linux/drivers/usb/gadget/function/f_fs.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * f_fs.c -- user mode file system API for USB composite function controllers
   4 *
   5 * Copyright (C) 2010 Samsung Electronics
   6 * Author: Michal Nazarewicz <mina86@mina86.com>
   7 *
   8 * Based on inode.c (GadgetFS) which was:
   9 * Copyright (C) 2003-2004 David Brownell
  10 * Copyright (C) 2003 Agilent Technologies
  11 */
  12
  13
  14/* #define DEBUG */
  15/* #define VERBOSE_DEBUG */
  16
  17#include <linux/blkdev.h>
  18#include <linux/pagemap.h>
  19#include <linux/export.h>
  20#include <linux/fs_parser.h>
  21#include <linux/hid.h>
  22#include <linux/mm.h>
  23#include <linux/module.h>
  24#include <linux/scatterlist.h>
  25#include <linux/sched/signal.h>
  26#include <linux/uio.h>
  27#include <linux/vmalloc.h>
  28#include <asm/unaligned.h>
  29
  30#include <linux/usb/ccid.h>
  31#include <linux/usb/composite.h>
  32#include <linux/usb/functionfs.h>
  33
  34#include <linux/aio.h>
  35#include <linux/kthread.h>
  36#include <linux/poll.h>
  37#include <linux/eventfd.h>
  38
  39#include "u_fs.h"
  40#include "u_f.h"
  41#include "u_os_desc.h"
  42#include "configfs.h"
  43
  44#define FUNCTIONFS_MAGIC        0xa647361 /* Chosen by a honest dice roll ;) */
  45
  46/* Reference counter handling */
  47static void ffs_data_get(struct ffs_data *ffs);
  48static void ffs_data_put(struct ffs_data *ffs);
  49/* Creates new ffs_data object. */
  50static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
  51        __attribute__((malloc));
  52
  53/* Opened counter handling. */
  54static void ffs_data_opened(struct ffs_data *ffs);
  55static void ffs_data_closed(struct ffs_data *ffs);
  56
  57/* Called with ffs->mutex held; take over ownership of data. */
  58static int __must_check
  59__ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
  60static int __must_check
  61__ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
  62
  63
  64/* The function structure ***************************************************/
  65
  66struct ffs_ep;
  67
  68struct ffs_function {
  69        struct usb_configuration        *conf;
  70        struct usb_gadget               *gadget;
  71        struct ffs_data                 *ffs;
  72
  73        struct ffs_ep                   *eps;
  74        u8                              eps_revmap[16];
  75        short                           *interfaces_nums;
  76
  77        struct usb_function             function;
  78};
  79
  80
  81static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
  82{
  83        return container_of(f, struct ffs_function, function);
  84}
  85
  86
  87static inline enum ffs_setup_state
  88ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
  89{
  90        return (enum ffs_setup_state)
  91                cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
  92}
  93
  94
  95static void ffs_func_eps_disable(struct ffs_function *func);
  96static int __must_check ffs_func_eps_enable(struct ffs_function *func);
  97
  98static int ffs_func_bind(struct usb_configuration *,
  99                         struct usb_function *);
 100static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
 101static void ffs_func_disable(struct usb_function *);
 102static int ffs_func_setup(struct usb_function *,
 103                          const struct usb_ctrlrequest *);
 104static bool ffs_func_req_match(struct usb_function *,
 105                               const struct usb_ctrlrequest *,
 106                               bool config0);
 107static void ffs_func_suspend(struct usb_function *);
 108static void ffs_func_resume(struct usb_function *);
 109
 110
 111static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
 112static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
 113
 114
 115/* The endpoints structures *************************************************/
 116
 117struct ffs_ep {
 118        struct usb_ep                   *ep;    /* P: ffs->eps_lock */
 119        struct usb_request              *req;   /* P: epfile->mutex */
 120
 121        /* [0]: full speed, [1]: high speed, [2]: super speed */
 122        struct usb_endpoint_descriptor  *descs[3];
 123
 124        u8                              num;
 125
 126        int                             status; /* P: epfile->mutex */
 127};
 128
 129struct ffs_epfile {
 130        /* Protects ep->ep and ep->req. */
 131        struct mutex                    mutex;
 132
 133        struct ffs_data                 *ffs;
 134        struct ffs_ep                   *ep;    /* P: ffs->eps_lock */
 135
 136        struct dentry                   *dentry;
 137
 138        /*
 139         * Buffer for holding data from partial reads which may happen since
 140         * we’re rounding user read requests to a multiple of a max packet size.
 141         *
 142         * The pointer is initialised with NULL value and may be set by
 143         * __ffs_epfile_read_data function to point to a temporary buffer.
 144         *
 145         * In normal operation, calls to __ffs_epfile_read_buffered will consume
 146         * data from said buffer and eventually free it.  Importantly, while the
 147         * function is using the buffer, it sets the pointer to NULL.  This is
 148         * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
 149         * can never run concurrently (they are synchronised by epfile->mutex)
 150         * so the latter will not assign a new value to the pointer.
 151         *
 152         * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
 153         * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
 154         * value is crux of the synchronisation between ffs_func_eps_disable and
 155         * __ffs_epfile_read_data.
 156         *
 157         * Once __ffs_epfile_read_data is about to finish it will try to set the
 158         * pointer back to its old value (as described above), but seeing as the
 159         * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
 160         * the buffer.
 161         *
 162         * == State transitions ==
 163         *
 164         * • ptr == NULL:  (initial state)
 165         *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
 166         *   ◦ __ffs_epfile_read_buffered:    nop
 167         *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
 168         *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 169         * • ptr == DROP:
 170         *   ◦ __ffs_epfile_read_buffer_free: nop
 171         *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
 172         *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
 173         *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 174         * • ptr == buf:
 175         *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
 176         *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
 177         *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
 178         *                                    is always called first
 179         *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 180         * • ptr == NULL and reading:
 181         *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
 182         *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
 183         *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
 184         *   ◦ reading finishes and …
 185         *     … all data read:               free buf, go to ptr == NULL
 186         *     … otherwise:                   go to ptr == buf and reading
 187         * • ptr == DROP and reading:
 188         *   ◦ __ffs_epfile_read_buffer_free: nop
 189         *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
 190         *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
 191         *   ◦ reading finishes:              free buf, go to ptr == DROP
 192         */
 193        struct ffs_buffer               *read_buffer;
 194#define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
 195
 196        char                            name[5];
 197
 198        unsigned char                   in;     /* P: ffs->eps_lock */
 199        unsigned char                   isoc;   /* P: ffs->eps_lock */
 200
 201        unsigned char                   _pad;
 202};
 203
 204struct ffs_buffer {
 205        size_t length;
 206        char *data;
 207        char storage[];
 208};
 209
 210/*  ffs_io_data structure ***************************************************/
 211
 212struct ffs_io_data {
 213        bool aio;
 214        bool read;
 215
 216        struct kiocb *kiocb;
 217        struct iov_iter data;
 218        const void *to_free;
 219        char *buf;
 220
 221        struct mm_struct *mm;
 222        struct work_struct work;
 223
 224        struct usb_ep *ep;
 225        struct usb_request *req;
 226        struct sg_table sgt;
 227        bool use_sg;
 228
 229        struct ffs_data *ffs;
 230};
 231
 232struct ffs_desc_helper {
 233        struct ffs_data *ffs;
 234        unsigned interfaces_count;
 235        unsigned eps_count;
 236};
 237
 238static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
 239static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
 240
 241static struct dentry *
 242ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
 243                   const struct file_operations *fops);
 244
 245/* Devices management *******************************************************/
 246
 247DEFINE_MUTEX(ffs_lock);
 248EXPORT_SYMBOL_GPL(ffs_lock);
 249
 250static struct ffs_dev *_ffs_find_dev(const char *name);
 251static struct ffs_dev *_ffs_alloc_dev(void);
 252static void _ffs_free_dev(struct ffs_dev *dev);
 253static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data);
 254static void ffs_release_dev(struct ffs_dev *ffs_dev);
 255static int ffs_ready(struct ffs_data *ffs);
 256static void ffs_closed(struct ffs_data *ffs);
 257
 258/* Misc helper functions ****************************************************/
 259
 260static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
 261        __attribute__((warn_unused_result, nonnull));
 262static char *ffs_prepare_buffer(const char __user *buf, size_t len)
 263        __attribute__((warn_unused_result, nonnull));
 264
 265
 266/* Control file aka ep0 *****************************************************/
 267
 268static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
 269{
 270        struct ffs_data *ffs = req->context;
 271
 272        complete(&ffs->ep0req_completion);
 273}
 274
 275static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
 276        __releases(&ffs->ev.waitq.lock)
 277{
 278        struct usb_request *req = ffs->ep0req;
 279        int ret;
 280
 281        req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
 282
 283        spin_unlock_irq(&ffs->ev.waitq.lock);
 284
 285        req->buf      = data;
 286        req->length   = len;
 287
 288        /*
 289         * UDC layer requires to provide a buffer even for ZLP, but should
 290         * not use it at all. Let's provide some poisoned pointer to catch
 291         * possible bug in the driver.
 292         */
 293        if (req->buf == NULL)
 294                req->buf = (void *)0xDEADBABE;
 295
 296        reinit_completion(&ffs->ep0req_completion);
 297
 298        ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
 299        if (ret < 0)
 300                return ret;
 301
 302        ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
 303        if (ret) {
 304                usb_ep_dequeue(ffs->gadget->ep0, req);
 305                return -EINTR;
 306        }
 307
 308        ffs->setup_state = FFS_NO_SETUP;
 309        return req->status ? req->status : req->actual;
 310}
 311
 312static int __ffs_ep0_stall(struct ffs_data *ffs)
 313{
 314        if (ffs->ev.can_stall) {
 315                pr_vdebug("ep0 stall\n");
 316                usb_ep_set_halt(ffs->gadget->ep0);
 317                ffs->setup_state = FFS_NO_SETUP;
 318                return -EL2HLT;
 319        } else {
 320                pr_debug("bogus ep0 stall!\n");
 321                return -ESRCH;
 322        }
 323}
 324
 325static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
 326                             size_t len, loff_t *ptr)
 327{
 328        struct ffs_data *ffs = file->private_data;
 329        ssize_t ret;
 330        char *data;
 331
 332        ENTER();
 333
 334        /* Fast check if setup was canceled */
 335        if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
 336                return -EIDRM;
 337
 338        /* Acquire mutex */
 339        ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 340        if (ret < 0)
 341                return ret;
 342
 343        /* Check state */
 344        switch (ffs->state) {
 345        case FFS_READ_DESCRIPTORS:
 346        case FFS_READ_STRINGS:
 347                /* Copy data */
 348                if (len < 16) {
 349                        ret = -EINVAL;
 350                        break;
 351                }
 352
 353                data = ffs_prepare_buffer(buf, len);
 354                if (IS_ERR(data)) {
 355                        ret = PTR_ERR(data);
 356                        break;
 357                }
 358
 359                /* Handle data */
 360                if (ffs->state == FFS_READ_DESCRIPTORS) {
 361                        pr_info("read descriptors\n");
 362                        ret = __ffs_data_got_descs(ffs, data, len);
 363                        if (ret < 0)
 364                                break;
 365
 366                        ffs->state = FFS_READ_STRINGS;
 367                        ret = len;
 368                } else {
 369                        pr_info("read strings\n");
 370                        ret = __ffs_data_got_strings(ffs, data, len);
 371                        if (ret < 0)
 372                                break;
 373
 374                        ret = ffs_epfiles_create(ffs);
 375                        if (ret) {
 376                                ffs->state = FFS_CLOSING;
 377                                break;
 378                        }
 379
 380                        ffs->state = FFS_ACTIVE;
 381                        mutex_unlock(&ffs->mutex);
 382
 383                        ret = ffs_ready(ffs);
 384                        if (ret < 0) {
 385                                ffs->state = FFS_CLOSING;
 386                                return ret;
 387                        }
 388
 389                        return len;
 390                }
 391                break;
 392
 393        case FFS_ACTIVE:
 394                data = NULL;
 395                /*
 396                 * We're called from user space, we can use _irq
 397                 * rather then _irqsave
 398                 */
 399                spin_lock_irq(&ffs->ev.waitq.lock);
 400                switch (ffs_setup_state_clear_cancelled(ffs)) {
 401                case FFS_SETUP_CANCELLED:
 402                        ret = -EIDRM;
 403                        goto done_spin;
 404
 405                case FFS_NO_SETUP:
 406                        ret = -ESRCH;
 407                        goto done_spin;
 408
 409                case FFS_SETUP_PENDING:
 410                        break;
 411                }
 412
 413                /* FFS_SETUP_PENDING */
 414                if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
 415                        spin_unlock_irq(&ffs->ev.waitq.lock);
 416                        ret = __ffs_ep0_stall(ffs);
 417                        break;
 418                }
 419
 420                /* FFS_SETUP_PENDING and not stall */
 421                len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
 422
 423                spin_unlock_irq(&ffs->ev.waitq.lock);
 424
 425                data = ffs_prepare_buffer(buf, len);
 426                if (IS_ERR(data)) {
 427                        ret = PTR_ERR(data);
 428                        break;
 429                }
 430
 431                spin_lock_irq(&ffs->ev.waitq.lock);
 432
 433                /*
 434                 * We are guaranteed to be still in FFS_ACTIVE state
 435                 * but the state of setup could have changed from
 436                 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
 437                 * to check for that.  If that happened we copied data
 438                 * from user space in vain but it's unlikely.
 439                 *
 440                 * For sure we are not in FFS_NO_SETUP since this is
 441                 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
 442                 * transition can be performed and it's protected by
 443                 * mutex.
 444                 */
 445                if (ffs_setup_state_clear_cancelled(ffs) ==
 446                    FFS_SETUP_CANCELLED) {
 447                        ret = -EIDRM;
 448done_spin:
 449                        spin_unlock_irq(&ffs->ev.waitq.lock);
 450                } else {
 451                        /* unlocks spinlock */
 452                        ret = __ffs_ep0_queue_wait(ffs, data, len);
 453                }
 454                kfree(data);
 455                break;
 456
 457        default:
 458                ret = -EBADFD;
 459                break;
 460        }
 461
 462        mutex_unlock(&ffs->mutex);
 463        return ret;
 464}
 465
 466/* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
 467static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
 468                                     size_t n)
 469        __releases(&ffs->ev.waitq.lock)
 470{
 471        /*
 472         * n cannot be bigger than ffs->ev.count, which cannot be bigger than
 473         * size of ffs->ev.types array (which is four) so that's how much space
 474         * we reserve.
 475         */
 476        struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
 477        const size_t size = n * sizeof *events;
 478        unsigned i = 0;
 479
 480        memset(events, 0, size);
 481
 482        do {
 483                events[i].type = ffs->ev.types[i];
 484                if (events[i].type == FUNCTIONFS_SETUP) {
 485                        events[i].u.setup = ffs->ev.setup;
 486                        ffs->setup_state = FFS_SETUP_PENDING;
 487                }
 488        } while (++i < n);
 489
 490        ffs->ev.count -= n;
 491        if (ffs->ev.count)
 492                memmove(ffs->ev.types, ffs->ev.types + n,
 493                        ffs->ev.count * sizeof *ffs->ev.types);
 494
 495        spin_unlock_irq(&ffs->ev.waitq.lock);
 496        mutex_unlock(&ffs->mutex);
 497
 498        return copy_to_user(buf, events, size) ? -EFAULT : size;
 499}
 500
 501static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
 502                            size_t len, loff_t *ptr)
 503{
 504        struct ffs_data *ffs = file->private_data;
 505        char *data = NULL;
 506        size_t n;
 507        int ret;
 508
 509        ENTER();
 510
 511        /* Fast check if setup was canceled */
 512        if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
 513                return -EIDRM;
 514
 515        /* Acquire mutex */
 516        ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 517        if (ret < 0)
 518                return ret;
 519
 520        /* Check state */
 521        if (ffs->state != FFS_ACTIVE) {
 522                ret = -EBADFD;
 523                goto done_mutex;
 524        }
 525
 526        /*
 527         * We're called from user space, we can use _irq rather then
 528         * _irqsave
 529         */
 530        spin_lock_irq(&ffs->ev.waitq.lock);
 531
 532        switch (ffs_setup_state_clear_cancelled(ffs)) {
 533        case FFS_SETUP_CANCELLED:
 534                ret = -EIDRM;
 535                break;
 536
 537        case FFS_NO_SETUP:
 538                n = len / sizeof(struct usb_functionfs_event);
 539                if (!n) {
 540                        ret = -EINVAL;
 541                        break;
 542                }
 543
 544                if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
 545                        ret = -EAGAIN;
 546                        break;
 547                }
 548
 549                if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
 550                                                        ffs->ev.count)) {
 551                        ret = -EINTR;
 552                        break;
 553                }
 554
 555                /* unlocks spinlock */
 556                return __ffs_ep0_read_events(ffs, buf,
 557                                             min(n, (size_t)ffs->ev.count));
 558
 559        case FFS_SETUP_PENDING:
 560                if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
 561                        spin_unlock_irq(&ffs->ev.waitq.lock);
 562                        ret = __ffs_ep0_stall(ffs);
 563                        goto done_mutex;
 564                }
 565
 566                len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
 567
 568                spin_unlock_irq(&ffs->ev.waitq.lock);
 569
 570                if (len) {
 571                        data = kmalloc(len, GFP_KERNEL);
 572                        if (!data) {
 573                                ret = -ENOMEM;
 574                                goto done_mutex;
 575                        }
 576                }
 577
 578                spin_lock_irq(&ffs->ev.waitq.lock);
 579
 580                /* See ffs_ep0_write() */
 581                if (ffs_setup_state_clear_cancelled(ffs) ==
 582                    FFS_SETUP_CANCELLED) {
 583                        ret = -EIDRM;
 584                        break;
 585                }
 586
 587                /* unlocks spinlock */
 588                ret = __ffs_ep0_queue_wait(ffs, data, len);
 589                if ((ret > 0) && (copy_to_user(buf, data, len)))
 590                        ret = -EFAULT;
 591                goto done_mutex;
 592
 593        default:
 594                ret = -EBADFD;
 595                break;
 596        }
 597
 598        spin_unlock_irq(&ffs->ev.waitq.lock);
 599done_mutex:
 600        mutex_unlock(&ffs->mutex);
 601        kfree(data);
 602        return ret;
 603}
 604
 605static int ffs_ep0_open(struct inode *inode, struct file *file)
 606{
 607        struct ffs_data *ffs = inode->i_private;
 608
 609        ENTER();
 610
 611        if (ffs->state == FFS_CLOSING)
 612                return -EBUSY;
 613
 614        file->private_data = ffs;
 615        ffs_data_opened(ffs);
 616
 617        return 0;
 618}
 619
 620static int ffs_ep0_release(struct inode *inode, struct file *file)
 621{
 622        struct ffs_data *ffs = file->private_data;
 623
 624        ENTER();
 625
 626        ffs_data_closed(ffs);
 627
 628        return 0;
 629}
 630
 631static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
 632{
 633        struct ffs_data *ffs = file->private_data;
 634        struct usb_gadget *gadget = ffs->gadget;
 635        long ret;
 636
 637        ENTER();
 638
 639        if (code == FUNCTIONFS_INTERFACE_REVMAP) {
 640                struct ffs_function *func = ffs->func;
 641                ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
 642        } else if (gadget && gadget->ops->ioctl) {
 643                ret = gadget->ops->ioctl(gadget, code, value);
 644        } else {
 645                ret = -ENOTTY;
 646        }
 647
 648        return ret;
 649}
 650
 651static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
 652{
 653        struct ffs_data *ffs = file->private_data;
 654        __poll_t mask = EPOLLWRNORM;
 655        int ret;
 656
 657        poll_wait(file, &ffs->ev.waitq, wait);
 658
 659        ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 660        if (ret < 0)
 661                return mask;
 662
 663        switch (ffs->state) {
 664        case FFS_READ_DESCRIPTORS:
 665        case FFS_READ_STRINGS:
 666                mask |= EPOLLOUT;
 667                break;
 668
 669        case FFS_ACTIVE:
 670                switch (ffs->setup_state) {
 671                case FFS_NO_SETUP:
 672                        if (ffs->ev.count)
 673                                mask |= EPOLLIN;
 674                        break;
 675
 676                case FFS_SETUP_PENDING:
 677                case FFS_SETUP_CANCELLED:
 678                        mask |= (EPOLLIN | EPOLLOUT);
 679                        break;
 680                }
 681                break;
 682
 683        case FFS_CLOSING:
 684                break;
 685        case FFS_DEACTIVATED:
 686                break;
 687        }
 688
 689        mutex_unlock(&ffs->mutex);
 690
 691        return mask;
 692}
 693
 694static const struct file_operations ffs_ep0_operations = {
 695        .llseek =       no_llseek,
 696
 697        .open =         ffs_ep0_open,
 698        .write =        ffs_ep0_write,
 699        .read =         ffs_ep0_read,
 700        .release =      ffs_ep0_release,
 701        .unlocked_ioctl =       ffs_ep0_ioctl,
 702        .poll =         ffs_ep0_poll,
 703};
 704
 705
 706/* "Normal" endpoints operations ********************************************/
 707
 708static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
 709{
 710        ENTER();
 711        if (req->context) {
 712                struct ffs_ep *ep = _ep->driver_data;
 713                ep->status = req->status ? req->status : req->actual;
 714                complete(req->context);
 715        }
 716}
 717
 718static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
 719{
 720        ssize_t ret = copy_to_iter(data, data_len, iter);
 721        if (ret == data_len)
 722                return ret;
 723
 724        if (iov_iter_count(iter))
 725                return -EFAULT;
 726
 727        /*
 728         * Dear user space developer!
 729         *
 730         * TL;DR: To stop getting below error message in your kernel log, change
 731         * user space code using functionfs to align read buffers to a max
 732         * packet size.
 733         *
 734         * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
 735         * packet size.  When unaligned buffer is passed to functionfs, it
 736         * internally uses a larger, aligned buffer so that such UDCs are happy.
 737         *
 738         * Unfortunately, this means that host may send more data than was
 739         * requested in read(2) system call.  f_fs doesn’t know what to do with
 740         * that excess data so it simply drops it.
 741         *
 742         * Was the buffer aligned in the first place, no such problem would
 743         * happen.
 744         *
 745         * Data may be dropped only in AIO reads.  Synchronous reads are handled
 746         * by splitting a request into multiple parts.  This splitting may still
 747         * be a problem though so it’s likely best to align the buffer
 748         * regardless of it being AIO or not..
 749         *
 750         * This only affects OUT endpoints, i.e. reading data with a read(2),
 751         * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
 752         * affected.
 753         */
 754        pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
 755               "Align read buffer size to max packet size to avoid the problem.\n",
 756               data_len, ret);
 757
 758        return ret;
 759}
 760
 761/*
 762 * allocate a virtually contiguous buffer and create a scatterlist describing it
 763 * @sg_table    - pointer to a place to be filled with sg_table contents
 764 * @size        - required buffer size
 765 */
 766static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
 767{
 768        struct page **pages;
 769        void *vaddr, *ptr;
 770        unsigned int n_pages;
 771        int i;
 772
 773        vaddr = vmalloc(sz);
 774        if (!vaddr)
 775                return NULL;
 776
 777        n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
 778        pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
 779        if (!pages) {
 780                vfree(vaddr);
 781
 782                return NULL;
 783        }
 784        for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
 785                pages[i] = vmalloc_to_page(ptr);
 786
 787        if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
 788                kvfree(pages);
 789                vfree(vaddr);
 790
 791                return NULL;
 792        }
 793        kvfree(pages);
 794
 795        return vaddr;
 796}
 797
 798static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
 799        size_t data_len)
 800{
 801        if (io_data->use_sg)
 802                return ffs_build_sg_list(&io_data->sgt, data_len);
 803
 804        return kmalloc(data_len, GFP_KERNEL);
 805}
 806
 807static inline void ffs_free_buffer(struct ffs_io_data *io_data)
 808{
 809        if (!io_data->buf)
 810                return;
 811
 812        if (io_data->use_sg) {
 813                sg_free_table(&io_data->sgt);
 814                vfree(io_data->buf);
 815        } else {
 816                kfree(io_data->buf);
 817        }
 818}
 819
 820static void ffs_user_copy_worker(struct work_struct *work)
 821{
 822        struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
 823                                                   work);
 824        int ret = io_data->req->status ? io_data->req->status :
 825                                         io_data->req->actual;
 826        bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
 827
 828        if (io_data->read && ret > 0) {
 829                kthread_use_mm(io_data->mm);
 830                ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
 831                kthread_unuse_mm(io_data->mm);
 832        }
 833
 834        io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
 835
 836        if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
 837                eventfd_signal(io_data->ffs->ffs_eventfd, 1);
 838
 839        usb_ep_free_request(io_data->ep, io_data->req);
 840
 841        if (io_data->read)
 842                kfree(io_data->to_free);
 843        ffs_free_buffer(io_data);
 844        kfree(io_data);
 845}
 846
 847static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
 848                                         struct usb_request *req)
 849{
 850        struct ffs_io_data *io_data = req->context;
 851        struct ffs_data *ffs = io_data->ffs;
 852
 853        ENTER();
 854
 855        INIT_WORK(&io_data->work, ffs_user_copy_worker);
 856        queue_work(ffs->io_completion_wq, &io_data->work);
 857}
 858
 859static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
 860{
 861        /*
 862         * See comment in struct ffs_epfile for full read_buffer pointer
 863         * synchronisation story.
 864         */
 865        struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
 866        if (buf && buf != READ_BUFFER_DROP)
 867                kfree(buf);
 868}
 869
 870/* Assumes epfile->mutex is held. */
 871static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
 872                                          struct iov_iter *iter)
 873{
 874        /*
 875         * Null out epfile->read_buffer so ffs_func_eps_disable does not free
 876         * the buffer while we are using it.  See comment in struct ffs_epfile
 877         * for full read_buffer pointer synchronisation story.
 878         */
 879        struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
 880        ssize_t ret;
 881        if (!buf || buf == READ_BUFFER_DROP)
 882                return 0;
 883
 884        ret = copy_to_iter(buf->data, buf->length, iter);
 885        if (buf->length == ret) {
 886                kfree(buf);
 887                return ret;
 888        }
 889
 890        if (iov_iter_count(iter)) {
 891                ret = -EFAULT;
 892        } else {
 893                buf->length -= ret;
 894                buf->data += ret;
 895        }
 896
 897        if (cmpxchg(&epfile->read_buffer, NULL, buf))
 898                kfree(buf);
 899
 900        return ret;
 901}
 902
 903/* Assumes epfile->mutex is held. */
 904static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
 905                                      void *data, int data_len,
 906                                      struct iov_iter *iter)
 907{
 908        struct ffs_buffer *buf;
 909
 910        ssize_t ret = copy_to_iter(data, data_len, iter);
 911        if (data_len == ret)
 912                return ret;
 913
 914        if (iov_iter_count(iter))
 915                return -EFAULT;
 916
 917        /* See ffs_copy_to_iter for more context. */
 918        pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
 919                data_len, ret);
 920
 921        data_len -= ret;
 922        buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
 923        if (!buf)
 924                return -ENOMEM;
 925        buf->length = data_len;
 926        buf->data = buf->storage;
 927        memcpy(buf->storage, data + ret, data_len);
 928
 929        /*
 930         * At this point read_buffer is NULL or READ_BUFFER_DROP (if
 931         * ffs_func_eps_disable has been called in the meanwhile).  See comment
 932         * in struct ffs_epfile for full read_buffer pointer synchronisation
 933         * story.
 934         */
 935        if (cmpxchg(&epfile->read_buffer, NULL, buf))
 936                kfree(buf);
 937
 938        return ret;
 939}
 940
 941static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
 942{
 943        struct ffs_epfile *epfile = file->private_data;
 944        struct usb_request *req;
 945        struct ffs_ep *ep;
 946        char *data = NULL;
 947        ssize_t ret, data_len = -EINVAL;
 948        int halt;
 949
 950        /* Are we still active? */
 951        if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
 952                return -ENODEV;
 953
 954        /* Wait for endpoint to be enabled */
 955        ep = epfile->ep;
 956        if (!ep) {
 957                if (file->f_flags & O_NONBLOCK)
 958                        return -EAGAIN;
 959
 960                ret = wait_event_interruptible(
 961                                epfile->ffs->wait, (ep = epfile->ep));
 962                if (ret)
 963                        return -EINTR;
 964        }
 965
 966        /* Do we halt? */
 967        halt = (!io_data->read == !epfile->in);
 968        if (halt && epfile->isoc)
 969                return -EINVAL;
 970
 971        /* We will be using request and read_buffer */
 972        ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
 973        if (ret)
 974                goto error;
 975
 976        /* Allocate & copy */
 977        if (!halt) {
 978                struct usb_gadget *gadget;
 979
 980                /*
 981                 * Do we have buffered data from previous partial read?  Check
 982                 * that for synchronous case only because we do not have
 983                 * facility to ‘wake up’ a pending asynchronous read and push
 984                 * buffered data to it which we would need to make things behave
 985                 * consistently.
 986                 */
 987                if (!io_data->aio && io_data->read) {
 988                        ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
 989                        if (ret)
 990                                goto error_mutex;
 991                }
 992
 993                /*
 994                 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
 995                 * before the waiting completes, so do not assign to 'gadget'
 996                 * earlier
 997                 */
 998                gadget = epfile->ffs->gadget;
 999
1000                spin_lock_irq(&epfile->ffs->eps_lock);
1001                /* In the meantime, endpoint got disabled or changed. */
1002                if (epfile->ep != ep) {
1003                        ret = -ESHUTDOWN;
1004                        goto error_lock;
1005                }
1006                data_len = iov_iter_count(&io_data->data);
1007                /*
1008                 * Controller may require buffer size to be aligned to
1009                 * maxpacketsize of an out endpoint.
1010                 */
1011                if (io_data->read)
1012                        data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1013
1014                io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1015                spin_unlock_irq(&epfile->ffs->eps_lock);
1016
1017                data = ffs_alloc_buffer(io_data, data_len);
1018                if (!data) {
1019                        ret = -ENOMEM;
1020                        goto error_mutex;
1021                }
1022                if (!io_data->read &&
1023                    !copy_from_iter_full(data, data_len, &io_data->data)) {
1024                        ret = -EFAULT;
1025                        goto error_mutex;
1026                }
1027        }
1028
1029        spin_lock_irq(&epfile->ffs->eps_lock);
1030
1031        if (epfile->ep != ep) {
1032                /* In the meantime, endpoint got disabled or changed. */
1033                ret = -ESHUTDOWN;
1034        } else if (halt) {
1035                ret = usb_ep_set_halt(ep->ep);
1036                if (!ret)
1037                        ret = -EBADMSG;
1038        } else if (data_len == -EINVAL) {
1039                /*
1040                 * Sanity Check: even though data_len can't be used
1041                 * uninitialized at the time I write this comment, some
1042                 * compilers complain about this situation.
1043                 * In order to keep the code clean from warnings, data_len is
1044                 * being initialized to -EINVAL during its declaration, which
1045                 * means we can't rely on compiler anymore to warn no future
1046                 * changes won't result in data_len being used uninitialized.
1047                 * For such reason, we're adding this redundant sanity check
1048                 * here.
1049                 */
1050                WARN(1, "%s: data_len == -EINVAL\n", __func__);
1051                ret = -EINVAL;
1052        } else if (!io_data->aio) {
1053                DECLARE_COMPLETION_ONSTACK(done);
1054                bool interrupted = false;
1055
1056                req = ep->req;
1057                if (io_data->use_sg) {
1058                        req->buf = NULL;
1059                        req->sg = io_data->sgt.sgl;
1060                        req->num_sgs = io_data->sgt.nents;
1061                } else {
1062                        req->buf = data;
1063                        req->num_sgs = 0;
1064                }
1065                req->length = data_len;
1066
1067                io_data->buf = data;
1068
1069                req->context  = &done;
1070                req->complete = ffs_epfile_io_complete;
1071
1072                ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1073                if (ret < 0)
1074                        goto error_lock;
1075
1076                spin_unlock_irq(&epfile->ffs->eps_lock);
1077
1078                if (wait_for_completion_interruptible(&done)) {
1079                        /*
1080                         * To avoid race condition with ffs_epfile_io_complete,
1081                         * dequeue the request first then check
1082                         * status. usb_ep_dequeue API should guarantee no race
1083                         * condition with req->complete callback.
1084                         */
1085                        usb_ep_dequeue(ep->ep, req);
1086                        wait_for_completion(&done);
1087                        interrupted = ep->status < 0;
1088                }
1089
1090                if (interrupted)
1091                        ret = -EINTR;
1092                else if (io_data->read && ep->status > 0)
1093                        ret = __ffs_epfile_read_data(epfile, data, ep->status,
1094                                                     &io_data->data);
1095                else
1096                        ret = ep->status;
1097                goto error_mutex;
1098        } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1099                ret = -ENOMEM;
1100        } else {
1101                if (io_data->use_sg) {
1102                        req->buf = NULL;
1103                        req->sg = io_data->sgt.sgl;
1104                        req->num_sgs = io_data->sgt.nents;
1105                } else {
1106                        req->buf = data;
1107                        req->num_sgs = 0;
1108                }
1109                req->length = data_len;
1110
1111                io_data->buf = data;
1112                io_data->ep = ep->ep;
1113                io_data->req = req;
1114                io_data->ffs = epfile->ffs;
1115
1116                req->context  = io_data;
1117                req->complete = ffs_epfile_async_io_complete;
1118
1119                ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1120                if (ret) {
1121                        io_data->req = NULL;
1122                        usb_ep_free_request(ep->ep, req);
1123                        goto error_lock;
1124                }
1125
1126                ret = -EIOCBQUEUED;
1127                /*
1128                 * Do not kfree the buffer in this function.  It will be freed
1129                 * by ffs_user_copy_worker.
1130                 */
1131                data = NULL;
1132        }
1133
1134error_lock:
1135        spin_unlock_irq(&epfile->ffs->eps_lock);
1136error_mutex:
1137        mutex_unlock(&epfile->mutex);
1138error:
1139        if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1140                ffs_free_buffer(io_data);
1141        return ret;
1142}
1143
1144static int
1145ffs_epfile_open(struct inode *inode, struct file *file)
1146{
1147        struct ffs_epfile *epfile = inode->i_private;
1148
1149        ENTER();
1150
1151        if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1152                return -ENODEV;
1153
1154        file->private_data = epfile;
1155        ffs_data_opened(epfile->ffs);
1156
1157        return 0;
1158}
1159
1160static int ffs_aio_cancel(struct kiocb *kiocb)
1161{
1162        struct ffs_io_data *io_data = kiocb->private;
1163        struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1164        unsigned long flags;
1165        int value;
1166
1167        ENTER();
1168
1169        spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1170
1171        if (io_data && io_data->ep && io_data->req)
1172                value = usb_ep_dequeue(io_data->ep, io_data->req);
1173        else
1174                value = -EINVAL;
1175
1176        spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1177
1178        return value;
1179}
1180
1181static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1182{
1183        struct ffs_io_data io_data, *p = &io_data;
1184        ssize_t res;
1185
1186        ENTER();
1187
1188        if (!is_sync_kiocb(kiocb)) {
1189                p = kzalloc(sizeof(io_data), GFP_KERNEL);
1190                if (!p)
1191                        return -ENOMEM;
1192                p->aio = true;
1193        } else {
1194                memset(p, 0, sizeof(*p));
1195                p->aio = false;
1196        }
1197
1198        p->read = false;
1199        p->kiocb = kiocb;
1200        p->data = *from;
1201        p->mm = current->mm;
1202
1203        kiocb->private = p;
1204
1205        if (p->aio)
1206                kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1207
1208        res = ffs_epfile_io(kiocb->ki_filp, p);
1209        if (res == -EIOCBQUEUED)
1210                return res;
1211        if (p->aio)
1212                kfree(p);
1213        else
1214                *from = p->data;
1215        return res;
1216}
1217
1218static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1219{
1220        struct ffs_io_data io_data, *p = &io_data;
1221        ssize_t res;
1222
1223        ENTER();
1224
1225        if (!is_sync_kiocb(kiocb)) {
1226                p = kzalloc(sizeof(io_data), GFP_KERNEL);
1227                if (!p)
1228                        return -ENOMEM;
1229                p->aio = true;
1230        } else {
1231                memset(p, 0, sizeof(*p));
1232                p->aio = false;
1233        }
1234
1235        p->read = true;
1236        p->kiocb = kiocb;
1237        if (p->aio) {
1238                p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1239                if (!p->to_free) {
1240                        kfree(p);
1241                        return -ENOMEM;
1242                }
1243        } else {
1244                p->data = *to;
1245                p->to_free = NULL;
1246        }
1247        p->mm = current->mm;
1248
1249        kiocb->private = p;
1250
1251        if (p->aio)
1252                kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1253
1254        res = ffs_epfile_io(kiocb->ki_filp, p);
1255        if (res == -EIOCBQUEUED)
1256                return res;
1257
1258        if (p->aio) {
1259                kfree(p->to_free);
1260                kfree(p);
1261        } else {
1262                *to = p->data;
1263        }
1264        return res;
1265}
1266
1267static int
1268ffs_epfile_release(struct inode *inode, struct file *file)
1269{
1270        struct ffs_epfile *epfile = inode->i_private;
1271
1272        ENTER();
1273
1274        __ffs_epfile_read_buffer_free(epfile);
1275        ffs_data_closed(epfile->ffs);
1276
1277        return 0;
1278}
1279
1280static long ffs_epfile_ioctl(struct file *file, unsigned code,
1281                             unsigned long value)
1282{
1283        struct ffs_epfile *epfile = file->private_data;
1284        struct ffs_ep *ep;
1285        int ret;
1286
1287        ENTER();
1288
1289        if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1290                return -ENODEV;
1291
1292        /* Wait for endpoint to be enabled */
1293        ep = epfile->ep;
1294        if (!ep) {
1295                if (file->f_flags & O_NONBLOCK)
1296                        return -EAGAIN;
1297
1298                ret = wait_event_interruptible(
1299                                epfile->ffs->wait, (ep = epfile->ep));
1300                if (ret)
1301                        return -EINTR;
1302        }
1303
1304        spin_lock_irq(&epfile->ffs->eps_lock);
1305
1306        /* In the meantime, endpoint got disabled or changed. */
1307        if (epfile->ep != ep) {
1308                spin_unlock_irq(&epfile->ffs->eps_lock);
1309                return -ESHUTDOWN;
1310        }
1311
1312        switch (code) {
1313        case FUNCTIONFS_FIFO_STATUS:
1314                ret = usb_ep_fifo_status(epfile->ep->ep);
1315                break;
1316        case FUNCTIONFS_FIFO_FLUSH:
1317                usb_ep_fifo_flush(epfile->ep->ep);
1318                ret = 0;
1319                break;
1320        case FUNCTIONFS_CLEAR_HALT:
1321                ret = usb_ep_clear_halt(epfile->ep->ep);
1322                break;
1323        case FUNCTIONFS_ENDPOINT_REVMAP:
1324                ret = epfile->ep->num;
1325                break;
1326        case FUNCTIONFS_ENDPOINT_DESC:
1327        {
1328                int desc_idx;
1329                struct usb_endpoint_descriptor desc1, *desc;
1330
1331                switch (epfile->ffs->gadget->speed) {
1332                case USB_SPEED_SUPER:
1333                case USB_SPEED_SUPER_PLUS:
1334                        desc_idx = 2;
1335                        break;
1336                case USB_SPEED_HIGH:
1337                        desc_idx = 1;
1338                        break;
1339                default:
1340                        desc_idx = 0;
1341                }
1342
1343                desc = epfile->ep->descs[desc_idx];
1344                memcpy(&desc1, desc, desc->bLength);
1345
1346                spin_unlock_irq(&epfile->ffs->eps_lock);
1347                ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1348                if (ret)
1349                        ret = -EFAULT;
1350                return ret;
1351        }
1352        default:
1353                ret = -ENOTTY;
1354        }
1355        spin_unlock_irq(&epfile->ffs->eps_lock);
1356
1357        return ret;
1358}
1359
1360static const struct file_operations ffs_epfile_operations = {
1361        .llseek =       no_llseek,
1362
1363        .open =         ffs_epfile_open,
1364        .write_iter =   ffs_epfile_write_iter,
1365        .read_iter =    ffs_epfile_read_iter,
1366        .release =      ffs_epfile_release,
1367        .unlocked_ioctl =       ffs_epfile_ioctl,
1368        .compat_ioctl = compat_ptr_ioctl,
1369};
1370
1371
1372/* File system and super block operations ***********************************/
1373
1374/*
1375 * Mounting the file system creates a controller file, used first for
1376 * function configuration then later for event monitoring.
1377 */
1378
1379static struct inode *__must_check
1380ffs_sb_make_inode(struct super_block *sb, void *data,
1381                  const struct file_operations *fops,
1382                  const struct inode_operations *iops,
1383                  struct ffs_file_perms *perms)
1384{
1385        struct inode *inode;
1386
1387        ENTER();
1388
1389        inode = new_inode(sb);
1390
1391        if (inode) {
1392                struct timespec64 ts = current_time(inode);
1393
1394                inode->i_ino     = get_next_ino();
1395                inode->i_mode    = perms->mode;
1396                inode->i_uid     = perms->uid;
1397                inode->i_gid     = perms->gid;
1398                inode->i_atime   = ts;
1399                inode->i_mtime   = ts;
1400                inode->i_ctime   = ts;
1401                inode->i_private = data;
1402                if (fops)
1403                        inode->i_fop = fops;
1404                if (iops)
1405                        inode->i_op  = iops;
1406        }
1407
1408        return inode;
1409}
1410
1411/* Create "regular" file */
1412static struct dentry *ffs_sb_create_file(struct super_block *sb,
1413                                        const char *name, void *data,
1414                                        const struct file_operations *fops)
1415{
1416        struct ffs_data *ffs = sb->s_fs_info;
1417        struct dentry   *dentry;
1418        struct inode    *inode;
1419
1420        ENTER();
1421
1422        dentry = d_alloc_name(sb->s_root, name);
1423        if (!dentry)
1424                return NULL;
1425
1426        inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1427        if (!inode) {
1428                dput(dentry);
1429                return NULL;
1430        }
1431
1432        d_add(dentry, inode);
1433        return dentry;
1434}
1435
1436/* Super block */
1437static const struct super_operations ffs_sb_operations = {
1438        .statfs =       simple_statfs,
1439        .drop_inode =   generic_delete_inode,
1440};
1441
1442struct ffs_sb_fill_data {
1443        struct ffs_file_perms perms;
1444        umode_t root_mode;
1445        const char *dev_name;
1446        bool no_disconnect;
1447        struct ffs_data *ffs_data;
1448};
1449
1450static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1451{
1452        struct ffs_sb_fill_data *data = fc->fs_private;
1453        struct inode    *inode;
1454        struct ffs_data *ffs = data->ffs_data;
1455
1456        ENTER();
1457
1458        ffs->sb              = sb;
1459        data->ffs_data       = NULL;
1460        sb->s_fs_info        = ffs;
1461        sb->s_blocksize      = PAGE_SIZE;
1462        sb->s_blocksize_bits = PAGE_SHIFT;
1463        sb->s_magic          = FUNCTIONFS_MAGIC;
1464        sb->s_op             = &ffs_sb_operations;
1465        sb->s_time_gran      = 1;
1466
1467        /* Root inode */
1468        data->perms.mode = data->root_mode;
1469        inode = ffs_sb_make_inode(sb, NULL,
1470                                  &simple_dir_operations,
1471                                  &simple_dir_inode_operations,
1472                                  &data->perms);
1473        sb->s_root = d_make_root(inode);
1474        if (!sb->s_root)
1475                return -ENOMEM;
1476
1477        /* EP0 file */
1478        if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations))
1479                return -ENOMEM;
1480
1481        return 0;
1482}
1483
1484enum {
1485        Opt_no_disconnect,
1486        Opt_rmode,
1487        Opt_fmode,
1488        Opt_mode,
1489        Opt_uid,
1490        Opt_gid,
1491};
1492
1493static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1494        fsparam_bool    ("no_disconnect",       Opt_no_disconnect),
1495        fsparam_u32     ("rmode",               Opt_rmode),
1496        fsparam_u32     ("fmode",               Opt_fmode),
1497        fsparam_u32     ("mode",                Opt_mode),
1498        fsparam_u32     ("uid",                 Opt_uid),
1499        fsparam_u32     ("gid",                 Opt_gid),
1500        {}
1501};
1502
1503static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1504{
1505        struct ffs_sb_fill_data *data = fc->fs_private;
1506        struct fs_parse_result result;
1507        int opt;
1508
1509        ENTER();
1510
1511        opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1512        if (opt < 0)
1513                return opt;
1514
1515        switch (opt) {
1516        case Opt_no_disconnect:
1517                data->no_disconnect = result.boolean;
1518                break;
1519        case Opt_rmode:
1520                data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1521                break;
1522        case Opt_fmode:
1523                data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1524                break;
1525        case Opt_mode:
1526                data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1527                data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1528                break;
1529
1530        case Opt_uid:
1531                data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1532                if (!uid_valid(data->perms.uid))
1533                        goto unmapped_value;
1534                break;
1535        case Opt_gid:
1536                data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1537                if (!gid_valid(data->perms.gid))
1538                        goto unmapped_value;
1539                break;
1540
1541        default:
1542                return -ENOPARAM;
1543        }
1544
1545        return 0;
1546
1547unmapped_value:
1548        return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
1549}
1550
1551/*
1552 * Set up the superblock for a mount.
1553 */
1554static int ffs_fs_get_tree(struct fs_context *fc)
1555{
1556        struct ffs_sb_fill_data *ctx = fc->fs_private;
1557        struct ffs_data *ffs;
1558        int ret;
1559
1560        ENTER();
1561
1562        if (!fc->source)
1563                return invalf(fc, "No source specified");
1564
1565        ffs = ffs_data_new(fc->source);
1566        if (!ffs)
1567                return -ENOMEM;
1568        ffs->file_perms = ctx->perms;
1569        ffs->no_disconnect = ctx->no_disconnect;
1570
1571        ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
1572        if (!ffs->dev_name) {
1573                ffs_data_put(ffs);
1574                return -ENOMEM;
1575        }
1576
1577        ret = ffs_acquire_dev(ffs->dev_name, ffs);
1578        if (ret) {
1579                ffs_data_put(ffs);
1580                return ret;
1581        }
1582
1583        ctx->ffs_data = ffs;
1584        return get_tree_nodev(fc, ffs_sb_fill);
1585}
1586
1587static void ffs_fs_free_fc(struct fs_context *fc)
1588{
1589        struct ffs_sb_fill_data *ctx = fc->fs_private;
1590
1591        if (ctx) {
1592                if (ctx->ffs_data) {
1593                        ffs_data_put(ctx->ffs_data);
1594                }
1595
1596                kfree(ctx);
1597        }
1598}
1599
1600static const struct fs_context_operations ffs_fs_context_ops = {
1601        .free           = ffs_fs_free_fc,
1602        .parse_param    = ffs_fs_parse_param,
1603        .get_tree       = ffs_fs_get_tree,
1604};
1605
1606static int ffs_fs_init_fs_context(struct fs_context *fc)
1607{
1608        struct ffs_sb_fill_data *ctx;
1609
1610        ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
1611        if (!ctx)
1612                return -ENOMEM;
1613
1614        ctx->perms.mode = S_IFREG | 0600;
1615        ctx->perms.uid = GLOBAL_ROOT_UID;
1616        ctx->perms.gid = GLOBAL_ROOT_GID;
1617        ctx->root_mode = S_IFDIR | 0500;
1618        ctx->no_disconnect = false;
1619
1620        fc->fs_private = ctx;
1621        fc->ops = &ffs_fs_context_ops;
1622        return 0;
1623}
1624
1625static void
1626ffs_fs_kill_sb(struct super_block *sb)
1627{
1628        ENTER();
1629
1630        kill_litter_super(sb);
1631        if (sb->s_fs_info)
1632                ffs_data_closed(sb->s_fs_info);
1633}
1634
1635static struct file_system_type ffs_fs_type = {
1636        .owner          = THIS_MODULE,
1637        .name           = "functionfs",
1638        .init_fs_context = ffs_fs_init_fs_context,
1639        .parameters     = ffs_fs_fs_parameters,
1640        .kill_sb        = ffs_fs_kill_sb,
1641};
1642MODULE_ALIAS_FS("functionfs");
1643
1644
1645/* Driver's main init/cleanup functions *************************************/
1646
1647static int functionfs_init(void)
1648{
1649        int ret;
1650
1651        ENTER();
1652
1653        ret = register_filesystem(&ffs_fs_type);
1654        if (!ret)
1655                pr_info("file system registered\n");
1656        else
1657                pr_err("failed registering file system (%d)\n", ret);
1658
1659        return ret;
1660}
1661
1662static void functionfs_cleanup(void)
1663{
1664        ENTER();
1665
1666        pr_info("unloading\n");
1667        unregister_filesystem(&ffs_fs_type);
1668}
1669
1670
1671/* ffs_data and ffs_function construction and destruction code **************/
1672
1673static void ffs_data_clear(struct ffs_data *ffs);
1674static void ffs_data_reset(struct ffs_data *ffs);
1675
1676static void ffs_data_get(struct ffs_data *ffs)
1677{
1678        ENTER();
1679
1680        refcount_inc(&ffs->ref);
1681}
1682
1683static void ffs_data_opened(struct ffs_data *ffs)
1684{
1685        ENTER();
1686
1687        refcount_inc(&ffs->ref);
1688        if (atomic_add_return(1, &ffs->opened) == 1 &&
1689                        ffs->state == FFS_DEACTIVATED) {
1690                ffs->state = FFS_CLOSING;
1691                ffs_data_reset(ffs);
1692        }
1693}
1694
1695static void ffs_data_put(struct ffs_data *ffs)
1696{
1697        ENTER();
1698
1699        if (refcount_dec_and_test(&ffs->ref)) {
1700                pr_info("%s(): freeing\n", __func__);
1701                ffs_data_clear(ffs);
1702                ffs_release_dev(ffs->private_data);
1703                BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1704                       swait_active(&ffs->ep0req_completion.wait) ||
1705                       waitqueue_active(&ffs->wait));
1706                destroy_workqueue(ffs->io_completion_wq);
1707                kfree(ffs->dev_name);
1708                kfree(ffs);
1709        }
1710}
1711
1712static void ffs_data_closed(struct ffs_data *ffs)
1713{
1714        ENTER();
1715
1716        if (atomic_dec_and_test(&ffs->opened)) {
1717                if (ffs->no_disconnect) {
1718                        ffs->state = FFS_DEACTIVATED;
1719                        if (ffs->epfiles) {
1720                                ffs_epfiles_destroy(ffs->epfiles,
1721                                                   ffs->eps_count);
1722                                ffs->epfiles = NULL;
1723                        }
1724                        if (ffs->setup_state == FFS_SETUP_PENDING)
1725                                __ffs_ep0_stall(ffs);
1726                } else {
1727                        ffs->state = FFS_CLOSING;
1728                        ffs_data_reset(ffs);
1729                }
1730        }
1731        if (atomic_read(&ffs->opened) < 0) {
1732                ffs->state = FFS_CLOSING;
1733                ffs_data_reset(ffs);
1734        }
1735
1736        ffs_data_put(ffs);
1737}
1738
1739static struct ffs_data *ffs_data_new(const char *dev_name)
1740{
1741        struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1742        if (!ffs)
1743                return NULL;
1744
1745        ENTER();
1746
1747        ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1748        if (!ffs->io_completion_wq) {
1749                kfree(ffs);
1750                return NULL;
1751        }
1752
1753        refcount_set(&ffs->ref, 1);
1754        atomic_set(&ffs->opened, 0);
1755        ffs->state = FFS_READ_DESCRIPTORS;
1756        mutex_init(&ffs->mutex);
1757        spin_lock_init(&ffs->eps_lock);
1758        init_waitqueue_head(&ffs->ev.waitq);
1759        init_waitqueue_head(&ffs->wait);
1760        init_completion(&ffs->ep0req_completion);
1761
1762        /* XXX REVISIT need to update it in some places, or do we? */
1763        ffs->ev.can_stall = 1;
1764
1765        return ffs;
1766}
1767
1768static void ffs_data_clear(struct ffs_data *ffs)
1769{
1770        ENTER();
1771
1772        ffs_closed(ffs);
1773
1774        BUG_ON(ffs->gadget);
1775
1776        if (ffs->epfiles)
1777                ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1778
1779        if (ffs->ffs_eventfd)
1780                eventfd_ctx_put(ffs->ffs_eventfd);
1781
1782        kfree(ffs->raw_descs_data);
1783        kfree(ffs->raw_strings);
1784        kfree(ffs->stringtabs);
1785}
1786
1787static void ffs_data_reset(struct ffs_data *ffs)
1788{
1789        ENTER();
1790
1791        ffs_data_clear(ffs);
1792
1793        ffs->epfiles = NULL;
1794        ffs->raw_descs_data = NULL;
1795        ffs->raw_descs = NULL;
1796        ffs->raw_strings = NULL;
1797        ffs->stringtabs = NULL;
1798
1799        ffs->raw_descs_length = 0;
1800        ffs->fs_descs_count = 0;
1801        ffs->hs_descs_count = 0;
1802        ffs->ss_descs_count = 0;
1803
1804        ffs->strings_count = 0;
1805        ffs->interfaces_count = 0;
1806        ffs->eps_count = 0;
1807
1808        ffs->ev.count = 0;
1809
1810        ffs->state = FFS_READ_DESCRIPTORS;
1811        ffs->setup_state = FFS_NO_SETUP;
1812        ffs->flags = 0;
1813
1814        ffs->ms_os_descs_ext_prop_count = 0;
1815        ffs->ms_os_descs_ext_prop_name_len = 0;
1816        ffs->ms_os_descs_ext_prop_data_len = 0;
1817}
1818
1819
1820static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1821{
1822        struct usb_gadget_strings **lang;
1823        int first_id;
1824
1825        ENTER();
1826
1827        if (WARN_ON(ffs->state != FFS_ACTIVE
1828                 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1829                return -EBADFD;
1830
1831        first_id = usb_string_ids_n(cdev, ffs->strings_count);
1832        if (first_id < 0)
1833                return first_id;
1834
1835        ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1836        if (!ffs->ep0req)
1837                return -ENOMEM;
1838        ffs->ep0req->complete = ffs_ep0_complete;
1839        ffs->ep0req->context = ffs;
1840
1841        lang = ffs->stringtabs;
1842        if (lang) {
1843                for (; *lang; ++lang) {
1844                        struct usb_string *str = (*lang)->strings;
1845                        int id = first_id;
1846                        for (; str->s; ++id, ++str)
1847                                str->id = id;
1848                }
1849        }
1850
1851        ffs->gadget = cdev->gadget;
1852        ffs_data_get(ffs);
1853        return 0;
1854}
1855
1856static void functionfs_unbind(struct ffs_data *ffs)
1857{
1858        ENTER();
1859
1860        if (!WARN_ON(!ffs->gadget)) {
1861                usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1862                ffs->ep0req = NULL;
1863                ffs->gadget = NULL;
1864                clear_bit(FFS_FL_BOUND, &ffs->flags);
1865                ffs_data_put(ffs);
1866        }
1867}
1868
1869static int ffs_epfiles_create(struct ffs_data *ffs)
1870{
1871        struct ffs_epfile *epfile, *epfiles;
1872        unsigned i, count;
1873
1874        ENTER();
1875
1876        count = ffs->eps_count;
1877        epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1878        if (!epfiles)
1879                return -ENOMEM;
1880
1881        epfile = epfiles;
1882        for (i = 1; i <= count; ++i, ++epfile) {
1883                epfile->ffs = ffs;
1884                mutex_init(&epfile->mutex);
1885                if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1886                        sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1887                else
1888                        sprintf(epfile->name, "ep%u", i);
1889                epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1890                                                 epfile,
1891                                                 &ffs_epfile_operations);
1892                if (!epfile->dentry) {
1893                        ffs_epfiles_destroy(epfiles, i - 1);
1894                        return -ENOMEM;
1895                }
1896        }
1897
1898        ffs->epfiles = epfiles;
1899        return 0;
1900}
1901
1902static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1903{
1904        struct ffs_epfile *epfile = epfiles;
1905
1906        ENTER();
1907
1908        for (; count; --count, ++epfile) {
1909                BUG_ON(mutex_is_locked(&epfile->mutex));
1910                if (epfile->dentry) {
1911                        d_delete(epfile->dentry);
1912                        dput(epfile->dentry);
1913                        epfile->dentry = NULL;
1914                }
1915        }
1916
1917        kfree(epfiles);
1918}
1919
1920static void ffs_func_eps_disable(struct ffs_function *func)
1921{
1922        struct ffs_ep *ep         = func->eps;
1923        struct ffs_epfile *epfile = func->ffs->epfiles;
1924        unsigned count            = func->ffs->eps_count;
1925        unsigned long flags;
1926
1927        spin_lock_irqsave(&func->ffs->eps_lock, flags);
1928        while (count--) {
1929                /* pending requests get nuked */
1930                if (ep->ep)
1931                        usb_ep_disable(ep->ep);
1932                ++ep;
1933
1934                if (epfile) {
1935                        epfile->ep = NULL;
1936                        __ffs_epfile_read_buffer_free(epfile);
1937                        ++epfile;
1938                }
1939        }
1940        spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1941}
1942
1943static int ffs_func_eps_enable(struct ffs_function *func)
1944{
1945        struct ffs_data *ffs      = func->ffs;
1946        struct ffs_ep *ep         = func->eps;
1947        struct ffs_epfile *epfile = ffs->epfiles;
1948        unsigned count            = ffs->eps_count;
1949        unsigned long flags;
1950        int ret = 0;
1951
1952        spin_lock_irqsave(&func->ffs->eps_lock, flags);
1953        while(count--) {
1954                ep->ep->driver_data = ep;
1955
1956                ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
1957                if (ret) {
1958                        pr_err("%s: config_ep_by_speed(%s) returned %d\n",
1959                                        __func__, ep->ep->name, ret);
1960                        break;
1961                }
1962
1963                ret = usb_ep_enable(ep->ep);
1964                if (!ret) {
1965                        epfile->ep = ep;
1966                        epfile->in = usb_endpoint_dir_in(ep->ep->desc);
1967                        epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
1968                } else {
1969                        break;
1970                }
1971
1972                ++ep;
1973                ++epfile;
1974        }
1975
1976        wake_up_interruptible(&ffs->wait);
1977        spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1978
1979        return ret;
1980}
1981
1982
1983/* Parsing and building descriptors and strings *****************************/
1984
1985/*
1986 * This validates if data pointed by data is a valid USB descriptor as
1987 * well as record how many interfaces, endpoints and strings are
1988 * required by given configuration.  Returns address after the
1989 * descriptor or NULL if data is invalid.
1990 */
1991
1992enum ffs_entity_type {
1993        FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1994};
1995
1996enum ffs_os_desc_type {
1997        FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1998};
1999
2000typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2001                                   u8 *valuep,
2002                                   struct usb_descriptor_header *desc,
2003                                   void *priv);
2004
2005typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2006                                    struct usb_os_desc_header *h, void *data,
2007                                    unsigned len, void *priv);
2008
2009static int __must_check ffs_do_single_desc(char *data, unsigned len,
2010                                           ffs_entity_callback entity,
2011                                           void *priv, int *current_class)
2012{
2013        struct usb_descriptor_header *_ds = (void *)data;
2014        u8 length;
2015        int ret;
2016
2017        ENTER();
2018
2019        /* At least two bytes are required: length and type */
2020        if (len < 2) {
2021                pr_vdebug("descriptor too short\n");
2022                return -EINVAL;
2023        }
2024
2025        /* If we have at least as many bytes as the descriptor takes? */
2026        length = _ds->bLength;
2027        if (len < length) {
2028                pr_vdebug("descriptor longer then available data\n");
2029                return -EINVAL;
2030        }
2031
2032#define __entity_check_INTERFACE(val)  1
2033#define __entity_check_STRING(val)     (val)
2034#define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
2035#define __entity(type, val) do {                                        \
2036                pr_vdebug("entity " #type "(%02x)\n", (val));           \
2037                if (!__entity_check_ ##type(val)) {                     \
2038                        pr_vdebug("invalid entity's value\n");          \
2039                        return -EINVAL;                                 \
2040                }                                                       \
2041                ret = entity(FFS_ ##type, &val, _ds, priv);             \
2042                if (ret < 0) {                                          \
2043                        pr_debug("entity " #type "(%02x); ret = %d\n",  \
2044                                 (val), ret);                           \
2045                        return ret;                                     \
2046                }                                                       \
2047        } while (0)
2048
2049        /* Parse descriptor depending on type. */
2050        switch (_ds->bDescriptorType) {
2051        case USB_DT_DEVICE:
2052        case USB_DT_CONFIG:
2053        case USB_DT_STRING:
2054        case USB_DT_DEVICE_QUALIFIER:
2055                /* function can't have any of those */
2056                pr_vdebug("descriptor reserved for gadget: %d\n",
2057                      _ds->bDescriptorType);
2058                return -EINVAL;
2059
2060        case USB_DT_INTERFACE: {
2061                struct usb_interface_descriptor *ds = (void *)_ds;
2062                pr_vdebug("interface descriptor\n");
2063                if (length != sizeof *ds)
2064                        goto inv_length;
2065
2066                __entity(INTERFACE, ds->bInterfaceNumber);
2067                if (ds->iInterface)
2068                        __entity(STRING, ds->iInterface);
2069                *current_class = ds->bInterfaceClass;
2070        }
2071                break;
2072
2073        case USB_DT_ENDPOINT: {
2074                struct usb_endpoint_descriptor *ds = (void *)_ds;
2075                pr_vdebug("endpoint descriptor\n");
2076                if (length != USB_DT_ENDPOINT_SIZE &&
2077                    length != USB_DT_ENDPOINT_AUDIO_SIZE)
2078                        goto inv_length;
2079                __entity(ENDPOINT, ds->bEndpointAddress);
2080        }
2081                break;
2082
2083        case USB_TYPE_CLASS | 0x01:
2084                if (*current_class == USB_INTERFACE_CLASS_HID) {
2085                        pr_vdebug("hid descriptor\n");
2086                        if (length != sizeof(struct hid_descriptor))
2087                                goto inv_length;
2088                        break;
2089                } else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2090                        pr_vdebug("ccid descriptor\n");
2091                        if (length != sizeof(struct ccid_descriptor))
2092                                goto inv_length;
2093                        break;
2094                } else {
2095                        pr_vdebug("unknown descriptor: %d for class %d\n",
2096                              _ds->bDescriptorType, *current_class);
2097                        return -EINVAL;
2098                }
2099
2100        case USB_DT_OTG:
2101                if (length != sizeof(struct usb_otg_descriptor))
2102                        goto inv_length;
2103                break;
2104
2105        case USB_DT_INTERFACE_ASSOCIATION: {
2106                struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2107                pr_vdebug("interface association descriptor\n");
2108                if (length != sizeof *ds)
2109                        goto inv_length;
2110                if (ds->iFunction)
2111                        __entity(STRING, ds->iFunction);
2112        }
2113                break;
2114
2115        case USB_DT_SS_ENDPOINT_COMP:
2116                pr_vdebug("EP SS companion descriptor\n");
2117                if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2118                        goto inv_length;
2119                break;
2120
2121        case USB_DT_OTHER_SPEED_CONFIG:
2122        case USB_DT_INTERFACE_POWER:
2123        case USB_DT_DEBUG:
2124        case USB_DT_SECURITY:
2125        case USB_DT_CS_RADIO_CONTROL:
2126                /* TODO */
2127                pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2128                return -EINVAL;
2129
2130        default:
2131                /* We should never be here */
2132                pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2133                return -EINVAL;
2134
2135inv_length:
2136                pr_vdebug("invalid length: %d (descriptor %d)\n",
2137                          _ds->bLength, _ds->bDescriptorType);
2138                return -EINVAL;
2139        }
2140
2141#undef __entity
2142#undef __entity_check_DESCRIPTOR
2143#undef __entity_check_INTERFACE
2144#undef __entity_check_STRING
2145#undef __entity_check_ENDPOINT
2146
2147        return length;
2148}
2149
2150static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2151                                     ffs_entity_callback entity, void *priv)
2152{
2153        const unsigned _len = len;
2154        unsigned long num = 0;
2155        int current_class = -1;
2156
2157        ENTER();
2158
2159        for (;;) {
2160                int ret;
2161
2162                if (num == count)
2163                        data = NULL;
2164
2165                /* Record "descriptor" entity */
2166                ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2167                if (ret < 0) {
2168                        pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2169                                 num, ret);
2170                        return ret;
2171                }
2172
2173                if (!data)
2174                        return _len - len;
2175
2176                ret = ffs_do_single_desc(data, len, entity, priv,
2177                        &current_class);
2178                if (ret < 0) {
2179                        pr_debug("%s returns %d\n", __func__, ret);
2180                        return ret;
2181                }
2182
2183                len -= ret;
2184                data += ret;
2185                ++num;
2186        }
2187}
2188
2189static int __ffs_data_do_entity(enum ffs_entity_type type,
2190                                u8 *valuep, struct usb_descriptor_header *desc,
2191                                void *priv)
2192{
2193        struct ffs_desc_helper *helper = priv;
2194        struct usb_endpoint_descriptor *d;
2195
2196        ENTER();
2197
2198        switch (type) {
2199        case FFS_DESCRIPTOR:
2200                break;
2201
2202        case FFS_INTERFACE:
2203                /*
2204                 * Interfaces are indexed from zero so if we
2205                 * encountered interface "n" then there are at least
2206                 * "n+1" interfaces.
2207                 */
2208                if (*valuep >= helper->interfaces_count)
2209                        helper->interfaces_count = *valuep + 1;
2210                break;
2211
2212        case FFS_STRING:
2213                /*
2214                 * Strings are indexed from 1 (0 is reserved
2215                 * for languages list)
2216                 */
2217                if (*valuep > helper->ffs->strings_count)
2218                        helper->ffs->strings_count = *valuep;
2219                break;
2220
2221        case FFS_ENDPOINT:
2222                d = (void *)desc;
2223                helper->eps_count++;
2224                if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2225                        return -EINVAL;
2226                /* Check if descriptors for any speed were already parsed */
2227                if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2228                        helper->ffs->eps_addrmap[helper->eps_count] =
2229                                d->bEndpointAddress;
2230                else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2231                                d->bEndpointAddress)
2232                        return -EINVAL;
2233                break;
2234        }
2235
2236        return 0;
2237}
2238
2239static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2240                                   struct usb_os_desc_header *desc)
2241{
2242        u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2243        u16 w_index = le16_to_cpu(desc->wIndex);
2244
2245        if (bcd_version != 1) {
2246                pr_vdebug("unsupported os descriptors version: %d",
2247                          bcd_version);
2248                return -EINVAL;
2249        }
2250        switch (w_index) {
2251        case 0x4:
2252                *next_type = FFS_OS_DESC_EXT_COMPAT;
2253                break;
2254        case 0x5:
2255                *next_type = FFS_OS_DESC_EXT_PROP;
2256                break;
2257        default:
2258                pr_vdebug("unsupported os descriptor type: %d", w_index);
2259                return -EINVAL;
2260        }
2261
2262        return sizeof(*desc);
2263}
2264
2265/*
2266 * Process all extended compatibility/extended property descriptors
2267 * of a feature descriptor
2268 */
2269static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2270                                              enum ffs_os_desc_type type,
2271                                              u16 feature_count,
2272                                              ffs_os_desc_callback entity,
2273                                              void *priv,
2274                                              struct usb_os_desc_header *h)
2275{
2276        int ret;
2277        const unsigned _len = len;
2278
2279        ENTER();
2280
2281        /* loop over all ext compat/ext prop descriptors */
2282        while (feature_count--) {
2283                ret = entity(type, h, data, len, priv);
2284                if (ret < 0) {
2285                        pr_debug("bad OS descriptor, type: %d\n", type);
2286                        return ret;
2287                }
2288                data += ret;
2289                len -= ret;
2290        }
2291        return _len - len;
2292}
2293
2294/* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2295static int __must_check ffs_do_os_descs(unsigned count,
2296                                        char *data, unsigned len,
2297                                        ffs_os_desc_callback entity, void *priv)
2298{
2299        const unsigned _len = len;
2300        unsigned long num = 0;
2301
2302        ENTER();
2303
2304        for (num = 0; num < count; ++num) {
2305                int ret;
2306                enum ffs_os_desc_type type;
2307                u16 feature_count;
2308                struct usb_os_desc_header *desc = (void *)data;
2309
2310                if (len < sizeof(*desc))
2311                        return -EINVAL;
2312
2313                /*
2314                 * Record "descriptor" entity.
2315                 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2316                 * Move the data pointer to the beginning of extended
2317                 * compatibilities proper or extended properties proper
2318                 * portions of the data
2319                 */
2320                if (le32_to_cpu(desc->dwLength) > len)
2321                        return -EINVAL;
2322
2323                ret = __ffs_do_os_desc_header(&type, desc);
2324                if (ret < 0) {
2325                        pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2326                                 num, ret);
2327                        return ret;
2328                }
2329                /*
2330                 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2331                 */
2332                feature_count = le16_to_cpu(desc->wCount);
2333                if (type == FFS_OS_DESC_EXT_COMPAT &&
2334                    (feature_count > 255 || desc->Reserved))
2335                                return -EINVAL;
2336                len -= ret;
2337                data += ret;
2338
2339                /*
2340                 * Process all function/property descriptors
2341                 * of this Feature Descriptor
2342                 */
2343                ret = ffs_do_single_os_desc(data, len, type,
2344                                            feature_count, entity, priv, desc);
2345                if (ret < 0) {
2346                        pr_debug("%s returns %d\n", __func__, ret);
2347                        return ret;
2348                }
2349
2350                len -= ret;
2351                data += ret;
2352        }
2353        return _len - len;
2354}
2355
2356/*
2357 * Validate contents of the buffer from userspace related to OS descriptors.
2358 */
2359static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2360                                 struct usb_os_desc_header *h, void *data,
2361                                 unsigned len, void *priv)
2362{
2363        struct ffs_data *ffs = priv;
2364        u8 length;
2365
2366        ENTER();
2367
2368        switch (type) {
2369        case FFS_OS_DESC_EXT_COMPAT: {
2370                struct usb_ext_compat_desc *d = data;
2371                int i;
2372
2373                if (len < sizeof(*d) ||
2374                    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2375                        return -EINVAL;
2376                if (d->Reserved1 != 1) {
2377                        /*
2378                         * According to the spec, Reserved1 must be set to 1
2379                         * but older kernels incorrectly rejected non-zero
2380                         * values.  We fix it here to avoid returning EINVAL
2381                         * in response to values we used to accept.
2382                         */
2383                        pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2384                        d->Reserved1 = 1;
2385                }
2386                for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2387                        if (d->Reserved2[i])
2388                                return -EINVAL;
2389
2390                length = sizeof(struct usb_ext_compat_desc);
2391        }
2392                break;
2393        case FFS_OS_DESC_EXT_PROP: {
2394                struct usb_ext_prop_desc *d = data;
2395                u32 type, pdl;
2396                u16 pnl;
2397
2398                if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2399                        return -EINVAL;
2400                length = le32_to_cpu(d->dwSize);
2401                if (len < length)
2402                        return -EINVAL;
2403                type = le32_to_cpu(d->dwPropertyDataType);
2404                if (type < USB_EXT_PROP_UNICODE ||
2405                    type > USB_EXT_PROP_UNICODE_MULTI) {
2406                        pr_vdebug("unsupported os descriptor property type: %d",
2407                                  type);
2408                        return -EINVAL;
2409                }
2410                pnl = le16_to_cpu(d->wPropertyNameLength);
2411                if (length < 14 + pnl) {
2412                        pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2413                                  length, pnl, type);
2414                        return -EINVAL;
2415                }
2416                pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2417                if (length != 14 + pnl + pdl) {
2418                        pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2419                                  length, pnl, pdl, type);
2420                        return -EINVAL;
2421                }
2422                ++ffs->ms_os_descs_ext_prop_count;
2423                /* property name reported to the host as "WCHAR"s */
2424                ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2425                ffs->ms_os_descs_ext_prop_data_len += pdl;
2426        }
2427                break;
2428        default:
2429                pr_vdebug("unknown descriptor: %d\n", type);
2430                return -EINVAL;
2431        }
2432        return length;
2433}
2434
2435static int __ffs_data_got_descs(struct ffs_data *ffs,
2436                                char *const _data, size_t len)
2437{
2438        char *data = _data, *raw_descs;
2439        unsigned os_descs_count = 0, counts[3], flags;
2440        int ret = -EINVAL, i;
2441        struct ffs_desc_helper helper;
2442
2443        ENTER();
2444
2445        if (get_unaligned_le32(data + 4) != len)
2446                goto error;
2447
2448        switch (get_unaligned_le32(data)) {
2449        case FUNCTIONFS_DESCRIPTORS_MAGIC:
2450                flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2451                data += 8;
2452                len  -= 8;
2453                break;
2454        case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2455                flags = get_unaligned_le32(data + 8);
2456                ffs->user_flags = flags;
2457                if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2458                              FUNCTIONFS_HAS_HS_DESC |
2459                              FUNCTIONFS_HAS_SS_DESC |
2460                              FUNCTIONFS_HAS_MS_OS_DESC |
2461                              FUNCTIONFS_VIRTUAL_ADDR |
2462                              FUNCTIONFS_EVENTFD |
2463                              FUNCTIONFS_ALL_CTRL_RECIP |
2464                              FUNCTIONFS_CONFIG0_SETUP)) {
2465                        ret = -ENOSYS;
2466                        goto error;
2467                }
2468                data += 12;
2469                len  -= 12;
2470                break;
2471        default:
2472                goto error;
2473        }
2474
2475        if (flags & FUNCTIONFS_EVENTFD) {
2476                if (len < 4)
2477                        goto error;
2478                ffs->ffs_eventfd =
2479                        eventfd_ctx_fdget((int)get_unaligned_le32(data));
2480                if (IS_ERR(ffs->ffs_eventfd)) {
2481                        ret = PTR_ERR(ffs->ffs_eventfd);
2482                        ffs->ffs_eventfd = NULL;
2483                        goto error;
2484                }
2485                data += 4;
2486                len  -= 4;
2487        }
2488
2489        /* Read fs_count, hs_count and ss_count (if present) */
2490        for (i = 0; i < 3; ++i) {
2491                if (!(flags & (1 << i))) {
2492                        counts[i] = 0;
2493                } else if (len < 4) {
2494                        goto error;
2495                } else {
2496                        counts[i] = get_unaligned_le32(data);
2497                        data += 4;
2498                        len  -= 4;
2499                }
2500        }
2501        if (flags & (1 << i)) {
2502                if (len < 4) {
2503                        goto error;
2504                }
2505                os_descs_count = get_unaligned_le32(data);
2506                data += 4;
2507                len -= 4;
2508        }
2509
2510        /* Read descriptors */
2511        raw_descs = data;
2512        helper.ffs = ffs;
2513        for (i = 0; i < 3; ++i) {
2514                if (!counts[i])
2515                        continue;
2516                helper.interfaces_count = 0;
2517                helper.eps_count = 0;
2518                ret = ffs_do_descs(counts[i], data, len,
2519                                   __ffs_data_do_entity, &helper);
2520                if (ret < 0)
2521                        goto error;
2522                if (!ffs->eps_count && !ffs->interfaces_count) {
2523                        ffs->eps_count = helper.eps_count;
2524                        ffs->interfaces_count = helper.interfaces_count;
2525                } else {
2526                        if (ffs->eps_count != helper.eps_count) {
2527                                ret = -EINVAL;
2528                                goto error;
2529                        }
2530                        if (ffs->interfaces_count != helper.interfaces_count) {
2531                                ret = -EINVAL;
2532                                goto error;
2533                        }
2534                }
2535                data += ret;
2536                len  -= ret;
2537        }
2538        if (os_descs_count) {
2539                ret = ffs_do_os_descs(os_descs_count, data, len,
2540                                      __ffs_data_do_os_desc, ffs);
2541                if (ret < 0)
2542                        goto error;
2543                data += ret;
2544                len -= ret;
2545        }
2546
2547        if (raw_descs == data || len) {
2548                ret = -EINVAL;
2549                goto error;
2550        }
2551
2552        ffs->raw_descs_data     = _data;
2553        ffs->raw_descs          = raw_descs;
2554        ffs->raw_descs_length   = data - raw_descs;
2555        ffs->fs_descs_count     = counts[0];
2556        ffs->hs_descs_count     = counts[1];
2557        ffs->ss_descs_count     = counts[2];
2558        ffs->ms_os_descs_count  = os_descs_count;
2559
2560        return 0;
2561
2562error:
2563        kfree(_data);
2564        return ret;
2565}
2566
2567static int __ffs_data_got_strings(struct ffs_data *ffs,
2568                                  char *const _data, size_t len)
2569{
2570        u32 str_count, needed_count, lang_count;
2571        struct usb_gadget_strings **stringtabs, *t;
2572        const char *data = _data;
2573        struct usb_string *s;
2574
2575        ENTER();
2576
2577        if (len < 16 ||
2578            get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2579            get_unaligned_le32(data + 4) != len)
2580                goto error;
2581        str_count  = get_unaligned_le32(data + 8);
2582        lang_count = get_unaligned_le32(data + 12);
2583
2584        /* if one is zero the other must be zero */
2585        if (!str_count != !lang_count)
2586                goto error;
2587
2588        /* Do we have at least as many strings as descriptors need? */
2589        needed_count = ffs->strings_count;
2590        if (str_count < needed_count)
2591                goto error;
2592
2593        /*
2594         * If we don't need any strings just return and free all
2595         * memory.
2596         */
2597        if (!needed_count) {
2598                kfree(_data);
2599                return 0;
2600        }
2601
2602        /* Allocate everything in one chunk so there's less maintenance. */
2603        {
2604                unsigned i = 0;
2605                vla_group(d);
2606                vla_item(d, struct usb_gadget_strings *, stringtabs,
2607                        lang_count + 1);
2608                vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2609                vla_item(d, struct usb_string, strings,
2610                        lang_count*(needed_count+1));
2611
2612                char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2613
2614                if (!vlabuf) {
2615                        kfree(_data);
2616                        return -ENOMEM;
2617                }
2618
2619                /* Initialize the VLA pointers */
2620                stringtabs = vla_ptr(vlabuf, d, stringtabs);
2621                t = vla_ptr(vlabuf, d, stringtab);
2622                i = lang_count;
2623                do {
2624                        *stringtabs++ = t++;
2625                } while (--i);
2626                *stringtabs = NULL;
2627
2628                /* stringtabs = vlabuf = d_stringtabs for later kfree */
2629                stringtabs = vla_ptr(vlabuf, d, stringtabs);
2630                t = vla_ptr(vlabuf, d, stringtab);
2631                s = vla_ptr(vlabuf, d, strings);
2632        }
2633
2634        /* For each language */
2635        data += 16;
2636        len -= 16;
2637
2638        do { /* lang_count > 0 so we can use do-while */
2639                unsigned needed = needed_count;
2640                u32 str_per_lang = str_count;
2641
2642                if (len < 3)
2643                        goto error_free;
2644                t->language = get_unaligned_le16(data);
2645                t->strings  = s;
2646                ++t;
2647
2648                data += 2;
2649                len -= 2;
2650
2651                /* For each string */
2652                do { /* str_count > 0 so we can use do-while */
2653                        size_t length = strnlen(data, len);
2654
2655                        if (length == len)
2656                                goto error_free;
2657
2658                        /*
2659                         * User may provide more strings then we need,
2660                         * if that's the case we simply ignore the
2661                         * rest
2662                         */
2663                        if (needed) {
2664                                /*
2665                                 * s->id will be set while adding
2666                                 * function to configuration so for
2667                                 * now just leave garbage here.
2668                                 */
2669                                s->s = data;
2670                                --needed;
2671                                ++s;
2672                        }
2673
2674                        data += length + 1;
2675                        len -= length + 1;
2676                } while (--str_per_lang);
2677
2678                s->id = 0;   /* terminator */
2679                s->s = NULL;
2680                ++s;
2681
2682        } while (--lang_count);
2683
2684        /* Some garbage left? */
2685        if (len)
2686                goto error_free;
2687
2688        /* Done! */
2689        ffs->stringtabs = stringtabs;
2690        ffs->raw_strings = _data;
2691
2692        return 0;
2693
2694error_free:
2695        kfree(stringtabs);
2696error:
2697        kfree(_data);
2698        return -EINVAL;
2699}
2700
2701
2702/* Events handling and management *******************************************/
2703
2704static void __ffs_event_add(struct ffs_data *ffs,
2705                            enum usb_functionfs_event_type type)
2706{
2707        enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2708        int neg = 0;
2709
2710        /*
2711         * Abort any unhandled setup
2712         *
2713         * We do not need to worry about some cmpxchg() changing value
2714         * of ffs->setup_state without holding the lock because when
2715         * state is FFS_SETUP_PENDING cmpxchg() in several places in
2716         * the source does nothing.
2717         */
2718        if (ffs->setup_state == FFS_SETUP_PENDING)
2719                ffs->setup_state = FFS_SETUP_CANCELLED;
2720
2721        /*
2722         * Logic of this function guarantees that there are at most four pending
2723         * evens on ffs->ev.types queue.  This is important because the queue
2724         * has space for four elements only and __ffs_ep0_read_events function
2725         * depends on that limit as well.  If more event types are added, those
2726         * limits have to be revisited or guaranteed to still hold.
2727         */
2728        switch (type) {
2729        case FUNCTIONFS_RESUME:
2730                rem_type2 = FUNCTIONFS_SUSPEND;
2731                fallthrough;
2732        case FUNCTIONFS_SUSPEND:
2733        case FUNCTIONFS_SETUP:
2734                rem_type1 = type;
2735                /* Discard all similar events */
2736                break;
2737
2738        case FUNCTIONFS_BIND:
2739        case FUNCTIONFS_UNBIND:
2740        case FUNCTIONFS_DISABLE:
2741        case FUNCTIONFS_ENABLE:
2742                /* Discard everything other then power management. */
2743                rem_type1 = FUNCTIONFS_SUSPEND;
2744                rem_type2 = FUNCTIONFS_RESUME;
2745                neg = 1;
2746                break;
2747
2748        default:
2749                WARN(1, "%d: unknown event, this should not happen\n", type);
2750                return;
2751        }
2752
2753        {
2754                u8 *ev  = ffs->ev.types, *out = ev;
2755                unsigned n = ffs->ev.count;
2756                for (; n; --n, ++ev)
2757                        if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2758                                *out++ = *ev;
2759                        else
2760                                pr_vdebug("purging event %d\n", *ev);
2761                ffs->ev.count = out - ffs->ev.types;
2762        }
2763
2764        pr_vdebug("adding event %d\n", type);
2765        ffs->ev.types[ffs->ev.count++] = type;
2766        wake_up_locked(&ffs->ev.waitq);
2767        if (ffs->ffs_eventfd)
2768                eventfd_signal(ffs->ffs_eventfd, 1);
2769}
2770
2771static void ffs_event_add(struct ffs_data *ffs,
2772                          enum usb_functionfs_event_type type)
2773{
2774        unsigned long flags;
2775        spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2776        __ffs_event_add(ffs, type);
2777        spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2778}
2779
2780/* Bind/unbind USB function hooks *******************************************/
2781
2782static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2783{
2784        int i;
2785
2786        for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2787                if (ffs->eps_addrmap[i] == endpoint_address)
2788                        return i;
2789        return -ENOENT;
2790}
2791
2792static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2793                                    struct usb_descriptor_header *desc,
2794                                    void *priv)
2795{
2796        struct usb_endpoint_descriptor *ds = (void *)desc;
2797        struct ffs_function *func = priv;
2798        struct ffs_ep *ffs_ep;
2799        unsigned ep_desc_id;
2800        int idx;
2801        static const char *speed_names[] = { "full", "high", "super" };
2802
2803        if (type != FFS_DESCRIPTOR)
2804                return 0;
2805
2806        /*
2807         * If ss_descriptors is not NULL, we are reading super speed
2808         * descriptors; if hs_descriptors is not NULL, we are reading high
2809         * speed descriptors; otherwise, we are reading full speed
2810         * descriptors.
2811         */
2812        if (func->function.ss_descriptors) {
2813                ep_desc_id = 2;
2814                func->function.ss_descriptors[(long)valuep] = desc;
2815        } else if (func->function.hs_descriptors) {
2816                ep_desc_id = 1;
2817                func->function.hs_descriptors[(long)valuep] = desc;
2818        } else {
2819                ep_desc_id = 0;
2820                func->function.fs_descriptors[(long)valuep]    = desc;
2821        }
2822
2823        if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2824                return 0;
2825
2826        idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2827        if (idx < 0)
2828                return idx;
2829
2830        ffs_ep = func->eps + idx;
2831
2832        if (ffs_ep->descs[ep_desc_id]) {
2833                pr_err("two %sspeed descriptors for EP %d\n",
2834                          speed_names[ep_desc_id],
2835                          ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2836                return -EINVAL;
2837        }
2838        ffs_ep->descs[ep_desc_id] = ds;
2839
2840        ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2841        if (ffs_ep->ep) {
2842                ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2843                if (!ds->wMaxPacketSize)
2844                        ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2845        } else {
2846                struct usb_request *req;
2847                struct usb_ep *ep;
2848                u8 bEndpointAddress;
2849                u16 wMaxPacketSize;
2850
2851                /*
2852                 * We back up bEndpointAddress because autoconfig overwrites
2853                 * it with physical endpoint address.
2854                 */
2855                bEndpointAddress = ds->bEndpointAddress;
2856                /*
2857                 * We back up wMaxPacketSize because autoconfig treats
2858                 * endpoint descriptors as if they were full speed.
2859                 */
2860                wMaxPacketSize = ds->wMaxPacketSize;
2861                pr_vdebug("autoconfig\n");
2862                ep = usb_ep_autoconfig(func->gadget, ds);
2863                if (!ep)
2864                        return -ENOTSUPP;
2865                ep->driver_data = func->eps + idx;
2866
2867                req = usb_ep_alloc_request(ep, GFP_KERNEL);
2868                if (!req)
2869                        return -ENOMEM;
2870
2871                ffs_ep->ep  = ep;
2872                ffs_ep->req = req;
2873                func->eps_revmap[ds->bEndpointAddress &
2874                                 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2875                /*
2876                 * If we use virtual address mapping, we restore
2877                 * original bEndpointAddress value.
2878                 */
2879                if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2880                        ds->bEndpointAddress = bEndpointAddress;
2881                /*
2882                 * Restore wMaxPacketSize which was potentially
2883                 * overwritten by autoconfig.
2884                 */
2885                ds->wMaxPacketSize = wMaxPacketSize;
2886        }
2887        ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2888
2889        return 0;
2890}
2891
2892static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2893                                   struct usb_descriptor_header *desc,
2894                                   void *priv)
2895{
2896        struct ffs_function *func = priv;
2897        unsigned idx;
2898        u8 newValue;
2899
2900        switch (type) {
2901        default:
2902        case FFS_DESCRIPTOR:
2903                /* Handled in previous pass by __ffs_func_bind_do_descs() */
2904                return 0;
2905
2906        case FFS_INTERFACE:
2907                idx = *valuep;
2908                if (func->interfaces_nums[idx] < 0) {
2909                        int id = usb_interface_id(func->conf, &func->function);
2910                        if (id < 0)
2911                                return id;
2912                        func->interfaces_nums[idx] = id;
2913                }
2914                newValue = func->interfaces_nums[idx];
2915                break;
2916
2917        case FFS_STRING:
2918                /* String' IDs are allocated when fsf_data is bound to cdev */
2919                newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2920                break;
2921
2922        case FFS_ENDPOINT:
2923                /*
2924                 * USB_DT_ENDPOINT are handled in
2925                 * __ffs_func_bind_do_descs().
2926                 */
2927                if (desc->bDescriptorType == USB_DT_ENDPOINT)
2928                        return 0;
2929
2930                idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2931                if (!func->eps[idx].ep)
2932                        return -EINVAL;
2933
2934                {
2935                        struct usb_endpoint_descriptor **descs;
2936                        descs = func->eps[idx].descs;
2937                        newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2938                }
2939                break;
2940        }
2941
2942        pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2943        *valuep = newValue;
2944        return 0;
2945}
2946
2947static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2948                                      struct usb_os_desc_header *h, void *data,
2949                                      unsigned len, void *priv)
2950{
2951        struct ffs_function *func = priv;
2952        u8 length = 0;
2953
2954        switch (type) {
2955        case FFS_OS_DESC_EXT_COMPAT: {
2956                struct usb_ext_compat_desc *desc = data;
2957                struct usb_os_desc_table *t;
2958
2959                t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2960                t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2961                memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2962                       ARRAY_SIZE(desc->CompatibleID) +
2963                       ARRAY_SIZE(desc->SubCompatibleID));
2964                length = sizeof(*desc);
2965        }
2966                break;
2967        case FFS_OS_DESC_EXT_PROP: {
2968                struct usb_ext_prop_desc *desc = data;
2969                struct usb_os_desc_table *t;
2970                struct usb_os_desc_ext_prop *ext_prop;
2971                char *ext_prop_name;
2972                char *ext_prop_data;
2973
2974                t = &func->function.os_desc_table[h->interface];
2975                t->if_id = func->interfaces_nums[h->interface];
2976
2977                ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2978                func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2979
2980                ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2981                ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2982                ext_prop->data_len = le32_to_cpu(*(__le32 *)
2983                        usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2984                length = ext_prop->name_len + ext_prop->data_len + 14;
2985
2986                ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2987                func->ffs->ms_os_descs_ext_prop_name_avail +=
2988                        ext_prop->name_len;
2989
2990                ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2991                func->ffs->ms_os_descs_ext_prop_data_avail +=
2992                        ext_prop->data_len;
2993                memcpy(ext_prop_data,
2994                       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2995                       ext_prop->data_len);
2996                /* unicode data reported to the host as "WCHAR"s */
2997                switch (ext_prop->type) {
2998                case USB_EXT_PROP_UNICODE:
2999                case USB_EXT_PROP_UNICODE_ENV:
3000                case USB_EXT_PROP_UNICODE_LINK:
3001                case USB_EXT_PROP_UNICODE_MULTI:
3002                        ext_prop->data_len *= 2;
3003                        break;
3004                }
3005                ext_prop->data = ext_prop_data;
3006
3007                memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3008                       ext_prop->name_len);
3009                /* property name reported to the host as "WCHAR"s */
3010                ext_prop->name_len *= 2;
3011                ext_prop->name = ext_prop_name;
3012
3013                t->os_desc->ext_prop_len +=
3014                        ext_prop->name_len + ext_prop->data_len + 14;
3015                ++t->os_desc->ext_prop_count;
3016                list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3017        }
3018                break;
3019        default:
3020                pr_vdebug("unknown descriptor: %d\n", type);
3021        }
3022
3023        return length;
3024}
3025
3026static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3027                                                struct usb_configuration *c)
3028{
3029        struct ffs_function *func = ffs_func_from_usb(f);
3030        struct f_fs_opts *ffs_opts =
3031                container_of(f->fi, struct f_fs_opts, func_inst);
3032        struct ffs_data *ffs_data;
3033        int ret;
3034
3035        ENTER();
3036
3037        /*
3038         * Legacy gadget triggers binding in functionfs_ready_callback,
3039         * which already uses locking; taking the same lock here would
3040         * cause a deadlock.
3041         *
3042         * Configfs-enabled gadgets however do need ffs_dev_lock.
3043         */
3044        if (!ffs_opts->no_configfs)
3045                ffs_dev_lock();
3046        ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3047        ffs_data = ffs_opts->dev->ffs_data;
3048        if (!ffs_opts->no_configfs)
3049                ffs_dev_unlock();
3050        if (ret)
3051                return ERR_PTR(ret);
3052
3053        func->ffs = ffs_data;
3054        func->conf = c;
3055        func->gadget = c->cdev->gadget;
3056
3057        /*
3058         * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3059         * configurations are bound in sequence with list_for_each_entry,
3060         * in each configuration its functions are bound in sequence
3061         * with list_for_each_entry, so we assume no race condition
3062         * with regard to ffs_opts->bound access
3063         */
3064        if (!ffs_opts->refcnt) {
3065                ret = functionfs_bind(func->ffs, c->cdev);
3066                if (ret)
3067                        return ERR_PTR(ret);
3068        }
3069        ffs_opts->refcnt++;
3070        func->function.strings = func->ffs->stringtabs;
3071
3072        return ffs_opts;
3073}
3074
3075static int _ffs_func_bind(struct usb_configuration *c,
3076                          struct usb_function *f)
3077{
3078        struct ffs_function *func = ffs_func_from_usb(f);
3079        struct ffs_data *ffs = func->ffs;
3080
3081        const int full = !!func->ffs->fs_descs_count;
3082        const int high = !!func->ffs->hs_descs_count;
3083        const int super = !!func->ffs->ss_descs_count;
3084
3085        int fs_len, hs_len, ss_len, ret, i;
3086        struct ffs_ep *eps_ptr;
3087
3088        /* Make it a single chunk, less management later on */
3089        vla_group(d);
3090        vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3091        vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3092                full ? ffs->fs_descs_count + 1 : 0);
3093        vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3094                high ? ffs->hs_descs_count + 1 : 0);
3095        vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3096                super ? ffs->ss_descs_count + 1 : 0);
3097        vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3098        vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3099                         c->cdev->use_os_string ? ffs->interfaces_count : 0);
3100        vla_item_with_sz(d, char[16], ext_compat,
3101                         c->cdev->use_os_string ? ffs->interfaces_count : 0);
3102        vla_item_with_sz(d, struct usb_os_desc, os_desc,
3103                         c->cdev->use_os_string ? ffs->interfaces_count : 0);
3104        vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3105                         ffs->ms_os_descs_ext_prop_count);
3106        vla_item_with_sz(d, char, ext_prop_name,
3107                         ffs->ms_os_descs_ext_prop_name_len);
3108        vla_item_with_sz(d, char, ext_prop_data,
3109                         ffs->ms_os_descs_ext_prop_data_len);
3110        vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3111        char *vlabuf;
3112
3113        ENTER();
3114
3115        /* Has descriptors only for speeds gadget does not support */
3116        if (!(full | high | super))
3117                return -ENOTSUPP;
3118
3119        /* Allocate a single chunk, less management later on */
3120        vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3121        if (!vlabuf)
3122                return -ENOMEM;
3123
3124        ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3125        ffs->ms_os_descs_ext_prop_name_avail =
3126                vla_ptr(vlabuf, d, ext_prop_name);
3127        ffs->ms_os_descs_ext_prop_data_avail =
3128                vla_ptr(vlabuf, d, ext_prop_data);
3129
3130        /* Copy descriptors  */
3131        memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3132               ffs->raw_descs_length);
3133
3134        memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3135        eps_ptr = vla_ptr(vlabuf, d, eps);
3136        for (i = 0; i < ffs->eps_count; i++)
3137                eps_ptr[i].num = -1;
3138
3139        /* Save pointers
3140         * d_eps == vlabuf, func->eps used to kfree vlabuf later
3141        */
3142        func->eps             = vla_ptr(vlabuf, d, eps);
3143        func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3144
3145        /*
3146         * Go through all the endpoint descriptors and allocate
3147         * endpoints first, so that later we can rewrite the endpoint
3148         * numbers without worrying that it may be described later on.
3149         */
3150        if (full) {
3151                func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3152                fs_len = ffs_do_descs(ffs->fs_descs_count,
3153                                      vla_ptr(vlabuf, d, raw_descs),
3154                                      d_raw_descs__sz,
3155                                      __ffs_func_bind_do_descs, func);
3156                if (fs_len < 0) {
3157                        ret = fs_len;
3158                        goto error;
3159                }
3160        } else {
3161                fs_len = 0;
3162        }
3163
3164        if (high) {
3165                func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3166                hs_len = ffs_do_descs(ffs->hs_descs_count,
3167                                      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3168                                      d_raw_descs__sz - fs_len,
3169                                      __ffs_func_bind_do_descs, func);
3170                if (hs_len < 0) {
3171                        ret = hs_len;
3172                        goto error;
3173                }
3174        } else {
3175                hs_len = 0;
3176        }
3177
3178        if (super) {
3179                func->function.ss_descriptors = func->function.ssp_descriptors =
3180                        vla_ptr(vlabuf, d, ss_descs);
3181                ss_len = ffs_do_descs(ffs->ss_descs_count,
3182                                vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3183                                d_raw_descs__sz - fs_len - hs_len,
3184                                __ffs_func_bind_do_descs, func);
3185                if (ss_len < 0) {
3186                        ret = ss_len;
3187                        goto error;
3188                }
3189        } else {
3190                ss_len = 0;
3191        }
3192
3193        /*
3194         * Now handle interface numbers allocation and interface and
3195         * endpoint numbers rewriting.  We can do that in one go
3196         * now.
3197         */
3198        ret = ffs_do_descs(ffs->fs_descs_count +
3199                           (high ? ffs->hs_descs_count : 0) +
3200                           (super ? ffs->ss_descs_count : 0),
3201                           vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3202                           __ffs_func_bind_do_nums, func);
3203        if (ret < 0)
3204                goto error;
3205
3206        func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3207        if (c->cdev->use_os_string) {
3208                for (i = 0; i < ffs->interfaces_count; ++i) {
3209                        struct usb_os_desc *desc;
3210
3211                        desc = func->function.os_desc_table[i].os_desc =
3212                                vla_ptr(vlabuf, d, os_desc) +
3213                                i * sizeof(struct usb_os_desc);
3214                        desc->ext_compat_id =
3215                                vla_ptr(vlabuf, d, ext_compat) + i * 16;
3216                        INIT_LIST_HEAD(&desc->ext_prop);
3217                }
3218                ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3219                                      vla_ptr(vlabuf, d, raw_descs) +
3220                                      fs_len + hs_len + ss_len,
3221                                      d_raw_descs__sz - fs_len - hs_len -
3222                                      ss_len,
3223                                      __ffs_func_bind_do_os_desc, func);
3224                if (ret < 0)
3225                        goto error;
3226        }
3227        func->function.os_desc_n =
3228                c->cdev->use_os_string ? ffs->interfaces_count : 0;
3229
3230        /* And we're done */
3231        ffs_event_add(ffs, FUNCTIONFS_BIND);
3232        return 0;
3233
3234error:
3235        /* XXX Do we need to release all claimed endpoints here? */
3236        return ret;
3237}
3238
3239static int ffs_func_bind(struct usb_configuration *c,
3240                         struct usb_function *f)
3241{
3242        struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3243        struct ffs_function *func = ffs_func_from_usb(f);
3244        int ret;
3245
3246        if (IS_ERR(ffs_opts))
3247                return PTR_ERR(ffs_opts);
3248
3249        ret = _ffs_func_bind(c, f);
3250        if (ret && !--ffs_opts->refcnt)
3251                functionfs_unbind(func->ffs);
3252
3253        return ret;
3254}
3255
3256
3257/* Other USB function hooks *************************************************/
3258
3259static void ffs_reset_work(struct work_struct *work)
3260{
3261        struct ffs_data *ffs = container_of(work,
3262                struct ffs_data, reset_work);
3263        ffs_data_reset(ffs);
3264}
3265
3266static int ffs_func_set_alt(struct usb_function *f,
3267                            unsigned interface, unsigned alt)
3268{
3269        struct ffs_function *func = ffs_func_from_usb(f);
3270        struct ffs_data *ffs = func->ffs;
3271        int ret = 0, intf;
3272
3273        if (alt != (unsigned)-1) {
3274                intf = ffs_func_revmap_intf(func, interface);
3275                if (intf < 0)
3276                        return intf;
3277        }
3278
3279        if (ffs->func)
3280                ffs_func_eps_disable(ffs->func);
3281
3282        if (ffs->state == FFS_DEACTIVATED) {
3283                ffs->state = FFS_CLOSING;
3284                INIT_WORK(&ffs->reset_work, ffs_reset_work);
3285                schedule_work(&ffs->reset_work);
3286                return -ENODEV;
3287        }
3288
3289        if (ffs->state != FFS_ACTIVE)
3290                return -ENODEV;
3291
3292        if (alt == (unsigned)-1) {
3293                ffs->func = NULL;
3294                ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3295                return 0;
3296        }
3297
3298        ffs->func = func;
3299        ret = ffs_func_eps_enable(func);
3300        if (ret >= 0)
3301                ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3302        return ret;
3303}
3304
3305static void ffs_func_disable(struct usb_function *f)
3306{
3307        ffs_func_set_alt(f, 0, (unsigned)-1);
3308}
3309
3310static int ffs_func_setup(struct usb_function *f,
3311                          const struct usb_ctrlrequest *creq)
3312{
3313        struct ffs_function *func = ffs_func_from_usb(f);
3314        struct ffs_data *ffs = func->ffs;
3315        unsigned long flags;
3316        int ret;
3317
3318        ENTER();
3319
3320        pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3321        pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3322        pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3323        pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3324        pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3325
3326        /*
3327         * Most requests directed to interface go through here
3328         * (notable exceptions are set/get interface) so we need to
3329         * handle them.  All other either handled by composite or
3330         * passed to usb_configuration->setup() (if one is set).  No
3331         * matter, we will handle requests directed to endpoint here
3332         * as well (as it's straightforward).  Other request recipient
3333         * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3334         * is being used.
3335         */
3336        if (ffs->state != FFS_ACTIVE)
3337                return -ENODEV;
3338
3339        switch (creq->bRequestType & USB_RECIP_MASK) {
3340        case USB_RECIP_INTERFACE:
3341                ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3342                if (ret < 0)
3343                        return ret;
3344                break;
3345
3346        case USB_RECIP_ENDPOINT:
3347                ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3348                if (ret < 0)
3349                        return ret;
3350                if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3351                        ret = func->ffs->eps_addrmap[ret];
3352                break;
3353
3354        default:
3355                if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3356                        ret = le16_to_cpu(creq->wIndex);
3357                else
3358                        return -EOPNOTSUPP;
3359        }
3360
3361        spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3362        ffs->ev.setup = *creq;
3363        ffs->ev.setup.wIndex = cpu_to_le16(ret);
3364        __ffs_event_add(ffs, FUNCTIONFS_SETUP);
3365        spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3366
3367        return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3368}
3369
3370static bool ffs_func_req_match(struct usb_function *f,
3371                               const struct usb_ctrlrequest *creq,
3372                               bool config0)
3373{
3374        struct ffs_function *func = ffs_func_from_usb(f);
3375
3376        if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3377                return false;
3378
3379        switch (creq->bRequestType & USB_RECIP_MASK) {
3380        case USB_RECIP_INTERFACE:
3381                return (ffs_func_revmap_intf(func,
3382                                             le16_to_cpu(creq->wIndex)) >= 0);
3383        case USB_RECIP_ENDPOINT:
3384                return (ffs_func_revmap_ep(func,
3385                                           le16_to_cpu(creq->wIndex)) >= 0);
3386        default:
3387                return (bool) (func->ffs->user_flags &
3388                               FUNCTIONFS_ALL_CTRL_RECIP);
3389        }
3390}
3391
3392static void ffs_func_suspend(struct usb_function *f)
3393{
3394        ENTER();
3395        ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3396}
3397
3398static void ffs_func_resume(struct usb_function *f)
3399{
3400        ENTER();
3401        ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3402}
3403
3404
3405/* Endpoint and interface numbers reverse mapping ***************************/
3406
3407static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3408{
3409        num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3410        return num ? num : -EDOM;
3411}
3412
3413static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3414{
3415        short *nums = func->interfaces_nums;
3416        unsigned count = func->ffs->interfaces_count;
3417
3418        for (; count; --count, ++nums) {
3419                if (*nums >= 0 && *nums == intf)
3420                        return nums - func->interfaces_nums;
3421        }
3422
3423        return -EDOM;
3424}
3425
3426
3427/* Devices management *******************************************************/
3428
3429static LIST_HEAD(ffs_devices);
3430
3431static struct ffs_dev *_ffs_do_find_dev(const char *name)
3432{
3433        struct ffs_dev *dev;
3434
3435        if (!name)
3436                return NULL;
3437
3438        list_for_each_entry(dev, &ffs_devices, entry) {
3439                if (strcmp(dev->name, name) == 0)
3440                        return dev;
3441        }
3442
3443        return NULL;
3444}
3445
3446/*
3447 * ffs_lock must be taken by the caller of this function
3448 */
3449static struct ffs_dev *_ffs_get_single_dev(void)
3450{
3451        struct ffs_dev *dev;
3452
3453        if (list_is_singular(&ffs_devices)) {
3454                dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3455                if (dev->single)
3456                        return dev;
3457        }
3458
3459        return NULL;
3460}
3461
3462/*
3463 * ffs_lock must be taken by the caller of this function
3464 */
3465static struct ffs_dev *_ffs_find_dev(const char *name)
3466{
3467        struct ffs_dev *dev;
3468
3469        dev = _ffs_get_single_dev();
3470        if (dev)
3471                return dev;
3472
3473        return _ffs_do_find_dev(name);
3474}
3475
3476/* Configfs support *********************************************************/
3477
3478static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3479{
3480        return container_of(to_config_group(item), struct f_fs_opts,
3481                            func_inst.group);
3482}
3483
3484static void ffs_attr_release(struct config_item *item)
3485{
3486        struct f_fs_opts *opts = to_ffs_opts(item);
3487
3488        usb_put_function_instance(&opts->func_inst);
3489}
3490
3491static struct configfs_item_operations ffs_item_ops = {
3492        .release        = ffs_attr_release,
3493};
3494
3495static const struct config_item_type ffs_func_type = {
3496        .ct_item_ops    = &ffs_item_ops,
3497        .ct_owner       = THIS_MODULE,
3498};
3499
3500
3501/* Function registration interface ******************************************/
3502
3503static void ffs_free_inst(struct usb_function_instance *f)
3504{
3505        struct f_fs_opts *opts;
3506
3507        opts = to_f_fs_opts(f);
3508        ffs_release_dev(opts->dev);
3509        ffs_dev_lock();
3510        _ffs_free_dev(opts->dev);
3511        ffs_dev_unlock();
3512        kfree(opts);
3513}
3514
3515static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3516{
3517        if (strlen(name) >= sizeof_field(struct ffs_dev, name))
3518                return -ENAMETOOLONG;
3519        return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3520}
3521
3522static struct usb_function_instance *ffs_alloc_inst(void)
3523{
3524        struct f_fs_opts *opts;
3525        struct ffs_dev *dev;
3526
3527        opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3528        if (!opts)
3529                return ERR_PTR(-ENOMEM);
3530
3531        opts->func_inst.set_inst_name = ffs_set_inst_name;
3532        opts->func_inst.free_func_inst = ffs_free_inst;
3533        ffs_dev_lock();
3534        dev = _ffs_alloc_dev();
3535        ffs_dev_unlock();
3536        if (IS_ERR(dev)) {
3537                kfree(opts);
3538                return ERR_CAST(dev);
3539        }
3540        opts->dev = dev;
3541        dev->opts = opts;
3542
3543        config_group_init_type_name(&opts->func_inst.group, "",
3544                                    &ffs_func_type);
3545        return &opts->func_inst;
3546}
3547
3548static void ffs_free(struct usb_function *f)
3549{
3550        kfree(ffs_func_from_usb(f));
3551}
3552
3553static void ffs_func_unbind(struct usb_configuration *c,
3554                            struct usb_function *f)
3555{
3556        struct ffs_function *func = ffs_func_from_usb(f);
3557        struct ffs_data *ffs = func->ffs;
3558        struct f_fs_opts *opts =
3559                container_of(f->fi, struct f_fs_opts, func_inst);
3560        struct ffs_ep *ep = func->eps;
3561        unsigned count = ffs->eps_count;
3562        unsigned long flags;
3563
3564        ENTER();
3565        if (ffs->func == func) {
3566                ffs_func_eps_disable(func);
3567                ffs->func = NULL;
3568        }
3569
3570        /* Drain any pending AIO completions */
3571        drain_workqueue(ffs->io_completion_wq);
3572
3573        if (!--opts->refcnt)
3574                functionfs_unbind(ffs);
3575
3576        /* cleanup after autoconfig */
3577        spin_lock_irqsave(&func->ffs->eps_lock, flags);
3578        while (count--) {
3579                if (ep->ep && ep->req)
3580                        usb_ep_free_request(ep->ep, ep->req);
3581                ep->req = NULL;
3582                ++ep;
3583        }
3584        spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3585        kfree(func->eps);
3586        func->eps = NULL;
3587        /*
3588         * eps, descriptors and interfaces_nums are allocated in the
3589         * same chunk so only one free is required.
3590         */
3591        func->function.fs_descriptors = NULL;
3592        func->function.hs_descriptors = NULL;
3593        func->function.ss_descriptors = NULL;
3594        func->function.ssp_descriptors = NULL;
3595        func->interfaces_nums = NULL;
3596
3597        ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3598}
3599
3600static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3601{
3602        struct ffs_function *func;
3603
3604        ENTER();
3605
3606        func = kzalloc(sizeof(*func), GFP_KERNEL);
3607        if (!func)
3608                return ERR_PTR(-ENOMEM);
3609
3610        func->function.name    = "Function FS Gadget";
3611
3612        func->function.bind    = ffs_func_bind;
3613        func->function.unbind  = ffs_func_unbind;
3614        func->function.set_alt = ffs_func_set_alt;
3615        func->function.disable = ffs_func_disable;
3616        func->function.setup   = ffs_func_setup;
3617        func->function.req_match = ffs_func_req_match;
3618        func->function.suspend = ffs_func_suspend;
3619        func->function.resume  = ffs_func_resume;
3620        func->function.free_func = ffs_free;
3621
3622        return &func->function;
3623}
3624
3625/*
3626 * ffs_lock must be taken by the caller of this function
3627 */
3628static struct ffs_dev *_ffs_alloc_dev(void)
3629{
3630        struct ffs_dev *dev;
3631        int ret;
3632
3633        if (_ffs_get_single_dev())
3634                        return ERR_PTR(-EBUSY);
3635
3636        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3637        if (!dev)
3638                return ERR_PTR(-ENOMEM);
3639
3640        if (list_empty(&ffs_devices)) {
3641                ret = functionfs_init();
3642                if (ret) {
3643                        kfree(dev);
3644                        return ERR_PTR(ret);
3645                }
3646        }
3647
3648        list_add(&dev->entry, &ffs_devices);
3649
3650        return dev;
3651}
3652
3653int ffs_name_dev(struct ffs_dev *dev, const char *name)
3654{
3655        struct ffs_dev *existing;
3656        int ret = 0;
3657
3658        ffs_dev_lock();
3659
3660        existing = _ffs_do_find_dev(name);
3661        if (!existing)
3662                strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3663        else if (existing != dev)
3664                ret = -EBUSY;
3665
3666        ffs_dev_unlock();
3667
3668        return ret;
3669}
3670EXPORT_SYMBOL_GPL(ffs_name_dev);
3671
3672int ffs_single_dev(struct ffs_dev *dev)
3673{
3674        int ret;
3675
3676        ret = 0;
3677        ffs_dev_lock();
3678
3679        if (!list_is_singular(&ffs_devices))
3680                ret = -EBUSY;
3681        else
3682                dev->single = true;
3683
3684        ffs_dev_unlock();
3685        return ret;
3686}
3687EXPORT_SYMBOL_GPL(ffs_single_dev);
3688
3689/*
3690 * ffs_lock must be taken by the caller of this function
3691 */
3692static void _ffs_free_dev(struct ffs_dev *dev)
3693{
3694        list_del(&dev->entry);
3695
3696        kfree(dev);
3697        if (list_empty(&ffs_devices))
3698                functionfs_cleanup();
3699}
3700
3701static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data)
3702{
3703        int ret = 0;
3704        struct ffs_dev *ffs_dev;
3705
3706        ENTER();
3707        ffs_dev_lock();
3708
3709        ffs_dev = _ffs_find_dev(dev_name);
3710        if (!ffs_dev) {
3711                ret = -ENOENT;
3712        } else if (ffs_dev->mounted) {
3713                ret = -EBUSY;
3714        } else if (ffs_dev->ffs_acquire_dev_callback &&
3715                   ffs_dev->ffs_acquire_dev_callback(ffs_dev)) {
3716                ret = -ENOENT;
3717        } else {
3718                ffs_dev->mounted = true;
3719                ffs_dev->ffs_data = ffs_data;
3720                ffs_data->private_data = ffs_dev;
3721        }
3722
3723        ffs_dev_unlock();
3724        return ret;
3725}
3726
3727static void ffs_release_dev(struct ffs_dev *ffs_dev)
3728{
3729        ENTER();
3730        ffs_dev_lock();
3731
3732        if (ffs_dev && ffs_dev->mounted) {
3733                ffs_dev->mounted = false;
3734                if (ffs_dev->ffs_data) {
3735                        ffs_dev->ffs_data->private_data = NULL;
3736                        ffs_dev->ffs_data = NULL;
3737                }
3738
3739                if (ffs_dev->ffs_release_dev_callback)
3740                        ffs_dev->ffs_release_dev_callback(ffs_dev);
3741        }
3742
3743        ffs_dev_unlock();
3744}
3745
3746static int ffs_ready(struct ffs_data *ffs)
3747{
3748        struct ffs_dev *ffs_obj;
3749        int ret = 0;
3750
3751        ENTER();
3752        ffs_dev_lock();
3753
3754        ffs_obj = ffs->private_data;
3755        if (!ffs_obj) {
3756                ret = -EINVAL;
3757                goto done;
3758        }
3759        if (WARN_ON(ffs_obj->desc_ready)) {
3760                ret = -EBUSY;
3761                goto done;
3762        }
3763
3764        ffs_obj->desc_ready = true;
3765
3766        if (ffs_obj->ffs_ready_callback) {
3767                ret = ffs_obj->ffs_ready_callback(ffs);
3768                if (ret)
3769                        goto done;
3770        }
3771
3772        set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3773done:
3774        ffs_dev_unlock();
3775        return ret;
3776}
3777
3778static void ffs_closed(struct ffs_data *ffs)
3779{
3780        struct ffs_dev *ffs_obj;
3781        struct f_fs_opts *opts;
3782        struct config_item *ci;
3783
3784        ENTER();
3785        ffs_dev_lock();
3786
3787        ffs_obj = ffs->private_data;
3788        if (!ffs_obj)
3789                goto done;
3790
3791        ffs_obj->desc_ready = false;
3792
3793        if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3794            ffs_obj->ffs_closed_callback)
3795                ffs_obj->ffs_closed_callback(ffs);
3796
3797        if (ffs_obj->opts)
3798                opts = ffs_obj->opts;
3799        else
3800                goto done;
3801
3802        if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3803            || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3804                goto done;
3805
3806        ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3807        ffs_dev_unlock();
3808
3809        if (test_bit(FFS_FL_BOUND, &ffs->flags))
3810                unregister_gadget_item(ci);
3811        return;
3812done:
3813        ffs_dev_unlock();
3814}
3815
3816/* Misc helper functions ****************************************************/
3817
3818static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3819{
3820        return nonblock
3821                ? mutex_trylock(mutex) ? 0 : -EAGAIN
3822                : mutex_lock_interruptible(mutex);
3823}
3824
3825static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3826{
3827        char *data;
3828
3829        if (!len)
3830                return NULL;
3831
3832        data = memdup_user(buf, len);
3833        if (IS_ERR(data))
3834                return ERR_PTR(PTR_ERR(data));
3835
3836        pr_vdebug("Buffer from user space:\n");
3837        ffs_dump_mem("", data, len);
3838
3839        return data;
3840}
3841
3842DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3843MODULE_LICENSE("GPL");
3844MODULE_AUTHOR("Michal Nazarewicz");
3845