linux/fs/btrfs/free-space-cache.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Red Hat.  All rights reserved.
   4 */
   5
   6#include <linux/pagemap.h>
   7#include <linux/sched.h>
   8#include <linux/sched/signal.h>
   9#include <linux/slab.h>
  10#include <linux/math64.h>
  11#include <linux/ratelimit.h>
  12#include <linux/error-injection.h>
  13#include <linux/sched/mm.h>
  14#include "misc.h"
  15#include "ctree.h"
  16#include "free-space-cache.h"
  17#include "transaction.h"
  18#include "disk-io.h"
  19#include "extent_io.h"
  20#include "volumes.h"
  21#include "space-info.h"
  22#include "delalloc-space.h"
  23#include "block-group.h"
  24#include "discard.h"
  25
  26#define BITS_PER_BITMAP         (PAGE_SIZE * 8UL)
  27#define MAX_CACHE_BYTES_PER_GIG SZ_64K
  28#define FORCE_EXTENT_THRESHOLD  SZ_1M
  29
  30struct btrfs_trim_range {
  31        u64 start;
  32        u64 bytes;
  33        struct list_head list;
  34};
  35
  36static int link_free_space(struct btrfs_free_space_ctl *ctl,
  37                           struct btrfs_free_space *info);
  38static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
  39                              struct btrfs_free_space *info);
  40static int search_bitmap(struct btrfs_free_space_ctl *ctl,
  41                         struct btrfs_free_space *bitmap_info, u64 *offset,
  42                         u64 *bytes, bool for_alloc);
  43static void free_bitmap(struct btrfs_free_space_ctl *ctl,
  44                        struct btrfs_free_space *bitmap_info);
  45static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
  46                              struct btrfs_free_space *info, u64 offset,
  47                              u64 bytes);
  48
  49static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
  50                                               struct btrfs_path *path,
  51                                               u64 offset)
  52{
  53        struct btrfs_fs_info *fs_info = root->fs_info;
  54        struct btrfs_key key;
  55        struct btrfs_key location;
  56        struct btrfs_disk_key disk_key;
  57        struct btrfs_free_space_header *header;
  58        struct extent_buffer *leaf;
  59        struct inode *inode = NULL;
  60        unsigned nofs_flag;
  61        int ret;
  62
  63        key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  64        key.offset = offset;
  65        key.type = 0;
  66
  67        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  68        if (ret < 0)
  69                return ERR_PTR(ret);
  70        if (ret > 0) {
  71                btrfs_release_path(path);
  72                return ERR_PTR(-ENOENT);
  73        }
  74
  75        leaf = path->nodes[0];
  76        header = btrfs_item_ptr(leaf, path->slots[0],
  77                                struct btrfs_free_space_header);
  78        btrfs_free_space_key(leaf, header, &disk_key);
  79        btrfs_disk_key_to_cpu(&location, &disk_key);
  80        btrfs_release_path(path);
  81
  82        /*
  83         * We are often under a trans handle at this point, so we need to make
  84         * sure NOFS is set to keep us from deadlocking.
  85         */
  86        nofs_flag = memalloc_nofs_save();
  87        inode = btrfs_iget_path(fs_info->sb, location.objectid, root, path);
  88        btrfs_release_path(path);
  89        memalloc_nofs_restore(nofs_flag);
  90        if (IS_ERR(inode))
  91                return inode;
  92
  93        mapping_set_gfp_mask(inode->i_mapping,
  94                        mapping_gfp_constraint(inode->i_mapping,
  95                        ~(__GFP_FS | __GFP_HIGHMEM)));
  96
  97        return inode;
  98}
  99
 100struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
 101                struct btrfs_path *path)
 102{
 103        struct btrfs_fs_info *fs_info = block_group->fs_info;
 104        struct inode *inode = NULL;
 105        u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 106
 107        spin_lock(&block_group->lock);
 108        if (block_group->inode)
 109                inode = igrab(block_group->inode);
 110        spin_unlock(&block_group->lock);
 111        if (inode)
 112                return inode;
 113
 114        inode = __lookup_free_space_inode(fs_info->tree_root, path,
 115                                          block_group->start);
 116        if (IS_ERR(inode))
 117                return inode;
 118
 119        spin_lock(&block_group->lock);
 120        if (!((BTRFS_I(inode)->flags & flags) == flags)) {
 121                btrfs_info(fs_info, "Old style space inode found, converting.");
 122                BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
 123                        BTRFS_INODE_NODATACOW;
 124                block_group->disk_cache_state = BTRFS_DC_CLEAR;
 125        }
 126
 127        if (!block_group->iref) {
 128                block_group->inode = igrab(inode);
 129                block_group->iref = 1;
 130        }
 131        spin_unlock(&block_group->lock);
 132
 133        return inode;
 134}
 135
 136static int __create_free_space_inode(struct btrfs_root *root,
 137                                     struct btrfs_trans_handle *trans,
 138                                     struct btrfs_path *path,
 139                                     u64 ino, u64 offset)
 140{
 141        struct btrfs_key key;
 142        struct btrfs_disk_key disk_key;
 143        struct btrfs_free_space_header *header;
 144        struct btrfs_inode_item *inode_item;
 145        struct extent_buffer *leaf;
 146        /* We inline CRCs for the free disk space cache */
 147        const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC |
 148                          BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 149        int ret;
 150
 151        ret = btrfs_insert_empty_inode(trans, root, path, ino);
 152        if (ret)
 153                return ret;
 154
 155        leaf = path->nodes[0];
 156        inode_item = btrfs_item_ptr(leaf, path->slots[0],
 157                                    struct btrfs_inode_item);
 158        btrfs_item_key(leaf, &disk_key, path->slots[0]);
 159        memzero_extent_buffer(leaf, (unsigned long)inode_item,
 160                             sizeof(*inode_item));
 161        btrfs_set_inode_generation(leaf, inode_item, trans->transid);
 162        btrfs_set_inode_size(leaf, inode_item, 0);
 163        btrfs_set_inode_nbytes(leaf, inode_item, 0);
 164        btrfs_set_inode_uid(leaf, inode_item, 0);
 165        btrfs_set_inode_gid(leaf, inode_item, 0);
 166        btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
 167        btrfs_set_inode_flags(leaf, inode_item, flags);
 168        btrfs_set_inode_nlink(leaf, inode_item, 1);
 169        btrfs_set_inode_transid(leaf, inode_item, trans->transid);
 170        btrfs_set_inode_block_group(leaf, inode_item, offset);
 171        btrfs_mark_buffer_dirty(leaf);
 172        btrfs_release_path(path);
 173
 174        key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 175        key.offset = offset;
 176        key.type = 0;
 177        ret = btrfs_insert_empty_item(trans, root, path, &key,
 178                                      sizeof(struct btrfs_free_space_header));
 179        if (ret < 0) {
 180                btrfs_release_path(path);
 181                return ret;
 182        }
 183
 184        leaf = path->nodes[0];
 185        header = btrfs_item_ptr(leaf, path->slots[0],
 186                                struct btrfs_free_space_header);
 187        memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
 188        btrfs_set_free_space_key(leaf, header, &disk_key);
 189        btrfs_mark_buffer_dirty(leaf);
 190        btrfs_release_path(path);
 191
 192        return 0;
 193}
 194
 195int create_free_space_inode(struct btrfs_trans_handle *trans,
 196                            struct btrfs_block_group *block_group,
 197                            struct btrfs_path *path)
 198{
 199        int ret;
 200        u64 ino;
 201
 202        ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino);
 203        if (ret < 0)
 204                return ret;
 205
 206        return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
 207                                         ino, block_group->start);
 208}
 209
 210/*
 211 * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode
 212 * handles lookup, otherwise it takes ownership and iputs the inode.
 213 * Don't reuse an inode pointer after passing it into this function.
 214 */
 215int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans,
 216                                  struct inode *inode,
 217                                  struct btrfs_block_group *block_group)
 218{
 219        struct btrfs_path *path;
 220        struct btrfs_key key;
 221        int ret = 0;
 222
 223        path = btrfs_alloc_path();
 224        if (!path)
 225                return -ENOMEM;
 226
 227        if (!inode)
 228                inode = lookup_free_space_inode(block_group, path);
 229        if (IS_ERR(inode)) {
 230                if (PTR_ERR(inode) != -ENOENT)
 231                        ret = PTR_ERR(inode);
 232                goto out;
 233        }
 234        ret = btrfs_orphan_add(trans, BTRFS_I(inode));
 235        if (ret) {
 236                btrfs_add_delayed_iput(inode);
 237                goto out;
 238        }
 239        clear_nlink(inode);
 240        /* One for the block groups ref */
 241        spin_lock(&block_group->lock);
 242        if (block_group->iref) {
 243                block_group->iref = 0;
 244                block_group->inode = NULL;
 245                spin_unlock(&block_group->lock);
 246                iput(inode);
 247        } else {
 248                spin_unlock(&block_group->lock);
 249        }
 250        /* One for the lookup ref */
 251        btrfs_add_delayed_iput(inode);
 252
 253        key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 254        key.type = 0;
 255        key.offset = block_group->start;
 256        ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path,
 257                                -1, 1);
 258        if (ret) {
 259                if (ret > 0)
 260                        ret = 0;
 261                goto out;
 262        }
 263        ret = btrfs_del_item(trans, trans->fs_info->tree_root, path);
 264out:
 265        btrfs_free_path(path);
 266        return ret;
 267}
 268
 269int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
 270                                       struct btrfs_block_rsv *rsv)
 271{
 272        u64 needed_bytes;
 273        int ret;
 274
 275        /* 1 for slack space, 1 for updating the inode */
 276        needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
 277                btrfs_calc_metadata_size(fs_info, 1);
 278
 279        spin_lock(&rsv->lock);
 280        if (rsv->reserved < needed_bytes)
 281                ret = -ENOSPC;
 282        else
 283                ret = 0;
 284        spin_unlock(&rsv->lock);
 285        return ret;
 286}
 287
 288int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
 289                                    struct btrfs_block_group *block_group,
 290                                    struct inode *inode)
 291{
 292        struct btrfs_root *root = BTRFS_I(inode)->root;
 293        int ret = 0;
 294        bool locked = false;
 295
 296        if (block_group) {
 297                struct btrfs_path *path = btrfs_alloc_path();
 298
 299                if (!path) {
 300                        ret = -ENOMEM;
 301                        goto fail;
 302                }
 303                locked = true;
 304                mutex_lock(&trans->transaction->cache_write_mutex);
 305                if (!list_empty(&block_group->io_list)) {
 306                        list_del_init(&block_group->io_list);
 307
 308                        btrfs_wait_cache_io(trans, block_group, path);
 309                        btrfs_put_block_group(block_group);
 310                }
 311
 312                /*
 313                 * now that we've truncated the cache away, its no longer
 314                 * setup or written
 315                 */
 316                spin_lock(&block_group->lock);
 317                block_group->disk_cache_state = BTRFS_DC_CLEAR;
 318                spin_unlock(&block_group->lock);
 319                btrfs_free_path(path);
 320        }
 321
 322        btrfs_i_size_write(BTRFS_I(inode), 0);
 323        truncate_pagecache(inode, 0);
 324
 325        /*
 326         * We skip the throttling logic for free space cache inodes, so we don't
 327         * need to check for -EAGAIN.
 328         */
 329        ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode),
 330                                         0, BTRFS_EXTENT_DATA_KEY, NULL);
 331        if (ret)
 332                goto fail;
 333
 334        ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
 335
 336fail:
 337        if (locked)
 338                mutex_unlock(&trans->transaction->cache_write_mutex);
 339        if (ret)
 340                btrfs_abort_transaction(trans, ret);
 341
 342        return ret;
 343}
 344
 345static void readahead_cache(struct inode *inode)
 346{
 347        struct file_ra_state *ra;
 348        unsigned long last_index;
 349
 350        ra = kzalloc(sizeof(*ra), GFP_NOFS);
 351        if (!ra)
 352                return;
 353
 354        file_ra_state_init(ra, inode->i_mapping);
 355        last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 356
 357        page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
 358
 359        kfree(ra);
 360}
 361
 362static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
 363                       int write)
 364{
 365        int num_pages;
 366
 367        num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
 368
 369        /* Make sure we can fit our crcs and generation into the first page */
 370        if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
 371                return -ENOSPC;
 372
 373        memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
 374
 375        io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
 376        if (!io_ctl->pages)
 377                return -ENOMEM;
 378
 379        io_ctl->num_pages = num_pages;
 380        io_ctl->fs_info = btrfs_sb(inode->i_sb);
 381        io_ctl->inode = inode;
 382
 383        return 0;
 384}
 385ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
 386
 387static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
 388{
 389        kfree(io_ctl->pages);
 390        io_ctl->pages = NULL;
 391}
 392
 393static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
 394{
 395        if (io_ctl->cur) {
 396                io_ctl->cur = NULL;
 397                io_ctl->orig = NULL;
 398        }
 399}
 400
 401static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
 402{
 403        ASSERT(io_ctl->index < io_ctl->num_pages);
 404        io_ctl->page = io_ctl->pages[io_ctl->index++];
 405        io_ctl->cur = page_address(io_ctl->page);
 406        io_ctl->orig = io_ctl->cur;
 407        io_ctl->size = PAGE_SIZE;
 408        if (clear)
 409                clear_page(io_ctl->cur);
 410}
 411
 412static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
 413{
 414        int i;
 415
 416        io_ctl_unmap_page(io_ctl);
 417
 418        for (i = 0; i < io_ctl->num_pages; i++) {
 419                if (io_ctl->pages[i]) {
 420                        ClearPageChecked(io_ctl->pages[i]);
 421                        unlock_page(io_ctl->pages[i]);
 422                        put_page(io_ctl->pages[i]);
 423                }
 424        }
 425}
 426
 427static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
 428{
 429        struct page *page;
 430        struct inode *inode = io_ctl->inode;
 431        gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
 432        int i;
 433
 434        for (i = 0; i < io_ctl->num_pages; i++) {
 435                int ret;
 436
 437                page = find_or_create_page(inode->i_mapping, i, mask);
 438                if (!page) {
 439                        io_ctl_drop_pages(io_ctl);
 440                        return -ENOMEM;
 441                }
 442
 443                ret = set_page_extent_mapped(page);
 444                if (ret < 0) {
 445                        unlock_page(page);
 446                        put_page(page);
 447                        io_ctl_drop_pages(io_ctl);
 448                        return ret;
 449                }
 450
 451                io_ctl->pages[i] = page;
 452                if (uptodate && !PageUptodate(page)) {
 453                        btrfs_readpage(NULL, page);
 454                        lock_page(page);
 455                        if (page->mapping != inode->i_mapping) {
 456                                btrfs_err(BTRFS_I(inode)->root->fs_info,
 457                                          "free space cache page truncated");
 458                                io_ctl_drop_pages(io_ctl);
 459                                return -EIO;
 460                        }
 461                        if (!PageUptodate(page)) {
 462                                btrfs_err(BTRFS_I(inode)->root->fs_info,
 463                                           "error reading free space cache");
 464                                io_ctl_drop_pages(io_ctl);
 465                                return -EIO;
 466                        }
 467                }
 468        }
 469
 470        for (i = 0; i < io_ctl->num_pages; i++)
 471                clear_page_dirty_for_io(io_ctl->pages[i]);
 472
 473        return 0;
 474}
 475
 476static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 477{
 478        io_ctl_map_page(io_ctl, 1);
 479
 480        /*
 481         * Skip the csum areas.  If we don't check crcs then we just have a
 482         * 64bit chunk at the front of the first page.
 483         */
 484        io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
 485        io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
 486
 487        put_unaligned_le64(generation, io_ctl->cur);
 488        io_ctl->cur += sizeof(u64);
 489}
 490
 491static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 492{
 493        u64 cache_gen;
 494
 495        /*
 496         * Skip the crc area.  If we don't check crcs then we just have a 64bit
 497         * chunk at the front of the first page.
 498         */
 499        io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
 500        io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
 501
 502        cache_gen = get_unaligned_le64(io_ctl->cur);
 503        if (cache_gen != generation) {
 504                btrfs_err_rl(io_ctl->fs_info,
 505                        "space cache generation (%llu) does not match inode (%llu)",
 506                                cache_gen, generation);
 507                io_ctl_unmap_page(io_ctl);
 508                return -EIO;
 509        }
 510        io_ctl->cur += sizeof(u64);
 511        return 0;
 512}
 513
 514static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
 515{
 516        u32 *tmp;
 517        u32 crc = ~(u32)0;
 518        unsigned offset = 0;
 519
 520        if (index == 0)
 521                offset = sizeof(u32) * io_ctl->num_pages;
 522
 523        crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
 524        btrfs_crc32c_final(crc, (u8 *)&crc);
 525        io_ctl_unmap_page(io_ctl);
 526        tmp = page_address(io_ctl->pages[0]);
 527        tmp += index;
 528        *tmp = crc;
 529}
 530
 531static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
 532{
 533        u32 *tmp, val;
 534        u32 crc = ~(u32)0;
 535        unsigned offset = 0;
 536
 537        if (index == 0)
 538                offset = sizeof(u32) * io_ctl->num_pages;
 539
 540        tmp = page_address(io_ctl->pages[0]);
 541        tmp += index;
 542        val = *tmp;
 543
 544        io_ctl_map_page(io_ctl, 0);
 545        crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
 546        btrfs_crc32c_final(crc, (u8 *)&crc);
 547        if (val != crc) {
 548                btrfs_err_rl(io_ctl->fs_info,
 549                        "csum mismatch on free space cache");
 550                io_ctl_unmap_page(io_ctl);
 551                return -EIO;
 552        }
 553
 554        return 0;
 555}
 556
 557static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
 558                            void *bitmap)
 559{
 560        struct btrfs_free_space_entry *entry;
 561
 562        if (!io_ctl->cur)
 563                return -ENOSPC;
 564
 565        entry = io_ctl->cur;
 566        put_unaligned_le64(offset, &entry->offset);
 567        put_unaligned_le64(bytes, &entry->bytes);
 568        entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
 569                BTRFS_FREE_SPACE_EXTENT;
 570        io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 571        io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 572
 573        if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 574                return 0;
 575
 576        io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 577
 578        /* No more pages to map */
 579        if (io_ctl->index >= io_ctl->num_pages)
 580                return 0;
 581
 582        /* map the next page */
 583        io_ctl_map_page(io_ctl, 1);
 584        return 0;
 585}
 586
 587static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
 588{
 589        if (!io_ctl->cur)
 590                return -ENOSPC;
 591
 592        /*
 593         * If we aren't at the start of the current page, unmap this one and
 594         * map the next one if there is any left.
 595         */
 596        if (io_ctl->cur != io_ctl->orig) {
 597                io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 598                if (io_ctl->index >= io_ctl->num_pages)
 599                        return -ENOSPC;
 600                io_ctl_map_page(io_ctl, 0);
 601        }
 602
 603        copy_page(io_ctl->cur, bitmap);
 604        io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 605        if (io_ctl->index < io_ctl->num_pages)
 606                io_ctl_map_page(io_ctl, 0);
 607        return 0;
 608}
 609
 610static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
 611{
 612        /*
 613         * If we're not on the boundary we know we've modified the page and we
 614         * need to crc the page.
 615         */
 616        if (io_ctl->cur != io_ctl->orig)
 617                io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 618        else
 619                io_ctl_unmap_page(io_ctl);
 620
 621        while (io_ctl->index < io_ctl->num_pages) {
 622                io_ctl_map_page(io_ctl, 1);
 623                io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 624        }
 625}
 626
 627static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
 628                            struct btrfs_free_space *entry, u8 *type)
 629{
 630        struct btrfs_free_space_entry *e;
 631        int ret;
 632
 633        if (!io_ctl->cur) {
 634                ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 635                if (ret)
 636                        return ret;
 637        }
 638
 639        e = io_ctl->cur;
 640        entry->offset = get_unaligned_le64(&e->offset);
 641        entry->bytes = get_unaligned_le64(&e->bytes);
 642        *type = e->type;
 643        io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 644        io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 645
 646        if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 647                return 0;
 648
 649        io_ctl_unmap_page(io_ctl);
 650
 651        return 0;
 652}
 653
 654static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
 655                              struct btrfs_free_space *entry)
 656{
 657        int ret;
 658
 659        ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 660        if (ret)
 661                return ret;
 662
 663        copy_page(entry->bitmap, io_ctl->cur);
 664        io_ctl_unmap_page(io_ctl);
 665
 666        return 0;
 667}
 668
 669static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
 670{
 671        struct btrfs_block_group *block_group = ctl->private;
 672        u64 max_bytes;
 673        u64 bitmap_bytes;
 674        u64 extent_bytes;
 675        u64 size = block_group->length;
 676        u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
 677        u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
 678
 679        max_bitmaps = max_t(u64, max_bitmaps, 1);
 680
 681        ASSERT(ctl->total_bitmaps <= max_bitmaps);
 682
 683        /*
 684         * We are trying to keep the total amount of memory used per 1GiB of
 685         * space to be MAX_CACHE_BYTES_PER_GIG.  However, with a reclamation
 686         * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
 687         * bitmaps, we may end up using more memory than this.
 688         */
 689        if (size < SZ_1G)
 690                max_bytes = MAX_CACHE_BYTES_PER_GIG;
 691        else
 692                max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
 693
 694        bitmap_bytes = ctl->total_bitmaps * ctl->unit;
 695
 696        /*
 697         * we want the extent entry threshold to always be at most 1/2 the max
 698         * bytes we can have, or whatever is less than that.
 699         */
 700        extent_bytes = max_bytes - bitmap_bytes;
 701        extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
 702
 703        ctl->extents_thresh =
 704                div_u64(extent_bytes, sizeof(struct btrfs_free_space));
 705}
 706
 707static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
 708                                   struct btrfs_free_space_ctl *ctl,
 709                                   struct btrfs_path *path, u64 offset)
 710{
 711        struct btrfs_fs_info *fs_info = root->fs_info;
 712        struct btrfs_free_space_header *header;
 713        struct extent_buffer *leaf;
 714        struct btrfs_io_ctl io_ctl;
 715        struct btrfs_key key;
 716        struct btrfs_free_space *e, *n;
 717        LIST_HEAD(bitmaps);
 718        u64 num_entries;
 719        u64 num_bitmaps;
 720        u64 generation;
 721        u8 type;
 722        int ret = 0;
 723
 724        /* Nothing in the space cache, goodbye */
 725        if (!i_size_read(inode))
 726                return 0;
 727
 728        key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 729        key.offset = offset;
 730        key.type = 0;
 731
 732        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 733        if (ret < 0)
 734                return 0;
 735        else if (ret > 0) {
 736                btrfs_release_path(path);
 737                return 0;
 738        }
 739
 740        ret = -1;
 741
 742        leaf = path->nodes[0];
 743        header = btrfs_item_ptr(leaf, path->slots[0],
 744                                struct btrfs_free_space_header);
 745        num_entries = btrfs_free_space_entries(leaf, header);
 746        num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
 747        generation = btrfs_free_space_generation(leaf, header);
 748        btrfs_release_path(path);
 749
 750        if (!BTRFS_I(inode)->generation) {
 751                btrfs_info(fs_info,
 752                           "the free space cache file (%llu) is invalid, skip it",
 753                           offset);
 754                return 0;
 755        }
 756
 757        if (BTRFS_I(inode)->generation != generation) {
 758                btrfs_err(fs_info,
 759                          "free space inode generation (%llu) did not match free space cache generation (%llu)",
 760                          BTRFS_I(inode)->generation, generation);
 761                return 0;
 762        }
 763
 764        if (!num_entries)
 765                return 0;
 766
 767        ret = io_ctl_init(&io_ctl, inode, 0);
 768        if (ret)
 769                return ret;
 770
 771        readahead_cache(inode);
 772
 773        ret = io_ctl_prepare_pages(&io_ctl, true);
 774        if (ret)
 775                goto out;
 776
 777        ret = io_ctl_check_crc(&io_ctl, 0);
 778        if (ret)
 779                goto free_cache;
 780
 781        ret = io_ctl_check_generation(&io_ctl, generation);
 782        if (ret)
 783                goto free_cache;
 784
 785        while (num_entries) {
 786                e = kmem_cache_zalloc(btrfs_free_space_cachep,
 787                                      GFP_NOFS);
 788                if (!e) {
 789                        ret = -ENOMEM;
 790                        goto free_cache;
 791                }
 792
 793                ret = io_ctl_read_entry(&io_ctl, e, &type);
 794                if (ret) {
 795                        kmem_cache_free(btrfs_free_space_cachep, e);
 796                        goto free_cache;
 797                }
 798
 799                if (!e->bytes) {
 800                        ret = -1;
 801                        kmem_cache_free(btrfs_free_space_cachep, e);
 802                        goto free_cache;
 803                }
 804
 805                if (type == BTRFS_FREE_SPACE_EXTENT) {
 806                        spin_lock(&ctl->tree_lock);
 807                        ret = link_free_space(ctl, e);
 808                        spin_unlock(&ctl->tree_lock);
 809                        if (ret) {
 810                                btrfs_err(fs_info,
 811                                        "Duplicate entries in free space cache, dumping");
 812                                kmem_cache_free(btrfs_free_space_cachep, e);
 813                                goto free_cache;
 814                        }
 815                } else {
 816                        ASSERT(num_bitmaps);
 817                        num_bitmaps--;
 818                        e->bitmap = kmem_cache_zalloc(
 819                                        btrfs_free_space_bitmap_cachep, GFP_NOFS);
 820                        if (!e->bitmap) {
 821                                ret = -ENOMEM;
 822                                kmem_cache_free(
 823                                        btrfs_free_space_cachep, e);
 824                                goto free_cache;
 825                        }
 826                        spin_lock(&ctl->tree_lock);
 827                        ret = link_free_space(ctl, e);
 828                        ctl->total_bitmaps++;
 829                        recalculate_thresholds(ctl);
 830                        spin_unlock(&ctl->tree_lock);
 831                        if (ret) {
 832                                btrfs_err(fs_info,
 833                                        "Duplicate entries in free space cache, dumping");
 834                                kmem_cache_free(btrfs_free_space_cachep, e);
 835                                goto free_cache;
 836                        }
 837                        list_add_tail(&e->list, &bitmaps);
 838                }
 839
 840                num_entries--;
 841        }
 842
 843        io_ctl_unmap_page(&io_ctl);
 844
 845        /*
 846         * We add the bitmaps at the end of the entries in order that
 847         * the bitmap entries are added to the cache.
 848         */
 849        list_for_each_entry_safe(e, n, &bitmaps, list) {
 850                list_del_init(&e->list);
 851                ret = io_ctl_read_bitmap(&io_ctl, e);
 852                if (ret)
 853                        goto free_cache;
 854        }
 855
 856        io_ctl_drop_pages(&io_ctl);
 857        ret = 1;
 858out:
 859        io_ctl_free(&io_ctl);
 860        return ret;
 861free_cache:
 862        io_ctl_drop_pages(&io_ctl);
 863        __btrfs_remove_free_space_cache(ctl);
 864        goto out;
 865}
 866
 867static int copy_free_space_cache(struct btrfs_block_group *block_group,
 868                                 struct btrfs_free_space_ctl *ctl)
 869{
 870        struct btrfs_free_space *info;
 871        struct rb_node *n;
 872        int ret = 0;
 873
 874        while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) {
 875                info = rb_entry(n, struct btrfs_free_space, offset_index);
 876                if (!info->bitmap) {
 877                        unlink_free_space(ctl, info);
 878                        ret = btrfs_add_free_space(block_group, info->offset,
 879                                                   info->bytes);
 880                        kmem_cache_free(btrfs_free_space_cachep, info);
 881                } else {
 882                        u64 offset = info->offset;
 883                        u64 bytes = ctl->unit;
 884
 885                        while (search_bitmap(ctl, info, &offset, &bytes,
 886                                             false) == 0) {
 887                                ret = btrfs_add_free_space(block_group, offset,
 888                                                           bytes);
 889                                if (ret)
 890                                        break;
 891                                bitmap_clear_bits(ctl, info, offset, bytes);
 892                                offset = info->offset;
 893                                bytes = ctl->unit;
 894                        }
 895                        free_bitmap(ctl, info);
 896                }
 897                cond_resched();
 898        }
 899        return ret;
 900}
 901
 902int load_free_space_cache(struct btrfs_block_group *block_group)
 903{
 904        struct btrfs_fs_info *fs_info = block_group->fs_info;
 905        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 906        struct btrfs_free_space_ctl tmp_ctl = {};
 907        struct inode *inode;
 908        struct btrfs_path *path;
 909        int ret = 0;
 910        bool matched;
 911        u64 used = block_group->used;
 912
 913        /*
 914         * Because we could potentially discard our loaded free space, we want
 915         * to load everything into a temporary structure first, and then if it's
 916         * valid copy it all into the actual free space ctl.
 917         */
 918        btrfs_init_free_space_ctl(block_group, &tmp_ctl);
 919
 920        /*
 921         * If this block group has been marked to be cleared for one reason or
 922         * another then we can't trust the on disk cache, so just return.
 923         */
 924        spin_lock(&block_group->lock);
 925        if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 926                spin_unlock(&block_group->lock);
 927                return 0;
 928        }
 929        spin_unlock(&block_group->lock);
 930
 931        path = btrfs_alloc_path();
 932        if (!path)
 933                return 0;
 934        path->search_commit_root = 1;
 935        path->skip_locking = 1;
 936
 937        /*
 938         * We must pass a path with search_commit_root set to btrfs_iget in
 939         * order to avoid a deadlock when allocating extents for the tree root.
 940         *
 941         * When we are COWing an extent buffer from the tree root, when looking
 942         * for a free extent, at extent-tree.c:find_free_extent(), we can find
 943         * block group without its free space cache loaded. When we find one
 944         * we must load its space cache which requires reading its free space
 945         * cache's inode item from the root tree. If this inode item is located
 946         * in the same leaf that we started COWing before, then we end up in
 947         * deadlock on the extent buffer (trying to read lock it when we
 948         * previously write locked it).
 949         *
 950         * It's safe to read the inode item using the commit root because
 951         * block groups, once loaded, stay in memory forever (until they are
 952         * removed) as well as their space caches once loaded. New block groups
 953         * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
 954         * we will never try to read their inode item while the fs is mounted.
 955         */
 956        inode = lookup_free_space_inode(block_group, path);
 957        if (IS_ERR(inode)) {
 958                btrfs_free_path(path);
 959                return 0;
 960        }
 961
 962        /* We may have converted the inode and made the cache invalid. */
 963        spin_lock(&block_group->lock);
 964        if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 965                spin_unlock(&block_group->lock);
 966                btrfs_free_path(path);
 967                goto out;
 968        }
 969        spin_unlock(&block_group->lock);
 970
 971        ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl,
 972                                      path, block_group->start);
 973        btrfs_free_path(path);
 974        if (ret <= 0)
 975                goto out;
 976
 977        matched = (tmp_ctl.free_space == (block_group->length - used -
 978                                          block_group->bytes_super));
 979
 980        if (matched) {
 981                ret = copy_free_space_cache(block_group, &tmp_ctl);
 982                /*
 983                 * ret == 1 means we successfully loaded the free space cache,
 984                 * so we need to re-set it here.
 985                 */
 986                if (ret == 0)
 987                        ret = 1;
 988        } else {
 989                __btrfs_remove_free_space_cache(&tmp_ctl);
 990                btrfs_warn(fs_info,
 991                           "block group %llu has wrong amount of free space",
 992                           block_group->start);
 993                ret = -1;
 994        }
 995out:
 996        if (ret < 0) {
 997                /* This cache is bogus, make sure it gets cleared */
 998                spin_lock(&block_group->lock);
 999                block_group->disk_cache_state = BTRFS_DC_CLEAR;
1000                spin_unlock(&block_group->lock);
1001                ret = 0;
1002
1003                btrfs_warn(fs_info,
1004                           "failed to load free space cache for block group %llu, rebuilding it now",
1005                           block_group->start);
1006        }
1007
1008        spin_lock(&ctl->tree_lock);
1009        btrfs_discard_update_discardable(block_group);
1010        spin_unlock(&ctl->tree_lock);
1011        iput(inode);
1012        return ret;
1013}
1014
1015static noinline_for_stack
1016int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
1017                              struct btrfs_free_space_ctl *ctl,
1018                              struct btrfs_block_group *block_group,
1019                              int *entries, int *bitmaps,
1020                              struct list_head *bitmap_list)
1021{
1022        int ret;
1023        struct btrfs_free_cluster *cluster = NULL;
1024        struct btrfs_free_cluster *cluster_locked = NULL;
1025        struct rb_node *node = rb_first(&ctl->free_space_offset);
1026        struct btrfs_trim_range *trim_entry;
1027
1028        /* Get the cluster for this block_group if it exists */
1029        if (block_group && !list_empty(&block_group->cluster_list)) {
1030                cluster = list_entry(block_group->cluster_list.next,
1031                                     struct btrfs_free_cluster,
1032                                     block_group_list);
1033        }
1034
1035        if (!node && cluster) {
1036                cluster_locked = cluster;
1037                spin_lock(&cluster_locked->lock);
1038                node = rb_first(&cluster->root);
1039                cluster = NULL;
1040        }
1041
1042        /* Write out the extent entries */
1043        while (node) {
1044                struct btrfs_free_space *e;
1045
1046                e = rb_entry(node, struct btrfs_free_space, offset_index);
1047                *entries += 1;
1048
1049                ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
1050                                       e->bitmap);
1051                if (ret)
1052                        goto fail;
1053
1054                if (e->bitmap) {
1055                        list_add_tail(&e->list, bitmap_list);
1056                        *bitmaps += 1;
1057                }
1058                node = rb_next(node);
1059                if (!node && cluster) {
1060                        node = rb_first(&cluster->root);
1061                        cluster_locked = cluster;
1062                        spin_lock(&cluster_locked->lock);
1063                        cluster = NULL;
1064                }
1065        }
1066        if (cluster_locked) {
1067                spin_unlock(&cluster_locked->lock);
1068                cluster_locked = NULL;
1069        }
1070
1071        /*
1072         * Make sure we don't miss any range that was removed from our rbtree
1073         * because trimming is running. Otherwise after a umount+mount (or crash
1074         * after committing the transaction) we would leak free space and get
1075         * an inconsistent free space cache report from fsck.
1076         */
1077        list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1078                ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1079                                       trim_entry->bytes, NULL);
1080                if (ret)
1081                        goto fail;
1082                *entries += 1;
1083        }
1084
1085        return 0;
1086fail:
1087        if (cluster_locked)
1088                spin_unlock(&cluster_locked->lock);
1089        return -ENOSPC;
1090}
1091
1092static noinline_for_stack int
1093update_cache_item(struct btrfs_trans_handle *trans,
1094                  struct btrfs_root *root,
1095                  struct inode *inode,
1096                  struct btrfs_path *path, u64 offset,
1097                  int entries, int bitmaps)
1098{
1099        struct btrfs_key key;
1100        struct btrfs_free_space_header *header;
1101        struct extent_buffer *leaf;
1102        int ret;
1103
1104        key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1105        key.offset = offset;
1106        key.type = 0;
1107
1108        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1109        if (ret < 0) {
1110                clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1111                                 EXTENT_DELALLOC, 0, 0, NULL);
1112                goto fail;
1113        }
1114        leaf = path->nodes[0];
1115        if (ret > 0) {
1116                struct btrfs_key found_key;
1117                ASSERT(path->slots[0]);
1118                path->slots[0]--;
1119                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1120                if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1121                    found_key.offset != offset) {
1122                        clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1123                                         inode->i_size - 1, EXTENT_DELALLOC, 0,
1124                                         0, NULL);
1125                        btrfs_release_path(path);
1126                        goto fail;
1127                }
1128        }
1129
1130        BTRFS_I(inode)->generation = trans->transid;
1131        header = btrfs_item_ptr(leaf, path->slots[0],
1132                                struct btrfs_free_space_header);
1133        btrfs_set_free_space_entries(leaf, header, entries);
1134        btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1135        btrfs_set_free_space_generation(leaf, header, trans->transid);
1136        btrfs_mark_buffer_dirty(leaf);
1137        btrfs_release_path(path);
1138
1139        return 0;
1140
1141fail:
1142        return -1;
1143}
1144
1145static noinline_for_stack int write_pinned_extent_entries(
1146                            struct btrfs_trans_handle *trans,
1147                            struct btrfs_block_group *block_group,
1148                            struct btrfs_io_ctl *io_ctl,
1149                            int *entries)
1150{
1151        u64 start, extent_start, extent_end, len;
1152        struct extent_io_tree *unpin = NULL;
1153        int ret;
1154
1155        if (!block_group)
1156                return 0;
1157
1158        /*
1159         * We want to add any pinned extents to our free space cache
1160         * so we don't leak the space
1161         *
1162         * We shouldn't have switched the pinned extents yet so this is the
1163         * right one
1164         */
1165        unpin = &trans->transaction->pinned_extents;
1166
1167        start = block_group->start;
1168
1169        while (start < block_group->start + block_group->length) {
1170                ret = find_first_extent_bit(unpin, start,
1171                                            &extent_start, &extent_end,
1172                                            EXTENT_DIRTY, NULL);
1173                if (ret)
1174                        return 0;
1175
1176                /* This pinned extent is out of our range */
1177                if (extent_start >= block_group->start + block_group->length)
1178                        return 0;
1179
1180                extent_start = max(extent_start, start);
1181                extent_end = min(block_group->start + block_group->length,
1182                                 extent_end + 1);
1183                len = extent_end - extent_start;
1184
1185                *entries += 1;
1186                ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1187                if (ret)
1188                        return -ENOSPC;
1189
1190                start = extent_end;
1191        }
1192
1193        return 0;
1194}
1195
1196static noinline_for_stack int
1197write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1198{
1199        struct btrfs_free_space *entry, *next;
1200        int ret;
1201
1202        /* Write out the bitmaps */
1203        list_for_each_entry_safe(entry, next, bitmap_list, list) {
1204                ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1205                if (ret)
1206                        return -ENOSPC;
1207                list_del_init(&entry->list);
1208        }
1209
1210        return 0;
1211}
1212
1213static int flush_dirty_cache(struct inode *inode)
1214{
1215        int ret;
1216
1217        ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1218        if (ret)
1219                clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1220                                 EXTENT_DELALLOC, 0, 0, NULL);
1221
1222        return ret;
1223}
1224
1225static void noinline_for_stack
1226cleanup_bitmap_list(struct list_head *bitmap_list)
1227{
1228        struct btrfs_free_space *entry, *next;
1229
1230        list_for_each_entry_safe(entry, next, bitmap_list, list)
1231                list_del_init(&entry->list);
1232}
1233
1234static void noinline_for_stack
1235cleanup_write_cache_enospc(struct inode *inode,
1236                           struct btrfs_io_ctl *io_ctl,
1237                           struct extent_state **cached_state)
1238{
1239        io_ctl_drop_pages(io_ctl);
1240        unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1241                             i_size_read(inode) - 1, cached_state);
1242}
1243
1244static int __btrfs_wait_cache_io(struct btrfs_root *root,
1245                                 struct btrfs_trans_handle *trans,
1246                                 struct btrfs_block_group *block_group,
1247                                 struct btrfs_io_ctl *io_ctl,
1248                                 struct btrfs_path *path, u64 offset)
1249{
1250        int ret;
1251        struct inode *inode = io_ctl->inode;
1252
1253        if (!inode)
1254                return 0;
1255
1256        /* Flush the dirty pages in the cache file. */
1257        ret = flush_dirty_cache(inode);
1258        if (ret)
1259                goto out;
1260
1261        /* Update the cache item to tell everyone this cache file is valid. */
1262        ret = update_cache_item(trans, root, inode, path, offset,
1263                                io_ctl->entries, io_ctl->bitmaps);
1264out:
1265        if (ret) {
1266                invalidate_inode_pages2(inode->i_mapping);
1267                BTRFS_I(inode)->generation = 0;
1268                if (block_group)
1269                        btrfs_debug(root->fs_info,
1270          "failed to write free space cache for block group %llu error %d",
1271                                  block_group->start, ret);
1272        }
1273        btrfs_update_inode(trans, root, BTRFS_I(inode));
1274
1275        if (block_group) {
1276                /* the dirty list is protected by the dirty_bgs_lock */
1277                spin_lock(&trans->transaction->dirty_bgs_lock);
1278
1279                /* the disk_cache_state is protected by the block group lock */
1280                spin_lock(&block_group->lock);
1281
1282                /*
1283                 * only mark this as written if we didn't get put back on
1284                 * the dirty list while waiting for IO.   Otherwise our
1285                 * cache state won't be right, and we won't get written again
1286                 */
1287                if (!ret && list_empty(&block_group->dirty_list))
1288                        block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1289                else if (ret)
1290                        block_group->disk_cache_state = BTRFS_DC_ERROR;
1291
1292                spin_unlock(&block_group->lock);
1293                spin_unlock(&trans->transaction->dirty_bgs_lock);
1294                io_ctl->inode = NULL;
1295                iput(inode);
1296        }
1297
1298        return ret;
1299
1300}
1301
1302int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1303                        struct btrfs_block_group *block_group,
1304                        struct btrfs_path *path)
1305{
1306        return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1307                                     block_group, &block_group->io_ctl,
1308                                     path, block_group->start);
1309}
1310
1311/**
1312 * Write out cached info to an inode
1313 *
1314 * @root:        root the inode belongs to
1315 * @inode:       freespace inode we are writing out
1316 * @ctl:         free space cache we are going to write out
1317 * @block_group: block_group for this cache if it belongs to a block_group
1318 * @io_ctl:      holds context for the io
1319 * @trans:       the trans handle
1320 *
1321 * This function writes out a free space cache struct to disk for quick recovery
1322 * on mount.  This will return 0 if it was successful in writing the cache out,
1323 * or an errno if it was not.
1324 */
1325static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1326                                   struct btrfs_free_space_ctl *ctl,
1327                                   struct btrfs_block_group *block_group,
1328                                   struct btrfs_io_ctl *io_ctl,
1329                                   struct btrfs_trans_handle *trans)
1330{
1331        struct extent_state *cached_state = NULL;
1332        LIST_HEAD(bitmap_list);
1333        int entries = 0;
1334        int bitmaps = 0;
1335        int ret;
1336        int must_iput = 0;
1337
1338        if (!i_size_read(inode))
1339                return -EIO;
1340
1341        WARN_ON(io_ctl->pages);
1342        ret = io_ctl_init(io_ctl, inode, 1);
1343        if (ret)
1344                return ret;
1345
1346        if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1347                down_write(&block_group->data_rwsem);
1348                spin_lock(&block_group->lock);
1349                if (block_group->delalloc_bytes) {
1350                        block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1351                        spin_unlock(&block_group->lock);
1352                        up_write(&block_group->data_rwsem);
1353                        BTRFS_I(inode)->generation = 0;
1354                        ret = 0;
1355                        must_iput = 1;
1356                        goto out;
1357                }
1358                spin_unlock(&block_group->lock);
1359        }
1360
1361        /* Lock all pages first so we can lock the extent safely. */
1362        ret = io_ctl_prepare_pages(io_ctl, false);
1363        if (ret)
1364                goto out_unlock;
1365
1366        lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1367                         &cached_state);
1368
1369        io_ctl_set_generation(io_ctl, trans->transid);
1370
1371        mutex_lock(&ctl->cache_writeout_mutex);
1372        /* Write out the extent entries in the free space cache */
1373        spin_lock(&ctl->tree_lock);
1374        ret = write_cache_extent_entries(io_ctl, ctl,
1375                                         block_group, &entries, &bitmaps,
1376                                         &bitmap_list);
1377        if (ret)
1378                goto out_nospc_locked;
1379
1380        /*
1381         * Some spaces that are freed in the current transaction are pinned,
1382         * they will be added into free space cache after the transaction is
1383         * committed, we shouldn't lose them.
1384         *
1385         * If this changes while we are working we'll get added back to
1386         * the dirty list and redo it.  No locking needed
1387         */
1388        ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1389        if (ret)
1390                goto out_nospc_locked;
1391
1392        /*
1393         * At last, we write out all the bitmaps and keep cache_writeout_mutex
1394         * locked while doing it because a concurrent trim can be manipulating
1395         * or freeing the bitmap.
1396         */
1397        ret = write_bitmap_entries(io_ctl, &bitmap_list);
1398        spin_unlock(&ctl->tree_lock);
1399        mutex_unlock(&ctl->cache_writeout_mutex);
1400        if (ret)
1401                goto out_nospc;
1402
1403        /* Zero out the rest of the pages just to make sure */
1404        io_ctl_zero_remaining_pages(io_ctl);
1405
1406        /* Everything is written out, now we dirty the pages in the file. */
1407        ret = btrfs_dirty_pages(BTRFS_I(inode), io_ctl->pages,
1408                                io_ctl->num_pages, 0, i_size_read(inode),
1409                                &cached_state, false);
1410        if (ret)
1411                goto out_nospc;
1412
1413        if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1414                up_write(&block_group->data_rwsem);
1415        /*
1416         * Release the pages and unlock the extent, we will flush
1417         * them out later
1418         */
1419        io_ctl_drop_pages(io_ctl);
1420        io_ctl_free(io_ctl);
1421
1422        unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1423                             i_size_read(inode) - 1, &cached_state);
1424
1425        /*
1426         * at this point the pages are under IO and we're happy,
1427         * The caller is responsible for waiting on them and updating
1428         * the cache and the inode
1429         */
1430        io_ctl->entries = entries;
1431        io_ctl->bitmaps = bitmaps;
1432
1433        ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1434        if (ret)
1435                goto out;
1436
1437        return 0;
1438
1439out_nospc_locked:
1440        cleanup_bitmap_list(&bitmap_list);
1441        spin_unlock(&ctl->tree_lock);
1442        mutex_unlock(&ctl->cache_writeout_mutex);
1443
1444out_nospc:
1445        cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1446
1447out_unlock:
1448        if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1449                up_write(&block_group->data_rwsem);
1450
1451out:
1452        io_ctl->inode = NULL;
1453        io_ctl_free(io_ctl);
1454        if (ret) {
1455                invalidate_inode_pages2(inode->i_mapping);
1456                BTRFS_I(inode)->generation = 0;
1457        }
1458        btrfs_update_inode(trans, root, BTRFS_I(inode));
1459        if (must_iput)
1460                iput(inode);
1461        return ret;
1462}
1463
1464int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1465                          struct btrfs_block_group *block_group,
1466                          struct btrfs_path *path)
1467{
1468        struct btrfs_fs_info *fs_info = trans->fs_info;
1469        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1470        struct inode *inode;
1471        int ret = 0;
1472
1473        spin_lock(&block_group->lock);
1474        if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1475                spin_unlock(&block_group->lock);
1476                return 0;
1477        }
1478        spin_unlock(&block_group->lock);
1479
1480        inode = lookup_free_space_inode(block_group, path);
1481        if (IS_ERR(inode))
1482                return 0;
1483
1484        ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1485                                block_group, &block_group->io_ctl, trans);
1486        if (ret) {
1487                btrfs_debug(fs_info,
1488          "failed to write free space cache for block group %llu error %d",
1489                          block_group->start, ret);
1490                spin_lock(&block_group->lock);
1491                block_group->disk_cache_state = BTRFS_DC_ERROR;
1492                spin_unlock(&block_group->lock);
1493
1494                block_group->io_ctl.inode = NULL;
1495                iput(inode);
1496        }
1497
1498        /*
1499         * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1500         * to wait for IO and put the inode
1501         */
1502
1503        return ret;
1504}
1505
1506static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1507                                          u64 offset)
1508{
1509        ASSERT(offset >= bitmap_start);
1510        offset -= bitmap_start;
1511        return (unsigned long)(div_u64(offset, unit));
1512}
1513
1514static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1515{
1516        return (unsigned long)(div_u64(bytes, unit));
1517}
1518
1519static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1520                                   u64 offset)
1521{
1522        u64 bitmap_start;
1523        u64 bytes_per_bitmap;
1524
1525        bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1526        bitmap_start = offset - ctl->start;
1527        bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1528        bitmap_start *= bytes_per_bitmap;
1529        bitmap_start += ctl->start;
1530
1531        return bitmap_start;
1532}
1533
1534static int tree_insert_offset(struct rb_root *root, u64 offset,
1535                              struct rb_node *node, int bitmap)
1536{
1537        struct rb_node **p = &root->rb_node;
1538        struct rb_node *parent = NULL;
1539        struct btrfs_free_space *info;
1540
1541        while (*p) {
1542                parent = *p;
1543                info = rb_entry(parent, struct btrfs_free_space, offset_index);
1544
1545                if (offset < info->offset) {
1546                        p = &(*p)->rb_left;
1547                } else if (offset > info->offset) {
1548                        p = &(*p)->rb_right;
1549                } else {
1550                        /*
1551                         * we could have a bitmap entry and an extent entry
1552                         * share the same offset.  If this is the case, we want
1553                         * the extent entry to always be found first if we do a
1554                         * linear search through the tree, since we want to have
1555                         * the quickest allocation time, and allocating from an
1556                         * extent is faster than allocating from a bitmap.  So
1557                         * if we're inserting a bitmap and we find an entry at
1558                         * this offset, we want to go right, or after this entry
1559                         * logically.  If we are inserting an extent and we've
1560                         * found a bitmap, we want to go left, or before
1561                         * logically.
1562                         */
1563                        if (bitmap) {
1564                                if (info->bitmap) {
1565                                        WARN_ON_ONCE(1);
1566                                        return -EEXIST;
1567                                }
1568                                p = &(*p)->rb_right;
1569                        } else {
1570                                if (!info->bitmap) {
1571                                        WARN_ON_ONCE(1);
1572                                        return -EEXIST;
1573                                }
1574                                p = &(*p)->rb_left;
1575                        }
1576                }
1577        }
1578
1579        rb_link_node(node, parent, p);
1580        rb_insert_color(node, root);
1581
1582        return 0;
1583}
1584
1585/*
1586 * searches the tree for the given offset.
1587 *
1588 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1589 * want a section that has at least bytes size and comes at or after the given
1590 * offset.
1591 */
1592static struct btrfs_free_space *
1593tree_search_offset(struct btrfs_free_space_ctl *ctl,
1594                   u64 offset, int bitmap_only, int fuzzy)
1595{
1596        struct rb_node *n = ctl->free_space_offset.rb_node;
1597        struct btrfs_free_space *entry, *prev = NULL;
1598
1599        /* find entry that is closest to the 'offset' */
1600        while (1) {
1601                if (!n) {
1602                        entry = NULL;
1603                        break;
1604                }
1605
1606                entry = rb_entry(n, struct btrfs_free_space, offset_index);
1607                prev = entry;
1608
1609                if (offset < entry->offset)
1610                        n = n->rb_left;
1611                else if (offset > entry->offset)
1612                        n = n->rb_right;
1613                else
1614                        break;
1615        }
1616
1617        if (bitmap_only) {
1618                if (!entry)
1619                        return NULL;
1620                if (entry->bitmap)
1621                        return entry;
1622
1623                /*
1624                 * bitmap entry and extent entry may share same offset,
1625                 * in that case, bitmap entry comes after extent entry.
1626                 */
1627                n = rb_next(n);
1628                if (!n)
1629                        return NULL;
1630                entry = rb_entry(n, struct btrfs_free_space, offset_index);
1631                if (entry->offset != offset)
1632                        return NULL;
1633
1634                WARN_ON(!entry->bitmap);
1635                return entry;
1636        } else if (entry) {
1637                if (entry->bitmap) {
1638                        /*
1639                         * if previous extent entry covers the offset,
1640                         * we should return it instead of the bitmap entry
1641                         */
1642                        n = rb_prev(&entry->offset_index);
1643                        if (n) {
1644                                prev = rb_entry(n, struct btrfs_free_space,
1645                                                offset_index);
1646                                if (!prev->bitmap &&
1647                                    prev->offset + prev->bytes > offset)
1648                                        entry = prev;
1649                        }
1650                }
1651                return entry;
1652        }
1653
1654        if (!prev)
1655                return NULL;
1656
1657        /* find last entry before the 'offset' */
1658        entry = prev;
1659        if (entry->offset > offset) {
1660                n = rb_prev(&entry->offset_index);
1661                if (n) {
1662                        entry = rb_entry(n, struct btrfs_free_space,
1663                                        offset_index);
1664                        ASSERT(entry->offset <= offset);
1665                } else {
1666                        if (fuzzy)
1667                                return entry;
1668                        else
1669                                return NULL;
1670                }
1671        }
1672
1673        if (entry->bitmap) {
1674                n = rb_prev(&entry->offset_index);
1675                if (n) {
1676                        prev = rb_entry(n, struct btrfs_free_space,
1677                                        offset_index);
1678                        if (!prev->bitmap &&
1679                            prev->offset + prev->bytes > offset)
1680                                return prev;
1681                }
1682                if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1683                        return entry;
1684        } else if (entry->offset + entry->bytes > offset)
1685                return entry;
1686
1687        if (!fuzzy)
1688                return NULL;
1689
1690        while (1) {
1691                if (entry->bitmap) {
1692                        if (entry->offset + BITS_PER_BITMAP *
1693                            ctl->unit > offset)
1694                                break;
1695                } else {
1696                        if (entry->offset + entry->bytes > offset)
1697                                break;
1698                }
1699
1700                n = rb_next(&entry->offset_index);
1701                if (!n)
1702                        return NULL;
1703                entry = rb_entry(n, struct btrfs_free_space, offset_index);
1704        }
1705        return entry;
1706}
1707
1708static inline void
1709__unlink_free_space(struct btrfs_free_space_ctl *ctl,
1710                    struct btrfs_free_space *info)
1711{
1712        rb_erase(&info->offset_index, &ctl->free_space_offset);
1713        ctl->free_extents--;
1714
1715        if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1716                ctl->discardable_extents[BTRFS_STAT_CURR]--;
1717                ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1718        }
1719}
1720
1721static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1722                              struct btrfs_free_space *info)
1723{
1724        __unlink_free_space(ctl, info);
1725        ctl->free_space -= info->bytes;
1726}
1727
1728static int link_free_space(struct btrfs_free_space_ctl *ctl,
1729                           struct btrfs_free_space *info)
1730{
1731        int ret = 0;
1732
1733        ASSERT(info->bytes || info->bitmap);
1734        ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1735                                 &info->offset_index, (info->bitmap != NULL));
1736        if (ret)
1737                return ret;
1738
1739        if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1740                ctl->discardable_extents[BTRFS_STAT_CURR]++;
1741                ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1742        }
1743
1744        ctl->free_space += info->bytes;
1745        ctl->free_extents++;
1746        return ret;
1747}
1748
1749static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1750                                       struct btrfs_free_space *info,
1751                                       u64 offset, u64 bytes)
1752{
1753        unsigned long start, count, end;
1754        int extent_delta = -1;
1755
1756        start = offset_to_bit(info->offset, ctl->unit, offset);
1757        count = bytes_to_bits(bytes, ctl->unit);
1758        end = start + count;
1759        ASSERT(end <= BITS_PER_BITMAP);
1760
1761        bitmap_clear(info->bitmap, start, count);
1762
1763        info->bytes -= bytes;
1764        if (info->max_extent_size > ctl->unit)
1765                info->max_extent_size = 0;
1766
1767        if (start && test_bit(start - 1, info->bitmap))
1768                extent_delta++;
1769
1770        if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1771                extent_delta++;
1772
1773        info->bitmap_extents += extent_delta;
1774        if (!btrfs_free_space_trimmed(info)) {
1775                ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1776                ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1777        }
1778}
1779
1780static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1781                              struct btrfs_free_space *info, u64 offset,
1782                              u64 bytes)
1783{
1784        __bitmap_clear_bits(ctl, info, offset, bytes);
1785        ctl->free_space -= bytes;
1786}
1787
1788static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1789                            struct btrfs_free_space *info, u64 offset,
1790                            u64 bytes)
1791{
1792        unsigned long start, count, end;
1793        int extent_delta = 1;
1794
1795        start = offset_to_bit(info->offset, ctl->unit, offset);
1796        count = bytes_to_bits(bytes, ctl->unit);
1797        end = start + count;
1798        ASSERT(end <= BITS_PER_BITMAP);
1799
1800        bitmap_set(info->bitmap, start, count);
1801
1802        info->bytes += bytes;
1803        ctl->free_space += bytes;
1804
1805        if (start && test_bit(start - 1, info->bitmap))
1806                extent_delta--;
1807
1808        if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1809                extent_delta--;
1810
1811        info->bitmap_extents += extent_delta;
1812        if (!btrfs_free_space_trimmed(info)) {
1813                ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1814                ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1815        }
1816}
1817
1818/*
1819 * If we can not find suitable extent, we will use bytes to record
1820 * the size of the max extent.
1821 */
1822static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1823                         struct btrfs_free_space *bitmap_info, u64 *offset,
1824                         u64 *bytes, bool for_alloc)
1825{
1826        unsigned long found_bits = 0;
1827        unsigned long max_bits = 0;
1828        unsigned long bits, i;
1829        unsigned long next_zero;
1830        unsigned long extent_bits;
1831
1832        /*
1833         * Skip searching the bitmap if we don't have a contiguous section that
1834         * is large enough for this allocation.
1835         */
1836        if (for_alloc &&
1837            bitmap_info->max_extent_size &&
1838            bitmap_info->max_extent_size < *bytes) {
1839                *bytes = bitmap_info->max_extent_size;
1840                return -1;
1841        }
1842
1843        i = offset_to_bit(bitmap_info->offset, ctl->unit,
1844                          max_t(u64, *offset, bitmap_info->offset));
1845        bits = bytes_to_bits(*bytes, ctl->unit);
1846
1847        for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1848                if (for_alloc && bits == 1) {
1849                        found_bits = 1;
1850                        break;
1851                }
1852                next_zero = find_next_zero_bit(bitmap_info->bitmap,
1853                                               BITS_PER_BITMAP, i);
1854                extent_bits = next_zero - i;
1855                if (extent_bits >= bits) {
1856                        found_bits = extent_bits;
1857                        break;
1858                } else if (extent_bits > max_bits) {
1859                        max_bits = extent_bits;
1860                }
1861                i = next_zero;
1862        }
1863
1864        if (found_bits) {
1865                *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1866                *bytes = (u64)(found_bits) * ctl->unit;
1867                return 0;
1868        }
1869
1870        *bytes = (u64)(max_bits) * ctl->unit;
1871        bitmap_info->max_extent_size = *bytes;
1872        return -1;
1873}
1874
1875static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
1876{
1877        if (entry->bitmap)
1878                return entry->max_extent_size;
1879        return entry->bytes;
1880}
1881
1882/* Cache the size of the max extent in bytes */
1883static struct btrfs_free_space *
1884find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1885                unsigned long align, u64 *max_extent_size)
1886{
1887        struct btrfs_free_space *entry;
1888        struct rb_node *node;
1889        u64 tmp;
1890        u64 align_off;
1891        int ret;
1892
1893        if (!ctl->free_space_offset.rb_node)
1894                goto out;
1895
1896        entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1897        if (!entry)
1898                goto out;
1899
1900        for (node = &entry->offset_index; node; node = rb_next(node)) {
1901                entry = rb_entry(node, struct btrfs_free_space, offset_index);
1902                if (entry->bytes < *bytes) {
1903                        *max_extent_size = max(get_max_extent_size(entry),
1904                                               *max_extent_size);
1905                        continue;
1906                }
1907
1908                /* make sure the space returned is big enough
1909                 * to match our requested alignment
1910                 */
1911                if (*bytes >= align) {
1912                        tmp = entry->offset - ctl->start + align - 1;
1913                        tmp = div64_u64(tmp, align);
1914                        tmp = tmp * align + ctl->start;
1915                        align_off = tmp - entry->offset;
1916                } else {
1917                        align_off = 0;
1918                        tmp = entry->offset;
1919                }
1920
1921                if (entry->bytes < *bytes + align_off) {
1922                        *max_extent_size = max(get_max_extent_size(entry),
1923                                               *max_extent_size);
1924                        continue;
1925                }
1926
1927                if (entry->bitmap) {
1928                        u64 size = *bytes;
1929
1930                        ret = search_bitmap(ctl, entry, &tmp, &size, true);
1931                        if (!ret) {
1932                                *offset = tmp;
1933                                *bytes = size;
1934                                return entry;
1935                        } else {
1936                                *max_extent_size =
1937                                        max(get_max_extent_size(entry),
1938                                            *max_extent_size);
1939                        }
1940                        continue;
1941                }
1942
1943                *offset = tmp;
1944                *bytes = entry->bytes - align_off;
1945                return entry;
1946        }
1947out:
1948        return NULL;
1949}
1950
1951static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1952                           struct btrfs_free_space *info, u64 offset)
1953{
1954        info->offset = offset_to_bitmap(ctl, offset);
1955        info->bytes = 0;
1956        info->bitmap_extents = 0;
1957        INIT_LIST_HEAD(&info->list);
1958        link_free_space(ctl, info);
1959        ctl->total_bitmaps++;
1960        recalculate_thresholds(ctl);
1961}
1962
1963static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1964                        struct btrfs_free_space *bitmap_info)
1965{
1966        /*
1967         * Normally when this is called, the bitmap is completely empty. However,
1968         * if we are blowing up the free space cache for one reason or another
1969         * via __btrfs_remove_free_space_cache(), then it may not be freed and
1970         * we may leave stats on the table.
1971         */
1972        if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
1973                ctl->discardable_extents[BTRFS_STAT_CURR] -=
1974                        bitmap_info->bitmap_extents;
1975                ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
1976
1977        }
1978        unlink_free_space(ctl, bitmap_info);
1979        kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
1980        kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1981        ctl->total_bitmaps--;
1982        recalculate_thresholds(ctl);
1983}
1984
1985static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1986                              struct btrfs_free_space *bitmap_info,
1987                              u64 *offset, u64 *bytes)
1988{
1989        u64 end;
1990        u64 search_start, search_bytes;
1991        int ret;
1992
1993again:
1994        end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1995
1996        /*
1997         * We need to search for bits in this bitmap.  We could only cover some
1998         * of the extent in this bitmap thanks to how we add space, so we need
1999         * to search for as much as it as we can and clear that amount, and then
2000         * go searching for the next bit.
2001         */
2002        search_start = *offset;
2003        search_bytes = ctl->unit;
2004        search_bytes = min(search_bytes, end - search_start + 1);
2005        ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
2006                            false);
2007        if (ret < 0 || search_start != *offset)
2008                return -EINVAL;
2009
2010        /* We may have found more bits than what we need */
2011        search_bytes = min(search_bytes, *bytes);
2012
2013        /* Cannot clear past the end of the bitmap */
2014        search_bytes = min(search_bytes, end - search_start + 1);
2015
2016        bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
2017        *offset += search_bytes;
2018        *bytes -= search_bytes;
2019
2020        if (*bytes) {
2021                struct rb_node *next = rb_next(&bitmap_info->offset_index);
2022                if (!bitmap_info->bytes)
2023                        free_bitmap(ctl, bitmap_info);
2024
2025                /*
2026                 * no entry after this bitmap, but we still have bytes to
2027                 * remove, so something has gone wrong.
2028                 */
2029                if (!next)
2030                        return -EINVAL;
2031
2032                bitmap_info = rb_entry(next, struct btrfs_free_space,
2033                                       offset_index);
2034
2035                /*
2036                 * if the next entry isn't a bitmap we need to return to let the
2037                 * extent stuff do its work.
2038                 */
2039                if (!bitmap_info->bitmap)
2040                        return -EAGAIN;
2041
2042                /*
2043                 * Ok the next item is a bitmap, but it may not actually hold
2044                 * the information for the rest of this free space stuff, so
2045                 * look for it, and if we don't find it return so we can try
2046                 * everything over again.
2047                 */
2048                search_start = *offset;
2049                search_bytes = ctl->unit;
2050                ret = search_bitmap(ctl, bitmap_info, &search_start,
2051                                    &search_bytes, false);
2052                if (ret < 0 || search_start != *offset)
2053                        return -EAGAIN;
2054
2055                goto again;
2056        } else if (!bitmap_info->bytes)
2057                free_bitmap(ctl, bitmap_info);
2058
2059        return 0;
2060}
2061
2062static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2063                               struct btrfs_free_space *info, u64 offset,
2064                               u64 bytes, enum btrfs_trim_state trim_state)
2065{
2066        u64 bytes_to_set = 0;
2067        u64 end;
2068
2069        /*
2070         * This is a tradeoff to make bitmap trim state minimal.  We mark the
2071         * whole bitmap untrimmed if at any point we add untrimmed regions.
2072         */
2073        if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2074                if (btrfs_free_space_trimmed(info)) {
2075                        ctl->discardable_extents[BTRFS_STAT_CURR] +=
2076                                info->bitmap_extents;
2077                        ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2078                }
2079                info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2080        }
2081
2082        end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2083
2084        bytes_to_set = min(end - offset, bytes);
2085
2086        bitmap_set_bits(ctl, info, offset, bytes_to_set);
2087
2088        /*
2089         * We set some bytes, we have no idea what the max extent size is
2090         * anymore.
2091         */
2092        info->max_extent_size = 0;
2093
2094        return bytes_to_set;
2095
2096}
2097
2098static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2099                      struct btrfs_free_space *info)
2100{
2101        struct btrfs_block_group *block_group = ctl->private;
2102        struct btrfs_fs_info *fs_info = block_group->fs_info;
2103        bool forced = false;
2104
2105#ifdef CONFIG_BTRFS_DEBUG
2106        if (btrfs_should_fragment_free_space(block_group))
2107                forced = true;
2108#endif
2109
2110        /* This is a way to reclaim large regions from the bitmaps. */
2111        if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2112                return false;
2113
2114        /*
2115         * If we are below the extents threshold then we can add this as an
2116         * extent, and don't have to deal with the bitmap
2117         */
2118        if (!forced && ctl->free_extents < ctl->extents_thresh) {
2119                /*
2120                 * If this block group has some small extents we don't want to
2121                 * use up all of our free slots in the cache with them, we want
2122                 * to reserve them to larger extents, however if we have plenty
2123                 * of cache left then go ahead an dadd them, no sense in adding
2124                 * the overhead of a bitmap if we don't have to.
2125                 */
2126                if (info->bytes <= fs_info->sectorsize * 8) {
2127                        if (ctl->free_extents * 3 <= ctl->extents_thresh)
2128                                return false;
2129                } else {
2130                        return false;
2131                }
2132        }
2133
2134        /*
2135         * The original block groups from mkfs can be really small, like 8
2136         * megabytes, so don't bother with a bitmap for those entries.  However
2137         * some block groups can be smaller than what a bitmap would cover but
2138         * are still large enough that they could overflow the 32k memory limit,
2139         * so allow those block groups to still be allowed to have a bitmap
2140         * entry.
2141         */
2142        if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2143                return false;
2144
2145        return true;
2146}
2147
2148static const struct btrfs_free_space_op free_space_op = {
2149        .use_bitmap             = use_bitmap,
2150};
2151
2152static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2153                              struct btrfs_free_space *info)
2154{
2155        struct btrfs_free_space *bitmap_info;
2156        struct btrfs_block_group *block_group = NULL;
2157        int added = 0;
2158        u64 bytes, offset, bytes_added;
2159        enum btrfs_trim_state trim_state;
2160        int ret;
2161
2162        bytes = info->bytes;
2163        offset = info->offset;
2164        trim_state = info->trim_state;
2165
2166        if (!ctl->op->use_bitmap(ctl, info))
2167                return 0;
2168
2169        if (ctl->op == &free_space_op)
2170                block_group = ctl->private;
2171again:
2172        /*
2173         * Since we link bitmaps right into the cluster we need to see if we
2174         * have a cluster here, and if so and it has our bitmap we need to add
2175         * the free space to that bitmap.
2176         */
2177        if (block_group && !list_empty(&block_group->cluster_list)) {
2178                struct btrfs_free_cluster *cluster;
2179                struct rb_node *node;
2180                struct btrfs_free_space *entry;
2181
2182                cluster = list_entry(block_group->cluster_list.next,
2183                                     struct btrfs_free_cluster,
2184                                     block_group_list);
2185                spin_lock(&cluster->lock);
2186                node = rb_first(&cluster->root);
2187                if (!node) {
2188                        spin_unlock(&cluster->lock);
2189                        goto no_cluster_bitmap;
2190                }
2191
2192                entry = rb_entry(node, struct btrfs_free_space, offset_index);
2193                if (!entry->bitmap) {
2194                        spin_unlock(&cluster->lock);
2195                        goto no_cluster_bitmap;
2196                }
2197
2198                if (entry->offset == offset_to_bitmap(ctl, offset)) {
2199                        bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2200                                                          bytes, trim_state);
2201                        bytes -= bytes_added;
2202                        offset += bytes_added;
2203                }
2204                spin_unlock(&cluster->lock);
2205                if (!bytes) {
2206                        ret = 1;
2207                        goto out;
2208                }
2209        }
2210
2211no_cluster_bitmap:
2212        bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2213                                         1, 0);
2214        if (!bitmap_info) {
2215                ASSERT(added == 0);
2216                goto new_bitmap;
2217        }
2218
2219        bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2220                                          trim_state);
2221        bytes -= bytes_added;
2222        offset += bytes_added;
2223        added = 0;
2224
2225        if (!bytes) {
2226                ret = 1;
2227                goto out;
2228        } else
2229                goto again;
2230
2231new_bitmap:
2232        if (info && info->bitmap) {
2233                add_new_bitmap(ctl, info, offset);
2234                added = 1;
2235                info = NULL;
2236                goto again;
2237        } else {
2238                spin_unlock(&ctl->tree_lock);
2239
2240                /* no pre-allocated info, allocate a new one */
2241                if (!info) {
2242                        info = kmem_cache_zalloc(btrfs_free_space_cachep,
2243                                                 GFP_NOFS);
2244                        if (!info) {
2245                                spin_lock(&ctl->tree_lock);
2246                                ret = -ENOMEM;
2247                                goto out;
2248                        }
2249                }
2250
2251                /* allocate the bitmap */
2252                info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2253                                                 GFP_NOFS);
2254                info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2255                spin_lock(&ctl->tree_lock);
2256                if (!info->bitmap) {
2257                        ret = -ENOMEM;
2258                        goto out;
2259                }
2260                goto again;
2261        }
2262
2263out:
2264        if (info) {
2265                if (info->bitmap)
2266                        kmem_cache_free(btrfs_free_space_bitmap_cachep,
2267                                        info->bitmap);
2268                kmem_cache_free(btrfs_free_space_cachep, info);
2269        }
2270
2271        return ret;
2272}
2273
2274/*
2275 * Free space merging rules:
2276 *  1) Merge trimmed areas together
2277 *  2) Let untrimmed areas coalesce with trimmed areas
2278 *  3) Always pull neighboring regions from bitmaps
2279 *
2280 * The above rules are for when we merge free space based on btrfs_trim_state.
2281 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2282 * same reason: to promote larger extent regions which makes life easier for
2283 * find_free_extent().  Rule 2 enables coalescing based on the common path
2284 * being returning free space from btrfs_finish_extent_commit().  So when free
2285 * space is trimmed, it will prevent aggregating trimmed new region and
2286 * untrimmed regions in the rb_tree.  Rule 3 is purely to obtain larger extents
2287 * and provide find_free_extent() with the largest extents possible hoping for
2288 * the reuse path.
2289 */
2290static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2291                          struct btrfs_free_space *info, bool update_stat)
2292{
2293        struct btrfs_free_space *left_info = NULL;
2294        struct btrfs_free_space *right_info;
2295        bool merged = false;
2296        u64 offset = info->offset;
2297        u64 bytes = info->bytes;
2298        const bool is_trimmed = btrfs_free_space_trimmed(info);
2299
2300        /*
2301         * first we want to see if there is free space adjacent to the range we
2302         * are adding, if there is remove that struct and add a new one to
2303         * cover the entire range
2304         */
2305        right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2306        if (right_info && rb_prev(&right_info->offset_index))
2307                left_info = rb_entry(rb_prev(&right_info->offset_index),
2308                                     struct btrfs_free_space, offset_index);
2309        else if (!right_info)
2310                left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2311
2312        /* See try_merge_free_space() comment. */
2313        if (right_info && !right_info->bitmap &&
2314            (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2315                if (update_stat)
2316                        unlink_free_space(ctl, right_info);
2317                else
2318                        __unlink_free_space(ctl, right_info);
2319                info->bytes += right_info->bytes;
2320                kmem_cache_free(btrfs_free_space_cachep, right_info);
2321                merged = true;
2322        }
2323
2324        /* See try_merge_free_space() comment. */
2325        if (left_info && !left_info->bitmap &&
2326            left_info->offset + left_info->bytes == offset &&
2327            (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2328                if (update_stat)
2329                        unlink_free_space(ctl, left_info);
2330                else
2331                        __unlink_free_space(ctl, left_info);
2332                info->offset = left_info->offset;
2333                info->bytes += left_info->bytes;
2334                kmem_cache_free(btrfs_free_space_cachep, left_info);
2335                merged = true;
2336        }
2337
2338        return merged;
2339}
2340
2341static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2342                                     struct btrfs_free_space *info,
2343                                     bool update_stat)
2344{
2345        struct btrfs_free_space *bitmap;
2346        unsigned long i;
2347        unsigned long j;
2348        const u64 end = info->offset + info->bytes;
2349        const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2350        u64 bytes;
2351
2352        bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2353        if (!bitmap)
2354                return false;
2355
2356        i = offset_to_bit(bitmap->offset, ctl->unit, end);
2357        j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2358        if (j == i)
2359                return false;
2360        bytes = (j - i) * ctl->unit;
2361        info->bytes += bytes;
2362
2363        /* See try_merge_free_space() comment. */
2364        if (!btrfs_free_space_trimmed(bitmap))
2365                info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2366
2367        if (update_stat)
2368                bitmap_clear_bits(ctl, bitmap, end, bytes);
2369        else
2370                __bitmap_clear_bits(ctl, bitmap, end, bytes);
2371
2372        if (!bitmap->bytes)
2373                free_bitmap(ctl, bitmap);
2374
2375        return true;
2376}
2377
2378static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2379                                       struct btrfs_free_space *info,
2380                                       bool update_stat)
2381{
2382        struct btrfs_free_space *bitmap;
2383        u64 bitmap_offset;
2384        unsigned long i;
2385        unsigned long j;
2386        unsigned long prev_j;
2387        u64 bytes;
2388
2389        bitmap_offset = offset_to_bitmap(ctl, info->offset);
2390        /* If we're on a boundary, try the previous logical bitmap. */
2391        if (bitmap_offset == info->offset) {
2392                if (info->offset == 0)
2393                        return false;
2394                bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2395        }
2396
2397        bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2398        if (!bitmap)
2399                return false;
2400
2401        i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2402        j = 0;
2403        prev_j = (unsigned long)-1;
2404        for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2405                if (j > i)
2406                        break;
2407                prev_j = j;
2408        }
2409        if (prev_j == i)
2410                return false;
2411
2412        if (prev_j == (unsigned long)-1)
2413                bytes = (i + 1) * ctl->unit;
2414        else
2415                bytes = (i - prev_j) * ctl->unit;
2416
2417        info->offset -= bytes;
2418        info->bytes += bytes;
2419
2420        /* See try_merge_free_space() comment. */
2421        if (!btrfs_free_space_trimmed(bitmap))
2422                info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2423
2424        if (update_stat)
2425                bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2426        else
2427                __bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2428
2429        if (!bitmap->bytes)
2430                free_bitmap(ctl, bitmap);
2431
2432        return true;
2433}
2434
2435/*
2436 * We prefer always to allocate from extent entries, both for clustered and
2437 * non-clustered allocation requests. So when attempting to add a new extent
2438 * entry, try to see if there's adjacent free space in bitmap entries, and if
2439 * there is, migrate that space from the bitmaps to the extent.
2440 * Like this we get better chances of satisfying space allocation requests
2441 * because we attempt to satisfy them based on a single cache entry, and never
2442 * on 2 or more entries - even if the entries represent a contiguous free space
2443 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2444 * ends).
2445 */
2446static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2447                              struct btrfs_free_space *info,
2448                              bool update_stat)
2449{
2450        /*
2451         * Only work with disconnected entries, as we can change their offset,
2452         * and must be extent entries.
2453         */
2454        ASSERT(!info->bitmap);
2455        ASSERT(RB_EMPTY_NODE(&info->offset_index));
2456
2457        if (ctl->total_bitmaps > 0) {
2458                bool stole_end;
2459                bool stole_front = false;
2460
2461                stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2462                if (ctl->total_bitmaps > 0)
2463                        stole_front = steal_from_bitmap_to_front(ctl, info,
2464                                                                 update_stat);
2465
2466                if (stole_end || stole_front)
2467                        try_merge_free_space(ctl, info, update_stat);
2468        }
2469}
2470
2471int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2472                           struct btrfs_free_space_ctl *ctl,
2473                           u64 offset, u64 bytes,
2474                           enum btrfs_trim_state trim_state)
2475{
2476        struct btrfs_block_group *block_group = ctl->private;
2477        struct btrfs_free_space *info;
2478        int ret = 0;
2479        u64 filter_bytes = bytes;
2480
2481        ASSERT(!btrfs_is_zoned(fs_info));
2482
2483        info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2484        if (!info)
2485                return -ENOMEM;
2486
2487        info->offset = offset;
2488        info->bytes = bytes;
2489        info->trim_state = trim_state;
2490        RB_CLEAR_NODE(&info->offset_index);
2491
2492        spin_lock(&ctl->tree_lock);
2493
2494        if (try_merge_free_space(ctl, info, true))
2495                goto link;
2496
2497        /*
2498         * There was no extent directly to the left or right of this new
2499         * extent then we know we're going to have to allocate a new extent, so
2500         * before we do that see if we need to drop this into a bitmap
2501         */
2502        ret = insert_into_bitmap(ctl, info);
2503        if (ret < 0) {
2504                goto out;
2505        } else if (ret) {
2506                ret = 0;
2507                goto out;
2508        }
2509link:
2510        /*
2511         * Only steal free space from adjacent bitmaps if we're sure we're not
2512         * going to add the new free space to existing bitmap entries - because
2513         * that would mean unnecessary work that would be reverted. Therefore
2514         * attempt to steal space from bitmaps if we're adding an extent entry.
2515         */
2516        steal_from_bitmap(ctl, info, true);
2517
2518        filter_bytes = max(filter_bytes, info->bytes);
2519
2520        ret = link_free_space(ctl, info);
2521        if (ret)
2522                kmem_cache_free(btrfs_free_space_cachep, info);
2523out:
2524        btrfs_discard_update_discardable(block_group);
2525        spin_unlock(&ctl->tree_lock);
2526
2527        if (ret) {
2528                btrfs_crit(fs_info, "unable to add free space :%d", ret);
2529                ASSERT(ret != -EEXIST);
2530        }
2531
2532        if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2533                btrfs_discard_check_filter(block_group, filter_bytes);
2534                btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2535        }
2536
2537        return ret;
2538}
2539
2540static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group,
2541                                        u64 bytenr, u64 size, bool used)
2542{
2543        struct btrfs_fs_info *fs_info = block_group->fs_info;
2544        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2545        u64 offset = bytenr - block_group->start;
2546        u64 to_free, to_unusable;
2547
2548        spin_lock(&ctl->tree_lock);
2549        if (!used)
2550                to_free = size;
2551        else if (offset >= block_group->alloc_offset)
2552                to_free = size;
2553        else if (offset + size <= block_group->alloc_offset)
2554                to_free = 0;
2555        else
2556                to_free = offset + size - block_group->alloc_offset;
2557        to_unusable = size - to_free;
2558
2559        ctl->free_space += to_free;
2560        /*
2561         * If the block group is read-only, we should account freed space into
2562         * bytes_readonly.
2563         */
2564        if (!block_group->ro)
2565                block_group->zone_unusable += to_unusable;
2566        spin_unlock(&ctl->tree_lock);
2567        if (!used) {
2568                spin_lock(&block_group->lock);
2569                block_group->alloc_offset -= size;
2570                spin_unlock(&block_group->lock);
2571        }
2572
2573        /* All the region is now unusable. Mark it as unused and reclaim */
2574        if (block_group->zone_unusable == block_group->length) {
2575                btrfs_mark_bg_unused(block_group);
2576        } else if (block_group->zone_unusable >=
2577                   div_factor_fine(block_group->length,
2578                                   fs_info->bg_reclaim_threshold)) {
2579                btrfs_mark_bg_to_reclaim(block_group);
2580        }
2581
2582        return 0;
2583}
2584
2585int btrfs_add_free_space(struct btrfs_block_group *block_group,
2586                         u64 bytenr, u64 size)
2587{
2588        enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2589
2590        if (btrfs_is_zoned(block_group->fs_info))
2591                return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2592                                                    true);
2593
2594        if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2595                trim_state = BTRFS_TRIM_STATE_TRIMMED;
2596
2597        return __btrfs_add_free_space(block_group->fs_info,
2598                                      block_group->free_space_ctl,
2599                                      bytenr, size, trim_state);
2600}
2601
2602int btrfs_add_free_space_unused(struct btrfs_block_group *block_group,
2603                                u64 bytenr, u64 size)
2604{
2605        if (btrfs_is_zoned(block_group->fs_info))
2606                return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2607                                                    false);
2608
2609        return btrfs_add_free_space(block_group, bytenr, size);
2610}
2611
2612/*
2613 * This is a subtle distinction because when adding free space back in general,
2614 * we want it to be added as untrimmed for async. But in the case where we add
2615 * it on loading of a block group, we want to consider it trimmed.
2616 */
2617int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2618                                       u64 bytenr, u64 size)
2619{
2620        enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2621
2622        if (btrfs_is_zoned(block_group->fs_info))
2623                return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2624                                                    true);
2625
2626        if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2627            btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2628                trim_state = BTRFS_TRIM_STATE_TRIMMED;
2629
2630        return __btrfs_add_free_space(block_group->fs_info,
2631                                      block_group->free_space_ctl,
2632                                      bytenr, size, trim_state);
2633}
2634
2635int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2636                            u64 offset, u64 bytes)
2637{
2638        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2639        struct btrfs_free_space *info;
2640        int ret;
2641        bool re_search = false;
2642
2643        if (btrfs_is_zoned(block_group->fs_info)) {
2644                /*
2645                 * This can happen with conventional zones when replaying log.
2646                 * Since the allocation info of tree-log nodes are not recorded
2647                 * to the extent-tree, calculate_alloc_pointer() failed to
2648                 * advance the allocation pointer after last allocated tree log
2649                 * node blocks.
2650                 *
2651                 * This function is called from
2652                 * btrfs_pin_extent_for_log_replay() when replaying the log.
2653                 * Advance the pointer not to overwrite the tree-log nodes.
2654                 */
2655                if (block_group->alloc_offset < offset + bytes)
2656                        block_group->alloc_offset = offset + bytes;
2657                return 0;
2658        }
2659
2660        spin_lock(&ctl->tree_lock);
2661
2662again:
2663        ret = 0;
2664        if (!bytes)
2665                goto out_lock;
2666
2667        info = tree_search_offset(ctl, offset, 0, 0);
2668        if (!info) {
2669                /*
2670                 * oops didn't find an extent that matched the space we wanted
2671                 * to remove, look for a bitmap instead
2672                 */
2673                info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2674                                          1, 0);
2675                if (!info) {
2676                        /*
2677                         * If we found a partial bit of our free space in a
2678                         * bitmap but then couldn't find the other part this may
2679                         * be a problem, so WARN about it.
2680                         */
2681                        WARN_ON(re_search);
2682                        goto out_lock;
2683                }
2684        }
2685
2686        re_search = false;
2687        if (!info->bitmap) {
2688                unlink_free_space(ctl, info);
2689                if (offset == info->offset) {
2690                        u64 to_free = min(bytes, info->bytes);
2691
2692                        info->bytes -= to_free;
2693                        info->offset += to_free;
2694                        if (info->bytes) {
2695                                ret = link_free_space(ctl, info);
2696                                WARN_ON(ret);
2697                        } else {
2698                                kmem_cache_free(btrfs_free_space_cachep, info);
2699                        }
2700
2701                        offset += to_free;
2702                        bytes -= to_free;
2703                        goto again;
2704                } else {
2705                        u64 old_end = info->bytes + info->offset;
2706
2707                        info->bytes = offset - info->offset;
2708                        ret = link_free_space(ctl, info);
2709                        WARN_ON(ret);
2710                        if (ret)
2711                                goto out_lock;
2712
2713                        /* Not enough bytes in this entry to satisfy us */
2714                        if (old_end < offset + bytes) {
2715                                bytes -= old_end - offset;
2716                                offset = old_end;
2717                                goto again;
2718                        } else if (old_end == offset + bytes) {
2719                                /* all done */
2720                                goto out_lock;
2721                        }
2722                        spin_unlock(&ctl->tree_lock);
2723
2724                        ret = __btrfs_add_free_space(block_group->fs_info, ctl,
2725                                                     offset + bytes,
2726                                                     old_end - (offset + bytes),
2727                                                     info->trim_state);
2728                        WARN_ON(ret);
2729                        goto out;
2730                }
2731        }
2732
2733        ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2734        if (ret == -EAGAIN) {
2735                re_search = true;
2736                goto again;
2737        }
2738out_lock:
2739        btrfs_discard_update_discardable(block_group);
2740        spin_unlock(&ctl->tree_lock);
2741out:
2742        return ret;
2743}
2744
2745void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2746                           u64 bytes)
2747{
2748        struct btrfs_fs_info *fs_info = block_group->fs_info;
2749        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2750        struct btrfs_free_space *info;
2751        struct rb_node *n;
2752        int count = 0;
2753
2754        /*
2755         * Zoned btrfs does not use free space tree and cluster. Just print
2756         * out the free space after the allocation offset.
2757         */
2758        if (btrfs_is_zoned(fs_info)) {
2759                btrfs_info(fs_info, "free space %llu",
2760                           block_group->length - block_group->alloc_offset);
2761                return;
2762        }
2763
2764        spin_lock(&ctl->tree_lock);
2765        for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2766                info = rb_entry(n, struct btrfs_free_space, offset_index);
2767                if (info->bytes >= bytes && !block_group->ro)
2768                        count++;
2769                btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2770                           info->offset, info->bytes,
2771                       (info->bitmap) ? "yes" : "no");
2772        }
2773        spin_unlock(&ctl->tree_lock);
2774        btrfs_info(fs_info, "block group has cluster?: %s",
2775               list_empty(&block_group->cluster_list) ? "no" : "yes");
2776        btrfs_info(fs_info,
2777                   "%d blocks of free space at or bigger than bytes is", count);
2778}
2779
2780void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group,
2781                               struct btrfs_free_space_ctl *ctl)
2782{
2783        struct btrfs_fs_info *fs_info = block_group->fs_info;
2784
2785        spin_lock_init(&ctl->tree_lock);
2786        ctl->unit = fs_info->sectorsize;
2787        ctl->start = block_group->start;
2788        ctl->private = block_group;
2789        ctl->op = &free_space_op;
2790        INIT_LIST_HEAD(&ctl->trimming_ranges);
2791        mutex_init(&ctl->cache_writeout_mutex);
2792
2793        /*
2794         * we only want to have 32k of ram per block group for keeping
2795         * track of free space, and if we pass 1/2 of that we want to
2796         * start converting things over to using bitmaps
2797         */
2798        ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2799}
2800
2801/*
2802 * for a given cluster, put all of its extents back into the free
2803 * space cache.  If the block group passed doesn't match the block group
2804 * pointed to by the cluster, someone else raced in and freed the
2805 * cluster already.  In that case, we just return without changing anything
2806 */
2807static void __btrfs_return_cluster_to_free_space(
2808                             struct btrfs_block_group *block_group,
2809                             struct btrfs_free_cluster *cluster)
2810{
2811        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2812        struct btrfs_free_space *entry;
2813        struct rb_node *node;
2814
2815        spin_lock(&cluster->lock);
2816        if (cluster->block_group != block_group) {
2817                spin_unlock(&cluster->lock);
2818                return;
2819        }
2820
2821        cluster->block_group = NULL;
2822        cluster->window_start = 0;
2823        list_del_init(&cluster->block_group_list);
2824
2825        node = rb_first(&cluster->root);
2826        while (node) {
2827                bool bitmap;
2828
2829                entry = rb_entry(node, struct btrfs_free_space, offset_index);
2830                node = rb_next(&entry->offset_index);
2831                rb_erase(&entry->offset_index, &cluster->root);
2832                RB_CLEAR_NODE(&entry->offset_index);
2833
2834                bitmap = (entry->bitmap != NULL);
2835                if (!bitmap) {
2836                        /* Merging treats extents as if they were new */
2837                        if (!btrfs_free_space_trimmed(entry)) {
2838                                ctl->discardable_extents[BTRFS_STAT_CURR]--;
2839                                ctl->discardable_bytes[BTRFS_STAT_CURR] -=
2840                                        entry->bytes;
2841                        }
2842
2843                        try_merge_free_space(ctl, entry, false);
2844                        steal_from_bitmap(ctl, entry, false);
2845
2846                        /* As we insert directly, update these statistics */
2847                        if (!btrfs_free_space_trimmed(entry)) {
2848                                ctl->discardable_extents[BTRFS_STAT_CURR]++;
2849                                ctl->discardable_bytes[BTRFS_STAT_CURR] +=
2850                                        entry->bytes;
2851                        }
2852                }
2853                tree_insert_offset(&ctl->free_space_offset,
2854                                   entry->offset, &entry->offset_index, bitmap);
2855        }
2856        cluster->root = RB_ROOT;
2857        spin_unlock(&cluster->lock);
2858        btrfs_put_block_group(block_group);
2859}
2860
2861static void __btrfs_remove_free_space_cache_locked(
2862                                struct btrfs_free_space_ctl *ctl)
2863{
2864        struct btrfs_free_space *info;
2865        struct rb_node *node;
2866
2867        while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2868                info = rb_entry(node, struct btrfs_free_space, offset_index);
2869                if (!info->bitmap) {
2870                        unlink_free_space(ctl, info);
2871                        kmem_cache_free(btrfs_free_space_cachep, info);
2872                } else {
2873                        free_bitmap(ctl, info);
2874                }
2875
2876                cond_resched_lock(&ctl->tree_lock);
2877        }
2878}
2879
2880void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2881{
2882        spin_lock(&ctl->tree_lock);
2883        __btrfs_remove_free_space_cache_locked(ctl);
2884        if (ctl->private)
2885                btrfs_discard_update_discardable(ctl->private);
2886        spin_unlock(&ctl->tree_lock);
2887}
2888
2889void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
2890{
2891        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2892        struct btrfs_free_cluster *cluster;
2893        struct list_head *head;
2894
2895        spin_lock(&ctl->tree_lock);
2896        while ((head = block_group->cluster_list.next) !=
2897               &block_group->cluster_list) {
2898                cluster = list_entry(head, struct btrfs_free_cluster,
2899                                     block_group_list);
2900
2901                WARN_ON(cluster->block_group != block_group);
2902                __btrfs_return_cluster_to_free_space(block_group, cluster);
2903
2904                cond_resched_lock(&ctl->tree_lock);
2905        }
2906        __btrfs_remove_free_space_cache_locked(ctl);
2907        btrfs_discard_update_discardable(block_group);
2908        spin_unlock(&ctl->tree_lock);
2909
2910}
2911
2912/**
2913 * btrfs_is_free_space_trimmed - see if everything is trimmed
2914 * @block_group: block_group of interest
2915 *
2916 * Walk @block_group's free space rb_tree to determine if everything is trimmed.
2917 */
2918bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
2919{
2920        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2921        struct btrfs_free_space *info;
2922        struct rb_node *node;
2923        bool ret = true;
2924
2925        spin_lock(&ctl->tree_lock);
2926        node = rb_first(&ctl->free_space_offset);
2927
2928        while (node) {
2929                info = rb_entry(node, struct btrfs_free_space, offset_index);
2930
2931                if (!btrfs_free_space_trimmed(info)) {
2932                        ret = false;
2933                        break;
2934                }
2935
2936                node = rb_next(node);
2937        }
2938
2939        spin_unlock(&ctl->tree_lock);
2940        return ret;
2941}
2942
2943u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
2944                               u64 offset, u64 bytes, u64 empty_size,
2945                               u64 *max_extent_size)
2946{
2947        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2948        struct btrfs_discard_ctl *discard_ctl =
2949                                        &block_group->fs_info->discard_ctl;
2950        struct btrfs_free_space *entry = NULL;
2951        u64 bytes_search = bytes + empty_size;
2952        u64 ret = 0;
2953        u64 align_gap = 0;
2954        u64 align_gap_len = 0;
2955        enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2956
2957        ASSERT(!btrfs_is_zoned(block_group->fs_info));
2958
2959        spin_lock(&ctl->tree_lock);
2960        entry = find_free_space(ctl, &offset, &bytes_search,
2961                                block_group->full_stripe_len, max_extent_size);
2962        if (!entry)
2963                goto out;
2964
2965        ret = offset;
2966        if (entry->bitmap) {
2967                bitmap_clear_bits(ctl, entry, offset, bytes);
2968
2969                if (!btrfs_free_space_trimmed(entry))
2970                        atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
2971
2972                if (!entry->bytes)
2973                        free_bitmap(ctl, entry);
2974        } else {
2975                unlink_free_space(ctl, entry);
2976                align_gap_len = offset - entry->offset;
2977                align_gap = entry->offset;
2978                align_gap_trim_state = entry->trim_state;
2979
2980                if (!btrfs_free_space_trimmed(entry))
2981                        atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
2982
2983                entry->offset = offset + bytes;
2984                WARN_ON(entry->bytes < bytes + align_gap_len);
2985
2986                entry->bytes -= bytes + align_gap_len;
2987                if (!entry->bytes)
2988                        kmem_cache_free(btrfs_free_space_cachep, entry);
2989                else
2990                        link_free_space(ctl, entry);
2991        }
2992out:
2993        btrfs_discard_update_discardable(block_group);
2994        spin_unlock(&ctl->tree_lock);
2995
2996        if (align_gap_len)
2997                __btrfs_add_free_space(block_group->fs_info, ctl,
2998                                       align_gap, align_gap_len,
2999                                       align_gap_trim_state);
3000        return ret;
3001}
3002
3003/*
3004 * given a cluster, put all of its extents back into the free space
3005 * cache.  If a block group is passed, this function will only free
3006 * a cluster that belongs to the passed block group.
3007 *
3008 * Otherwise, it'll get a reference on the block group pointed to by the
3009 * cluster and remove the cluster from it.
3010 */
3011void btrfs_return_cluster_to_free_space(
3012                               struct btrfs_block_group *block_group,
3013                               struct btrfs_free_cluster *cluster)
3014{
3015        struct btrfs_free_space_ctl *ctl;
3016
3017        /* first, get a safe pointer to the block group */
3018        spin_lock(&cluster->lock);
3019        if (!block_group) {
3020                block_group = cluster->block_group;
3021                if (!block_group) {
3022                        spin_unlock(&cluster->lock);
3023                        return;
3024                }
3025        } else if (cluster->block_group != block_group) {
3026                /* someone else has already freed it don't redo their work */
3027                spin_unlock(&cluster->lock);
3028                return;
3029        }
3030        btrfs_get_block_group(block_group);
3031        spin_unlock(&cluster->lock);
3032
3033        ctl = block_group->free_space_ctl;
3034
3035        /* now return any extents the cluster had on it */
3036        spin_lock(&ctl->tree_lock);
3037        __btrfs_return_cluster_to_free_space(block_group, cluster);
3038        spin_unlock(&ctl->tree_lock);
3039
3040        btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
3041
3042        /* finally drop our ref */
3043        btrfs_put_block_group(block_group);
3044}
3045
3046static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
3047                                   struct btrfs_free_cluster *cluster,
3048                                   struct btrfs_free_space *entry,
3049                                   u64 bytes, u64 min_start,
3050                                   u64 *max_extent_size)
3051{
3052        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3053        int err;
3054        u64 search_start = cluster->window_start;
3055        u64 search_bytes = bytes;
3056        u64 ret = 0;
3057
3058        search_start = min_start;
3059        search_bytes = bytes;
3060
3061        err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
3062        if (err) {
3063                *max_extent_size = max(get_max_extent_size(entry),
3064                                       *max_extent_size);
3065                return 0;
3066        }
3067
3068        ret = search_start;
3069        __bitmap_clear_bits(ctl, entry, ret, bytes);
3070
3071        return ret;
3072}
3073
3074/*
3075 * given a cluster, try to allocate 'bytes' from it, returns 0
3076 * if it couldn't find anything suitably large, or a logical disk offset
3077 * if things worked out
3078 */
3079u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
3080                             struct btrfs_free_cluster *cluster, u64 bytes,
3081                             u64 min_start, u64 *max_extent_size)
3082{
3083        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3084        struct btrfs_discard_ctl *discard_ctl =
3085                                        &block_group->fs_info->discard_ctl;
3086        struct btrfs_free_space *entry = NULL;
3087        struct rb_node *node;
3088        u64 ret = 0;
3089
3090        ASSERT(!btrfs_is_zoned(block_group->fs_info));
3091
3092        spin_lock(&cluster->lock);
3093        if (bytes > cluster->max_size)
3094                goto out;
3095
3096        if (cluster->block_group != block_group)
3097                goto out;
3098
3099        node = rb_first(&cluster->root);
3100        if (!node)
3101                goto out;
3102
3103        entry = rb_entry(node, struct btrfs_free_space, offset_index);
3104        while (1) {
3105                if (entry->bytes < bytes)
3106                        *max_extent_size = max(get_max_extent_size(entry),
3107                                               *max_extent_size);
3108
3109                if (entry->bytes < bytes ||
3110                    (!entry->bitmap && entry->offset < min_start)) {
3111                        node = rb_next(&entry->offset_index);
3112                        if (!node)
3113                                break;
3114                        entry = rb_entry(node, struct btrfs_free_space,
3115                                         offset_index);
3116                        continue;
3117                }
3118
3119                if (entry->bitmap) {
3120                        ret = btrfs_alloc_from_bitmap(block_group,
3121                                                      cluster, entry, bytes,
3122                                                      cluster->window_start,
3123                                                      max_extent_size);
3124                        if (ret == 0) {
3125                                node = rb_next(&entry->offset_index);
3126                                if (!node)
3127                                        break;
3128                                entry = rb_entry(node, struct btrfs_free_space,
3129                                                 offset_index);
3130                                continue;
3131                        }
3132                        cluster->window_start += bytes;
3133                } else {
3134                        ret = entry->offset;
3135
3136                        entry->offset += bytes;
3137                        entry->bytes -= bytes;
3138                }
3139
3140                break;
3141        }
3142out:
3143        spin_unlock(&cluster->lock);
3144
3145        if (!ret)
3146                return 0;
3147
3148        spin_lock(&ctl->tree_lock);
3149
3150        if (!btrfs_free_space_trimmed(entry))
3151                atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3152
3153        ctl->free_space -= bytes;
3154        if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3155                ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3156
3157        spin_lock(&cluster->lock);
3158        if (entry->bytes == 0) {
3159                rb_erase(&entry->offset_index, &cluster->root);
3160                ctl->free_extents--;
3161                if (entry->bitmap) {
3162                        kmem_cache_free(btrfs_free_space_bitmap_cachep,
3163                                        entry->bitmap);
3164                        ctl->total_bitmaps--;
3165                        recalculate_thresholds(ctl);
3166                } else if (!btrfs_free_space_trimmed(entry)) {
3167                        ctl->discardable_extents[BTRFS_STAT_CURR]--;
3168                }
3169                kmem_cache_free(btrfs_free_space_cachep, entry);
3170        }
3171
3172        spin_unlock(&cluster->lock);
3173        spin_unlock(&ctl->tree_lock);
3174
3175        return ret;
3176}
3177
3178static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3179                                struct btrfs_free_space *entry,
3180                                struct btrfs_free_cluster *cluster,
3181                                u64 offset, u64 bytes,
3182                                u64 cont1_bytes, u64 min_bytes)
3183{
3184        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3185        unsigned long next_zero;
3186        unsigned long i;
3187        unsigned long want_bits;
3188        unsigned long min_bits;
3189        unsigned long found_bits;
3190        unsigned long max_bits = 0;
3191        unsigned long start = 0;
3192        unsigned long total_found = 0;
3193        int ret;
3194
3195        i = offset_to_bit(entry->offset, ctl->unit,
3196                          max_t(u64, offset, entry->offset));
3197        want_bits = bytes_to_bits(bytes, ctl->unit);
3198        min_bits = bytes_to_bits(min_bytes, ctl->unit);
3199
3200        /*
3201         * Don't bother looking for a cluster in this bitmap if it's heavily
3202         * fragmented.
3203         */
3204        if (entry->max_extent_size &&
3205            entry->max_extent_size < cont1_bytes)
3206                return -ENOSPC;
3207again:
3208        found_bits = 0;
3209        for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3210                next_zero = find_next_zero_bit(entry->bitmap,
3211                                               BITS_PER_BITMAP, i);
3212                if (next_zero - i >= min_bits) {
3213                        found_bits = next_zero - i;
3214                        if (found_bits > max_bits)
3215                                max_bits = found_bits;
3216                        break;
3217                }
3218                if (next_zero - i > max_bits)
3219                        max_bits = next_zero - i;
3220                i = next_zero;
3221        }
3222
3223        if (!found_bits) {
3224                entry->max_extent_size = (u64)max_bits * ctl->unit;
3225                return -ENOSPC;
3226        }
3227
3228        if (!total_found) {
3229                start = i;
3230                cluster->max_size = 0;
3231        }
3232
3233        total_found += found_bits;
3234
3235        if (cluster->max_size < found_bits * ctl->unit)
3236                cluster->max_size = found_bits * ctl->unit;
3237
3238        if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3239                i = next_zero + 1;
3240                goto again;
3241        }
3242
3243        cluster->window_start = start * ctl->unit + entry->offset;
3244        rb_erase(&entry->offset_index, &ctl->free_space_offset);
3245        ret = tree_insert_offset(&cluster->root, entry->offset,
3246                                 &entry->offset_index, 1);
3247        ASSERT(!ret); /* -EEXIST; Logic error */
3248
3249        trace_btrfs_setup_cluster(block_group, cluster,
3250                                  total_found * ctl->unit, 1);
3251        return 0;
3252}
3253
3254/*
3255 * This searches the block group for just extents to fill the cluster with.
3256 * Try to find a cluster with at least bytes total bytes, at least one
3257 * extent of cont1_bytes, and other clusters of at least min_bytes.
3258 */
3259static noinline int
3260setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3261                        struct btrfs_free_cluster *cluster,
3262                        struct list_head *bitmaps, u64 offset, u64 bytes,
3263                        u64 cont1_bytes, u64 min_bytes)
3264{
3265        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3266        struct btrfs_free_space *first = NULL;
3267        struct btrfs_free_space *entry = NULL;
3268        struct btrfs_free_space *last;
3269        struct rb_node *node;
3270        u64 window_free;
3271        u64 max_extent;
3272        u64 total_size = 0;
3273
3274        entry = tree_search_offset(ctl, offset, 0, 1);
3275        if (!entry)
3276                return -ENOSPC;
3277
3278        /*
3279         * We don't want bitmaps, so just move along until we find a normal
3280         * extent entry.
3281         */
3282        while (entry->bitmap || entry->bytes < min_bytes) {
3283                if (entry->bitmap && list_empty(&entry->list))
3284                        list_add_tail(&entry->list, bitmaps);
3285                node = rb_next(&entry->offset_index);
3286                if (!node)
3287                        return -ENOSPC;
3288                entry = rb_entry(node, struct btrfs_free_space, offset_index);
3289        }
3290
3291        window_free = entry->bytes;
3292        max_extent = entry->bytes;
3293        first = entry;
3294        last = entry;
3295
3296        for (node = rb_next(&entry->offset_index); node;
3297             node = rb_next(&entry->offset_index)) {
3298                entry = rb_entry(node, struct btrfs_free_space, offset_index);
3299
3300                if (entry->bitmap) {
3301                        if (list_empty(&entry->list))
3302                                list_add_tail(&entry->list, bitmaps);
3303                        continue;
3304                }
3305
3306                if (entry->bytes < min_bytes)
3307                        continue;
3308
3309                last = entry;
3310                window_free += entry->bytes;
3311                if (entry->bytes > max_extent)
3312                        max_extent = entry->bytes;
3313        }
3314
3315        if (window_free < bytes || max_extent < cont1_bytes)
3316                return -ENOSPC;
3317
3318        cluster->window_start = first->offset;
3319
3320        node = &first->offset_index;
3321
3322        /*
3323         * now we've found our entries, pull them out of the free space
3324         * cache and put them into the cluster rbtree
3325         */
3326        do {
3327                int ret;
3328
3329                entry = rb_entry(node, struct btrfs_free_space, offset_index);
3330                node = rb_next(&entry->offset_index);
3331                if (entry->bitmap || entry->bytes < min_bytes)
3332                        continue;
3333
3334                rb_erase(&entry->offset_index, &ctl->free_space_offset);
3335                ret = tree_insert_offset(&cluster->root, entry->offset,
3336                                         &entry->offset_index, 0);
3337                total_size += entry->bytes;
3338                ASSERT(!ret); /* -EEXIST; Logic error */
3339        } while (node && entry != last);
3340
3341        cluster->max_size = max_extent;
3342        trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3343        return 0;
3344}
3345
3346/*
3347 * This specifically looks for bitmaps that may work in the cluster, we assume
3348 * that we have already failed to find extents that will work.
3349 */
3350static noinline int
3351setup_cluster_bitmap(struct btrfs_block_group *block_group,
3352                     struct btrfs_free_cluster *cluster,
3353                     struct list_head *bitmaps, u64 offset, u64 bytes,
3354                     u64 cont1_bytes, u64 min_bytes)
3355{
3356        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3357        struct btrfs_free_space *entry = NULL;
3358        int ret = -ENOSPC;
3359        u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3360
3361        if (ctl->total_bitmaps == 0)
3362                return -ENOSPC;
3363
3364        /*
3365         * The bitmap that covers offset won't be in the list unless offset
3366         * is just its start offset.
3367         */
3368        if (!list_empty(bitmaps))
3369                entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3370
3371        if (!entry || entry->offset != bitmap_offset) {
3372                entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3373                if (entry && list_empty(&entry->list))
3374                        list_add(&entry->list, bitmaps);
3375        }
3376
3377        list_for_each_entry(entry, bitmaps, list) {
3378                if (entry->bytes < bytes)
3379                        continue;
3380                ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3381                                           bytes, cont1_bytes, min_bytes);
3382                if (!ret)
3383                        return 0;
3384        }
3385
3386        /*
3387         * The bitmaps list has all the bitmaps that record free space
3388         * starting after offset, so no more search is required.
3389         */
3390        return -ENOSPC;
3391}
3392
3393/*
3394 * here we try to find a cluster of blocks in a block group.  The goal
3395 * is to find at least bytes+empty_size.
3396 * We might not find them all in one contiguous area.
3397 *
3398 * returns zero and sets up cluster if things worked out, otherwise
3399 * it returns -enospc
3400 */
3401int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3402                             struct btrfs_free_cluster *cluster,
3403                             u64 offset, u64 bytes, u64 empty_size)
3404{
3405        struct btrfs_fs_info *fs_info = block_group->fs_info;
3406        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3407        struct btrfs_free_space *entry, *tmp;
3408        LIST_HEAD(bitmaps);
3409        u64 min_bytes;
3410        u64 cont1_bytes;
3411        int ret;
3412
3413        /*
3414         * Choose the minimum extent size we'll require for this
3415         * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3416         * For metadata, allow allocates with smaller extents.  For
3417         * data, keep it dense.
3418         */
3419        if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3420                cont1_bytes = min_bytes = bytes + empty_size;
3421        } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3422                cont1_bytes = bytes;
3423                min_bytes = fs_info->sectorsize;
3424        } else {
3425                cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3426                min_bytes = fs_info->sectorsize;
3427        }
3428
3429        spin_lock(&ctl->tree_lock);
3430
3431        /*
3432         * If we know we don't have enough space to make a cluster don't even
3433         * bother doing all the work to try and find one.
3434         */
3435        if (ctl->free_space < bytes) {
3436                spin_unlock(&ctl->tree_lock);
3437                return -ENOSPC;
3438        }
3439
3440        spin_lock(&cluster->lock);
3441
3442        /* someone already found a cluster, hooray */
3443        if (cluster->block_group) {
3444                ret = 0;
3445                goto out;
3446        }
3447
3448        trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3449                                 min_bytes);
3450
3451        ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3452                                      bytes + empty_size,
3453                                      cont1_bytes, min_bytes);
3454        if (ret)
3455                ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3456                                           offset, bytes + empty_size,
3457                                           cont1_bytes, min_bytes);
3458
3459        /* Clear our temporary list */
3460        list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3461                list_del_init(&entry->list);
3462
3463        if (!ret) {
3464                btrfs_get_block_group(block_group);
3465                list_add_tail(&cluster->block_group_list,
3466                              &block_group->cluster_list);
3467                cluster->block_group = block_group;
3468        } else {
3469                trace_btrfs_failed_cluster_setup(block_group);
3470        }
3471out:
3472        spin_unlock(&cluster->lock);
3473        spin_unlock(&ctl->tree_lock);
3474
3475        return ret;
3476}
3477
3478/*
3479 * simple code to zero out a cluster
3480 */
3481void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3482{
3483        spin_lock_init(&cluster->lock);
3484        spin_lock_init(&cluster->refill_lock);
3485        cluster->root = RB_ROOT;
3486        cluster->max_size = 0;
3487        cluster->fragmented = false;
3488        INIT_LIST_HEAD(&cluster->block_group_list);
3489        cluster->block_group = NULL;
3490}
3491
3492static int do_trimming(struct btrfs_block_group *block_group,
3493                       u64 *total_trimmed, u64 start, u64 bytes,
3494                       u64 reserved_start, u64 reserved_bytes,
3495                       enum btrfs_trim_state reserved_trim_state,
3496                       struct btrfs_trim_range *trim_entry)
3497{
3498        struct btrfs_space_info *space_info = block_group->space_info;
3499        struct btrfs_fs_info *fs_info = block_group->fs_info;
3500        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3501        int ret;
3502        int update = 0;
3503        const u64 end = start + bytes;
3504        const u64 reserved_end = reserved_start + reserved_bytes;
3505        enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3506        u64 trimmed = 0;
3507
3508        spin_lock(&space_info->lock);
3509        spin_lock(&block_group->lock);
3510        if (!block_group->ro) {
3511                block_group->reserved += reserved_bytes;
3512                space_info->bytes_reserved += reserved_bytes;
3513                update = 1;
3514        }
3515        spin_unlock(&block_group->lock);
3516        spin_unlock(&space_info->lock);
3517
3518        ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3519        if (!ret) {
3520                *total_trimmed += trimmed;
3521                trim_state = BTRFS_TRIM_STATE_TRIMMED;
3522        }
3523
3524        mutex_lock(&ctl->cache_writeout_mutex);
3525        if (reserved_start < start)
3526                __btrfs_add_free_space(fs_info, ctl, reserved_start,
3527                                       start - reserved_start,
3528                                       reserved_trim_state);
3529        if (start + bytes < reserved_start + reserved_bytes)
3530                __btrfs_add_free_space(fs_info, ctl, end, reserved_end - end,
3531                                       reserved_trim_state);
3532        __btrfs_add_free_space(fs_info, ctl, start, bytes, trim_state);
3533        list_del(&trim_entry->list);
3534        mutex_unlock(&ctl->cache_writeout_mutex);
3535
3536        if (update) {
3537                spin_lock(&space_info->lock);
3538                spin_lock(&block_group->lock);
3539                if (block_group->ro)
3540                        space_info->bytes_readonly += reserved_bytes;
3541                block_group->reserved -= reserved_bytes;
3542                space_info->bytes_reserved -= reserved_bytes;
3543                spin_unlock(&block_group->lock);
3544                spin_unlock(&space_info->lock);
3545        }
3546
3547        return ret;
3548}
3549
3550/*
3551 * If @async is set, then we will trim 1 region and return.
3552 */
3553static int trim_no_bitmap(struct btrfs_block_group *block_group,
3554                          u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3555                          bool async)
3556{
3557        struct btrfs_discard_ctl *discard_ctl =
3558                                        &block_group->fs_info->discard_ctl;
3559        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3560        struct btrfs_free_space *entry;
3561        struct rb_node *node;
3562        int ret = 0;
3563        u64 extent_start;
3564        u64 extent_bytes;
3565        enum btrfs_trim_state extent_trim_state;
3566        u64 bytes;
3567        const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3568
3569        while (start < end) {
3570                struct btrfs_trim_range trim_entry;
3571
3572                mutex_lock(&ctl->cache_writeout_mutex);
3573                spin_lock(&ctl->tree_lock);
3574
3575                if (ctl->free_space < minlen)
3576                        goto out_unlock;
3577
3578                entry = tree_search_offset(ctl, start, 0, 1);
3579                if (!entry)
3580                        goto out_unlock;
3581
3582                /* Skip bitmaps and if async, already trimmed entries */
3583                while (entry->bitmap ||
3584                       (async && btrfs_free_space_trimmed(entry))) {
3585                        node = rb_next(&entry->offset_index);
3586                        if (!node)
3587                                goto out_unlock;
3588                        entry = rb_entry(node, struct btrfs_free_space,
3589                                         offset_index);
3590                }
3591
3592                if (entry->offset >= end)
3593                        goto out_unlock;
3594
3595                extent_start = entry->offset;
3596                extent_bytes = entry->bytes;
3597                extent_trim_state = entry->trim_state;
3598                if (async) {
3599                        start = entry->offset;
3600                        bytes = entry->bytes;
3601                        if (bytes < minlen) {
3602                                spin_unlock(&ctl->tree_lock);
3603                                mutex_unlock(&ctl->cache_writeout_mutex);
3604                                goto next;
3605                        }
3606                        unlink_free_space(ctl, entry);
3607                        /*
3608                         * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3609                         * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3610                         * X when we come back around.  So trim it now.
3611                         */
3612                        if (max_discard_size &&
3613                            bytes >= (max_discard_size +
3614                                      BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3615                                bytes = max_discard_size;
3616                                extent_bytes = max_discard_size;
3617                                entry->offset += max_discard_size;
3618                                entry->bytes -= max_discard_size;
3619                                link_free_space(ctl, entry);
3620                        } else {
3621                                kmem_cache_free(btrfs_free_space_cachep, entry);
3622                        }
3623                } else {
3624                        start = max(start, extent_start);
3625                        bytes = min(extent_start + extent_bytes, end) - start;
3626                        if (bytes < minlen) {
3627                                spin_unlock(&ctl->tree_lock);
3628                                mutex_unlock(&ctl->cache_writeout_mutex);
3629                                goto next;
3630                        }
3631
3632                        unlink_free_space(ctl, entry);
3633                        kmem_cache_free(btrfs_free_space_cachep, entry);
3634                }
3635
3636                spin_unlock(&ctl->tree_lock);
3637                trim_entry.start = extent_start;
3638                trim_entry.bytes = extent_bytes;
3639                list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3640                mutex_unlock(&ctl->cache_writeout_mutex);
3641
3642                ret = do_trimming(block_group, total_trimmed, start, bytes,
3643                                  extent_start, extent_bytes, extent_trim_state,
3644                                  &trim_entry);
3645                if (ret) {
3646                        block_group->discard_cursor = start + bytes;
3647                        break;
3648                }
3649next:
3650                start += bytes;
3651                block_group->discard_cursor = start;
3652                if (async && *total_trimmed)
3653                        break;
3654
3655                if (fatal_signal_pending(current)) {
3656                        ret = -ERESTARTSYS;
3657                        break;
3658                }
3659
3660                cond_resched();
3661        }
3662
3663        return ret;
3664
3665out_unlock:
3666        block_group->discard_cursor = btrfs_block_group_end(block_group);
3667        spin_unlock(&ctl->tree_lock);
3668        mutex_unlock(&ctl->cache_writeout_mutex);
3669
3670        return ret;
3671}
3672
3673/*
3674 * If we break out of trimming a bitmap prematurely, we should reset the
3675 * trimming bit.  In a rather contrieved case, it's possible to race here so
3676 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3677 *
3678 * start = start of bitmap
3679 * end = near end of bitmap
3680 *
3681 * Thread 1:                    Thread 2:
3682 * trim_bitmaps(start)
3683 *                              trim_bitmaps(end)
3684 *                              end_trimming_bitmap()
3685 * reset_trimming_bitmap()
3686 */
3687static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3688{
3689        struct btrfs_free_space *entry;
3690
3691        spin_lock(&ctl->tree_lock);
3692        entry = tree_search_offset(ctl, offset, 1, 0);
3693        if (entry) {
3694                if (btrfs_free_space_trimmed(entry)) {
3695                        ctl->discardable_extents[BTRFS_STAT_CURR] +=
3696                                entry->bitmap_extents;
3697                        ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3698                }
3699                entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3700        }
3701
3702        spin_unlock(&ctl->tree_lock);
3703}
3704
3705static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3706                                struct btrfs_free_space *entry)
3707{
3708        if (btrfs_free_space_trimming_bitmap(entry)) {
3709                entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3710                ctl->discardable_extents[BTRFS_STAT_CURR] -=
3711                        entry->bitmap_extents;
3712                ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3713        }
3714}
3715
3716/*
3717 * If @async is set, then we will trim 1 region and return.
3718 */
3719static int trim_bitmaps(struct btrfs_block_group *block_group,
3720                        u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3721                        u64 maxlen, bool async)
3722{
3723        struct btrfs_discard_ctl *discard_ctl =
3724                                        &block_group->fs_info->discard_ctl;
3725        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3726        struct btrfs_free_space *entry;
3727        int ret = 0;
3728        int ret2;
3729        u64 bytes;
3730        u64 offset = offset_to_bitmap(ctl, start);
3731        const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3732
3733        while (offset < end) {
3734                bool next_bitmap = false;
3735                struct btrfs_trim_range trim_entry;
3736
3737                mutex_lock(&ctl->cache_writeout_mutex);
3738                spin_lock(&ctl->tree_lock);
3739
3740                if (ctl->free_space < minlen) {
3741                        block_group->discard_cursor =
3742                                btrfs_block_group_end(block_group);
3743                        spin_unlock(&ctl->tree_lock);
3744                        mutex_unlock(&ctl->cache_writeout_mutex);
3745                        break;
3746                }
3747
3748                entry = tree_search_offset(ctl, offset, 1, 0);
3749                /*
3750                 * Bitmaps are marked trimmed lossily now to prevent constant
3751                 * discarding of the same bitmap (the reason why we are bound
3752                 * by the filters).  So, retrim the block group bitmaps when we
3753                 * are preparing to punt to the unused_bgs list.  This uses
3754                 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3755                 * which is the only discard index which sets minlen to 0.
3756                 */
3757                if (!entry || (async && minlen && start == offset &&
3758                               btrfs_free_space_trimmed(entry))) {
3759                        spin_unlock(&ctl->tree_lock);
3760                        mutex_unlock(&ctl->cache_writeout_mutex);
3761                        next_bitmap = true;
3762                        goto next;
3763                }
3764
3765                /*
3766                 * Async discard bitmap trimming begins at by setting the start
3767                 * to be key.objectid and the offset_to_bitmap() aligns to the
3768                 * start of the bitmap.  This lets us know we are fully
3769                 * scanning the bitmap rather than only some portion of it.
3770                 */
3771                if (start == offset)
3772                        entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3773
3774                bytes = minlen;
3775                ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3776                if (ret2 || start >= end) {
3777                        /*
3778                         * We lossily consider a bitmap trimmed if we only skip
3779                         * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3780                         */
3781                        if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3782                                end_trimming_bitmap(ctl, entry);
3783                        else
3784                                entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3785                        spin_unlock(&ctl->tree_lock);
3786                        mutex_unlock(&ctl->cache_writeout_mutex);
3787                        next_bitmap = true;
3788                        goto next;
3789                }
3790
3791                /*
3792                 * We already trimmed a region, but are using the locking above
3793                 * to reset the trim_state.
3794                 */
3795                if (async && *total_trimmed) {
3796                        spin_unlock(&ctl->tree_lock);
3797                        mutex_unlock(&ctl->cache_writeout_mutex);
3798                        goto out;
3799                }
3800
3801                bytes = min(bytes, end - start);
3802                if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3803                        spin_unlock(&ctl->tree_lock);
3804                        mutex_unlock(&ctl->cache_writeout_mutex);
3805                        goto next;
3806                }
3807
3808                /*
3809                 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3810                 * If X < @minlen, we won't trim X when we come back around.
3811                 * So trim it now.  We differ here from trimming extents as we
3812                 * don't keep individual state per bit.
3813                 */
3814                if (async &&
3815                    max_discard_size &&
3816                    bytes > (max_discard_size + minlen))
3817                        bytes = max_discard_size;
3818
3819                bitmap_clear_bits(ctl, entry, start, bytes);
3820                if (entry->bytes == 0)
3821                        free_bitmap(ctl, entry);
3822
3823                spin_unlock(&ctl->tree_lock);
3824                trim_entry.start = start;
3825                trim_entry.bytes = bytes;
3826                list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3827                mutex_unlock(&ctl->cache_writeout_mutex);
3828
3829                ret = do_trimming(block_group, total_trimmed, start, bytes,
3830                                  start, bytes, 0, &trim_entry);
3831                if (ret) {
3832                        reset_trimming_bitmap(ctl, offset);
3833                        block_group->discard_cursor =
3834                                btrfs_block_group_end(block_group);
3835                        break;
3836                }
3837next:
3838                if (next_bitmap) {
3839                        offset += BITS_PER_BITMAP * ctl->unit;
3840                        start = offset;
3841                } else {
3842                        start += bytes;
3843                }
3844                block_group->discard_cursor = start;
3845
3846                if (fatal_signal_pending(current)) {
3847                        if (start != offset)
3848                                reset_trimming_bitmap(ctl, offset);
3849                        ret = -ERESTARTSYS;
3850                        break;
3851                }
3852
3853                cond_resched();
3854        }
3855
3856        if (offset >= end)
3857                block_group->discard_cursor = end;
3858
3859out:
3860        return ret;
3861}
3862
3863int btrfs_trim_block_group(struct btrfs_block_group *block_group,
3864                           u64 *trimmed, u64 start, u64 end, u64 minlen)
3865{
3866        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3867        int ret;
3868        u64 rem = 0;
3869
3870        ASSERT(!btrfs_is_zoned(block_group->fs_info));
3871
3872        *trimmed = 0;
3873
3874        spin_lock(&block_group->lock);
3875        if (block_group->removed) {
3876                spin_unlock(&block_group->lock);
3877                return 0;
3878        }
3879        btrfs_freeze_block_group(block_group);
3880        spin_unlock(&block_group->lock);
3881
3882        ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
3883        if (ret)
3884                goto out;
3885
3886        ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
3887        div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
3888        /* If we ended in the middle of a bitmap, reset the trimming flag */
3889        if (rem)
3890                reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
3891out:
3892        btrfs_unfreeze_block_group(block_group);
3893        return ret;
3894}
3895
3896int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
3897                                   u64 *trimmed, u64 start, u64 end, u64 minlen,
3898                                   bool async)
3899{
3900        int ret;
3901
3902        *trimmed = 0;
3903
3904        spin_lock(&block_group->lock);
3905        if (block_group->removed) {
3906                spin_unlock(&block_group->lock);
3907                return 0;
3908        }
3909        btrfs_freeze_block_group(block_group);
3910        spin_unlock(&block_group->lock);
3911
3912        ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
3913        btrfs_unfreeze_block_group(block_group);
3914
3915        return ret;
3916}
3917
3918int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
3919                                   u64 *trimmed, u64 start, u64 end, u64 minlen,
3920                                   u64 maxlen, bool async)
3921{
3922        int ret;
3923
3924        *trimmed = 0;
3925
3926        spin_lock(&block_group->lock);
3927        if (block_group->removed) {
3928                spin_unlock(&block_group->lock);
3929                return 0;
3930        }
3931        btrfs_freeze_block_group(block_group);
3932        spin_unlock(&block_group->lock);
3933
3934        ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
3935                           async);
3936
3937        btrfs_unfreeze_block_group(block_group);
3938
3939        return ret;
3940}
3941
3942bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info)
3943{
3944        return btrfs_super_cache_generation(fs_info->super_copy);
3945}
3946
3947static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info,
3948                                       struct btrfs_trans_handle *trans)
3949{
3950        struct btrfs_block_group *block_group;
3951        struct rb_node *node;
3952        int ret = 0;
3953
3954        btrfs_info(fs_info, "cleaning free space cache v1");
3955
3956        node = rb_first(&fs_info->block_group_cache_tree);
3957        while (node) {
3958                block_group = rb_entry(node, struct btrfs_block_group, cache_node);
3959                ret = btrfs_remove_free_space_inode(trans, NULL, block_group);
3960                if (ret)
3961                        goto out;
3962                node = rb_next(node);
3963        }
3964out:
3965        return ret;
3966}
3967
3968int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active)
3969{
3970        struct btrfs_trans_handle *trans;
3971        int ret;
3972
3973        /*
3974         * update_super_roots will appropriately set or unset
3975         * super_copy->cache_generation based on SPACE_CACHE and
3976         * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a
3977         * transaction commit whether we are enabling space cache v1 and don't
3978         * have any other work to do, or are disabling it and removing free
3979         * space inodes.
3980         */
3981        trans = btrfs_start_transaction(fs_info->tree_root, 0);
3982        if (IS_ERR(trans))
3983                return PTR_ERR(trans);
3984
3985        if (!active) {
3986                set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
3987                ret = cleanup_free_space_cache_v1(fs_info, trans);
3988                if (ret) {
3989                        btrfs_abort_transaction(trans, ret);
3990                        btrfs_end_transaction(trans);
3991                        goto out;
3992                }
3993        }
3994
3995        ret = btrfs_commit_transaction(trans);
3996out:
3997        clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
3998
3999        return ret;
4000}
4001
4002#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4003/*
4004 * Use this if you need to make a bitmap or extent entry specifically, it
4005 * doesn't do any of the merging that add_free_space does, this acts a lot like
4006 * how the free space cache loading stuff works, so you can get really weird
4007 * configurations.
4008 */
4009int test_add_free_space_entry(struct btrfs_block_group *cache,
4010                              u64 offset, u64 bytes, bool bitmap)
4011{
4012        struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4013        struct btrfs_free_space *info = NULL, *bitmap_info;
4014        void *map = NULL;
4015        enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4016        u64 bytes_added;
4017        int ret;
4018
4019again:
4020        if (!info) {
4021                info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4022                if (!info)
4023                        return -ENOMEM;
4024        }
4025
4026        if (!bitmap) {
4027                spin_lock(&ctl->tree_lock);
4028                info->offset = offset;
4029                info->bytes = bytes;
4030                info->max_extent_size = 0;
4031                ret = link_free_space(ctl, info);
4032                spin_unlock(&ctl->tree_lock);
4033                if (ret)
4034                        kmem_cache_free(btrfs_free_space_cachep, info);
4035                return ret;
4036        }
4037
4038        if (!map) {
4039                map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4040                if (!map) {
4041                        kmem_cache_free(btrfs_free_space_cachep, info);
4042                        return -ENOMEM;
4043                }
4044        }
4045
4046        spin_lock(&ctl->tree_lock);
4047        bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4048                                         1, 0);
4049        if (!bitmap_info) {
4050                info->bitmap = map;
4051                map = NULL;
4052                add_new_bitmap(ctl, info, offset);
4053                bitmap_info = info;
4054                info = NULL;
4055        }
4056
4057        bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4058                                          trim_state);
4059
4060        bytes -= bytes_added;
4061        offset += bytes_added;
4062        spin_unlock(&ctl->tree_lock);
4063
4064        if (bytes)
4065                goto again;
4066
4067        if (info)
4068                kmem_cache_free(btrfs_free_space_cachep, info);
4069        if (map)
4070                kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4071        return 0;
4072}
4073
4074/*
4075 * Checks to see if the given range is in the free space cache.  This is really
4076 * just used to check the absence of space, so if there is free space in the
4077 * range at all we will return 1.
4078 */
4079int test_check_exists(struct btrfs_block_group *cache,
4080                      u64 offset, u64 bytes)
4081{
4082        struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4083        struct btrfs_free_space *info;
4084        int ret = 0;
4085
4086        spin_lock(&ctl->tree_lock);
4087        info = tree_search_offset(ctl, offset, 0, 0);
4088        if (!info) {
4089                info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4090                                          1, 0);
4091                if (!info)
4092                        goto out;
4093        }
4094
4095have_info:
4096        if (info->bitmap) {
4097                u64 bit_off, bit_bytes;
4098                struct rb_node *n;
4099                struct btrfs_free_space *tmp;
4100
4101                bit_off = offset;
4102                bit_bytes = ctl->unit;
4103                ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4104                if (!ret) {
4105                        if (bit_off == offset) {
4106                                ret = 1;
4107                                goto out;
4108                        } else if (bit_off > offset &&
4109                                   offset + bytes > bit_off) {
4110                                ret = 1;
4111                                goto out;
4112                        }
4113                }
4114
4115                n = rb_prev(&info->offset_index);
4116                while (n) {
4117                        tmp = rb_entry(n, struct btrfs_free_space,
4118                                       offset_index);
4119                        if (tmp->offset + tmp->bytes < offset)
4120                                break;
4121                        if (offset + bytes < tmp->offset) {
4122                                n = rb_prev(&tmp->offset_index);
4123                                continue;
4124                        }
4125                        info = tmp;
4126                        goto have_info;
4127                }
4128
4129                n = rb_next(&info->offset_index);
4130                while (n) {
4131                        tmp = rb_entry(n, struct btrfs_free_space,
4132                                       offset_index);
4133                        if (offset + bytes < tmp->offset)
4134                                break;
4135                        if (tmp->offset + tmp->bytes < offset) {
4136                                n = rb_next(&tmp->offset_index);
4137                                continue;
4138                        }
4139                        info = tmp;
4140                        goto have_info;
4141                }
4142
4143                ret = 0;
4144                goto out;
4145        }
4146
4147        if (info->offset == offset) {
4148                ret = 1;
4149                goto out;
4150        }
4151
4152        if (offset > info->offset && offset < info->offset + info->bytes)
4153                ret = 1;
4154out:
4155        spin_unlock(&ctl->tree_lock);
4156        return ret;
4157}
4158#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
4159