        struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
8358
8359        if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
8360                pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8361                if (ioc->facts.MaxDevHandle % 8)
8362                        pd_handles_sz++;
8363
8364                pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
8365                    GFP_KERNEL);
8366                if (!pd_handles) {
8367                        ioc_info(ioc,
8368                            "Unable to allocate the memory for pd_handles of sz: %d\n",
8369                            pd_handles_sz);
8370                        return -ENOMEM;
8371                }
8372                memset(pd_handles + ioc->pd_handles_sz, 0,
8373                    (pd_handles_sz - ioc->pd_handles_sz));
8374                ioc->pd_handles = pd_handles;
8375
8376                blocking_handles = krealloc(ioc->blocking_handles,
8377                    pd_handles_sz, GFP_KERNEL);
8378                if (!blocking_handles) {
8379                        ioc_info(ioc,
8380                            "Unable to allocate the memory for "
8381                            "blocking_handles of sz: %d\n",
8382                            pd_handles_sz);
8383                        return -ENOMEM;
8384                }
8385                memset(blocking_handles + ioc->pd_handles_sz, 0,
8386                    (pd_handles_sz - ioc->pd_handles_sz));
8387                ioc->blocking_handles = blocking_handles;
8388                ioc->pd_handles_sz = pd_handles_sz;
8389
8390                pend_os_device_add = krealloc(ioc->pend_os_device_add,
8391                    pd_handles_sz, GFP_KERNEL);
8392                if (!pend_os_device_add) {
8393                        ioc_info(ioc,
8394                            "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
8395                            pd_handles_sz);
8396                        return -ENOMEM;
8397                }
8398                memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
8399                    (pd_handles_sz - ioc->pend_os_device_add_sz));
8400                ioc->pend_os_device_add = pend_os_device_add;
8401                ioc->pend_os_device_add_sz = pd_handles_sz;
8402
8403                device_remove_in_progress = krealloc(
8404                    ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
8405                if (!device_remove_in_progress) {
8406                        ioc_info(ioc,
8407                            "Unable to allocate the memory for "
8408                            "device_remove_in_progress of sz: %d\n "
8409                            , pd_handles_sz);
8410                        return -ENOMEM;
8411                }
8412                memset(device_remove_in_progress +
8413                    ioc->device_remove_in_progress_sz, 0,
8414                    (pd_handles_sz - ioc->device_remove_in_progress_sz));
8415                ioc->device_remove_in_progress = device_remove_in_progress;
8416                ioc->device_remove_in_progress_sz = pd_handles_sz;
8417        }
8418
8419        memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
8420        return 0;
8421}
8422
8423/**
8424 * mpt3sas_base_hard_reset_handler - reset controller
8425 * @ioc: Pointer to MPT_ADAPTER structure
8426 * @type: FORCE_BIG_HAMMER or SOFT_RESET
8427 *
8428 * Return: 0 for success, non-zero for failure.
8429 */
8430int
8431mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
8432        enum reset_type type)
8433{
8434        int r;
8435        unsigned long flags;
8436        u32 ioc_state;
8437        u8 is_fault = 0, is_trigger = 0;
8438
8439        dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
8440
8441        if (ioc->pci_error_recovery) {
8442                ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
8443                r = 0;
8444                goto out_unlocked;
8445        }
8446
8447        if (mpt3sas_fwfault_debug)
8448                mpt3sas_halt_firmware(ioc);
8449
8450        /* wait for an active reset in progress to complete */
8451        mutex_lock(&ioc->reset_in_progress_mutex);
8452
8453        spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8454        ioc->shost_recovery = 1;
8455        spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8456
8457        if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8458            MPT3_DIAG_BUFFER_IS_REGISTERED) &&
8459            (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8460            MPT3_DIAG_BUFFER_IS_RELEASED))) {
8461                is_trigger = 1;
8462                ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8463                if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
8464                    (ioc_state & MPI2_IOC_STATE_MASK) ==
8465                    MPI2_IOC_STATE_COREDUMP) {
8466                        is_fault = 1;
8467                        ioc->htb_rel.trigger_info_dwords[1] =
8468                            (ioc_state & MPI2_DOORBELL_DATA_MASK);
8469                }
8470        }
8471        _base_pre_reset_handler(ioc);
8472        mpt3sas_wait_for_commands_to_complete(ioc);
8473        mpt3sas_base_mask_interrupts(ioc);
8474        r = mpt3sas_base_make_ioc_ready(ioc, type);
8475        if (r)
8476                goto out;
8477        _base_clear_outstanding_commands(ioc);
8478
8479        /* If this hard reset is called while port enable is active, then
8480         * there is no reason to call make_ioc_operational
8481         */
8482        if (ioc->is_driver_loading && ioc->port_enable_failed) {
8483                ioc->remove_host = 1;
8484                r = -EFAULT;
8485                goto out;
8486        }
8487        r = _base_get_ioc_facts(ioc);
8488        if (r)
8489                goto out;
8490
8491        r = _base_check_ioc_facts_changes(ioc);
8492        if (r) {
8493                ioc_info(ioc,
8494                    "Some of the parameters got changed in this new firmware"
8495                    " image and it requires system reboot\n");
8496                goto out;
8497        }
8498        if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
8499                panic("%s: Issue occurred with flashing controller firmware."
8500                      "Please reboot the system and ensure that the correct"
8501                      " firmware version is running\n", ioc->name);
8502
8503        r = _base_make_ioc_operational(ioc);
8504        if (!r)
8505                _base_reset_done_handler(ioc);
8506
8507 out:
8508        ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
8509
8510        spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8511        ioc->shost_recovery = 0;
8512        spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8513        ioc->ioc_reset_count++;
8514        mutex_unlock(&ioc->reset_in_progress_mutex);
8515
8516 out_unlocked:
8517        if ((r == 0) && is_trigger) {
8518                if (is_fault)
8519                        mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
8520                else
8521                        mpt3sas_trigger_master(ioc,
8522                            MASTER_TRIGGER_ADAPTER_RESET);
8523        }
8524        dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
8525        return r;
8526}
8527