linux/fs/btrfs/file.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/pagemap.h>
   8#include <linux/time.h>
   9#include <linux/init.h>
  10#include <linux/string.h>
  11#include <linux/backing-dev.h>
  12#include <linux/falloc.h>
  13#include <linux/writeback.h>
  14#include <linux/compat.h>
  15#include <linux/slab.h>
  16#include <linux/btrfs.h>
  17#include <linux/uio.h>
  18#include <linux/iversion.h>
  19#include "ctree.h"
  20#include "disk-io.h"
  21#include "transaction.h"
  22#include "btrfs_inode.h"
  23#include "print-tree.h"
  24#include "tree-log.h"
  25#include "locking.h"
  26#include "volumes.h"
  27#include "qgroup.h"
  28#include "compression.h"
  29#include "delalloc-space.h"
  30#include "reflink.h"
  31#include "subpage.h"
  32
  33static struct kmem_cache *btrfs_inode_defrag_cachep;
  34/*
  35 * when auto defrag is enabled we
  36 * queue up these defrag structs to remember which
  37 * inodes need defragging passes
  38 */
  39struct inode_defrag {
  40        struct rb_node rb_node;
  41        /* objectid */
  42        u64 ino;
  43        /*
  44         * transid where the defrag was added, we search for
  45         * extents newer than this
  46         */
  47        u64 transid;
  48
  49        /* root objectid */
  50        u64 root;
  51
  52        /* last offset we were able to defrag */
  53        u64 last_offset;
  54
  55        /* if we've wrapped around back to zero once already */
  56        int cycled;
  57};
  58
  59static int __compare_inode_defrag(struct inode_defrag *defrag1,
  60                                  struct inode_defrag *defrag2)
  61{
  62        if (defrag1->root > defrag2->root)
  63                return 1;
  64        else if (defrag1->root < defrag2->root)
  65                return -1;
  66        else if (defrag1->ino > defrag2->ino)
  67                return 1;
  68        else if (defrag1->ino < defrag2->ino)
  69                return -1;
  70        else
  71                return 0;
  72}
  73
  74/* pop a record for an inode into the defrag tree.  The lock
  75 * must be held already
  76 *
  77 * If you're inserting a record for an older transid than an
  78 * existing record, the transid already in the tree is lowered
  79 *
  80 * If an existing record is found the defrag item you
  81 * pass in is freed
  82 */
  83static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
  84                                    struct inode_defrag *defrag)
  85{
  86        struct btrfs_fs_info *fs_info = inode->root->fs_info;
  87        struct inode_defrag *entry;
  88        struct rb_node **p;
  89        struct rb_node *parent = NULL;
  90        int ret;
  91
  92        p = &fs_info->defrag_inodes.rb_node;
  93        while (*p) {
  94                parent = *p;
  95                entry = rb_entry(parent, struct inode_defrag, rb_node);
  96
  97                ret = __compare_inode_defrag(defrag, entry);
  98                if (ret < 0)
  99                        p = &parent->rb_left;
 100                else if (ret > 0)
 101                        p = &parent->rb_right;
 102                else {
 103                        /* if we're reinserting an entry for
 104                         * an old defrag run, make sure to
 105                         * lower the transid of our existing record
 106                         */
 107                        if (defrag->transid < entry->transid)
 108                                entry->transid = defrag->transid;
 109                        if (defrag->last_offset > entry->last_offset)
 110                                entry->last_offset = defrag->last_offset;
 111                        return -EEXIST;
 112                }
 113        }
 114        set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
 115        rb_link_node(&defrag->rb_node, parent, p);
 116        rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
 117        return 0;
 118}
 119
 120static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
 121{
 122        if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
 123                return 0;
 124
 125        if (btrfs_fs_closing(fs_info))
 126                return 0;
 127
 128        return 1;
 129}
 130
 131/*
 132 * insert a defrag record for this inode if auto defrag is
 133 * enabled
 134 */
 135int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
 136                           struct btrfs_inode *inode)
 137{
 138        struct btrfs_root *root = inode->root;
 139        struct btrfs_fs_info *fs_info = root->fs_info;
 140        struct inode_defrag *defrag;
 141        u64 transid;
 142        int ret;
 143
 144        if (!__need_auto_defrag(fs_info))
 145                return 0;
 146
 147        if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
 148                return 0;
 149
 150        if (trans)
 151                transid = trans->transid;
 152        else
 153                transid = inode->root->last_trans;
 154
 155        defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
 156        if (!defrag)
 157                return -ENOMEM;
 158
 159        defrag->ino = btrfs_ino(inode);
 160        defrag->transid = transid;
 161        defrag->root = root->root_key.objectid;
 162
 163        spin_lock(&fs_info->defrag_inodes_lock);
 164        if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
 165                /*
 166                 * If we set IN_DEFRAG flag and evict the inode from memory,
 167                 * and then re-read this inode, this new inode doesn't have
 168                 * IN_DEFRAG flag. At the case, we may find the existed defrag.
 169                 */
 170                ret = __btrfs_add_inode_defrag(inode, defrag);
 171                if (ret)
 172                        kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 173        } else {
 174                kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 175        }
 176        spin_unlock(&fs_info->defrag_inodes_lock);
 177        return 0;
 178}
 179
 180/*
 181 * Requeue the defrag object. If there is a defrag object that points to
 182 * the same inode in the tree, we will merge them together (by
 183 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
 184 */
 185static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
 186                                       struct inode_defrag *defrag)
 187{
 188        struct btrfs_fs_info *fs_info = inode->root->fs_info;
 189        int ret;
 190
 191        if (!__need_auto_defrag(fs_info))
 192                goto out;
 193
 194        /*
 195         * Here we don't check the IN_DEFRAG flag, because we need merge
 196         * them together.
 197         */
 198        spin_lock(&fs_info->defrag_inodes_lock);
 199        ret = __btrfs_add_inode_defrag(inode, defrag);
 200        spin_unlock(&fs_info->defrag_inodes_lock);
 201        if (ret)
 202                goto out;
 203        return;
 204out:
 205        kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 206}
 207
 208/*
 209 * pick the defragable inode that we want, if it doesn't exist, we will get
 210 * the next one.
 211 */
 212static struct inode_defrag *
 213btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
 214{
 215        struct inode_defrag *entry = NULL;
 216        struct inode_defrag tmp;
 217        struct rb_node *p;
 218        struct rb_node *parent = NULL;
 219        int ret;
 220
 221        tmp.ino = ino;
 222        tmp.root = root;
 223
 224        spin_lock(&fs_info->defrag_inodes_lock);
 225        p = fs_info->defrag_inodes.rb_node;
 226        while (p) {
 227                parent = p;
 228                entry = rb_entry(parent, struct inode_defrag, rb_node);
 229
 230                ret = __compare_inode_defrag(&tmp, entry);
 231                if (ret < 0)
 232                        p = parent->rb_left;
 233                else if (ret > 0)
 234                        p = parent->rb_right;
 235                else
 236                        goto out;
 237        }
 238
 239        if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
 240                parent = rb_next(parent);
 241                if (parent)
 242                        entry = rb_entry(parent, struct inode_defrag, rb_node);
 243                else
 244                        entry = NULL;
 245        }
 246out:
 247        if (entry)
 248                rb_erase(parent, &fs_info->defrag_inodes);
 249        spin_unlock(&fs_info->defrag_inodes_lock);
 250        return entry;
 251}
 252
 253void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
 254{
 255        struct inode_defrag *defrag;
 256        struct rb_node *node;
 257
 258        spin_lock(&fs_info->defrag_inodes_lock);
 259        node = rb_first(&fs_info->defrag_inodes);
 260        while (node) {
 261                rb_erase(node, &fs_info->defrag_inodes);
 262                defrag = rb_entry(node, struct inode_defrag, rb_node);
 263                kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 264
 265                cond_resched_lock(&fs_info->defrag_inodes_lock);
 266
 267                node = rb_first(&fs_info->defrag_inodes);
 268        }
 269        spin_unlock(&fs_info->defrag_inodes_lock);
 270}
 271
 272#define BTRFS_DEFRAG_BATCH      1024
 273
 274static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
 275                                    struct inode_defrag *defrag)
 276{
 277        struct btrfs_root *inode_root;
 278        struct inode *inode;
 279        struct btrfs_ioctl_defrag_range_args range;
 280        int num_defrag;
 281        int ret;
 282
 283        /* get the inode */
 284        inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
 285        if (IS_ERR(inode_root)) {
 286                ret = PTR_ERR(inode_root);
 287                goto cleanup;
 288        }
 289
 290        inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
 291        btrfs_put_root(inode_root);
 292        if (IS_ERR(inode)) {
 293                ret = PTR_ERR(inode);
 294                goto cleanup;
 295        }
 296
 297        /* do a chunk of defrag */
 298        clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
 299        memset(&range, 0, sizeof(range));
 300        range.len = (u64)-1;
 301        range.start = defrag->last_offset;
 302
 303        sb_start_write(fs_info->sb);
 304        num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
 305                                       BTRFS_DEFRAG_BATCH);
 306        sb_end_write(fs_info->sb);
 307        /*
 308         * if we filled the whole defrag batch, there
 309         * must be more work to do.  Queue this defrag
 310         * again
 311         */
 312        if (num_defrag == BTRFS_DEFRAG_BATCH) {
 313                defrag->last_offset = range.start;
 314                btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
 315        } else if (defrag->last_offset && !defrag->cycled) {
 316                /*
 317                 * we didn't fill our defrag batch, but
 318                 * we didn't start at zero.  Make sure we loop
 319                 * around to the start of the file.
 320                 */
 321                defrag->last_offset = 0;
 322                defrag->cycled = 1;
 323                btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
 324        } else {
 325                kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 326        }
 327
 328        iput(inode);
 329        return 0;
 330cleanup:
 331        kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 332        return ret;
 333}
 334
 335/*
 336 * run through the list of inodes in the FS that need
 337 * defragging
 338 */
 339int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
 340{
 341        struct inode_defrag *defrag;
 342        u64 first_ino = 0;
 343        u64 root_objectid = 0;
 344
 345        atomic_inc(&fs_info->defrag_running);
 346        while (1) {
 347                /* Pause the auto defragger. */
 348                if (test_bit(BTRFS_FS_STATE_REMOUNTING,
 349                             &fs_info->fs_state))
 350                        break;
 351
 352                if (!__need_auto_defrag(fs_info))
 353                        break;
 354
 355                /* find an inode to defrag */
 356                defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
 357                                                 first_ino);
 358                if (!defrag) {
 359                        if (root_objectid || first_ino) {
 360                                root_objectid = 0;
 361                                first_ino = 0;
 362                                continue;
 363                        } else {
 364                                break;
 365                        }
 366                }
 367
 368                first_ino = defrag->ino + 1;
 369                root_objectid = defrag->root;
 370
 371                __btrfs_run_defrag_inode(fs_info, defrag);
 372        }
 373        atomic_dec(&fs_info->defrag_running);
 374
 375        /*
 376         * during unmount, we use the transaction_wait queue to
 377         * wait for the defragger to stop
 378         */
 379        wake_up(&fs_info->transaction_wait);
 380        return 0;
 381}
 382
 383/* simple helper to fault in pages and copy.  This should go away
 384 * and be replaced with calls into generic code.
 385 */
 386static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
 387                                         struct page **prepared_pages,
 388                                         struct iov_iter *i)
 389{
 390        size_t copied = 0;
 391        size_t total_copied = 0;
 392        int pg = 0;
 393        int offset = offset_in_page(pos);
 394
 395        while (write_bytes > 0) {
 396                size_t count = min_t(size_t,
 397                                     PAGE_SIZE - offset, write_bytes);
 398                struct page *page = prepared_pages[pg];
 399                /*
 400                 * Copy data from userspace to the current page
 401                 */
 402                copied = copy_page_from_iter_atomic(page, offset, count, i);
 403
 404                /* Flush processor's dcache for this page */
 405                flush_dcache_page(page);
 406
 407                /*
 408                 * if we get a partial write, we can end up with
 409                 * partially up to date pages.  These add
 410                 * a lot of complexity, so make sure they don't
 411                 * happen by forcing this copy to be retried.
 412                 *
 413                 * The rest of the btrfs_file_write code will fall
 414                 * back to page at a time copies after we return 0.
 415                 */
 416                if (unlikely(copied < count)) {
 417                        if (!PageUptodate(page)) {
 418                                iov_iter_revert(i, copied);
 419                                copied = 0;
 420                        }
 421                        if (!copied)
 422                                break;
 423                }
 424
 425                write_bytes -= copied;
 426                total_copied += copied;
 427                offset += copied;
 428                if (offset == PAGE_SIZE) {
 429                        pg++;
 430                        offset = 0;
 431                }
 432        }
 433        return total_copied;
 434}
 435
 436/*
 437 * unlocks pages after btrfs_file_write is done with them
 438 */
 439static void btrfs_drop_pages(struct page **pages, size_t num_pages)
 440{
 441        size_t i;
 442        for (i = 0; i < num_pages; i++) {
 443                /* page checked is some magic around finding pages that
 444                 * have been modified without going through btrfs_set_page_dirty
 445                 * clear it here. There should be no need to mark the pages
 446                 * accessed as prepare_pages should have marked them accessed
 447                 * in prepare_pages via find_or_create_page()
 448                 */
 449                ClearPageChecked(pages[i]);
 450                unlock_page(pages[i]);
 451                put_page(pages[i]);
 452        }
 453}
 454
 455/*
 456 * After btrfs_copy_from_user(), update the following things for delalloc:
 457 * - Mark newly dirtied pages as DELALLOC in the io tree.
 458 *   Used to advise which range is to be written back.
 459 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
 460 * - Update inode size for past EOF write
 461 */
 462int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
 463                      size_t num_pages, loff_t pos, size_t write_bytes,
 464                      struct extent_state **cached, bool noreserve)
 465{
 466        struct btrfs_fs_info *fs_info = inode->root->fs_info;
 467        int err = 0;
 468        int i;
 469        u64 num_bytes;
 470        u64 start_pos;
 471        u64 end_of_last_block;
 472        u64 end_pos = pos + write_bytes;
 473        loff_t isize = i_size_read(&inode->vfs_inode);
 474        unsigned int extra_bits = 0;
 475
 476        if (write_bytes == 0)
 477                return 0;
 478
 479        if (noreserve)
 480                extra_bits |= EXTENT_NORESERVE;
 481
 482        start_pos = round_down(pos, fs_info->sectorsize);
 483        num_bytes = round_up(write_bytes + pos - start_pos,
 484                             fs_info->sectorsize);
 485        ASSERT(num_bytes <= U32_MAX);
 486
 487        end_of_last_block = start_pos + num_bytes - 1;
 488
 489        /*
 490         * The pages may have already been dirty, clear out old accounting so
 491         * we can set things up properly
 492         */
 493        clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
 494                         EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
 495                         0, 0, cached);
 496
 497        err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
 498                                        extra_bits, cached);
 499        if (err)
 500                return err;
 501
 502        for (i = 0; i < num_pages; i++) {
 503                struct page *p = pages[i];
 504
 505                btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes);
 506                ClearPageChecked(p);
 507                btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes);
 508        }
 509
 510        /*
 511         * we've only changed i_size in ram, and we haven't updated
 512         * the disk i_size.  There is no need to log the inode
 513         * at this time.
 514         */
 515        if (end_pos > isize)
 516                i_size_write(&inode->vfs_inode, end_pos);
 517        return 0;
 518}
 519
 520/*
 521 * this drops all the extents in the cache that intersect the range
 522 * [start, end].  Existing extents are split as required.
 523 */
 524void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
 525                             int skip_pinned)
 526{
 527        struct extent_map *em;
 528        struct extent_map *split = NULL;
 529        struct extent_map *split2 = NULL;
 530        struct extent_map_tree *em_tree = &inode->extent_tree;
 531        u64 len = end - start + 1;
 532        u64 gen;
 533        int ret;
 534        int testend = 1;
 535        unsigned long flags;
 536        int compressed = 0;
 537        bool modified;
 538
 539        WARN_ON(end < start);
 540        if (end == (u64)-1) {
 541                len = (u64)-1;
 542                testend = 0;
 543        }
 544        while (1) {
 545                int no_splits = 0;
 546
 547                modified = false;
 548                if (!split)
 549                        split = alloc_extent_map();
 550                if (!split2)
 551                        split2 = alloc_extent_map();
 552                if (!split || !split2)
 553                        no_splits = 1;
 554
 555                write_lock(&em_tree->lock);
 556                em = lookup_extent_mapping(em_tree, start, len);
 557                if (!em) {
 558                        write_unlock(&em_tree->lock);
 559                        break;
 560                }
 561                flags = em->flags;
 562                gen = em->generation;
 563                if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
 564                        if (testend && em->start + em->len >= start + len) {
 565                                free_extent_map(em);
 566                                write_unlock(&em_tree->lock);
 567                                break;
 568                        }
 569                        start = em->start + em->len;
 570                        if (testend)
 571                                len = start + len - (em->start + em->len);
 572                        free_extent_map(em);
 573                        write_unlock(&em_tree->lock);
 574                        continue;
 575                }
 576                compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 577                clear_bit(EXTENT_FLAG_PINNED, &em->flags);
 578                clear_bit(EXTENT_FLAG_LOGGING, &flags);
 579                modified = !list_empty(&em->list);
 580                if (no_splits)
 581                        goto next;
 582
 583                if (em->start < start) {
 584                        split->start = em->start;
 585                        split->len = start - em->start;
 586
 587                        if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 588                                split->orig_start = em->orig_start;
 589                                split->block_start = em->block_start;
 590
 591                                if (compressed)
 592                                        split->block_len = em->block_len;
 593                                else
 594                                        split->block_len = split->len;
 595                                split->orig_block_len = max(split->block_len,
 596                                                em->orig_block_len);
 597                                split->ram_bytes = em->ram_bytes;
 598                        } else {
 599                                split->orig_start = split->start;
 600                                split->block_len = 0;
 601                                split->block_start = em->block_start;
 602                                split->orig_block_len = 0;
 603                                split->ram_bytes = split->len;
 604                        }
 605
 606                        split->generation = gen;
 607                        split->flags = flags;
 608                        split->compress_type = em->compress_type;
 609                        replace_extent_mapping(em_tree, em, split, modified);
 610                        free_extent_map(split);
 611                        split = split2;
 612                        split2 = NULL;
 613                }
 614                if (testend && em->start + em->len > start + len) {
 615                        u64 diff = start + len - em->start;
 616
 617                        split->start = start + len;
 618                        split->len = em->start + em->len - (start + len);
 619                        split->flags = flags;
 620                        split->compress_type = em->compress_type;
 621                        split->generation = gen;
 622
 623                        if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 624                                split->orig_block_len = max(em->block_len,
 625                                                    em->orig_block_len);
 626
 627                                split->ram_bytes = em->ram_bytes;
 628                                if (compressed) {
 629                                        split->block_len = em->block_len;
 630                                        split->block_start = em->block_start;
 631                                        split->orig_start = em->orig_start;
 632                                } else {
 633                                        split->block_len = split->len;
 634                                        split->block_start = em->block_start
 635                                                + diff;
 636                                        split->orig_start = em->orig_start;
 637                                }
 638                        } else {
 639                                split->ram_bytes = split->len;
 640                                split->orig_start = split->start;
 641                                split->block_len = 0;
 642                                split->block_start = em->block_start;
 643                                split->orig_block_len = 0;
 644                        }
 645
 646                        if (extent_map_in_tree(em)) {
 647                                replace_extent_mapping(em_tree, em, split,
 648                                                       modified);
 649                        } else {
 650                                ret = add_extent_mapping(em_tree, split,
 651                                                         modified);
 652                                ASSERT(ret == 0); /* Logic error */
 653                        }
 654                        free_extent_map(split);
 655                        split = NULL;
 656                }
 657next:
 658                if (extent_map_in_tree(em))
 659                        remove_extent_mapping(em_tree, em);
 660                write_unlock(&em_tree->lock);
 661
 662                /* once for us */
 663                free_extent_map(em);
 664                /* once for the tree*/
 665                free_extent_map(em);
 666        }
 667        if (split)
 668                free_extent_map(split);
 669        if (split2)
 670                free_extent_map(split2);
 671}
 672
 673/*
 674 * this is very complex, but the basic idea is to drop all extents
 675 * in the range start - end.  hint_block is filled in with a block number
 676 * that would be a good hint to the block allocator for this file.
 677 *
 678 * If an extent intersects the range but is not entirely inside the range
 679 * it is either truncated or split.  Anything entirely inside the range
 680 * is deleted from the tree.
 681 *
 682 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
 683 * to deal with that. We set the field 'bytes_found' of the arguments structure
 684 * with the number of allocated bytes found in the target range, so that the
 685 * caller can update the inode's number of bytes in an atomic way when
 686 * replacing extents in a range to avoid races with stat(2).
 687 */
 688int btrfs_drop_extents(struct btrfs_trans_handle *trans,
 689                       struct btrfs_root *root, struct btrfs_inode *inode,
 690                       struct btrfs_drop_extents_args *args)
 691{
 692        struct btrfs_fs_info *fs_info = root->fs_info;
 693        struct extent_buffer *leaf;
 694        struct btrfs_file_extent_item *fi;
 695        struct btrfs_ref ref = { 0 };
 696        struct btrfs_key key;
 697        struct btrfs_key new_key;
 698        u64 ino = btrfs_ino(inode);
 699        u64 search_start = args->start;
 700        u64 disk_bytenr = 0;
 701        u64 num_bytes = 0;
 702        u64 extent_offset = 0;
 703        u64 extent_end = 0;
 704        u64 last_end = args->start;
 705        int del_nr = 0;
 706        int del_slot = 0;
 707        int extent_type;
 708        int recow;
 709        int ret;
 710        int modify_tree = -1;
 711        int update_refs;
 712        int found = 0;
 713        int leafs_visited = 0;
 714        struct btrfs_path *path = args->path;
 715
 716        args->bytes_found = 0;
 717        args->extent_inserted = false;
 718
 719        /* Must always have a path if ->replace_extent is true */
 720        ASSERT(!(args->replace_extent && !args->path));
 721
 722        if (!path) {
 723                path = btrfs_alloc_path();
 724                if (!path) {
 725                        ret = -ENOMEM;
 726                        goto out;
 727                }
 728        }
 729
 730        if (args->drop_cache)
 731                btrfs_drop_extent_cache(inode, args->start, args->end - 1, 0);
 732
 733        if (args->start >= inode->disk_i_size && !args->replace_extent)
 734                modify_tree = 0;
 735
 736        update_refs = (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
 737                       root == fs_info->tree_root);
 738        while (1) {
 739                recow = 0;
 740                ret = btrfs_lookup_file_extent(trans, root, path, ino,
 741                                               search_start, modify_tree);
 742                if (ret < 0)
 743                        break;
 744                if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
 745                        leaf = path->nodes[0];
 746                        btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 747                        if (key.objectid == ino &&
 748                            key.type == BTRFS_EXTENT_DATA_KEY)
 749                                path->slots[0]--;
 750                }
 751                ret = 0;
 752                leafs_visited++;
 753next_slot:
 754                leaf = path->nodes[0];
 755                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 756                        BUG_ON(del_nr > 0);
 757                        ret = btrfs_next_leaf(root, path);
 758                        if (ret < 0)
 759                                break;
 760                        if (ret > 0) {
 761                                ret = 0;
 762                                break;
 763                        }
 764                        leafs_visited++;
 765                        leaf = path->nodes[0];
 766                        recow = 1;
 767                }
 768
 769                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 770
 771                if (key.objectid > ino)
 772                        break;
 773                if (WARN_ON_ONCE(key.objectid < ino) ||
 774                    key.type < BTRFS_EXTENT_DATA_KEY) {
 775                        ASSERT(del_nr == 0);
 776                        path->slots[0]++;
 777                        goto next_slot;
 778                }
 779                if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
 780                        break;
 781
 782                fi = btrfs_item_ptr(leaf, path->slots[0],
 783                                    struct btrfs_file_extent_item);
 784                extent_type = btrfs_file_extent_type(leaf, fi);
 785
 786                if (extent_type == BTRFS_FILE_EXTENT_REG ||
 787                    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 788                        disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 789                        num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 790                        extent_offset = btrfs_file_extent_offset(leaf, fi);
 791                        extent_end = key.offset +
 792                                btrfs_file_extent_num_bytes(leaf, fi);
 793                } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 794                        extent_end = key.offset +
 795                                btrfs_file_extent_ram_bytes(leaf, fi);
 796                } else {
 797                        /* can't happen */
 798                        BUG();
 799                }
 800
 801                /*
 802                 * Don't skip extent items representing 0 byte lengths. They
 803                 * used to be created (bug) if while punching holes we hit
 804                 * -ENOSPC condition. So if we find one here, just ensure we
 805                 * delete it, otherwise we would insert a new file extent item
 806                 * with the same key (offset) as that 0 bytes length file
 807                 * extent item in the call to setup_items_for_insert() later
 808                 * in this function.
 809                 */
 810                if (extent_end == key.offset && extent_end >= search_start) {
 811                        last_end = extent_end;
 812                        goto delete_extent_item;
 813                }
 814
 815                if (extent_end <= search_start) {
 816                        path->slots[0]++;
 817                        goto next_slot;
 818                }
 819
 820                found = 1;
 821                search_start = max(key.offset, args->start);
 822                if (recow || !modify_tree) {
 823                        modify_tree = -1;
 824                        btrfs_release_path(path);
 825                        continue;
 826                }
 827
 828                /*
 829                 *     | - range to drop - |
 830                 *  | -------- extent -------- |
 831                 */
 832                if (args->start > key.offset && args->end < extent_end) {
 833                        BUG_ON(del_nr > 0);
 834                        if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 835                                ret = -EOPNOTSUPP;
 836                                break;
 837                        }
 838
 839                        memcpy(&new_key, &key, sizeof(new_key));
 840                        new_key.offset = args->start;
 841                        ret = btrfs_duplicate_item(trans, root, path,
 842                                                   &new_key);
 843                        if (ret == -EAGAIN) {
 844                                btrfs_release_path(path);
 845                                continue;
 846                        }
 847                        if (ret < 0)
 848                                break;
 849
 850                        leaf = path->nodes[0];
 851                        fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 852                                            struct btrfs_file_extent_item);
 853                        btrfs_set_file_extent_num_bytes(leaf, fi,
 854                                                        args->start - key.offset);
 855
 856                        fi = btrfs_item_ptr(leaf, path->slots[0],
 857                                            struct btrfs_file_extent_item);
 858
 859                        extent_offset += args->start - key.offset;
 860                        btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 861                        btrfs_set_file_extent_num_bytes(leaf, fi,
 862                                                        extent_end - args->start);
 863                        btrfs_mark_buffer_dirty(leaf);
 864
 865                        if (update_refs && disk_bytenr > 0) {
 866                                btrfs_init_generic_ref(&ref,
 867                                                BTRFS_ADD_DELAYED_REF,
 868                                                disk_bytenr, num_bytes, 0);
 869                                btrfs_init_data_ref(&ref,
 870                                                root->root_key.objectid,
 871                                                new_key.objectid,
 872                                                args->start - extent_offset);
 873                                ret = btrfs_inc_extent_ref(trans, &ref);
 874                                BUG_ON(ret); /* -ENOMEM */
 875                        }
 876                        key.offset = args->start;
 877                }
 878                /*
 879                 * From here on out we will have actually dropped something, so
 880                 * last_end can be updated.
 881                 */
 882                last_end = extent_end;
 883
 884                /*
 885                 *  | ---- range to drop ----- |
 886                 *      | -------- extent -------- |
 887                 */
 888                if (args->start <= key.offset && args->end < extent_end) {
 889                        if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 890                                ret = -EOPNOTSUPP;
 891                                break;
 892                        }
 893
 894                        memcpy(&new_key, &key, sizeof(new_key));
 895                        new_key.offset = args->end;
 896                        btrfs_set_item_key_safe(fs_info, path, &new_key);
 897
 898                        extent_offset += args->end - key.offset;
 899                        btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 900                        btrfs_set_file_extent_num_bytes(leaf, fi,
 901                                                        extent_end - args->end);
 902                        btrfs_mark_buffer_dirty(leaf);
 903                        if (update_refs && disk_bytenr > 0)
 904                                args->bytes_found += args->end - key.offset;
 905                        break;
 906                }
 907
 908                search_start = extent_end;
 909                /*
 910                 *       | ---- range to drop ----- |
 911                 *  | -------- extent -------- |
 912                 */
 913                if (args->start > key.offset && args->end >= extent_end) {
 914                        BUG_ON(del_nr > 0);
 915                        if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 916                                ret = -EOPNOTSUPP;
 917                                break;
 918                        }
 919
 920                        btrfs_set_file_extent_num_bytes(leaf, fi,
 921                                                        args->start - key.offset);
 922                        btrfs_mark_buffer_dirty(leaf);
 923                        if (update_refs && disk_bytenr > 0)
 924                                args->bytes_found += extent_end - args->start;
 925                        if (args->end == extent_end)
 926                                break;
 927
 928                        path->slots[0]++;
 929                        goto next_slot;
 930                }
 931
 932                /*
 933                 *  | ---- range to drop ----- |
 934                 *    | ------ extent ------ |
 935                 */
 936                if (args->start <= key.offset && args->end >= extent_end) {
 937delete_extent_item:
 938                        if (del_nr == 0) {
 939                                del_slot = path->slots[0];
 940                                del_nr = 1;
 941                        } else {
 942                                BUG_ON(del_slot + del_nr != path->slots[0]);
 943                                del_nr++;
 944                        }
 945
 946                        if (update_refs &&
 947                            extent_type == BTRFS_FILE_EXTENT_INLINE) {
 948                                args->bytes_found += extent_end - key.offset;
 949                                extent_end = ALIGN(extent_end,
 950                                                   fs_info->sectorsize);
 951                        } else if (update_refs && disk_bytenr > 0) {
 952                                btrfs_init_generic_ref(&ref,
 953                                                BTRFS_DROP_DELAYED_REF,
 954                                                disk_bytenr, num_bytes, 0);
 955                                btrfs_init_data_ref(&ref,
 956                                                root->root_key.objectid,
 957                                                key.objectid,
 958                                                key.offset - extent_offset);
 959                                ret = btrfs_free_extent(trans, &ref);
 960                                BUG_ON(ret); /* -ENOMEM */
 961                                args->bytes_found += extent_end - key.offset;
 962                        }
 963
 964                        if (args->end == extent_end)
 965                                break;
 966
 967                        if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
 968                                path->slots[0]++;
 969                                goto next_slot;
 970                        }
 971
 972                        ret = btrfs_del_items(trans, root, path, del_slot,
 973                                              del_nr);
 974                        if (ret) {
 975                                btrfs_abort_transaction(trans, ret);
 976                                break;
 977                        }
 978
 979                        del_nr = 0;
 980                        del_slot = 0;
 981
 982                        btrfs_release_path(path);
 983                        continue;
 984                }
 985
 986                BUG();
 987        }
 988
 989        if (!ret && del_nr > 0) {
 990                /*
 991                 * Set path->slots[0] to first slot, so that after the delete
 992                 * if items are move off from our leaf to its immediate left or
 993                 * right neighbor leafs, we end up with a correct and adjusted
 994                 * path->slots[0] for our insertion (if args->replace_extent).
 995                 */
 996                path->slots[0] = del_slot;
 997                ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
 998                if (ret)
 999                        btrfs_abort_transaction(trans, ret);
1000        }
1001
1002        leaf = path->nodes[0];
1003        /*
1004         * If btrfs_del_items() was called, it might have deleted a leaf, in
1005         * which case it unlocked our path, so check path->locks[0] matches a
1006         * write lock.
1007         */
1008        if (!ret && args->replace_extent && leafs_visited == 1 &&
1009            path->locks[0] == BTRFS_WRITE_LOCK &&
1010            btrfs_leaf_free_space(leaf) >=
1011            sizeof(struct btrfs_item) + args->extent_item_size) {
1012
1013                key.objectid = ino;
1014                key.type = BTRFS_EXTENT_DATA_KEY;
1015                key.offset = args->start;
1016                if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1017                        struct btrfs_key slot_key;
1018
1019                        btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1020                        if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1021                                path->slots[0]++;
1022                }
1023                setup_items_for_insert(root, path, &key,
1024                                       &args->extent_item_size, 1);
1025                args->extent_inserted = true;
1026        }
1027
1028        if (!args->path)
1029                btrfs_free_path(path);
1030        else if (!args->extent_inserted)
1031                btrfs_release_path(path);
1032out:
1033        args->drop_end = found ? min(args->end, last_end) : args->end;
1034
1035        return ret;
1036}
1037
1038static int extent_mergeable(struct extent_buffer *leaf, int slot,
1039                            u64 objectid, u64 bytenr, u64 orig_offset,
1040                            u64 *start, u64 *end)
1041{
1042        struct btrfs_file_extent_item *fi;
1043        struct btrfs_key key;
1044        u64 extent_end;
1045
1046        if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1047                return 0;
1048
1049        btrfs_item_key_to_cpu(leaf, &key, slot);
1050        if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1051                return 0;
1052
1053        fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1054        if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1055            btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1056            btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1057            btrfs_file_extent_compression(leaf, fi) ||
1058            btrfs_file_extent_encryption(leaf, fi) ||
1059            btrfs_file_extent_other_encoding(leaf, fi))
1060                return 0;
1061
1062        extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1063        if ((*start && *start != key.offset) || (*end && *end != extent_end))
1064                return 0;
1065
1066        *start = key.offset;
1067        *end = extent_end;
1068        return 1;
1069}
1070
1071/*
1072 * Mark extent in the range start - end as written.
1073 *
1074 * This changes extent type from 'pre-allocated' to 'regular'. If only
1075 * part of extent is marked as written, the extent will be split into
1076 * two or three.
1077 */
1078int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1079                              struct btrfs_inode *inode, u64 start, u64 end)
1080{
1081        struct btrfs_fs_info *fs_info = trans->fs_info;
1082        struct btrfs_root *root = inode->root;
1083        struct extent_buffer *leaf;
1084        struct btrfs_path *path;
1085        struct btrfs_file_extent_item *fi;
1086        struct btrfs_ref ref = { 0 };
1087        struct btrfs_key key;
1088        struct btrfs_key new_key;
1089        u64 bytenr;
1090        u64 num_bytes;
1091        u64 extent_end;
1092        u64 orig_offset;
1093        u64 other_start;
1094        u64 other_end;
1095        u64 split;
1096        int del_nr = 0;
1097        int del_slot = 0;
1098        int recow;
1099        int ret = 0;
1100        u64 ino = btrfs_ino(inode);
1101
1102        path = btrfs_alloc_path();
1103        if (!path)
1104                return -ENOMEM;
1105again:
1106        recow = 0;
1107        split = start;
1108        key.objectid = ino;
1109        key.type = BTRFS_EXTENT_DATA_KEY;
1110        key.offset = split;
1111
1112        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1113        if (ret < 0)
1114                goto out;
1115        if (ret > 0 && path->slots[0] > 0)
1116                path->slots[0]--;
1117
1118        leaf = path->nodes[0];
1119        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1120        if (key.objectid != ino ||
1121            key.type != BTRFS_EXTENT_DATA_KEY) {
1122                ret = -EINVAL;
1123                btrfs_abort_transaction(trans, ret);
1124                goto out;
1125        }
1126        fi = btrfs_item_ptr(leaf, path->slots[0],
1127                            struct btrfs_file_extent_item);
1128        if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1129                ret = -EINVAL;
1130                btrfs_abort_transaction(trans, ret);
1131                goto out;
1132        }
1133        extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1134        if (key.offset > start || extent_end < end) {
1135                ret = -EINVAL;
1136                btrfs_abort_transaction(trans, ret);
1137                goto out;
1138        }
1139
1140        bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1141        num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1142        orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1143        memcpy(&new_key, &key, sizeof(new_key));
1144
1145        if (start == key.offset && end < extent_end) {
1146                other_start = 0;
1147                other_end = start;
1148                if (extent_mergeable(leaf, path->slots[0] - 1,
1149                                     ino, bytenr, orig_offset,
1150                                     &other_start, &other_end)) {
1151                        new_key.offset = end;
1152                        btrfs_set_item_key_safe(fs_info, path, &new_key);
1153                        fi = btrfs_item_ptr(leaf, path->slots[0],
1154                                            struct btrfs_file_extent_item);
1155                        btrfs_set_file_extent_generation(leaf, fi,
1156                                                         trans->transid);
1157                        btrfs_set_file_extent_num_bytes(leaf, fi,
1158                                                        extent_end - end);
1159                        btrfs_set_file_extent_offset(leaf, fi,
1160                                                     end - orig_offset);
1161                        fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1162                                            struct btrfs_file_extent_item);
1163                        btrfs_set_file_extent_generation(leaf, fi,
1164                                                         trans->transid);
1165                        btrfs_set_file_extent_num_bytes(leaf, fi,
1166                                                        end - other_start);
1167                        btrfs_mark_buffer_dirty(leaf);
1168                        goto out;
1169                }
1170        }
1171
1172        if (start > key.offset && end == extent_end) {
1173                other_start = end;
1174                other_end = 0;
1175                if (extent_mergeable(leaf, path->slots[0] + 1,
1176                                     ino, bytenr, orig_offset,
1177                                     &other_start, &other_end)) {
1178                        fi = btrfs_item_ptr(leaf, path->slots[0],
1179                                            struct btrfs_file_extent_item);
1180                        btrfs_set_file_extent_num_bytes(leaf, fi,
1181                                                        start - key.offset);
1182                        btrfs_set_file_extent_generation(leaf, fi,
1183                                                         trans->transid);
1184                        path->slots[0]++;
1185                        new_key.offset = start;
1186                        btrfs_set_item_key_safe(fs_info, path, &new_key);
1187
1188                        fi = btrfs_item_ptr(leaf, path->slots[0],
1189                                            struct btrfs_file_extent_item);
1190                        btrfs_set_file_extent_generation(leaf, fi,
1191                                                         trans->transid);
1192                        btrfs_set_file_extent_num_bytes(leaf, fi,
1193                                                        other_end - start);
1194                        btrfs_set_file_extent_offset(leaf, fi,
1195                                                     start - orig_offset);
1196                        btrfs_mark_buffer_dirty(leaf);
1197                        goto out;
1198                }
1199        }
1200
1201        while (start > key.offset || end < extent_end) {
1202                if (key.offset == start)
1203                        split = end;
1204
1205                new_key.offset = split;
1206                ret = btrfs_duplicate_item(trans, root, path, &new_key);
1207                if (ret == -EAGAIN) {
1208                        btrfs_release_path(path);
1209                        goto again;
1210                }
1211                if (ret < 0) {
1212                        btrfs_abort_transaction(trans, ret);
1213                        goto out;
1214                }
1215
1216                leaf = path->nodes[0];
1217                fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1218                                    struct btrfs_file_extent_item);
1219                btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1220                btrfs_set_file_extent_num_bytes(leaf, fi,
1221                                                split - key.offset);
1222
1223                fi = btrfs_item_ptr(leaf, path->slots[0],
1224                                    struct btrfs_file_extent_item);
1225
1226                btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1227                btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1228                btrfs_set_file_extent_num_bytes(leaf, fi,
1229                                                extent_end - split);
1230                btrfs_mark_buffer_dirty(leaf);
1231
1232                btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1233                                       num_bytes, 0);
1234                btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1235                                    orig_offset);
1236                ret = btrfs_inc_extent_ref(trans, &ref);
1237                if (ret) {
1238                        btrfs_abort_transaction(trans, ret);
1239                        goto out;
1240                }
1241
1242                if (split == start) {
1243                        key.offset = start;
1244                } else {
1245                        if (start != key.offset) {
1246                                ret = -EINVAL;
1247                                btrfs_abort_transaction(trans, ret);
1248                                goto out;
1249                        }
1250                        path->slots[0]--;
1251                        extent_end = end;
1252                }
1253                recow = 1;
1254        }
1255
1256        other_start = end;
1257        other_end = 0;
1258        btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1259                               num_bytes, 0);
1260        btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
1261        if (extent_mergeable(leaf, path->slots[0] + 1,
1262                             ino, bytenr, orig_offset,
1263                             &other_start, &other_end)) {
1264                if (recow) {
1265                        btrfs_release_path(path);
1266                        goto again;
1267                }
1268                extent_end = other_end;
1269                del_slot = path->slots[0] + 1;
1270                del_nr++;
1271                ret = btrfs_free_extent(trans, &ref);
1272                if (ret) {
1273                        btrfs_abort_transaction(trans, ret);
1274                        goto out;
1275                }
1276        }
1277        other_start = 0;
1278        other_end = start;
1279        if (extent_mergeable(leaf, path->slots[0] - 1,
1280                             ino, bytenr, orig_offset,
1281                             &other_start, &other_end)) {
1282                if (recow) {
1283                        btrfs_release_path(path);
1284                        goto again;
1285                }
1286                key.offset = other_start;
1287                del_slot = path->slots[0];
1288                del_nr++;
1289                ret = btrfs_free_extent(trans, &ref);
1290                if (ret) {
1291                        btrfs_abort_transaction(trans, ret);
1292                        goto out;
1293                }
1294        }
1295        if (del_nr == 0) {
1296                fi = btrfs_item_ptr(leaf, path->slots[0],
1297                           struct btrfs_file_extent_item);
1298                btrfs_set_file_extent_type(leaf, fi,
1299                                           BTRFS_FILE_EXTENT_REG);
1300                btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1301                btrfs_mark_buffer_dirty(leaf);
1302        } else {
1303                fi = btrfs_item_ptr(leaf, del_slot - 1,
1304                           struct btrfs_file_extent_item);
1305                btrfs_set_file_extent_type(leaf, fi,
1306                                           BTRFS_FILE_EXTENT_REG);
1307                btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1308                btrfs_set_file_extent_num_bytes(leaf, fi,
1309                                                extent_end - key.offset);
1310                btrfs_mark_buffer_dirty(leaf);
1311
1312                ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1313                if (ret < 0) {
1314                        btrfs_abort_transaction(trans, ret);
1315                        goto out;
1316                }
1317        }
1318out:
1319        btrfs_free_path(path);
1320        return ret;
1321}
1322
1323/*
1324 * on error we return an unlocked page and the error value
1325 * on success we return a locked page and 0
1326 */
1327static int prepare_uptodate_page(struct inode *inode,
1328                                 struct page *page, u64 pos,
1329                                 bool force_uptodate)
1330{
1331        int ret = 0;
1332
1333        if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1334            !PageUptodate(page)) {
1335                ret = btrfs_readpage(NULL, page);
1336                if (ret)
1337                        return ret;
1338                lock_page(page);
1339                if (!PageUptodate(page)) {
1340                        unlock_page(page);
1341                        return -EIO;
1342                }
1343                if (page->mapping != inode->i_mapping) {
1344                        unlock_page(page);
1345                        return -EAGAIN;
1346                }
1347        }
1348        return 0;
1349}
1350
1351/*
1352 * this just gets pages into the page cache and locks them down.
1353 */
1354static noinline int prepare_pages(struct inode *inode, struct page **pages,
1355                                  size_t num_pages, loff_t pos,
1356                                  size_t write_bytes, bool force_uptodate)
1357{
1358        int i;
1359        unsigned long index = pos >> PAGE_SHIFT;
1360        gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1361        int err = 0;
1362        int faili;
1363
1364        for (i = 0; i < num_pages; i++) {
1365again:
1366                pages[i] = find_or_create_page(inode->i_mapping, index + i,
1367                                               mask | __GFP_WRITE);
1368                if (!pages[i]) {
1369                        faili = i - 1;
1370                        err = -ENOMEM;
1371                        goto fail;
1372                }
1373
1374                err = set_page_extent_mapped(pages[i]);
1375                if (err < 0) {
1376                        faili = i;
1377                        goto fail;
1378                }
1379
1380                if (i == 0)
1381                        err = prepare_uptodate_page(inode, pages[i], pos,
1382                                                    force_uptodate);
1383                if (!err && i == num_pages - 1)
1384                        err = prepare_uptodate_page(inode, pages[i],
1385                                                    pos + write_bytes, false);
1386                if (err) {
1387                        put_page(pages[i]);
1388                        if (err == -EAGAIN) {
1389                                err = 0;
1390                                goto again;
1391                        }
1392                        faili = i - 1;
1393                        goto fail;
1394                }
1395                wait_on_page_writeback(pages[i]);
1396        }
1397
1398        return 0;
1399fail:
1400        while (faili >= 0) {
1401                unlock_page(pages[faili]);
1402                put_page(pages[faili]);
1403                faili--;
1404        }
1405        return err;
1406
1407}
1408
1409/*
1410 * This function locks the extent and properly waits for data=ordered extents
1411 * to finish before allowing the pages to be modified if need.
1412 *
1413 * The return value:
1414 * 1 - the extent is locked
1415 * 0 - the extent is not locked, and everything is OK
1416 * -EAGAIN - need re-prepare the pages
1417 * the other < 0 number - Something wrong happens
1418 */
1419static noinline int
1420lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1421                                size_t num_pages, loff_t pos,
1422                                size_t write_bytes,
1423                                u64 *lockstart, u64 *lockend,
1424                                struct extent_state **cached_state)
1425{
1426        struct btrfs_fs_info *fs_info = inode->root->fs_info;
1427        u64 start_pos;
1428        u64 last_pos;
1429        int i;
1430        int ret = 0;
1431
1432        start_pos = round_down(pos, fs_info->sectorsize);
1433        last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
1434
1435        if (start_pos < inode->vfs_inode.i_size) {
1436                struct btrfs_ordered_extent *ordered;
1437
1438                lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1439                                cached_state);
1440                ordered = btrfs_lookup_ordered_range(inode, start_pos,
1441                                                     last_pos - start_pos + 1);
1442                if (ordered &&
1443                    ordered->file_offset + ordered->num_bytes > start_pos &&
1444                    ordered->file_offset <= last_pos) {
1445                        unlock_extent_cached(&inode->io_tree, start_pos,
1446                                        last_pos, cached_state);
1447                        for (i = 0; i < num_pages; i++) {
1448                                unlock_page(pages[i]);
1449                                put_page(pages[i]);
1450                        }
1451                        btrfs_start_ordered_extent(ordered, 1);
1452                        btrfs_put_ordered_extent(ordered);
1453                        return -EAGAIN;
1454                }
1455                if (ordered)
1456                        btrfs_put_ordered_extent(ordered);
1457
1458                *lockstart = start_pos;
1459                *lockend = last_pos;
1460                ret = 1;
1461        }
1462
1463        /*
1464         * We should be called after prepare_pages() which should have locked
1465         * all pages in the range.
1466         */
1467        for (i = 0; i < num_pages; i++)
1468                WARN_ON(!PageLocked(pages[i]));
1469
1470        return ret;
1471}
1472
1473static int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1474                           size_t *write_bytes, bool nowait)
1475{
1476        struct btrfs_fs_info *fs_info = inode->root->fs_info;
1477        struct btrfs_root *root = inode->root;
1478        u64 lockstart, lockend;
1479        u64 num_bytes;
1480        int ret;
1481
1482        if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1483                return 0;
1484
1485        if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock))
1486                return -EAGAIN;
1487
1488        lockstart = round_down(pos, fs_info->sectorsize);
1489        lockend = round_up(pos + *write_bytes,
1490                           fs_info->sectorsize) - 1;
1491        num_bytes = lockend - lockstart + 1;
1492
1493        if (nowait) {
1494                struct btrfs_ordered_extent *ordered;
1495
1496                if (!try_lock_extent(&inode->io_tree, lockstart, lockend))
1497                        return -EAGAIN;
1498
1499                ordered = btrfs_lookup_ordered_range(inode, lockstart,
1500                                                     num_bytes);
1501                if (ordered) {
1502                        btrfs_put_ordered_extent(ordered);
1503                        ret = -EAGAIN;
1504                        goto out_unlock;
1505                }
1506        } else {
1507                btrfs_lock_and_flush_ordered_range(inode, lockstart,
1508                                                   lockend, NULL);
1509        }
1510
1511        ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1512                        NULL, NULL, NULL, false);
1513        if (ret <= 0) {
1514                ret = 0;
1515                if (!nowait)
1516                        btrfs_drew_write_unlock(&root->snapshot_lock);
1517        } else {
1518                *write_bytes = min_t(size_t, *write_bytes ,
1519                                     num_bytes - pos + lockstart);
1520        }
1521out_unlock:
1522        unlock_extent(&inode->io_tree, lockstart, lockend);
1523
1524        return ret;
1525}
1526
1527static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos,
1528                              size_t *write_bytes)
1529{
1530        return check_can_nocow(inode, pos, write_bytes, true);
1531}
1532
1533/*
1534 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1535 *
1536 * @pos:         File offset
1537 * @write_bytes: The length to write, will be updated to the nocow writeable
1538 *               range
1539 *
1540 * This function will flush ordered extents in the range to ensure proper
1541 * nocow checks.
1542 *
1543 * Return:
1544 * >0           and update @write_bytes if we can do nocow write
1545 *  0           if we can't do nocow write
1546 * -EAGAIN      if we can't get the needed lock or there are ordered extents
1547 *              for * (nowait == true) case
1548 * <0           if other error happened
1549 *
1550 * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock().
1551 */
1552int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1553                           size_t *write_bytes)
1554{
1555        return check_can_nocow(inode, pos, write_bytes, false);
1556}
1557
1558void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1559{
1560        btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1561}
1562
1563static void update_time_for_write(struct inode *inode)
1564{
1565        struct timespec64 now;
1566
1567        if (IS_NOCMTIME(inode))
1568                return;
1569
1570        now = current_time(inode);
1571        if (!timespec64_equal(&inode->i_mtime, &now))
1572                inode->i_mtime = now;
1573
1574        if (!timespec64_equal(&inode->i_ctime, &now))
1575                inode->i_ctime = now;
1576
1577        if (IS_I_VERSION(inode))
1578                inode_inc_iversion(inode);
1579}
1580
1581static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1582                             size_t count)
1583{
1584        struct file *file = iocb->ki_filp;
1585        struct inode *inode = file_inode(file);
1586        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1587        loff_t pos = iocb->ki_pos;
1588        int ret;
1589        loff_t oldsize;
1590        loff_t start_pos;
1591
1592        if (iocb->ki_flags & IOCB_NOWAIT) {
1593                size_t nocow_bytes = count;
1594
1595                /* We will allocate space in case nodatacow is not set, so bail */
1596                if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes) <= 0)
1597                        return -EAGAIN;
1598                /*
1599                 * There are holes in the range or parts of the range that must
1600                 * be COWed (shared extents, RO block groups, etc), so just bail
1601                 * out.
1602                 */
1603                if (nocow_bytes < count)
1604                        return -EAGAIN;
1605        }
1606
1607        current->backing_dev_info = inode_to_bdi(inode);
1608        ret = file_remove_privs(file);
1609        if (ret)
1610                return ret;
1611
1612        /*
1613         * We reserve space for updating the inode when we reserve space for the
1614         * extent we are going to write, so we will enospc out there.  We don't
1615         * need to start yet another transaction to update the inode as we will
1616         * update the inode when we finish writing whatever data we write.
1617         */
1618        update_time_for_write(inode);
1619
1620        start_pos = round_down(pos, fs_info->sectorsize);
1621        oldsize = i_size_read(inode);
1622        if (start_pos > oldsize) {
1623                /* Expand hole size to cover write data, preventing empty gap */
1624                loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1625
1626                ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1627                if (ret) {
1628                        current->backing_dev_info = NULL;
1629                        return ret;
1630                }
1631        }
1632
1633        return 0;
1634}
1635
1636static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1637                                               struct iov_iter *i)
1638{
1639        struct file *file = iocb->ki_filp;
1640        loff_t pos;
1641        struct inode *inode = file_inode(file);
1642        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1643        struct page **pages = NULL;
1644        struct extent_changeset *data_reserved = NULL;
1645        u64 release_bytes = 0;
1646        u64 lockstart;
1647        u64 lockend;
1648        size_t num_written = 0;
1649        int nrptrs;
1650        ssize_t ret;
1651        bool only_release_metadata = false;
1652        bool force_page_uptodate = false;
1653        loff_t old_isize = i_size_read(inode);
1654        unsigned int ilock_flags = 0;
1655
1656        if (iocb->ki_flags & IOCB_NOWAIT)
1657                ilock_flags |= BTRFS_ILOCK_TRY;
1658
1659        ret = btrfs_inode_lock(inode, ilock_flags);
1660        if (ret < 0)
1661                return ret;
1662
1663        ret = generic_write_checks(iocb, i);
1664        if (ret <= 0)
1665                goto out;
1666
1667        ret = btrfs_write_check(iocb, i, ret);
1668        if (ret < 0)
1669                goto out;
1670
1671        pos = iocb->ki_pos;
1672        nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1673                        PAGE_SIZE / (sizeof(struct page *)));
1674        nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1675        nrptrs = max(nrptrs, 8);
1676        pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1677        if (!pages) {
1678                ret = -ENOMEM;
1679                goto out;
1680        }
1681
1682        while (iov_iter_count(i) > 0) {
1683                struct extent_state *cached_state = NULL;
1684                size_t offset = offset_in_page(pos);
1685                size_t sector_offset;
1686                size_t write_bytes = min(iov_iter_count(i),
1687                                         nrptrs * (size_t)PAGE_SIZE -
1688                                         offset);
1689                size_t num_pages;
1690                size_t reserve_bytes;
1691                size_t dirty_pages;
1692                size_t copied;
1693                size_t dirty_sectors;
1694                size_t num_sectors;
1695                int extents_locked;
1696
1697                /*
1698                 * Fault pages before locking them in prepare_pages
1699                 * to avoid recursive lock
1700                 */
1701                if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1702                        ret = -EFAULT;
1703                        break;
1704                }
1705
1706                only_release_metadata = false;
1707                sector_offset = pos & (fs_info->sectorsize - 1);
1708
1709                extent_changeset_release(data_reserved);
1710                ret = btrfs_check_data_free_space(BTRFS_I(inode),
1711                                                  &data_reserved, pos,
1712                                                  write_bytes);
1713                if (ret < 0) {
1714                        /*
1715                         * If we don't have to COW at the offset, reserve
1716                         * metadata only. write_bytes may get smaller than
1717                         * requested here.
1718                         */
1719                        if (btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1720                                                   &write_bytes) > 0)
1721                                only_release_metadata = true;
1722                        else
1723                                break;
1724                }
1725
1726                num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1727                WARN_ON(num_pages > nrptrs);
1728                reserve_bytes = round_up(write_bytes + sector_offset,
1729                                         fs_info->sectorsize);
1730                WARN_ON(reserve_bytes == 0);
1731                ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1732                                reserve_bytes);
1733                if (ret) {
1734                        if (!only_release_metadata)
1735                                btrfs_free_reserved_data_space(BTRFS_I(inode),
1736                                                data_reserved, pos,
1737                                                write_bytes);
1738                        else
1739                                btrfs_check_nocow_unlock(BTRFS_I(inode));
1740                        break;
1741                }
1742
1743                release_bytes = reserve_bytes;
1744again:
1745                /*
1746                 * This is going to setup the pages array with the number of
1747                 * pages we want, so we don't really need to worry about the
1748                 * contents of pages from loop to loop
1749                 */
1750                ret = prepare_pages(inode, pages, num_pages,
1751                                    pos, write_bytes,
1752                                    force_page_uptodate);
1753                if (ret) {
1754                        btrfs_delalloc_release_extents(BTRFS_I(inode),
1755                                                       reserve_bytes);
1756                        break;
1757                }
1758
1759                extents_locked = lock_and_cleanup_extent_if_need(
1760                                BTRFS_I(inode), pages,
1761                                num_pages, pos, write_bytes, &lockstart,
1762                                &lockend, &cached_state);
1763                if (extents_locked < 0) {
1764                        if (extents_locked == -EAGAIN)
1765                                goto again;
1766                        btrfs_delalloc_release_extents(BTRFS_I(inode),
1767                                                       reserve_bytes);
1768                        ret = extents_locked;
1769                        break;
1770                }
1771
1772                copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1773
1774                num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1775                dirty_sectors = round_up(copied + sector_offset,
1776                                        fs_info->sectorsize);
1777                dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1778
1779                /*
1780                 * if we have trouble faulting in the pages, fall
1781                 * back to one page at a time
1782                 */
1783                if (copied < write_bytes)
1784                        nrptrs = 1;
1785
1786                if (copied == 0) {
1787                        force_page_uptodate = true;
1788                        dirty_sectors = 0;
1789                        dirty_pages = 0;
1790                } else {
1791                        force_page_uptodate = false;
1792                        dirty_pages = DIV_ROUND_UP(copied + offset,
1793                                                   PAGE_SIZE);
1794                }
1795
1796                if (num_sectors > dirty_sectors) {
1797                        /* release everything except the sectors we dirtied */
1798                        release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1799                        if (only_release_metadata) {
1800                                btrfs_delalloc_release_metadata(BTRFS_I(inode),
1801                                                        release_bytes, true);
1802                        } else {
1803                                u64 __pos;
1804
1805                                __pos = round_down(pos,
1806                                                   fs_info->sectorsize) +
1807                                        (dirty_pages << PAGE_SHIFT);
1808                                btrfs_delalloc_release_space(BTRFS_I(inode),
1809                                                data_reserved, __pos,
1810                                                release_bytes, true);
1811                        }
1812                }
1813
1814                release_bytes = round_up(copied + sector_offset,
1815                                        fs_info->sectorsize);
1816
1817                ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1818                                        dirty_pages, pos, copied,
1819                                        &cached_state, only_release_metadata);
1820
1821                /*
1822                 * If we have not locked the extent range, because the range's
1823                 * start offset is >= i_size, we might still have a non-NULL
1824                 * cached extent state, acquired while marking the extent range
1825                 * as delalloc through btrfs_dirty_pages(). Therefore free any
1826                 * possible cached extent state to avoid a memory leak.
1827                 */
1828                if (extents_locked)
1829                        unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1830                                             lockstart, lockend, &cached_state);
1831                else
1832                        free_extent_state(cached_state);
1833
1834                btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1835                if (ret) {
1836                        btrfs_drop_pages(pages, num_pages);
1837                        break;
1838                }
1839
1840                release_bytes = 0;
1841                if (only_release_metadata)
1842                        btrfs_check_nocow_unlock(BTRFS_I(inode));
1843
1844                btrfs_drop_pages(pages, num_pages);
1845
1846                cond_resched();
1847
1848                balance_dirty_pages_ratelimited(inode->i_mapping);
1849
1850                pos += copied;
1851                num_written += copied;
1852        }
1853
1854        kfree(pages);
1855
1856        if (release_bytes) {
1857                if (only_release_metadata) {
1858                        btrfs_check_nocow_unlock(BTRFS_I(inode));
1859                        btrfs_delalloc_release_metadata(BTRFS_I(inode),
1860                                        release_bytes, true);
1861                } else {
1862                        btrfs_delalloc_release_space(BTRFS_I(inode),
1863                                        data_reserved,
1864                                        round_down(pos, fs_info->sectorsize),
1865                                        release_bytes, true);
1866                }
1867        }
1868
1869        extent_changeset_free(data_reserved);
1870        if (num_written > 0) {
1871                pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1872                iocb->ki_pos += num_written;
1873        }
1874out:
1875        btrfs_inode_unlock(inode, ilock_flags);
1876        return num_written ? num_written : ret;
1877}
1878
1879static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1880                               const struct iov_iter *iter, loff_t offset)
1881{
1882        const u32 blocksize_mask = fs_info->sectorsize - 1;
1883
1884        if (offset & blocksize_mask)
1885                return -EINVAL;
1886
1887        if (iov_iter_alignment(iter) & blocksize_mask)
1888                return -EINVAL;
1889
1890        return 0;
1891}
1892
1893static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1894{
1895        struct file *file = iocb->ki_filp;
1896        struct inode *inode = file_inode(file);
1897        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1898        loff_t pos;
1899        ssize_t written = 0;
1900        ssize_t written_buffered;
1901        loff_t endbyte;
1902        ssize_t err;
1903        unsigned int ilock_flags = 0;
1904        struct iomap_dio *dio = NULL;
1905
1906        if (iocb->ki_flags & IOCB_NOWAIT)
1907                ilock_flags |= BTRFS_ILOCK_TRY;
1908
1909        /* If the write DIO is within EOF, use a shared lock */
1910        if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode))
1911                ilock_flags |= BTRFS_ILOCK_SHARED;
1912
1913relock:
1914        err = btrfs_inode_lock(inode, ilock_flags);
1915        if (err < 0)
1916                return err;
1917
1918        err = generic_write_checks(iocb, from);
1919        if (err <= 0) {
1920                btrfs_inode_unlock(inode, ilock_flags);
1921                return err;
1922        }
1923
1924        err = btrfs_write_check(iocb, from, err);
1925        if (err < 0) {
1926                btrfs_inode_unlock(inode, ilock_flags);
1927                goto out;
1928        }
1929
1930        pos = iocb->ki_pos;
1931        /*
1932         * Re-check since file size may have changed just before taking the
1933         * lock or pos may have changed because of O_APPEND in generic_write_check()
1934         */
1935        if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1936            pos + iov_iter_count(from) > i_size_read(inode)) {
1937                btrfs_inode_unlock(inode, ilock_flags);
1938                ilock_flags &= ~BTRFS_ILOCK_SHARED;
1939                goto relock;
1940        }
1941
1942        if (check_direct_IO(fs_info, from, pos)) {
1943                btrfs_inode_unlock(inode, ilock_flags);
1944                goto buffered;
1945        }
1946
1947        dio = __iomap_dio_rw(iocb, from, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
1948                             0);
1949
1950        btrfs_inode_unlock(inode, ilock_flags);
1951
1952        if (IS_ERR_OR_NULL(dio)) {
1953                err = PTR_ERR_OR_ZERO(dio);
1954                if (err < 0 && err != -ENOTBLK)
1955                        goto out;
1956        } else {
1957                written = iomap_dio_complete(dio);
1958        }
1959
1960        if (written < 0 || !iov_iter_count(from)) {
1961                err = written;
1962                goto out;
1963        }
1964
1965buffered:
1966        pos = iocb->ki_pos;
1967        written_buffered = btrfs_buffered_write(iocb, from);
1968        if (written_buffered < 0) {
1969                err = written_buffered;
1970                goto out;
1971        }
1972        /*
1973         * Ensure all data is persisted. We want the next direct IO read to be
1974         * able to read what was just written.
1975         */
1976        endbyte = pos + written_buffered - 1;
1977        err = btrfs_fdatawrite_range(inode, pos, endbyte);
1978        if (err)
1979                goto out;
1980        err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1981        if (err)
1982                goto out;
1983        written += written_buffered;
1984        iocb->ki_pos = pos + written_buffered;
1985        invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1986                                 endbyte >> PAGE_SHIFT);
1987out:
1988        return written ? written : err;
1989}
1990
1991static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1992                                    struct iov_iter *from)
1993{
1994        struct file *file = iocb->ki_filp;
1995        struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1996        ssize_t num_written = 0;
1997        const bool sync = iocb->ki_flags & IOCB_DSYNC;
1998
1999        /*
2000         * If the fs flips readonly due to some impossible error, although we
2001         * have opened a file as writable, we have to stop this write operation
2002         * to ensure consistency.
2003         */
2004        if (test_bit(BTRFS_FS_STATE_ERROR, &inode->root->fs_info->fs_state))
2005                return -EROFS;
2006
2007        if (!(iocb->ki_flags & IOCB_DIRECT) &&
2008            (iocb->ki_flags & IOCB_NOWAIT))
2009                return -EOPNOTSUPP;
2010
2011        if (sync)
2012                atomic_inc(&inode->sync_writers);
2013
2014        if (iocb->ki_flags & IOCB_DIRECT)
2015                num_written = btrfs_direct_write(iocb, from);
2016        else
2017                num_written = btrfs_buffered_write(iocb, from);
2018
2019        btrfs_set_inode_last_sub_trans(inode);
2020
2021        if (num_written > 0)
2022                num_written = generic_write_sync(iocb, num_written);
2023
2024        if (sync)
2025                atomic_dec(&inode->sync_writers);
2026
2027        current->backing_dev_info = NULL;
2028        return num_written;
2029}
2030
2031int btrfs_release_file(struct inode *inode, struct file *filp)
2032{
2033        struct btrfs_file_private *private = filp->private_data;
2034
2035        if (private && private->filldir_buf)
2036                kfree(private->filldir_buf);
2037        kfree(private);
2038        filp->private_data = NULL;
2039
2040        /*
2041         * Set by setattr when we are about to truncate a file from a non-zero
2042         * size to a zero size.  This tries to flush down new bytes that may
2043         * have been written if the application were using truncate to replace
2044         * a file in place.
2045         */
2046        if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
2047                               &BTRFS_I(inode)->runtime_flags))
2048                        filemap_flush(inode->i_mapping);
2049        return 0;
2050}
2051
2052static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2053{
2054        int ret;
2055        struct blk_plug plug;
2056
2057        /*
2058         * This is only called in fsync, which would do synchronous writes, so
2059         * a plug can merge adjacent IOs as much as possible.  Esp. in case of
2060         * multiple disks using raid profile, a large IO can be split to
2061         * several segments of stripe length (currently 64K).
2062         */
2063        blk_start_plug(&plug);
2064        atomic_inc(&BTRFS_I(inode)->sync_writers);
2065        ret = btrfs_fdatawrite_range(inode, start, end);
2066        atomic_dec(&BTRFS_I(inode)->sync_writers);
2067        blk_finish_plug(&plug);
2068
2069        return ret;
2070}
2071
2072static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
2073{
2074        struct btrfs_inode *inode = BTRFS_I(ctx->inode);
2075        struct btrfs_fs_info *fs_info = inode->root->fs_info;
2076
2077        if (btrfs_inode_in_log(inode, fs_info->generation) &&
2078            list_empty(&ctx->ordered_extents))
2079                return true;
2080
2081        /*
2082         * If we are doing a fast fsync we can not bail out if the inode's
2083         * last_trans is <= then the last committed transaction, because we only
2084         * update the last_trans of the inode during ordered extent completion,
2085         * and for a fast fsync we don't wait for that, we only wait for the
2086         * writeback to complete.
2087         */
2088        if (inode->last_trans <= fs_info->last_trans_committed &&
2089            (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
2090             list_empty(&ctx->ordered_extents)))
2091                return true;
2092
2093        return false;
2094}
2095
2096/*
2097 * fsync call for both files and directories.  This logs the inode into
2098 * the tree log instead of forcing full commits whenever possible.
2099 *
2100 * It needs to call filemap_fdatawait so that all ordered extent updates are
2101 * in the metadata btree are up to date for copying to the log.
2102 *
2103 * It drops the inode mutex before doing the tree log commit.  This is an
2104 * important optimization for directories because holding the mutex prevents
2105 * new operations on the dir while we write to disk.
2106 */
2107int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2108{
2109        struct dentry *dentry = file_dentry(file);
2110        struct inode *inode = d_inode(dentry);
2111        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2112        struct btrfs_root *root = BTRFS_I(inode)->root;
2113        struct btrfs_trans_handle *trans;
2114        struct btrfs_log_ctx ctx;
2115        int ret = 0, err;
2116        u64 len;
2117        bool full_sync;
2118
2119        trace_btrfs_sync_file(file, datasync);
2120
2121        btrfs_init_log_ctx(&ctx, inode);
2122
2123        /*
2124         * Always set the range to a full range, otherwise we can get into
2125         * several problems, from missing file extent items to represent holes
2126         * when not using the NO_HOLES feature, to log tree corruption due to
2127         * races between hole detection during logging and completion of ordered
2128         * extents outside the range, to missing checksums due to ordered extents
2129         * for which we flushed only a subset of their pages.
2130         */
2131        start = 0;
2132        end = LLONG_MAX;
2133        len = (u64)LLONG_MAX + 1;
2134
2135        /*
2136         * We write the dirty pages in the range and wait until they complete
2137         * out of the ->i_mutex. If so, we can flush the dirty pages by
2138         * multi-task, and make the performance up.  See
2139         * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2140         */
2141        ret = start_ordered_ops(inode, start, end);
2142        if (ret)
2143                goto out;
2144
2145        btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2146
2147        atomic_inc(&root->log_batch);
2148
2149        /*
2150         * Always check for the full sync flag while holding the inode's lock,
2151         * to avoid races with other tasks. The flag must be either set all the
2152         * time during logging or always off all the time while logging.
2153         */
2154        full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2155                             &BTRFS_I(inode)->runtime_flags);
2156
2157        /*
2158         * Before we acquired the inode's lock and the mmap lock, someone may
2159         * have dirtied more pages in the target range. We need to make sure
2160         * that writeback for any such pages does not start while we are logging
2161         * the inode, because if it does, any of the following might happen when
2162         * we are not doing a full inode sync:
2163         *
2164         * 1) We log an extent after its writeback finishes but before its
2165         *    checksums are added to the csum tree, leading to -EIO errors
2166         *    when attempting to read the extent after a log replay.
2167         *
2168         * 2) We can end up logging an extent before its writeback finishes.
2169         *    Therefore after the log replay we will have a file extent item
2170         *    pointing to an unwritten extent (and no data checksums as well).
2171         *
2172         * So trigger writeback for any eventual new dirty pages and then we
2173         * wait for all ordered extents to complete below.
2174         */
2175        ret = start_ordered_ops(inode, start, end);
2176        if (ret) {
2177                btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2178                goto out;
2179        }
2180
2181        /*
2182         * We have to do this here to avoid the priority inversion of waiting on
2183         * IO of a lower priority task while holding a transaction open.
2184         *
2185         * For a full fsync we wait for the ordered extents to complete while
2186         * for a fast fsync we wait just for writeback to complete, and then
2187         * attach the ordered extents to the transaction so that a transaction
2188         * commit waits for their completion, to avoid data loss if we fsync,
2189         * the current transaction commits before the ordered extents complete
2190         * and a power failure happens right after that.
2191         *
2192         * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
2193         * logical address recorded in the ordered extent may change. We need
2194         * to wait for the IO to stabilize the logical address.
2195         */
2196        if (full_sync || btrfs_is_zoned(fs_info)) {
2197                ret = btrfs_wait_ordered_range(inode, start, len);
2198        } else {
2199                /*
2200                 * Get our ordered extents as soon as possible to avoid doing
2201                 * checksum lookups in the csum tree, and use instead the
2202                 * checksums attached to the ordered extents.
2203                 */
2204                btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
2205                                                      &ctx.ordered_extents);
2206                ret = filemap_fdatawait_range(inode->i_mapping, start, end);
2207        }
2208
2209        if (ret)
2210                goto out_release_extents;
2211
2212        atomic_inc(&root->log_batch);
2213
2214        smp_mb();
2215        if (skip_inode_logging(&ctx)) {
2216                /*
2217                 * We've had everything committed since the last time we were
2218                 * modified so clear this flag in case it was set for whatever
2219                 * reason, it's no longer relevant.
2220                 */
2221                clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2222                          &BTRFS_I(inode)->runtime_flags);
2223                /*
2224                 * An ordered extent might have started before and completed
2225                 * already with io errors, in which case the inode was not
2226                 * updated and we end up here. So check the inode's mapping
2227                 * for any errors that might have happened since we last
2228                 * checked called fsync.
2229                 */
2230                ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2231                goto out_release_extents;
2232        }
2233
2234        /*
2235         * We use start here because we will need to wait on the IO to complete
2236         * in btrfs_sync_log, which could require joining a transaction (for
2237         * example checking cross references in the nocow path).  If we use join
2238         * here we could get into a situation where we're waiting on IO to
2239         * happen that is blocked on a transaction trying to commit.  With start
2240         * we inc the extwriter counter, so we wait for all extwriters to exit
2241         * before we start blocking joiners.  This comment is to keep somebody
2242         * from thinking they are super smart and changing this to
2243         * btrfs_join_transaction *cough*Josef*cough*.
2244         */
2245        trans = btrfs_start_transaction(root, 0);
2246        if (IS_ERR(trans)) {
2247                ret = PTR_ERR(trans);
2248                goto out_release_extents;
2249        }
2250        trans->in_fsync = true;
2251
2252        ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
2253        btrfs_release_log_ctx_extents(&ctx);
2254        if (ret < 0) {
2255                /* Fallthrough and commit/free transaction. */
2256                ret = 1;
2257        }
2258
2259        /* we've logged all the items and now have a consistent
2260         * version of the file in the log.  It is possible that
2261         * someone will come in and modify the file, but that's
2262         * fine because the log is consistent on disk, and we
2263         * have references to all of the file's extents
2264         *
2265         * It is possible that someone will come in and log the
2266         * file again, but that will end up using the synchronization
2267         * inside btrfs_sync_log to keep things safe.
2268         */
2269        btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2270
2271        if (ret != BTRFS_NO_LOG_SYNC) {
2272                if (!ret) {
2273                        ret = btrfs_sync_log(trans, root, &ctx);
2274                        if (!ret) {
2275                                ret = btrfs_end_transaction(trans);
2276                                goto out;
2277                        }
2278                }
2279                if (!full_sync) {
2280                        ret = btrfs_wait_ordered_range(inode, start, len);
2281                        if (ret) {
2282                                btrfs_end_transaction(trans);
2283                                goto out;
2284                        }
2285                }
2286                ret = btrfs_commit_transaction(trans);
2287        } else {
2288                ret = btrfs_end_transaction(trans);
2289        }
2290out:
2291        ASSERT(list_empty(&ctx.list));
2292        err = file_check_and_advance_wb_err(file);
2293        if (!ret)
2294                ret = err;
2295        return ret > 0 ? -EIO : ret;
2296
2297out_release_extents:
2298        btrfs_release_log_ctx_extents(&ctx);
2299        btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2300        goto out;
2301}
2302
2303static const struct vm_operations_struct btrfs_file_vm_ops = {
2304        .fault          = filemap_fault,
2305        .map_pages      = filemap_map_pages,
2306        .page_mkwrite   = btrfs_page_mkwrite,
2307};
2308
2309static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
2310{
2311        struct address_space *mapping = filp->f_mapping;
2312
2313        if (!mapping->a_ops->readpage)
2314                return -ENOEXEC;
2315
2316        file_accessed(filp);
2317        vma->vm_ops = &btrfs_file_vm_ops;
2318
2319        return 0;
2320}
2321
2322static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2323                          int slot, u64 start, u64 end)
2324{
2325        struct btrfs_file_extent_item *fi;
2326        struct btrfs_key key;
2327
2328        if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2329                return 0;
2330
2331        btrfs_item_key_to_cpu(leaf, &key, slot);
2332        if (key.objectid != btrfs_ino(inode) ||
2333            key.type != BTRFS_EXTENT_DATA_KEY)
2334                return 0;
2335
2336        fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2337
2338        if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2339                return 0;
2340
2341        if (btrfs_file_extent_disk_bytenr(leaf, fi))
2342                return 0;
2343
2344        if (key.offset == end)
2345                return 1;
2346        if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2347                return 1;
2348        return 0;
2349}
2350
2351static int fill_holes(struct btrfs_trans_handle *trans,
2352                struct btrfs_inode *inode,
2353                struct btrfs_path *path, u64 offset, u64 end)
2354{
2355        struct btrfs_fs_info *fs_info = trans->fs_info;
2356        struct btrfs_root *root = inode->root;
2357        struct extent_buffer *leaf;
2358        struct btrfs_file_extent_item *fi;
2359        struct extent_map *hole_em;
2360        struct extent_map_tree *em_tree = &inode->extent_tree;
2361        struct btrfs_key key;
2362        int ret;
2363
2364        if (btrfs_fs_incompat(fs_info, NO_HOLES))
2365                goto out;
2366
2367        key.objectid = btrfs_ino(inode);
2368        key.type = BTRFS_EXTENT_DATA_KEY;
2369        key.offset = offset;
2370
2371        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2372        if (ret <= 0) {
2373                /*
2374                 * We should have dropped this offset, so if we find it then
2375                 * something has gone horribly wrong.
2376                 */
2377                if (ret == 0)
2378                        ret = -EINVAL;
2379                return ret;
2380        }
2381
2382        leaf = path->nodes[0];
2383        if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2384                u64 num_bytes;
2385
2386                path->slots[0]--;
2387                fi = btrfs_item_ptr(leaf, path->slots[0],
2388                                    struct btrfs_file_extent_item);
2389                num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2390                        end - offset;
2391                btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2392                btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2393                btrfs_set_file_extent_offset(leaf, fi, 0);
2394                btrfs_mark_buffer_dirty(leaf);
2395                goto out;
2396        }
2397
2398        if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2399                u64 num_bytes;
2400
2401                key.offset = offset;
2402                btrfs_set_item_key_safe(fs_info, path, &key);
2403                fi = btrfs_item_ptr(leaf, path->slots[0],
2404                                    struct btrfs_file_extent_item);
2405                num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2406                        offset;
2407                btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2408                btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2409                btrfs_set_file_extent_offset(leaf, fi, 0);
2410                btrfs_mark_buffer_dirty(leaf);
2411                goto out;
2412        }
2413        btrfs_release_path(path);
2414
2415        ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2416                        offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2417        if (ret)
2418                return ret;
2419
2420out:
2421        btrfs_release_path(path);
2422
2423        hole_em = alloc_extent_map();
2424        if (!hole_em) {
2425                btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2426                set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2427        } else {
2428                hole_em->start = offset;
2429                hole_em->len = end - offset;
2430                hole_em->ram_bytes = hole_em->len;
2431                hole_em->orig_start = offset;
2432
2433                hole_em->block_start = EXTENT_MAP_HOLE;
2434                hole_em->block_len = 0;
2435                hole_em->orig_block_len = 0;
2436                hole_em->compress_type = BTRFS_COMPRESS_NONE;
2437                hole_em->generation = trans->transid;
2438
2439                do {
2440                        btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2441                        write_lock(&em_tree->lock);
2442                        ret = add_extent_mapping(em_tree, hole_em, 1);
2443                        write_unlock(&em_tree->lock);
2444                } while (ret == -EEXIST);
2445                free_extent_map(hole_em);
2446                if (ret)
2447                        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2448                                        &inode->runtime_flags);
2449        }
2450
2451        return 0;
2452}
2453
2454/*
2455 * Find a hole extent on given inode and change start/len to the end of hole
2456 * extent.(hole/vacuum extent whose em->start <= start &&
2457 *         em->start + em->len > start)
2458 * When a hole extent is found, return 1 and modify start/len.
2459 */
2460static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2461{
2462        struct btrfs_fs_info *fs_info = inode->root->fs_info;
2463        struct extent_map *em;
2464        int ret = 0;
2465
2466        em = btrfs_get_extent(inode, NULL, 0,
2467                              round_down(*start, fs_info->sectorsize),
2468                              round_up(*len, fs_info->sectorsize));
2469        if (IS_ERR(em))
2470                return PTR_ERR(em);
2471
2472        /* Hole or vacuum extent(only exists in no-hole mode) */
2473        if (em->block_start == EXTENT_MAP_HOLE) {
2474                ret = 1;
2475                *len = em->start + em->len > *start + *len ?
2476                       0 : *start + *len - em->start - em->len;
2477                *start = em->start + em->len;
2478        }
2479        free_extent_map(em);
2480        return ret;
2481}
2482
2483static int btrfs_punch_hole_lock_range(struct inode *inode,
2484                                       const u64 lockstart,
2485                                       const u64 lockend,
2486                                       struct extent_state **cached_state)
2487{
2488        /*
2489         * For subpage case, if the range is not at page boundary, we could
2490         * have pages at the leading/tailing part of the range.
2491         * This could lead to dead loop since filemap_range_has_page()
2492         * will always return true.
2493         * So here we need to do extra page alignment for
2494         * filemap_range_has_page().
2495         */
2496        const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2497        const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2498
2499        while (1) {
2500                struct btrfs_ordered_extent *ordered;
2501                int ret;
2502
2503                truncate_pagecache_range(inode, lockstart, lockend);
2504
2505                lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2506                                 cached_state);
2507                ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
2508                                                            lockend);
2509
2510                /*
2511                 * We need to make sure we have no ordered extents in this range
2512                 * and nobody raced in and read a page in this range, if we did
2513                 * we need to try again.
2514                 */
2515                if ((!ordered ||
2516                    (ordered->file_offset + ordered->num_bytes <= lockstart ||
2517                     ordered->file_offset > lockend)) &&
2518                     !filemap_range_has_page(inode->i_mapping,
2519                                             page_lockstart, page_lockend)) {
2520                        if (ordered)
2521                                btrfs_put_ordered_extent(ordered);
2522                        break;
2523                }
2524                if (ordered)
2525                        btrfs_put_ordered_extent(ordered);
2526                unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2527                                     lockend, cached_state);
2528                ret = btrfs_wait_ordered_range(inode, lockstart,
2529                                               lockend - lockstart + 1);
2530                if (ret)
2531                        return ret;
2532        }
2533        return 0;
2534}
2535
2536static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2537                                     struct btrfs_inode *inode,
2538                                     struct btrfs_path *path,
2539                                     struct btrfs_replace_extent_info *extent_info,
2540                                     const u64 replace_len,
2541                                     const u64 bytes_to_drop)
2542{
2543        struct btrfs_fs_info *fs_info = trans->fs_info;
2544        struct btrfs_root *root = inode->root;
2545        struct btrfs_file_extent_item *extent;
2546        struct extent_buffer *leaf;
2547        struct btrfs_key key;
2548        int slot;
2549        struct btrfs_ref ref = { 0 };
2550        int ret;
2551
2552        if (replace_len == 0)
2553                return 0;
2554
2555        if (extent_info->disk_offset == 0 &&
2556            btrfs_fs_incompat(fs_info, NO_HOLES)) {
2557                btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2558                return 0;
2559        }
2560
2561        key.objectid = btrfs_ino(inode);
2562        key.type = BTRFS_EXTENT_DATA_KEY;
2563        key.offset = extent_info->file_offset;
2564        ret = btrfs_insert_empty_item(trans, root, path, &key,
2565                                      sizeof(struct btrfs_file_extent_item));
2566        if (ret)
2567                return ret;
2568        leaf = path->nodes[0];
2569        slot = path->slots[0];
2570        write_extent_buffer(leaf, extent_info->extent_buf,
2571                            btrfs_item_ptr_offset(leaf, slot),
2572                            sizeof(struct btrfs_file_extent_item));
2573        extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2574        ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2575        btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2576        btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2577        if (extent_info->is_new_extent)
2578                btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2579        btrfs_mark_buffer_dirty(leaf);
2580        btrfs_release_path(path);
2581
2582        ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2583                                                replace_len);
2584        if (ret)
2585                return ret;
2586
2587        /* If it's a hole, nothing more needs to be done. */
2588        if (extent_info->disk_offset == 0) {
2589                btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2590                return 0;
2591        }
2592
2593        btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2594
2595        if (extent_info->is_new_extent && extent_info->insertions == 0) {
2596                key.objectid = extent_info->disk_offset;
2597                key.type = BTRFS_EXTENT_ITEM_KEY;
2598                key.offset = extent_info->disk_len;
2599                ret = btrfs_alloc_reserved_file_extent(trans, root,
2600                                                       btrfs_ino(inode),
2601                                                       extent_info->file_offset,
2602                                                       extent_info->qgroup_reserved,
2603                                                       &key);
2604        } else {
2605                u64 ref_offset;
2606
2607                btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2608                                       extent_info->disk_offset,
2609                                       extent_info->disk_len, 0);
2610                ref_offset = extent_info->file_offset - extent_info->data_offset;
2611                btrfs_init_data_ref(&ref, root->root_key.objectid,
2612                                    btrfs_ino(inode), ref_offset);
2613                ret = btrfs_inc_extent_ref(trans, &ref);
2614        }
2615
2616        extent_info->insertions++;
2617
2618        return ret;
2619}
2620
2621/*
2622 * The respective range must have been previously locked, as well as the inode.
2623 * The end offset is inclusive (last byte of the range).
2624 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2625 * the file range with an extent.
2626 * When not punching a hole, we don't want to end up in a state where we dropped
2627 * extents without inserting a new one, so we must abort the transaction to avoid
2628 * a corruption.
2629 */
2630int btrfs_replace_file_extents(struct btrfs_inode *inode,
2631                               struct btrfs_path *path, const u64 start,
2632                               const u64 end,
2633                               struct btrfs_replace_extent_info *extent_info,
2634                               struct btrfs_trans_handle **trans_out)
2635{
2636        struct btrfs_drop_extents_args drop_args = { 0 };
2637        struct btrfs_root *root = inode->root;
2638        struct btrfs_fs_info *fs_info = root->fs_info;
2639        u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2640        u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2641        struct btrfs_trans_handle *trans = NULL;
2642        struct btrfs_block_rsv *rsv;
2643        unsigned int rsv_count;
2644        u64 cur_offset;
2645        u64 len = end - start;
2646        int ret = 0;
2647
2648        if (end <= start)
2649                return -EINVAL;
2650
2651        rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2652        if (!rsv) {
2653                ret = -ENOMEM;
2654                goto out;
2655        }
2656        rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2657        rsv->failfast = 1;
2658
2659        /*
2660         * 1 - update the inode
2661         * 1 - removing the extents in the range
2662         * 1 - adding the hole extent if no_holes isn't set or if we are
2663         *     replacing the range with a new extent
2664         */
2665        if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2666                rsv_count = 3;
2667        else
2668                rsv_count = 2;
2669
2670        trans = btrfs_start_transaction(root, rsv_count);
2671        if (IS_ERR(trans)) {
2672                ret = PTR_ERR(trans);
2673                trans = NULL;
2674                goto out_free;
2675        }
2676
2677        ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2678                                      min_size, false);
2679        BUG_ON(ret);
2680        trans->block_rsv = rsv;
2681
2682        cur_offset = start;
2683        drop_args.path = path;
2684        drop_args.end = end + 1;
2685        drop_args.drop_cache = true;
2686        while (cur_offset < end) {
2687                drop_args.start = cur_offset;
2688                ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2689                /* If we are punching a hole decrement the inode's byte count */
2690                if (!extent_info)
2691                        btrfs_update_inode_bytes(inode, 0,
2692                                                 drop_args.bytes_found);
2693                if (ret != -ENOSPC) {
2694                        /*
2695                         * When cloning we want to avoid transaction aborts when
2696                         * nothing was done and we are attempting to clone parts
2697                         * of inline extents, in such cases -EOPNOTSUPP is
2698                         * returned by __btrfs_drop_extents() without having
2699                         * changed anything in the file.
2700                         */
2701                        if (extent_info && !extent_info->is_new_extent &&
2702                            ret && ret != -EOPNOTSUPP)
2703                                btrfs_abort_transaction(trans, ret);
2704                        break;
2705                }
2706
2707                trans->block_rsv = &fs_info->trans_block_rsv;
2708
2709                if (!extent_info && cur_offset < drop_args.drop_end &&
2710                    cur_offset < ino_size) {
2711                        ret = fill_holes(trans, inode, path, cur_offset,
2712                                         drop_args.drop_end);
2713                        if (ret) {
2714                                /*
2715                                 * If we failed then we didn't insert our hole
2716                                 * entries for the area we dropped, so now the
2717                                 * fs is corrupted, so we must abort the
2718                                 * transaction.
2719                                 */
2720                                btrfs_abort_transaction(trans, ret);
2721                                break;
2722                        }
2723                } else if (!extent_info && cur_offset < drop_args.drop_end) {
2724                        /*
2725                         * We are past the i_size here, but since we didn't
2726                         * insert holes we need to clear the mapped area so we
2727                         * know to not set disk_i_size in this area until a new
2728                         * file extent is inserted here.
2729                         */
2730                        ret = btrfs_inode_clear_file_extent_range(inode,
2731                                        cur_offset,
2732                                        drop_args.drop_end - cur_offset);
2733                        if (ret) {
2734                                /*
2735                                 * We couldn't clear our area, so we could
2736                                 * presumably adjust up and corrupt the fs, so
2737                                 * we need to abort.
2738                                 */
2739                                btrfs_abort_transaction(trans, ret);
2740                                break;
2741                        }
2742                }
2743
2744                if (extent_info &&
2745                    drop_args.drop_end > extent_info->file_offset) {
2746                        u64 replace_len = drop_args.drop_end -
2747                                          extent_info->file_offset;
2748
2749                        ret = btrfs_insert_replace_extent(trans, inode, path,
2750                                        extent_info, replace_len,
2751                                        drop_args.bytes_found);
2752                        if (ret) {
2753                                btrfs_abort_transaction(trans, ret);
2754                                break;
2755                        }
2756                        extent_info->data_len -= replace_len;
2757                        extent_info->data_offset += replace_len;
2758                        extent_info->file_offset += replace_len;
2759                }
2760
2761                ret = btrfs_update_inode(trans, root, inode);
2762                if (ret)
2763                        break;
2764
2765                btrfs_end_transaction(trans);
2766                btrfs_btree_balance_dirty(fs_info);
2767
2768                trans = btrfs_start_transaction(root, rsv_count);
2769                if (IS_ERR(trans)) {
2770                        ret = PTR_ERR(trans);
2771                        trans = NULL;
2772                        break;
2773                }
2774
2775                ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2776                                              rsv, min_size, false);
2777                BUG_ON(ret);    /* shouldn't happen */
2778                trans->block_rsv = rsv;
2779
2780                cur_offset = drop_args.drop_end;
2781                len = end - cur_offset;
2782                if (!extent_info && len) {
2783                        ret = find_first_non_hole(inode, &cur_offset, &len);
2784                        if (unlikely(ret < 0))
2785                                break;
2786                        if (ret && !len) {
2787                                ret = 0;
2788                                break;
2789                        }
2790                }
2791        }
2792
2793        /*
2794         * If we were cloning, force the next fsync to be a full one since we
2795         * we replaced (or just dropped in the case of cloning holes when
2796         * NO_HOLES is enabled) file extent items and did not setup new extent
2797         * maps for the replacement extents (or holes).
2798         */
2799        if (extent_info && !extent_info->is_new_extent)
2800                set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2801
2802        if (ret)
2803                goto out_trans;
2804
2805        trans->block_rsv = &fs_info->trans_block_rsv;
2806        /*
2807         * If we are using the NO_HOLES feature we might have had already an
2808         * hole that overlaps a part of the region [lockstart, lockend] and
2809         * ends at (or beyond) lockend. Since we have no file extent items to
2810         * represent holes, drop_end can be less than lockend and so we must
2811         * make sure we have an extent map representing the existing hole (the
2812         * call to __btrfs_drop_extents() might have dropped the existing extent
2813         * map representing the existing hole), otherwise the fast fsync path
2814         * will not record the existence of the hole region
2815         * [existing_hole_start, lockend].
2816         */
2817        if (drop_args.drop_end <= end)
2818                drop_args.drop_end = end + 1;
2819        /*
2820         * Don't insert file hole extent item if it's for a range beyond eof
2821         * (because it's useless) or if it represents a 0 bytes range (when
2822         * cur_offset == drop_end).
2823         */
2824        if (!extent_info && cur_offset < ino_size &&
2825            cur_offset < drop_args.drop_end) {
2826                ret = fill_holes(trans, inode, path, cur_offset,
2827                                 drop_args.drop_end);
2828                if (ret) {
2829                        /* Same comment as above. */
2830                        btrfs_abort_transaction(trans, ret);
2831                        goto out_trans;
2832                }
2833        } else if (!extent_info && cur_offset < drop_args.drop_end) {
2834                /* See the comment in the loop above for the reasoning here. */
2835                ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2836                                        drop_args.drop_end - cur_offset);
2837                if (ret) {
2838                        btrfs_abort_transaction(trans, ret);
2839                        goto out_trans;
2840                }
2841
2842        }
2843        if (extent_info) {
2844                ret = btrfs_insert_replace_extent(trans, inode, path,
2845                                extent_info, extent_info->data_len,
2846                                drop_args.bytes_found);
2847                if (ret) {
2848                        btrfs_abort_transaction(trans, ret);
2849                        goto out_trans;
2850                }
2851        }
2852
2853out_trans:
2854        if (!trans)
2855                goto out_free;
2856
2857        trans->block_rsv = &fs_info->trans_block_rsv;
2858        if (ret)
2859                btrfs_end_transaction(trans);
2860        else
2861                *trans_out = trans;
2862out_free:
2863        btrfs_free_block_rsv(fs_info, rsv);
2864out:
2865        return ret;
2866}
2867
2868static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2869{
2870        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2871        struct btrfs_root *root = BTRFS_I(inode)->root;
2872        struct extent_state *cached_state = NULL;
2873        struct btrfs_path *path;
2874        struct btrfs_trans_handle *trans = NULL;
2875        u64 lockstart;
2876        u64 lockend;
2877        u64 tail_start;
2878        u64 tail_len;
2879        u64 orig_start = offset;
2880        int ret = 0;
2881        bool same_block;
2882        u64 ino_size;
2883        bool truncated_block = false;
2884        bool updated_inode = false;
2885
2886        ret = btrfs_wait_ordered_range(inode, offset, len);
2887        if (ret)
2888                return ret;
2889
2890        btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2891        ino_size = round_up(inode->i_size, fs_info->sectorsize);
2892        ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2893        if (ret < 0)
2894                goto out_only_mutex;
2895        if (ret && !len) {
2896                /* Already in a large hole */
2897                ret = 0;
2898                goto out_only_mutex;
2899        }
2900
2901        lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode)));
2902        lockend = round_down(offset + len,
2903                             btrfs_inode_sectorsize(BTRFS_I(inode))) - 1;
2904        same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2905                == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2906        /*
2907         * We needn't truncate any block which is beyond the end of the file
2908         * because we are sure there is no data there.
2909         */
2910        /*
2911         * Only do this if we are in the same block and we aren't doing the
2912         * entire block.
2913         */
2914        if (same_block && len < fs_info->sectorsize) {
2915                if (offset < ino_size) {
2916                        truncated_block = true;
2917                        ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2918                                                   0);
2919                } else {
2920                        ret = 0;
2921                }
2922                goto out_only_mutex;
2923        }
2924
2925        /* zero back part of the first block */
2926        if (offset < ino_size) {
2927                truncated_block = true;
2928                ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2929                if (ret) {
2930                        btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2931                        return ret;
2932                }
2933        }
2934
2935        /* Check the aligned pages after the first unaligned page,
2936         * if offset != orig_start, which means the first unaligned page
2937         * including several following pages are already in holes,
2938         * the extra check can be skipped */
2939        if (offset == orig_start) {
2940                /* after truncate page, check hole again */
2941                len = offset + len - lockstart;
2942                offset = lockstart;
2943                ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2944                if (ret < 0)
2945                        goto out_only_mutex;
2946                if (ret && !len) {
2947                        ret = 0;
2948                        goto out_only_mutex;
2949                }
2950                lockstart = offset;
2951        }
2952
2953        /* Check the tail unaligned part is in a hole */
2954        tail_start = lockend + 1;
2955        tail_len = offset + len - tail_start;
2956        if (tail_len) {
2957                ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2958                if (unlikely(ret < 0))
2959                        goto out_only_mutex;
2960                if (!ret) {
2961                        /* zero the front end of the last page */
2962                        if (tail_start + tail_len < ino_size) {
2963                                truncated_block = true;
2964                                ret = btrfs_truncate_block(BTRFS_I(inode),
2965                                                        tail_start + tail_len,
2966                                                        0, 1);
2967                                if (ret)
2968                                        goto out_only_mutex;
2969                        }
2970                }
2971        }
2972
2973        if (lockend < lockstart) {
2974                ret = 0;
2975                goto out_only_mutex;
2976        }
2977
2978        ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2979                                          &cached_state);
2980        if (ret)
2981                goto out_only_mutex;
2982
2983        path = btrfs_alloc_path();
2984        if (!path) {
2985                ret = -ENOMEM;
2986                goto out;
2987        }
2988
2989        ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2990                                         lockend, NULL, &trans);
2991        btrfs_free_path(path);
2992        if (ret)
2993                goto out;
2994
2995        ASSERT(trans != NULL);
2996        inode_inc_iversion(inode);
2997        inode->i_mtime = inode->i_ctime = current_time(inode);
2998        ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2999        updated_inode = true;
3000        btrfs_end_transaction(trans);
3001        btrfs_btree_balance_dirty(fs_info);
3002out:
3003        unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3004                             &cached_state);
3005out_only_mutex:
3006        if (!updated_inode && truncated_block && !ret) {
3007                /*
3008                 * If we only end up zeroing part of a page, we still need to
3009                 * update the inode item, so that all the time fields are
3010                 * updated as well as the necessary btrfs inode in memory fields
3011                 * for detecting, at fsync time, if the inode isn't yet in the
3012                 * log tree or it's there but not up to date.
3013                 */
3014                struct timespec64 now = current_time(inode);
3015
3016                inode_inc_iversion(inode);
3017                inode->i_mtime = now;
3018                inode->i_ctime = now;
3019                trans = btrfs_start_transaction(root, 1);
3020                if (IS_ERR(trans)) {
3021                        ret = PTR_ERR(trans);
3022                } else {
3023                        int ret2;
3024
3025                        ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3026                        ret2 = btrfs_end_transaction(trans);
3027                        if (!ret)
3028                                ret = ret2;
3029                }
3030        }
3031        btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3032        return ret;
3033}
3034
3035/* Helper structure to record which range is already reserved */
3036struct falloc_range {
3037        struct list_head list;
3038        u64 start;
3039        u64 len;
3040};
3041
3042/*
3043 * Helper function to add falloc range
3044 *
3045 * Caller should have locked the larger range of extent containing
3046 * [start, len)
3047 */
3048static int add_falloc_range(struct list_head *head, u64 start, u64 len)
3049{
3050        struct falloc_range *range = NULL;
3051
3052        if (!list_empty(head)) {
3053                /*
3054                 * As fallocate iterates by bytenr order, we only need to check
3055                 * the last range.
3056                 */
3057                range = list_last_entry(head, struct falloc_range, list);
3058                if (range->start + range->len == start) {
3059                        range->len += len;
3060                        return 0;
3061                }
3062        }
3063
3064        range = kmalloc(sizeof(*range), GFP_KERNEL);
3065        if (!range)
3066                return -ENOMEM;
3067        range->start = start;
3068        range->len = len;
3069        list_add_tail(&range->list, head);
3070        return 0;
3071}
3072
3073static int btrfs_fallocate_update_isize(struct inode *inode,
3074                                        const u64 end,
3075                                        const int mode)
3076{
3077        struct btrfs_trans_handle *trans;
3078        struct btrfs_root *root = BTRFS_I(inode)->root;
3079        int ret;
3080        int ret2;
3081
3082        if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3083                return 0;
3084
3085        trans = btrfs_start_transaction(root, 1);
3086        if (IS_ERR(trans))
3087                return PTR_ERR(trans);
3088
3089        inode->i_ctime = current_time(inode);
3090        i_size_write(inode, end);
3091        btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
3092        ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3093        ret2 = btrfs_end_transaction(trans);
3094
3095        return ret ? ret : ret2;
3096}
3097
3098enum {
3099        RANGE_BOUNDARY_WRITTEN_EXTENT,
3100        RANGE_BOUNDARY_PREALLOC_EXTENT,
3101        RANGE_BOUNDARY_HOLE,
3102};
3103
3104static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
3105                                                 u64 offset)
3106{
3107        const u64 sectorsize = btrfs_inode_sectorsize(inode);
3108        struct extent_map *em;
3109        int ret;
3110
3111        offset = round_down(offset, sectorsize);
3112        em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
3113        if (IS_ERR(em))
3114                return PTR_ERR(em);
3115
3116        if (em->block_start == EXTENT_MAP_HOLE)
3117                ret = RANGE_BOUNDARY_HOLE;
3118        else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3119                ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3120        else
3121                ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3122
3123        free_extent_map(em);
3124        return ret;
3125}
3126
3127static int btrfs_zero_range(struct inode *inode,
3128                            loff_t offset,
3129                            loff_t len,
3130                            const int mode)
3131{
3132        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3133        struct extent_map *em;
3134        struct extent_changeset *data_reserved = NULL;
3135        int ret;
3136        u64 alloc_hint = 0;
3137        const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode));
3138        u64 alloc_start = round_down(offset, sectorsize);
3139        u64 alloc_end = round_up(offset + len, sectorsize);
3140        u64 bytes_to_reserve = 0;
3141        bool space_reserved = false;
3142
3143        inode_dio_wait(inode);
3144
3145        em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3146                              alloc_end - alloc_start);
3147        if (IS_ERR(em)) {
3148                ret = PTR_ERR(em);
3149                goto out;
3150        }
3151
3152        /*
3153         * Avoid hole punching and extent allocation for some cases. More cases
3154         * could be considered, but these are unlikely common and we keep things
3155         * as simple as possible for now. Also, intentionally, if the target
3156         * range contains one or more prealloc extents together with regular
3157         * extents and holes, we drop all the existing extents and allocate a
3158         * new prealloc extent, so that we get a larger contiguous disk extent.
3159         */
3160        if (em->start <= alloc_start &&
3161            test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3162                const u64 em_end = em->start + em->len;
3163
3164                if (em_end >= offset + len) {
3165                        /*
3166                         * The whole range is already a prealloc extent,
3167                         * do nothing except updating the inode's i_size if
3168                         * needed.
3169                         */
3170                        free_extent_map(em);
3171                        ret = btrfs_fallocate_update_isize(inode, offset + len,
3172                                                           mode);
3173                        goto out;
3174                }
3175                /*
3176                 * Part of the range is already a prealloc extent, so operate
3177                 * only on the remaining part of the range.
3178                 */
3179                alloc_start = em_end;
3180                ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3181                len = offset + len - alloc_start;
3182                offset = alloc_start;
3183                alloc_hint = em->block_start + em->len;
3184        }
3185        free_extent_map(em);
3186
3187        if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3188            BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3189                em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3190                                      sectorsize);
3191                if (IS_ERR(em)) {
3192                        ret = PTR_ERR(em);
3193                        goto out;
3194                }
3195
3196                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3197                        free_extent_map(em);
3198                        ret = btrfs_fallocate_update_isize(inode, offset + len,
3199                                                           mode);
3200                        goto out;
3201                }
3202                if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3203                        free_extent_map(em);
3204                        ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
3205                                                   0);
3206                        if (!ret)
3207                                ret = btrfs_fallocate_update_isize(inode,
3208                                                                   offset + len,
3209                                                                   mode);
3210                        return ret;
3211                }
3212                free_extent_map(em);
3213                alloc_start = round_down(offset, sectorsize);
3214                alloc_end = alloc_start + sectorsize;
3215                goto reserve_space;
3216        }
3217
3218        alloc_start = round_up(offset, sectorsize);
3219        alloc_end = round_down(offset + len, sectorsize);
3220
3221        /*
3222         * For unaligned ranges, check the pages at the boundaries, they might
3223         * map to an extent, in which case we need to partially zero them, or
3224         * they might map to a hole, in which case we need our allocation range
3225         * to cover them.
3226         */
3227        if (!IS_ALIGNED(offset, sectorsize)) {
3228                ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3229                                                            offset);
3230                if (ret < 0)
3231                        goto out;
3232                if (ret == RANGE_BOUNDARY_HOLE) {
3233                        alloc_start = round_down(offset, sectorsize);
3234                        ret = 0;
3235                } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3236                        ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
3237                        if (ret)
3238                                goto out;
3239                } else {
3240                        ret = 0;
3241                }
3242        }
3243
3244        if (!IS_ALIGNED(offset + len, sectorsize)) {
3245                ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3246                                                            offset + len);
3247                if (ret < 0)
3248                        goto out;
3249                if (ret == RANGE_BOUNDARY_HOLE) {
3250                        alloc_end = round_up(offset + len, sectorsize);
3251                        ret = 0;
3252                } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3253                        ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
3254                                                   0, 1);
3255                        if (ret)
3256                                goto out;
3257                } else {
3258                        ret = 0;
3259                }
3260        }
3261
3262reserve_space:
3263        if (alloc_start < alloc_end) {
3264                struct extent_state *cached_state = NULL;
3265                const u64 lockstart = alloc_start;
3266                const u64 lockend = alloc_end - 1;
3267
3268                bytes_to_reserve = alloc_end - alloc_start;
3269                ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3270                                                      bytes_to_reserve);
3271                if (ret < 0)
3272                        goto out;
3273                space_reserved = true;
3274                ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3275                                                  &cached_state);
3276                if (ret)
3277                        goto out;
3278                ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3279                                                alloc_start, bytes_to_reserve);
3280                if (ret) {
3281                        unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3282                                             lockend, &cached_state);
3283                        goto out;
3284                }
3285                ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3286                                                alloc_end - alloc_start,
3287                                                i_blocksize(inode),
3288                                                offset + len, &alloc_hint);
3289                unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3290                                     lockend, &cached_state);
3291                /* btrfs_prealloc_file_range releases reserved space on error */
3292                if (ret) {
3293                        space_reserved = false;
3294                        goto out;
3295                }
3296        }
3297        ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3298 out:
3299        if (ret && space_reserved)
3300                btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3301                                               alloc_start, bytes_to_reserve);
3302        extent_changeset_free(data_reserved);
3303
3304        return ret;
3305}
3306
3307static long btrfs_fallocate(struct file *file, int mode,
3308                            loff_t offset, loff_t len)
3309{
3310        struct inode *inode = file_inode(file);
3311        struct extent_state *cached_state = NULL;
3312        struct extent_changeset *data_reserved = NULL;
3313        struct falloc_range *range;
3314        struct falloc_range *tmp;
3315        struct list_head reserve_list;
3316        u64 cur_offset;
3317        u64 last_byte;
3318        u64 alloc_start;
3319        u64 alloc_end;
3320        u64 alloc_hint = 0;
3321        u64 locked_end;
3322        u64 actual_end = 0;
3323        struct extent_map *em;
3324        int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode));
3325        int ret;
3326
3327        /* Do not allow fallocate in ZONED mode */
3328        if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3329                return -EOPNOTSUPP;
3330
3331        alloc_start = round_down(offset, blocksize);
3332        alloc_end = round_up(offset + len, blocksize);
3333        cur_offset = alloc_start;
3334
3335        /* Make sure we aren't being give some crap mode */
3336        if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3337                     FALLOC_FL_ZERO_RANGE))
3338                return -EOPNOTSUPP;
3339
3340        if (mode & FALLOC_FL_PUNCH_HOLE)
3341                return btrfs_punch_hole(inode, offset, len);
3342
3343        /*
3344         * Only trigger disk allocation, don't trigger qgroup reserve
3345         *
3346         * For qgroup space, it will be checked later.
3347         */
3348        if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3349                ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3350                                                      alloc_end - alloc_start);
3351                if (ret < 0)
3352                        return ret;
3353        }
3354
3355        btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
3356
3357        if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3358                ret = inode_newsize_ok(inode, offset + len);
3359                if (ret)
3360                        goto out;
3361        }
3362
3363        /*
3364         * TODO: Move these two operations after we have checked
3365         * accurate reserved space, or fallocate can still fail but
3366         * with page truncated or size expanded.
3367         *
3368         * But that's a minor problem and won't do much harm BTW.
3369         */
3370        if (alloc_start > inode->i_size) {
3371                ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3372                                        alloc_start);
3373                if (ret)
3374                        goto out;
3375        } else if (offset + len > inode->i_size) {
3376                /*
3377                 * If we are fallocating from the end of the file onward we
3378                 * need to zero out the end of the block if i_size lands in the
3379                 * middle of a block.
3380                 */
3381                ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3382                if (ret)
3383                        goto out;
3384        }
3385
3386        /*
3387         * wait for ordered IO before we have any locks.  We'll loop again
3388         * below with the locks held.
3389         */
3390        ret = btrfs_wait_ordered_range(inode, alloc_start,
3391                                       alloc_end - alloc_start);
3392        if (ret)
3393                goto out;
3394
3395        if (mode & FALLOC_FL_ZERO_RANGE) {
3396                ret = btrfs_zero_range(inode, offset, len, mode);
3397                btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3398                return ret;
3399        }
3400
3401        locked_end = alloc_end - 1;
3402        while (1) {
3403                struct btrfs_ordered_extent *ordered;
3404
3405                /* the extent lock is ordered inside the running
3406                 * transaction
3407                 */
3408                lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3409                                 locked_end, &cached_state);
3410                ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
3411                                                            locked_end);
3412
3413                if (ordered &&
3414                    ordered->file_offset + ordered->num_bytes > alloc_start &&
3415                    ordered->file_offset < alloc_end) {
3416                        btrfs_put_ordered_extent(ordered);
3417                        unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3418                                             alloc_start, locked_end,
3419                                             &cached_state);
3420                        /*
3421                         * we can't wait on the range with the transaction
3422                         * running or with the extent lock held
3423                         */
3424                        ret = btrfs_wait_ordered_range(inode, alloc_start,
3425                                                       alloc_end - alloc_start);
3426                        if (ret)
3427                                goto out;
3428                } else {
3429                        if (ordered)
3430                                btrfs_put_ordered_extent(ordered);
3431                        break;
3432                }
3433        }
3434
3435        /* First, check if we exceed the qgroup limit */
3436        INIT_LIST_HEAD(&reserve_list);
3437        while (cur_offset < alloc_end) {
3438                em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3439                                      alloc_end - cur_offset);
3440                if (IS_ERR(em)) {
3441                        ret = PTR_ERR(em);
3442                        break;
3443                }
3444                last_byte = min(extent_map_end(em), alloc_end);
3445                actual_end = min_t(u64, extent_map_end(em), offset + len);
3446                last_byte = ALIGN(last_byte, blocksize);
3447                if (em->block_start == EXTENT_MAP_HOLE ||
3448                    (cur_offset >= inode->i_size &&
3449                     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3450                        ret = add_falloc_range(&reserve_list, cur_offset,
3451                                               last_byte - cur_offset);
3452                        if (ret < 0) {
3453                                free_extent_map(em);
3454                                break;
3455                        }
3456                        ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3457                                        &data_reserved, cur_offset,
3458                                        last_byte - cur_offset);
3459                        if (ret < 0) {
3460                                cur_offset = last_byte;
3461                                free_extent_map(em);
3462                                break;
3463                        }
3464                } else {
3465                        /*
3466                         * Do not need to reserve unwritten extent for this
3467                         * range, free reserved data space first, otherwise
3468                         * it'll result in false ENOSPC error.
3469                         */
3470                        btrfs_free_reserved_data_space(BTRFS_I(inode),
3471                                data_reserved, cur_offset,
3472                                last_byte - cur_offset);
3473                }
3474                free_extent_map(em);
3475                cur_offset = last_byte;
3476        }
3477
3478        /*
3479         * If ret is still 0, means we're OK to fallocate.
3480         * Or just cleanup the list and exit.
3481         */
3482        list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3483                if (!ret)
3484                        ret = btrfs_prealloc_file_range(inode, mode,
3485                                        range->start,
3486                                        range->len, i_blocksize(inode),
3487                                        offset + len, &alloc_hint);
3488                else
3489                        btrfs_free_reserved_data_space(BTRFS_I(inode),
3490                                        data_reserved, range->start,
3491                                        range->len);
3492                list_del(&range->list);
3493                kfree(range);
3494        }
3495        if (ret < 0)
3496                goto out_unlock;
3497
3498        /*
3499         * We didn't need to allocate any more space, but we still extended the
3500         * size of the file so we need to update i_size and the inode item.
3501         */
3502        ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3503out_unlock:
3504        unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3505                             &cached_state);
3506out:
3507        btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3508        /* Let go of our reservation. */
3509        if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3510                btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3511                                cur_offset, alloc_end - cur_offset);
3512        extent_changeset_free(data_reserved);
3513        return ret;
3514}
3515
3516static loff_t find_desired_extent(struct btrfs_inode *inode, loff_t offset,
3517                                  int whence)
3518{
3519        struct btrfs_fs_info *fs_info = inode->root->fs_info;
3520        struct extent_map *em = NULL;
3521        struct extent_state *cached_state = NULL;
3522        loff_t i_size = inode->vfs_inode.i_size;
3523        u64 lockstart;
3524        u64 lockend;
3525        u64 start;
3526        u64 len;
3527        int ret = 0;
3528
3529        if (i_size == 0 || offset >= i_size)
3530                return -ENXIO;
3531
3532        /*
3533         * offset can be negative, in this case we start finding DATA/HOLE from
3534         * the very start of the file.
3535         */
3536        start = max_t(loff_t, 0, offset);
3537
3538        lockstart = round_down(start, fs_info->sectorsize);
3539        lockend = round_up(i_size, fs_info->sectorsize);
3540        if (lockend <= lockstart)
3541                lockend = lockstart + fs_info->sectorsize;
3542        lockend--;
3543        len = lockend - lockstart + 1;
3544
3545        lock_extent_bits(&inode->io_tree, lockstart, lockend, &cached_state);
3546
3547        while (start < i_size) {
3548                em = btrfs_get_extent_fiemap(inode, start, len);
3549                if (IS_ERR(em)) {
3550                        ret = PTR_ERR(em);
3551                        em = NULL;
3552                        break;
3553                }
3554
3555                if (whence == SEEK_HOLE &&
3556                    (em->block_start == EXTENT_MAP_HOLE ||
3557                     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3558                        break;
3559                else if (whence == SEEK_DATA &&
3560                           (em->block_start != EXTENT_MAP_HOLE &&
3561                            !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3562                        break;
3563
3564                start = em->start + em->len;
3565                free_extent_map(em);
3566                em = NULL;
3567                cond_resched();
3568        }
3569        free_extent_map(em);
3570        unlock_extent_cached(&inode->io_tree, lockstart, lockend,
3571                             &cached_state);
3572        if (ret) {
3573                offset = ret;
3574        } else {
3575                if (whence == SEEK_DATA && start >= i_size)
3576                        offset = -ENXIO;
3577                else
3578                        offset = min_t(loff_t, start, i_size);
3579        }
3580
3581        return offset;
3582}
3583
3584static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3585{
3586        struct inode *inode = file->f_mapping->host;
3587
3588        switch (whence) {
3589        default:
3590                return generic_file_llseek(file, offset, whence);
3591        case SEEK_DATA:
3592        case SEEK_HOLE:
3593                btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3594                offset = find_desired_extent(BTRFS_I(inode), offset, whence);
3595                btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3596                break;
3597        }
3598
3599        if (offset < 0)
3600                return offset;
3601
3602        return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3603}
3604
3605static int btrfs_file_open(struct inode *inode, struct file *filp)
3606{
3607        filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
3608        return generic_file_open(inode, filp);
3609}
3610
3611static int check_direct_read(struct btrfs_fs_info *fs_info,
3612                             const struct iov_iter *iter, loff_t offset)
3613{
3614        int ret;
3615        int i, seg;
3616
3617        ret = check_direct_IO(fs_info, iter, offset);
3618        if (ret < 0)
3619                return ret;
3620
3621        if (!iter_is_iovec(iter))
3622                return 0;
3623
3624        for (seg = 0; seg < iter->nr_segs; seg++)
3625                for (i = seg + 1; i < iter->nr_segs; i++)
3626                        if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
3627                                return -EINVAL;
3628        return 0;
3629}
3630
3631static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3632{
3633        struct inode *inode = file_inode(iocb->ki_filp);
3634        ssize_t ret;
3635
3636        if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3637                return 0;
3638
3639        btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3640        ret = iomap_dio_rw(iocb, to, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 0);
3641        btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3642        return ret;
3643}
3644
3645static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3646{
3647        ssize_t ret = 0;
3648
3649        if (iocb->ki_flags & IOCB_DIRECT) {
3650                ret = btrfs_direct_read(iocb, to);
3651                if (ret < 0 || !iov_iter_count(to) ||
3652                    iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3653                        return ret;
3654        }
3655
3656        return filemap_read(iocb, to, ret);
3657}
3658
3659const struct file_operations btrfs_file_operations = {
3660        .llseek         = btrfs_file_llseek,
3661        .read_iter      = btrfs_file_read_iter,
3662        .splice_read    = generic_file_splice_read,
3663        .write_iter     = btrfs_file_write_iter,
3664        .splice_write   = iter_file_splice_write,
3665        .mmap           = btrfs_file_mmap,
3666        .open           = btrfs_file_open,
3667        .release        = btrfs_release_file,
3668        .fsync          = btrfs_sync_file,
3669        .fallocate      = btrfs_fallocate,
3670        .unlocked_ioctl = btrfs_ioctl,
3671#ifdef CONFIG_COMPAT
3672        .compat_ioctl   = btrfs_compat_ioctl,
3673#endif
3674        .remap_file_range = btrfs_remap_file_range,
3675};
3676
3677void __cold btrfs_auto_defrag_exit(void)
3678{
3679        kmem_cache_destroy(btrfs_inode_defrag_cachep);
3680}
3681
3682int __init btrfs_auto_defrag_init(void)
3683{
3684        btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3685                                        sizeof(struct inode_defrag), 0,
3686                                        SLAB_MEM_SPREAD,
3687                                        NULL);
3688        if (!btrfs_inode_defrag_cachep)
3689                return -ENOMEM;
3690
3691        return 0;
3692}
3693
3694int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3695{
3696        int ret;
3697
3698        /*
3699         * So with compression we will find and lock a dirty page and clear the
3700         * first one as dirty, setup an async extent, and immediately return
3701         * with the entire range locked but with nobody actually marked with
3702         * writeback.  So we can't just filemap_write_and_wait_range() and
3703         * expect it to work since it will just kick off a thread to do the
3704         * actual work.  So we need to call filemap_fdatawrite_range _again_
3705         * since it will wait on the page lock, which won't be unlocked until
3706         * after the pages have been marked as writeback and so we're good to go
3707         * from there.  We have to do this otherwise we'll miss the ordered
3708         * extents and that results in badness.  Please Josef, do not think you
3709         * know better and pull this out at some point in the future, it is
3710         * right and you are wrong.
3711         */
3712        ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3713        if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3714                             &BTRFS_I(inode)->runtime_flags))
3715                ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3716
3717        return ret;
3718}
3719