linux/fs/btrfs/delayed-inode.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011 Fujitsu.  All rights reserved.
   4 * Written by Miao Xie <miaox@cn.fujitsu.com>
   5 */
   6
   7#include <linux/slab.h>
   8#include <linux/iversion.h>
   9#include <linux/sched/mm.h>
  10#include "misc.h"
  11#include "delayed-inode.h"
  12#include "disk-io.h"
  13#include "transaction.h"
  14#include "ctree.h"
  15#include "qgroup.h"
  16#include "locking.h"
  17
  18#define BTRFS_DELAYED_WRITEBACK         512
  19#define BTRFS_DELAYED_BACKGROUND        128
  20#define BTRFS_DELAYED_BATCH             16
  21
  22static struct kmem_cache *delayed_node_cache;
  23
  24int __init btrfs_delayed_inode_init(void)
  25{
  26        delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  27                                        sizeof(struct btrfs_delayed_node),
  28                                        0,
  29                                        SLAB_MEM_SPREAD,
  30                                        NULL);
  31        if (!delayed_node_cache)
  32                return -ENOMEM;
  33        return 0;
  34}
  35
  36void __cold btrfs_delayed_inode_exit(void)
  37{
  38        kmem_cache_destroy(delayed_node_cache);
  39}
  40
  41static inline void btrfs_init_delayed_node(
  42                                struct btrfs_delayed_node *delayed_node,
  43                                struct btrfs_root *root, u64 inode_id)
  44{
  45        delayed_node->root = root;
  46        delayed_node->inode_id = inode_id;
  47        refcount_set(&delayed_node->refs, 0);
  48        delayed_node->ins_root = RB_ROOT_CACHED;
  49        delayed_node->del_root = RB_ROOT_CACHED;
  50        mutex_init(&delayed_node->mutex);
  51        INIT_LIST_HEAD(&delayed_node->n_list);
  52        INIT_LIST_HEAD(&delayed_node->p_list);
  53}
  54
  55static inline int btrfs_is_continuous_delayed_item(
  56                                        struct btrfs_delayed_item *item1,
  57                                        struct btrfs_delayed_item *item2)
  58{
  59        if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  60            item1->key.objectid == item2->key.objectid &&
  61            item1->key.type == item2->key.type &&
  62            item1->key.offset + 1 == item2->key.offset)
  63                return 1;
  64        return 0;
  65}
  66
  67static struct btrfs_delayed_node *btrfs_get_delayed_node(
  68                struct btrfs_inode *btrfs_inode)
  69{
  70        struct btrfs_root *root = btrfs_inode->root;
  71        u64 ino = btrfs_ino(btrfs_inode);
  72        struct btrfs_delayed_node *node;
  73
  74        node = READ_ONCE(btrfs_inode->delayed_node);
  75        if (node) {
  76                refcount_inc(&node->refs);
  77                return node;
  78        }
  79
  80        spin_lock(&root->inode_lock);
  81        node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  82
  83        if (node) {
  84                if (btrfs_inode->delayed_node) {
  85                        refcount_inc(&node->refs);      /* can be accessed */
  86                        BUG_ON(btrfs_inode->delayed_node != node);
  87                        spin_unlock(&root->inode_lock);
  88                        return node;
  89                }
  90
  91                /*
  92                 * It's possible that we're racing into the middle of removing
  93                 * this node from the radix tree.  In this case, the refcount
  94                 * was zero and it should never go back to one.  Just return
  95                 * NULL like it was never in the radix at all; our release
  96                 * function is in the process of removing it.
  97                 *
  98                 * Some implementations of refcount_inc refuse to bump the
  99                 * refcount once it has hit zero.  If we don't do this dance
 100                 * here, refcount_inc() may decide to just WARN_ONCE() instead
 101                 * of actually bumping the refcount.
 102                 *
 103                 * If this node is properly in the radix, we want to bump the
 104                 * refcount twice, once for the inode and once for this get
 105                 * operation.
 106                 */
 107                if (refcount_inc_not_zero(&node->refs)) {
 108                        refcount_inc(&node->refs);
 109                        btrfs_inode->delayed_node = node;
 110                } else {
 111                        node = NULL;
 112                }
 113
 114                spin_unlock(&root->inode_lock);
 115                return node;
 116        }
 117        spin_unlock(&root->inode_lock);
 118
 119        return NULL;
 120}
 121
 122/* Will return either the node or PTR_ERR(-ENOMEM) */
 123static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
 124                struct btrfs_inode *btrfs_inode)
 125{
 126        struct btrfs_delayed_node *node;
 127        struct btrfs_root *root = btrfs_inode->root;
 128        u64 ino = btrfs_ino(btrfs_inode);
 129        int ret;
 130
 131again:
 132        node = btrfs_get_delayed_node(btrfs_inode);
 133        if (node)
 134                return node;
 135
 136        node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
 137        if (!node)
 138                return ERR_PTR(-ENOMEM);
 139        btrfs_init_delayed_node(node, root, ino);
 140
 141        /* cached in the btrfs inode and can be accessed */
 142        refcount_set(&node->refs, 2);
 143
 144        ret = radix_tree_preload(GFP_NOFS);
 145        if (ret) {
 146                kmem_cache_free(delayed_node_cache, node);
 147                return ERR_PTR(ret);
 148        }
 149
 150        spin_lock(&root->inode_lock);
 151        ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
 152        if (ret == -EEXIST) {
 153                spin_unlock(&root->inode_lock);
 154                kmem_cache_free(delayed_node_cache, node);
 155                radix_tree_preload_end();
 156                goto again;
 157        }
 158        btrfs_inode->delayed_node = node;
 159        spin_unlock(&root->inode_lock);
 160        radix_tree_preload_end();
 161
 162        return node;
 163}
 164
 165/*
 166 * Call it when holding delayed_node->mutex
 167 *
 168 * If mod = 1, add this node into the prepared list.
 169 */
 170static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
 171                                     struct btrfs_delayed_node *node,
 172                                     int mod)
 173{
 174        spin_lock(&root->lock);
 175        if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 176                if (!list_empty(&node->p_list))
 177                        list_move_tail(&node->p_list, &root->prepare_list);
 178                else if (mod)
 179                        list_add_tail(&node->p_list, &root->prepare_list);
 180        } else {
 181                list_add_tail(&node->n_list, &root->node_list);
 182                list_add_tail(&node->p_list, &root->prepare_list);
 183                refcount_inc(&node->refs);      /* inserted into list */
 184                root->nodes++;
 185                set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 186        }
 187        spin_unlock(&root->lock);
 188}
 189
 190/* Call it when holding delayed_node->mutex */
 191static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
 192                                       struct btrfs_delayed_node *node)
 193{
 194        spin_lock(&root->lock);
 195        if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 196                root->nodes--;
 197                refcount_dec(&node->refs);      /* not in the list */
 198                list_del_init(&node->n_list);
 199                if (!list_empty(&node->p_list))
 200                        list_del_init(&node->p_list);
 201                clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 202        }
 203        spin_unlock(&root->lock);
 204}
 205
 206static struct btrfs_delayed_node *btrfs_first_delayed_node(
 207                        struct btrfs_delayed_root *delayed_root)
 208{
 209        struct list_head *p;
 210        struct btrfs_delayed_node *node = NULL;
 211
 212        spin_lock(&delayed_root->lock);
 213        if (list_empty(&delayed_root->node_list))
 214                goto out;
 215
 216        p = delayed_root->node_list.next;
 217        node = list_entry(p, struct btrfs_delayed_node, n_list);
 218        refcount_inc(&node->refs);
 219out:
 220        spin_unlock(&delayed_root->lock);
 221
 222        return node;
 223}
 224
 225static struct btrfs_delayed_node *btrfs_next_delayed_node(
 226                                                struct btrfs_delayed_node *node)
 227{
 228        struct btrfs_delayed_root *delayed_root;
 229        struct list_head *p;
 230        struct btrfs_delayed_node *next = NULL;
 231
 232        delayed_root = node->root->fs_info->delayed_root;
 233        spin_lock(&delayed_root->lock);
 234        if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 235                /* not in the list */
 236                if (list_empty(&delayed_root->node_list))
 237                        goto out;
 238                p = delayed_root->node_list.next;
 239        } else if (list_is_last(&node->n_list, &delayed_root->node_list))
 240                goto out;
 241        else
 242                p = node->n_list.next;
 243
 244        next = list_entry(p, struct btrfs_delayed_node, n_list);
 245        refcount_inc(&next->refs);
 246out:
 247        spin_unlock(&delayed_root->lock);
 248
 249        return next;
 250}
 251
 252static void __btrfs_release_delayed_node(
 253                                struct btrfs_delayed_node *delayed_node,
 254                                int mod)
 255{
 256        struct btrfs_delayed_root *delayed_root;
 257
 258        if (!delayed_node)
 259                return;
 260
 261        delayed_root = delayed_node->root->fs_info->delayed_root;
 262
 263        mutex_lock(&delayed_node->mutex);
 264        if (delayed_node->count)
 265                btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
 266        else
 267                btrfs_dequeue_delayed_node(delayed_root, delayed_node);
 268        mutex_unlock(&delayed_node->mutex);
 269
 270        if (refcount_dec_and_test(&delayed_node->refs)) {
 271                struct btrfs_root *root = delayed_node->root;
 272
 273                spin_lock(&root->inode_lock);
 274                /*
 275                 * Once our refcount goes to zero, nobody is allowed to bump it
 276                 * back up.  We can delete it now.
 277                 */
 278                ASSERT(refcount_read(&delayed_node->refs) == 0);
 279                radix_tree_delete(&root->delayed_nodes_tree,
 280                                  delayed_node->inode_id);
 281                spin_unlock(&root->inode_lock);
 282                kmem_cache_free(delayed_node_cache, delayed_node);
 283        }
 284}
 285
 286static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
 287{
 288        __btrfs_release_delayed_node(node, 0);
 289}
 290
 291static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
 292                                        struct btrfs_delayed_root *delayed_root)
 293{
 294        struct list_head *p;
 295        struct btrfs_delayed_node *node = NULL;
 296
 297        spin_lock(&delayed_root->lock);
 298        if (list_empty(&delayed_root->prepare_list))
 299                goto out;
 300
 301        p = delayed_root->prepare_list.next;
 302        list_del_init(p);
 303        node = list_entry(p, struct btrfs_delayed_node, p_list);
 304        refcount_inc(&node->refs);
 305out:
 306        spin_unlock(&delayed_root->lock);
 307
 308        return node;
 309}
 310
 311static inline void btrfs_release_prepared_delayed_node(
 312                                        struct btrfs_delayed_node *node)
 313{
 314        __btrfs_release_delayed_node(node, 1);
 315}
 316
 317static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
 318{
 319        struct btrfs_delayed_item *item;
 320        item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
 321        if (item) {
 322                item->data_len = data_len;
 323                item->ins_or_del = 0;
 324                item->bytes_reserved = 0;
 325                item->delayed_node = NULL;
 326                refcount_set(&item->refs, 1);
 327        }
 328        return item;
 329}
 330
 331/*
 332 * __btrfs_lookup_delayed_item - look up the delayed item by key
 333 * @delayed_node: pointer to the delayed node
 334 * @key:          the key to look up
 335 * @prev:         used to store the prev item if the right item isn't found
 336 * @next:         used to store the next item if the right item isn't found
 337 *
 338 * Note: if we don't find the right item, we will return the prev item and
 339 * the next item.
 340 */
 341static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
 342                                struct rb_root *root,
 343                                struct btrfs_key *key,
 344                                struct btrfs_delayed_item **prev,
 345                                struct btrfs_delayed_item **next)
 346{
 347        struct rb_node *node, *prev_node = NULL;
 348        struct btrfs_delayed_item *delayed_item = NULL;
 349        int ret = 0;
 350
 351        node = root->rb_node;
 352
 353        while (node) {
 354                delayed_item = rb_entry(node, struct btrfs_delayed_item,
 355                                        rb_node);
 356                prev_node = node;
 357                ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
 358                if (ret < 0)
 359                        node = node->rb_right;
 360                else if (ret > 0)
 361                        node = node->rb_left;
 362                else
 363                        return delayed_item;
 364        }
 365
 366        if (prev) {
 367                if (!prev_node)
 368                        *prev = NULL;
 369                else if (ret < 0)
 370                        *prev = delayed_item;
 371                else if ((node = rb_prev(prev_node)) != NULL) {
 372                        *prev = rb_entry(node, struct btrfs_delayed_item,
 373                                         rb_node);
 374                } else
 375                        *prev = NULL;
 376        }
 377
 378        if (next) {
 379                if (!prev_node)
 380                        *next = NULL;
 381                else if (ret > 0)
 382                        *next = delayed_item;
 383                else if ((node = rb_next(prev_node)) != NULL) {
 384                        *next = rb_entry(node, struct btrfs_delayed_item,
 385                                         rb_node);
 386                } else
 387                        *next = NULL;
 388        }
 389        return NULL;
 390}
 391
 392static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
 393                                        struct btrfs_delayed_node *delayed_node,
 394                                        struct btrfs_key *key)
 395{
 396        return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
 397                                           NULL, NULL);
 398}
 399
 400static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
 401                                    struct btrfs_delayed_item *ins,
 402                                    int action)
 403{
 404        struct rb_node **p, *node;
 405        struct rb_node *parent_node = NULL;
 406        struct rb_root_cached *root;
 407        struct btrfs_delayed_item *item;
 408        int cmp;
 409        bool leftmost = true;
 410
 411        if (action == BTRFS_DELAYED_INSERTION_ITEM)
 412                root = &delayed_node->ins_root;
 413        else if (action == BTRFS_DELAYED_DELETION_ITEM)
 414                root = &delayed_node->del_root;
 415        else
 416                BUG();
 417        p = &root->rb_root.rb_node;
 418        node = &ins->rb_node;
 419
 420        while (*p) {
 421                parent_node = *p;
 422                item = rb_entry(parent_node, struct btrfs_delayed_item,
 423                                 rb_node);
 424
 425                cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
 426                if (cmp < 0) {
 427                        p = &(*p)->rb_right;
 428                        leftmost = false;
 429                } else if (cmp > 0) {
 430                        p = &(*p)->rb_left;
 431                } else {
 432                        return -EEXIST;
 433                }
 434        }
 435
 436        rb_link_node(node, parent_node, p);
 437        rb_insert_color_cached(node, root, leftmost);
 438        ins->delayed_node = delayed_node;
 439        ins->ins_or_del = action;
 440
 441        if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
 442            action == BTRFS_DELAYED_INSERTION_ITEM &&
 443            ins->key.offset >= delayed_node->index_cnt)
 444                        delayed_node->index_cnt = ins->key.offset + 1;
 445
 446        delayed_node->count++;
 447        atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
 448        return 0;
 449}
 450
 451static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
 452                                              struct btrfs_delayed_item *item)
 453{
 454        return __btrfs_add_delayed_item(node, item,
 455                                        BTRFS_DELAYED_INSERTION_ITEM);
 456}
 457
 458static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
 459                                             struct btrfs_delayed_item *item)
 460{
 461        return __btrfs_add_delayed_item(node, item,
 462                                        BTRFS_DELAYED_DELETION_ITEM);
 463}
 464
 465static void finish_one_item(struct btrfs_delayed_root *delayed_root)
 466{
 467        int seq = atomic_inc_return(&delayed_root->items_seq);
 468
 469        /* atomic_dec_return implies a barrier */
 470        if ((atomic_dec_return(&delayed_root->items) <
 471            BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
 472                cond_wake_up_nomb(&delayed_root->wait);
 473}
 474
 475static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
 476{
 477        struct rb_root_cached *root;
 478        struct btrfs_delayed_root *delayed_root;
 479
 480        /* Not associated with any delayed_node */
 481        if (!delayed_item->delayed_node)
 482                return;
 483        delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
 484
 485        BUG_ON(!delayed_root);
 486        BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
 487               delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
 488
 489        if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
 490                root = &delayed_item->delayed_node->ins_root;
 491        else
 492                root = &delayed_item->delayed_node->del_root;
 493
 494        rb_erase_cached(&delayed_item->rb_node, root);
 495        delayed_item->delayed_node->count--;
 496
 497        finish_one_item(delayed_root);
 498}
 499
 500static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
 501{
 502        if (item) {
 503                __btrfs_remove_delayed_item(item);
 504                if (refcount_dec_and_test(&item->refs))
 505                        kfree(item);
 506        }
 507}
 508
 509static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
 510                                        struct btrfs_delayed_node *delayed_node)
 511{
 512        struct rb_node *p;
 513        struct btrfs_delayed_item *item = NULL;
 514
 515        p = rb_first_cached(&delayed_node->ins_root);
 516        if (p)
 517                item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 518
 519        return item;
 520}
 521
 522static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
 523                                        struct btrfs_delayed_node *delayed_node)
 524{
 525        struct rb_node *p;
 526        struct btrfs_delayed_item *item = NULL;
 527
 528        p = rb_first_cached(&delayed_node->del_root);
 529        if (p)
 530                item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 531
 532        return item;
 533}
 534
 535static struct btrfs_delayed_item *__btrfs_next_delayed_item(
 536                                                struct btrfs_delayed_item *item)
 537{
 538        struct rb_node *p;
 539        struct btrfs_delayed_item *next = NULL;
 540
 541        p = rb_next(&item->rb_node);
 542        if (p)
 543                next = rb_entry(p, struct btrfs_delayed_item, rb_node);
 544
 545        return next;
 546}
 547
 548static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
 549                                               struct btrfs_root *root,
 550                                               struct btrfs_delayed_item *item)
 551{
 552        struct btrfs_block_rsv *src_rsv;
 553        struct btrfs_block_rsv *dst_rsv;
 554        struct btrfs_fs_info *fs_info = root->fs_info;
 555        u64 num_bytes;
 556        int ret;
 557
 558        if (!trans->bytes_reserved)
 559                return 0;
 560
 561        src_rsv = trans->block_rsv;
 562        dst_rsv = &fs_info->delayed_block_rsv;
 563
 564        num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
 565
 566        /*
 567         * Here we migrate space rsv from transaction rsv, since have already
 568         * reserved space when starting a transaction.  So no need to reserve
 569         * qgroup space here.
 570         */
 571        ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
 572        if (!ret) {
 573                trace_btrfs_space_reservation(fs_info, "delayed_item",
 574                                              item->key.objectid,
 575                                              num_bytes, 1);
 576                item->bytes_reserved = num_bytes;
 577        }
 578
 579        return ret;
 580}
 581
 582static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
 583                                                struct btrfs_delayed_item *item)
 584{
 585        struct btrfs_block_rsv *rsv;
 586        struct btrfs_fs_info *fs_info = root->fs_info;
 587
 588        if (!item->bytes_reserved)
 589                return;
 590
 591        rsv = &fs_info->delayed_block_rsv;
 592        /*
 593         * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
 594         * to release/reserve qgroup space.
 595         */
 596        trace_btrfs_space_reservation(fs_info, "delayed_item",
 597                                      item->key.objectid, item->bytes_reserved,
 598                                      0);
 599        btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
 600}
 601
 602static int btrfs_delayed_inode_reserve_metadata(
 603                                        struct btrfs_trans_handle *trans,
 604                                        struct btrfs_root *root,
 605                                        struct btrfs_delayed_node *node)
 606{
 607        struct btrfs_fs_info *fs_info = root->fs_info;
 608        struct btrfs_block_rsv *src_rsv;
 609        struct btrfs_block_rsv *dst_rsv;
 610        u64 num_bytes;
 611        int ret;
 612
 613        src_rsv = trans->block_rsv;
 614        dst_rsv = &fs_info->delayed_block_rsv;
 615
 616        num_bytes = btrfs_calc_metadata_size(fs_info, 1);
 617
 618        /*
 619         * btrfs_dirty_inode will update the inode under btrfs_join_transaction
 620         * which doesn't reserve space for speed.  This is a problem since we
 621         * still need to reserve space for this update, so try to reserve the
 622         * space.
 623         *
 624         * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
 625         * we always reserve enough to update the inode item.
 626         */
 627        if (!src_rsv || (!trans->bytes_reserved &&
 628                         src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
 629                ret = btrfs_qgroup_reserve_meta(root, num_bytes,
 630                                          BTRFS_QGROUP_RSV_META_PREALLOC, true);
 631                if (ret < 0)
 632                        return ret;
 633                ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
 634                                          BTRFS_RESERVE_NO_FLUSH);
 635                /* NO_FLUSH could only fail with -ENOSPC */
 636                ASSERT(ret == 0 || ret == -ENOSPC);
 637                if (ret)
 638                        btrfs_qgroup_free_meta_prealloc(root, num_bytes);
 639        } else {
 640                ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
 641        }
 642
 643        if (!ret) {
 644                trace_btrfs_space_reservation(fs_info, "delayed_inode",
 645                                              node->inode_id, num_bytes, 1);
 646                node->bytes_reserved = num_bytes;
 647        }
 648
 649        return ret;
 650}
 651
 652static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
 653                                                struct btrfs_delayed_node *node,
 654                                                bool qgroup_free)
 655{
 656        struct btrfs_block_rsv *rsv;
 657
 658        if (!node->bytes_reserved)
 659                return;
 660
 661        rsv = &fs_info->delayed_block_rsv;
 662        trace_btrfs_space_reservation(fs_info, "delayed_inode",
 663                                      node->inode_id, node->bytes_reserved, 0);
 664        btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
 665        if (qgroup_free)
 666                btrfs_qgroup_free_meta_prealloc(node->root,
 667                                node->bytes_reserved);
 668        else
 669                btrfs_qgroup_convert_reserved_meta(node->root,
 670                                node->bytes_reserved);
 671        node->bytes_reserved = 0;
 672}
 673
 674/*
 675 * This helper will insert some continuous items into the same leaf according
 676 * to the free space of the leaf.
 677 */
 678static int btrfs_batch_insert_items(struct btrfs_root *root,
 679                                    struct btrfs_path *path,
 680                                    struct btrfs_delayed_item *item)
 681{
 682        struct btrfs_delayed_item *curr, *next;
 683        int free_space;
 684        int total_size = 0;
 685        struct extent_buffer *leaf;
 686        char *data_ptr;
 687        struct btrfs_key *keys;
 688        u32 *data_size;
 689        struct list_head head;
 690        int slot;
 691        int nitems;
 692        int i;
 693        int ret = 0;
 694
 695        BUG_ON(!path->nodes[0]);
 696
 697        leaf = path->nodes[0];
 698        free_space = btrfs_leaf_free_space(leaf);
 699        INIT_LIST_HEAD(&head);
 700
 701        next = item;
 702        nitems = 0;
 703
 704        /*
 705         * count the number of the continuous items that we can insert in batch
 706         */
 707        while (total_size + next->data_len + sizeof(struct btrfs_item) <=
 708               free_space) {
 709                total_size += next->data_len + sizeof(struct btrfs_item);
 710                list_add_tail(&next->tree_list, &head);
 711                nitems++;
 712
 713                curr = next;
 714                next = __btrfs_next_delayed_item(curr);
 715                if (!next)
 716                        break;
 717
 718                if (!btrfs_is_continuous_delayed_item(curr, next))
 719                        break;
 720        }
 721
 722        if (!nitems) {
 723                ret = 0;
 724                goto out;
 725        }
 726
 727        keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
 728        if (!keys) {
 729                ret = -ENOMEM;
 730                goto out;
 731        }
 732
 733        data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
 734        if (!data_size) {
 735                ret = -ENOMEM;
 736                goto error;
 737        }
 738
 739        /* get keys of all the delayed items */
 740        i = 0;
 741        list_for_each_entry(next, &head, tree_list) {
 742                keys[i] = next->key;
 743                data_size[i] = next->data_len;
 744                i++;
 745        }
 746
 747        /* insert the keys of the items */
 748        setup_items_for_insert(root, path, keys, data_size, nitems);
 749
 750        /* insert the dir index items */
 751        slot = path->slots[0];
 752        list_for_each_entry_safe(curr, next, &head, tree_list) {
 753                data_ptr = btrfs_item_ptr(leaf, slot, char);
 754                write_extent_buffer(leaf, &curr->data,
 755                                    (unsigned long)data_ptr,
 756                                    curr->data_len);
 757                slot++;
 758
 759                btrfs_delayed_item_release_metadata(root, curr);
 760
 761                list_del(&curr->tree_list);
 762                btrfs_release_delayed_item(curr);
 763        }
 764
 765error:
 766        kfree(data_size);
 767        kfree(keys);
 768out:
 769        return ret;
 770}
 771
 772/*
 773 * This helper can just do simple insertion that needn't extend item for new
 774 * data, such as directory name index insertion, inode insertion.
 775 */
 776static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
 777                                     struct btrfs_root *root,
 778                                     struct btrfs_path *path,
 779                                     struct btrfs_delayed_item *delayed_item)
 780{
 781        struct extent_buffer *leaf;
 782        unsigned int nofs_flag;
 783        char *ptr;
 784        int ret;
 785
 786        nofs_flag = memalloc_nofs_save();
 787        ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
 788                                      delayed_item->data_len);
 789        memalloc_nofs_restore(nofs_flag);
 790        if (ret < 0 && ret != -EEXIST)
 791                return ret;
 792
 793        leaf = path->nodes[0];
 794
 795        ptr = btrfs_item_ptr(leaf, path->slots[0], char);
 796
 797        write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
 798                            delayed_item->data_len);
 799        btrfs_mark_buffer_dirty(leaf);
 800
 801        btrfs_delayed_item_release_metadata(root, delayed_item);
 802        return 0;
 803}
 804
 805/*
 806 * we insert an item first, then if there are some continuous items, we try
 807 * to insert those items into the same leaf.
 808 */
 809static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
 810                                      struct btrfs_path *path,
 811                                      struct btrfs_root *root,
 812                                      struct btrfs_delayed_node *node)
 813{
 814        struct btrfs_delayed_item *curr, *prev;
 815        int ret = 0;
 816
 817do_again:
 818        mutex_lock(&node->mutex);
 819        curr = __btrfs_first_delayed_insertion_item(node);
 820        if (!curr)
 821                goto insert_end;
 822
 823        ret = btrfs_insert_delayed_item(trans, root, path, curr);
 824        if (ret < 0) {
 825                btrfs_release_path(path);
 826                goto insert_end;
 827        }
 828
 829        prev = curr;
 830        curr = __btrfs_next_delayed_item(prev);
 831        if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
 832                /* insert the continuous items into the same leaf */
 833                path->slots[0]++;
 834                btrfs_batch_insert_items(root, path, curr);
 835        }
 836        btrfs_release_delayed_item(prev);
 837        btrfs_mark_buffer_dirty(path->nodes[0]);
 838
 839        btrfs_release_path(path);
 840        mutex_unlock(&node->mutex);
 841        goto do_again;
 842
 843insert_end:
 844        mutex_unlock(&node->mutex);
 845        return ret;
 846}
 847
 848static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
 849                                    struct btrfs_root *root,
 850                                    struct btrfs_path *path,
 851                                    struct btrfs_delayed_item *item)
 852{
 853        struct btrfs_delayed_item *curr, *next;
 854        struct extent_buffer *leaf;
 855        struct btrfs_key key;
 856        struct list_head head;
 857        int nitems, i, last_item;
 858        int ret = 0;
 859
 860        BUG_ON(!path->nodes[0]);
 861
 862        leaf = path->nodes[0];
 863
 864        i = path->slots[0];
 865        last_item = btrfs_header_nritems(leaf) - 1;
 866        if (i > last_item)
 867                return -ENOENT; /* FIXME: Is errno suitable? */
 868
 869        next = item;
 870        INIT_LIST_HEAD(&head);
 871        btrfs_item_key_to_cpu(leaf, &key, i);
 872        nitems = 0;
 873        /*
 874         * count the number of the dir index items that we can delete in batch
 875         */
 876        while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
 877                list_add_tail(&next->tree_list, &head);
 878                nitems++;
 879
 880                curr = next;
 881                next = __btrfs_next_delayed_item(curr);
 882                if (!next)
 883                        break;
 884
 885                if (!btrfs_is_continuous_delayed_item(curr, next))
 886                        break;
 887
 888                i++;
 889                if (i > last_item)
 890                        break;
 891                btrfs_item_key_to_cpu(leaf, &key, i);
 892        }
 893
 894        if (!nitems)
 895                return 0;
 896
 897        ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
 898        if (ret)
 899                goto out;
 900
 901        list_for_each_entry_safe(curr, next, &head, tree_list) {
 902                btrfs_delayed_item_release_metadata(root, curr);
 903                list_del(&curr->tree_list);
 904                btrfs_release_delayed_item(curr);
 905        }
 906
 907out:
 908        return ret;
 909}
 910
 911static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
 912                                      struct btrfs_path *path,
 913                                      struct btrfs_root *root,
 914                                      struct btrfs_delayed_node *node)
 915{
 916        struct btrfs_delayed_item *curr, *prev;
 917        unsigned int nofs_flag;
 918        int ret = 0;
 919
 920do_again:
 921        mutex_lock(&node->mutex);
 922        curr = __btrfs_first_delayed_deletion_item(node);
 923        if (!curr)
 924                goto delete_fail;
 925
 926        nofs_flag = memalloc_nofs_save();
 927        ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
 928        memalloc_nofs_restore(nofs_flag);
 929        if (ret < 0)
 930                goto delete_fail;
 931        else if (ret > 0) {
 932                /*
 933                 * can't find the item which the node points to, so this node
 934                 * is invalid, just drop it.
 935                 */
 936                prev = curr;
 937                curr = __btrfs_next_delayed_item(prev);
 938                btrfs_release_delayed_item(prev);
 939                ret = 0;
 940                btrfs_release_path(path);
 941                if (curr) {
 942                        mutex_unlock(&node->mutex);
 943                        goto do_again;
 944                } else
 945                        goto delete_fail;
 946        }
 947
 948        btrfs_batch_delete_items(trans, root, path, curr);
 949        btrfs_release_path(path);
 950        mutex_unlock(&node->mutex);
 951        goto do_again;
 952
 953delete_fail:
 954        btrfs_release_path(path);
 955        mutex_unlock(&node->mutex);
 956        return ret;
 957}
 958
 959static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
 960{
 961        struct btrfs_delayed_root *delayed_root;
 962
 963        if (delayed_node &&
 964            test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
 965                BUG_ON(!delayed_node->root);
 966                clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
 967                delayed_node->count--;
 968
 969                delayed_root = delayed_node->root->fs_info->delayed_root;
 970                finish_one_item(delayed_root);
 971        }
 972}
 973
 974static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
 975{
 976
 977        if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
 978                struct btrfs_delayed_root *delayed_root;
 979
 980                ASSERT(delayed_node->root);
 981                delayed_node->count--;
 982
 983                delayed_root = delayed_node->root->fs_info->delayed_root;
 984                finish_one_item(delayed_root);
 985        }
 986}
 987
 988static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
 989                                        struct btrfs_root *root,
 990                                        struct btrfs_path *path,
 991                                        struct btrfs_delayed_node *node)
 992{
 993        struct btrfs_fs_info *fs_info = root->fs_info;
 994        struct btrfs_key key;
 995        struct btrfs_inode_item *inode_item;
 996        struct extent_buffer *leaf;
 997        unsigned int nofs_flag;
 998        int mod;
 999        int ret;
1000
1001        key.objectid = node->inode_id;
1002        key.type = BTRFS_INODE_ITEM_KEY;
1003        key.offset = 0;
1004
1005        if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1006                mod = -1;
1007        else
1008                mod = 1;
1009
1010        nofs_flag = memalloc_nofs_save();
1011        ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1012        memalloc_nofs_restore(nofs_flag);
1013        if (ret > 0)
1014                ret = -ENOENT;
1015        if (ret < 0)
1016                goto out;
1017
1018        leaf = path->nodes[0];
1019        inode_item = btrfs_item_ptr(leaf, path->slots[0],
1020                                    struct btrfs_inode_item);
1021        write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1022                            sizeof(struct btrfs_inode_item));
1023        btrfs_mark_buffer_dirty(leaf);
1024
1025        if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1026                goto out;
1027
1028        path->slots[0]++;
1029        if (path->slots[0] >= btrfs_header_nritems(leaf))
1030                goto search;
1031again:
1032        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1033        if (key.objectid != node->inode_id)
1034                goto out;
1035
1036        if (key.type != BTRFS_INODE_REF_KEY &&
1037            key.type != BTRFS_INODE_EXTREF_KEY)
1038                goto out;
1039
1040        /*
1041         * Delayed iref deletion is for the inode who has only one link,
1042         * so there is only one iref. The case that several irefs are
1043         * in the same item doesn't exist.
1044         */
1045        btrfs_del_item(trans, root, path);
1046out:
1047        btrfs_release_delayed_iref(node);
1048        btrfs_release_path(path);
1049err_out:
1050        btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1051        btrfs_release_delayed_inode(node);
1052
1053        /*
1054         * If we fail to update the delayed inode we need to abort the
1055         * transaction, because we could leave the inode with the improper
1056         * counts behind.
1057         */
1058        if (ret && ret != -ENOENT)
1059                btrfs_abort_transaction(trans, ret);
1060
1061        return ret;
1062
1063search:
1064        btrfs_release_path(path);
1065
1066        key.type = BTRFS_INODE_EXTREF_KEY;
1067        key.offset = -1;
1068
1069        nofs_flag = memalloc_nofs_save();
1070        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1071        memalloc_nofs_restore(nofs_flag);
1072        if (ret < 0)
1073                goto err_out;
1074        ASSERT(ret);
1075
1076        ret = 0;
1077        leaf = path->nodes[0];
1078        path->slots[0]--;
1079        goto again;
1080}
1081
1082static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1083                                             struct btrfs_root *root,
1084                                             struct btrfs_path *path,
1085                                             struct btrfs_delayed_node *node)
1086{
1087        int ret;
1088
1089        mutex_lock(&node->mutex);
1090        if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1091                mutex_unlock(&node->mutex);
1092                return 0;
1093        }
1094
1095        ret = __btrfs_update_delayed_inode(trans, root, path, node);
1096        mutex_unlock(&node->mutex);
1097        return ret;
1098}
1099
1100static inline int
1101__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1102                                   struct btrfs_path *path,
1103                                   struct btrfs_delayed_node *node)
1104{
1105        int ret;
1106
1107        ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1108        if (ret)
1109                return ret;
1110
1111        ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1112        if (ret)
1113                return ret;
1114
1115        ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1116        return ret;
1117}
1118
1119/*
1120 * Called when committing the transaction.
1121 * Returns 0 on success.
1122 * Returns < 0 on error and returns with an aborted transaction with any
1123 * outstanding delayed items cleaned up.
1124 */
1125static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1126{
1127        struct btrfs_fs_info *fs_info = trans->fs_info;
1128        struct btrfs_delayed_root *delayed_root;
1129        struct btrfs_delayed_node *curr_node, *prev_node;
1130        struct btrfs_path *path;
1131        struct btrfs_block_rsv *block_rsv;
1132        int ret = 0;
1133        bool count = (nr > 0);
1134
1135        if (TRANS_ABORTED(trans))
1136                return -EIO;
1137
1138        path = btrfs_alloc_path();
1139        if (!path)
1140                return -ENOMEM;
1141
1142        block_rsv = trans->block_rsv;
1143        trans->block_rsv = &fs_info->delayed_block_rsv;
1144
1145        delayed_root = fs_info->delayed_root;
1146
1147        curr_node = btrfs_first_delayed_node(delayed_root);
1148        while (curr_node && (!count || nr--)) {
1149                ret = __btrfs_commit_inode_delayed_items(trans, path,
1150                                                         curr_node);
1151                if (ret) {
1152                        btrfs_release_delayed_node(curr_node);
1153                        curr_node = NULL;
1154                        btrfs_abort_transaction(trans, ret);
1155                        break;
1156                }
1157
1158                prev_node = curr_node;
1159                curr_node = btrfs_next_delayed_node(curr_node);
1160                btrfs_release_delayed_node(prev_node);
1161        }
1162
1163        if (curr_node)
1164                btrfs_release_delayed_node(curr_node);
1165        btrfs_free_path(path);
1166        trans->block_rsv = block_rsv;
1167
1168        return ret;
1169}
1170
1171int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1172{
1173        return __btrfs_run_delayed_items(trans, -1);
1174}
1175
1176int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1177{
1178        return __btrfs_run_delayed_items(trans, nr);
1179}
1180
1181int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1182                                     struct btrfs_inode *inode)
1183{
1184        struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1185        struct btrfs_path *path;
1186        struct btrfs_block_rsv *block_rsv;
1187        int ret;
1188
1189        if (!delayed_node)
1190                return 0;
1191
1192        mutex_lock(&delayed_node->mutex);
1193        if (!delayed_node->count) {
1194                mutex_unlock(&delayed_node->mutex);
1195                btrfs_release_delayed_node(delayed_node);
1196                return 0;
1197        }
1198        mutex_unlock(&delayed_node->mutex);
1199
1200        path = btrfs_alloc_path();
1201        if (!path) {
1202                btrfs_release_delayed_node(delayed_node);
1203                return -ENOMEM;
1204        }
1205
1206        block_rsv = trans->block_rsv;
1207        trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1208
1209        ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1210
1211        btrfs_release_delayed_node(delayed_node);
1212        btrfs_free_path(path);
1213        trans->block_rsv = block_rsv;
1214
1215        return ret;
1216}
1217
1218int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1219{
1220        struct btrfs_fs_info *fs_info = inode->root->fs_info;
1221        struct btrfs_trans_handle *trans;
1222        struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1223        struct btrfs_path *path;
1224        struct btrfs_block_rsv *block_rsv;
1225        int ret;
1226
1227        if (!delayed_node)
1228                return 0;
1229
1230        mutex_lock(&delayed_node->mutex);
1231        if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1232                mutex_unlock(&delayed_node->mutex);
1233                btrfs_release_delayed_node(delayed_node);
1234                return 0;
1235        }
1236        mutex_unlock(&delayed_node->mutex);
1237
1238        trans = btrfs_join_transaction(delayed_node->root);
1239        if (IS_ERR(trans)) {
1240                ret = PTR_ERR(trans);
1241                goto out;
1242        }
1243
1244        path = btrfs_alloc_path();
1245        if (!path) {
1246                ret = -ENOMEM;
1247                goto trans_out;
1248        }
1249
1250        block_rsv = trans->block_rsv;
1251        trans->block_rsv = &fs_info->delayed_block_rsv;
1252
1253        mutex_lock(&delayed_node->mutex);
1254        if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1255                ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1256                                                   path, delayed_node);
1257        else
1258                ret = 0;
1259        mutex_unlock(&delayed_node->mutex);
1260
1261        btrfs_free_path(path);
1262        trans->block_rsv = block_rsv;
1263trans_out:
1264        btrfs_end_transaction(trans);
1265        btrfs_btree_balance_dirty(fs_info);
1266out:
1267        btrfs_release_delayed_node(delayed_node);
1268
1269        return ret;
1270}
1271
1272void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1273{
1274        struct btrfs_delayed_node *delayed_node;
1275
1276        delayed_node = READ_ONCE(inode->delayed_node);
1277        if (!delayed_node)
1278                return;
1279
1280        inode->delayed_node = NULL;
1281        btrfs_release_delayed_node(delayed_node);
1282}
1283
1284struct btrfs_async_delayed_work {
1285        struct btrfs_delayed_root *delayed_root;
1286        int nr;
1287        struct btrfs_work work;
1288};
1289
1290static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1291{
1292        struct btrfs_async_delayed_work *async_work;
1293        struct btrfs_delayed_root *delayed_root;
1294        struct btrfs_trans_handle *trans;
1295        struct btrfs_path *path;
1296        struct btrfs_delayed_node *delayed_node = NULL;
1297        struct btrfs_root *root;
1298        struct btrfs_block_rsv *block_rsv;
1299        int total_done = 0;
1300
1301        async_work = container_of(work, struct btrfs_async_delayed_work, work);
1302        delayed_root = async_work->delayed_root;
1303
1304        path = btrfs_alloc_path();
1305        if (!path)
1306                goto out;
1307
1308        do {
1309                if (atomic_read(&delayed_root->items) <
1310                    BTRFS_DELAYED_BACKGROUND / 2)
1311                        break;
1312
1313                delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1314                if (!delayed_node)
1315                        break;
1316
1317                root = delayed_node->root;
1318
1319                trans = btrfs_join_transaction(root);
1320                if (IS_ERR(trans)) {
1321                        btrfs_release_path(path);
1322                        btrfs_release_prepared_delayed_node(delayed_node);
1323                        total_done++;
1324                        continue;
1325                }
1326
1327                block_rsv = trans->block_rsv;
1328                trans->block_rsv = &root->fs_info->delayed_block_rsv;
1329
1330                __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1331
1332                trans->block_rsv = block_rsv;
1333                btrfs_end_transaction(trans);
1334                btrfs_btree_balance_dirty_nodelay(root->fs_info);
1335
1336                btrfs_release_path(path);
1337                btrfs_release_prepared_delayed_node(delayed_node);
1338                total_done++;
1339
1340        } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1341                 || total_done < async_work->nr);
1342
1343        btrfs_free_path(path);
1344out:
1345        wake_up(&delayed_root->wait);
1346        kfree(async_work);
1347}
1348
1349
1350static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1351                                     struct btrfs_fs_info *fs_info, int nr)
1352{
1353        struct btrfs_async_delayed_work *async_work;
1354
1355        async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1356        if (!async_work)
1357                return -ENOMEM;
1358
1359        async_work->delayed_root = delayed_root;
1360        btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1361                        NULL);
1362        async_work->nr = nr;
1363
1364        btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1365        return 0;
1366}
1367
1368void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1369{
1370        WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1371}
1372
1373static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1374{
1375        int val = atomic_read(&delayed_root->items_seq);
1376
1377        if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1378                return 1;
1379
1380        if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1381                return 1;
1382
1383        return 0;
1384}
1385
1386void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1387{
1388        struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1389
1390        if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1391                btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1392                return;
1393
1394        if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1395                int seq;
1396                int ret;
1397
1398                seq = atomic_read(&delayed_root->items_seq);
1399
1400                ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1401                if (ret)
1402                        return;
1403
1404                wait_event_interruptible(delayed_root->wait,
1405                                         could_end_wait(delayed_root, seq));
1406                return;
1407        }
1408
1409        btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1410}
1411
1412/* Will return 0 or -ENOMEM */
1413int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1414                                   const char *name, int name_len,
1415                                   struct btrfs_inode *dir,
1416                                   struct btrfs_disk_key *disk_key, u8 type,
1417                                   u64 index)
1418{
1419        struct btrfs_delayed_node *delayed_node;
1420        struct btrfs_delayed_item *delayed_item;
1421        struct btrfs_dir_item *dir_item;
1422        int ret;
1423
1424        delayed_node = btrfs_get_or_create_delayed_node(dir);
1425        if (IS_ERR(delayed_node))
1426                return PTR_ERR(delayed_node);
1427
1428        delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1429        if (!delayed_item) {
1430                ret = -ENOMEM;
1431                goto release_node;
1432        }
1433
1434        delayed_item->key.objectid = btrfs_ino(dir);
1435        delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1436        delayed_item->key.offset = index;
1437
1438        dir_item = (struct btrfs_dir_item *)delayed_item->data;
1439        dir_item->location = *disk_key;
1440        btrfs_set_stack_dir_transid(dir_item, trans->transid);
1441        btrfs_set_stack_dir_data_len(dir_item, 0);
1442        btrfs_set_stack_dir_name_len(dir_item, name_len);
1443        btrfs_set_stack_dir_type(dir_item, type);
1444        memcpy((char *)(dir_item + 1), name, name_len);
1445
1446        ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1447        /*
1448         * we have reserved enough space when we start a new transaction,
1449         * so reserving metadata failure is impossible
1450         */
1451        BUG_ON(ret);
1452
1453        mutex_lock(&delayed_node->mutex);
1454        ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1455        if (unlikely(ret)) {
1456                btrfs_err(trans->fs_info,
1457                          "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1458                          name_len, name, delayed_node->root->root_key.objectid,
1459                          delayed_node->inode_id, ret);
1460                BUG();
1461        }
1462        mutex_unlock(&delayed_node->mutex);
1463
1464release_node:
1465        btrfs_release_delayed_node(delayed_node);
1466        return ret;
1467}
1468
1469static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1470                                               struct btrfs_delayed_node *node,
1471                                               struct btrfs_key *key)
1472{
1473        struct btrfs_delayed_item *item;
1474
1475        mutex_lock(&node->mutex);
1476        item = __btrfs_lookup_delayed_insertion_item(node, key);
1477        if (!item) {
1478                mutex_unlock(&node->mutex);
1479                return 1;
1480        }
1481
1482        btrfs_delayed_item_release_metadata(node->root, item);
1483        btrfs_release_delayed_item(item);
1484        mutex_unlock(&node->mutex);
1485        return 0;
1486}
1487
1488int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1489                                   struct btrfs_inode *dir, u64 index)
1490{
1491        struct btrfs_delayed_node *node;
1492        struct btrfs_delayed_item *item;
1493        struct btrfs_key item_key;
1494        int ret;
1495
1496        node = btrfs_get_or_create_delayed_node(dir);
1497        if (IS_ERR(node))
1498                return PTR_ERR(node);
1499
1500        item_key.objectid = btrfs_ino(dir);
1501        item_key.type = BTRFS_DIR_INDEX_KEY;
1502        item_key.offset = index;
1503
1504        ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1505                                                  &item_key);
1506        if (!ret)
1507                goto end;
1508
1509        item = btrfs_alloc_delayed_item(0);
1510        if (!item) {
1511                ret = -ENOMEM;
1512                goto end;
1513        }
1514
1515        item->key = item_key;
1516
1517        ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1518        /*
1519         * we have reserved enough space when we start a new transaction,
1520         * so reserving metadata failure is impossible.
1521         */
1522        if (ret < 0) {
1523                btrfs_err(trans->fs_info,
1524"metadata reservation failed for delayed dir item deltiona, should have been reserved");
1525                btrfs_release_delayed_item(item);
1526                goto end;
1527        }
1528
1529        mutex_lock(&node->mutex);
1530        ret = __btrfs_add_delayed_deletion_item(node, item);
1531        if (unlikely(ret)) {
1532                btrfs_err(trans->fs_info,
1533                          "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1534                          index, node->root->root_key.objectid,
1535                          node->inode_id, ret);
1536                btrfs_delayed_item_release_metadata(dir->root, item);
1537                btrfs_release_delayed_item(item);
1538        }
1539        mutex_unlock(&node->mutex);
1540end:
1541        btrfs_release_delayed_node(node);
1542        return ret;
1543}
1544
1545int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1546{
1547        struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1548
1549        if (!delayed_node)
1550                return -ENOENT;
1551
1552        /*
1553         * Since we have held i_mutex of this directory, it is impossible that
1554         * a new directory index is added into the delayed node and index_cnt
1555         * is updated now. So we needn't lock the delayed node.
1556         */
1557        if (!delayed_node->index_cnt) {
1558                btrfs_release_delayed_node(delayed_node);
1559                return -EINVAL;
1560        }
1561
1562        inode->index_cnt = delayed_node->index_cnt;
1563        btrfs_release_delayed_node(delayed_node);
1564        return 0;
1565}
1566
1567bool btrfs_readdir_get_delayed_items(struct inode *inode,
1568                                     struct list_head *ins_list,
1569                                     struct list_head *del_list)
1570{
1571        struct btrfs_delayed_node *delayed_node;
1572        struct btrfs_delayed_item *item;
1573
1574        delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1575        if (!delayed_node)
1576                return false;
1577
1578        /*
1579         * We can only do one readdir with delayed items at a time because of
1580         * item->readdir_list.
1581         */
1582        btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1583        btrfs_inode_lock(inode, 0);
1584
1585        mutex_lock(&delayed_node->mutex);
1586        item = __btrfs_first_delayed_insertion_item(delayed_node);
1587        while (item) {
1588                refcount_inc(&item->refs);
1589                list_add_tail(&item->readdir_list, ins_list);
1590                item = __btrfs_next_delayed_item(item);
1591        }
1592
1593        item = __btrfs_first_delayed_deletion_item(delayed_node);
1594        while (item) {
1595                refcount_inc(&item->refs);
1596                list_add_tail(&item->readdir_list, del_list);
1597                item = __btrfs_next_delayed_item(item);
1598        }
1599        mutex_unlock(&delayed_node->mutex);
1600        /*
1601         * This delayed node is still cached in the btrfs inode, so refs
1602         * must be > 1 now, and we needn't check it is going to be freed
1603         * or not.
1604         *
1605         * Besides that, this function is used to read dir, we do not
1606         * insert/delete delayed items in this period. So we also needn't
1607         * requeue or dequeue this delayed node.
1608         */
1609        refcount_dec(&delayed_node->refs);
1610
1611        return true;
1612}
1613
1614void btrfs_readdir_put_delayed_items(struct inode *inode,
1615                                     struct list_head *ins_list,
1616                                     struct list_head *del_list)
1617{
1618        struct btrfs_delayed_item *curr, *next;
1619
1620        list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1621                list_del(&curr->readdir_list);
1622                if (refcount_dec_and_test(&curr->refs))
1623                        kfree(curr);
1624        }
1625
1626        list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1627                list_del(&curr->readdir_list);
1628                if (refcount_dec_and_test(&curr->refs))
1629                        kfree(curr);
1630        }
1631
1632        /*
1633         * The VFS is going to do up_read(), so we need to downgrade back to a
1634         * read lock.
1635         */
1636        downgrade_write(&inode->i_rwsem);
1637}
1638
1639int btrfs_should_delete_dir_index(struct list_head *del_list,
1640                                  u64 index)
1641{
1642        struct btrfs_delayed_item *curr;
1643        int ret = 0;
1644
1645        list_for_each_entry(curr, del_list, readdir_list) {
1646                if (curr->key.offset > index)
1647                        break;
1648                if (curr->key.offset == index) {
1649                        ret = 1;
1650                        break;
1651                }
1652        }
1653        return ret;
1654}
1655
1656/*
1657 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1658 *
1659 */
1660int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1661                                    struct list_head *ins_list)
1662{
1663        struct btrfs_dir_item *di;
1664        struct btrfs_delayed_item *curr, *next;
1665        struct btrfs_key location;
1666        char *name;
1667        int name_len;
1668        int over = 0;
1669        unsigned char d_type;
1670
1671        if (list_empty(ins_list))
1672                return 0;
1673
1674        /*
1675         * Changing the data of the delayed item is impossible. So
1676         * we needn't lock them. And we have held i_mutex of the
1677         * directory, nobody can delete any directory indexes now.
1678         */
1679        list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1680                list_del(&curr->readdir_list);
1681
1682                if (curr->key.offset < ctx->pos) {
1683                        if (refcount_dec_and_test(&curr->refs))
1684                                kfree(curr);
1685                        continue;
1686                }
1687
1688                ctx->pos = curr->key.offset;
1689
1690                di = (struct btrfs_dir_item *)curr->data;
1691                name = (char *)(di + 1);
1692                name_len = btrfs_stack_dir_name_len(di);
1693
1694                d_type = fs_ftype_to_dtype(di->type);
1695                btrfs_disk_key_to_cpu(&location, &di->location);
1696
1697                over = !dir_emit(ctx, name, name_len,
1698                               location.objectid, d_type);
1699
1700                if (refcount_dec_and_test(&curr->refs))
1701                        kfree(curr);
1702
1703                if (over)
1704                        return 1;
1705                ctx->pos++;
1706        }
1707        return 0;
1708}
1709
1710static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1711                                  struct btrfs_inode_item *inode_item,
1712                                  struct inode *inode)
1713{
1714        btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1715        btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1716        btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1717        btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1718        btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1719        btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1720        btrfs_set_stack_inode_generation(inode_item,
1721                                         BTRFS_I(inode)->generation);
1722        btrfs_set_stack_inode_sequence(inode_item,
1723                                       inode_peek_iversion(inode));
1724        btrfs_set_stack_inode_transid(inode_item, trans->transid);
1725        btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1726        btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1727        btrfs_set_stack_inode_block_group(inode_item, 0);
1728
1729        btrfs_set_stack_timespec_sec(&inode_item->atime,
1730                                     inode->i_atime.tv_sec);
1731        btrfs_set_stack_timespec_nsec(&inode_item->atime,
1732                                      inode->i_atime.tv_nsec);
1733
1734        btrfs_set_stack_timespec_sec(&inode_item->mtime,
1735                                     inode->i_mtime.tv_sec);
1736        btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1737                                      inode->i_mtime.tv_nsec);
1738
1739        btrfs_set_stack_timespec_sec(&inode_item->ctime,
1740                                     inode->i_ctime.tv_sec);
1741        btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1742                                      inode->i_ctime.tv_nsec);
1743
1744        btrfs_set_stack_timespec_sec(&inode_item->otime,
1745                                     BTRFS_I(inode)->i_otime.tv_sec);
1746        btrfs_set_stack_timespec_nsec(&inode_item->otime,
1747                                     BTRFS_I(inode)->i_otime.tv_nsec);
1748}
1749
1750int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1751{
1752        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1753        struct btrfs_delayed_node *delayed_node;
1754        struct btrfs_inode_item *inode_item;
1755
1756        delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1757        if (!delayed_node)
1758                return -ENOENT;
1759
1760        mutex_lock(&delayed_node->mutex);
1761        if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1762                mutex_unlock(&delayed_node->mutex);
1763                btrfs_release_delayed_node(delayed_node);
1764                return -ENOENT;
1765        }
1766
1767        inode_item = &delayed_node->inode_item;
1768
1769        i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1770        i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1771        btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1772        btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1773                        round_up(i_size_read(inode), fs_info->sectorsize));
1774        inode->i_mode = btrfs_stack_inode_mode(inode_item);
1775        set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1776        inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1777        BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1778        BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1779
1780        inode_set_iversion_queried(inode,
1781                                   btrfs_stack_inode_sequence(inode_item));
1782        inode->i_rdev = 0;
1783        *rdev = btrfs_stack_inode_rdev(inode_item);
1784        BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1785
1786        inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1787        inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1788
1789        inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1790        inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1791
1792        inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1793        inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1794
1795        BTRFS_I(inode)->i_otime.tv_sec =
1796                btrfs_stack_timespec_sec(&inode_item->otime);
1797        BTRFS_I(inode)->i_otime.tv_nsec =
1798                btrfs_stack_timespec_nsec(&inode_item->otime);
1799
1800        inode->i_generation = BTRFS_I(inode)->generation;
1801        BTRFS_I(inode)->index_cnt = (u64)-1;
1802
1803        mutex_unlock(&delayed_node->mutex);
1804        btrfs_release_delayed_node(delayed_node);
1805        return 0;
1806}
1807
1808int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1809                               struct btrfs_root *root,
1810                               struct btrfs_inode *inode)
1811{
1812        struct btrfs_delayed_node *delayed_node;
1813        int ret = 0;
1814
1815        delayed_node = btrfs_get_or_create_delayed_node(inode);
1816        if (IS_ERR(delayed_node))
1817                return PTR_ERR(delayed_node);
1818
1819        mutex_lock(&delayed_node->mutex);
1820        if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1821                fill_stack_inode_item(trans, &delayed_node->inode_item,
1822                                      &inode->vfs_inode);
1823                goto release_node;
1824        }
1825
1826        ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1827        if (ret)
1828                goto release_node;
1829
1830        fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1831        set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1832        delayed_node->count++;
1833        atomic_inc(&root->fs_info->delayed_root->items);
1834release_node:
1835        mutex_unlock(&delayed_node->mutex);
1836        btrfs_release_delayed_node(delayed_node);
1837        return ret;
1838}
1839
1840int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1841{
1842        struct btrfs_fs_info *fs_info = inode->root->fs_info;
1843        struct btrfs_delayed_node *delayed_node;
1844
1845        /*
1846         * we don't do delayed inode updates during log recovery because it
1847         * leads to enospc problems.  This means we also can't do
1848         * delayed inode refs
1849         */
1850        if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1851                return -EAGAIN;
1852
1853        delayed_node = btrfs_get_or_create_delayed_node(inode);
1854        if (IS_ERR(delayed_node))
1855                return PTR_ERR(delayed_node);
1856
1857        /*
1858         * We don't reserve space for inode ref deletion is because:
1859         * - We ONLY do async inode ref deletion for the inode who has only
1860         *   one link(i_nlink == 1), it means there is only one inode ref.
1861         *   And in most case, the inode ref and the inode item are in the
1862         *   same leaf, and we will deal with them at the same time.
1863         *   Since we are sure we will reserve the space for the inode item,
1864         *   it is unnecessary to reserve space for inode ref deletion.
1865         * - If the inode ref and the inode item are not in the same leaf,
1866         *   We also needn't worry about enospc problem, because we reserve
1867         *   much more space for the inode update than it needs.
1868         * - At the worst, we can steal some space from the global reservation.
1869         *   It is very rare.
1870         */
1871        mutex_lock(&delayed_node->mutex);
1872        if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1873                goto release_node;
1874
1875        set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1876        delayed_node->count++;
1877        atomic_inc(&fs_info->delayed_root->items);
1878release_node:
1879        mutex_unlock(&delayed_node->mutex);
1880        btrfs_release_delayed_node(delayed_node);
1881        return 0;
1882}
1883
1884static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1885{
1886        struct btrfs_root *root = delayed_node->root;
1887        struct btrfs_fs_info *fs_info = root->fs_info;
1888        struct btrfs_delayed_item *curr_item, *prev_item;
1889
1890        mutex_lock(&delayed_node->mutex);
1891        curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1892        while (curr_item) {
1893                btrfs_delayed_item_release_metadata(root, curr_item);
1894                prev_item = curr_item;
1895                curr_item = __btrfs_next_delayed_item(prev_item);
1896                btrfs_release_delayed_item(prev_item);
1897        }
1898
1899        curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1900        while (curr_item) {
1901                btrfs_delayed_item_release_metadata(root, curr_item);
1902                prev_item = curr_item;
1903                curr_item = __btrfs_next_delayed_item(prev_item);
1904                btrfs_release_delayed_item(prev_item);
1905        }
1906
1907        btrfs_release_delayed_iref(delayed_node);
1908
1909        if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1910                btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1911                btrfs_release_delayed_inode(delayed_node);
1912        }
1913        mutex_unlock(&delayed_node->mutex);
1914}
1915
1916void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1917{
1918        struct btrfs_delayed_node *delayed_node;
1919
1920        delayed_node = btrfs_get_delayed_node(inode);
1921        if (!delayed_node)
1922                return;
1923
1924        __btrfs_kill_delayed_node(delayed_node);
1925        btrfs_release_delayed_node(delayed_node);
1926}
1927
1928void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1929{
1930        u64 inode_id = 0;
1931        struct btrfs_delayed_node *delayed_nodes[8];
1932        int i, n;
1933
1934        while (1) {
1935                spin_lock(&root->inode_lock);
1936                n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1937                                           (void **)delayed_nodes, inode_id,
1938                                           ARRAY_SIZE(delayed_nodes));
1939                if (!n) {
1940                        spin_unlock(&root->inode_lock);
1941                        break;
1942                }
1943
1944                inode_id = delayed_nodes[n - 1]->inode_id + 1;
1945                for (i = 0; i < n; i++) {
1946                        /*
1947                         * Don't increase refs in case the node is dead and
1948                         * about to be removed from the tree in the loop below
1949                         */
1950                        if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
1951                                delayed_nodes[i] = NULL;
1952                }
1953                spin_unlock(&root->inode_lock);
1954
1955                for (i = 0; i < n; i++) {
1956                        if (!delayed_nodes[i])
1957                                continue;
1958                        __btrfs_kill_delayed_node(delayed_nodes[i]);
1959                        btrfs_release_delayed_node(delayed_nodes[i]);
1960                }
1961        }
1962}
1963
1964void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1965{
1966        struct btrfs_delayed_node *curr_node, *prev_node;
1967
1968        curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1969        while (curr_node) {
1970                __btrfs_kill_delayed_node(curr_node);
1971
1972                prev_node = curr_node;
1973                curr_node = btrfs_next_delayed_node(curr_node);
1974                btrfs_release_delayed_node(prev_node);
1975        }
1976}
1977
1978