linux/drivers/target/target_core_transport.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*******************************************************************************
   3 * Filename:  target_core_transport.c
   4 *
   5 * This file contains the Generic Target Engine Core.
   6 *
   7 * (c) Copyright 2002-2013 Datera, Inc.
   8 *
   9 * Nicholas A. Bellinger <nab@kernel.org>
  10 *
  11 ******************************************************************************/
  12
  13#include <linux/net.h>
  14#include <linux/delay.h>
  15#include <linux/string.h>
  16#include <linux/timer.h>
  17#include <linux/slab.h>
  18#include <linux/spinlock.h>
  19#include <linux/kthread.h>
  20#include <linux/in.h>
  21#include <linux/cdrom.h>
  22#include <linux/module.h>
  23#include <linux/ratelimit.h>
  24#include <linux/vmalloc.h>
  25#include <asm/unaligned.h>
  26#include <net/sock.h>
  27#include <net/tcp.h>
  28#include <scsi/scsi_proto.h>
  29#include <scsi/scsi_common.h>
  30
  31#include <target/target_core_base.h>
  32#include <target/target_core_backend.h>
  33#include <target/target_core_fabric.h>
  34
  35#include "target_core_internal.h"
  36#include "target_core_alua.h"
  37#include "target_core_pr.h"
  38#include "target_core_ua.h"
  39
  40#define CREATE_TRACE_POINTS
  41#include <trace/events/target.h>
  42
  43static struct workqueue_struct *target_completion_wq;
  44static struct workqueue_struct *target_submission_wq;
  45static struct kmem_cache *se_sess_cache;
  46struct kmem_cache *se_ua_cache;
  47struct kmem_cache *t10_pr_reg_cache;
  48struct kmem_cache *t10_alua_lu_gp_cache;
  49struct kmem_cache *t10_alua_lu_gp_mem_cache;
  50struct kmem_cache *t10_alua_tg_pt_gp_cache;
  51struct kmem_cache *t10_alua_lba_map_cache;
  52struct kmem_cache *t10_alua_lba_map_mem_cache;
  53
  54static void transport_complete_task_attr(struct se_cmd *cmd);
  55static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
  56static void transport_handle_queue_full(struct se_cmd *cmd,
  57                struct se_device *dev, int err, bool write_pending);
  58static void target_complete_ok_work(struct work_struct *work);
  59
  60int init_se_kmem_caches(void)
  61{
  62        se_sess_cache = kmem_cache_create("se_sess_cache",
  63                        sizeof(struct se_session), __alignof__(struct se_session),
  64                        0, NULL);
  65        if (!se_sess_cache) {
  66                pr_err("kmem_cache_create() for struct se_session"
  67                                " failed\n");
  68                goto out;
  69        }
  70        se_ua_cache = kmem_cache_create("se_ua_cache",
  71                        sizeof(struct se_ua), __alignof__(struct se_ua),
  72                        0, NULL);
  73        if (!se_ua_cache) {
  74                pr_err("kmem_cache_create() for struct se_ua failed\n");
  75                goto out_free_sess_cache;
  76        }
  77        t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
  78                        sizeof(struct t10_pr_registration),
  79                        __alignof__(struct t10_pr_registration), 0, NULL);
  80        if (!t10_pr_reg_cache) {
  81                pr_err("kmem_cache_create() for struct t10_pr_registration"
  82                                " failed\n");
  83                goto out_free_ua_cache;
  84        }
  85        t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
  86                        sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
  87                        0, NULL);
  88        if (!t10_alua_lu_gp_cache) {
  89                pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
  90                                " failed\n");
  91                goto out_free_pr_reg_cache;
  92        }
  93        t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
  94                        sizeof(struct t10_alua_lu_gp_member),
  95                        __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
  96        if (!t10_alua_lu_gp_mem_cache) {
  97                pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
  98                                "cache failed\n");
  99                goto out_free_lu_gp_cache;
 100        }
 101        t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
 102                        sizeof(struct t10_alua_tg_pt_gp),
 103                        __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
 104        if (!t10_alua_tg_pt_gp_cache) {
 105                pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
 106                                "cache failed\n");
 107                goto out_free_lu_gp_mem_cache;
 108        }
 109        t10_alua_lba_map_cache = kmem_cache_create(
 110                        "t10_alua_lba_map_cache",
 111                        sizeof(struct t10_alua_lba_map),
 112                        __alignof__(struct t10_alua_lba_map), 0, NULL);
 113        if (!t10_alua_lba_map_cache) {
 114                pr_err("kmem_cache_create() for t10_alua_lba_map_"
 115                                "cache failed\n");
 116                goto out_free_tg_pt_gp_cache;
 117        }
 118        t10_alua_lba_map_mem_cache = kmem_cache_create(
 119                        "t10_alua_lba_map_mem_cache",
 120                        sizeof(struct t10_alua_lba_map_member),
 121                        __alignof__(struct t10_alua_lba_map_member), 0, NULL);
 122        if (!t10_alua_lba_map_mem_cache) {
 123                pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
 124                                "cache failed\n");
 125                goto out_free_lba_map_cache;
 126        }
 127
 128        target_completion_wq = alloc_workqueue("target_completion",
 129                                               WQ_MEM_RECLAIM, 0);
 130        if (!target_completion_wq)
 131                goto out_free_lba_map_mem_cache;
 132
 133        target_submission_wq = alloc_workqueue("target_submission",
 134                                               WQ_MEM_RECLAIM, 0);
 135        if (!target_submission_wq)
 136                goto out_free_completion_wq;
 137
 138        return 0;
 139
 140out_free_completion_wq:
 141        destroy_workqueue(target_completion_wq);
 142out_free_lba_map_mem_cache:
 143        kmem_cache_destroy(t10_alua_lba_map_mem_cache);
 144out_free_lba_map_cache:
 145        kmem_cache_destroy(t10_alua_lba_map_cache);
 146out_free_tg_pt_gp_cache:
 147        kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
 148out_free_lu_gp_mem_cache:
 149        kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
 150out_free_lu_gp_cache:
 151        kmem_cache_destroy(t10_alua_lu_gp_cache);
 152out_free_pr_reg_cache:
 153        kmem_cache_destroy(t10_pr_reg_cache);
 154out_free_ua_cache:
 155        kmem_cache_destroy(se_ua_cache);
 156out_free_sess_cache:
 157        kmem_cache_destroy(se_sess_cache);
 158out:
 159        return -ENOMEM;
 160}
 161
 162void release_se_kmem_caches(void)
 163{
 164        destroy_workqueue(target_submission_wq);
 165        destroy_workqueue(target_completion_wq);
 166        kmem_cache_destroy(se_sess_cache);
 167        kmem_cache_destroy(se_ua_cache);
 168        kmem_cache_destroy(t10_pr_reg_cache);
 169        kmem_cache_destroy(t10_alua_lu_gp_cache);
 170        kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
 171        kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
 172        kmem_cache_destroy(t10_alua_lba_map_cache);
 173        kmem_cache_destroy(t10_alua_lba_map_mem_cache);
 174}
 175
 176/* This code ensures unique mib indexes are handed out. */
 177static DEFINE_SPINLOCK(scsi_mib_index_lock);
 178static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
 179
 180/*
 181 * Allocate a new row index for the entry type specified
 182 */
 183u32 scsi_get_new_index(scsi_index_t type)
 184{
 185        u32 new_index;
 186
 187        BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
 188
 189        spin_lock(&scsi_mib_index_lock);
 190        new_index = ++scsi_mib_index[type];
 191        spin_unlock(&scsi_mib_index_lock);
 192
 193        return new_index;
 194}
 195
 196void transport_subsystem_check_init(void)
 197{
 198        int ret;
 199        static int sub_api_initialized;
 200
 201        if (sub_api_initialized)
 202                return;
 203
 204        ret = IS_ENABLED(CONFIG_TCM_IBLOCK) && request_module("target_core_iblock");
 205        if (ret != 0)
 206                pr_err("Unable to load target_core_iblock\n");
 207
 208        ret = IS_ENABLED(CONFIG_TCM_FILEIO) && request_module("target_core_file");
 209        if (ret != 0)
 210                pr_err("Unable to load target_core_file\n");
 211
 212        ret = IS_ENABLED(CONFIG_TCM_PSCSI) && request_module("target_core_pscsi");
 213        if (ret != 0)
 214                pr_err("Unable to load target_core_pscsi\n");
 215
 216        ret = IS_ENABLED(CONFIG_TCM_USER2) && request_module("target_core_user");
 217        if (ret != 0)
 218                pr_err("Unable to load target_core_user\n");
 219
 220        sub_api_initialized = 1;
 221}
 222
 223static void target_release_sess_cmd_refcnt(struct percpu_ref *ref)
 224{
 225        struct se_session *sess = container_of(ref, typeof(*sess), cmd_count);
 226
 227        wake_up(&sess->cmd_count_wq);
 228}
 229
 230/**
 231 * transport_init_session - initialize a session object
 232 * @se_sess: Session object pointer.
 233 *
 234 * The caller must have zero-initialized @se_sess before calling this function.
 235 */
 236int transport_init_session(struct se_session *se_sess)
 237{
 238        INIT_LIST_HEAD(&se_sess->sess_list);
 239        INIT_LIST_HEAD(&se_sess->sess_acl_list);
 240        spin_lock_init(&se_sess->sess_cmd_lock);
 241        init_waitqueue_head(&se_sess->cmd_count_wq);
 242        init_completion(&se_sess->stop_done);
 243        atomic_set(&se_sess->stopped, 0);
 244        return percpu_ref_init(&se_sess->cmd_count,
 245                               target_release_sess_cmd_refcnt, 0, GFP_KERNEL);
 246}
 247EXPORT_SYMBOL(transport_init_session);
 248
 249void transport_uninit_session(struct se_session *se_sess)
 250{
 251        /*
 252         * Drivers like iscsi and loop do not call target_stop_session
 253         * during session shutdown so we have to drop the ref taken at init
 254         * time here.
 255         */
 256        if (!atomic_read(&se_sess->stopped))
 257                percpu_ref_put(&se_sess->cmd_count);
 258
 259        percpu_ref_exit(&se_sess->cmd_count);
 260}
 261
 262/**
 263 * transport_alloc_session - allocate a session object and initialize it
 264 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
 265 */
 266struct se_session *transport_alloc_session(enum target_prot_op sup_prot_ops)
 267{
 268        struct se_session *se_sess;
 269        int ret;
 270
 271        se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
 272        if (!se_sess) {
 273                pr_err("Unable to allocate struct se_session from"
 274                                " se_sess_cache\n");
 275                return ERR_PTR(-ENOMEM);
 276        }
 277        ret = transport_init_session(se_sess);
 278        if (ret < 0) {
 279                kmem_cache_free(se_sess_cache, se_sess);
 280                return ERR_PTR(ret);
 281        }
 282        se_sess->sup_prot_ops = sup_prot_ops;
 283
 284        return se_sess;
 285}
 286EXPORT_SYMBOL(transport_alloc_session);
 287
 288/**
 289 * transport_alloc_session_tags - allocate target driver private data
 290 * @se_sess:  Session pointer.
 291 * @tag_num:  Maximum number of in-flight commands between initiator and target.
 292 * @tag_size: Size in bytes of the private data a target driver associates with
 293 *            each command.
 294 */
 295int transport_alloc_session_tags(struct se_session *se_sess,
 296                                 unsigned int tag_num, unsigned int tag_size)
 297{
 298        int rc;
 299
 300        se_sess->sess_cmd_map = kvcalloc(tag_size, tag_num,
 301                                         GFP_KERNEL | __GFP_RETRY_MAYFAIL);
 302        if (!se_sess->sess_cmd_map) {
 303                pr_err("Unable to allocate se_sess->sess_cmd_map\n");
 304                return -ENOMEM;
 305        }
 306
 307        rc = sbitmap_queue_init_node(&se_sess->sess_tag_pool, tag_num, -1,
 308                        false, GFP_KERNEL, NUMA_NO_NODE);
 309        if (rc < 0) {
 310                pr_err("Unable to init se_sess->sess_tag_pool,"
 311                        " tag_num: %u\n", tag_num);
 312                kvfree(se_sess->sess_cmd_map);
 313                se_sess->sess_cmd_map = NULL;
 314                return -ENOMEM;
 315        }
 316
 317        return 0;
 318}
 319EXPORT_SYMBOL(transport_alloc_session_tags);
 320
 321/**
 322 * transport_init_session_tags - allocate a session and target driver private data
 323 * @tag_num:  Maximum number of in-flight commands between initiator and target.
 324 * @tag_size: Size in bytes of the private data a target driver associates with
 325 *            each command.
 326 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
 327 */
 328static struct se_session *
 329transport_init_session_tags(unsigned int tag_num, unsigned int tag_size,
 330                            enum target_prot_op sup_prot_ops)
 331{
 332        struct se_session *se_sess;
 333        int rc;
 334
 335        if (tag_num != 0 && !tag_size) {
 336                pr_err("init_session_tags called with percpu-ida tag_num:"
 337                       " %u, but zero tag_size\n", tag_num);
 338                return ERR_PTR(-EINVAL);
 339        }
 340        if (!tag_num && tag_size) {
 341                pr_err("init_session_tags called with percpu-ida tag_size:"
 342                       " %u, but zero tag_num\n", tag_size);
 343                return ERR_PTR(-EINVAL);
 344        }
 345
 346        se_sess = transport_alloc_session(sup_prot_ops);
 347        if (IS_ERR(se_sess))
 348                return se_sess;
 349
 350        rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
 351        if (rc < 0) {
 352                transport_free_session(se_sess);
 353                return ERR_PTR(-ENOMEM);
 354        }
 355
 356        return se_sess;
 357}
 358
 359/*
 360 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
 361 */
 362void __transport_register_session(
 363        struct se_portal_group *se_tpg,
 364        struct se_node_acl *se_nacl,
 365        struct se_session *se_sess,
 366        void *fabric_sess_ptr)
 367{
 368        const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
 369        unsigned char buf[PR_REG_ISID_LEN];
 370        unsigned long flags;
 371
 372        se_sess->se_tpg = se_tpg;
 373        se_sess->fabric_sess_ptr = fabric_sess_ptr;
 374        /*
 375         * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
 376         *
 377         * Only set for struct se_session's that will actually be moving I/O.
 378         * eg: *NOT* discovery sessions.
 379         */
 380        if (se_nacl) {
 381                /*
 382                 *
 383                 * Determine if fabric allows for T10-PI feature bits exposed to
 384                 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
 385                 *
 386                 * If so, then always save prot_type on a per se_node_acl node
 387                 * basis and re-instate the previous sess_prot_type to avoid
 388                 * disabling PI from below any previously initiator side
 389                 * registered LUNs.
 390                 */
 391                if (se_nacl->saved_prot_type)
 392                        se_sess->sess_prot_type = se_nacl->saved_prot_type;
 393                else if (tfo->tpg_check_prot_fabric_only)
 394                        se_sess->sess_prot_type = se_nacl->saved_prot_type =
 395                                        tfo->tpg_check_prot_fabric_only(se_tpg);
 396                /*
 397                 * If the fabric module supports an ISID based TransportID,
 398                 * save this value in binary from the fabric I_T Nexus now.
 399                 */
 400                if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
 401                        memset(&buf[0], 0, PR_REG_ISID_LEN);
 402                        se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
 403                                        &buf[0], PR_REG_ISID_LEN);
 404                        se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
 405                }
 406
 407                spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
 408                /*
 409                 * The se_nacl->nacl_sess pointer will be set to the
 410                 * last active I_T Nexus for each struct se_node_acl.
 411                 */
 412                se_nacl->nacl_sess = se_sess;
 413
 414                list_add_tail(&se_sess->sess_acl_list,
 415                              &se_nacl->acl_sess_list);
 416                spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
 417        }
 418        list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
 419
 420        pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
 421                se_tpg->se_tpg_tfo->fabric_name, se_sess->fabric_sess_ptr);
 422}
 423EXPORT_SYMBOL(__transport_register_session);
 424
 425void transport_register_session(
 426        struct se_portal_group *se_tpg,
 427        struct se_node_acl *se_nacl,
 428        struct se_session *se_sess,
 429        void *fabric_sess_ptr)
 430{
 431        unsigned long flags;
 432
 433        spin_lock_irqsave(&se_tpg->session_lock, flags);
 434        __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
 435        spin_unlock_irqrestore(&se_tpg->session_lock, flags);
 436}
 437EXPORT_SYMBOL(transport_register_session);
 438
 439struct se_session *
 440target_setup_session(struct se_portal_group *tpg,
 441                     unsigned int tag_num, unsigned int tag_size,
 442                     enum target_prot_op prot_op,
 443                     const char *initiatorname, void *private,
 444                     int (*callback)(struct se_portal_group *,
 445                                     struct se_session *, void *))
 446{
 447        struct se_session *sess;
 448
 449        /*
 450         * If the fabric driver is using percpu-ida based pre allocation
 451         * of I/O descriptor tags, go ahead and perform that setup now..
 452         */
 453        if (tag_num != 0)
 454                sess = transport_init_session_tags(tag_num, tag_size, prot_op);
 455        else
 456                sess = transport_alloc_session(prot_op);
 457
 458        if (IS_ERR(sess))
 459                return sess;
 460
 461        sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
 462                                        (unsigned char *)initiatorname);
 463        if (!sess->se_node_acl) {
 464                transport_free_session(sess);
 465                return ERR_PTR(-EACCES);
 466        }
 467        /*
 468         * Go ahead and perform any remaining fabric setup that is
 469         * required before transport_register_session().
 470         */
 471        if (callback != NULL) {
 472                int rc = callback(tpg, sess, private);
 473                if (rc) {
 474                        transport_free_session(sess);
 475                        return ERR_PTR(rc);
 476                }
 477        }
 478
 479        transport_register_session(tpg, sess->se_node_acl, sess, private);
 480        return sess;
 481}
 482EXPORT_SYMBOL(target_setup_session);
 483
 484ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
 485{
 486        struct se_session *se_sess;
 487        ssize_t len = 0;
 488
 489        spin_lock_bh(&se_tpg->session_lock);
 490        list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
 491                if (!se_sess->se_node_acl)
 492                        continue;
 493                if (!se_sess->se_node_acl->dynamic_node_acl)
 494                        continue;
 495                if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
 496                        break;
 497
 498                len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
 499                                se_sess->se_node_acl->initiatorname);
 500                len += 1; /* Include NULL terminator */
 501        }
 502        spin_unlock_bh(&se_tpg->session_lock);
 503
 504        return len;
 505}
 506EXPORT_SYMBOL(target_show_dynamic_sessions);
 507
 508static void target_complete_nacl(struct kref *kref)
 509{
 510        struct se_node_acl *nacl = container_of(kref,
 511                                struct se_node_acl, acl_kref);
 512        struct se_portal_group *se_tpg = nacl->se_tpg;
 513
 514        if (!nacl->dynamic_stop) {
 515                complete(&nacl->acl_free_comp);
 516                return;
 517        }
 518
 519        mutex_lock(&se_tpg->acl_node_mutex);
 520        list_del_init(&nacl->acl_list);
 521        mutex_unlock(&se_tpg->acl_node_mutex);
 522
 523        core_tpg_wait_for_nacl_pr_ref(nacl);
 524        core_free_device_list_for_node(nacl, se_tpg);
 525        kfree(nacl);
 526}
 527
 528void target_put_nacl(struct se_node_acl *nacl)
 529{
 530        kref_put(&nacl->acl_kref, target_complete_nacl);
 531}
 532EXPORT_SYMBOL(target_put_nacl);
 533
 534void transport_deregister_session_configfs(struct se_session *se_sess)
 535{
 536        struct se_node_acl *se_nacl;
 537        unsigned long flags;
 538        /*
 539         * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
 540         */
 541        se_nacl = se_sess->se_node_acl;
 542        if (se_nacl) {
 543                spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
 544                if (!list_empty(&se_sess->sess_acl_list))
 545                        list_del_init(&se_sess->sess_acl_list);
 546                /*
 547                 * If the session list is empty, then clear the pointer.
 548                 * Otherwise, set the struct se_session pointer from the tail
 549                 * element of the per struct se_node_acl active session list.
 550                 */
 551                if (list_empty(&se_nacl->acl_sess_list))
 552                        se_nacl->nacl_sess = NULL;
 553                else {
 554                        se_nacl->nacl_sess = container_of(
 555                                        se_nacl->acl_sess_list.prev,
 556                                        struct se_session, sess_acl_list);
 557                }
 558                spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
 559        }
 560}
 561EXPORT_SYMBOL(transport_deregister_session_configfs);
 562
 563void transport_free_session(struct se_session *se_sess)
 564{
 565        struct se_node_acl *se_nacl = se_sess->se_node_acl;
 566
 567        /*
 568         * Drop the se_node_acl->nacl_kref obtained from within
 569         * core_tpg_get_initiator_node_acl().
 570         */
 571        if (se_nacl) {
 572                struct se_portal_group *se_tpg = se_nacl->se_tpg;
 573                const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
 574                unsigned long flags;
 575
 576                se_sess->se_node_acl = NULL;
 577
 578                /*
 579                 * Also determine if we need to drop the extra ->cmd_kref if
 580                 * it had been previously dynamically generated, and
 581                 * the endpoint is not caching dynamic ACLs.
 582                 */
 583                mutex_lock(&se_tpg->acl_node_mutex);
 584                if (se_nacl->dynamic_node_acl &&
 585                    !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
 586                        spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
 587                        if (list_empty(&se_nacl->acl_sess_list))
 588                                se_nacl->dynamic_stop = true;
 589                        spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
 590
 591                        if (se_nacl->dynamic_stop)
 592                                list_del_init(&se_nacl->acl_list);
 593                }
 594                mutex_unlock(&se_tpg->acl_node_mutex);
 595
 596                if (se_nacl->dynamic_stop)
 597                        target_put_nacl(se_nacl);
 598
 599                target_put_nacl(se_nacl);
 600        }
 601        if (se_sess->sess_cmd_map) {
 602                sbitmap_queue_free(&se_sess->sess_tag_pool);
 603                kvfree(se_sess->sess_cmd_map);
 604        }
 605        transport_uninit_session(se_sess);
 606        kmem_cache_free(se_sess_cache, se_sess);
 607}
 608EXPORT_SYMBOL(transport_free_session);
 609
 610static int target_release_res(struct se_device *dev, void *data)
 611{
 612        struct se_session *sess = data;
 613
 614        if (dev->reservation_holder == sess)
 615                target_release_reservation(dev);
 616        return 0;
 617}
 618
 619void transport_deregister_session(struct se_session *se_sess)
 620{
 621        struct se_portal_group *se_tpg = se_sess->se_tpg;
 622        unsigned long flags;
 623
 624        if (!se_tpg) {
 625                transport_free_session(se_sess);
 626                return;
 627        }
 628
 629        spin_lock_irqsave(&se_tpg->session_lock, flags);
 630        list_del(&se_sess->sess_list);
 631        se_sess->se_tpg = NULL;
 632        se_sess->fabric_sess_ptr = NULL;
 633        spin_unlock_irqrestore(&se_tpg->session_lock, flags);
 634
 635        /*
 636         * Since the session is being removed, release SPC-2
 637         * reservations held by the session that is disappearing.
 638         */
 639        target_for_each_device(target_release_res, se_sess);
 640
 641        pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
 642                se_tpg->se_tpg_tfo->fabric_name);
 643        /*
 644         * If last kref is dropping now for an explicit NodeACL, awake sleeping
 645         * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
 646         * removal context from within transport_free_session() code.
 647         *
 648         * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
 649         * to release all remaining generate_node_acl=1 created ACL resources.
 650         */
 651
 652        transport_free_session(se_sess);
 653}
 654EXPORT_SYMBOL(transport_deregister_session);
 655
 656void target_remove_session(struct se_session *se_sess)
 657{
 658        transport_deregister_session_configfs(se_sess);
 659        transport_deregister_session(se_sess);
 660}
 661EXPORT_SYMBOL(target_remove_session);
 662
 663static void target_remove_from_state_list(struct se_cmd *cmd)
 664{
 665        struct se_device *dev = cmd->se_dev;
 666        unsigned long flags;
 667
 668        if (!dev)
 669                return;
 670
 671        spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags);
 672        if (cmd->state_active) {
 673                list_del(&cmd->state_list);
 674                cmd->state_active = false;
 675        }
 676        spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags);
 677}
 678
 679/*
 680 * This function is called by the target core after the target core has
 681 * finished processing a SCSI command or SCSI TMF. Both the regular command
 682 * processing code and the code for aborting commands can call this
 683 * function. CMD_T_STOP is set if and only if another thread is waiting
 684 * inside transport_wait_for_tasks() for t_transport_stop_comp.
 685 */
 686static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
 687{
 688        unsigned long flags;
 689
 690        target_remove_from_state_list(cmd);
 691
 692        /*
 693         * Clear struct se_cmd->se_lun before the handoff to FE.
 694         */
 695        cmd->se_lun = NULL;
 696
 697        spin_lock_irqsave(&cmd->t_state_lock, flags);
 698        /*
 699         * Determine if frontend context caller is requesting the stopping of
 700         * this command for frontend exceptions.
 701         */
 702        if (cmd->transport_state & CMD_T_STOP) {
 703                pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
 704                        __func__, __LINE__, cmd->tag);
 705
 706                spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 707
 708                complete_all(&cmd->t_transport_stop_comp);
 709                return 1;
 710        }
 711        cmd->transport_state &= ~CMD_T_ACTIVE;
 712        spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 713
 714        /*
 715         * Some fabric modules like tcm_loop can release their internally
 716         * allocated I/O reference and struct se_cmd now.
 717         *
 718         * Fabric modules are expected to return '1' here if the se_cmd being
 719         * passed is released at this point, or zero if not being released.
 720         */
 721        return cmd->se_tfo->check_stop_free(cmd);
 722}
 723
 724static void transport_lun_remove_cmd(struct se_cmd *cmd)
 725{
 726        struct se_lun *lun = cmd->se_lun;
 727
 728        if (!lun)
 729                return;
 730
 731        if (cmpxchg(&cmd->lun_ref_active, true, false))
 732                percpu_ref_put(&lun->lun_ref);
 733}
 734
 735static void target_complete_failure_work(struct work_struct *work)
 736{
 737        struct se_cmd *cmd = container_of(work, struct se_cmd, work);
 738
 739        transport_generic_request_failure(cmd,
 740                        TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
 741}
 742
 743/*
 744 * Used when asking transport to copy Sense Data from the underlying
 745 * Linux/SCSI struct scsi_cmnd
 746 */
 747static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
 748{
 749        struct se_device *dev = cmd->se_dev;
 750
 751        WARN_ON(!cmd->se_lun);
 752
 753        if (!dev)
 754                return NULL;
 755
 756        if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
 757                return NULL;
 758
 759        cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
 760
 761        pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
 762                dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
 763        return cmd->sense_buffer;
 764}
 765
 766void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
 767{
 768        unsigned char *cmd_sense_buf;
 769        unsigned long flags;
 770
 771        spin_lock_irqsave(&cmd->t_state_lock, flags);
 772        cmd_sense_buf = transport_get_sense_buffer(cmd);
 773        if (!cmd_sense_buf) {
 774                spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 775                return;
 776        }
 777
 778        cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
 779        memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
 780        spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 781}
 782EXPORT_SYMBOL(transport_copy_sense_to_cmd);
 783
 784static void target_handle_abort(struct se_cmd *cmd)
 785{
 786        bool tas = cmd->transport_state & CMD_T_TAS;
 787        bool ack_kref = cmd->se_cmd_flags & SCF_ACK_KREF;
 788        int ret;
 789
 790        pr_debug("tag %#llx: send_abort_response = %d\n", cmd->tag, tas);
 791
 792        if (tas) {
 793                if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
 794                        cmd->scsi_status = SAM_STAT_TASK_ABORTED;
 795                        pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
 796                                 cmd->t_task_cdb[0], cmd->tag);
 797                        trace_target_cmd_complete(cmd);
 798                        ret = cmd->se_tfo->queue_status(cmd);
 799                        if (ret) {
 800                                transport_handle_queue_full(cmd, cmd->se_dev,
 801                                                            ret, false);
 802                                return;
 803                        }
 804                } else {
 805                        cmd->se_tmr_req->response = TMR_FUNCTION_REJECTED;
 806                        cmd->se_tfo->queue_tm_rsp(cmd);
 807                }
 808        } else {
 809                /*
 810                 * Allow the fabric driver to unmap any resources before
 811                 * releasing the descriptor via TFO->release_cmd().
 812                 */
 813                cmd->se_tfo->aborted_task(cmd);
 814                if (ack_kref)
 815                        WARN_ON_ONCE(target_put_sess_cmd(cmd) != 0);
 816                /*
 817                 * To do: establish a unit attention condition on the I_T
 818                 * nexus associated with cmd. See also the paragraph "Aborting
 819                 * commands" in SAM.
 820                 */
 821        }
 822
 823        WARN_ON_ONCE(kref_read(&cmd->cmd_kref) == 0);
 824
 825        transport_lun_remove_cmd(cmd);
 826
 827        transport_cmd_check_stop_to_fabric(cmd);
 828}
 829
 830static void target_abort_work(struct work_struct *work)
 831{
 832        struct se_cmd *cmd = container_of(work, struct se_cmd, work);
 833
 834        target_handle_abort(cmd);
 835}
 836
 837static bool target_cmd_interrupted(struct se_cmd *cmd)
 838{
 839        int post_ret;
 840
 841        if (cmd->transport_state & CMD_T_ABORTED) {
 842                if (cmd->transport_complete_callback)
 843                        cmd->transport_complete_callback(cmd, false, &post_ret);
 844                INIT_WORK(&cmd->work, target_abort_work);
 845                queue_work(target_completion_wq, &cmd->work);
 846                return true;
 847        } else if (cmd->transport_state & CMD_T_STOP) {
 848                if (cmd->transport_complete_callback)
 849                        cmd->transport_complete_callback(cmd, false, &post_ret);
 850                complete_all(&cmd->t_transport_stop_comp);
 851                return true;
 852        }
 853
 854        return false;
 855}
 856
 857/* May be called from interrupt context so must not sleep. */
 858void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
 859{
 860        struct se_wwn *wwn = cmd->se_sess->se_tpg->se_tpg_wwn;
 861        int success, cpu;
 862        unsigned long flags;
 863
 864        if (target_cmd_interrupted(cmd))
 865                return;
 866
 867        cmd->scsi_status = scsi_status;
 868
 869        spin_lock_irqsave(&cmd->t_state_lock, flags);
 870        switch (cmd->scsi_status) {
 871        case SAM_STAT_CHECK_CONDITION:
 872                if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
 873                        success = 1;
 874                else
 875                        success = 0;
 876                break;
 877        default:
 878                success = 1;
 879                break;
 880        }
 881
 882        cmd->t_state = TRANSPORT_COMPLETE;
 883        cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
 884        spin_unlock_irqrestore(&cmd->t_state_lock, flags);
 885
 886        INIT_WORK(&cmd->work, success ? target_complete_ok_work :
 887                  target_complete_failure_work);
 888
 889        if (!wwn || wwn->cmd_compl_affinity == SE_COMPL_AFFINITY_CPUID)
 890                cpu = cmd->cpuid;
 891        else
 892                cpu = wwn->cmd_compl_affinity;
 893
 894        queue_work_on(cpu, target_completion_wq, &cmd->work);
 895}
 896EXPORT_SYMBOL(target_complete_cmd);
 897
 898void target_set_cmd_data_length(struct se_cmd *cmd, int length)
 899{
 900        if (length < cmd->data_length) {
 901                if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
 902                        cmd->residual_count += cmd->data_length - length;
 903                } else {
 904                        cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
 905                        cmd->residual_count = cmd->data_length - length;
 906                }
 907
 908                cmd->data_length = length;
 909        }
 910}
 911EXPORT_SYMBOL(target_set_cmd_data_length);
 912
 913void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
 914{
 915        if (scsi_status == SAM_STAT_GOOD ||
 916            cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) {
 917                target_set_cmd_data_length(cmd, length);
 918        }
 919
 920        target_complete_cmd(cmd, scsi_status);
 921}
 922EXPORT_SYMBOL(target_complete_cmd_with_length);
 923
 924static void target_add_to_state_list(struct se_cmd *cmd)
 925{
 926        struct se_device *dev = cmd->se_dev;
 927        unsigned long flags;
 928
 929        spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags);
 930        if (!cmd->state_active) {
 931                list_add_tail(&cmd->state_list,
 932                              &dev->queues[cmd->cpuid].state_list);
 933                cmd->state_active = true;
 934        }
 935        spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags);
 936}
 937
 938/*
 939 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
 940 */
 941static void transport_write_pending_qf(struct se_cmd *cmd);
 942static void transport_complete_qf(struct se_cmd *cmd);
 943
 944void target_qf_do_work(struct work_struct *work)
 945{
 946        struct se_device *dev = container_of(work, struct se_device,
 947                                        qf_work_queue);
 948        LIST_HEAD(qf_cmd_list);
 949        struct se_cmd *cmd, *cmd_tmp;
 950
 951        spin_lock_irq(&dev->qf_cmd_lock);
 952        list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
 953        spin_unlock_irq(&dev->qf_cmd_lock);
 954
 955        list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
 956                list_del(&cmd->se_qf_node);
 957                atomic_dec_mb(&dev->dev_qf_count);
 958
 959                pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
 960                        " context: %s\n", cmd->se_tfo->fabric_name, cmd,
 961                        (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
 962                        (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
 963                        : "UNKNOWN");
 964
 965                if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
 966                        transport_write_pending_qf(cmd);
 967                else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
 968                         cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
 969                        transport_complete_qf(cmd);
 970        }
 971}
 972
 973unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
 974{
 975        switch (cmd->data_direction) {
 976        case DMA_NONE:
 977                return "NONE";
 978        case DMA_FROM_DEVICE:
 979                return "READ";
 980        case DMA_TO_DEVICE:
 981                return "WRITE";
 982        case DMA_BIDIRECTIONAL:
 983                return "BIDI";
 984        default:
 985                break;
 986        }
 987
 988        return "UNKNOWN";
 989}
 990
 991void transport_dump_dev_state(
 992        struct se_device *dev,
 993        char *b,
 994        int *bl)
 995{
 996        *bl += sprintf(b + *bl, "Status: ");
 997        if (dev->export_count)
 998                *bl += sprintf(b + *bl, "ACTIVATED");
 999        else
1000                *bl += sprintf(b + *bl, "DEACTIVATED");
1001
1002        *bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
1003        *bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
1004                dev->dev_attrib.block_size,
1005                dev->dev_attrib.hw_max_sectors);
1006        *bl += sprintf(b + *bl, "        ");
1007}
1008
1009void transport_dump_vpd_proto_id(
1010        struct t10_vpd *vpd,
1011        unsigned char *p_buf,
1012        int p_buf_len)
1013{
1014        unsigned char buf[VPD_TMP_BUF_SIZE];
1015        int len;
1016
1017        memset(buf, 0, VPD_TMP_BUF_SIZE);
1018        len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1019
1020        switch (vpd->protocol_identifier) {
1021        case 0x00:
1022                sprintf(buf+len, "Fibre Channel\n");
1023                break;
1024        case 0x10:
1025                sprintf(buf+len, "Parallel SCSI\n");
1026                break;
1027        case 0x20:
1028                sprintf(buf+len, "SSA\n");
1029                break;
1030        case 0x30:
1031                sprintf(buf+len, "IEEE 1394\n");
1032                break;
1033        case 0x40:
1034                sprintf(buf+len, "SCSI Remote Direct Memory Access"
1035                                " Protocol\n");
1036                break;
1037        case 0x50:
1038                sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1039                break;
1040        case 0x60:
1041                sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1042                break;
1043        case 0x70:
1044                sprintf(buf+len, "Automation/Drive Interface Transport"
1045                                " Protocol\n");
1046                break;
1047        case 0x80:
1048                sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1049                break;
1050        default:
1051                sprintf(buf+len, "Unknown 0x%02x\n",
1052                                vpd->protocol_identifier);
1053                break;
1054        }
1055
1056        if (p_buf)
1057                strncpy(p_buf, buf, p_buf_len);
1058        else
1059                pr_debug("%s", buf);
1060}
1061
1062void
1063transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1064{
1065        /*
1066         * Check if the Protocol Identifier Valid (PIV) bit is set..
1067         *
1068         * from spc3r23.pdf section 7.5.1
1069         */
1070         if (page_83[1] & 0x80) {
1071                vpd->protocol_identifier = (page_83[0] & 0xf0);
1072                vpd->protocol_identifier_set = 1;
1073                transport_dump_vpd_proto_id(vpd, NULL, 0);
1074        }
1075}
1076EXPORT_SYMBOL(transport_set_vpd_proto_id);
1077
1078int transport_dump_vpd_assoc(
1079        struct t10_vpd *vpd,
1080        unsigned char *p_buf,
1081        int p_buf_len)
1082{
1083        unsigned char buf[VPD_TMP_BUF_SIZE];
1084        int ret = 0;
1085        int len;
1086
1087        memset(buf, 0, VPD_TMP_BUF_SIZE);
1088        len = sprintf(buf, "T10 VPD Identifier Association: ");
1089
1090        switch (vpd->association) {
1091        case 0x00:
1092                sprintf(buf+len, "addressed logical unit\n");
1093                break;
1094        case 0x10:
1095                sprintf(buf+len, "target port\n");
1096                break;
1097        case 0x20:
1098                sprintf(buf+len, "SCSI target device\n");
1099                break;
1100        default:
1101                sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1102                ret = -EINVAL;
1103                break;
1104        }
1105
1106        if (p_buf)
1107                strncpy(p_buf, buf, p_buf_len);
1108        else
1109                pr_debug("%s", buf);
1110
1111        return ret;
1112}
1113
1114int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1115{
1116        /*
1117         * The VPD identification association..
1118         *
1119         * from spc3r23.pdf Section 7.6.3.1 Table 297
1120         */
1121        vpd->association = (page_83[1] & 0x30);
1122        return transport_dump_vpd_assoc(vpd, NULL, 0);
1123}
1124EXPORT_SYMBOL(transport_set_vpd_assoc);
1125
1126int transport_dump_vpd_ident_type(
1127        struct t10_vpd *vpd,
1128        unsigned char *p_buf,
1129        int p_buf_len)
1130{
1131        unsigned char buf[VPD_TMP_BUF_SIZE];
1132        int ret = 0;
1133        int len;
1134
1135        memset(buf, 0, VPD_TMP_BUF_SIZE);
1136        len = sprintf(buf, "T10 VPD Identifier Type: ");
1137
1138        switch (vpd->device_identifier_type) {
1139        case 0x00:
1140                sprintf(buf+len, "Vendor specific\n");
1141                break;
1142        case 0x01:
1143                sprintf(buf+len, "T10 Vendor ID based\n");
1144                break;
1145        case 0x02:
1146                sprintf(buf+len, "EUI-64 based\n");
1147                break;
1148        case 0x03:
1149                sprintf(buf+len, "NAA\n");
1150                break;
1151        case 0x04:
1152                sprintf(buf+len, "Relative target port identifier\n");
1153                break;
1154        case 0x08:
1155                sprintf(buf+len, "SCSI name string\n");
1156                break;
1157        default:
1158                sprintf(buf+len, "Unsupported: 0x%02x\n",
1159                                vpd->device_identifier_type);
1160                ret = -EINVAL;
1161                break;
1162        }
1163
1164        if (p_buf) {
1165                if (p_buf_len < strlen(buf)+1)
1166                        return -EINVAL;
1167                strncpy(p_buf, buf, p_buf_len);
1168        } else {
1169                pr_debug("%s", buf);
1170        }
1171
1172        return ret;
1173}
1174
1175int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1176{
1177        /*
1178         * The VPD identifier type..
1179         *
1180         * from spc3r23.pdf Section 7.6.3.1 Table 298
1181         */
1182        vpd->device_identifier_type = (page_83[1] & 0x0f);
1183        return transport_dump_vpd_ident_type(vpd, NULL, 0);
1184}
1185EXPORT_SYMBOL(transport_set_vpd_ident_type);
1186
1187int transport_dump_vpd_ident(
1188        struct t10_vpd *vpd,
1189        unsigned char *p_buf,
1190        int p_buf_len)
1191{
1192        unsigned char buf[VPD_TMP_BUF_SIZE];
1193        int ret = 0;
1194
1195        memset(buf, 0, VPD_TMP_BUF_SIZE);
1196
1197        switch (vpd->device_identifier_code_set) {
1198        case 0x01: /* Binary */
1199                snprintf(buf, sizeof(buf),
1200                        "T10 VPD Binary Device Identifier: %s\n",
1201                        &vpd->device_identifier[0]);
1202                break;
1203        case 0x02: /* ASCII */
1204                snprintf(buf, sizeof(buf),
1205                        "T10 VPD ASCII Device Identifier: %s\n",
1206                        &vpd->device_identifier[0]);
1207                break;
1208        case 0x03: /* UTF-8 */
1209                snprintf(buf, sizeof(buf),
1210                        "T10 VPD UTF-8 Device Identifier: %s\n",
1211                        &vpd->device_identifier[0]);
1212                break;
1213        default:
1214                sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1215                        " 0x%02x", vpd->device_identifier_code_set);
1216                ret = -EINVAL;
1217                break;
1218        }
1219
1220        if (p_buf)
1221                strncpy(p_buf, buf, p_buf_len);
1222        else
1223                pr_debug("%s", buf);
1224
1225        return ret;
1226}
1227
1228int
1229transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1230{
1231        static const char hex_str[] = "0123456789abcdef";
1232        int j = 0, i = 4; /* offset to start of the identifier */
1233
1234        /*
1235         * The VPD Code Set (encoding)
1236         *
1237         * from spc3r23.pdf Section 7.6.3.1 Table 296
1238         */
1239        vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1240        switch (vpd->device_identifier_code_set) {
1241        case 0x01: /* Binary */
1242                vpd->device_identifier[j++] =
1243                                hex_str[vpd->device_identifier_type];
1244                while (i < (4 + page_83[3])) {
1245                        vpd->device_identifier[j++] =
1246                                hex_str[(page_83[i] & 0xf0) >> 4];
1247                        vpd->device_identifier[j++] =
1248                                hex_str[page_83[i] & 0x0f];
1249                        i++;
1250                }
1251                break;
1252        case 0x02: /* ASCII */
1253        case 0x03: /* UTF-8 */
1254                while (i < (4 + page_83[3]))
1255                        vpd->device_identifier[j++] = page_83[i++];
1256                break;
1257        default:
1258                break;
1259        }
1260
1261        return transport_dump_vpd_ident(vpd, NULL, 0);
1262}
1263EXPORT_SYMBOL(transport_set_vpd_ident);
1264
1265static sense_reason_t
1266target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1267                               unsigned int size)
1268{
1269        u32 mtl;
1270
1271        if (!cmd->se_tfo->max_data_sg_nents)
1272                return TCM_NO_SENSE;
1273        /*
1274         * Check if fabric enforced maximum SGL entries per I/O descriptor
1275         * exceeds se_cmd->data_length.  If true, set SCF_UNDERFLOW_BIT +
1276         * residual_count and reduce original cmd->data_length to maximum
1277         * length based on single PAGE_SIZE entry scatter-lists.
1278         */
1279        mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1280        if (cmd->data_length > mtl) {
1281                /*
1282                 * If an existing CDB overflow is present, calculate new residual
1283                 * based on CDB size minus fabric maximum transfer length.
1284                 *
1285                 * If an existing CDB underflow is present, calculate new residual
1286                 * based on original cmd->data_length minus fabric maximum transfer
1287                 * length.
1288                 *
1289                 * Otherwise, set the underflow residual based on cmd->data_length
1290                 * minus fabric maximum transfer length.
1291                 */
1292                if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1293                        cmd->residual_count = (size - mtl);
1294                } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1295                        u32 orig_dl = size + cmd->residual_count;
1296                        cmd->residual_count = (orig_dl - mtl);
1297                } else {
1298                        cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1299                        cmd->residual_count = (cmd->data_length - mtl);
1300                }
1301                cmd->data_length = mtl;
1302                /*
1303                 * Reset sbc_check_prot() calculated protection payload
1304                 * length based upon the new smaller MTL.
1305                 */
1306                if (cmd->prot_length) {
1307                        u32 sectors = (mtl / dev->dev_attrib.block_size);
1308                        cmd->prot_length = dev->prot_length * sectors;
1309                }
1310        }
1311        return TCM_NO_SENSE;
1312}
1313
1314/**
1315 * target_cmd_size_check - Check whether there will be a residual.
1316 * @cmd: SCSI command.
1317 * @size: Data buffer size derived from CDB. The data buffer size provided by
1318 *   the SCSI transport driver is available in @cmd->data_length.
1319 *
1320 * Compare the data buffer size from the CDB with the data buffer limit from the transport
1321 * header. Set @cmd->residual_count and SCF_OVERFLOW_BIT or SCF_UNDERFLOW_BIT if necessary.
1322 *
1323 * Note: target drivers set @cmd->data_length by calling __target_init_cmd().
1324 *
1325 * Return: TCM_NO_SENSE
1326 */
1327sense_reason_t
1328target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1329{
1330        struct se_device *dev = cmd->se_dev;
1331
1332        if (cmd->unknown_data_length) {
1333                cmd->data_length = size;
1334        } else if (size != cmd->data_length) {
1335                pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1336                        " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1337                        " 0x%02x\n", cmd->se_tfo->fabric_name,
1338                                cmd->data_length, size, cmd->t_task_cdb[0]);
1339                /*
1340                 * For READ command for the overflow case keep the existing
1341                 * fabric provided ->data_length. Otherwise for the underflow
1342                 * case, reset ->data_length to the smaller SCSI expected data
1343                 * transfer length.
1344                 */
1345                if (size > cmd->data_length) {
1346                        cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1347                        cmd->residual_count = (size - cmd->data_length);
1348                } else {
1349                        cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1350                        cmd->residual_count = (cmd->data_length - size);
1351                        /*
1352                         * Do not truncate ->data_length for WRITE command to
1353                         * dump all payload
1354                         */
1355                        if (cmd->data_direction == DMA_FROM_DEVICE) {
1356                                cmd->data_length = size;
1357                        }
1358                }
1359
1360                if (cmd->data_direction == DMA_TO_DEVICE) {
1361                        if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1362                                pr_err_ratelimited("Rejecting underflow/overflow"
1363                                                   " for WRITE data CDB\n");
1364                                return TCM_INVALID_FIELD_IN_COMMAND_IU;
1365                        }
1366                        /*
1367                         * Some fabric drivers like iscsi-target still expect to
1368                         * always reject overflow writes.  Reject this case until
1369                         * full fabric driver level support for overflow writes
1370                         * is introduced tree-wide.
1371                         */
1372                        if (size > cmd->data_length) {
1373                                pr_err_ratelimited("Rejecting overflow for"
1374                                                   " WRITE control CDB\n");
1375                                return TCM_INVALID_CDB_FIELD;
1376                        }
1377                }
1378        }
1379
1380        return target_check_max_data_sg_nents(cmd, dev, size);
1381
1382}
1383
1384/*
1385 * Used by fabric modules containing a local struct se_cmd within their
1386 * fabric dependent per I/O descriptor.
1387 *
1388 * Preserves the value of @cmd->tag.
1389 */
1390void __target_init_cmd(
1391        struct se_cmd *cmd,
1392        const struct target_core_fabric_ops *tfo,
1393        struct se_session *se_sess,
1394        u32 data_length,
1395        int data_direction,
1396        int task_attr,
1397        unsigned char *sense_buffer, u64 unpacked_lun)
1398{
1399        INIT_LIST_HEAD(&cmd->se_delayed_node);
1400        INIT_LIST_HEAD(&cmd->se_qf_node);
1401        INIT_LIST_HEAD(&cmd->state_list);
1402        init_completion(&cmd->t_transport_stop_comp);
1403        cmd->free_compl = NULL;
1404        cmd->abrt_compl = NULL;
1405        spin_lock_init(&cmd->t_state_lock);
1406        INIT_WORK(&cmd->work, NULL);
1407        kref_init(&cmd->cmd_kref);
1408
1409        cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1410        cmd->se_tfo = tfo;
1411        cmd->se_sess = se_sess;
1412        cmd->data_length = data_length;
1413        cmd->data_direction = data_direction;
1414        cmd->sam_task_attr = task_attr;
1415        cmd->sense_buffer = sense_buffer;
1416        cmd->orig_fe_lun = unpacked_lun;
1417
1418        if (!(cmd->se_cmd_flags & SCF_USE_CPUID))
1419                cmd->cpuid = raw_smp_processor_id();
1420
1421        cmd->state_active = false;
1422}
1423EXPORT_SYMBOL(__target_init_cmd);
1424
1425static sense_reason_t
1426transport_check_alloc_task_attr(struct se_cmd *cmd)
1427{
1428        struct se_device *dev = cmd->se_dev;
1429
1430        /*
1431         * Check if SAM Task Attribute emulation is enabled for this
1432         * struct se_device storage object
1433         */
1434        if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1435                return 0;
1436
1437        if (cmd->sam_task_attr == TCM_ACA_TAG) {
1438                pr_debug("SAM Task Attribute ACA"
1439                        " emulation is not supported\n");
1440                return TCM_INVALID_CDB_FIELD;
1441        }
1442
1443        return 0;
1444}
1445
1446sense_reason_t
1447target_cmd_init_cdb(struct se_cmd *cmd, unsigned char *cdb, gfp_t gfp)
1448{
1449        sense_reason_t ret;
1450
1451        /*
1452         * Ensure that the received CDB is less than the max (252 + 8) bytes
1453         * for VARIABLE_LENGTH_CMD
1454         */
1455        if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1456                pr_err("Received SCSI CDB with command_size: %d that"
1457                        " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1458                        scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1459                ret = TCM_INVALID_CDB_FIELD;
1460                goto err;
1461        }
1462        /*
1463         * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1464         * allocate the additional extended CDB buffer now..  Otherwise
1465         * setup the pointer from __t_task_cdb to t_task_cdb.
1466         */
1467        if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1468                cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), gfp);
1469                if (!cmd->t_task_cdb) {
1470                        pr_err("Unable to allocate cmd->t_task_cdb"
1471                                " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1472                                scsi_command_size(cdb),
1473                                (unsigned long)sizeof(cmd->__t_task_cdb));
1474                        ret = TCM_OUT_OF_RESOURCES;
1475                        goto err;
1476                }
1477        }
1478        /*
1479         * Copy the original CDB into cmd->
1480         */
1481        memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1482
1483        trace_target_sequencer_start(cmd);
1484        return 0;
1485
1486err:
1487        /*
1488         * Copy the CDB here to allow trace_target_cmd_complete() to
1489         * print the cdb to the trace buffers.
1490         */
1491        memcpy(cmd->t_task_cdb, cdb, min(scsi_command_size(cdb),
1492                                         (unsigned int)TCM_MAX_COMMAND_SIZE));
1493        return ret;
1494}
1495EXPORT_SYMBOL(target_cmd_init_cdb);
1496
1497sense_reason_t
1498target_cmd_parse_cdb(struct se_cmd *cmd)
1499{
1500        struct se_device *dev = cmd->se_dev;
1501        sense_reason_t ret;
1502
1503        ret = dev->transport->parse_cdb(cmd);
1504        if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1505                pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1506                                    cmd->se_tfo->fabric_name,
1507                                    cmd->se_sess->se_node_acl->initiatorname,
1508                                    cmd->t_task_cdb[0]);
1509        if (ret)
1510                return ret;
1511
1512        ret = transport_check_alloc_task_attr(cmd);
1513        if (ret)
1514                return ret;
1515
1516        cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1517        atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1518        return 0;
1519}
1520EXPORT_SYMBOL(target_cmd_parse_cdb);
1521
1522/*
1523 * Used by fabric module frontends to queue tasks directly.
1524 * May only be used from process context.
1525 */
1526int transport_handle_cdb_direct(
1527        struct se_cmd *cmd)
1528{
1529        sense_reason_t ret;
1530
1531        might_sleep();
1532
1533        if (!cmd->se_lun) {
1534                dump_stack();
1535                pr_err("cmd->se_lun is NULL\n");
1536                return -EINVAL;
1537        }
1538
1539        /*
1540         * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1541         * outstanding descriptors are handled correctly during shutdown via
1542         * transport_wait_for_tasks()
1543         *
1544         * Also, we don't take cmd->t_state_lock here as we only expect
1545         * this to be called for initial descriptor submission.
1546         */
1547        cmd->t_state = TRANSPORT_NEW_CMD;
1548        cmd->transport_state |= CMD_T_ACTIVE;
1549
1550        /*
1551         * transport_generic_new_cmd() is already handling QUEUE_FULL,
1552         * so follow TRANSPORT_NEW_CMD processing thread context usage
1553         * and call transport_generic_request_failure() if necessary..
1554         */
1555        ret = transport_generic_new_cmd(cmd);
1556        if (ret)
1557                transport_generic_request_failure(cmd, ret);
1558        return 0;
1559}
1560EXPORT_SYMBOL(transport_handle_cdb_direct);
1561
1562sense_reason_t
1563transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1564                u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1565{
1566        if (!sgl || !sgl_count)
1567                return 0;
1568
1569        /*
1570         * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1571         * scatterlists already have been set to follow what the fabric
1572         * passes for the original expected data transfer length.
1573         */
1574        if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1575                pr_warn("Rejecting SCSI DATA overflow for fabric using"
1576                        " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1577                return TCM_INVALID_CDB_FIELD;
1578        }
1579
1580        cmd->t_data_sg = sgl;
1581        cmd->t_data_nents = sgl_count;
1582        cmd->t_bidi_data_sg = sgl_bidi;
1583        cmd->t_bidi_data_nents = sgl_bidi_count;
1584
1585        cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1586        return 0;
1587}
1588
1589/**
1590 * target_init_cmd - initialize se_cmd
1591 * @se_cmd: command descriptor to init
1592 * @se_sess: associated se_sess for endpoint
1593 * @sense: pointer to SCSI sense buffer
1594 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1595 * @data_length: fabric expected data transfer length
1596 * @task_attr: SAM task attribute
1597 * @data_dir: DMA data direction
1598 * @flags: flags for command submission from target_sc_flags_tables
1599 *
1600 * Task tags are supported if the caller has set @se_cmd->tag.
1601 *
1602 * Returns:
1603 *      - less than zero to signal active I/O shutdown failure.
1604 *      - zero on success.
1605 *
1606 * If the fabric driver calls target_stop_session, then it must check the
1607 * return code and handle failures. This will never fail for other drivers,
1608 * and the return code can be ignored.
1609 */
1610int target_init_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1611                    unsigned char *sense, u64 unpacked_lun,
1612                    u32 data_length, int task_attr, int data_dir, int flags)
1613{
1614        struct se_portal_group *se_tpg;
1615
1616        se_tpg = se_sess->se_tpg;
1617        BUG_ON(!se_tpg);
1618        BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1619
1620        if (flags & TARGET_SCF_USE_CPUID)
1621                se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1622        /*
1623         * Signal bidirectional data payloads to target-core
1624         */
1625        if (flags & TARGET_SCF_BIDI_OP)
1626                se_cmd->se_cmd_flags |= SCF_BIDI;
1627
1628        if (flags & TARGET_SCF_UNKNOWN_SIZE)
1629                se_cmd->unknown_data_length = 1;
1630        /*
1631         * Initialize se_cmd for target operation.  From this point
1632         * exceptions are handled by sending exception status via
1633         * target_core_fabric_ops->queue_status() callback
1634         */
1635        __target_init_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, data_length,
1636                          data_dir, task_attr, sense, unpacked_lun);
1637
1638        /*
1639         * Obtain struct se_cmd->cmd_kref reference. A second kref_get here is
1640         * necessary for fabrics using TARGET_SCF_ACK_KREF that expect a second
1641         * kref_put() to happen during fabric packet acknowledgement.
1642         */
1643        return target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1644}
1645EXPORT_SYMBOL_GPL(target_init_cmd);
1646
1647/**
1648 * target_submit_prep - prepare cmd for submission
1649 * @se_cmd: command descriptor to prep
1650 * @cdb: pointer to SCSI CDB
1651 * @sgl: struct scatterlist memory for unidirectional mapping
1652 * @sgl_count: scatterlist count for unidirectional mapping
1653 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1654 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1655 * @sgl_prot: struct scatterlist memory protection information
1656 * @sgl_prot_count: scatterlist count for protection information
1657 * @gfp: gfp allocation type
1658 *
1659 * Returns:
1660 *      - less than zero to signal failure.
1661 *      - zero on success.
1662 *
1663 * If failure is returned, lio will the callers queue_status to complete
1664 * the cmd.
1665 */
1666int target_submit_prep(struct se_cmd *se_cmd, unsigned char *cdb,
1667                       struct scatterlist *sgl, u32 sgl_count,
1668                       struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1669                       struct scatterlist *sgl_prot, u32 sgl_prot_count,
1670                       gfp_t gfp)
1671{
1672        sense_reason_t rc;
1673
1674        rc = target_cmd_init_cdb(se_cmd, cdb, gfp);
1675        if (rc)
1676                goto send_cc_direct;
1677
1678        /*
1679         * Locate se_lun pointer and attach it to struct se_cmd
1680         */
1681        rc = transport_lookup_cmd_lun(se_cmd);
1682        if (rc)
1683                goto send_cc_direct;
1684
1685        rc = target_cmd_parse_cdb(se_cmd);
1686        if (rc != 0)
1687                goto generic_fail;
1688
1689        /*
1690         * Save pointers for SGLs containing protection information,
1691         * if present.
1692         */
1693        if (sgl_prot_count) {
1694                se_cmd->t_prot_sg = sgl_prot;
1695                se_cmd->t_prot_nents = sgl_prot_count;
1696                se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1697        }
1698
1699        /*
1700         * When a non zero sgl_count has been passed perform SGL passthrough
1701         * mapping for pre-allocated fabric memory instead of having target
1702         * core perform an internal SGL allocation..
1703         */
1704        if (sgl_count != 0) {
1705                BUG_ON(!sgl);
1706
1707                rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1708                                sgl_bidi, sgl_bidi_count);
1709                if (rc != 0)
1710                        goto generic_fail;
1711        }
1712
1713        return 0;
1714
1715send_cc_direct:
1716        transport_send_check_condition_and_sense(se_cmd, rc, 0);
1717        target_put_sess_cmd(se_cmd);
1718        return -EIO;
1719
1720generic_fail:
1721        transport_generic_request_failure(se_cmd, rc);
1722        return -EIO;
1723}
1724EXPORT_SYMBOL_GPL(target_submit_prep);
1725
1726/**
1727 * target_submit - perform final initialization and submit cmd to LIO core
1728 * @se_cmd: command descriptor to submit
1729 *
1730 * target_submit_prep must have been called on the cmd, and this must be
1731 * called from process context.
1732 */
1733void target_submit(struct se_cmd *se_cmd)
1734{
1735        struct scatterlist *sgl = se_cmd->t_data_sg;
1736        unsigned char *buf = NULL;
1737
1738        might_sleep();
1739
1740        if (se_cmd->t_data_nents != 0) {
1741                BUG_ON(!sgl);
1742                /*
1743                 * A work-around for tcm_loop as some userspace code via
1744                 * scsi-generic do not memset their associated read buffers,
1745                 * so go ahead and do that here for type non-data CDBs.  Also
1746                 * note that this is currently guaranteed to be a single SGL
1747                 * for this case by target core in target_setup_cmd_from_cdb()
1748                 * -> transport_generic_cmd_sequencer().
1749                 */
1750                if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1751                     se_cmd->data_direction == DMA_FROM_DEVICE) {
1752                        if (sgl)
1753                                buf = kmap(sg_page(sgl)) + sgl->offset;
1754
1755                        if (buf) {
1756                                memset(buf, 0, sgl->length);
1757                                kunmap(sg_page(sgl));
1758                        }
1759                }
1760
1761        }
1762
1763        /*
1764         * Check if we need to delay processing because of ALUA
1765         * Active/NonOptimized primary access state..
1766         */
1767        core_alua_check_nonop_delay(se_cmd);
1768
1769        transport_handle_cdb_direct(se_cmd);
1770}
1771EXPORT_SYMBOL_GPL(target_submit);
1772
1773/**
1774 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1775 *
1776 * @se_cmd: command descriptor to submit
1777 * @se_sess: associated se_sess for endpoint
1778 * @cdb: pointer to SCSI CDB
1779 * @sense: pointer to SCSI sense buffer
1780 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1781 * @data_length: fabric expected data transfer length
1782 * @task_attr: SAM task attribute
1783 * @data_dir: DMA data direction
1784 * @flags: flags for command submission from target_sc_flags_tables
1785 *
1786 * Task tags are supported if the caller has set @se_cmd->tag.
1787 *
1788 * This may only be called from process context, and also currently
1789 * assumes internal allocation of fabric payload buffer by target-core.
1790 *
1791 * It also assumes interal target core SGL memory allocation.
1792 *
1793 * This function must only be used by drivers that do their own
1794 * sync during shutdown and does not use target_stop_session. If there
1795 * is a failure this function will call into the fabric driver's
1796 * queue_status with a CHECK_CONDITION.
1797 */
1798void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1799                unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1800                u32 data_length, int task_attr, int data_dir, int flags)
1801{
1802        int rc;
1803
1804        rc = target_init_cmd(se_cmd, se_sess, sense, unpacked_lun, data_length,
1805                             task_attr, data_dir, flags);
1806        WARN(rc, "Invalid target_submit_cmd use. Driver must not use target_stop_session or call target_init_cmd directly.\n");
1807        if (rc)
1808                return;
1809
1810        if (target_submit_prep(se_cmd, cdb, NULL, 0, NULL, 0, NULL, 0,
1811                               GFP_KERNEL))
1812                return;
1813
1814        target_submit(se_cmd);
1815}
1816EXPORT_SYMBOL(target_submit_cmd);
1817
1818
1819static struct se_dev_plug *target_plug_device(struct se_device *se_dev)
1820{
1821        struct se_dev_plug *se_plug;
1822
1823        if (!se_dev->transport->plug_device)
1824                return NULL;
1825
1826        se_plug = se_dev->transport->plug_device(se_dev);
1827        if (!se_plug)
1828                return NULL;
1829
1830        se_plug->se_dev = se_dev;
1831        /*
1832         * We have a ref to the lun at this point, but the cmds could
1833         * complete before we unplug, so grab a ref to the se_device so we
1834         * can call back into the backend.
1835         */
1836        config_group_get(&se_dev->dev_group);
1837        return se_plug;
1838}
1839
1840static void target_unplug_device(struct se_dev_plug *se_plug)
1841{
1842        struct se_device *se_dev = se_plug->se_dev;
1843
1844        se_dev->transport->unplug_device(se_plug);
1845        config_group_put(&se_dev->dev_group);
1846}
1847
1848void target_queued_submit_work(struct work_struct *work)
1849{
1850        struct se_cmd_queue *sq = container_of(work, struct se_cmd_queue, work);
1851        struct se_cmd *se_cmd, *next_cmd;
1852        struct se_dev_plug *se_plug = NULL;
1853        struct se_device *se_dev = NULL;
1854        struct llist_node *cmd_list;
1855
1856        cmd_list = llist_del_all(&sq->cmd_list);
1857        if (!cmd_list)
1858                /* Previous call took what we were queued to submit */
1859                return;
1860
1861        cmd_list = llist_reverse_order(cmd_list);
1862        llist_for_each_entry_safe(se_cmd, next_cmd, cmd_list, se_cmd_list) {
1863                if (!se_dev) {
1864                        se_dev = se_cmd->se_dev;
1865                        se_plug = target_plug_device(se_dev);
1866                }
1867
1868                target_submit(se_cmd);
1869        }
1870
1871        if (se_plug)
1872                target_unplug_device(se_plug);
1873}
1874
1875/**
1876 * target_queue_submission - queue the cmd to run on the LIO workqueue
1877 * @se_cmd: command descriptor to submit
1878 */
1879void target_queue_submission(struct se_cmd *se_cmd)
1880{
1881        struct se_device *se_dev = se_cmd->se_dev;
1882        int cpu = se_cmd->cpuid;
1883        struct se_cmd_queue *sq;
1884
1885        sq = &se_dev->queues[cpu].sq;
1886        llist_add(&se_cmd->se_cmd_list, &sq->cmd_list);
1887        queue_work_on(cpu, target_submission_wq, &sq->work);
1888}
1889EXPORT_SYMBOL_GPL(target_queue_submission);
1890
1891static void target_complete_tmr_failure(struct work_struct *work)
1892{
1893        struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1894
1895        se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1896        se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1897
1898        transport_lun_remove_cmd(se_cmd);
1899        transport_cmd_check_stop_to_fabric(se_cmd);
1900}
1901
1902/**
1903 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1904 *                     for TMR CDBs
1905 *
1906 * @se_cmd: command descriptor to submit
1907 * @se_sess: associated se_sess for endpoint
1908 * @sense: pointer to SCSI sense buffer
1909 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1910 * @fabric_tmr_ptr: fabric context for TMR req
1911 * @tm_type: Type of TM request
1912 * @gfp: gfp type for caller
1913 * @tag: referenced task tag for TMR_ABORT_TASK
1914 * @flags: submit cmd flags
1915 *
1916 * Callable from all contexts.
1917 **/
1918
1919int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1920                unsigned char *sense, u64 unpacked_lun,
1921                void *fabric_tmr_ptr, unsigned char tm_type,
1922                gfp_t gfp, u64 tag, int flags)
1923{
1924        struct se_portal_group *se_tpg;
1925        int ret;
1926
1927        se_tpg = se_sess->se_tpg;
1928        BUG_ON(!se_tpg);
1929
1930        __target_init_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1931                          0, DMA_NONE, TCM_SIMPLE_TAG, sense, unpacked_lun);
1932        /*
1933         * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1934         * allocation failure.
1935         */
1936        ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1937        if (ret < 0)
1938                return -ENOMEM;
1939
1940        if (tm_type == TMR_ABORT_TASK)
1941                se_cmd->se_tmr_req->ref_task_tag = tag;
1942
1943        /* See target_submit_cmd for commentary */
1944        ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1945        if (ret) {
1946                core_tmr_release_req(se_cmd->se_tmr_req);
1947                return ret;
1948        }
1949
1950        ret = transport_lookup_tmr_lun(se_cmd);
1951        if (ret)
1952                goto failure;
1953
1954        transport_generic_handle_tmr(se_cmd);
1955        return 0;
1956
1957        /*
1958         * For callback during failure handling, push this work off
1959         * to process context with TMR_LUN_DOES_NOT_EXIST status.
1960         */
1961failure:
1962        INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1963        schedule_work(&se_cmd->work);
1964        return 0;
1965}
1966EXPORT_SYMBOL(target_submit_tmr);
1967
1968/*
1969 * Handle SAM-esque emulation for generic transport request failures.
1970 */
1971void transport_generic_request_failure(struct se_cmd *cmd,
1972                sense_reason_t sense_reason)
1973{
1974        int ret = 0, post_ret;
1975
1976        pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
1977                 sense_reason);
1978        target_show_cmd("-----[ ", cmd);
1979
1980        /*
1981         * For SAM Task Attribute emulation for failed struct se_cmd
1982         */
1983        transport_complete_task_attr(cmd);
1984
1985        if (cmd->transport_complete_callback)
1986                cmd->transport_complete_callback(cmd, false, &post_ret);
1987
1988        if (cmd->transport_state & CMD_T_ABORTED) {
1989                INIT_WORK(&cmd->work, target_abort_work);
1990                queue_work(target_completion_wq, &cmd->work);
1991                return;
1992        }
1993
1994        switch (sense_reason) {
1995        case TCM_NON_EXISTENT_LUN:
1996        case TCM_UNSUPPORTED_SCSI_OPCODE:
1997        case TCM_INVALID_CDB_FIELD:
1998        case TCM_INVALID_PARAMETER_LIST:
1999        case TCM_PARAMETER_LIST_LENGTH_ERROR:
2000        case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2001        case TCM_UNKNOWN_MODE_PAGE:
2002        case TCM_WRITE_PROTECTED:
2003        case TCM_ADDRESS_OUT_OF_RANGE:
2004        case TCM_CHECK_CONDITION_ABORT_CMD:
2005        case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2006        case TCM_CHECK_CONDITION_NOT_READY:
2007        case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
2008        case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
2009        case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
2010        case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
2011        case TCM_TOO_MANY_TARGET_DESCS:
2012        case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
2013        case TCM_TOO_MANY_SEGMENT_DESCS:
2014        case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
2015        case TCM_INVALID_FIELD_IN_COMMAND_IU:
2016                break;
2017        case TCM_OUT_OF_RESOURCES:
2018                cmd->scsi_status = SAM_STAT_TASK_SET_FULL;
2019                goto queue_status;
2020        case TCM_LUN_BUSY:
2021                cmd->scsi_status = SAM_STAT_BUSY;
2022                goto queue_status;
2023        case TCM_RESERVATION_CONFLICT:
2024                /*
2025                 * No SENSE Data payload for this case, set SCSI Status
2026                 * and queue the response to $FABRIC_MOD.
2027                 *
2028                 * Uses linux/include/scsi/scsi.h SAM status codes defs
2029                 */
2030                cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2031                /*
2032                 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2033                 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2034                 * CONFLICT STATUS.
2035                 *
2036                 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2037                 */
2038                if (cmd->se_sess &&
2039                    cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl
2040                                        == TARGET_UA_INTLCK_CTRL_ESTABLISH_UA) {
2041                        target_ua_allocate_lun(cmd->se_sess->se_node_acl,
2042                                               cmd->orig_fe_lun, 0x2C,
2043                                        ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2044                }
2045
2046                goto queue_status;
2047        default:
2048                pr_err("Unknown transport error for CDB 0x%02x: %d\n",
2049                        cmd->t_task_cdb[0], sense_reason);
2050                sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2051                break;
2052        }
2053
2054        ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
2055        if (ret)
2056                goto queue_full;
2057
2058check_stop:
2059        transport_lun_remove_cmd(cmd);
2060        transport_cmd_check_stop_to_fabric(cmd);
2061        return;
2062
2063queue_status:
2064        trace_target_cmd_complete(cmd);
2065        ret = cmd->se_tfo->queue_status(cmd);
2066        if (!ret)
2067                goto check_stop;
2068queue_full:
2069        transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2070}
2071EXPORT_SYMBOL(transport_generic_request_failure);
2072
2073void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
2074{
2075        sense_reason_t ret;
2076
2077        if (!cmd->execute_cmd) {
2078                ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2079                goto err;
2080        }
2081        if (do_checks) {
2082                /*
2083                 * Check for an existing UNIT ATTENTION condition after
2084                 * target_handle_task_attr() has done SAM task attr
2085                 * checking, and possibly have already defered execution
2086                 * out to target_restart_delayed_cmds() context.
2087                 */
2088                ret = target_scsi3_ua_check(cmd);
2089                if (ret)
2090                        goto err;
2091
2092                ret = target_alua_state_check(cmd);
2093                if (ret)
2094                        goto err;
2095
2096                ret = target_check_reservation(cmd);
2097                if (ret) {
2098                        cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2099                        goto err;
2100                }
2101        }
2102
2103        ret = cmd->execute_cmd(cmd);
2104        if (!ret)
2105                return;
2106err:
2107        spin_lock_irq(&cmd->t_state_lock);
2108        cmd->transport_state &= ~CMD_T_SENT;
2109        spin_unlock_irq(&cmd->t_state_lock);
2110
2111        transport_generic_request_failure(cmd, ret);
2112}
2113
2114static int target_write_prot_action(struct se_cmd *cmd)
2115{
2116        u32 sectors;
2117        /*
2118         * Perform WRITE_INSERT of PI using software emulation when backend
2119         * device has PI enabled, if the transport has not already generated
2120         * PI using hardware WRITE_INSERT offload.
2121         */
2122        switch (cmd->prot_op) {
2123        case TARGET_PROT_DOUT_INSERT:
2124                if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
2125                        sbc_dif_generate(cmd);
2126                break;
2127        case TARGET_PROT_DOUT_STRIP:
2128                if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
2129                        break;
2130
2131                sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
2132                cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2133                                             sectors, 0, cmd->t_prot_sg, 0);
2134                if (unlikely(cmd->pi_err)) {
2135                        spin_lock_irq(&cmd->t_state_lock);
2136                        cmd->transport_state &= ~CMD_T_SENT;
2137                        spin_unlock_irq(&cmd->t_state_lock);
2138                        transport_generic_request_failure(cmd, cmd->pi_err);
2139                        return -1;
2140                }
2141                break;
2142        default:
2143                break;
2144        }
2145
2146        return 0;
2147}
2148
2149static bool target_handle_task_attr(struct se_cmd *cmd)
2150{
2151        struct se_device *dev = cmd->se_dev;
2152
2153        if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2154                return false;
2155
2156        cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
2157
2158        /*
2159         * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2160         * to allow the passed struct se_cmd list of tasks to the front of the list.
2161         */
2162        switch (cmd->sam_task_attr) {
2163        case TCM_HEAD_TAG:
2164                pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
2165                         cmd->t_task_cdb[0]);
2166                return false;
2167        case TCM_ORDERED_TAG:
2168                atomic_inc_mb(&dev->dev_ordered_sync);
2169
2170                pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
2171                         cmd->t_task_cdb[0]);
2172
2173                /*
2174                 * Execute an ORDERED command if no other older commands
2175                 * exist that need to be completed first.
2176                 */
2177                if (!atomic_read(&dev->simple_cmds))
2178                        return false;
2179                break;
2180        default:
2181                /*
2182                 * For SIMPLE and UNTAGGED Task Attribute commands
2183                 */
2184                atomic_inc_mb(&dev->simple_cmds);
2185                break;
2186        }
2187
2188        if (atomic_read(&dev->dev_ordered_sync) == 0)
2189                return false;
2190
2191        spin_lock(&dev->delayed_cmd_lock);
2192        list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
2193        spin_unlock(&dev->delayed_cmd_lock);
2194
2195        pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
2196                cmd->t_task_cdb[0], cmd->sam_task_attr);
2197        return true;
2198}
2199
2200void target_execute_cmd(struct se_cmd *cmd)
2201{
2202        /*
2203         * Determine if frontend context caller is requesting the stopping of
2204         * this command for frontend exceptions.
2205         *
2206         * If the received CDB has already been aborted stop processing it here.
2207         */
2208        if (target_cmd_interrupted(cmd))
2209                return;
2210
2211        spin_lock_irq(&cmd->t_state_lock);
2212        cmd->t_state = TRANSPORT_PROCESSING;
2213        cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
2214        spin_unlock_irq(&cmd->t_state_lock);
2215
2216        if (target_write_prot_action(cmd))
2217                return;
2218
2219        if (target_handle_task_attr(cmd)) {
2220                spin_lock_irq(&cmd->t_state_lock);
2221                cmd->transport_state &= ~CMD_T_SENT;
2222                spin_unlock_irq(&cmd->t_state_lock);
2223                return;
2224        }
2225
2226        __target_execute_cmd(cmd, true);
2227}
2228EXPORT_SYMBOL(target_execute_cmd);
2229
2230/*
2231 * Process all commands up to the last received ORDERED task attribute which
2232 * requires another blocking boundary
2233 */
2234static void target_restart_delayed_cmds(struct se_device *dev)
2235{
2236        for (;;) {
2237                struct se_cmd *cmd;
2238
2239                spin_lock(&dev->delayed_cmd_lock);
2240                if (list_empty(&dev->delayed_cmd_list)) {
2241                        spin_unlock(&dev->delayed_cmd_lock);
2242                        break;
2243                }
2244
2245                cmd = list_entry(dev->delayed_cmd_list.next,
2246                                 struct se_cmd, se_delayed_node);
2247                list_del(&cmd->se_delayed_node);
2248                spin_unlock(&dev->delayed_cmd_lock);
2249
2250                cmd->transport_state |= CMD_T_SENT;
2251
2252                __target_execute_cmd(cmd, true);
2253
2254                if (cmd->sam_task_attr == TCM_ORDERED_TAG)
2255                        break;
2256        }
2257}
2258
2259/*
2260 * Called from I/O completion to determine which dormant/delayed
2261 * and ordered cmds need to have their tasks added to the execution queue.
2262 */
2263static void transport_complete_task_attr(struct se_cmd *cmd)
2264{
2265        struct se_device *dev = cmd->se_dev;
2266
2267        if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2268                return;
2269
2270        if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
2271                goto restart;
2272
2273        if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
2274                atomic_dec_mb(&dev->simple_cmds);
2275                dev->dev_cur_ordered_id++;
2276        } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
2277                dev->dev_cur_ordered_id++;
2278                pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2279                         dev->dev_cur_ordered_id);
2280        } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2281                atomic_dec_mb(&dev->dev_ordered_sync);
2282
2283                dev->dev_cur_ordered_id++;
2284                pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2285                         dev->dev_cur_ordered_id);
2286        }
2287        cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;
2288
2289restart:
2290        target_restart_delayed_cmds(dev);
2291}
2292
2293static void transport_complete_qf(struct se_cmd *cmd)
2294{
2295        int ret = 0;
2296
2297        transport_complete_task_attr(cmd);
2298        /*
2299         * If a fabric driver ->write_pending() or ->queue_data_in() callback
2300         * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2301         * the same callbacks should not be retried.  Return CHECK_CONDITION
2302         * if a scsi_status is not already set.
2303         *
2304         * If a fabric driver ->queue_status() has returned non zero, always
2305         * keep retrying no matter what..
2306         */
2307        if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
2308                if (cmd->scsi_status)
2309                        goto queue_status;
2310
2311                translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
2312                goto queue_status;
2313        }
2314
2315        /*
2316         * Check if we need to send a sense buffer from
2317         * the struct se_cmd in question. We do NOT want
2318         * to take this path of the IO has been marked as
2319         * needing to be treated like a "normal read". This
2320         * is the case if it's a tape read, and either the
2321         * FM, EOM, or ILI bits are set, but there is no
2322         * sense data.
2323         */
2324        if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2325            cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2326                goto queue_status;
2327
2328        switch (cmd->data_direction) {
2329        case DMA_FROM_DEVICE:
2330                /* queue status if not treating this as a normal read */
2331                if (cmd->scsi_status &&
2332                    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2333                        goto queue_status;
2334
2335                trace_target_cmd_complete(cmd);
2336                ret = cmd->se_tfo->queue_data_in(cmd);
2337                break;
2338        case DMA_TO_DEVICE:
2339                if (cmd->se_cmd_flags & SCF_BIDI) {
2340                        ret = cmd->se_tfo->queue_data_in(cmd);
2341                        break;
2342                }
2343                fallthrough;
2344        case DMA_NONE:
2345queue_status:
2346                trace_target_cmd_complete(cmd);
2347                ret = cmd->se_tfo->queue_status(cmd);
2348                break;
2349        default:
2350                break;
2351        }
2352
2353        if (ret < 0) {
2354                transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2355                return;
2356        }
2357        transport_lun_remove_cmd(cmd);
2358        transport_cmd_check_stop_to_fabric(cmd);
2359}
2360
2361static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
2362                                        int err, bool write_pending)
2363{
2364        /*
2365         * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2366         * ->queue_data_in() callbacks from new process context.
2367         *
2368         * Otherwise for other errors, transport_complete_qf() will send
2369         * CHECK_CONDITION via ->queue_status() instead of attempting to
2370         * retry associated fabric driver data-transfer callbacks.
2371         */
2372        if (err == -EAGAIN || err == -ENOMEM) {
2373                cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
2374                                                 TRANSPORT_COMPLETE_QF_OK;
2375        } else {
2376                pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
2377                cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
2378        }
2379
2380        spin_lock_irq(&dev->qf_cmd_lock);
2381        list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2382        atomic_inc_mb(&dev->dev_qf_count);
2383        spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2384
2385        schedule_work(&cmd->se_dev->qf_work_queue);
2386}
2387
2388static bool target_read_prot_action(struct se_cmd *cmd)
2389{
2390        switch (cmd->prot_op) {
2391        case TARGET_PROT_DIN_STRIP:
2392                if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2393                        u32 sectors = cmd->data_length >>
2394                                  ilog2(cmd->se_dev->dev_attrib.block_size);
2395
2396                        cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2397                                                     sectors, 0, cmd->t_prot_sg,
2398                                                     0);
2399                        if (cmd->pi_err)
2400                                return true;
2401                }
2402                break;
2403        case TARGET_PROT_DIN_INSERT:
2404                if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2405                        break;
2406
2407                sbc_dif_generate(cmd);
2408                break;
2409        default:
2410                break;
2411        }
2412
2413        return false;
2414}
2415
2416static void target_complete_ok_work(struct work_struct *work)
2417{
2418        struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2419        int ret;
2420
2421        /*
2422         * Check if we need to move delayed/dormant tasks from cmds on the
2423         * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2424         * Attribute.
2425         */
2426        transport_complete_task_attr(cmd);
2427
2428        /*
2429         * Check to schedule QUEUE_FULL work, or execute an existing
2430         * cmd->transport_qf_callback()
2431         */
2432        if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2433                schedule_work(&cmd->se_dev->qf_work_queue);
2434
2435        /*
2436         * Check if we need to send a sense buffer from
2437         * the struct se_cmd in question. We do NOT want
2438         * to take this path of the IO has been marked as
2439         * needing to be treated like a "normal read". This
2440         * is the case if it's a tape read, and either the
2441         * FM, EOM, or ILI bits are set, but there is no
2442         * sense data.
2443         */
2444        if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2445            cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2446                WARN_ON(!cmd->scsi_status);
2447                ret = transport_send_check_condition_and_sense(
2448                                        cmd, 0, 1);
2449                if (ret)
2450                        goto queue_full;
2451
2452                transport_lun_remove_cmd(cmd);
2453                transport_cmd_check_stop_to_fabric(cmd);
2454                return;
2455        }
2456        /*
2457         * Check for a callback, used by amongst other things
2458         * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2459         */
2460        if (cmd->transport_complete_callback) {
2461                sense_reason_t rc;
2462                bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2463                bool zero_dl = !(cmd->data_length);
2464                int post_ret = 0;
2465
2466                rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2467                if (!rc && !post_ret) {
2468                        if (caw && zero_dl)
2469                                goto queue_rsp;
2470
2471                        return;
2472                } else if (rc) {
2473                        ret = transport_send_check_condition_and_sense(cmd,
2474                                                rc, 0);
2475                        if (ret)
2476                                goto queue_full;
2477
2478                        transport_lun_remove_cmd(cmd);
2479                        transport_cmd_check_stop_to_fabric(cmd);
2480                        return;
2481                }
2482        }
2483
2484queue_rsp:
2485        switch (cmd->data_direction) {
2486        case DMA_FROM_DEVICE:
2487                /*
2488                 * if this is a READ-type IO, but SCSI status
2489                 * is set, then skip returning data and just
2490                 * return the status -- unless this IO is marked
2491                 * as needing to be treated as a normal read,
2492                 * in which case we want to go ahead and return
2493                 * the data. This happens, for example, for tape
2494                 * reads with the FM, EOM, or ILI bits set, with
2495                 * no sense data.
2496                 */
2497                if (cmd->scsi_status &&
2498                    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2499                        goto queue_status;
2500
2501                atomic_long_add(cmd->data_length,
2502                                &cmd->se_lun->lun_stats.tx_data_octets);
2503                /*
2504                 * Perform READ_STRIP of PI using software emulation when
2505                 * backend had PI enabled, if the transport will not be
2506                 * performing hardware READ_STRIP offload.
2507                 */
2508                if (target_read_prot_action(cmd)) {
2509                        ret = transport_send_check_condition_and_sense(cmd,
2510                                                cmd->pi_err, 0);
2511                        if (ret)
2512                                goto queue_full;
2513
2514                        transport_lun_remove_cmd(cmd);
2515                        transport_cmd_check_stop_to_fabric(cmd);
2516                        return;
2517                }
2518
2519                trace_target_cmd_complete(cmd);
2520                ret = cmd->se_tfo->queue_data_in(cmd);
2521                if (ret)
2522                        goto queue_full;
2523                break;
2524        case DMA_TO_DEVICE:
2525                atomic_long_add(cmd->data_length,
2526                                &cmd->se_lun->lun_stats.rx_data_octets);
2527                /*
2528                 * Check if we need to send READ payload for BIDI-COMMAND
2529                 */
2530                if (cmd->se_cmd_flags & SCF_BIDI) {
2531                        atomic_long_add(cmd->data_length,
2532                                        &cmd->se_lun->lun_stats.tx_data_octets);
2533                        ret = cmd->se_tfo->queue_data_in(cmd);
2534                        if (ret)
2535                                goto queue_full;
2536                        break;
2537                }
2538                fallthrough;
2539        case DMA_NONE:
2540queue_status:
2541                trace_target_cmd_complete(cmd);
2542                ret = cmd->se_tfo->queue_status(cmd);
2543                if (ret)
2544                        goto queue_full;
2545                break;
2546        default:
2547                break;
2548        }
2549
2550        transport_lun_remove_cmd(cmd);
2551        transport_cmd_check_stop_to_fabric(cmd);
2552        return;
2553
2554queue_full:
2555        pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2556                " data_direction: %d\n", cmd, cmd->data_direction);
2557
2558        transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2559}
2560
2561void target_free_sgl(struct scatterlist *sgl, int nents)
2562{
2563        sgl_free_n_order(sgl, nents, 0);
2564}
2565EXPORT_SYMBOL(target_free_sgl);
2566
2567static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2568{
2569        /*
2570         * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2571         * emulation, and free + reset pointers if necessary..
2572         */
2573        if (!cmd->t_data_sg_orig)
2574                return;
2575
2576        kfree(cmd->t_data_sg);
2577        cmd->t_data_sg = cmd->t_data_sg_orig;
2578        cmd->t_data_sg_orig = NULL;
2579        cmd->t_data_nents = cmd->t_data_nents_orig;
2580        cmd->t_data_nents_orig = 0;
2581}
2582
2583static inline void transport_free_pages(struct se_cmd *cmd)
2584{
2585        if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2586                target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2587                cmd->t_prot_sg = NULL;
2588                cmd->t_prot_nents = 0;
2589        }
2590
2591        if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2592                /*
2593                 * Release special case READ buffer payload required for
2594                 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2595                 */
2596                if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2597                        target_free_sgl(cmd->t_bidi_data_sg,
2598                                           cmd->t_bidi_data_nents);
2599                        cmd->t_bidi_data_sg = NULL;
2600                        cmd->t_bidi_data_nents = 0;
2601                }
2602                transport_reset_sgl_orig(cmd);
2603                return;
2604        }
2605        transport_reset_sgl_orig(cmd);
2606
2607        target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2608        cmd->t_data_sg = NULL;
2609        cmd->t_data_nents = 0;
2610
2611        target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2612        cmd->t_bidi_data_sg = NULL;
2613        cmd->t_bidi_data_nents = 0;
2614}
2615
2616void *transport_kmap_data_sg(struct se_cmd *cmd)
2617{
2618        struct scatterlist *sg = cmd->t_data_sg;
2619        struct page **pages;
2620        int i;
2621
2622        /*
2623         * We need to take into account a possible offset here for fabrics like
2624         * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2625         * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2626         */
2627        if (!cmd->t_data_nents)
2628                return NULL;
2629
2630        BUG_ON(!sg);
2631        if (cmd->t_data_nents == 1)
2632                return kmap(sg_page(sg)) + sg->offset;
2633
2634        /* >1 page. use vmap */
2635        pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2636        if (!pages)
2637                return NULL;
2638
2639        /* convert sg[] to pages[] */
2640        for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2641                pages[i] = sg_page(sg);
2642        }
2643
2644        cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
2645        kfree(pages);
2646        if (!cmd->t_data_vmap)
2647                return NULL;
2648
2649        return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2650}
2651EXPORT_SYMBOL(transport_kmap_data_sg);
2652
2653void transport_kunmap_data_sg(struct se_cmd *cmd)
2654{
2655        if (!cmd->t_data_nents) {
2656                return;
2657        } else if (cmd->t_data_nents == 1) {
2658                kunmap(sg_page(cmd->t_data_sg));
2659                return;
2660        }
2661
2662        vunmap(cmd->t_data_vmap);
2663        cmd->t_data_vmap = NULL;
2664}
2665EXPORT_SYMBOL(transport_kunmap_data_sg);
2666
2667int
2668target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2669                 bool zero_page, bool chainable)
2670{
2671        gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0);
2672
2673        *sgl = sgl_alloc_order(length, 0, chainable, gfp, nents);
2674        return *sgl ? 0 : -ENOMEM;
2675}
2676EXPORT_SYMBOL(target_alloc_sgl);
2677
2678/*
2679 * Allocate any required resources to execute the command.  For writes we
2680 * might not have the payload yet, so notify the fabric via a call to
2681 * ->write_pending instead. Otherwise place it on the execution queue.
2682 */
2683sense_reason_t
2684transport_generic_new_cmd(struct se_cmd *cmd)
2685{
2686        unsigned long flags;
2687        int ret = 0;
2688        bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2689
2690        if (cmd->prot_op != TARGET_PROT_NORMAL &&
2691            !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2692                ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2693                                       cmd->prot_length, true, false);
2694                if (ret < 0)
2695                        return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2696        }
2697
2698        /*
2699         * Determine if the TCM fabric module has already allocated physical
2700         * memory, and is directly calling transport_generic_map_mem_to_cmd()
2701         * beforehand.
2702         */
2703        if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2704            cmd->data_length) {
2705
2706                if ((cmd->se_cmd_flags & SCF_BIDI) ||
2707                    (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2708                        u32 bidi_length;
2709
2710                        if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2711                                bidi_length = cmd->t_task_nolb *
2712                                              cmd->se_dev->dev_attrib.block_size;
2713                        else
2714                                bidi_length = cmd->data_length;
2715
2716                        ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2717                                               &cmd->t_bidi_data_nents,
2718                                               bidi_length, zero_flag, false);
2719                        if (ret < 0)
2720                                return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2721                }
2722
2723                ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2724                                       cmd->data_length, zero_flag, false);
2725                if (ret < 0)
2726                        return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2727        } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2728                    cmd->data_length) {
2729                /*
2730                 * Special case for COMPARE_AND_WRITE with fabrics
2731                 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2732                 */
2733                u32 caw_length = cmd->t_task_nolb *
2734                                 cmd->se_dev->dev_attrib.block_size;
2735
2736                ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2737                                       &cmd->t_bidi_data_nents,
2738                                       caw_length, zero_flag, false);
2739                if (ret < 0)
2740                        return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2741        }
2742        /*
2743         * If this command is not a write we can execute it right here,
2744         * for write buffers we need to notify the fabric driver first
2745         * and let it call back once the write buffers are ready.
2746         */
2747        target_add_to_state_list(cmd);
2748        if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2749                target_execute_cmd(cmd);
2750                return 0;
2751        }
2752
2753        spin_lock_irqsave(&cmd->t_state_lock, flags);
2754        cmd->t_state = TRANSPORT_WRITE_PENDING;
2755        /*
2756         * Determine if frontend context caller is requesting the stopping of
2757         * this command for frontend exceptions.
2758         */
2759        if (cmd->transport_state & CMD_T_STOP &&
2760            !cmd->se_tfo->write_pending_must_be_called) {
2761                pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2762                         __func__, __LINE__, cmd->tag);
2763
2764                spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2765
2766                complete_all(&cmd->t_transport_stop_comp);
2767                return 0;
2768        }
2769        cmd->transport_state &= ~CMD_T_ACTIVE;
2770        spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2771
2772        ret = cmd->se_tfo->write_pending(cmd);
2773        if (ret)
2774                goto queue_full;
2775
2776        return 0;
2777
2778queue_full:
2779        pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2780        transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2781        return 0;
2782}
2783EXPORT_SYMBOL(transport_generic_new_cmd);
2784
2785static void transport_write_pending_qf(struct se_cmd *cmd)
2786{
2787        unsigned long flags;
2788        int ret;
2789        bool stop;
2790
2791        spin_lock_irqsave(&cmd->t_state_lock, flags);
2792        stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED));
2793        spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2794
2795        if (stop) {
2796                pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
2797                        __func__, __LINE__, cmd->tag);
2798                complete_all(&cmd->t_transport_stop_comp);
2799                return;
2800        }
2801
2802        ret = cmd->se_tfo->write_pending(cmd);
2803        if (ret) {
2804                pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2805                         cmd);
2806                transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2807        }
2808}
2809
2810static bool
2811__transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2812                           unsigned long *flags);
2813
2814static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2815{
2816        unsigned long flags;
2817
2818        spin_lock_irqsave(&cmd->t_state_lock, flags);
2819        __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2820        spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2821}
2822
2823/*
2824 * Call target_put_sess_cmd() and wait until target_release_cmd_kref(@cmd) has
2825 * finished.
2826 */
2827void target_put_cmd_and_wait(struct se_cmd *cmd)
2828{
2829        DECLARE_COMPLETION_ONSTACK(compl);
2830
2831        WARN_ON_ONCE(cmd->abrt_compl);
2832        cmd->abrt_compl = &compl;
2833        target_put_sess_cmd(cmd);
2834        wait_for_completion(&compl);
2835}
2836
2837/*
2838 * This function is called by frontend drivers after processing of a command
2839 * has finished.
2840 *
2841 * The protocol for ensuring that either the regular frontend command
2842 * processing flow or target_handle_abort() code drops one reference is as
2843 * follows:
2844 * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause
2845 *   the frontend driver to call this function synchronously or asynchronously.
2846 *   That will cause one reference to be dropped.
2847 * - During regular command processing the target core sets CMD_T_COMPLETE
2848 *   before invoking one of the .queue_*() functions.
2849 * - The code that aborts commands skips commands and TMFs for which
2850 *   CMD_T_COMPLETE has been set.
2851 * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for
2852 *   commands that will be aborted.
2853 * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set
2854 *   transport_generic_free_cmd() skips its call to target_put_sess_cmd().
2855 * - For aborted commands for which CMD_T_TAS has been set .queue_status() will
2856 *   be called and will drop a reference.
2857 * - For aborted commands for which CMD_T_TAS has not been set .aborted_task()
2858 *   will be called. target_handle_abort() will drop the final reference.
2859 */
2860int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2861{
2862        DECLARE_COMPLETION_ONSTACK(compl);
2863        int ret = 0;
2864        bool aborted = false, tas = false;
2865
2866        if (wait_for_tasks)
2867                target_wait_free_cmd(cmd, &aborted, &tas);
2868
2869        if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) {
2870                /*
2871                 * Handle WRITE failure case where transport_generic_new_cmd()
2872                 * has already added se_cmd to state_list, but fabric has
2873                 * failed command before I/O submission.
2874                 */
2875                if (cmd->state_active)
2876                        target_remove_from_state_list(cmd);
2877
2878                if (cmd->se_lun)
2879                        transport_lun_remove_cmd(cmd);
2880        }
2881        if (aborted)
2882                cmd->free_compl = &compl;
2883        ret = target_put_sess_cmd(cmd);
2884        if (aborted) {
2885                pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2886                wait_for_completion(&compl);
2887                ret = 1;
2888        }
2889        return ret;
2890}
2891EXPORT_SYMBOL(transport_generic_free_cmd);
2892
2893/**
2894 * target_get_sess_cmd - Verify the session is accepting cmds and take ref
2895 * @se_cmd:     command descriptor to add
2896 * @ack_kref:   Signal that fabric will perform an ack target_put_sess_cmd()
2897 */
2898int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2899{
2900        struct se_session *se_sess = se_cmd->se_sess;
2901        int ret = 0;
2902
2903        /*
2904         * Add a second kref if the fabric caller is expecting to handle
2905         * fabric acknowledgement that requires two target_put_sess_cmd()
2906         * invocations before se_cmd descriptor release.
2907         */
2908        if (ack_kref) {
2909                kref_get(&se_cmd->cmd_kref);
2910                se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2911        }
2912
2913        if (!percpu_ref_tryget_live(&se_sess->cmd_count))
2914                ret = -ESHUTDOWN;
2915
2916        if (ret && ack_kref)
2917                target_put_sess_cmd(se_cmd);
2918
2919        return ret;
2920}
2921EXPORT_SYMBOL(target_get_sess_cmd);
2922
2923static void target_free_cmd_mem(struct se_cmd *cmd)
2924{
2925        transport_free_pages(cmd);
2926
2927        if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2928                core_tmr_release_req(cmd->se_tmr_req);
2929        if (cmd->t_task_cdb != cmd->__t_task_cdb)
2930                kfree(cmd->t_task_cdb);
2931}
2932
2933static void target_release_cmd_kref(struct kref *kref)
2934{
2935        struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2936        struct se_session *se_sess = se_cmd->se_sess;
2937        struct completion *free_compl = se_cmd->free_compl;
2938        struct completion *abrt_compl = se_cmd->abrt_compl;
2939
2940        target_free_cmd_mem(se_cmd);
2941        se_cmd->se_tfo->release_cmd(se_cmd);
2942        if (free_compl)
2943                complete(free_compl);
2944        if (abrt_compl)
2945                complete(abrt_compl);
2946
2947        percpu_ref_put(&se_sess->cmd_count);
2948}
2949
2950/**
2951 * target_put_sess_cmd - decrease the command reference count
2952 * @se_cmd:     command to drop a reference from
2953 *
2954 * Returns 1 if and only if this target_put_sess_cmd() call caused the
2955 * refcount to drop to zero. Returns zero otherwise.
2956 */
2957int target_put_sess_cmd(struct se_cmd *se_cmd)
2958{
2959        return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2960}
2961EXPORT_SYMBOL(target_put_sess_cmd);
2962
2963static const char *data_dir_name(enum dma_data_direction d)
2964{
2965        switch (d) {
2966        case DMA_BIDIRECTIONAL: return "BIDI";
2967        case DMA_TO_DEVICE:     return "WRITE";
2968        case DMA_FROM_DEVICE:   return "READ";
2969        case DMA_NONE:          return "NONE";
2970        }
2971
2972        return "(?)";
2973}
2974
2975static const char *cmd_state_name(enum transport_state_table t)
2976{
2977        switch (t) {
2978        case TRANSPORT_NO_STATE:        return "NO_STATE";
2979        case TRANSPORT_NEW_CMD:         return "NEW_CMD";
2980        case TRANSPORT_WRITE_PENDING:   return "WRITE_PENDING";
2981        case TRANSPORT_PROCESSING:      return "PROCESSING";
2982        case TRANSPORT_COMPLETE:        return "COMPLETE";
2983        case TRANSPORT_ISTATE_PROCESSING:
2984                                        return "ISTATE_PROCESSING";
2985        case TRANSPORT_COMPLETE_QF_WP:  return "COMPLETE_QF_WP";
2986        case TRANSPORT_COMPLETE_QF_OK:  return "COMPLETE_QF_OK";
2987        case TRANSPORT_COMPLETE_QF_ERR: return "COMPLETE_QF_ERR";
2988        }
2989
2990        return "(?)";
2991}
2992
2993static void target_append_str(char **str, const char *txt)
2994{
2995        char *prev = *str;
2996
2997        *str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
2998                kstrdup(txt, GFP_ATOMIC);
2999        kfree(prev);
3000}
3001
3002/*
3003 * Convert a transport state bitmask into a string. The caller is
3004 * responsible for freeing the returned pointer.
3005 */
3006static char *target_ts_to_str(u32 ts)
3007{
3008        char *str = NULL;
3009
3010        if (ts & CMD_T_ABORTED)
3011                target_append_str(&str, "aborted");
3012        if (ts & CMD_T_ACTIVE)
3013                target_append_str(&str, "active");
3014        if (ts & CMD_T_COMPLETE)
3015                target_append_str(&str, "complete");
3016        if (ts & CMD_T_SENT)
3017                target_append_str(&str, "sent");
3018        if (ts & CMD_T_STOP)
3019                target_append_str(&str, "stop");
3020        if (ts & CMD_T_FABRIC_STOP)
3021                target_append_str(&str, "fabric_stop");
3022
3023        return str;
3024}
3025
3026static const char *target_tmf_name(enum tcm_tmreq_table tmf)
3027{
3028        switch (tmf) {
3029        case TMR_ABORT_TASK:            return "ABORT_TASK";
3030        case TMR_ABORT_TASK_SET:        return "ABORT_TASK_SET";
3031        case TMR_CLEAR_ACA:             return "CLEAR_ACA";
3032        case TMR_CLEAR_TASK_SET:        return "CLEAR_TASK_SET";
3033        case TMR_LUN_RESET:             return "LUN_RESET";
3034        case TMR_TARGET_WARM_RESET:     return "TARGET_WARM_RESET";
3035        case TMR_TARGET_COLD_RESET:     return "TARGET_COLD_RESET";
3036        case TMR_LUN_RESET_PRO:         return "LUN_RESET_PRO";
3037        case TMR_UNKNOWN:               break;
3038        }
3039        return "(?)";
3040}
3041
3042void target_show_cmd(const char *pfx, struct se_cmd *cmd)
3043{
3044        char *ts_str = target_ts_to_str(cmd->transport_state);
3045        const u8 *cdb = cmd->t_task_cdb;
3046        struct se_tmr_req *tmf = cmd->se_tmr_req;
3047
3048        if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
3049                pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
3050                         pfx, cdb[0], cdb[1], cmd->tag,
3051                         data_dir_name(cmd->data_direction),
3052                         cmd->se_tfo->get_cmd_state(cmd),
3053                         cmd_state_name(cmd->t_state), cmd->data_length,
3054                         kref_read(&cmd->cmd_kref), ts_str);
3055        } else {
3056                pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
3057                         pfx, target_tmf_name(tmf->function), cmd->tag,
3058                         tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
3059                         cmd_state_name(cmd->t_state),
3060                         kref_read(&cmd->cmd_kref), ts_str);
3061        }
3062        kfree(ts_str);
3063}
3064EXPORT_SYMBOL(target_show_cmd);
3065
3066static void target_stop_session_confirm(struct percpu_ref *ref)
3067{
3068        struct se_session *se_sess = container_of(ref, struct se_session,
3069                                                  cmd_count);
3070        complete_all(&se_sess->stop_done);
3071}
3072
3073/**
3074 * target_stop_session - Stop new IO from being queued on the session.
3075 * @se_sess:    session to stop
3076 */
3077void target_stop_session(struct se_session *se_sess)
3078{
3079        pr_debug("Stopping session queue.\n");
3080        if (atomic_cmpxchg(&se_sess->stopped, 0, 1) == 0)
3081                percpu_ref_kill_and_confirm(&se_sess->cmd_count,
3082                                            target_stop_session_confirm);
3083}
3084EXPORT_SYMBOL(target_stop_session);
3085
3086/**
3087 * target_wait_for_sess_cmds - Wait for outstanding commands
3088 * @se_sess:    session to wait for active I/O
3089 */
3090void target_wait_for_sess_cmds(struct se_session *se_sess)
3091{
3092        int ret;
3093
3094        WARN_ON_ONCE(!atomic_read(&se_sess->stopped));
3095
3096        do {
3097                pr_debug("Waiting for running cmds to complete.\n");
3098                ret = wait_event_timeout(se_sess->cmd_count_wq,
3099                                percpu_ref_is_zero(&se_sess->cmd_count),
3100                                180 * HZ);
3101        } while (ret <= 0);
3102
3103        wait_for_completion(&se_sess->stop_done);
3104        pr_debug("Waiting for cmds done.\n");
3105}
3106EXPORT_SYMBOL(target_wait_for_sess_cmds);
3107
3108/*
3109 * Prevent that new percpu_ref_tryget_live() calls succeed and wait until
3110 * all references to the LUN have been released. Called during LUN shutdown.
3111 */
3112void transport_clear_lun_ref(struct se_lun *lun)
3113{
3114        percpu_ref_kill(&lun->lun_ref);
3115        wait_for_completion(&lun->lun_shutdown_comp);
3116}
3117
3118static bool
3119__transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
3120                           bool *aborted, bool *tas, unsigned long *flags)
3121        __releases(&cmd->t_state_lock)
3122        __acquires(&cmd->t_state_lock)
3123{
3124        lockdep_assert_held(&cmd->t_state_lock);
3125
3126        if (fabric_stop)
3127                cmd->transport_state |= CMD_T_FABRIC_STOP;
3128
3129        if (cmd->transport_state & CMD_T_ABORTED)
3130                *aborted = true;
3131
3132        if (cmd->transport_state & CMD_T_TAS)
3133                *tas = true;
3134
3135        if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
3136            !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3137                return false;
3138
3139        if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
3140            !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3141                return false;
3142
3143        if (!(cmd->transport_state & CMD_T_ACTIVE))
3144                return false;
3145
3146        if (fabric_stop && *aborted)
3147                return false;
3148
3149        cmd->transport_state |= CMD_T_STOP;
3150
3151        target_show_cmd("wait_for_tasks: Stopping ", cmd);
3152
3153        spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
3154
3155        while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
3156                                            180 * HZ))
3157                target_show_cmd("wait for tasks: ", cmd);
3158
3159        spin_lock_irqsave(&cmd->t_state_lock, *flags);
3160        cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
3161
3162        pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
3163                 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
3164
3165        return true;
3166}
3167
3168/**
3169 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
3170 * @cmd: command to wait on
3171 */
3172bool transport_wait_for_tasks(struct se_cmd *cmd)
3173{
3174        unsigned long flags;
3175        bool ret, aborted = false, tas = false;
3176
3177        spin_lock_irqsave(&cmd->t_state_lock, flags);
3178        ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
3179        spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3180
3181        return ret;
3182}
3183EXPORT_SYMBOL(transport_wait_for_tasks);
3184
3185struct sense_detail {
3186        u8 key;
3187        u8 asc;
3188        u8 ascq;
3189        bool add_sense_info;
3190};
3191
3192static const struct sense_detail sense_detail_table[] = {
3193        [TCM_NO_SENSE] = {
3194                .key = NOT_READY
3195        },
3196        [TCM_NON_EXISTENT_LUN] = {
3197                .key = ILLEGAL_REQUEST,
3198                .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
3199        },
3200        [TCM_UNSUPPORTED_SCSI_OPCODE] = {
3201                .key = ILLEGAL_REQUEST,
3202                .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3203        },
3204        [TCM_SECTOR_COUNT_TOO_MANY] = {
3205                .key = ILLEGAL_REQUEST,
3206                .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3207        },
3208        [TCM_UNKNOWN_MODE_PAGE] = {
3209                .key = ILLEGAL_REQUEST,
3210                .asc = 0x24, /* INVALID FIELD IN CDB */
3211        },
3212        [TCM_CHECK_CONDITION_ABORT_CMD] = {
3213                .key = ABORTED_COMMAND,
3214                .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3215                .ascq = 0x03,
3216        },
3217        [TCM_INCORRECT_AMOUNT_OF_DATA] = {
3218                .key = ABORTED_COMMAND,
3219                .asc = 0x0c, /* WRITE ERROR */
3220                .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3221        },
3222        [TCM_INVALID_CDB_FIELD] = {
3223                .key = ILLEGAL_REQUEST,
3224                .asc = 0x24, /* INVALID FIELD IN CDB */
3225        },
3226        [TCM_INVALID_PARAMETER_LIST] = {
3227                .key = ILLEGAL_REQUEST,
3228                .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
3229        },
3230        [TCM_TOO_MANY_TARGET_DESCS] = {
3231                .key = ILLEGAL_REQUEST,
3232                .asc = 0x26,
3233                .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
3234        },
3235        [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
3236                .key = ILLEGAL_REQUEST,
3237                .asc = 0x26,
3238                .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3239        },
3240        [TCM_TOO_MANY_SEGMENT_DESCS] = {
3241                .key = ILLEGAL_REQUEST,
3242                .asc = 0x26,
3243                .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3244        },
3245        [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
3246                .key = ILLEGAL_REQUEST,
3247                .asc = 0x26,
3248                .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3249        },
3250        [TCM_PARAMETER_LIST_LENGTH_ERROR] = {
3251                .key = ILLEGAL_REQUEST,
3252                .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
3253        },
3254        [TCM_UNEXPECTED_UNSOLICITED_DATA] = {
3255                .key = ILLEGAL_REQUEST,
3256                .asc = 0x0c, /* WRITE ERROR */
3257                .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3258        },
3259        [TCM_SERVICE_CRC_ERROR] = {
3260                .key = ABORTED_COMMAND,
3261                .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
3262                .ascq = 0x05, /* N/A */
3263        },
3264        [TCM_SNACK_REJECTED] = {
3265                .key = ABORTED_COMMAND,
3266                .asc = 0x11, /* READ ERROR */
3267                .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
3268        },
3269        [TCM_WRITE_PROTECTED] = {
3270                .key = DATA_PROTECT,
3271                .asc = 0x27, /* WRITE PROTECTED */
3272        },
3273        [TCM_ADDRESS_OUT_OF_RANGE] = {
3274                .key = ILLEGAL_REQUEST,
3275                .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3276        },
3277        [TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
3278                .key = UNIT_ATTENTION,
3279        },
3280        [TCM_CHECK_CONDITION_NOT_READY] = {
3281                .key = NOT_READY,
3282        },
3283        [TCM_MISCOMPARE_VERIFY] = {
3284                .key = MISCOMPARE,
3285                .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3286                .ascq = 0x00,
3287                .add_sense_info = true,
3288        },
3289        [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
3290                .key = ABORTED_COMMAND,
3291                .asc = 0x10,
3292                .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3293                .add_sense_info = true,
3294        },
3295        [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
3296                .key = ABORTED_COMMAND,
3297                .asc = 0x10,
3298                .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3299                .add_sense_info = true,
3300        },
3301        [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
3302                .key = ABORTED_COMMAND,
3303                .asc = 0x10,
3304                .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3305                .add_sense_info = true,
3306        },
3307        [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
3308                .key = COPY_ABORTED,
3309                .asc = 0x0d,
3310                .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3311
3312        },
3313        [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
3314                /*
3315                 * Returning ILLEGAL REQUEST would cause immediate IO errors on
3316                 * Solaris initiators.  Returning NOT READY instead means the
3317                 * operations will be retried a finite number of times and we
3318                 * can survive intermittent errors.
3319                 */
3320                .key = NOT_READY,
3321                .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3322        },
3323        [TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = {
3324                /*
3325                 * From spc4r22 section5.7.7,5.7.8
3326                 * If a PERSISTENT RESERVE OUT command with a REGISTER service action
3327                 * or a REGISTER AND IGNORE EXISTING KEY service action or
3328                 * REGISTER AND MOVE service actionis attempted,
3329                 * but there are insufficient device server resources to complete the
3330                 * operation, then the command shall be terminated with CHECK CONDITION
3331                 * status, with the sense key set to ILLEGAL REQUEST,and the additonal
3332                 * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
3333                 */
3334                .key = ILLEGAL_REQUEST,
3335                .asc = 0x55,
3336                .ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
3337        },
3338        [TCM_INVALID_FIELD_IN_COMMAND_IU] = {
3339                .key = ILLEGAL_REQUEST,
3340                .asc = 0x0e,
3341                .ascq = 0x03, /* INVALID FIELD IN COMMAND INFORMATION UNIT */
3342        },
3343};
3344
3345/**
3346 * translate_sense_reason - translate a sense reason into T10 key, asc and ascq
3347 * @cmd: SCSI command in which the resulting sense buffer or SCSI status will
3348 *   be stored.
3349 * @reason: LIO sense reason code. If this argument has the value
3350 *   TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If
3351 *   dequeuing a unit attention fails due to multiple commands being processed
3352 *   concurrently, set the command status to BUSY.
3353 *
3354 * Return: 0 upon success or -EINVAL if the sense buffer is too small.
3355 */
3356static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
3357{
3358        const struct sense_detail *sd;
3359        u8 *buffer = cmd->sense_buffer;
3360        int r = (__force int)reason;
3361        u8 key, asc, ascq;
3362        bool desc_format = target_sense_desc_format(cmd->se_dev);
3363
3364        if (r < ARRAY_SIZE(sense_detail_table) && sense_detail_table[r].key)
3365                sd = &sense_detail_table[r];
3366        else
3367                sd = &sense_detail_table[(__force int)
3368                                       TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
3369
3370        key = sd->key;
3371        if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3372                if (!core_scsi3_ua_for_check_condition(cmd, &key, &asc,
3373                                                       &ascq)) {
3374                        cmd->scsi_status = SAM_STAT_BUSY;
3375                        return;
3376                }
3377        } else if (sd->asc == 0) {
3378                WARN_ON_ONCE(cmd->scsi_asc == 0);
3379                asc = cmd->scsi_asc;
3380                ascq = cmd->scsi_ascq;
3381        } else {
3382                asc = sd->asc;
3383                ascq = sd->ascq;
3384        }
3385
3386        cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3387        cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3388        cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
3389        scsi_build_sense_buffer(desc_format, buffer, key, asc, ascq);
3390        if (sd->add_sense_info)
3391                WARN_ON_ONCE(scsi_set_sense_information(buffer,
3392                                                        cmd->scsi_sense_length,
3393                                                        cmd->sense_info) < 0);
3394}
3395
3396int
3397transport_send_check_condition_and_sense(struct se_cmd *cmd,
3398                sense_reason_t reason, int from_transport)
3399{
3400        unsigned long flags;
3401
3402        WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3403
3404        spin_lock_irqsave(&cmd->t_state_lock, flags);
3405        if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3406                spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3407                return 0;
3408        }
3409        cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3410        spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3411
3412        if (!from_transport)
3413                translate_sense_reason(cmd, reason);
3414
3415        trace_target_cmd_complete(cmd);
3416        return cmd->se_tfo->queue_status(cmd);
3417}
3418EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3419
3420/**
3421 * target_send_busy - Send SCSI BUSY status back to the initiator
3422 * @cmd: SCSI command for which to send a BUSY reply.
3423 *
3424 * Note: Only call this function if target_submit_cmd*() failed.
3425 */
3426int target_send_busy(struct se_cmd *cmd)
3427{
3428        WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3429
3430        cmd->scsi_status = SAM_STAT_BUSY;
3431        trace_target_cmd_complete(cmd);
3432        return cmd->se_tfo->queue_status(cmd);
3433}
3434EXPORT_SYMBOL(target_send_busy);
3435
3436static void target_tmr_work(struct work_struct *work)
3437{
3438        struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3439        struct se_device *dev = cmd->se_dev;
3440        struct se_tmr_req *tmr = cmd->se_tmr_req;
3441        int ret;
3442
3443        if (cmd->transport_state & CMD_T_ABORTED)
3444                goto aborted;
3445
3446        switch (tmr->function) {
3447        case TMR_ABORT_TASK:
3448                core_tmr_abort_task(dev, tmr, cmd->se_sess);
3449                break;
3450        case TMR_ABORT_TASK_SET:
3451        case TMR_CLEAR_ACA:
3452        case TMR_CLEAR_TASK_SET:
3453                tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3454                break;
3455        case TMR_LUN_RESET:
3456                ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3457                tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3458                                         TMR_FUNCTION_REJECTED;
3459                if (tmr->response == TMR_FUNCTION_COMPLETE) {
3460                        target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3461                                               cmd->orig_fe_lun, 0x29,
3462                                               ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3463                }
3464                break;
3465        case TMR_TARGET_WARM_RESET:
3466                tmr->response = TMR_FUNCTION_REJECTED;
3467                break;
3468        case TMR_TARGET_COLD_RESET:
3469                tmr->response = TMR_FUNCTION_REJECTED;
3470                break;
3471        default:
3472                pr_err("Unknown TMR function: 0x%02x.\n",
3473                                tmr->function);
3474                tmr->response = TMR_FUNCTION_REJECTED;
3475                break;
3476        }
3477
3478        if (cmd->transport_state & CMD_T_ABORTED)
3479                goto aborted;
3480
3481        cmd->se_tfo->queue_tm_rsp(cmd);
3482
3483        transport_lun_remove_cmd(cmd);
3484        transport_cmd_check_stop_to_fabric(cmd);
3485        return;
3486
3487aborted:
3488        target_handle_abort(cmd);
3489}
3490
3491int transport_generic_handle_tmr(
3492        struct se_cmd *cmd)
3493{
3494        unsigned long flags;
3495        bool aborted = false;
3496
3497        spin_lock_irqsave(&cmd->t_state_lock, flags);
3498        if (cmd->transport_state & CMD_T_ABORTED) {
3499                aborted = true;
3500        } else {
3501                cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3502                cmd->transport_state |= CMD_T_ACTIVE;
3503        }
3504        spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3505
3506        if (aborted) {
3507                pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d ref_tag: %llu tag: %llu\n",
3508                                    cmd->se_tmr_req->function,
3509                                    cmd->se_tmr_req->ref_task_tag, cmd->tag);
3510                target_handle_abort(cmd);
3511                return 0;
3512        }
3513
3514        INIT_WORK(&cmd->work, target_tmr_work);
3515        schedule_work(&cmd->work);
3516        return 0;
3517}
3518EXPORT_SYMBOL(transport_generic_handle_tmr);
3519
3520bool
3521target_check_wce(struct se_device *dev)
3522{
3523        bool wce = false;
3524
3525        if (dev->transport->get_write_cache)
3526                wce = dev->transport->get_write_cache(dev);
3527        else if (dev->dev_attrib.emulate_write_cache > 0)
3528                wce = true;
3529
3530        return wce;
3531}
3532
3533bool
3534target_check_fua(struct se_device *dev)
3535{
3536        return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3537}
3538