linux/fs/btrfs/backref.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011 STRATO.  All rights reserved.
   4 */
   5
   6#include <linux/mm.h>
   7#include <linux/rbtree.h>
   8#include <trace/events/btrfs.h>
   9#include "ctree.h"
  10#include "disk-io.h"
  11#include "backref.h"
  12#include "ulist.h"
  13#include "transaction.h"
  14#include "delayed-ref.h"
  15#include "locking.h"
  16#include "misc.h"
  17#include "tree-mod-log.h"
  18
  19/* Just an arbitrary number so we can be sure this happened */
  20#define BACKREF_FOUND_SHARED 6
  21
  22struct extent_inode_elem {
  23        u64 inum;
  24        u64 offset;
  25        struct extent_inode_elem *next;
  26};
  27
  28static int check_extent_in_eb(const struct btrfs_key *key,
  29                              const struct extent_buffer *eb,
  30                              const struct btrfs_file_extent_item *fi,
  31                              u64 extent_item_pos,
  32                              struct extent_inode_elem **eie,
  33                              bool ignore_offset)
  34{
  35        u64 offset = 0;
  36        struct extent_inode_elem *e;
  37
  38        if (!ignore_offset &&
  39            !btrfs_file_extent_compression(eb, fi) &&
  40            !btrfs_file_extent_encryption(eb, fi) &&
  41            !btrfs_file_extent_other_encoding(eb, fi)) {
  42                u64 data_offset;
  43                u64 data_len;
  44
  45                data_offset = btrfs_file_extent_offset(eb, fi);
  46                data_len = btrfs_file_extent_num_bytes(eb, fi);
  47
  48                if (extent_item_pos < data_offset ||
  49                    extent_item_pos >= data_offset + data_len)
  50                        return 1;
  51                offset = extent_item_pos - data_offset;
  52        }
  53
  54        e = kmalloc(sizeof(*e), GFP_NOFS);
  55        if (!e)
  56                return -ENOMEM;
  57
  58        e->next = *eie;
  59        e->inum = key->objectid;
  60        e->offset = key->offset + offset;
  61        *eie = e;
  62
  63        return 0;
  64}
  65
  66static void free_inode_elem_list(struct extent_inode_elem *eie)
  67{
  68        struct extent_inode_elem *eie_next;
  69
  70        for (; eie; eie = eie_next) {
  71                eie_next = eie->next;
  72                kfree(eie);
  73        }
  74}
  75
  76static int find_extent_in_eb(const struct extent_buffer *eb,
  77                             u64 wanted_disk_byte, u64 extent_item_pos,
  78                             struct extent_inode_elem **eie,
  79                             bool ignore_offset)
  80{
  81        u64 disk_byte;
  82        struct btrfs_key key;
  83        struct btrfs_file_extent_item *fi;
  84        int slot;
  85        int nritems;
  86        int extent_type;
  87        int ret;
  88
  89        /*
  90         * from the shared data ref, we only have the leaf but we need
  91         * the key. thus, we must look into all items and see that we
  92         * find one (some) with a reference to our extent item.
  93         */
  94        nritems = btrfs_header_nritems(eb);
  95        for (slot = 0; slot < nritems; ++slot) {
  96                btrfs_item_key_to_cpu(eb, &key, slot);
  97                if (key.type != BTRFS_EXTENT_DATA_KEY)
  98                        continue;
  99                fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 100                extent_type = btrfs_file_extent_type(eb, fi);
 101                if (extent_type == BTRFS_FILE_EXTENT_INLINE)
 102                        continue;
 103                /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
 104                disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
 105                if (disk_byte != wanted_disk_byte)
 106                        continue;
 107
 108                ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
 109                if (ret < 0)
 110                        return ret;
 111        }
 112
 113        return 0;
 114}
 115
 116struct preftree {
 117        struct rb_root_cached root;
 118        unsigned int count;
 119};
 120
 121#define PREFTREE_INIT   { .root = RB_ROOT_CACHED, .count = 0 }
 122
 123struct preftrees {
 124        struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
 125        struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
 126        struct preftree indirect_missing_keys;
 127};
 128
 129/*
 130 * Checks for a shared extent during backref search.
 131 *
 132 * The share_count tracks prelim_refs (direct and indirect) having a
 133 * ref->count >0:
 134 *  - incremented when a ref->count transitions to >0
 135 *  - decremented when a ref->count transitions to <1
 136 */
 137struct share_check {
 138        u64 root_objectid;
 139        u64 inum;
 140        int share_count;
 141};
 142
 143static inline int extent_is_shared(struct share_check *sc)
 144{
 145        return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
 146}
 147
 148static struct kmem_cache *btrfs_prelim_ref_cache;
 149
 150int __init btrfs_prelim_ref_init(void)
 151{
 152        btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
 153                                        sizeof(struct prelim_ref),
 154                                        0,
 155                                        SLAB_MEM_SPREAD,
 156                                        NULL);
 157        if (!btrfs_prelim_ref_cache)
 158                return -ENOMEM;
 159        return 0;
 160}
 161
 162void __cold btrfs_prelim_ref_exit(void)
 163{
 164        kmem_cache_destroy(btrfs_prelim_ref_cache);
 165}
 166
 167static void free_pref(struct prelim_ref *ref)
 168{
 169        kmem_cache_free(btrfs_prelim_ref_cache, ref);
 170}
 171
 172/*
 173 * Return 0 when both refs are for the same block (and can be merged).
 174 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
 175 * indicates a 'higher' block.
 176 */
 177static int prelim_ref_compare(struct prelim_ref *ref1,
 178                              struct prelim_ref *ref2)
 179{
 180        if (ref1->level < ref2->level)
 181                return -1;
 182        if (ref1->level > ref2->level)
 183                return 1;
 184        if (ref1->root_id < ref2->root_id)
 185                return -1;
 186        if (ref1->root_id > ref2->root_id)
 187                return 1;
 188        if (ref1->key_for_search.type < ref2->key_for_search.type)
 189                return -1;
 190        if (ref1->key_for_search.type > ref2->key_for_search.type)
 191                return 1;
 192        if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
 193                return -1;
 194        if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
 195                return 1;
 196        if (ref1->key_for_search.offset < ref2->key_for_search.offset)
 197                return -1;
 198        if (ref1->key_for_search.offset > ref2->key_for_search.offset)
 199                return 1;
 200        if (ref1->parent < ref2->parent)
 201                return -1;
 202        if (ref1->parent > ref2->parent)
 203                return 1;
 204
 205        return 0;
 206}
 207
 208static void update_share_count(struct share_check *sc, int oldcount,
 209                               int newcount)
 210{
 211        if ((!sc) || (oldcount == 0 && newcount < 1))
 212                return;
 213
 214        if (oldcount > 0 && newcount < 1)
 215                sc->share_count--;
 216        else if (oldcount < 1 && newcount > 0)
 217                sc->share_count++;
 218}
 219
 220/*
 221 * Add @newref to the @root rbtree, merging identical refs.
 222 *
 223 * Callers should assume that newref has been freed after calling.
 224 */
 225static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
 226                              struct preftree *preftree,
 227                              struct prelim_ref *newref,
 228                              struct share_check *sc)
 229{
 230        struct rb_root_cached *root;
 231        struct rb_node **p;
 232        struct rb_node *parent = NULL;
 233        struct prelim_ref *ref;
 234        int result;
 235        bool leftmost = true;
 236
 237        root = &preftree->root;
 238        p = &root->rb_root.rb_node;
 239
 240        while (*p) {
 241                parent = *p;
 242                ref = rb_entry(parent, struct prelim_ref, rbnode);
 243                result = prelim_ref_compare(ref, newref);
 244                if (result < 0) {
 245                        p = &(*p)->rb_left;
 246                } else if (result > 0) {
 247                        p = &(*p)->rb_right;
 248                        leftmost = false;
 249                } else {
 250                        /* Identical refs, merge them and free @newref */
 251                        struct extent_inode_elem *eie = ref->inode_list;
 252
 253                        while (eie && eie->next)
 254                                eie = eie->next;
 255
 256                        if (!eie)
 257                                ref->inode_list = newref->inode_list;
 258                        else
 259                                eie->next = newref->inode_list;
 260                        trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
 261                                                     preftree->count);
 262                        /*
 263                         * A delayed ref can have newref->count < 0.
 264                         * The ref->count is updated to follow any
 265                         * BTRFS_[ADD|DROP]_DELAYED_REF actions.
 266                         */
 267                        update_share_count(sc, ref->count,
 268                                           ref->count + newref->count);
 269                        ref->count += newref->count;
 270                        free_pref(newref);
 271                        return;
 272                }
 273        }
 274
 275        update_share_count(sc, 0, newref->count);
 276        preftree->count++;
 277        trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
 278        rb_link_node(&newref->rbnode, parent, p);
 279        rb_insert_color_cached(&newref->rbnode, root, leftmost);
 280}
 281
 282/*
 283 * Release the entire tree.  We don't care about internal consistency so
 284 * just free everything and then reset the tree root.
 285 */
 286static void prelim_release(struct preftree *preftree)
 287{
 288        struct prelim_ref *ref, *next_ref;
 289
 290        rbtree_postorder_for_each_entry_safe(ref, next_ref,
 291                                             &preftree->root.rb_root, rbnode)
 292                free_pref(ref);
 293
 294        preftree->root = RB_ROOT_CACHED;
 295        preftree->count = 0;
 296}
 297
 298/*
 299 * the rules for all callers of this function are:
 300 * - obtaining the parent is the goal
 301 * - if you add a key, you must know that it is a correct key
 302 * - if you cannot add the parent or a correct key, then we will look into the
 303 *   block later to set a correct key
 304 *
 305 * delayed refs
 306 * ============
 307 *        backref type | shared | indirect | shared | indirect
 308 * information         |   tree |     tree |   data |     data
 309 * --------------------+--------+----------+--------+----------
 310 *      parent logical |    y   |     -    |    -   |     -
 311 *      key to resolve |    -   |     y    |    y   |     y
 312 *  tree block logical |    -   |     -    |    -   |     -
 313 *  root for resolving |    y   |     y    |    y   |     y
 314 *
 315 * - column 1:       we've the parent -> done
 316 * - column 2, 3, 4: we use the key to find the parent
 317 *
 318 * on disk refs (inline or keyed)
 319 * ==============================
 320 *        backref type | shared | indirect | shared | indirect
 321 * information         |   tree |     tree |   data |     data
 322 * --------------------+--------+----------+--------+----------
 323 *      parent logical |    y   |     -    |    y   |     -
 324 *      key to resolve |    -   |     -    |    -   |     y
 325 *  tree block logical |    y   |     y    |    y   |     y
 326 *  root for resolving |    -   |     y    |    y   |     y
 327 *
 328 * - column 1, 3: we've the parent -> done
 329 * - column 2:    we take the first key from the block to find the parent
 330 *                (see add_missing_keys)
 331 * - column 4:    we use the key to find the parent
 332 *
 333 * additional information that's available but not required to find the parent
 334 * block might help in merging entries to gain some speed.
 335 */
 336static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
 337                          struct preftree *preftree, u64 root_id,
 338                          const struct btrfs_key *key, int level, u64 parent,
 339                          u64 wanted_disk_byte, int count,
 340                          struct share_check *sc, gfp_t gfp_mask)
 341{
 342        struct prelim_ref *ref;
 343
 344        if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
 345                return 0;
 346
 347        ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
 348        if (!ref)
 349                return -ENOMEM;
 350
 351        ref->root_id = root_id;
 352        if (key)
 353                ref->key_for_search = *key;
 354        else
 355                memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
 356
 357        ref->inode_list = NULL;
 358        ref->level = level;
 359        ref->count = count;
 360        ref->parent = parent;
 361        ref->wanted_disk_byte = wanted_disk_byte;
 362        prelim_ref_insert(fs_info, preftree, ref, sc);
 363        return extent_is_shared(sc);
 364}
 365
 366/* direct refs use root == 0, key == NULL */
 367static int add_direct_ref(const struct btrfs_fs_info *fs_info,
 368                          struct preftrees *preftrees, int level, u64 parent,
 369                          u64 wanted_disk_byte, int count,
 370                          struct share_check *sc, gfp_t gfp_mask)
 371{
 372        return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
 373                              parent, wanted_disk_byte, count, sc, gfp_mask);
 374}
 375
 376/* indirect refs use parent == 0 */
 377static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
 378                            struct preftrees *preftrees, u64 root_id,
 379                            const struct btrfs_key *key, int level,
 380                            u64 wanted_disk_byte, int count,
 381                            struct share_check *sc, gfp_t gfp_mask)
 382{
 383        struct preftree *tree = &preftrees->indirect;
 384
 385        if (!key)
 386                tree = &preftrees->indirect_missing_keys;
 387        return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
 388                              wanted_disk_byte, count, sc, gfp_mask);
 389}
 390
 391static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
 392{
 393        struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
 394        struct rb_node *parent = NULL;
 395        struct prelim_ref *ref = NULL;
 396        struct prelim_ref target = {};
 397        int result;
 398
 399        target.parent = bytenr;
 400
 401        while (*p) {
 402                parent = *p;
 403                ref = rb_entry(parent, struct prelim_ref, rbnode);
 404                result = prelim_ref_compare(ref, &target);
 405
 406                if (result < 0)
 407                        p = &(*p)->rb_left;
 408                else if (result > 0)
 409                        p = &(*p)->rb_right;
 410                else
 411                        return 1;
 412        }
 413        return 0;
 414}
 415
 416static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
 417                           struct ulist *parents,
 418                           struct preftrees *preftrees, struct prelim_ref *ref,
 419                           int level, u64 time_seq, const u64 *extent_item_pos,
 420                           bool ignore_offset)
 421{
 422        int ret = 0;
 423        int slot;
 424        struct extent_buffer *eb;
 425        struct btrfs_key key;
 426        struct btrfs_key *key_for_search = &ref->key_for_search;
 427        struct btrfs_file_extent_item *fi;
 428        struct extent_inode_elem *eie = NULL, *old = NULL;
 429        u64 disk_byte;
 430        u64 wanted_disk_byte = ref->wanted_disk_byte;
 431        u64 count = 0;
 432        u64 data_offset;
 433
 434        if (level != 0) {
 435                eb = path->nodes[level];
 436                ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
 437                if (ret < 0)
 438                        return ret;
 439                return 0;
 440        }
 441
 442        /*
 443         * 1. We normally enter this function with the path already pointing to
 444         *    the first item to check. But sometimes, we may enter it with
 445         *    slot == nritems.
 446         * 2. We are searching for normal backref but bytenr of this leaf
 447         *    matches shared data backref
 448         * 3. The leaf owner is not equal to the root we are searching
 449         *
 450         * For these cases, go to the next leaf before we continue.
 451         */
 452        eb = path->nodes[0];
 453        if (path->slots[0] >= btrfs_header_nritems(eb) ||
 454            is_shared_data_backref(preftrees, eb->start) ||
 455            ref->root_id != btrfs_header_owner(eb)) {
 456                if (time_seq == BTRFS_SEQ_LAST)
 457                        ret = btrfs_next_leaf(root, path);
 458                else
 459                        ret = btrfs_next_old_leaf(root, path, time_seq);
 460        }
 461
 462        while (!ret && count < ref->count) {
 463                eb = path->nodes[0];
 464                slot = path->slots[0];
 465
 466                btrfs_item_key_to_cpu(eb, &key, slot);
 467
 468                if (key.objectid != key_for_search->objectid ||
 469                    key.type != BTRFS_EXTENT_DATA_KEY)
 470                        break;
 471
 472                /*
 473                 * We are searching for normal backref but bytenr of this leaf
 474                 * matches shared data backref, OR
 475                 * the leaf owner is not equal to the root we are searching for
 476                 */
 477                if (slot == 0 &&
 478                    (is_shared_data_backref(preftrees, eb->start) ||
 479                     ref->root_id != btrfs_header_owner(eb))) {
 480                        if (time_seq == BTRFS_SEQ_LAST)
 481                                ret = btrfs_next_leaf(root, path);
 482                        else
 483                                ret = btrfs_next_old_leaf(root, path, time_seq);
 484                        continue;
 485                }
 486                fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 487                disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
 488                data_offset = btrfs_file_extent_offset(eb, fi);
 489
 490                if (disk_byte == wanted_disk_byte) {
 491                        eie = NULL;
 492                        old = NULL;
 493                        if (ref->key_for_search.offset == key.offset - data_offset)
 494                                count++;
 495                        else
 496                                goto next;
 497                        if (extent_item_pos) {
 498                                ret = check_extent_in_eb(&key, eb, fi,
 499                                                *extent_item_pos,
 500                                                &eie, ignore_offset);
 501                                if (ret < 0)
 502                                        break;
 503                        }
 504                        if (ret > 0)
 505                                goto next;
 506                        ret = ulist_add_merge_ptr(parents, eb->start,
 507                                                  eie, (void **)&old, GFP_NOFS);
 508                        if (ret < 0)
 509                                break;
 510                        if (!ret && extent_item_pos) {
 511                                while (old->next)
 512                                        old = old->next;
 513                                old->next = eie;
 514                        }
 515                        eie = NULL;
 516                }
 517next:
 518                if (time_seq == BTRFS_SEQ_LAST)
 519                        ret = btrfs_next_item(root, path);
 520                else
 521                        ret = btrfs_next_old_item(root, path, time_seq);
 522        }
 523
 524        if (ret > 0)
 525                ret = 0;
 526        else if (ret < 0)
 527                free_inode_elem_list(eie);
 528        return ret;
 529}
 530
 531/*
 532 * resolve an indirect backref in the form (root_id, key, level)
 533 * to a logical address
 534 */
 535static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
 536                                struct btrfs_path *path, u64 time_seq,
 537                                struct preftrees *preftrees,
 538                                struct prelim_ref *ref, struct ulist *parents,
 539                                const u64 *extent_item_pos, bool ignore_offset)
 540{
 541        struct btrfs_root *root;
 542        struct extent_buffer *eb;
 543        int ret = 0;
 544        int root_level;
 545        int level = ref->level;
 546        struct btrfs_key search_key = ref->key_for_search;
 547
 548        /*
 549         * If we're search_commit_root we could possibly be holding locks on
 550         * other tree nodes.  This happens when qgroups does backref walks when
 551         * adding new delayed refs.  To deal with this we need to look in cache
 552         * for the root, and if we don't find it then we need to search the
 553         * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
 554         * here.
 555         */
 556        if (path->search_commit_root)
 557                root = btrfs_get_fs_root_commit_root(fs_info, path, ref->root_id);
 558        else
 559                root = btrfs_get_fs_root(fs_info, ref->root_id, false);
 560        if (IS_ERR(root)) {
 561                ret = PTR_ERR(root);
 562                goto out_free;
 563        }
 564
 565        if (!path->search_commit_root &&
 566            test_bit(BTRFS_ROOT_DELETING, &root->state)) {
 567                ret = -ENOENT;
 568                goto out;
 569        }
 570
 571        if (btrfs_is_testing(fs_info)) {
 572                ret = -ENOENT;
 573                goto out;
 574        }
 575
 576        if (path->search_commit_root)
 577                root_level = btrfs_header_level(root->commit_root);
 578        else if (time_seq == BTRFS_SEQ_LAST)
 579                root_level = btrfs_header_level(root->node);
 580        else
 581                root_level = btrfs_old_root_level(root, time_seq);
 582
 583        if (root_level + 1 == level)
 584                goto out;
 585
 586        /*
 587         * We can often find data backrefs with an offset that is too large
 588         * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
 589         * subtracting a file's offset with the data offset of its
 590         * corresponding extent data item. This can happen for example in the
 591         * clone ioctl.
 592         *
 593         * So if we detect such case we set the search key's offset to zero to
 594         * make sure we will find the matching file extent item at
 595         * add_all_parents(), otherwise we will miss it because the offset
 596         * taken form the backref is much larger then the offset of the file
 597         * extent item. This can make us scan a very large number of file
 598         * extent items, but at least it will not make us miss any.
 599         *
 600         * This is an ugly workaround for a behaviour that should have never
 601         * existed, but it does and a fix for the clone ioctl would touch a lot
 602         * of places, cause backwards incompatibility and would not fix the
 603         * problem for extents cloned with older kernels.
 604         */
 605        if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
 606            search_key.offset >= LLONG_MAX)
 607                search_key.offset = 0;
 608        path->lowest_level = level;
 609        if (time_seq == BTRFS_SEQ_LAST)
 610                ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
 611        else
 612                ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
 613
 614        btrfs_debug(fs_info,
 615                "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
 616                 ref->root_id, level, ref->count, ret,
 617                 ref->key_for_search.objectid, ref->key_for_search.type,
 618                 ref->key_for_search.offset);
 619        if (ret < 0)
 620                goto out;
 621
 622        eb = path->nodes[level];
 623        while (!eb) {
 624                if (WARN_ON(!level)) {
 625                        ret = 1;
 626                        goto out;
 627                }
 628                level--;
 629                eb = path->nodes[level];
 630        }
 631
 632        ret = add_all_parents(root, path, parents, preftrees, ref, level,
 633                              time_seq, extent_item_pos, ignore_offset);
 634out:
 635        btrfs_put_root(root);
 636out_free:
 637        path->lowest_level = 0;
 638        btrfs_release_path(path);
 639        return ret;
 640}
 641
 642static struct extent_inode_elem *
 643unode_aux_to_inode_list(struct ulist_node *node)
 644{
 645        if (!node)
 646                return NULL;
 647        return (struct extent_inode_elem *)(uintptr_t)node->aux;
 648}
 649
 650/*
 651 * We maintain three separate rbtrees: one for direct refs, one for
 652 * indirect refs which have a key, and one for indirect refs which do not
 653 * have a key. Each tree does merge on insertion.
 654 *
 655 * Once all of the references are located, we iterate over the tree of
 656 * indirect refs with missing keys. An appropriate key is located and
 657 * the ref is moved onto the tree for indirect refs. After all missing
 658 * keys are thus located, we iterate over the indirect ref tree, resolve
 659 * each reference, and then insert the resolved reference onto the
 660 * direct tree (merging there too).
 661 *
 662 * New backrefs (i.e., for parent nodes) are added to the appropriate
 663 * rbtree as they are encountered. The new backrefs are subsequently
 664 * resolved as above.
 665 */
 666static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
 667                                 struct btrfs_path *path, u64 time_seq,
 668                                 struct preftrees *preftrees,
 669                                 const u64 *extent_item_pos,
 670                                 struct share_check *sc, bool ignore_offset)
 671{
 672        int err;
 673        int ret = 0;
 674        struct ulist *parents;
 675        struct ulist_node *node;
 676        struct ulist_iterator uiter;
 677        struct rb_node *rnode;
 678
 679        parents = ulist_alloc(GFP_NOFS);
 680        if (!parents)
 681                return -ENOMEM;
 682
 683        /*
 684         * We could trade memory usage for performance here by iterating
 685         * the tree, allocating new refs for each insertion, and then
 686         * freeing the entire indirect tree when we're done.  In some test
 687         * cases, the tree can grow quite large (~200k objects).
 688         */
 689        while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
 690                struct prelim_ref *ref;
 691
 692                ref = rb_entry(rnode, struct prelim_ref, rbnode);
 693                if (WARN(ref->parent,
 694                         "BUG: direct ref found in indirect tree")) {
 695                        ret = -EINVAL;
 696                        goto out;
 697                }
 698
 699                rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
 700                preftrees->indirect.count--;
 701
 702                if (ref->count == 0) {
 703                        free_pref(ref);
 704                        continue;
 705                }
 706
 707                if (sc && sc->root_objectid &&
 708                    ref->root_id != sc->root_objectid) {
 709                        free_pref(ref);
 710                        ret = BACKREF_FOUND_SHARED;
 711                        goto out;
 712                }
 713                err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
 714                                           ref, parents, extent_item_pos,
 715                                           ignore_offset);
 716                /*
 717                 * we can only tolerate ENOENT,otherwise,we should catch error
 718                 * and return directly.
 719                 */
 720                if (err == -ENOENT) {
 721                        prelim_ref_insert(fs_info, &preftrees->direct, ref,
 722                                          NULL);
 723                        continue;
 724                } else if (err) {
 725                        free_pref(ref);
 726                        ret = err;
 727                        goto out;
 728                }
 729
 730                /* we put the first parent into the ref at hand */
 731                ULIST_ITER_INIT(&uiter);
 732                node = ulist_next(parents, &uiter);
 733                ref->parent = node ? node->val : 0;
 734                ref->inode_list = unode_aux_to_inode_list(node);
 735
 736                /* Add a prelim_ref(s) for any other parent(s). */
 737                while ((node = ulist_next(parents, &uiter))) {
 738                        struct prelim_ref *new_ref;
 739
 740                        new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
 741                                                   GFP_NOFS);
 742                        if (!new_ref) {
 743                                free_pref(ref);
 744                                ret = -ENOMEM;
 745                                goto out;
 746                        }
 747                        memcpy(new_ref, ref, sizeof(*ref));
 748                        new_ref->parent = node->val;
 749                        new_ref->inode_list = unode_aux_to_inode_list(node);
 750                        prelim_ref_insert(fs_info, &preftrees->direct,
 751                                          new_ref, NULL);
 752                }
 753
 754                /*
 755                 * Now it's a direct ref, put it in the direct tree. We must
 756                 * do this last because the ref could be merged/freed here.
 757                 */
 758                prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
 759
 760                ulist_reinit(parents);
 761                cond_resched();
 762        }
 763out:
 764        ulist_free(parents);
 765        return ret;
 766}
 767
 768/*
 769 * read tree blocks and add keys where required.
 770 */
 771static int add_missing_keys(struct btrfs_fs_info *fs_info,
 772                            struct preftrees *preftrees, bool lock)
 773{
 774        struct prelim_ref *ref;
 775        struct extent_buffer *eb;
 776        struct preftree *tree = &preftrees->indirect_missing_keys;
 777        struct rb_node *node;
 778
 779        while ((node = rb_first_cached(&tree->root))) {
 780                ref = rb_entry(node, struct prelim_ref, rbnode);
 781                rb_erase_cached(node, &tree->root);
 782
 783                BUG_ON(ref->parent);    /* should not be a direct ref */
 784                BUG_ON(ref->key_for_search.type);
 785                BUG_ON(!ref->wanted_disk_byte);
 786
 787                eb = read_tree_block(fs_info, ref->wanted_disk_byte,
 788                                     ref->root_id, 0, ref->level - 1, NULL);
 789                if (IS_ERR(eb)) {
 790                        free_pref(ref);
 791                        return PTR_ERR(eb);
 792                } else if (!extent_buffer_uptodate(eb)) {
 793                        free_pref(ref);
 794                        free_extent_buffer(eb);
 795                        return -EIO;
 796                }
 797                if (lock)
 798                        btrfs_tree_read_lock(eb);
 799                if (btrfs_header_level(eb) == 0)
 800                        btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
 801                else
 802                        btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
 803                if (lock)
 804                        btrfs_tree_read_unlock(eb);
 805                free_extent_buffer(eb);
 806                prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
 807                cond_resched();
 808        }
 809        return 0;
 810}
 811
 812/*
 813 * add all currently queued delayed refs from this head whose seq nr is
 814 * smaller or equal that seq to the list
 815 */
 816static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
 817                            struct btrfs_delayed_ref_head *head, u64 seq,
 818                            struct preftrees *preftrees, struct share_check *sc)
 819{
 820        struct btrfs_delayed_ref_node *node;
 821        struct btrfs_delayed_extent_op *extent_op = head->extent_op;
 822        struct btrfs_key key;
 823        struct btrfs_key tmp_op_key;
 824        struct rb_node *n;
 825        int count;
 826        int ret = 0;
 827
 828        if (extent_op && extent_op->update_key)
 829                btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
 830
 831        spin_lock(&head->lock);
 832        for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
 833                node = rb_entry(n, struct btrfs_delayed_ref_node,
 834                                ref_node);
 835                if (node->seq > seq)
 836                        continue;
 837
 838                switch (node->action) {
 839                case BTRFS_ADD_DELAYED_EXTENT:
 840                case BTRFS_UPDATE_DELAYED_HEAD:
 841                        WARN_ON(1);
 842                        continue;
 843                case BTRFS_ADD_DELAYED_REF:
 844                        count = node->ref_mod;
 845                        break;
 846                case BTRFS_DROP_DELAYED_REF:
 847                        count = node->ref_mod * -1;
 848                        break;
 849                default:
 850                        BUG();
 851                }
 852                switch (node->type) {
 853                case BTRFS_TREE_BLOCK_REF_KEY: {
 854                        /* NORMAL INDIRECT METADATA backref */
 855                        struct btrfs_delayed_tree_ref *ref;
 856
 857                        ref = btrfs_delayed_node_to_tree_ref(node);
 858                        ret = add_indirect_ref(fs_info, preftrees, ref->root,
 859                                               &tmp_op_key, ref->level + 1,
 860                                               node->bytenr, count, sc,
 861                                               GFP_ATOMIC);
 862                        break;
 863                }
 864                case BTRFS_SHARED_BLOCK_REF_KEY: {
 865                        /* SHARED DIRECT METADATA backref */
 866                        struct btrfs_delayed_tree_ref *ref;
 867
 868                        ref = btrfs_delayed_node_to_tree_ref(node);
 869
 870                        ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
 871                                             ref->parent, node->bytenr, count,
 872                                             sc, GFP_ATOMIC);
 873                        break;
 874                }
 875                case BTRFS_EXTENT_DATA_REF_KEY: {
 876                        /* NORMAL INDIRECT DATA backref */
 877                        struct btrfs_delayed_data_ref *ref;
 878                        ref = btrfs_delayed_node_to_data_ref(node);
 879
 880                        key.objectid = ref->objectid;
 881                        key.type = BTRFS_EXTENT_DATA_KEY;
 882                        key.offset = ref->offset;
 883
 884                        /*
 885                         * Found a inum that doesn't match our known inum, we
 886                         * know it's shared.
 887                         */
 888                        if (sc && sc->inum && ref->objectid != sc->inum) {
 889                                ret = BACKREF_FOUND_SHARED;
 890                                goto out;
 891                        }
 892
 893                        ret = add_indirect_ref(fs_info, preftrees, ref->root,
 894                                               &key, 0, node->bytenr, count, sc,
 895                                               GFP_ATOMIC);
 896                        break;
 897                }
 898                case BTRFS_SHARED_DATA_REF_KEY: {
 899                        /* SHARED DIRECT FULL backref */
 900                        struct btrfs_delayed_data_ref *ref;
 901
 902                        ref = btrfs_delayed_node_to_data_ref(node);
 903
 904                        ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
 905                                             node->bytenr, count, sc,
 906                                             GFP_ATOMIC);
 907                        break;
 908                }
 909                default:
 910                        WARN_ON(1);
 911                }
 912                /*
 913                 * We must ignore BACKREF_FOUND_SHARED until all delayed
 914                 * refs have been checked.
 915                 */
 916                if (ret && (ret != BACKREF_FOUND_SHARED))
 917                        break;
 918        }
 919        if (!ret)
 920                ret = extent_is_shared(sc);
 921out:
 922        spin_unlock(&head->lock);
 923        return ret;
 924}
 925
 926/*
 927 * add all inline backrefs for bytenr to the list
 928 *
 929 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
 930 */
 931static int add_inline_refs(const struct btrfs_fs_info *fs_info,
 932                           struct btrfs_path *path, u64 bytenr,
 933                           int *info_level, struct preftrees *preftrees,
 934                           struct share_check *sc)
 935{
 936        int ret = 0;
 937        int slot;
 938        struct extent_buffer *leaf;
 939        struct btrfs_key key;
 940        struct btrfs_key found_key;
 941        unsigned long ptr;
 942        unsigned long end;
 943        struct btrfs_extent_item *ei;
 944        u64 flags;
 945        u64 item_size;
 946
 947        /*
 948         * enumerate all inline refs
 949         */
 950        leaf = path->nodes[0];
 951        slot = path->slots[0];
 952
 953        item_size = btrfs_item_size_nr(leaf, slot);
 954        BUG_ON(item_size < sizeof(*ei));
 955
 956        ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 957        flags = btrfs_extent_flags(leaf, ei);
 958        btrfs_item_key_to_cpu(leaf, &found_key, slot);
 959
 960        ptr = (unsigned long)(ei + 1);
 961        end = (unsigned long)ei + item_size;
 962
 963        if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
 964            flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 965                struct btrfs_tree_block_info *info;
 966
 967                info = (struct btrfs_tree_block_info *)ptr;
 968                *info_level = btrfs_tree_block_level(leaf, info);
 969                ptr += sizeof(struct btrfs_tree_block_info);
 970                BUG_ON(ptr > end);
 971        } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
 972                *info_level = found_key.offset;
 973        } else {
 974                BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
 975        }
 976
 977        while (ptr < end) {
 978                struct btrfs_extent_inline_ref *iref;
 979                u64 offset;
 980                int type;
 981
 982                iref = (struct btrfs_extent_inline_ref *)ptr;
 983                type = btrfs_get_extent_inline_ref_type(leaf, iref,
 984                                                        BTRFS_REF_TYPE_ANY);
 985                if (type == BTRFS_REF_TYPE_INVALID)
 986                        return -EUCLEAN;
 987
 988                offset = btrfs_extent_inline_ref_offset(leaf, iref);
 989
 990                switch (type) {
 991                case BTRFS_SHARED_BLOCK_REF_KEY:
 992                        ret = add_direct_ref(fs_info, preftrees,
 993                                             *info_level + 1, offset,
 994                                             bytenr, 1, NULL, GFP_NOFS);
 995                        break;
 996                case BTRFS_SHARED_DATA_REF_KEY: {
 997                        struct btrfs_shared_data_ref *sdref;
 998                        int count;
 999
1000                        sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1001                        count = btrfs_shared_data_ref_count(leaf, sdref);
1002
1003                        ret = add_direct_ref(fs_info, preftrees, 0, offset,
1004                                             bytenr, count, sc, GFP_NOFS);
1005                        break;
1006                }
1007                case BTRFS_TREE_BLOCK_REF_KEY:
1008                        ret = add_indirect_ref(fs_info, preftrees, offset,
1009                                               NULL, *info_level + 1,
1010                                               bytenr, 1, NULL, GFP_NOFS);
1011                        break;
1012                case BTRFS_EXTENT_DATA_REF_KEY: {
1013                        struct btrfs_extent_data_ref *dref;
1014                        int count;
1015                        u64 root;
1016
1017                        dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1018                        count = btrfs_extent_data_ref_count(leaf, dref);
1019                        key.objectid = btrfs_extent_data_ref_objectid(leaf,
1020                                                                      dref);
1021                        key.type = BTRFS_EXTENT_DATA_KEY;
1022                        key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1023
1024                        if (sc && sc->inum && key.objectid != sc->inum) {
1025                                ret = BACKREF_FOUND_SHARED;
1026                                break;
1027                        }
1028
1029                        root = btrfs_extent_data_ref_root(leaf, dref);
1030
1031                        ret = add_indirect_ref(fs_info, preftrees, root,
1032                                               &key, 0, bytenr, count,
1033                                               sc, GFP_NOFS);
1034                        break;
1035                }
1036                default:
1037                        WARN_ON(1);
1038                }
1039                if (ret)
1040                        return ret;
1041                ptr += btrfs_extent_inline_ref_size(type);
1042        }
1043
1044        return 0;
1045}
1046
1047/*
1048 * add all non-inline backrefs for bytenr to the list
1049 *
1050 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1051 */
1052static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1053                          struct btrfs_path *path, u64 bytenr,
1054                          int info_level, struct preftrees *preftrees,
1055                          struct share_check *sc)
1056{
1057        struct btrfs_root *extent_root = fs_info->extent_root;
1058        int ret;
1059        int slot;
1060        struct extent_buffer *leaf;
1061        struct btrfs_key key;
1062
1063        while (1) {
1064                ret = btrfs_next_item(extent_root, path);
1065                if (ret < 0)
1066                        break;
1067                if (ret) {
1068                        ret = 0;
1069                        break;
1070                }
1071
1072                slot = path->slots[0];
1073                leaf = path->nodes[0];
1074                btrfs_item_key_to_cpu(leaf, &key, slot);
1075
1076                if (key.objectid != bytenr)
1077                        break;
1078                if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1079                        continue;
1080                if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1081                        break;
1082
1083                switch (key.type) {
1084                case BTRFS_SHARED_BLOCK_REF_KEY:
1085                        /* SHARED DIRECT METADATA backref */
1086                        ret = add_direct_ref(fs_info, preftrees,
1087                                             info_level + 1, key.offset,
1088                                             bytenr, 1, NULL, GFP_NOFS);
1089                        break;
1090                case BTRFS_SHARED_DATA_REF_KEY: {
1091                        /* SHARED DIRECT FULL backref */
1092                        struct btrfs_shared_data_ref *sdref;
1093                        int count;
1094
1095                        sdref = btrfs_item_ptr(leaf, slot,
1096                                              struct btrfs_shared_data_ref);
1097                        count = btrfs_shared_data_ref_count(leaf, sdref);
1098                        ret = add_direct_ref(fs_info, preftrees, 0,
1099                                             key.offset, bytenr, count,
1100                                             sc, GFP_NOFS);
1101                        break;
1102                }
1103                case BTRFS_TREE_BLOCK_REF_KEY:
1104                        /* NORMAL INDIRECT METADATA backref */
1105                        ret = add_indirect_ref(fs_info, preftrees, key.offset,
1106                                               NULL, info_level + 1, bytenr,
1107                                               1, NULL, GFP_NOFS);
1108                        break;
1109                case BTRFS_EXTENT_DATA_REF_KEY: {
1110                        /* NORMAL INDIRECT DATA backref */
1111                        struct btrfs_extent_data_ref *dref;
1112                        int count;
1113                        u64 root;
1114
1115                        dref = btrfs_item_ptr(leaf, slot,
1116                                              struct btrfs_extent_data_ref);
1117                        count = btrfs_extent_data_ref_count(leaf, dref);
1118                        key.objectid = btrfs_extent_data_ref_objectid(leaf,
1119                                                                      dref);
1120                        key.type = BTRFS_EXTENT_DATA_KEY;
1121                        key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1122
1123                        if (sc && sc->inum && key.objectid != sc->inum) {
1124                                ret = BACKREF_FOUND_SHARED;
1125                                break;
1126                        }
1127
1128                        root = btrfs_extent_data_ref_root(leaf, dref);
1129                        ret = add_indirect_ref(fs_info, preftrees, root,
1130                                               &key, 0, bytenr, count,
1131                                               sc, GFP_NOFS);
1132                        break;
1133                }
1134                default:
1135                        WARN_ON(1);
1136                }
1137                if (ret)
1138                        return ret;
1139
1140        }
1141
1142        return ret;
1143}
1144
1145/*
1146 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1147 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1148 * indirect refs to their parent bytenr.
1149 * When roots are found, they're added to the roots list
1150 *
1151 * If time_seq is set to BTRFS_SEQ_LAST, it will not search delayed_refs, and
1152 * behave much like trans == NULL case, the difference only lies in it will not
1153 * commit root.
1154 * The special case is for qgroup to search roots in commit_transaction().
1155 *
1156 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1157 * shared extent is detected.
1158 *
1159 * Otherwise this returns 0 for success and <0 for an error.
1160 *
1161 * If ignore_offset is set to false, only extent refs whose offsets match
1162 * extent_item_pos are returned.  If true, every extent ref is returned
1163 * and extent_item_pos is ignored.
1164 *
1165 * FIXME some caching might speed things up
1166 */
1167static int find_parent_nodes(struct btrfs_trans_handle *trans,
1168                             struct btrfs_fs_info *fs_info, u64 bytenr,
1169                             u64 time_seq, struct ulist *refs,
1170                             struct ulist *roots, const u64 *extent_item_pos,
1171                             struct share_check *sc, bool ignore_offset)
1172{
1173        struct btrfs_key key;
1174        struct btrfs_path *path;
1175        struct btrfs_delayed_ref_root *delayed_refs = NULL;
1176        struct btrfs_delayed_ref_head *head;
1177        int info_level = 0;
1178        int ret;
1179        struct prelim_ref *ref;
1180        struct rb_node *node;
1181        struct extent_inode_elem *eie = NULL;
1182        struct preftrees preftrees = {
1183                .direct = PREFTREE_INIT,
1184                .indirect = PREFTREE_INIT,
1185                .indirect_missing_keys = PREFTREE_INIT
1186        };
1187
1188        key.objectid = bytenr;
1189        key.offset = (u64)-1;
1190        if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1191                key.type = BTRFS_METADATA_ITEM_KEY;
1192        else
1193                key.type = BTRFS_EXTENT_ITEM_KEY;
1194
1195        path = btrfs_alloc_path();
1196        if (!path)
1197                return -ENOMEM;
1198        if (!trans) {
1199                path->search_commit_root = 1;
1200                path->skip_locking = 1;
1201        }
1202
1203        if (time_seq == BTRFS_SEQ_LAST)
1204                path->skip_locking = 1;
1205
1206        /*
1207         * grab both a lock on the path and a lock on the delayed ref head.
1208         * We need both to get a consistent picture of how the refs look
1209         * at a specified point in time
1210         */
1211again:
1212        head = NULL;
1213
1214        ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1215        if (ret < 0)
1216                goto out;
1217        BUG_ON(ret == 0);
1218
1219#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1220        if (trans && likely(trans->type != __TRANS_DUMMY) &&
1221            time_seq != BTRFS_SEQ_LAST) {
1222#else
1223        if (trans && time_seq != BTRFS_SEQ_LAST) {
1224#endif
1225                /*
1226                 * look if there are updates for this ref queued and lock the
1227                 * head
1228                 */
1229                delayed_refs = &trans->transaction->delayed_refs;
1230                spin_lock(&delayed_refs->lock);
1231                head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1232                if (head) {
1233                        if (!mutex_trylock(&head->mutex)) {
1234                                refcount_inc(&head->refs);
1235                                spin_unlock(&delayed_refs->lock);
1236
1237                                btrfs_release_path(path);
1238
1239                                /*
1240                                 * Mutex was contended, block until it's
1241                                 * released and try again
1242                                 */
1243                                mutex_lock(&head->mutex);
1244                                mutex_unlock(&head->mutex);
1245                                btrfs_put_delayed_ref_head(head);
1246                                goto again;
1247                        }
1248                        spin_unlock(&delayed_refs->lock);
1249                        ret = add_delayed_refs(fs_info, head, time_seq,
1250                                               &preftrees, sc);
1251                        mutex_unlock(&head->mutex);
1252                        if (ret)
1253                                goto out;
1254                } else {
1255                        spin_unlock(&delayed_refs->lock);
1256                }
1257        }
1258
1259        if (path->slots[0]) {
1260                struct extent_buffer *leaf;
1261                int slot;
1262
1263                path->slots[0]--;
1264                leaf = path->nodes[0];
1265                slot = path->slots[0];
1266                btrfs_item_key_to_cpu(leaf, &key, slot);
1267                if (key.objectid == bytenr &&
1268                    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1269                     key.type == BTRFS_METADATA_ITEM_KEY)) {
1270                        ret = add_inline_refs(fs_info, path, bytenr,
1271                                              &info_level, &preftrees, sc);
1272                        if (ret)
1273                                goto out;
1274                        ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1275                                             &preftrees, sc);
1276                        if (ret)
1277                                goto out;
1278                }
1279        }
1280
1281        btrfs_release_path(path);
1282
1283        ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1284        if (ret)
1285                goto out;
1286
1287        WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1288
1289        ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1290                                    extent_item_pos, sc, ignore_offset);
1291        if (ret)
1292                goto out;
1293
1294        WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1295
1296        /*
1297         * This walks the tree of merged and resolved refs. Tree blocks are
1298         * read in as needed. Unique entries are added to the ulist, and
1299         * the list of found roots is updated.
1300         *
1301         * We release the entire tree in one go before returning.
1302         */
1303        node = rb_first_cached(&preftrees.direct.root);
1304        while (node) {
1305                ref = rb_entry(node, struct prelim_ref, rbnode);
1306                node = rb_next(&ref->rbnode);
1307                /*
1308                 * ref->count < 0 can happen here if there are delayed
1309                 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1310                 * prelim_ref_insert() relies on this when merging
1311                 * identical refs to keep the overall count correct.
1312                 * prelim_ref_insert() will merge only those refs
1313                 * which compare identically.  Any refs having
1314                 * e.g. different offsets would not be merged,
1315                 * and would retain their original ref->count < 0.
1316                 */
1317                if (roots && ref->count && ref->root_id && ref->parent == 0) {
1318                        if (sc && sc->root_objectid &&
1319                            ref->root_id != sc->root_objectid) {
1320                                ret = BACKREF_FOUND_SHARED;
1321                                goto out;
1322                        }
1323
1324                        /* no parent == root of tree */
1325                        ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1326                        if (ret < 0)
1327                                goto out;
1328                }
1329                if (ref->count && ref->parent) {
1330                        if (extent_item_pos && !ref->inode_list &&
1331                            ref->level == 0) {
1332                                struct extent_buffer *eb;
1333
1334                                eb = read_tree_block(fs_info, ref->parent, 0,
1335                                                     0, ref->level, NULL);
1336                                if (IS_ERR(eb)) {
1337                                        ret = PTR_ERR(eb);
1338                                        goto out;
1339                                } else if (!extent_buffer_uptodate(eb)) {
1340                                        free_extent_buffer(eb);
1341                                        ret = -EIO;
1342                                        goto out;
1343                                }
1344
1345                                if (!path->skip_locking)
1346                                        btrfs_tree_read_lock(eb);
1347                                ret = find_extent_in_eb(eb, bytenr,
1348                                                        *extent_item_pos, &eie, ignore_offset);
1349                                if (!path->skip_locking)
1350                                        btrfs_tree_read_unlock(eb);
1351                                free_extent_buffer(eb);
1352                                if (ret < 0)
1353                                        goto out;
1354                                ref->inode_list = eie;
1355                        }
1356                        ret = ulist_add_merge_ptr(refs, ref->parent,
1357                                                  ref->inode_list,
1358                                                  (void **)&eie, GFP_NOFS);
1359                        if (ret < 0)
1360                                goto out;
1361                        if (!ret && extent_item_pos) {
1362                                /*
1363                                 * we've recorded that parent, so we must extend
1364                                 * its inode list here
1365                                 */
1366                                BUG_ON(!eie);
1367                                while (eie->next)
1368                                        eie = eie->next;
1369                                eie->next = ref->inode_list;
1370                        }
1371                        eie = NULL;
1372                }
1373                cond_resched();
1374        }
1375
1376out:
1377        btrfs_free_path(path);
1378
1379        prelim_release(&preftrees.direct);
1380        prelim_release(&preftrees.indirect);
1381        prelim_release(&preftrees.indirect_missing_keys);
1382
1383        if (ret < 0)
1384                free_inode_elem_list(eie);
1385        return ret;
1386}
1387
1388static void free_leaf_list(struct ulist *blocks)
1389{
1390        struct ulist_node *node = NULL;
1391        struct extent_inode_elem *eie;
1392        struct ulist_iterator uiter;
1393
1394        ULIST_ITER_INIT(&uiter);
1395        while ((node = ulist_next(blocks, &uiter))) {
1396                if (!node->aux)
1397                        continue;
1398                eie = unode_aux_to_inode_list(node);
1399                free_inode_elem_list(eie);
1400                node->aux = 0;
1401        }
1402
1403        ulist_free(blocks);
1404}
1405
1406/*
1407 * Finds all leafs with a reference to the specified combination of bytenr and
1408 * offset. key_list_head will point to a list of corresponding keys (caller must
1409 * free each list element). The leafs will be stored in the leafs ulist, which
1410 * must be freed with ulist_free.
1411 *
1412 * returns 0 on success, <0 on error
1413 */
1414int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1415                         struct btrfs_fs_info *fs_info, u64 bytenr,
1416                         u64 time_seq, struct ulist **leafs,
1417                         const u64 *extent_item_pos, bool ignore_offset)
1418{
1419        int ret;
1420
1421        *leafs = ulist_alloc(GFP_NOFS);
1422        if (!*leafs)
1423                return -ENOMEM;
1424
1425        ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1426                                *leafs, NULL, extent_item_pos, NULL, ignore_offset);
1427        if (ret < 0 && ret != -ENOENT) {
1428                free_leaf_list(*leafs);
1429                return ret;
1430        }
1431
1432        return 0;
1433}
1434
1435/*
1436 * walk all backrefs for a given extent to find all roots that reference this
1437 * extent. Walking a backref means finding all extents that reference this
1438 * extent and in turn walk the backrefs of those, too. Naturally this is a
1439 * recursive process, but here it is implemented in an iterative fashion: We
1440 * find all referencing extents for the extent in question and put them on a
1441 * list. In turn, we find all referencing extents for those, further appending
1442 * to the list. The way we iterate the list allows adding more elements after
1443 * the current while iterating. The process stops when we reach the end of the
1444 * list. Found roots are added to the roots list.
1445 *
1446 * returns 0 on success, < 0 on error.
1447 */
1448static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1449                                     struct btrfs_fs_info *fs_info, u64 bytenr,
1450                                     u64 time_seq, struct ulist **roots,
1451                                     bool ignore_offset)
1452{
1453        struct ulist *tmp;
1454        struct ulist_node *node = NULL;
1455        struct ulist_iterator uiter;
1456        int ret;
1457
1458        tmp = ulist_alloc(GFP_NOFS);
1459        if (!tmp)
1460                return -ENOMEM;
1461        *roots = ulist_alloc(GFP_NOFS);
1462        if (!*roots) {
1463                ulist_free(tmp);
1464                return -ENOMEM;
1465        }
1466
1467        ULIST_ITER_INIT(&uiter);
1468        while (1) {
1469                ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1470                                        tmp, *roots, NULL, NULL, ignore_offset);
1471                if (ret < 0 && ret != -ENOENT) {
1472                        ulist_free(tmp);
1473                        ulist_free(*roots);
1474                        *roots = NULL;
1475                        return ret;
1476                }
1477                node = ulist_next(tmp, &uiter);
1478                if (!node)
1479                        break;
1480                bytenr = node->val;
1481                cond_resched();
1482        }
1483
1484        ulist_free(tmp);
1485        return 0;
1486}
1487
1488int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1489                         struct btrfs_fs_info *fs_info, u64 bytenr,
1490                         u64 time_seq, struct ulist **roots,
1491                         bool ignore_offset, bool skip_commit_root_sem)
1492{
1493        int ret;
1494
1495        if (!trans && !skip_commit_root_sem)
1496                down_read(&fs_info->commit_root_sem);
1497        ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1498                                        time_seq, roots, ignore_offset);
1499        if (!trans && !skip_commit_root_sem)
1500                up_read(&fs_info->commit_root_sem);
1501        return ret;
1502}
1503
1504/**
1505 * Check if an extent is shared or not
1506 *
1507 * @root:   root inode belongs to
1508 * @inum:   inode number of the inode whose extent we are checking
1509 * @bytenr: logical bytenr of the extent we are checking
1510 * @roots:  list of roots this extent is shared among
1511 * @tmp:    temporary list used for iteration
1512 *
1513 * btrfs_check_shared uses the backref walking code but will short
1514 * circuit as soon as it finds a root or inode that doesn't match the
1515 * one passed in. This provides a significant performance benefit for
1516 * callers (such as fiemap) which want to know whether the extent is
1517 * shared but do not need a ref count.
1518 *
1519 * This attempts to attach to the running transaction in order to account for
1520 * delayed refs, but continues on even when no running transaction exists.
1521 *
1522 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1523 */
1524int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1525                struct ulist *roots, struct ulist *tmp)
1526{
1527        struct btrfs_fs_info *fs_info = root->fs_info;
1528        struct btrfs_trans_handle *trans;
1529        struct ulist_iterator uiter;
1530        struct ulist_node *node;
1531        struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem);
1532        int ret = 0;
1533        struct share_check shared = {
1534                .root_objectid = root->root_key.objectid,
1535                .inum = inum,
1536                .share_count = 0,
1537        };
1538
1539        ulist_init(roots);
1540        ulist_init(tmp);
1541
1542        trans = btrfs_join_transaction_nostart(root);
1543        if (IS_ERR(trans)) {
1544                if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1545                        ret = PTR_ERR(trans);
1546                        goto out;
1547                }
1548                trans = NULL;
1549                down_read(&fs_info->commit_root_sem);
1550        } else {
1551                btrfs_get_tree_mod_seq(fs_info, &elem);
1552        }
1553
1554        ULIST_ITER_INIT(&uiter);
1555        while (1) {
1556                ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1557                                        roots, NULL, &shared, false);
1558                if (ret == BACKREF_FOUND_SHARED) {
1559                        /* this is the only condition under which we return 1 */
1560                        ret = 1;
1561                        break;
1562                }
1563                if (ret < 0 && ret != -ENOENT)
1564                        break;
1565                ret = 0;
1566                node = ulist_next(tmp, &uiter);
1567                if (!node)
1568                        break;
1569                bytenr = node->val;
1570                shared.share_count = 0;
1571                cond_resched();
1572        }
1573
1574        if (trans) {
1575                btrfs_put_tree_mod_seq(fs_info, &elem);
1576                btrfs_end_transaction(trans);
1577        } else {
1578                up_read(&fs_info->commit_root_sem);
1579        }
1580out:
1581        ulist_release(roots);
1582        ulist_release(tmp);
1583        return ret;
1584}
1585
1586int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1587                          u64 start_off, struct btrfs_path *path,
1588                          struct btrfs_inode_extref **ret_extref,
1589                          u64 *found_off)
1590{
1591        int ret, slot;
1592        struct btrfs_key key;
1593        struct btrfs_key found_key;
1594        struct btrfs_inode_extref *extref;
1595        const struct extent_buffer *leaf;
1596        unsigned long ptr;
1597
1598        key.objectid = inode_objectid;
1599        key.type = BTRFS_INODE_EXTREF_KEY;
1600        key.offset = start_off;
1601
1602        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1603        if (ret < 0)
1604                return ret;
1605
1606        while (1) {
1607                leaf = path->nodes[0];
1608                slot = path->slots[0];
1609                if (slot >= btrfs_header_nritems(leaf)) {
1610                        /*
1611                         * If the item at offset is not found,
1612                         * btrfs_search_slot will point us to the slot
1613                         * where it should be inserted. In our case
1614                         * that will be the slot directly before the
1615                         * next INODE_REF_KEY_V2 item. In the case
1616                         * that we're pointing to the last slot in a
1617                         * leaf, we must move one leaf over.
1618                         */
1619                        ret = btrfs_next_leaf(root, path);
1620                        if (ret) {
1621                                if (ret >= 1)
1622                                        ret = -ENOENT;
1623                                break;
1624                        }
1625                        continue;
1626                }
1627
1628                btrfs_item_key_to_cpu(leaf, &found_key, slot);
1629
1630                /*
1631                 * Check that we're still looking at an extended ref key for
1632                 * this particular objectid. If we have different
1633                 * objectid or type then there are no more to be found
1634                 * in the tree and we can exit.
1635                 */
1636                ret = -ENOENT;
1637                if (found_key.objectid != inode_objectid)
1638                        break;
1639                if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1640                        break;
1641
1642                ret = 0;
1643                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1644                extref = (struct btrfs_inode_extref *)ptr;
1645                *ret_extref = extref;
1646                if (found_off)
1647                        *found_off = found_key.offset;
1648                break;
1649        }
1650
1651        return ret;
1652}
1653
1654/*
1655 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1656 * Elements of the path are separated by '/' and the path is guaranteed to be
1657 * 0-terminated. the path is only given within the current file system.
1658 * Therefore, it never starts with a '/'. the caller is responsible to provide
1659 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1660 * the start point of the resulting string is returned. this pointer is within
1661 * dest, normally.
1662 * in case the path buffer would overflow, the pointer is decremented further
1663 * as if output was written to the buffer, though no more output is actually
1664 * generated. that way, the caller can determine how much space would be
1665 * required for the path to fit into the buffer. in that case, the returned
1666 * value will be smaller than dest. callers must check this!
1667 */
1668char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1669                        u32 name_len, unsigned long name_off,
1670                        struct extent_buffer *eb_in, u64 parent,
1671                        char *dest, u32 size)
1672{
1673        int slot;
1674        u64 next_inum;
1675        int ret;
1676        s64 bytes_left = ((s64)size) - 1;
1677        struct extent_buffer *eb = eb_in;
1678        struct btrfs_key found_key;
1679        struct btrfs_inode_ref *iref;
1680
1681        if (bytes_left >= 0)
1682                dest[bytes_left] = '\0';
1683
1684        while (1) {
1685                bytes_left -= name_len;
1686                if (bytes_left >= 0)
1687                        read_extent_buffer(eb, dest + bytes_left,
1688                                           name_off, name_len);
1689                if (eb != eb_in) {
1690                        if (!path->skip_locking)
1691                                btrfs_tree_read_unlock(eb);
1692                        free_extent_buffer(eb);
1693                }
1694                ret = btrfs_find_item(fs_root, path, parent, 0,
1695                                BTRFS_INODE_REF_KEY, &found_key);
1696                if (ret > 0)
1697                        ret = -ENOENT;
1698                if (ret)
1699                        break;
1700
1701                next_inum = found_key.offset;
1702
1703                /* regular exit ahead */
1704                if (parent == next_inum)
1705                        break;
1706
1707                slot = path->slots[0];
1708                eb = path->nodes[0];
1709                /* make sure we can use eb after releasing the path */
1710                if (eb != eb_in) {
1711                        path->nodes[0] = NULL;
1712                        path->locks[0] = 0;
1713                }
1714                btrfs_release_path(path);
1715                iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1716
1717                name_len = btrfs_inode_ref_name_len(eb, iref);
1718                name_off = (unsigned long)(iref + 1);
1719
1720                parent = next_inum;
1721                --bytes_left;
1722                if (bytes_left >= 0)
1723                        dest[bytes_left] = '/';
1724        }
1725
1726        btrfs_release_path(path);
1727
1728        if (ret)
1729                return ERR_PTR(ret);
1730
1731        return dest + bytes_left;
1732}
1733
1734/*
1735 * this makes the path point to (logical EXTENT_ITEM *)
1736 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1737 * tree blocks and <0 on error.
1738 */
1739int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1740                        struct btrfs_path *path, struct btrfs_key *found_key,
1741                        u64 *flags_ret)
1742{
1743        int ret;
1744        u64 flags;
1745        u64 size = 0;
1746        u32 item_size;
1747        const struct extent_buffer *eb;
1748        struct btrfs_extent_item *ei;
1749        struct btrfs_key key;
1750
1751        if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1752                key.type = BTRFS_METADATA_ITEM_KEY;
1753        else
1754                key.type = BTRFS_EXTENT_ITEM_KEY;
1755        key.objectid = logical;
1756        key.offset = (u64)-1;
1757
1758        ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1759        if (ret < 0)
1760                return ret;
1761
1762        ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1763        if (ret) {
1764                if (ret > 0)
1765                        ret = -ENOENT;
1766                return ret;
1767        }
1768        btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1769        if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1770                size = fs_info->nodesize;
1771        else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1772                size = found_key->offset;
1773
1774        if (found_key->objectid > logical ||
1775            found_key->objectid + size <= logical) {
1776                btrfs_debug(fs_info,
1777                        "logical %llu is not within any extent", logical);
1778                return -ENOENT;
1779        }
1780
1781        eb = path->nodes[0];
1782        item_size = btrfs_item_size_nr(eb, path->slots[0]);
1783        BUG_ON(item_size < sizeof(*ei));
1784
1785        ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1786        flags = btrfs_extent_flags(eb, ei);
1787
1788        btrfs_debug(fs_info,
1789                "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1790                 logical, logical - found_key->objectid, found_key->objectid,
1791                 found_key->offset, flags, item_size);
1792
1793        WARN_ON(!flags_ret);
1794        if (flags_ret) {
1795                if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1796                        *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1797                else if (flags & BTRFS_EXTENT_FLAG_DATA)
1798                        *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1799                else
1800                        BUG();
1801                return 0;
1802        }
1803
1804        return -EIO;
1805}
1806
1807/*
1808 * helper function to iterate extent inline refs. ptr must point to a 0 value
1809 * for the first call and may be modified. it is used to track state.
1810 * if more refs exist, 0 is returned and the next call to
1811 * get_extent_inline_ref must pass the modified ptr parameter to get the
1812 * next ref. after the last ref was processed, 1 is returned.
1813 * returns <0 on error
1814 */
1815static int get_extent_inline_ref(unsigned long *ptr,
1816                                 const struct extent_buffer *eb,
1817                                 const struct btrfs_key *key,
1818                                 const struct btrfs_extent_item *ei,
1819                                 u32 item_size,
1820                                 struct btrfs_extent_inline_ref **out_eiref,
1821                                 int *out_type)
1822{
1823        unsigned long end;
1824        u64 flags;
1825        struct btrfs_tree_block_info *info;
1826
1827        if (!*ptr) {
1828                /* first call */
1829                flags = btrfs_extent_flags(eb, ei);
1830                if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1831                        if (key->type == BTRFS_METADATA_ITEM_KEY) {
1832                                /* a skinny metadata extent */
1833                                *out_eiref =
1834                                     (struct btrfs_extent_inline_ref *)(ei + 1);
1835                        } else {
1836                                WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1837                                info = (struct btrfs_tree_block_info *)(ei + 1);
1838                                *out_eiref =
1839                                   (struct btrfs_extent_inline_ref *)(info + 1);
1840                        }
1841                } else {
1842                        *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1843                }
1844                *ptr = (unsigned long)*out_eiref;
1845                if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1846                        return -ENOENT;
1847        }
1848
1849        end = (unsigned long)ei + item_size;
1850        *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1851        *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1852                                                     BTRFS_REF_TYPE_ANY);
1853        if (*out_type == BTRFS_REF_TYPE_INVALID)
1854                return -EUCLEAN;
1855
1856        *ptr += btrfs_extent_inline_ref_size(*out_type);
1857        WARN_ON(*ptr > end);
1858        if (*ptr == end)
1859                return 1; /* last */
1860
1861        return 0;
1862}
1863
1864/*
1865 * reads the tree block backref for an extent. tree level and root are returned
1866 * through out_level and out_root. ptr must point to a 0 value for the first
1867 * call and may be modified (see get_extent_inline_ref comment).
1868 * returns 0 if data was provided, 1 if there was no more data to provide or
1869 * <0 on error.
1870 */
1871int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1872                            struct btrfs_key *key, struct btrfs_extent_item *ei,
1873                            u32 item_size, u64 *out_root, u8 *out_level)
1874{
1875        int ret;
1876        int type;
1877        struct btrfs_extent_inline_ref *eiref;
1878
1879        if (*ptr == (unsigned long)-1)
1880                return 1;
1881
1882        while (1) {
1883                ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1884                                              &eiref, &type);
1885                if (ret < 0)
1886                        return ret;
1887
1888                if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1889                    type == BTRFS_SHARED_BLOCK_REF_KEY)
1890                        break;
1891
1892                if (ret == 1)
1893                        return 1;
1894        }
1895
1896        /* we can treat both ref types equally here */
1897        *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1898
1899        if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1900                struct btrfs_tree_block_info *info;
1901
1902                info = (struct btrfs_tree_block_info *)(ei + 1);
1903                *out_level = btrfs_tree_block_level(eb, info);
1904        } else {
1905                ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1906                *out_level = (u8)key->offset;
1907        }
1908
1909        if (ret == 1)
1910                *ptr = (unsigned long)-1;
1911
1912        return 0;
1913}
1914
1915static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1916                             struct extent_inode_elem *inode_list,
1917                             u64 root, u64 extent_item_objectid,
1918                             iterate_extent_inodes_t *iterate, void *ctx)
1919{
1920        struct extent_inode_elem *eie;
1921        int ret = 0;
1922
1923        for (eie = inode_list; eie; eie = eie->next) {
1924                btrfs_debug(fs_info,
1925                            "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1926                            extent_item_objectid, eie->inum,
1927                            eie->offset, root);
1928                ret = iterate(eie->inum, eie->offset, root, ctx);
1929                if (ret) {
1930                        btrfs_debug(fs_info,
1931                                    "stopping iteration for %llu due to ret=%d",
1932                                    extent_item_objectid, ret);
1933                        break;
1934                }
1935        }
1936
1937        return ret;
1938}
1939
1940/*
1941 * calls iterate() for every inode that references the extent identified by
1942 * the given parameters.
1943 * when the iterator function returns a non-zero value, iteration stops.
1944 */
1945int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1946                                u64 extent_item_objectid, u64 extent_item_pos,
1947                                int search_commit_root,
1948                                iterate_extent_inodes_t *iterate, void *ctx,
1949                                bool ignore_offset)
1950{
1951        int ret;
1952        struct btrfs_trans_handle *trans = NULL;
1953        struct ulist *refs = NULL;
1954        struct ulist *roots = NULL;
1955        struct ulist_node *ref_node = NULL;
1956        struct ulist_node *root_node = NULL;
1957        struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem);
1958        struct ulist_iterator ref_uiter;
1959        struct ulist_iterator root_uiter;
1960
1961        btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1962                        extent_item_objectid);
1963
1964        if (!search_commit_root) {
1965                trans = btrfs_attach_transaction(fs_info->extent_root);
1966                if (IS_ERR(trans)) {
1967                        if (PTR_ERR(trans) != -ENOENT &&
1968                            PTR_ERR(trans) != -EROFS)
1969                                return PTR_ERR(trans);
1970                        trans = NULL;
1971                }
1972        }
1973
1974        if (trans)
1975                btrfs_get_tree_mod_seq(fs_info, &seq_elem);
1976        else
1977                down_read(&fs_info->commit_root_sem);
1978
1979        ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1980                                   seq_elem.seq, &refs,
1981                                   &extent_item_pos, ignore_offset);
1982        if (ret)
1983                goto out;
1984
1985        ULIST_ITER_INIT(&ref_uiter);
1986        while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1987                ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1988                                                seq_elem.seq, &roots,
1989                                                ignore_offset);
1990                if (ret)
1991                        break;
1992                ULIST_ITER_INIT(&root_uiter);
1993                while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1994                        btrfs_debug(fs_info,
1995                                    "root %llu references leaf %llu, data list %#llx",
1996                                    root_node->val, ref_node->val,
1997                                    ref_node->aux);
1998                        ret = iterate_leaf_refs(fs_info,
1999                                                (struct extent_inode_elem *)
2000                                                (uintptr_t)ref_node->aux,
2001                                                root_node->val,
2002                                                extent_item_objectid,
2003                                                iterate, ctx);
2004                }
2005                ulist_free(roots);
2006        }
2007
2008        free_leaf_list(refs);
2009out:
2010        if (trans) {
2011                btrfs_put_tree_mod_seq(fs_info, &seq_elem);
2012                btrfs_end_transaction(trans);
2013        } else {
2014                up_read(&fs_info->commit_root_sem);
2015        }
2016
2017        return ret;
2018}
2019
2020int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2021                                struct btrfs_path *path,
2022                                iterate_extent_inodes_t *iterate, void *ctx,
2023                                bool ignore_offset)
2024{
2025        int ret;
2026        u64 extent_item_pos;
2027        u64 flags = 0;
2028        struct btrfs_key found_key;
2029        int search_commit_root = path->search_commit_root;
2030
2031        ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2032        btrfs_release_path(path);
2033        if (ret < 0)
2034                return ret;
2035        if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2036                return -EINVAL;
2037
2038        extent_item_pos = logical - found_key.objectid;
2039        ret = iterate_extent_inodes(fs_info, found_key.objectid,
2040                                        extent_item_pos, search_commit_root,
2041                                        iterate, ctx, ignore_offset);
2042
2043        return ret;
2044}
2045
2046typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2047                              struct extent_buffer *eb, void *ctx);
2048
2049static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2050                              struct btrfs_path *path,
2051                              iterate_irefs_t *iterate, void *ctx)
2052{
2053        int ret = 0;
2054        int slot;
2055        u32 cur;
2056        u32 len;
2057        u32 name_len;
2058        u64 parent = 0;
2059        int found = 0;
2060        struct extent_buffer *eb;
2061        struct btrfs_item *item;
2062        struct btrfs_inode_ref *iref;
2063        struct btrfs_key found_key;
2064
2065        while (!ret) {
2066                ret = btrfs_find_item(fs_root, path, inum,
2067                                parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2068                                &found_key);
2069
2070                if (ret < 0)
2071                        break;
2072                if (ret) {
2073                        ret = found ? 0 : -ENOENT;
2074                        break;
2075                }
2076                ++found;
2077
2078                parent = found_key.offset;
2079                slot = path->slots[0];
2080                eb = btrfs_clone_extent_buffer(path->nodes[0]);
2081                if (!eb) {
2082                        ret = -ENOMEM;
2083                        break;
2084                }
2085                btrfs_release_path(path);
2086
2087                item = btrfs_item_nr(slot);
2088                iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2089
2090                for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2091                        name_len = btrfs_inode_ref_name_len(eb, iref);
2092                        /* path must be released before calling iterate()! */
2093                        btrfs_debug(fs_root->fs_info,
2094                                "following ref at offset %u for inode %llu in tree %llu",
2095                                cur, found_key.objectid,
2096                                fs_root->root_key.objectid);
2097                        ret = iterate(parent, name_len,
2098                                      (unsigned long)(iref + 1), eb, ctx);
2099                        if (ret)
2100                                break;
2101                        len = sizeof(*iref) + name_len;
2102                        iref = (struct btrfs_inode_ref *)((char *)iref + len);
2103                }
2104                free_extent_buffer(eb);
2105        }
2106
2107        btrfs_release_path(path);
2108
2109        return ret;
2110}
2111
2112static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2113                                 struct btrfs_path *path,
2114                                 iterate_irefs_t *iterate, void *ctx)
2115{
2116        int ret;
2117        int slot;
2118        u64 offset = 0;
2119        u64 parent;
2120        int found = 0;
2121        struct extent_buffer *eb;
2122        struct btrfs_inode_extref *extref;
2123        u32 item_size;
2124        u32 cur_offset;
2125        unsigned long ptr;
2126
2127        while (1) {
2128                ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2129                                            &offset);
2130                if (ret < 0)
2131                        break;
2132                if (ret) {
2133                        ret = found ? 0 : -ENOENT;
2134                        break;
2135                }
2136                ++found;
2137
2138                slot = path->slots[0];
2139                eb = btrfs_clone_extent_buffer(path->nodes[0]);
2140                if (!eb) {
2141                        ret = -ENOMEM;
2142                        break;
2143                }
2144                btrfs_release_path(path);
2145
2146                item_size = btrfs_item_size_nr(eb, slot);
2147                ptr = btrfs_item_ptr_offset(eb, slot);
2148                cur_offset = 0;
2149
2150                while (cur_offset < item_size) {
2151                        u32 name_len;
2152
2153                        extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2154                        parent = btrfs_inode_extref_parent(eb, extref);
2155                        name_len = btrfs_inode_extref_name_len(eb, extref);
2156                        ret = iterate(parent, name_len,
2157                                      (unsigned long)&extref->name, eb, ctx);
2158                        if (ret)
2159                                break;
2160
2161                        cur_offset += btrfs_inode_extref_name_len(eb, extref);
2162                        cur_offset += sizeof(*extref);
2163                }
2164                free_extent_buffer(eb);
2165
2166                offset++;
2167        }
2168
2169        btrfs_release_path(path);
2170
2171        return ret;
2172}
2173
2174static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2175                         struct btrfs_path *path, iterate_irefs_t *iterate,
2176                         void *ctx)
2177{
2178        int ret;
2179        int found_refs = 0;
2180
2181        ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2182        if (!ret)
2183                ++found_refs;
2184        else if (ret != -ENOENT)
2185                return ret;
2186
2187        ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2188        if (ret == -ENOENT && found_refs)
2189                return 0;
2190
2191        return ret;
2192}
2193
2194/*
2195 * returns 0 if the path could be dumped (probably truncated)
2196 * returns <0 in case of an error
2197 */
2198static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2199                         struct extent_buffer *eb, void *ctx)
2200{
2201        struct inode_fs_paths *ipath = ctx;
2202        char *fspath;
2203        char *fspath_min;
2204        int i = ipath->fspath->elem_cnt;
2205        const int s_ptr = sizeof(char *);
2206        u32 bytes_left;
2207
2208        bytes_left = ipath->fspath->bytes_left > s_ptr ?
2209                                        ipath->fspath->bytes_left - s_ptr : 0;
2210
2211        fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2212        fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2213                                   name_off, eb, inum, fspath_min, bytes_left);
2214        if (IS_ERR(fspath))
2215                return PTR_ERR(fspath);
2216
2217        if (fspath > fspath_min) {
2218                ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2219                ++ipath->fspath->elem_cnt;
2220                ipath->fspath->bytes_left = fspath - fspath_min;
2221        } else {
2222                ++ipath->fspath->elem_missed;
2223                ipath->fspath->bytes_missing += fspath_min - fspath;
2224                ipath->fspath->bytes_left = 0;
2225        }
2226
2227        return 0;
2228}
2229
2230/*
2231 * this dumps all file system paths to the inode into the ipath struct, provided
2232 * is has been created large enough. each path is zero-terminated and accessed
2233 * from ipath->fspath->val[i].
2234 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2235 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2236 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2237 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2238 * have been needed to return all paths.
2239 */
2240int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2241{
2242        return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2243                             inode_to_path, ipath);
2244}
2245
2246struct btrfs_data_container *init_data_container(u32 total_bytes)
2247{
2248        struct btrfs_data_container *data;
2249        size_t alloc_bytes;
2250
2251        alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2252        data = kvmalloc(alloc_bytes, GFP_KERNEL);
2253        if (!data)
2254                return ERR_PTR(-ENOMEM);
2255
2256        if (total_bytes >= sizeof(*data)) {
2257                data->bytes_left = total_bytes - sizeof(*data);
2258                data->bytes_missing = 0;
2259        } else {
2260                data->bytes_missing = sizeof(*data) - total_bytes;
2261                data->bytes_left = 0;
2262        }
2263
2264        data->elem_cnt = 0;
2265        data->elem_missed = 0;
2266
2267        return data;
2268}
2269
2270/*
2271 * allocates space to return multiple file system paths for an inode.
2272 * total_bytes to allocate are passed, note that space usable for actual path
2273 * information will be total_bytes - sizeof(struct inode_fs_paths).
2274 * the returned pointer must be freed with free_ipath() in the end.
2275 */
2276struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2277                                        struct btrfs_path *path)
2278{
2279        struct inode_fs_paths *ifp;
2280        struct btrfs_data_container *fspath;
2281
2282        fspath = init_data_container(total_bytes);
2283        if (IS_ERR(fspath))
2284                return ERR_CAST(fspath);
2285
2286        ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2287        if (!ifp) {
2288                kvfree(fspath);
2289                return ERR_PTR(-ENOMEM);
2290        }
2291
2292        ifp->btrfs_path = path;
2293        ifp->fspath = fspath;
2294        ifp->fs_root = fs_root;
2295
2296        return ifp;
2297}
2298
2299void free_ipath(struct inode_fs_paths *ipath)
2300{
2301        if (!ipath)
2302                return;
2303        kvfree(ipath->fspath);
2304        kfree(ipath);
2305}
2306
2307struct btrfs_backref_iter *btrfs_backref_iter_alloc(
2308                struct btrfs_fs_info *fs_info, gfp_t gfp_flag)
2309{
2310        struct btrfs_backref_iter *ret;
2311
2312        ret = kzalloc(sizeof(*ret), gfp_flag);
2313        if (!ret)
2314                return NULL;
2315
2316        ret->path = btrfs_alloc_path();
2317        if (!ret->path) {
2318                kfree(ret);
2319                return NULL;
2320        }
2321
2322        /* Current backref iterator only supports iteration in commit root */
2323        ret->path->search_commit_root = 1;
2324        ret->path->skip_locking = 1;
2325        ret->fs_info = fs_info;
2326
2327        return ret;
2328}
2329
2330int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2331{
2332        struct btrfs_fs_info *fs_info = iter->fs_info;
2333        struct btrfs_path *path = iter->path;
2334        struct btrfs_extent_item *ei;
2335        struct btrfs_key key;
2336        int ret;
2337
2338        key.objectid = bytenr;
2339        key.type = BTRFS_METADATA_ITEM_KEY;
2340        key.offset = (u64)-1;
2341        iter->bytenr = bytenr;
2342
2343        ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
2344        if (ret < 0)
2345                return ret;
2346        if (ret == 0) {
2347                ret = -EUCLEAN;
2348                goto release;
2349        }
2350        if (path->slots[0] == 0) {
2351                WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2352                ret = -EUCLEAN;
2353                goto release;
2354        }
2355        path->slots[0]--;
2356
2357        btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2358        if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2359             key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2360                ret = -ENOENT;
2361                goto release;
2362        }
2363        memcpy(&iter->cur_key, &key, sizeof(key));
2364        iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2365                                                    path->slots[0]);
2366        iter->end_ptr = (u32)(iter->item_ptr +
2367                        btrfs_item_size_nr(path->nodes[0], path->slots[0]));
2368        ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2369                            struct btrfs_extent_item);
2370
2371        /*
2372         * Only support iteration on tree backref yet.
2373         *
2374         * This is an extra precaution for non skinny-metadata, where
2375         * EXTENT_ITEM is also used for tree blocks, that we can only use
2376         * extent flags to determine if it's a tree block.
2377         */
2378        if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2379                ret = -ENOTSUPP;
2380                goto release;
2381        }
2382        iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2383
2384        /* If there is no inline backref, go search for keyed backref */
2385        if (iter->cur_ptr >= iter->end_ptr) {
2386                ret = btrfs_next_item(fs_info->extent_root, path);
2387
2388                /* No inline nor keyed ref */
2389                if (ret > 0) {
2390                        ret = -ENOENT;
2391                        goto release;
2392                }
2393                if (ret < 0)
2394                        goto release;
2395
2396                btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2397                                path->slots[0]);
2398                if (iter->cur_key.objectid != bytenr ||
2399                    (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2400                     iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2401                        ret = -ENOENT;
2402                        goto release;
2403                }
2404                iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2405                                                           path->slots[0]);
2406                iter->item_ptr = iter->cur_ptr;
2407                iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size_nr(
2408                                      path->nodes[0], path->slots[0]));
2409        }
2410
2411        return 0;
2412release:
2413        btrfs_backref_iter_release(iter);
2414        return ret;
2415}
2416
2417/*
2418 * Go to the next backref item of current bytenr, can be either inlined or
2419 * keyed.
2420 *
2421 * Caller needs to check whether it's inline ref or not by iter->cur_key.
2422 *
2423 * Return 0 if we get next backref without problem.
2424 * Return >0 if there is no extra backref for this bytenr.
2425 * Return <0 if there is something wrong happened.
2426 */
2427int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2428{
2429        struct extent_buffer *eb = btrfs_backref_get_eb(iter);
2430        struct btrfs_path *path = iter->path;
2431        struct btrfs_extent_inline_ref *iref;
2432        int ret;
2433        u32 size;
2434
2435        if (btrfs_backref_iter_is_inline_ref(iter)) {
2436                /* We're still inside the inline refs */
2437                ASSERT(iter->cur_ptr < iter->end_ptr);
2438
2439                if (btrfs_backref_has_tree_block_info(iter)) {
2440                        /* First tree block info */
2441                        size = sizeof(struct btrfs_tree_block_info);
2442                } else {
2443                        /* Use inline ref type to determine the size */
2444                        int type;
2445
2446                        iref = (struct btrfs_extent_inline_ref *)
2447                                ((unsigned long)iter->cur_ptr);
2448                        type = btrfs_extent_inline_ref_type(eb, iref);
2449
2450                        size = btrfs_extent_inline_ref_size(type);
2451                }
2452                iter->cur_ptr += size;
2453                if (iter->cur_ptr < iter->end_ptr)
2454                        return 0;
2455
2456                /* All inline items iterated, fall through */
2457        }
2458
2459        /* We're at keyed items, there is no inline item, go to the next one */
2460        ret = btrfs_next_item(iter->fs_info->extent_root, iter->path);
2461        if (ret)
2462                return ret;
2463
2464        btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2465        if (iter->cur_key.objectid != iter->bytenr ||
2466            (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2467             iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2468                return 1;
2469        iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2470                                        path->slots[0]);
2471        iter->cur_ptr = iter->item_ptr;
2472        iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size_nr(path->nodes[0],
2473                                                path->slots[0]);
2474        return 0;
2475}
2476
2477void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
2478                              struct btrfs_backref_cache *cache, int is_reloc)
2479{
2480        int i;
2481
2482        cache->rb_root = RB_ROOT;
2483        for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2484                INIT_LIST_HEAD(&cache->pending[i]);
2485        INIT_LIST_HEAD(&cache->changed);
2486        INIT_LIST_HEAD(&cache->detached);
2487        INIT_LIST_HEAD(&cache->leaves);
2488        INIT_LIST_HEAD(&cache->pending_edge);
2489        INIT_LIST_HEAD(&cache->useless_node);
2490        cache->fs_info = fs_info;
2491        cache->is_reloc = is_reloc;
2492}
2493
2494struct btrfs_backref_node *btrfs_backref_alloc_node(
2495                struct btrfs_backref_cache *cache, u64 bytenr, int level)
2496{
2497        struct btrfs_backref_node *node;
2498
2499        ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
2500        node = kzalloc(sizeof(*node), GFP_NOFS);
2501        if (!node)
2502                return node;
2503
2504        INIT_LIST_HEAD(&node->list);
2505        INIT_LIST_HEAD(&node->upper);
2506        INIT_LIST_HEAD(&node->lower);
2507        RB_CLEAR_NODE(&node->rb_node);
2508        cache->nr_nodes++;
2509        node->level = level;
2510        node->bytenr = bytenr;
2511
2512        return node;
2513}
2514
2515struct btrfs_backref_edge *btrfs_backref_alloc_edge(
2516                struct btrfs_backref_cache *cache)
2517{
2518        struct btrfs_backref_edge *edge;
2519
2520        edge = kzalloc(sizeof(*edge), GFP_NOFS);
2521        if (edge)
2522                cache->nr_edges++;
2523        return edge;
2524}
2525
2526/*
2527 * Drop the backref node from cache, also cleaning up all its
2528 * upper edges and any uncached nodes in the path.
2529 *
2530 * This cleanup happens bottom up, thus the node should either
2531 * be the lowest node in the cache or a detached node.
2532 */
2533void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
2534                                struct btrfs_backref_node *node)
2535{
2536        struct btrfs_backref_node *upper;
2537        struct btrfs_backref_edge *edge;
2538
2539        if (!node)
2540                return;
2541
2542        BUG_ON(!node->lowest && !node->detached);
2543        while (!list_empty(&node->upper)) {
2544                edge = list_entry(node->upper.next, struct btrfs_backref_edge,
2545                                  list[LOWER]);
2546                upper = edge->node[UPPER];
2547                list_del(&edge->list[LOWER]);
2548                list_del(&edge->list[UPPER]);
2549                btrfs_backref_free_edge(cache, edge);
2550
2551                /*
2552                 * Add the node to leaf node list if no other child block
2553                 * cached.
2554                 */
2555                if (list_empty(&upper->lower)) {
2556                        list_add_tail(&upper->lower, &cache->leaves);
2557                        upper->lowest = 1;
2558                }
2559        }
2560
2561        btrfs_backref_drop_node(cache, node);
2562}
2563
2564/*
2565 * Release all nodes/edges from current cache
2566 */
2567void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
2568{
2569        struct btrfs_backref_node *node;
2570        int i;
2571
2572        while (!list_empty(&cache->detached)) {
2573                node = list_entry(cache->detached.next,
2574                                  struct btrfs_backref_node, list);
2575                btrfs_backref_cleanup_node(cache, node);
2576        }
2577
2578        while (!list_empty(&cache->leaves)) {
2579                node = list_entry(cache->leaves.next,
2580                                  struct btrfs_backref_node, lower);
2581                btrfs_backref_cleanup_node(cache, node);
2582        }
2583
2584        cache->last_trans = 0;
2585
2586        for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2587                ASSERT(list_empty(&cache->pending[i]));
2588        ASSERT(list_empty(&cache->pending_edge));
2589        ASSERT(list_empty(&cache->useless_node));
2590        ASSERT(list_empty(&cache->changed));
2591        ASSERT(list_empty(&cache->detached));
2592        ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
2593        ASSERT(!cache->nr_nodes);
2594        ASSERT(!cache->nr_edges);
2595}
2596
2597/*
2598 * Handle direct tree backref
2599 *
2600 * Direct tree backref means, the backref item shows its parent bytenr
2601 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
2602 *
2603 * @ref_key:    The converted backref key.
2604 *              For keyed backref, it's the item key.
2605 *              For inlined backref, objectid is the bytenr,
2606 *              type is btrfs_inline_ref_type, offset is
2607 *              btrfs_inline_ref_offset.
2608 */
2609static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
2610                                      struct btrfs_key *ref_key,
2611                                      struct btrfs_backref_node *cur)
2612{
2613        struct btrfs_backref_edge *edge;
2614        struct btrfs_backref_node *upper;
2615        struct rb_node *rb_node;
2616
2617        ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
2618
2619        /* Only reloc root uses backref pointing to itself */
2620        if (ref_key->objectid == ref_key->offset) {
2621                struct btrfs_root *root;
2622
2623                cur->is_reloc_root = 1;
2624                /* Only reloc backref cache cares about a specific root */
2625                if (cache->is_reloc) {
2626                        root = find_reloc_root(cache->fs_info, cur->bytenr);
2627                        if (!root)
2628                                return -ENOENT;
2629                        cur->root = root;
2630                } else {
2631                        /*
2632                         * For generic purpose backref cache, reloc root node
2633                         * is useless.
2634                         */
2635                        list_add(&cur->list, &cache->useless_node);
2636                }
2637                return 0;
2638        }
2639
2640        edge = btrfs_backref_alloc_edge(cache);
2641        if (!edge)
2642                return -ENOMEM;
2643
2644        rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
2645        if (!rb_node) {
2646                /* Parent node not yet cached */
2647                upper = btrfs_backref_alloc_node(cache, ref_key->offset,
2648                                           cur->level + 1);
2649                if (!upper) {
2650                        btrfs_backref_free_edge(cache, edge);
2651                        return -ENOMEM;
2652                }
2653
2654                /*
2655                 *  Backrefs for the upper level block isn't cached, add the
2656                 *  block to pending list
2657                 */
2658                list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2659        } else {
2660                /* Parent node already cached */
2661                upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
2662                ASSERT(upper->checked);
2663                INIT_LIST_HEAD(&edge->list[UPPER]);
2664        }
2665        btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
2666        return 0;
2667}
2668
2669/*
2670 * Handle indirect tree backref
2671 *
2672 * Indirect tree backref means, we only know which tree the node belongs to.
2673 * We still need to do a tree search to find out the parents. This is for
2674 * TREE_BLOCK_REF backref (keyed or inlined).
2675 *
2676 * @ref_key:    The same as @ref_key in  handle_direct_tree_backref()
2677 * @tree_key:   The first key of this tree block.
2678 * @path:       A clean (released) path, to avoid allocating path every time
2679 *              the function get called.
2680 */
2681static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
2682                                        struct btrfs_path *path,
2683                                        struct btrfs_key *ref_key,
2684                                        struct btrfs_key *tree_key,
2685                                        struct btrfs_backref_node *cur)
2686{
2687        struct btrfs_fs_info *fs_info = cache->fs_info;
2688        struct btrfs_backref_node *upper;
2689        struct btrfs_backref_node *lower;
2690        struct btrfs_backref_edge *edge;
2691        struct extent_buffer *eb;
2692        struct btrfs_root *root;
2693        struct rb_node *rb_node;
2694        int level;
2695        bool need_check = true;
2696        int ret;
2697
2698        root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
2699        if (IS_ERR(root))
2700                return PTR_ERR(root);
2701        if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2702                cur->cowonly = 1;
2703
2704        if (btrfs_root_level(&root->root_item) == cur->level) {
2705                /* Tree root */
2706                ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
2707                /*
2708                 * For reloc backref cache, we may ignore reloc root.  But for
2709                 * general purpose backref cache, we can't rely on
2710                 * btrfs_should_ignore_reloc_root() as it may conflict with
2711                 * current running relocation and lead to missing root.
2712                 *
2713                 * For general purpose backref cache, reloc root detection is
2714                 * completely relying on direct backref (key->offset is parent
2715                 * bytenr), thus only do such check for reloc cache.
2716                 */
2717                if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
2718                        btrfs_put_root(root);
2719                        list_add(&cur->list, &cache->useless_node);
2720                } else {
2721                        cur->root = root;
2722                }
2723                return 0;
2724        }
2725
2726        level = cur->level + 1;
2727
2728        /* Search the tree to find parent blocks referring to the block */
2729        path->search_commit_root = 1;
2730        path->skip_locking = 1;
2731        path->lowest_level = level;
2732        ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
2733        path->lowest_level = 0;
2734        if (ret < 0) {
2735                btrfs_put_root(root);
2736                return ret;
2737        }
2738        if (ret > 0 && path->slots[level] > 0)
2739                path->slots[level]--;
2740
2741        eb = path->nodes[level];
2742        if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
2743                btrfs_err(fs_info,
2744"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
2745                          cur->bytenr, level - 1, root->root_key.objectid,
2746                          tree_key->objectid, tree_key->type, tree_key->offset);
2747                btrfs_put_root(root);
2748                ret = -ENOENT;
2749                goto out;
2750        }
2751        lower = cur;
2752
2753        /* Add all nodes and edges in the path */
2754        for (; level < BTRFS_MAX_LEVEL; level++) {
2755                if (!path->nodes[level]) {
2756                        ASSERT(btrfs_root_bytenr(&root->root_item) ==
2757                               lower->bytenr);
2758                        /* Same as previous should_ignore_reloc_root() call */
2759                        if (btrfs_should_ignore_reloc_root(root) &&
2760                            cache->is_reloc) {
2761                                btrfs_put_root(root);
2762                                list_add(&lower->list, &cache->useless_node);
2763                        } else {
2764                                lower->root = root;
2765                        }
2766                        break;
2767                }
2768
2769                edge = btrfs_backref_alloc_edge(cache);
2770                if (!edge) {
2771                        btrfs_put_root(root);
2772                        ret = -ENOMEM;
2773                        goto out;
2774                }
2775
2776                eb = path->nodes[level];
2777                rb_node = rb_simple_search(&cache->rb_root, eb->start);
2778                if (!rb_node) {
2779                        upper = btrfs_backref_alloc_node(cache, eb->start,
2780                                                         lower->level + 1);
2781                        if (!upper) {
2782                                btrfs_put_root(root);
2783                                btrfs_backref_free_edge(cache, edge);
2784                                ret = -ENOMEM;
2785                                goto out;
2786                        }
2787                        upper->owner = btrfs_header_owner(eb);
2788                        if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2789                                upper->cowonly = 1;
2790
2791                        /*
2792                         * If we know the block isn't shared we can avoid
2793                         * checking its backrefs.
2794                         */
2795                        if (btrfs_block_can_be_shared(root, eb))
2796                                upper->checked = 0;
2797                        else
2798                                upper->checked = 1;
2799
2800                        /*
2801                         * Add the block to pending list if we need to check its
2802                         * backrefs, we only do this once while walking up a
2803                         * tree as we will catch anything else later on.
2804                         */
2805                        if (!upper->checked && need_check) {
2806                                need_check = false;
2807                                list_add_tail(&edge->list[UPPER],
2808                                              &cache->pending_edge);
2809                        } else {
2810                                if (upper->checked)
2811                                        need_check = true;
2812                                INIT_LIST_HEAD(&edge->list[UPPER]);
2813                        }
2814                } else {
2815                        upper = rb_entry(rb_node, struct btrfs_backref_node,
2816                                         rb_node);
2817                        ASSERT(upper->checked);
2818                        INIT_LIST_HEAD(&edge->list[UPPER]);
2819                        if (!upper->owner)
2820                                upper->owner = btrfs_header_owner(eb);
2821                }
2822                btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
2823
2824                if (rb_node) {
2825                        btrfs_put_root(root);
2826                        break;
2827                }
2828                lower = upper;
2829                upper = NULL;
2830        }
2831out:
2832        btrfs_release_path(path);
2833        return ret;
2834}
2835
2836/*
2837 * Add backref node @cur into @cache.
2838 *
2839 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
2840 *       links aren't yet bi-directional. Needs to finish such links.
2841 *       Use btrfs_backref_finish_upper_links() to finish such linkage.
2842 *
2843 * @path:       Released path for indirect tree backref lookup
2844 * @iter:       Released backref iter for extent tree search
2845 * @node_key:   The first key of the tree block
2846 */
2847int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
2848                                struct btrfs_path *path,
2849                                struct btrfs_backref_iter *iter,
2850                                struct btrfs_key *node_key,
2851                                struct btrfs_backref_node *cur)
2852{
2853        struct btrfs_fs_info *fs_info = cache->fs_info;
2854        struct btrfs_backref_edge *edge;
2855        struct btrfs_backref_node *exist;
2856        int ret;
2857
2858        ret = btrfs_backref_iter_start(iter, cur->bytenr);
2859        if (ret < 0)
2860                return ret;
2861        /*
2862         * We skip the first btrfs_tree_block_info, as we don't use the key
2863         * stored in it, but fetch it from the tree block
2864         */
2865        if (btrfs_backref_has_tree_block_info(iter)) {
2866                ret = btrfs_backref_iter_next(iter);
2867                if (ret < 0)
2868                        goto out;
2869                /* No extra backref? This means the tree block is corrupted */
2870                if (ret > 0) {
2871                        ret = -EUCLEAN;
2872                        goto out;
2873                }
2874        }
2875        WARN_ON(cur->checked);
2876        if (!list_empty(&cur->upper)) {
2877                /*
2878                 * The backref was added previously when processing backref of
2879                 * type BTRFS_TREE_BLOCK_REF_KEY
2880                 */
2881                ASSERT(list_is_singular(&cur->upper));
2882                edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
2883                                  list[LOWER]);
2884                ASSERT(list_empty(&edge->list[UPPER]));
2885                exist = edge->node[UPPER];
2886                /*
2887                 * Add the upper level block to pending list if we need check
2888                 * its backrefs
2889                 */
2890                if (!exist->checked)
2891                        list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2892        } else {
2893                exist = NULL;
2894        }
2895
2896        for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
2897                struct extent_buffer *eb;
2898                struct btrfs_key key;
2899                int type;
2900
2901                cond_resched();
2902                eb = btrfs_backref_get_eb(iter);
2903
2904                key.objectid = iter->bytenr;
2905                if (btrfs_backref_iter_is_inline_ref(iter)) {
2906                        struct btrfs_extent_inline_ref *iref;
2907
2908                        /* Update key for inline backref */
2909                        iref = (struct btrfs_extent_inline_ref *)
2910                                ((unsigned long)iter->cur_ptr);
2911                        type = btrfs_get_extent_inline_ref_type(eb, iref,
2912                                                        BTRFS_REF_TYPE_BLOCK);
2913                        if (type == BTRFS_REF_TYPE_INVALID) {
2914                                ret = -EUCLEAN;
2915                                goto out;
2916                        }
2917                        key.type = type;
2918                        key.offset = btrfs_extent_inline_ref_offset(eb, iref);
2919                } else {
2920                        key.type = iter->cur_key.type;
2921                        key.offset = iter->cur_key.offset;
2922                }
2923
2924                /*
2925                 * Parent node found and matches current inline ref, no need to
2926                 * rebuild this node for this inline ref
2927                 */
2928                if (exist &&
2929                    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
2930                      exist->owner == key.offset) ||
2931                     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
2932                      exist->bytenr == key.offset))) {
2933                        exist = NULL;
2934                        continue;
2935                }
2936
2937                /* SHARED_BLOCK_REF means key.offset is the parent bytenr */
2938                if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
2939                        ret = handle_direct_tree_backref(cache, &key, cur);
2940                        if (ret < 0)
2941                                goto out;
2942                        continue;
2943                } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
2944                        ret = -EINVAL;
2945                        btrfs_print_v0_err(fs_info);
2946                        btrfs_handle_fs_error(fs_info, ret, NULL);
2947                        goto out;
2948                } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
2949                        continue;
2950                }
2951
2952                /*
2953                 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
2954                 * means the root objectid. We need to search the tree to get
2955                 * its parent bytenr.
2956                 */
2957                ret = handle_indirect_tree_backref(cache, path, &key, node_key,
2958                                                   cur);
2959                if (ret < 0)
2960                        goto out;
2961        }
2962        ret = 0;
2963        cur->checked = 1;
2964        WARN_ON(exist);
2965out:
2966        btrfs_backref_iter_release(iter);
2967        return ret;
2968}
2969
2970/*
2971 * Finish the upwards linkage created by btrfs_backref_add_tree_node()
2972 */
2973int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
2974                                     struct btrfs_backref_node *start)
2975{
2976        struct list_head *useless_node = &cache->useless_node;
2977        struct btrfs_backref_edge *edge;
2978        struct rb_node *rb_node;
2979        LIST_HEAD(pending_edge);
2980
2981        ASSERT(start->checked);
2982
2983        /* Insert this node to cache if it's not COW-only */
2984        if (!start->cowonly) {
2985                rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
2986                                           &start->rb_node);
2987                if (rb_node)
2988                        btrfs_backref_panic(cache->fs_info, start->bytenr,
2989                                            -EEXIST);
2990                list_add_tail(&start->lower, &cache->leaves);
2991        }
2992
2993        /*
2994         * Use breadth first search to iterate all related edges.
2995         *
2996         * The starting points are all the edges of this node
2997         */
2998        list_for_each_entry(edge, &start->upper, list[LOWER])
2999                list_add_tail(&edge->list[UPPER], &pending_edge);
3000
3001        while (!list_empty(&pending_edge)) {
3002                struct btrfs_backref_node *upper;
3003                struct btrfs_backref_node *lower;
3004
3005                edge = list_first_entry(&pending_edge,
3006                                struct btrfs_backref_edge, list[UPPER]);
3007                list_del_init(&edge->list[UPPER]);
3008                upper = edge->node[UPPER];
3009                lower = edge->node[LOWER];
3010
3011                /* Parent is detached, no need to keep any edges */
3012                if (upper->detached) {
3013                        list_del(&edge->list[LOWER]);
3014                        btrfs_backref_free_edge(cache, edge);
3015
3016                        /* Lower node is orphan, queue for cleanup */
3017                        if (list_empty(&lower->upper))
3018                                list_add(&lower->list, useless_node);
3019                        continue;
3020                }
3021
3022                /*
3023                 * All new nodes added in current build_backref_tree() haven't
3024                 * been linked to the cache rb tree.
3025                 * So if we have upper->rb_node populated, this means a cache
3026                 * hit. We only need to link the edge, as @upper and all its
3027                 * parents have already been linked.
3028                 */
3029                if (!RB_EMPTY_NODE(&upper->rb_node)) {
3030                        if (upper->lowest) {
3031                                list_del_init(&upper->lower);
3032                                upper->lowest = 0;
3033                        }
3034
3035                        list_add_tail(&edge->list[UPPER], &upper->lower);
3036                        continue;
3037                }
3038
3039                /* Sanity check, we shouldn't have any unchecked nodes */
3040                if (!upper->checked) {
3041                        ASSERT(0);
3042                        return -EUCLEAN;
3043                }
3044
3045                /* Sanity check, COW-only node has non-COW-only parent */
3046                if (start->cowonly != upper->cowonly) {
3047                        ASSERT(0);
3048                        return -EUCLEAN;
3049                }
3050
3051                /* Only cache non-COW-only (subvolume trees) tree blocks */
3052                if (!upper->cowonly) {
3053                        rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3054                                                   &upper->rb_node);
3055                        if (rb_node) {
3056                                btrfs_backref_panic(cache->fs_info,
3057                                                upper->bytenr, -EEXIST);
3058                                return -EUCLEAN;
3059                        }
3060                }
3061
3062                list_add_tail(&edge->list[UPPER], &upper->lower);
3063
3064                /*
3065                 * Also queue all the parent edges of this uncached node
3066                 * to finish the upper linkage
3067                 */
3068                list_for_each_entry(edge, &upper->upper, list[LOWER])
3069                        list_add_tail(&edge->list[UPPER], &pending_edge);
3070        }
3071        return 0;
3072}
3073
3074void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3075                                 struct btrfs_backref_node *node)
3076{
3077        struct btrfs_backref_node *lower;
3078        struct btrfs_backref_node *upper;
3079        struct btrfs_backref_edge *edge;
3080
3081        while (!list_empty(&cache->useless_node)) {
3082                lower = list_first_entry(&cache->useless_node,
3083                                   struct btrfs_backref_node, list);
3084                list_del_init(&lower->list);
3085        }
3086        while (!list_empty(&cache->pending_edge)) {
3087                edge = list_first_entry(&cache->pending_edge,
3088                                struct btrfs_backref_edge, list[UPPER]);
3089                list_del(&edge->list[UPPER]);
3090                list_del(&edge->list[LOWER]);
3091                lower = edge->node[LOWER];
3092                upper = edge->node[UPPER];
3093                btrfs_backref_free_edge(cache, edge);
3094
3095                /*
3096                 * Lower is no longer linked to any upper backref nodes and
3097                 * isn't in the cache, we can free it ourselves.
3098                 */
3099                if (list_empty(&lower->upper) &&
3100                    RB_EMPTY_NODE(&lower->rb_node))
3101                        list_add(&lower->list, &cache->useless_node);
3102
3103                if (!RB_EMPTY_NODE(&upper->rb_node))
3104                        continue;
3105
3106                /* Add this guy's upper edges to the list to process */
3107                list_for_each_entry(edge, &upper->upper, list[LOWER])
3108                        list_add_tail(&edge->list[UPPER],
3109                                      &cache->pending_edge);
3110                if (list_empty(&upper->upper))
3111                        list_add(&upper->list, &cache->useless_node);
3112        }
3113
3114        while (!list_empty(&cache->useless_node)) {
3115                lower = list_first_entry(&cache->useless_node,
3116                                   struct btrfs_backref_node, list);
3117                list_del_init(&lower->list);
3118                if (lower == node)
3119                        node = NULL;
3120                btrfs_backref_drop_node(cache, lower);
3121        }
3122
3123        btrfs_backref_cleanup_node(cache, node);
3124        ASSERT(list_empty(&cache->useless_node) &&
3125               list_empty(&cache->pending_edge));
3126}
3127