linux/fs/aio.c
<<
>>
Prefs
   1/*
   2 *      An async IO implementation for Linux
   3 *      Written by Benjamin LaHaise <bcrl@kvack.org>
   4 *
   5 *      Implements an efficient asynchronous io interface.
   6 *
   7 *      Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
   8 *      Copyright 2018 Christoph Hellwig.
   9 *
  10 *      See ../COPYING for licensing terms.
  11 */
  12#define pr_fmt(fmt) "%s: " fmt, __func__
  13
  14#include <linux/kernel.h>
  15#include <linux/init.h>
  16#include <linux/errno.h>
  17#include <linux/time.h>
  18#include <linux/aio_abi.h>
  19#include <linux/export.h>
  20#include <linux/syscalls.h>
  21#include <linux/backing-dev.h>
  22#include <linux/refcount.h>
  23#include <linux/uio.h>
  24
  25#include <linux/sched/signal.h>
  26#include <linux/fs.h>
  27#include <linux/file.h>
  28#include <linux/mm.h>
  29#include <linux/mman.h>
  30#include <linux/percpu.h>
  31#include <linux/slab.h>
  32#include <linux/timer.h>
  33#include <linux/aio.h>
  34#include <linux/highmem.h>
  35#include <linux/workqueue.h>
  36#include <linux/security.h>
  37#include <linux/eventfd.h>
  38#include <linux/blkdev.h>
  39#include <linux/compat.h>
  40#include <linux/migrate.h>
  41#include <linux/ramfs.h>
  42#include <linux/percpu-refcount.h>
  43#include <linux/mount.h>
  44#include <linux/pseudo_fs.h>
  45
  46#include <linux/uaccess.h>
  47#include <linux/nospec.h>
  48
  49#include "internal.h"
  50
  51#define KIOCB_KEY               0
  52
  53#define AIO_RING_MAGIC                  0xa10a10a1
  54#define AIO_RING_COMPAT_FEATURES        1
  55#define AIO_RING_INCOMPAT_FEATURES      0
  56struct aio_ring {
  57        unsigned        id;     /* kernel internal index number */
  58        unsigned        nr;     /* number of io_events */
  59        unsigned        head;   /* Written to by userland or under ring_lock
  60                                 * mutex by aio_read_events_ring(). */
  61        unsigned        tail;
  62
  63        unsigned        magic;
  64        unsigned        compat_features;
  65        unsigned        incompat_features;
  66        unsigned        header_length;  /* size of aio_ring */
  67
  68
  69        struct io_event         io_events[];
  70}; /* 128 bytes + ring size */
  71
  72/*
  73 * Plugging is meant to work with larger batches of IOs. If we don't
  74 * have more than the below, then don't bother setting up a plug.
  75 */
  76#define AIO_PLUG_THRESHOLD      2
  77
  78#define AIO_RING_PAGES  8
  79
  80struct kioctx_table {
  81        struct rcu_head         rcu;
  82        unsigned                nr;
  83        struct kioctx __rcu     *table[];
  84};
  85
  86struct kioctx_cpu {
  87        unsigned                reqs_available;
  88};
  89
  90struct ctx_rq_wait {
  91        struct completion comp;
  92        atomic_t count;
  93};
  94
  95struct kioctx {
  96        struct percpu_ref       users;
  97        atomic_t                dead;
  98
  99        struct percpu_ref       reqs;
 100
 101        unsigned long           user_id;
 102
 103        struct __percpu kioctx_cpu *cpu;
 104
 105        /*
 106         * For percpu reqs_available, number of slots we move to/from global
 107         * counter at a time:
 108         */
 109        unsigned                req_batch;
 110        /*
 111         * This is what userspace passed to io_setup(), it's not used for
 112         * anything but counting against the global max_reqs quota.
 113         *
 114         * The real limit is nr_events - 1, which will be larger (see
 115         * aio_setup_ring())
 116         */
 117        unsigned                max_reqs;
 118
 119        /* Size of ringbuffer, in units of struct io_event */
 120        unsigned                nr_events;
 121
 122        unsigned long           mmap_base;
 123        unsigned long           mmap_size;
 124
 125        struct page             **ring_pages;
 126        long                    nr_pages;
 127
 128        struct rcu_work         free_rwork;     /* see free_ioctx() */
 129
 130        /*
 131         * signals when all in-flight requests are done
 132         */
 133        struct ctx_rq_wait      *rq_wait;
 134
 135        struct {
 136                /*
 137                 * This counts the number of available slots in the ringbuffer,
 138                 * so we avoid overflowing it: it's decremented (if positive)
 139                 * when allocating a kiocb and incremented when the resulting
 140                 * io_event is pulled off the ringbuffer.
 141                 *
 142                 * We batch accesses to it with a percpu version.
 143                 */
 144                atomic_t        reqs_available;
 145        } ____cacheline_aligned_in_smp;
 146
 147        struct {
 148                spinlock_t      ctx_lock;
 149                struct list_head active_reqs;   /* used for cancellation */
 150        } ____cacheline_aligned_in_smp;
 151
 152        struct {
 153                struct mutex    ring_lock;
 154                wait_queue_head_t wait;
 155        } ____cacheline_aligned_in_smp;
 156
 157        struct {
 158                unsigned        tail;
 159                unsigned        completed_events;
 160                spinlock_t      completion_lock;
 161        } ____cacheline_aligned_in_smp;
 162
 163        struct page             *internal_pages[AIO_RING_PAGES];
 164        struct file             *aio_ring_file;
 165
 166        unsigned                id;
 167};
 168
 169/*
 170 * First field must be the file pointer in all the
 171 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
 172 */
 173struct fsync_iocb {
 174        struct file             *file;
 175        struct work_struct      work;
 176        bool                    datasync;
 177        struct cred             *creds;
 178};
 179
 180struct poll_iocb {
 181        struct file             *file;
 182        struct wait_queue_head  *head;
 183        __poll_t                events;
 184        bool                    done;
 185        bool                    cancelled;
 186        struct wait_queue_entry wait;
 187        struct work_struct      work;
 188};
 189
 190/*
 191 * NOTE! Each of the iocb union members has the file pointer
 192 * as the first entry in their struct definition. So you can
 193 * access the file pointer through any of the sub-structs,
 194 * or directly as just 'ki_filp' in this struct.
 195 */
 196struct aio_kiocb {
 197        union {
 198                struct file             *ki_filp;
 199                struct kiocb            rw;
 200                struct fsync_iocb       fsync;
 201                struct poll_iocb        poll;
 202        };
 203
 204        struct kioctx           *ki_ctx;
 205        kiocb_cancel_fn         *ki_cancel;
 206
 207        struct io_event         ki_res;
 208
 209        struct list_head        ki_list;        /* the aio core uses this
 210                                                 * for cancellation */
 211        refcount_t              ki_refcnt;
 212
 213        /*
 214         * If the aio_resfd field of the userspace iocb is not zero,
 215         * this is the underlying eventfd context to deliver events to.
 216         */
 217        struct eventfd_ctx      *ki_eventfd;
 218};
 219
 220/*------ sysctl variables----*/
 221static DEFINE_SPINLOCK(aio_nr_lock);
 222unsigned long aio_nr;           /* current system wide number of aio requests */
 223unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
 224/*----end sysctl variables---*/
 225
 226static struct kmem_cache        *kiocb_cachep;
 227static struct kmem_cache        *kioctx_cachep;
 228
 229static struct vfsmount *aio_mnt;
 230
 231static const struct file_operations aio_ring_fops;
 232static const struct address_space_operations aio_ctx_aops;
 233
 234static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
 235{
 236        struct file *file;
 237        struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
 238        if (IS_ERR(inode))
 239                return ERR_CAST(inode);
 240
 241        inode->i_mapping->a_ops = &aio_ctx_aops;
 242        inode->i_mapping->private_data = ctx;
 243        inode->i_size = PAGE_SIZE * nr_pages;
 244
 245        file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
 246                                O_RDWR, &aio_ring_fops);
 247        if (IS_ERR(file))
 248                iput(inode);
 249        return file;
 250}
 251
 252static int aio_init_fs_context(struct fs_context *fc)
 253{
 254        if (!init_pseudo(fc, AIO_RING_MAGIC))
 255                return -ENOMEM;
 256        fc->s_iflags |= SB_I_NOEXEC;
 257        return 0;
 258}
 259
 260/* aio_setup
 261 *      Creates the slab caches used by the aio routines, panic on
 262 *      failure as this is done early during the boot sequence.
 263 */
 264static int __init aio_setup(void)
 265{
 266        static struct file_system_type aio_fs = {
 267                .name           = "aio",
 268                .init_fs_context = aio_init_fs_context,
 269                .kill_sb        = kill_anon_super,
 270        };
 271        aio_mnt = kern_mount(&aio_fs);
 272        if (IS_ERR(aio_mnt))
 273                panic("Failed to create aio fs mount.");
 274
 275        kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
 276        kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
 277        return 0;
 278}
 279__initcall(aio_setup);
 280
 281static void put_aio_ring_file(struct kioctx *ctx)
 282{
 283        struct file *aio_ring_file = ctx->aio_ring_file;
 284        struct address_space *i_mapping;
 285
 286        if (aio_ring_file) {
 287                truncate_setsize(file_inode(aio_ring_file), 0);
 288
 289                /* Prevent further access to the kioctx from migratepages */
 290                i_mapping = aio_ring_file->f_mapping;
 291                spin_lock(&i_mapping->private_lock);
 292                i_mapping->private_data = NULL;
 293                ctx->aio_ring_file = NULL;
 294                spin_unlock(&i_mapping->private_lock);
 295
 296                fput(aio_ring_file);
 297        }
 298}
 299
 300static void aio_free_ring(struct kioctx *ctx)
 301{
 302        int i;
 303
 304        /* Disconnect the kiotx from the ring file.  This prevents future
 305         * accesses to the kioctx from page migration.
 306         */
 307        put_aio_ring_file(ctx);
 308
 309        for (i = 0; i < ctx->nr_pages; i++) {
 310                struct page *page;
 311                pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
 312                                page_count(ctx->ring_pages[i]));
 313                page = ctx->ring_pages[i];
 314                if (!page)
 315                        continue;
 316                ctx->ring_pages[i] = NULL;
 317                put_page(page);
 318        }
 319
 320        if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
 321                kfree(ctx->ring_pages);
 322                ctx->ring_pages = NULL;
 323        }
 324}
 325
 326static int aio_ring_mremap(struct vm_area_struct *vma)
 327{
 328        struct file *file = vma->vm_file;
 329        struct mm_struct *mm = vma->vm_mm;
 330        struct kioctx_table *table;
 331        int i, res = -EINVAL;
 332
 333        spin_lock(&mm->ioctx_lock);
 334        rcu_read_lock();
 335        table = rcu_dereference(mm->ioctx_table);
 336        for (i = 0; i < table->nr; i++) {
 337                struct kioctx *ctx;
 338
 339                ctx = rcu_dereference(table->table[i]);
 340                if (ctx && ctx->aio_ring_file == file) {
 341                        if (!atomic_read(&ctx->dead)) {
 342                                ctx->user_id = ctx->mmap_base = vma->vm_start;
 343                                res = 0;
 344                        }
 345                        break;
 346                }
 347        }
 348
 349        rcu_read_unlock();
 350        spin_unlock(&mm->ioctx_lock);
 351        return res;
 352}
 353
 354static const struct vm_operations_struct aio_ring_vm_ops = {
 355        .mremap         = aio_ring_mremap,
 356#if IS_ENABLED(CONFIG_MMU)
 357        .fault          = filemap_fault,
 358        .map_pages      = filemap_map_pages,
 359        .page_mkwrite   = filemap_page_mkwrite,
 360#endif
 361};
 362
 363static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
 364{
 365        vma->vm_flags |= VM_DONTEXPAND;
 366        vma->vm_ops = &aio_ring_vm_ops;
 367        return 0;
 368}
 369
 370static const struct file_operations aio_ring_fops = {
 371        .mmap = aio_ring_mmap,
 372};
 373
 374#if IS_ENABLED(CONFIG_MIGRATION)
 375static int aio_migratepage(struct address_space *mapping, struct page *new,
 376                        struct page *old, enum migrate_mode mode)
 377{
 378        struct kioctx *ctx;
 379        unsigned long flags;
 380        pgoff_t idx;
 381        int rc;
 382
 383        /*
 384         * We cannot support the _NO_COPY case here, because copy needs to
 385         * happen under the ctx->completion_lock. That does not work with the
 386         * migration workflow of MIGRATE_SYNC_NO_COPY.
 387         */
 388        if (mode == MIGRATE_SYNC_NO_COPY)
 389                return -EINVAL;
 390
 391        rc = 0;
 392
 393        /* mapping->private_lock here protects against the kioctx teardown.  */
 394        spin_lock(&mapping->private_lock);
 395        ctx = mapping->private_data;
 396        if (!ctx) {
 397                rc = -EINVAL;
 398                goto out;
 399        }
 400
 401        /* The ring_lock mutex.  The prevents aio_read_events() from writing
 402         * to the ring's head, and prevents page migration from mucking in
 403         * a partially initialized kiotx.
 404         */
 405        if (!mutex_trylock(&ctx->ring_lock)) {
 406                rc = -EAGAIN;
 407                goto out;
 408        }
 409
 410        idx = old->index;
 411        if (idx < (pgoff_t)ctx->nr_pages) {
 412                /* Make sure the old page hasn't already been changed */
 413                if (ctx->ring_pages[idx] != old)
 414                        rc = -EAGAIN;
 415        } else
 416                rc = -EINVAL;
 417
 418        if (rc != 0)
 419                goto out_unlock;
 420
 421        /* Writeback must be complete */
 422        BUG_ON(PageWriteback(old));
 423        get_page(new);
 424
 425        rc = migrate_page_move_mapping(mapping, new, old, 1);
 426        if (rc != MIGRATEPAGE_SUCCESS) {
 427                put_page(new);
 428                goto out_unlock;
 429        }
 430
 431        /* Take completion_lock to prevent other writes to the ring buffer
 432         * while the old page is copied to the new.  This prevents new
 433         * events from being lost.
 434         */
 435        spin_lock_irqsave(&ctx->completion_lock, flags);
 436        migrate_page_copy(new, old);
 437        BUG_ON(ctx->ring_pages[idx] != old);
 438        ctx->ring_pages[idx] = new;
 439        spin_unlock_irqrestore(&ctx->completion_lock, flags);
 440
 441        /* The old page is no longer accessible. */
 442        put_page(old);
 443
 444out_unlock:
 445        mutex_unlock(&ctx->ring_lock);
 446out:
 447        spin_unlock(&mapping->private_lock);
 448        return rc;
 449}
 450#endif
 451
 452static const struct address_space_operations aio_ctx_aops = {
 453        .set_page_dirty = __set_page_dirty_no_writeback,
 454#if IS_ENABLED(CONFIG_MIGRATION)
 455        .migratepage    = aio_migratepage,
 456#endif
 457};
 458
 459static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
 460{
 461        struct aio_ring *ring;
 462        struct mm_struct *mm = current->mm;
 463        unsigned long size, unused;
 464        int nr_pages;
 465        int i;
 466        struct file *file;
 467
 468        /* Compensate for the ring buffer's head/tail overlap entry */
 469        nr_events += 2; /* 1 is required, 2 for good luck */
 470
 471        size = sizeof(struct aio_ring);
 472        size += sizeof(struct io_event) * nr_events;
 473
 474        nr_pages = PFN_UP(size);
 475        if (nr_pages < 0)
 476                return -EINVAL;
 477
 478        file = aio_private_file(ctx, nr_pages);
 479        if (IS_ERR(file)) {
 480                ctx->aio_ring_file = NULL;
 481                return -ENOMEM;
 482        }
 483
 484        ctx->aio_ring_file = file;
 485        nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
 486                        / sizeof(struct io_event);
 487
 488        ctx->ring_pages = ctx->internal_pages;
 489        if (nr_pages > AIO_RING_PAGES) {
 490                ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
 491                                          GFP_KERNEL);
 492                if (!ctx->ring_pages) {
 493                        put_aio_ring_file(ctx);
 494                        return -ENOMEM;
 495                }
 496        }
 497
 498        for (i = 0; i < nr_pages; i++) {
 499                struct page *page;
 500                page = find_or_create_page(file->f_mapping,
 501                                           i, GFP_HIGHUSER | __GFP_ZERO);
 502                if (!page)
 503                        break;
 504                pr_debug("pid(%d) page[%d]->count=%d\n",
 505                         current->pid, i, page_count(page));
 506                SetPageUptodate(page);
 507                unlock_page(page);
 508
 509                ctx->ring_pages[i] = page;
 510        }
 511        ctx->nr_pages = i;
 512
 513        if (unlikely(i != nr_pages)) {
 514                aio_free_ring(ctx);
 515                return -ENOMEM;
 516        }
 517
 518        ctx->mmap_size = nr_pages * PAGE_SIZE;
 519        pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
 520
 521        if (mmap_write_lock_killable(mm)) {
 522                ctx->mmap_size = 0;
 523                aio_free_ring(ctx);
 524                return -EINTR;
 525        }
 526
 527        ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
 528                                 PROT_READ | PROT_WRITE,
 529                                 MAP_SHARED, 0, &unused, NULL);
 530        mmap_write_unlock(mm);
 531        if (IS_ERR((void *)ctx->mmap_base)) {
 532                ctx->mmap_size = 0;
 533                aio_free_ring(ctx);
 534                return -ENOMEM;
 535        }
 536
 537        pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
 538
 539        ctx->user_id = ctx->mmap_base;
 540        ctx->nr_events = nr_events; /* trusted copy */
 541
 542        ring = kmap_atomic(ctx->ring_pages[0]);
 543        ring->nr = nr_events;   /* user copy */
 544        ring->id = ~0U;
 545        ring->head = ring->tail = 0;
 546        ring->magic = AIO_RING_MAGIC;
 547        ring->compat_features = AIO_RING_COMPAT_FEATURES;
 548        ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
 549        ring->header_length = sizeof(struct aio_ring);
 550        kunmap_atomic(ring);
 551        flush_dcache_page(ctx->ring_pages[0]);
 552
 553        return 0;
 554}
 555
 556#define AIO_EVENTS_PER_PAGE     (PAGE_SIZE / sizeof(struct io_event))
 557#define AIO_EVENTS_FIRST_PAGE   ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
 558#define AIO_EVENTS_OFFSET       (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
 559
 560void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
 561{
 562        struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
 563        struct kioctx *ctx = req->ki_ctx;
 564        unsigned long flags;
 565
 566        if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
 567                return;
 568
 569        spin_lock_irqsave(&ctx->ctx_lock, flags);
 570        list_add_tail(&req->ki_list, &ctx->active_reqs);
 571        req->ki_cancel = cancel;
 572        spin_unlock_irqrestore(&ctx->ctx_lock, flags);
 573}
 574EXPORT_SYMBOL(kiocb_set_cancel_fn);
 575
 576/*
 577 * free_ioctx() should be RCU delayed to synchronize against the RCU
 578 * protected lookup_ioctx() and also needs process context to call
 579 * aio_free_ring().  Use rcu_work.
 580 */
 581static void free_ioctx(struct work_struct *work)
 582{
 583        struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
 584                                          free_rwork);
 585        pr_debug("freeing %p\n", ctx);
 586
 587        aio_free_ring(ctx);
 588        free_percpu(ctx->cpu);
 589        percpu_ref_exit(&ctx->reqs);
 590        percpu_ref_exit(&ctx->users);
 591        kmem_cache_free(kioctx_cachep, ctx);
 592}
 593
 594static void free_ioctx_reqs(struct percpu_ref *ref)
 595{
 596        struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
 597
 598        /* At this point we know that there are no any in-flight requests */
 599        if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
 600                complete(&ctx->rq_wait->comp);
 601
 602        /* Synchronize against RCU protected table->table[] dereferences */
 603        INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
 604        queue_rcu_work(system_wq, &ctx->free_rwork);
 605}
 606
 607/*
 608 * When this function runs, the kioctx has been removed from the "hash table"
 609 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
 610 * now it's safe to cancel any that need to be.
 611 */
 612static void free_ioctx_users(struct percpu_ref *ref)
 613{
 614        struct kioctx *ctx = container_of(ref, struct kioctx, users);
 615        struct aio_kiocb *req;
 616
 617        spin_lock_irq(&ctx->ctx_lock);
 618
 619        while (!list_empty(&ctx->active_reqs)) {
 620                req = list_first_entry(&ctx->active_reqs,
 621                                       struct aio_kiocb, ki_list);
 622                req->ki_cancel(&req->rw);
 623                list_del_init(&req->ki_list);
 624        }
 625
 626        spin_unlock_irq(&ctx->ctx_lock);
 627
 628        percpu_ref_kill(&ctx->reqs);
 629        percpu_ref_put(&ctx->reqs);
 630}
 631
 632static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
 633{
 634        unsigned i, new_nr;
 635        struct kioctx_table *table, *old;
 636        struct aio_ring *ring;
 637
 638        spin_lock(&mm->ioctx_lock);
 639        table = rcu_dereference_raw(mm->ioctx_table);
 640
 641        while (1) {
 642                if (table)
 643                        for (i = 0; i < table->nr; i++)
 644                                if (!rcu_access_pointer(table->table[i])) {
 645                                        ctx->id = i;
 646                                        rcu_assign_pointer(table->table[i], ctx);
 647                                        spin_unlock(&mm->ioctx_lock);
 648
 649                                        /* While kioctx setup is in progress,
 650                                         * we are protected from page migration
 651                                         * changes ring_pages by ->ring_lock.
 652                                         */
 653                                        ring = kmap_atomic(ctx->ring_pages[0]);
 654                                        ring->id = ctx->id;
 655                                        kunmap_atomic(ring);
 656                                        return 0;
 657                                }
 658
 659                new_nr = (table ? table->nr : 1) * 4;
 660                spin_unlock(&mm->ioctx_lock);
 661
 662                table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
 663                                new_nr, GFP_KERNEL);
 664                if (!table)
 665                        return -ENOMEM;
 666
 667                table->nr = new_nr;
 668
 669                spin_lock(&mm->ioctx_lock);
 670                old = rcu_dereference_raw(mm->ioctx_table);
 671
 672                if (!old) {
 673                        rcu_assign_pointer(mm->ioctx_table, table);
 674                } else if (table->nr > old->nr) {
 675                        memcpy(table->table, old->table,
 676                               old->nr * sizeof(struct kioctx *));
 677
 678                        rcu_assign_pointer(mm->ioctx_table, table);
 679                        kfree_rcu(old, rcu);
 680                } else {
 681                        kfree(table);
 682                        table = old;
 683                }
 684        }
 685}
 686
 687static void aio_nr_sub(unsigned nr)
 688{
 689        spin_lock(&aio_nr_lock);
 690        if (WARN_ON(aio_nr - nr > aio_nr))
 691                aio_nr = 0;
 692        else
 693                aio_nr -= nr;
 694        spin_unlock(&aio_nr_lock);
 695}
 696
 697/* ioctx_alloc
 698 *      Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
 699 */
 700static struct kioctx *ioctx_alloc(unsigned nr_events)
 701{
 702        struct mm_struct *mm = current->mm;
 703        struct kioctx *ctx;
 704        int err = -ENOMEM;
 705
 706        /*
 707         * Store the original nr_events -- what userspace passed to io_setup(),
 708         * for counting against the global limit -- before it changes.
 709         */
 710        unsigned int max_reqs = nr_events;
 711
 712        /*
 713         * We keep track of the number of available ringbuffer slots, to prevent
 714         * overflow (reqs_available), and we also use percpu counters for this.
 715         *
 716         * So since up to half the slots might be on other cpu's percpu counters
 717         * and unavailable, double nr_events so userspace sees what they
 718         * expected: additionally, we move req_batch slots to/from percpu
 719         * counters at a time, so make sure that isn't 0:
 720         */
 721        nr_events = max(nr_events, num_possible_cpus() * 4);
 722        nr_events *= 2;
 723
 724        /* Prevent overflows */
 725        if (nr_events > (0x10000000U / sizeof(struct io_event))) {
 726                pr_debug("ENOMEM: nr_events too high\n");
 727                return ERR_PTR(-EINVAL);
 728        }
 729
 730        if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
 731                return ERR_PTR(-EAGAIN);
 732
 733        ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
 734        if (!ctx)
 735                return ERR_PTR(-ENOMEM);
 736
 737        ctx->max_reqs = max_reqs;
 738
 739        spin_lock_init(&ctx->ctx_lock);
 740        spin_lock_init(&ctx->completion_lock);
 741        mutex_init(&ctx->ring_lock);
 742        /* Protect against page migration throughout kiotx setup by keeping
 743         * the ring_lock mutex held until setup is complete. */
 744        mutex_lock(&ctx->ring_lock);
 745        init_waitqueue_head(&ctx->wait);
 746
 747        INIT_LIST_HEAD(&ctx->active_reqs);
 748
 749        if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
 750                goto err;
 751
 752        if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
 753                goto err;
 754
 755        ctx->cpu = alloc_percpu(struct kioctx_cpu);
 756        if (!ctx->cpu)
 757                goto err;
 758
 759        err = aio_setup_ring(ctx, nr_events);
 760        if (err < 0)
 761                goto err;
 762
 763        atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
 764        ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
 765        if (ctx->req_batch < 1)
 766                ctx->req_batch = 1;
 767
 768        /* limit the number of system wide aios */
 769        spin_lock(&aio_nr_lock);
 770        if (aio_nr + ctx->max_reqs > aio_max_nr ||
 771            aio_nr + ctx->max_reqs < aio_nr) {
 772                spin_unlock(&aio_nr_lock);
 773                err = -EAGAIN;
 774                goto err_ctx;
 775        }
 776        aio_nr += ctx->max_reqs;
 777        spin_unlock(&aio_nr_lock);
 778
 779        percpu_ref_get(&ctx->users);    /* io_setup() will drop this ref */
 780        percpu_ref_get(&ctx->reqs);     /* free_ioctx_users() will drop this */
 781
 782        err = ioctx_add_table(ctx, mm);
 783        if (err)
 784                goto err_cleanup;
 785
 786        /* Release the ring_lock mutex now that all setup is complete. */
 787        mutex_unlock(&ctx->ring_lock);
 788
 789        pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
 790                 ctx, ctx->user_id, mm, ctx->nr_events);
 791        return ctx;
 792
 793err_cleanup:
 794        aio_nr_sub(ctx->max_reqs);
 795err_ctx:
 796        atomic_set(&ctx->dead, 1);
 797        if (ctx->mmap_size)
 798                vm_munmap(ctx->mmap_base, ctx->mmap_size);
 799        aio_free_ring(ctx);
 800err:
 801        mutex_unlock(&ctx->ring_lock);
 802        free_percpu(ctx->cpu);
 803        percpu_ref_exit(&ctx->reqs);
 804        percpu_ref_exit(&ctx->users);
 805        kmem_cache_free(kioctx_cachep, ctx);
 806        pr_debug("error allocating ioctx %d\n", err);
 807        return ERR_PTR(err);
 808}
 809
 810/* kill_ioctx
 811 *      Cancels all outstanding aio requests on an aio context.  Used
 812 *      when the processes owning a context have all exited to encourage
 813 *      the rapid destruction of the kioctx.
 814 */
 815static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
 816                      struct ctx_rq_wait *wait)
 817{
 818        struct kioctx_table *table;
 819
 820        spin_lock(&mm->ioctx_lock);
 821        if (atomic_xchg(&ctx->dead, 1)) {
 822                spin_unlock(&mm->ioctx_lock);
 823                return -EINVAL;
 824        }
 825
 826        table = rcu_dereference_raw(mm->ioctx_table);
 827        WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
 828        RCU_INIT_POINTER(table->table[ctx->id], NULL);
 829        spin_unlock(&mm->ioctx_lock);
 830
 831        /* free_ioctx_reqs() will do the necessary RCU synchronization */
 832        wake_up_all(&ctx->wait);
 833
 834        /*
 835         * It'd be more correct to do this in free_ioctx(), after all
 836         * the outstanding kiocbs have finished - but by then io_destroy
 837         * has already returned, so io_setup() could potentially return
 838         * -EAGAIN with no ioctxs actually in use (as far as userspace
 839         *  could tell).
 840         */
 841        aio_nr_sub(ctx->max_reqs);
 842
 843        if (ctx->mmap_size)
 844                vm_munmap(ctx->mmap_base, ctx->mmap_size);
 845
 846        ctx->rq_wait = wait;
 847        percpu_ref_kill(&ctx->users);
 848        return 0;
 849}
 850
 851/*
 852 * exit_aio: called when the last user of mm goes away.  At this point, there is
 853 * no way for any new requests to be submited or any of the io_* syscalls to be
 854 * called on the context.
 855 *
 856 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
 857 * them.
 858 */
 859void exit_aio(struct mm_struct *mm)
 860{
 861        struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
 862        struct ctx_rq_wait wait;
 863        int i, skipped;
 864
 865        if (!table)
 866                return;
 867
 868        atomic_set(&wait.count, table->nr);
 869        init_completion(&wait.comp);
 870
 871        skipped = 0;
 872        for (i = 0; i < table->nr; ++i) {
 873                struct kioctx *ctx =
 874                        rcu_dereference_protected(table->table[i], true);
 875
 876                if (!ctx) {
 877                        skipped++;
 878                        continue;
 879                }
 880
 881                /*
 882                 * We don't need to bother with munmap() here - exit_mmap(mm)
 883                 * is coming and it'll unmap everything. And we simply can't,
 884                 * this is not necessarily our ->mm.
 885                 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
 886                 * that it needs to unmap the area, just set it to 0.
 887                 */
 888                ctx->mmap_size = 0;
 889                kill_ioctx(mm, ctx, &wait);
 890        }
 891
 892        if (!atomic_sub_and_test(skipped, &wait.count)) {
 893                /* Wait until all IO for the context are done. */
 894                wait_for_completion(&wait.comp);
 895        }
 896
 897        RCU_INIT_POINTER(mm->ioctx_table, NULL);
 898        kfree(table);
 899}
 900
 901static void put_reqs_available(struct kioctx *ctx, unsigned nr)
 902{
 903        struct kioctx_cpu *kcpu;
 904        unsigned long flags;
 905
 906        local_irq_save(flags);
 907        kcpu = this_cpu_ptr(ctx->cpu);
 908        kcpu->reqs_available += nr;
 909
 910        while (kcpu->reqs_available >= ctx->req_batch * 2) {
 911                kcpu->reqs_available -= ctx->req_batch;
 912                atomic_add(ctx->req_batch, &ctx->reqs_available);
 913        }
 914
 915        local_irq_restore(flags);
 916}
 917
 918static bool __get_reqs_available(struct kioctx *ctx)
 919{
 920        struct kioctx_cpu *kcpu;
 921        bool ret = false;
 922        unsigned long flags;
 923
 924        local_irq_save(flags);
 925        kcpu = this_cpu_ptr(ctx->cpu);
 926        if (!kcpu->reqs_available) {
 927                int old, avail = atomic_read(&ctx->reqs_available);
 928
 929                do {
 930                        if (avail < ctx->req_batch)
 931                                goto out;
 932
 933                        old = avail;
 934                        avail = atomic_cmpxchg(&ctx->reqs_available,
 935                                               avail, avail - ctx->req_batch);
 936                } while (avail != old);
 937
 938                kcpu->reqs_available += ctx->req_batch;
 939        }
 940
 941        ret = true;
 942        kcpu->reqs_available--;
 943out:
 944        local_irq_restore(flags);
 945        return ret;
 946}
 947
 948/* refill_reqs_available
 949 *      Updates the reqs_available reference counts used for tracking the
 950 *      number of free slots in the completion ring.  This can be called
 951 *      from aio_complete() (to optimistically update reqs_available) or
 952 *      from aio_get_req() (the we're out of events case).  It must be
 953 *      called holding ctx->completion_lock.
 954 */
 955static void refill_reqs_available(struct kioctx *ctx, unsigned head,
 956                                  unsigned tail)
 957{
 958        unsigned events_in_ring, completed;
 959
 960        /* Clamp head since userland can write to it. */
 961        head %= ctx->nr_events;
 962        if (head <= tail)
 963                events_in_ring = tail - head;
 964        else
 965                events_in_ring = ctx->nr_events - (head - tail);
 966
 967        completed = ctx->completed_events;
 968        if (events_in_ring < completed)
 969                completed -= events_in_ring;
 970        else
 971                completed = 0;
 972
 973        if (!completed)
 974                return;
 975
 976        ctx->completed_events -= completed;
 977        put_reqs_available(ctx, completed);
 978}
 979
 980/* user_refill_reqs_available
 981 *      Called to refill reqs_available when aio_get_req() encounters an
 982 *      out of space in the completion ring.
 983 */
 984static void user_refill_reqs_available(struct kioctx *ctx)
 985{
 986        spin_lock_irq(&ctx->completion_lock);
 987        if (ctx->completed_events) {
 988                struct aio_ring *ring;
 989                unsigned head;
 990
 991                /* Access of ring->head may race with aio_read_events_ring()
 992                 * here, but that's okay since whether we read the old version
 993                 * or the new version, and either will be valid.  The important
 994                 * part is that head cannot pass tail since we prevent
 995                 * aio_complete() from updating tail by holding
 996                 * ctx->completion_lock.  Even if head is invalid, the check
 997                 * against ctx->completed_events below will make sure we do the
 998                 * safe/right thing.
 999                 */
1000                ring = kmap_atomic(ctx->ring_pages[0]);
1001                head = ring->head;
1002                kunmap_atomic(ring);
1003
1004                refill_reqs_available(ctx, head, ctx->tail);
1005        }
1006
1007        spin_unlock_irq(&ctx->completion_lock);
1008}
1009
1010static bool get_reqs_available(struct kioctx *ctx)
1011{
1012        if (__get_reqs_available(ctx))
1013                return true;
1014        user_refill_reqs_available(ctx);
1015        return __get_reqs_available(ctx);
1016}
1017
1018/* aio_get_req
1019 *      Allocate a slot for an aio request.
1020 * Returns NULL if no requests are free.
1021 *
1022 * The refcount is initialized to 2 - one for the async op completion,
1023 * one for the synchronous code that does this.
1024 */
1025static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1026{
1027        struct aio_kiocb *req;
1028
1029        req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1030        if (unlikely(!req))
1031                return NULL;
1032
1033        if (unlikely(!get_reqs_available(ctx))) {
1034                kmem_cache_free(kiocb_cachep, req);
1035                return NULL;
1036        }
1037
1038        percpu_ref_get(&ctx->reqs);
1039        req->ki_ctx = ctx;
1040        INIT_LIST_HEAD(&req->ki_list);
1041        refcount_set(&req->ki_refcnt, 2);
1042        req->ki_eventfd = NULL;
1043        return req;
1044}
1045
1046static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1047{
1048        struct aio_ring __user *ring  = (void __user *)ctx_id;
1049        struct mm_struct *mm = current->mm;
1050        struct kioctx *ctx, *ret = NULL;
1051        struct kioctx_table *table;
1052        unsigned id;
1053
1054        if (get_user(id, &ring->id))
1055                return NULL;
1056
1057        rcu_read_lock();
1058        table = rcu_dereference(mm->ioctx_table);
1059
1060        if (!table || id >= table->nr)
1061                goto out;
1062
1063        id = array_index_nospec(id, table->nr);
1064        ctx = rcu_dereference(table->table[id]);
1065        if (ctx && ctx->user_id == ctx_id) {
1066                if (percpu_ref_tryget_live(&ctx->users))
1067                        ret = ctx;
1068        }
1069out:
1070        rcu_read_unlock();
1071        return ret;
1072}
1073
1074static inline void iocb_destroy(struct aio_kiocb *iocb)
1075{
1076        if (iocb->ki_eventfd)
1077                eventfd_ctx_put(iocb->ki_eventfd);
1078        if (iocb->ki_filp)
1079                fput(iocb->ki_filp);
1080        percpu_ref_put(&iocb->ki_ctx->reqs);
1081        kmem_cache_free(kiocb_cachep, iocb);
1082}
1083
1084/* aio_complete
1085 *      Called when the io request on the given iocb is complete.
1086 */
1087static void aio_complete(struct aio_kiocb *iocb)
1088{
1089        struct kioctx   *ctx = iocb->ki_ctx;
1090        struct aio_ring *ring;
1091        struct io_event *ev_page, *event;
1092        unsigned tail, pos, head;
1093        unsigned long   flags;
1094
1095        /*
1096         * Add a completion event to the ring buffer. Must be done holding
1097         * ctx->completion_lock to prevent other code from messing with the tail
1098         * pointer since we might be called from irq context.
1099         */
1100        spin_lock_irqsave(&ctx->completion_lock, flags);
1101
1102        tail = ctx->tail;
1103        pos = tail + AIO_EVENTS_OFFSET;
1104
1105        if (++tail >= ctx->nr_events)
1106                tail = 0;
1107
1108        ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1109        event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1110
1111        *event = iocb->ki_res;
1112
1113        kunmap_atomic(ev_page);
1114        flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1115
1116        pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1117                 (void __user *)(unsigned long)iocb->ki_res.obj,
1118                 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1119
1120        /* after flagging the request as done, we
1121         * must never even look at it again
1122         */
1123        smp_wmb();      /* make event visible before updating tail */
1124
1125        ctx->tail = tail;
1126
1127        ring = kmap_atomic(ctx->ring_pages[0]);
1128        head = ring->head;
1129        ring->tail = tail;
1130        kunmap_atomic(ring);
1131        flush_dcache_page(ctx->ring_pages[0]);
1132
1133        ctx->completed_events++;
1134        if (ctx->completed_events > 1)
1135                refill_reqs_available(ctx, head, tail);
1136        spin_unlock_irqrestore(&ctx->completion_lock, flags);
1137
1138        pr_debug("added to ring %p at [%u]\n", iocb, tail);
1139
1140        /*
1141         * Check if the user asked us to deliver the result through an
1142         * eventfd. The eventfd_signal() function is safe to be called
1143         * from IRQ context.
1144         */
1145        if (iocb->ki_eventfd)
1146                eventfd_signal(iocb->ki_eventfd, 1);
1147
1148        /*
1149         * We have to order our ring_info tail store above and test
1150         * of the wait list below outside the wait lock.  This is
1151         * like in wake_up_bit() where clearing a bit has to be
1152         * ordered with the unlocked test.
1153         */
1154        smp_mb();
1155
1156        if (waitqueue_active(&ctx->wait))
1157                wake_up(&ctx->wait);
1158}
1159
1160static inline void iocb_put(struct aio_kiocb *iocb)
1161{
1162        if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1163                aio_complete(iocb);
1164                iocb_destroy(iocb);
1165        }
1166}
1167
1168/* aio_read_events_ring
1169 *      Pull an event off of the ioctx's event ring.  Returns the number of
1170 *      events fetched
1171 */
1172static long aio_read_events_ring(struct kioctx *ctx,
1173                                 struct io_event __user *event, long nr)
1174{
1175        struct aio_ring *ring;
1176        unsigned head, tail, pos;
1177        long ret = 0;
1178        int copy_ret;
1179
1180        /*
1181         * The mutex can block and wake us up and that will cause
1182         * wait_event_interruptible_hrtimeout() to schedule without sleeping
1183         * and repeat. This should be rare enough that it doesn't cause
1184         * peformance issues. See the comment in read_events() for more detail.
1185         */
1186        sched_annotate_sleep();
1187        mutex_lock(&ctx->ring_lock);
1188
1189        /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1190        ring = kmap_atomic(ctx->ring_pages[0]);
1191        head = ring->head;
1192        tail = ring->tail;
1193        kunmap_atomic(ring);
1194
1195        /*
1196         * Ensure that once we've read the current tail pointer, that
1197         * we also see the events that were stored up to the tail.
1198         */
1199        smp_rmb();
1200
1201        pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1202
1203        if (head == tail)
1204                goto out;
1205
1206        head %= ctx->nr_events;
1207        tail %= ctx->nr_events;
1208
1209        while (ret < nr) {
1210                long avail;
1211                struct io_event *ev;
1212                struct page *page;
1213
1214                avail = (head <= tail ?  tail : ctx->nr_events) - head;
1215                if (head == tail)
1216                        break;
1217
1218                pos = head + AIO_EVENTS_OFFSET;
1219                page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1220                pos %= AIO_EVENTS_PER_PAGE;
1221
1222                avail = min(avail, nr - ret);
1223                avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1224
1225                ev = kmap(page);
1226                copy_ret = copy_to_user(event + ret, ev + pos,
1227                                        sizeof(*ev) * avail);
1228                kunmap(page);
1229
1230                if (unlikely(copy_ret)) {
1231                        ret = -EFAULT;
1232                        goto out;
1233                }
1234
1235                ret += avail;
1236                head += avail;
1237                head %= ctx->nr_events;
1238        }
1239
1240        ring = kmap_atomic(ctx->ring_pages[0]);
1241        ring->head = head;
1242        kunmap_atomic(ring);
1243        flush_dcache_page(ctx->ring_pages[0]);
1244
1245        pr_debug("%li  h%u t%u\n", ret, head, tail);
1246out:
1247        mutex_unlock(&ctx->ring_lock);
1248
1249        return ret;
1250}
1251
1252static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1253                            struct io_event __user *event, long *i)
1254{
1255        long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1256
1257        if (ret > 0)
1258                *i += ret;
1259
1260        if (unlikely(atomic_read(&ctx->dead)))
1261                ret = -EINVAL;
1262
1263        if (!*i)
1264                *i = ret;
1265
1266        return ret < 0 || *i >= min_nr;
1267}
1268
1269static long read_events(struct kioctx *ctx, long min_nr, long nr,
1270                        struct io_event __user *event,
1271                        ktime_t until)
1272{
1273        long ret = 0;
1274
1275        /*
1276         * Note that aio_read_events() is being called as the conditional - i.e.
1277         * we're calling it after prepare_to_wait() has set task state to
1278         * TASK_INTERRUPTIBLE.
1279         *
1280         * But aio_read_events() can block, and if it blocks it's going to flip
1281         * the task state back to TASK_RUNNING.
1282         *
1283         * This should be ok, provided it doesn't flip the state back to
1284         * TASK_RUNNING and return 0 too much - that causes us to spin. That
1285         * will only happen if the mutex_lock() call blocks, and we then find
1286         * the ringbuffer empty. So in practice we should be ok, but it's
1287         * something to be aware of when touching this code.
1288         */
1289        if (until == 0)
1290                aio_read_events(ctx, min_nr, nr, event, &ret);
1291        else
1292                wait_event_interruptible_hrtimeout(ctx->wait,
1293                                aio_read_events(ctx, min_nr, nr, event, &ret),
1294                                until);
1295        return ret;
1296}
1297
1298/* sys_io_setup:
1299 *      Create an aio_context capable of receiving at least nr_events.
1300 *      ctxp must not point to an aio_context that already exists, and
1301 *      must be initialized to 0 prior to the call.  On successful
1302 *      creation of the aio_context, *ctxp is filled in with the resulting 
1303 *      handle.  May fail with -EINVAL if *ctxp is not initialized,
1304 *      if the specified nr_events exceeds internal limits.  May fail 
1305 *      with -EAGAIN if the specified nr_events exceeds the user's limit 
1306 *      of available events.  May fail with -ENOMEM if insufficient kernel
1307 *      resources are available.  May fail with -EFAULT if an invalid
1308 *      pointer is passed for ctxp.  Will fail with -ENOSYS if not
1309 *      implemented.
1310 */
1311SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1312{
1313        struct kioctx *ioctx = NULL;
1314        unsigned long ctx;
1315        long ret;
1316
1317        ret = get_user(ctx, ctxp);
1318        if (unlikely(ret))
1319                goto out;
1320
1321        ret = -EINVAL;
1322        if (unlikely(ctx || nr_events == 0)) {
1323                pr_debug("EINVAL: ctx %lu nr_events %u\n",
1324                         ctx, nr_events);
1325                goto out;
1326        }
1327
1328        ioctx = ioctx_alloc(nr_events);
1329        ret = PTR_ERR(ioctx);
1330        if (!IS_ERR(ioctx)) {
1331                ret = put_user(ioctx->user_id, ctxp);
1332                if (ret)
1333                        kill_ioctx(current->mm, ioctx, NULL);
1334                percpu_ref_put(&ioctx->users);
1335        }
1336
1337out:
1338        return ret;
1339}
1340
1341#ifdef CONFIG_COMPAT
1342COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1343{
1344        struct kioctx *ioctx = NULL;
1345        unsigned long ctx;
1346        long ret;
1347
1348        ret = get_user(ctx, ctx32p);
1349        if (unlikely(ret))
1350                goto out;
1351
1352        ret = -EINVAL;
1353        if (unlikely(ctx || nr_events == 0)) {
1354                pr_debug("EINVAL: ctx %lu nr_events %u\n",
1355                         ctx, nr_events);
1356                goto out;
1357        }
1358
1359        ioctx = ioctx_alloc(nr_events);
1360        ret = PTR_ERR(ioctx);
1361        if (!IS_ERR(ioctx)) {
1362                /* truncating is ok because it's a user address */
1363                ret = put_user((u32)ioctx->user_id, ctx32p);
1364                if (ret)
1365                        kill_ioctx(current->mm, ioctx, NULL);
1366                percpu_ref_put(&ioctx->users);
1367        }
1368
1369out:
1370        return ret;
1371}
1372#endif
1373
1374/* sys_io_destroy:
1375 *      Destroy the aio_context specified.  May cancel any outstanding 
1376 *      AIOs and block on completion.  Will fail with -ENOSYS if not
1377 *      implemented.  May fail with -EINVAL if the context pointed to
1378 *      is invalid.
1379 */
1380SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1381{
1382        struct kioctx *ioctx = lookup_ioctx(ctx);
1383        if (likely(NULL != ioctx)) {
1384                struct ctx_rq_wait wait;
1385                int ret;
1386
1387                init_completion(&wait.comp);
1388                atomic_set(&wait.count, 1);
1389
1390                /* Pass requests_done to kill_ioctx() where it can be set
1391                 * in a thread-safe way. If we try to set it here then we have
1392                 * a race condition if two io_destroy() called simultaneously.
1393                 */
1394                ret = kill_ioctx(current->mm, ioctx, &wait);
1395                percpu_ref_put(&ioctx->users);
1396
1397                /* Wait until all IO for the context are done. Otherwise kernel
1398                 * keep using user-space buffers even if user thinks the context
1399                 * is destroyed.
1400                 */
1401                if (!ret)
1402                        wait_for_completion(&wait.comp);
1403
1404                return ret;
1405        }
1406        pr_debug("EINVAL: invalid context id\n");
1407        return -EINVAL;
1408}
1409
1410static void aio_remove_iocb(struct aio_kiocb *iocb)
1411{
1412        struct kioctx *ctx = iocb->ki_ctx;
1413        unsigned long flags;
1414
1415        spin_lock_irqsave(&ctx->ctx_lock, flags);
1416        list_del(&iocb->ki_list);
1417        spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1418}
1419
1420static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1421{
1422        struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1423
1424        if (!list_empty_careful(&iocb->ki_list))
1425                aio_remove_iocb(iocb);
1426
1427        if (kiocb->ki_flags & IOCB_WRITE) {
1428                struct inode *inode = file_inode(kiocb->ki_filp);
1429
1430                /*
1431                 * Tell lockdep we inherited freeze protection from submission
1432                 * thread.
1433                 */
1434                if (S_ISREG(inode->i_mode))
1435                        __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1436                file_end_write(kiocb->ki_filp);
1437        }
1438
1439        iocb->ki_res.res = res;
1440        iocb->ki_res.res2 = res2;
1441        iocb_put(iocb);
1442}
1443
1444static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1445{
1446        int ret;
1447
1448        req->ki_complete = aio_complete_rw;
1449        req->private = NULL;
1450        req->ki_pos = iocb->aio_offset;
1451        req->ki_flags = iocb_flags(req->ki_filp);
1452        if (iocb->aio_flags & IOCB_FLAG_RESFD)
1453                req->ki_flags |= IOCB_EVENTFD;
1454        req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1455        if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1456                /*
1457                 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1458                 * aio_reqprio is interpreted as an I/O scheduling
1459                 * class and priority.
1460                 */
1461                ret = ioprio_check_cap(iocb->aio_reqprio);
1462                if (ret) {
1463                        pr_debug("aio ioprio check cap error: %d\n", ret);
1464                        return ret;
1465                }
1466
1467                req->ki_ioprio = iocb->aio_reqprio;
1468        } else
1469                req->ki_ioprio = get_current_ioprio();
1470
1471        ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1472        if (unlikely(ret))
1473                return ret;
1474
1475        req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1476        return 0;
1477}
1478
1479static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1480                struct iovec **iovec, bool vectored, bool compat,
1481                struct iov_iter *iter)
1482{
1483        void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1484        size_t len = iocb->aio_nbytes;
1485
1486        if (!vectored) {
1487                ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1488                *iovec = NULL;
1489                return ret;
1490        }
1491
1492        return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
1493}
1494
1495static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1496{
1497        switch (ret) {
1498        case -EIOCBQUEUED:
1499                break;
1500        case -ERESTARTSYS:
1501        case -ERESTARTNOINTR:
1502        case -ERESTARTNOHAND:
1503        case -ERESTART_RESTARTBLOCK:
1504                /*
1505                 * There's no easy way to restart the syscall since other AIO's
1506                 * may be already running. Just fail this IO with EINTR.
1507                 */
1508                ret = -EINTR;
1509                fallthrough;
1510        default:
1511                req->ki_complete(req, ret, 0);
1512        }
1513}
1514
1515static int aio_read(struct kiocb *req, const struct iocb *iocb,
1516                        bool vectored, bool compat)
1517{
1518        struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1519        struct iov_iter iter;
1520        struct file *file;
1521        int ret;
1522
1523        ret = aio_prep_rw(req, iocb);
1524        if (ret)
1525                return ret;
1526        file = req->ki_filp;
1527        if (unlikely(!(file->f_mode & FMODE_READ)))
1528                return -EBADF;
1529        ret = -EINVAL;
1530        if (unlikely(!file->f_op->read_iter))
1531                return -EINVAL;
1532
1533        ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1534        if (ret < 0)
1535                return ret;
1536        ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1537        if (!ret)
1538                aio_rw_done(req, call_read_iter(file, req, &iter));
1539        kfree(iovec);
1540        return ret;
1541}
1542
1543static int aio_write(struct kiocb *req, const struct iocb *iocb,
1544                         bool vectored, bool compat)
1545{
1546        struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1547        struct iov_iter iter;
1548        struct file *file;
1549        int ret;
1550
1551        ret = aio_prep_rw(req, iocb);
1552        if (ret)
1553                return ret;
1554        file = req->ki_filp;
1555
1556        if (unlikely(!(file->f_mode & FMODE_WRITE)))
1557                return -EBADF;
1558        if (unlikely(!file->f_op->write_iter))
1559                return -EINVAL;
1560
1561        ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1562        if (ret < 0)
1563                return ret;
1564        ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1565        if (!ret) {
1566                /*
1567                 * Open-code file_start_write here to grab freeze protection,
1568                 * which will be released by another thread in
1569                 * aio_complete_rw().  Fool lockdep by telling it the lock got
1570                 * released so that it doesn't complain about the held lock when
1571                 * we return to userspace.
1572                 */
1573                if (S_ISREG(file_inode(file)->i_mode)) {
1574                        sb_start_write(file_inode(file)->i_sb);
1575                        __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1576                }
1577                req->ki_flags |= IOCB_WRITE;
1578                aio_rw_done(req, call_write_iter(file, req, &iter));
1579        }
1580        kfree(iovec);
1581        return ret;
1582}
1583
1584static void aio_fsync_work(struct work_struct *work)
1585{
1586        struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1587        const struct cred *old_cred = override_creds(iocb->fsync.creds);
1588
1589        iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1590        revert_creds(old_cred);
1591        put_cred(iocb->fsync.creds);
1592        iocb_put(iocb);
1593}
1594
1595static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1596                     bool datasync)
1597{
1598        if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1599                        iocb->aio_rw_flags))
1600                return -EINVAL;
1601
1602        if (unlikely(!req->file->f_op->fsync))
1603                return -EINVAL;
1604
1605        req->creds = prepare_creds();
1606        if (!req->creds)
1607                return -ENOMEM;
1608
1609        req->datasync = datasync;
1610        INIT_WORK(&req->work, aio_fsync_work);
1611        schedule_work(&req->work);
1612        return 0;
1613}
1614
1615static void aio_poll_put_work(struct work_struct *work)
1616{
1617        struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1618        struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1619
1620        iocb_put(iocb);
1621}
1622
1623static void aio_poll_complete_work(struct work_struct *work)
1624{
1625        struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1626        struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1627        struct poll_table_struct pt = { ._key = req->events };
1628        struct kioctx *ctx = iocb->ki_ctx;
1629        __poll_t mask = 0;
1630
1631        if (!READ_ONCE(req->cancelled))
1632                mask = vfs_poll(req->file, &pt) & req->events;
1633
1634        /*
1635         * Note that ->ki_cancel callers also delete iocb from active_reqs after
1636         * calling ->ki_cancel.  We need the ctx_lock roundtrip here to
1637         * synchronize with them.  In the cancellation case the list_del_init
1638         * itself is not actually needed, but harmless so we keep it in to
1639         * avoid further branches in the fast path.
1640         */
1641        spin_lock_irq(&ctx->ctx_lock);
1642        if (!mask && !READ_ONCE(req->cancelled)) {
1643                add_wait_queue(req->head, &req->wait);
1644                spin_unlock_irq(&ctx->ctx_lock);
1645                return;
1646        }
1647        list_del_init(&iocb->ki_list);
1648        iocb->ki_res.res = mangle_poll(mask);
1649        req->done = true;
1650        spin_unlock_irq(&ctx->ctx_lock);
1651
1652        iocb_put(iocb);
1653}
1654
1655/* assumes we are called with irqs disabled */
1656static int aio_poll_cancel(struct kiocb *iocb)
1657{
1658        struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1659        struct poll_iocb *req = &aiocb->poll;
1660
1661        spin_lock(&req->head->lock);
1662        WRITE_ONCE(req->cancelled, true);
1663        if (!list_empty(&req->wait.entry)) {
1664                list_del_init(&req->wait.entry);
1665                schedule_work(&aiocb->poll.work);
1666        }
1667        spin_unlock(&req->head->lock);
1668
1669        return 0;
1670}
1671
1672static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1673                void *key)
1674{
1675        struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1676        struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1677        __poll_t mask = key_to_poll(key);
1678        unsigned long flags;
1679
1680        /* for instances that support it check for an event match first: */
1681        if (mask && !(mask & req->events))
1682                return 0;
1683
1684        list_del_init(&req->wait.entry);
1685
1686        if (mask && spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1687                struct kioctx *ctx = iocb->ki_ctx;
1688
1689                /*
1690                 * Try to complete the iocb inline if we can. Use
1691                 * irqsave/irqrestore because not all filesystems (e.g. fuse)
1692                 * call this function with IRQs disabled and because IRQs
1693                 * have to be disabled before ctx_lock is obtained.
1694                 */
1695                list_del(&iocb->ki_list);
1696                iocb->ki_res.res = mangle_poll(mask);
1697                req->done = true;
1698                if (iocb->ki_eventfd && eventfd_signal_count()) {
1699                        iocb = NULL;
1700                        INIT_WORK(&req->work, aio_poll_put_work);
1701                        schedule_work(&req->work);
1702                }
1703                spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1704                if (iocb)
1705                        iocb_put(iocb);
1706        } else {
1707                schedule_work(&req->work);
1708        }
1709        return 1;
1710}
1711
1712struct aio_poll_table {
1713        struct poll_table_struct        pt;
1714        struct aio_kiocb                *iocb;
1715        int                             error;
1716};
1717
1718static void
1719aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1720                struct poll_table_struct *p)
1721{
1722        struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1723
1724        /* multiple wait queues per file are not supported */
1725        if (unlikely(pt->iocb->poll.head)) {
1726                pt->error = -EINVAL;
1727                return;
1728        }
1729
1730        pt->error = 0;
1731        pt->iocb->poll.head = head;
1732        add_wait_queue(head, &pt->iocb->poll.wait);
1733}
1734
1735static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1736{
1737        struct kioctx *ctx = aiocb->ki_ctx;
1738        struct poll_iocb *req = &aiocb->poll;
1739        struct aio_poll_table apt;
1740        bool cancel = false;
1741        __poll_t mask;
1742
1743        /* reject any unknown events outside the normal event mask. */
1744        if ((u16)iocb->aio_buf != iocb->aio_buf)
1745                return -EINVAL;
1746        /* reject fields that are not defined for poll */
1747        if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1748                return -EINVAL;
1749
1750        INIT_WORK(&req->work, aio_poll_complete_work);
1751        req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1752
1753        req->head = NULL;
1754        req->done = false;
1755        req->cancelled = false;
1756
1757        apt.pt._qproc = aio_poll_queue_proc;
1758        apt.pt._key = req->events;
1759        apt.iocb = aiocb;
1760        apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1761
1762        /* initialized the list so that we can do list_empty checks */
1763        INIT_LIST_HEAD(&req->wait.entry);
1764        init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1765
1766        mask = vfs_poll(req->file, &apt.pt) & req->events;
1767        spin_lock_irq(&ctx->ctx_lock);
1768        if (likely(req->head)) {
1769                spin_lock(&req->head->lock);
1770                if (unlikely(list_empty(&req->wait.entry))) {
1771                        if (apt.error)
1772                                cancel = true;
1773                        apt.error = 0;
1774                        mask = 0;
1775                }
1776                if (mask || apt.error) {
1777                        list_del_init(&req->wait.entry);
1778                } else if (cancel) {
1779                        WRITE_ONCE(req->cancelled, true);
1780                } else if (!req->done) { /* actually waiting for an event */
1781                        list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1782                        aiocb->ki_cancel = aio_poll_cancel;
1783                }
1784                spin_unlock(&req->head->lock);
1785        }
1786        if (mask) { /* no async, we'd stolen it */
1787                aiocb->ki_res.res = mangle_poll(mask);
1788                apt.error = 0;
1789        }
1790        spin_unlock_irq(&ctx->ctx_lock);
1791        if (mask)
1792                iocb_put(aiocb);
1793        return apt.error;
1794}
1795
1796static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1797                           struct iocb __user *user_iocb, struct aio_kiocb *req,
1798                           bool compat)
1799{
1800        req->ki_filp = fget(iocb->aio_fildes);
1801        if (unlikely(!req->ki_filp))
1802                return -EBADF;
1803
1804        if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1805                struct eventfd_ctx *eventfd;
1806                /*
1807                 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1808                 * instance of the file* now. The file descriptor must be
1809                 * an eventfd() fd, and will be signaled for each completed
1810                 * event using the eventfd_signal() function.
1811                 */
1812                eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1813                if (IS_ERR(eventfd))
1814                        return PTR_ERR(eventfd);
1815
1816                req->ki_eventfd = eventfd;
1817        }
1818
1819        if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1820                pr_debug("EFAULT: aio_key\n");
1821                return -EFAULT;
1822        }
1823
1824        req->ki_res.obj = (u64)(unsigned long)user_iocb;
1825        req->ki_res.data = iocb->aio_data;
1826        req->ki_res.res = 0;
1827        req->ki_res.res2 = 0;
1828
1829        switch (iocb->aio_lio_opcode) {
1830        case IOCB_CMD_PREAD:
1831                return aio_read(&req->rw, iocb, false, compat);
1832        case IOCB_CMD_PWRITE:
1833                return aio_write(&req->rw, iocb, false, compat);
1834        case IOCB_CMD_PREADV:
1835                return aio_read(&req->rw, iocb, true, compat);
1836        case IOCB_CMD_PWRITEV:
1837                return aio_write(&req->rw, iocb, true, compat);
1838        case IOCB_CMD_FSYNC:
1839                return aio_fsync(&req->fsync, iocb, false);
1840        case IOCB_CMD_FDSYNC:
1841                return aio_fsync(&req->fsync, iocb, true);
1842        case IOCB_CMD_POLL:
1843                return aio_poll(req, iocb);
1844        default:
1845                pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1846                return -EINVAL;
1847        }
1848}
1849
1850static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1851                         bool compat)
1852{
1853        struct aio_kiocb *req;
1854        struct iocb iocb;
1855        int err;
1856
1857        if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1858                return -EFAULT;
1859
1860        /* enforce forwards compatibility on users */
1861        if (unlikely(iocb.aio_reserved2)) {
1862                pr_debug("EINVAL: reserve field set\n");
1863                return -EINVAL;
1864        }
1865
1866        /* prevent overflows */
1867        if (unlikely(
1868            (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1869            (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1870            ((ssize_t)iocb.aio_nbytes < 0)
1871           )) {
1872                pr_debug("EINVAL: overflow check\n");
1873                return -EINVAL;
1874        }
1875
1876        req = aio_get_req(ctx);
1877        if (unlikely(!req))
1878                return -EAGAIN;
1879
1880        err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
1881
1882        /* Done with the synchronous reference */
1883        iocb_put(req);
1884
1885        /*
1886         * If err is 0, we'd either done aio_complete() ourselves or have
1887         * arranged for that to be done asynchronously.  Anything non-zero
1888         * means that we need to destroy req ourselves.
1889         */
1890        if (unlikely(err)) {
1891                iocb_destroy(req);
1892                put_reqs_available(ctx, 1);
1893        }
1894        return err;
1895}
1896
1897/* sys_io_submit:
1898 *      Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1899 *      the number of iocbs queued.  May return -EINVAL if the aio_context
1900 *      specified by ctx_id is invalid, if nr is < 0, if the iocb at
1901 *      *iocbpp[0] is not properly initialized, if the operation specified
1902 *      is invalid for the file descriptor in the iocb.  May fail with
1903 *      -EFAULT if any of the data structures point to invalid data.  May
1904 *      fail with -EBADF if the file descriptor specified in the first
1905 *      iocb is invalid.  May fail with -EAGAIN if insufficient resources
1906 *      are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1907 *      fail with -ENOSYS if not implemented.
1908 */
1909SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1910                struct iocb __user * __user *, iocbpp)
1911{
1912        struct kioctx *ctx;
1913        long ret = 0;
1914        int i = 0;
1915        struct blk_plug plug;
1916
1917        if (unlikely(nr < 0))
1918                return -EINVAL;
1919
1920        ctx = lookup_ioctx(ctx_id);
1921        if (unlikely(!ctx)) {
1922                pr_debug("EINVAL: invalid context id\n");
1923                return -EINVAL;
1924        }
1925
1926        if (nr > ctx->nr_events)
1927                nr = ctx->nr_events;
1928
1929        if (nr > AIO_PLUG_THRESHOLD)
1930                blk_start_plug(&plug);
1931        for (i = 0; i < nr; i++) {
1932                struct iocb __user *user_iocb;
1933
1934                if (unlikely(get_user(user_iocb, iocbpp + i))) {
1935                        ret = -EFAULT;
1936                        break;
1937                }
1938
1939                ret = io_submit_one(ctx, user_iocb, false);
1940                if (ret)
1941                        break;
1942        }
1943        if (nr > AIO_PLUG_THRESHOLD)
1944                blk_finish_plug(&plug);
1945
1946        percpu_ref_put(&ctx->users);
1947        return i ? i : ret;
1948}
1949
1950#ifdef CONFIG_COMPAT
1951COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1952                       int, nr, compat_uptr_t __user *, iocbpp)
1953{
1954        struct kioctx *ctx;
1955        long ret = 0;
1956        int i = 0;
1957        struct blk_plug plug;
1958
1959        if (unlikely(nr < 0))
1960                return -EINVAL;
1961
1962        ctx = lookup_ioctx(ctx_id);
1963        if (unlikely(!ctx)) {
1964                pr_debug("EINVAL: invalid context id\n");
1965                return -EINVAL;
1966        }
1967
1968        if (nr > ctx->nr_events)
1969                nr = ctx->nr_events;
1970
1971        if (nr > AIO_PLUG_THRESHOLD)
1972                blk_start_plug(&plug);
1973        for (i = 0; i < nr; i++) {
1974                compat_uptr_t user_iocb;
1975
1976                if (unlikely(get_user(user_iocb, iocbpp + i))) {
1977                        ret = -EFAULT;
1978                        break;
1979                }
1980
1981                ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
1982                if (ret)
1983                        break;
1984        }
1985        if (nr > AIO_PLUG_THRESHOLD)
1986                blk_finish_plug(&plug);
1987
1988        percpu_ref_put(&ctx->users);
1989        return i ? i : ret;
1990}
1991#endif
1992
1993/* sys_io_cancel:
1994 *      Attempts to cancel an iocb previously passed to io_submit.  If
1995 *      the operation is successfully cancelled, the resulting event is
1996 *      copied into the memory pointed to by result without being placed
1997 *      into the completion queue and 0 is returned.  May fail with
1998 *      -EFAULT if any of the data structures pointed to are invalid.
1999 *      May fail with -EINVAL if aio_context specified by ctx_id is
2000 *      invalid.  May fail with -EAGAIN if the iocb specified was not
2001 *      cancelled.  Will fail with -ENOSYS if not implemented.
2002 */
2003SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2004                struct io_event __user *, result)
2005{
2006        struct kioctx *ctx;
2007        struct aio_kiocb *kiocb;
2008        int ret = -EINVAL;
2009        u32 key;
2010        u64 obj = (u64)(unsigned long)iocb;
2011
2012        if (unlikely(get_user(key, &iocb->aio_key)))
2013                return -EFAULT;
2014        if (unlikely(key != KIOCB_KEY))
2015                return -EINVAL;
2016
2017        ctx = lookup_ioctx(ctx_id);
2018        if (unlikely(!ctx))
2019                return -EINVAL;
2020
2021        spin_lock_irq(&ctx->ctx_lock);
2022        /* TODO: use a hash or array, this sucks. */
2023        list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2024                if (kiocb->ki_res.obj == obj) {
2025                        ret = kiocb->ki_cancel(&kiocb->rw);
2026                        list_del_init(&kiocb->ki_list);
2027                        break;
2028                }
2029        }
2030        spin_unlock_irq(&ctx->ctx_lock);
2031
2032        if (!ret) {
2033                /*
2034                 * The result argument is no longer used - the io_event is
2035                 * always delivered via the ring buffer. -EINPROGRESS indicates
2036                 * cancellation is progress:
2037                 */
2038                ret = -EINPROGRESS;
2039        }
2040
2041        percpu_ref_put(&ctx->users);
2042
2043        return ret;
2044}
2045
2046static long do_io_getevents(aio_context_t ctx_id,
2047                long min_nr,
2048                long nr,
2049                struct io_event __user *events,
2050                struct timespec64 *ts)
2051{
2052        ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2053        struct kioctx *ioctx = lookup_ioctx(ctx_id);
2054        long ret = -EINVAL;
2055
2056        if (likely(ioctx)) {
2057                if (likely(min_nr <= nr && min_nr >= 0))
2058                        ret = read_events(ioctx, min_nr, nr, events, until);
2059                percpu_ref_put(&ioctx->users);
2060        }
2061
2062        return ret;
2063}
2064
2065/* io_getevents:
2066 *      Attempts to read at least min_nr events and up to nr events from
2067 *      the completion queue for the aio_context specified by ctx_id. If
2068 *      it succeeds, the number of read events is returned. May fail with
2069 *      -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2070 *      out of range, if timeout is out of range.  May fail with -EFAULT
2071 *      if any of the memory specified is invalid.  May return 0 or
2072 *      < min_nr if the timeout specified by timeout has elapsed
2073 *      before sufficient events are available, where timeout == NULL
2074 *      specifies an infinite timeout. Note that the timeout pointed to by
2075 *      timeout is relative.  Will fail with -ENOSYS if not implemented.
2076 */
2077#ifdef CONFIG_64BIT
2078
2079SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2080                long, min_nr,
2081                long, nr,
2082                struct io_event __user *, events,
2083                struct __kernel_timespec __user *, timeout)
2084{
2085        struct timespec64       ts;
2086        int                     ret;
2087
2088        if (timeout && unlikely(get_timespec64(&ts, timeout)))
2089                return -EFAULT;
2090
2091        ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2092        if (!ret && signal_pending(current))
2093                ret = -EINTR;
2094        return ret;
2095}
2096
2097#endif
2098
2099struct __aio_sigset {
2100        const sigset_t __user   *sigmask;
2101        size_t          sigsetsize;
2102};
2103
2104SYSCALL_DEFINE6(io_pgetevents,
2105                aio_context_t, ctx_id,
2106                long, min_nr,
2107                long, nr,
2108                struct io_event __user *, events,
2109                struct __kernel_timespec __user *, timeout,
2110                const struct __aio_sigset __user *, usig)
2111{
2112        struct __aio_sigset     ksig = { NULL, };
2113        struct timespec64       ts;
2114        bool interrupted;
2115        int ret;
2116
2117        if (timeout && unlikely(get_timespec64(&ts, timeout)))
2118                return -EFAULT;
2119
2120        if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2121                return -EFAULT;
2122
2123        ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2124        if (ret)
2125                return ret;
2126
2127        ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2128
2129        interrupted = signal_pending(current);
2130        restore_saved_sigmask_unless(interrupted);
2131        if (interrupted && !ret)
2132                ret = -ERESTARTNOHAND;
2133
2134        return ret;
2135}
2136
2137#if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2138
2139SYSCALL_DEFINE6(io_pgetevents_time32,
2140                aio_context_t, ctx_id,
2141                long, min_nr,
2142                long, nr,
2143                struct io_event __user *, events,
2144                struct old_timespec32 __user *, timeout,
2145                const struct __aio_sigset __user *, usig)
2146{
2147        struct __aio_sigset     ksig = { NULL, };
2148        struct timespec64       ts;
2149        bool interrupted;
2150        int ret;
2151
2152        if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2153                return -EFAULT;
2154
2155        if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2156                return -EFAULT;
2157
2158
2159        ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2160        if (ret)
2161                return ret;
2162
2163        ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2164
2165        interrupted = signal_pending(current);
2166        restore_saved_sigmask_unless(interrupted);
2167        if (interrupted && !ret)
2168                ret = -ERESTARTNOHAND;
2169
2170        return ret;
2171}
2172
2173#endif
2174
2175#if defined(CONFIG_COMPAT_32BIT_TIME)
2176
2177SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2178                __s32, min_nr,
2179                __s32, nr,
2180                struct io_event __user *, events,
2181                struct old_timespec32 __user *, timeout)
2182{
2183        struct timespec64 t;
2184        int ret;
2185
2186        if (timeout && get_old_timespec32(&t, timeout))
2187                return -EFAULT;
2188
2189        ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2190        if (!ret && signal_pending(current))
2191                ret = -EINTR;
2192        return ret;
2193}
2194
2195#endif
2196
2197#ifdef CONFIG_COMPAT
2198
2199struct __compat_aio_sigset {
2200        compat_uptr_t           sigmask;
2201        compat_size_t           sigsetsize;
2202};
2203
2204#if defined(CONFIG_COMPAT_32BIT_TIME)
2205
2206COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2207                compat_aio_context_t, ctx_id,
2208                compat_long_t, min_nr,
2209                compat_long_t, nr,
2210                struct io_event __user *, events,
2211                struct old_timespec32 __user *, timeout,
2212                const struct __compat_aio_sigset __user *, usig)
2213{
2214        struct __compat_aio_sigset ksig = { 0, };
2215        struct timespec64 t;
2216        bool interrupted;
2217        int ret;
2218
2219        if (timeout && get_old_timespec32(&t, timeout))
2220                return -EFAULT;
2221
2222        if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2223                return -EFAULT;
2224
2225        ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2226        if (ret)
2227                return ret;
2228
2229        ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2230
2231        interrupted = signal_pending(current);
2232        restore_saved_sigmask_unless(interrupted);
2233        if (interrupted && !ret)
2234                ret = -ERESTARTNOHAND;
2235
2236        return ret;
2237}
2238
2239#endif
2240
2241COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2242                compat_aio_context_t, ctx_id,
2243                compat_long_t, min_nr,
2244                compat_long_t, nr,
2245                struct io_event __user *, events,
2246                struct __kernel_timespec __user *, timeout,
2247                const struct __compat_aio_sigset __user *, usig)
2248{
2249        struct __compat_aio_sigset ksig = { 0, };
2250        struct timespec64 t;
2251        bool interrupted;
2252        int ret;
2253
2254        if (timeout && get_timespec64(&t, timeout))
2255                return -EFAULT;
2256
2257        if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2258                return -EFAULT;
2259
2260        ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2261        if (ret)
2262                return ret;
2263
2264        ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2265
2266        interrupted = signal_pending(current);
2267        restore_saved_sigmask_unless(interrupted);
2268        if (interrupted && !ret)
2269                ret = -ERESTARTNOHAND;
2270
2271        return ret;
2272}
2273#endif
2274