linux/fs/btrfs/inode.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <crypto/hash.h>
   7#include <linux/kernel.h>
   8#include <linux/bio.h>
   9#include <linux/file.h>
  10#include <linux/fs.h>
  11#include <linux/pagemap.h>
  12#include <linux/highmem.h>
  13#include <linux/time.h>
  14#include <linux/init.h>
  15#include <linux/string.h>
  16#include <linux/backing-dev.h>
  17#include <linux/writeback.h>
  18#include <linux/compat.h>
  19#include <linux/xattr.h>
  20#include <linux/posix_acl.h>
  21#include <linux/falloc.h>
  22#include <linux/slab.h>
  23#include <linux/ratelimit.h>
  24#include <linux/btrfs.h>
  25#include <linux/blkdev.h>
  26#include <linux/posix_acl_xattr.h>
  27#include <linux/uio.h>
  28#include <linux/magic.h>
  29#include <linux/iversion.h>
  30#include <linux/swap.h>
  31#include <linux/migrate.h>
  32#include <linux/sched/mm.h>
  33#include <linux/iomap.h>
  34#include <asm/unaligned.h>
  35#include "misc.h"
  36#include "ctree.h"
  37#include "disk-io.h"
  38#include "transaction.h"
  39#include "btrfs_inode.h"
  40#include "print-tree.h"
  41#include "ordered-data.h"
  42#include "xattr.h"
  43#include "tree-log.h"
  44#include "volumes.h"
  45#include "compression.h"
  46#include "locking.h"
  47#include "free-space-cache.h"
  48#include "props.h"
  49#include "qgroup.h"
  50#include "delalloc-space.h"
  51#include "block-group.h"
  52#include "space-info.h"
  53#include "zoned.h"
  54#include "subpage.h"
  55
  56struct btrfs_iget_args {
  57        u64 ino;
  58        struct btrfs_root *root;
  59};
  60
  61struct btrfs_dio_data {
  62        u64 reserve;
  63        loff_t length;
  64        ssize_t submitted;
  65        struct extent_changeset *data_reserved;
  66};
  67
  68static const struct inode_operations btrfs_dir_inode_operations;
  69static const struct inode_operations btrfs_symlink_inode_operations;
  70static const struct inode_operations btrfs_special_inode_operations;
  71static const struct inode_operations btrfs_file_inode_operations;
  72static const struct address_space_operations btrfs_aops;
  73static const struct file_operations btrfs_dir_file_operations;
  74
  75static struct kmem_cache *btrfs_inode_cachep;
  76struct kmem_cache *btrfs_trans_handle_cachep;
  77struct kmem_cache *btrfs_path_cachep;
  78struct kmem_cache *btrfs_free_space_cachep;
  79struct kmem_cache *btrfs_free_space_bitmap_cachep;
  80
  81static int btrfs_setsize(struct inode *inode, struct iattr *attr);
  82static int btrfs_truncate(struct inode *inode, bool skip_writeback);
  83static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
  84static noinline int cow_file_range(struct btrfs_inode *inode,
  85                                   struct page *locked_page,
  86                                   u64 start, u64 end, int *page_started,
  87                                   unsigned long *nr_written, int unlock);
  88static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
  89                                       u64 len, u64 orig_start, u64 block_start,
  90                                       u64 block_len, u64 orig_block_len,
  91                                       u64 ram_bytes, int compress_type,
  92                                       int type);
  93
  94static void __endio_write_update_ordered(struct btrfs_inode *inode,
  95                                         const u64 offset, const u64 bytes,
  96                                         const bool uptodate);
  97
  98/*
  99 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
 100 *
 101 * ilock_flags can have the following bit set:
 102 *
 103 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
 104 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
 105 *                   return -EAGAIN
 106 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
 107 */
 108int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags)
 109{
 110        if (ilock_flags & BTRFS_ILOCK_SHARED) {
 111                if (ilock_flags & BTRFS_ILOCK_TRY) {
 112                        if (!inode_trylock_shared(inode))
 113                                return -EAGAIN;
 114                        else
 115                                return 0;
 116                }
 117                inode_lock_shared(inode);
 118        } else {
 119                if (ilock_flags & BTRFS_ILOCK_TRY) {
 120                        if (!inode_trylock(inode))
 121                                return -EAGAIN;
 122                        else
 123                                return 0;
 124                }
 125                inode_lock(inode);
 126        }
 127        if (ilock_flags & BTRFS_ILOCK_MMAP)
 128                down_write(&BTRFS_I(inode)->i_mmap_lock);
 129        return 0;
 130}
 131
 132/*
 133 * btrfs_inode_unlock - unock inode i_rwsem
 134 *
 135 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
 136 * to decide whether the lock acquired is shared or exclusive.
 137 */
 138void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags)
 139{
 140        if (ilock_flags & BTRFS_ILOCK_MMAP)
 141                up_write(&BTRFS_I(inode)->i_mmap_lock);
 142        if (ilock_flags & BTRFS_ILOCK_SHARED)
 143                inode_unlock_shared(inode);
 144        else
 145                inode_unlock(inode);
 146}
 147
 148/*
 149 * Cleanup all submitted ordered extents in specified range to handle errors
 150 * from the btrfs_run_delalloc_range() callback.
 151 *
 152 * NOTE: caller must ensure that when an error happens, it can not call
 153 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
 154 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
 155 * to be released, which we want to happen only when finishing the ordered
 156 * extent (btrfs_finish_ordered_io()).
 157 */
 158static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
 159                                                 struct page *locked_page,
 160                                                 u64 offset, u64 bytes)
 161{
 162        unsigned long index = offset >> PAGE_SHIFT;
 163        unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
 164        u64 page_start = page_offset(locked_page);
 165        u64 page_end = page_start + PAGE_SIZE - 1;
 166
 167        struct page *page;
 168
 169        while (index <= end_index) {
 170                /*
 171                 * For locked page, we will call end_extent_writepage() on it
 172                 * in run_delalloc_range() for the error handling.  That
 173                 * end_extent_writepage() function will call
 174                 * btrfs_mark_ordered_io_finished() to clear page Ordered and
 175                 * run the ordered extent accounting.
 176                 *
 177                 * Here we can't just clear the Ordered bit, or
 178                 * btrfs_mark_ordered_io_finished() would skip the accounting
 179                 * for the page range, and the ordered extent will never finish.
 180                 */
 181                if (index == (page_offset(locked_page) >> PAGE_SHIFT)) {
 182                        index++;
 183                        continue;
 184                }
 185                page = find_get_page(inode->vfs_inode.i_mapping, index);
 186                index++;
 187                if (!page)
 188                        continue;
 189
 190                /*
 191                 * Here we just clear all Ordered bits for every page in the
 192                 * range, then __endio_write_update_ordered() will handle
 193                 * the ordered extent accounting for the range.
 194                 */
 195                btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
 196                                               offset, bytes);
 197                put_page(page);
 198        }
 199
 200        /* The locked page covers the full range, nothing needs to be done */
 201        if (bytes + offset <= page_offset(locked_page) + PAGE_SIZE)
 202                return;
 203        /*
 204         * In case this page belongs to the delalloc range being instantiated
 205         * then skip it, since the first page of a range is going to be
 206         * properly cleaned up by the caller of run_delalloc_range
 207         */
 208        if (page_start >= offset && page_end <= (offset + bytes - 1)) {
 209                bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
 210                offset = page_offset(locked_page) + PAGE_SIZE;
 211        }
 212
 213        return __endio_write_update_ordered(inode, offset, bytes, false);
 214}
 215
 216static int btrfs_dirty_inode(struct inode *inode);
 217
 218static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
 219                                     struct inode *inode,  struct inode *dir,
 220                                     const struct qstr *qstr)
 221{
 222        int err;
 223
 224        err = btrfs_init_acl(trans, inode, dir);
 225        if (!err)
 226                err = btrfs_xattr_security_init(trans, inode, dir, qstr);
 227        return err;
 228}
 229
 230/*
 231 * this does all the hard work for inserting an inline extent into
 232 * the btree.  The caller should have done a btrfs_drop_extents so that
 233 * no overlapping inline items exist in the btree
 234 */
 235static int insert_inline_extent(struct btrfs_trans_handle *trans,
 236                                struct btrfs_path *path, bool extent_inserted,
 237                                struct btrfs_root *root, struct inode *inode,
 238                                u64 start, size_t size, size_t compressed_size,
 239                                int compress_type,
 240                                struct page **compressed_pages)
 241{
 242        struct extent_buffer *leaf;
 243        struct page *page = NULL;
 244        char *kaddr;
 245        unsigned long ptr;
 246        struct btrfs_file_extent_item *ei;
 247        int ret;
 248        size_t cur_size = size;
 249        unsigned long offset;
 250
 251        ASSERT((compressed_size > 0 && compressed_pages) ||
 252               (compressed_size == 0 && !compressed_pages));
 253
 254        if (compressed_size && compressed_pages)
 255                cur_size = compressed_size;
 256
 257        if (!extent_inserted) {
 258                struct btrfs_key key;
 259                size_t datasize;
 260
 261                key.objectid = btrfs_ino(BTRFS_I(inode));
 262                key.offset = start;
 263                key.type = BTRFS_EXTENT_DATA_KEY;
 264
 265                datasize = btrfs_file_extent_calc_inline_size(cur_size);
 266                ret = btrfs_insert_empty_item(trans, root, path, &key,
 267                                              datasize);
 268                if (ret)
 269                        goto fail;
 270        }
 271        leaf = path->nodes[0];
 272        ei = btrfs_item_ptr(leaf, path->slots[0],
 273                            struct btrfs_file_extent_item);
 274        btrfs_set_file_extent_generation(leaf, ei, trans->transid);
 275        btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
 276        btrfs_set_file_extent_encryption(leaf, ei, 0);
 277        btrfs_set_file_extent_other_encoding(leaf, ei, 0);
 278        btrfs_set_file_extent_ram_bytes(leaf, ei, size);
 279        ptr = btrfs_file_extent_inline_start(ei);
 280
 281        if (compress_type != BTRFS_COMPRESS_NONE) {
 282                struct page *cpage;
 283                int i = 0;
 284                while (compressed_size > 0) {
 285                        cpage = compressed_pages[i];
 286                        cur_size = min_t(unsigned long, compressed_size,
 287                                       PAGE_SIZE);
 288
 289                        kaddr = kmap_atomic(cpage);
 290                        write_extent_buffer(leaf, kaddr, ptr, cur_size);
 291                        kunmap_atomic(kaddr);
 292
 293                        i++;
 294                        ptr += cur_size;
 295                        compressed_size -= cur_size;
 296                }
 297                btrfs_set_file_extent_compression(leaf, ei,
 298                                                  compress_type);
 299        } else {
 300                page = find_get_page(inode->i_mapping,
 301                                     start >> PAGE_SHIFT);
 302                btrfs_set_file_extent_compression(leaf, ei, 0);
 303                kaddr = kmap_atomic(page);
 304                offset = offset_in_page(start);
 305                write_extent_buffer(leaf, kaddr + offset, ptr, size);
 306                kunmap_atomic(kaddr);
 307                put_page(page);
 308        }
 309        btrfs_mark_buffer_dirty(leaf);
 310        btrfs_release_path(path);
 311
 312        /*
 313         * We align size to sectorsize for inline extents just for simplicity
 314         * sake.
 315         */
 316        size = ALIGN(size, root->fs_info->sectorsize);
 317        ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size);
 318        if (ret)
 319                goto fail;
 320
 321        /*
 322         * we're an inline extent, so nobody can
 323         * extend the file past i_size without locking
 324         * a page we already have locked.
 325         *
 326         * We must do any isize and inode updates
 327         * before we unlock the pages.  Otherwise we
 328         * could end up racing with unlink.
 329         */
 330        BTRFS_I(inode)->disk_i_size = inode->i_size;
 331fail:
 332        return ret;
 333}
 334
 335
 336/*
 337 * conditionally insert an inline extent into the file.  This
 338 * does the checks required to make sure the data is small enough
 339 * to fit as an inline extent.
 340 */
 341static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start,
 342                                          u64 end, size_t compressed_size,
 343                                          int compress_type,
 344                                          struct page **compressed_pages)
 345{
 346        struct btrfs_drop_extents_args drop_args = { 0 };
 347        struct btrfs_root *root = inode->root;
 348        struct btrfs_fs_info *fs_info = root->fs_info;
 349        struct btrfs_trans_handle *trans;
 350        u64 isize = i_size_read(&inode->vfs_inode);
 351        u64 actual_end = min(end + 1, isize);
 352        u64 inline_len = actual_end - start;
 353        u64 aligned_end = ALIGN(end, fs_info->sectorsize);
 354        u64 data_len = inline_len;
 355        int ret;
 356        struct btrfs_path *path;
 357
 358        if (compressed_size)
 359                data_len = compressed_size;
 360
 361        if (start > 0 ||
 362            actual_end > fs_info->sectorsize ||
 363            data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
 364            (!compressed_size &&
 365            (actual_end & (fs_info->sectorsize - 1)) == 0) ||
 366            end + 1 < isize ||
 367            data_len > fs_info->max_inline) {
 368                return 1;
 369        }
 370
 371        path = btrfs_alloc_path();
 372        if (!path)
 373                return -ENOMEM;
 374
 375        trans = btrfs_join_transaction(root);
 376        if (IS_ERR(trans)) {
 377                btrfs_free_path(path);
 378                return PTR_ERR(trans);
 379        }
 380        trans->block_rsv = &inode->block_rsv;
 381
 382        drop_args.path = path;
 383        drop_args.start = start;
 384        drop_args.end = aligned_end;
 385        drop_args.drop_cache = true;
 386        drop_args.replace_extent = true;
 387
 388        if (compressed_size && compressed_pages)
 389                drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(
 390                   compressed_size);
 391        else
 392                drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(
 393                    inline_len);
 394
 395        ret = btrfs_drop_extents(trans, root, inode, &drop_args);
 396        if (ret) {
 397                btrfs_abort_transaction(trans, ret);
 398                goto out;
 399        }
 400
 401        if (isize > actual_end)
 402                inline_len = min_t(u64, isize, actual_end);
 403        ret = insert_inline_extent(trans, path, drop_args.extent_inserted,
 404                                   root, &inode->vfs_inode, start,
 405                                   inline_len, compressed_size,
 406                                   compress_type, compressed_pages);
 407        if (ret && ret != -ENOSPC) {
 408                btrfs_abort_transaction(trans, ret);
 409                goto out;
 410        } else if (ret == -ENOSPC) {
 411                ret = 1;
 412                goto out;
 413        }
 414
 415        btrfs_update_inode_bytes(inode, inline_len, drop_args.bytes_found);
 416        ret = btrfs_update_inode(trans, root, inode);
 417        if (ret && ret != -ENOSPC) {
 418                btrfs_abort_transaction(trans, ret);
 419                goto out;
 420        } else if (ret == -ENOSPC) {
 421                ret = 1;
 422                goto out;
 423        }
 424
 425        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
 426out:
 427        /*
 428         * Don't forget to free the reserved space, as for inlined extent
 429         * it won't count as data extent, free them directly here.
 430         * And at reserve time, it's always aligned to page size, so
 431         * just free one page here.
 432         */
 433        btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
 434        btrfs_free_path(path);
 435        btrfs_end_transaction(trans);
 436        return ret;
 437}
 438
 439struct async_extent {
 440        u64 start;
 441        u64 ram_size;
 442        u64 compressed_size;
 443        struct page **pages;
 444        unsigned long nr_pages;
 445        int compress_type;
 446        struct list_head list;
 447};
 448
 449struct async_chunk {
 450        struct inode *inode;
 451        struct page *locked_page;
 452        u64 start;
 453        u64 end;
 454        unsigned int write_flags;
 455        struct list_head extents;
 456        struct cgroup_subsys_state *blkcg_css;
 457        struct btrfs_work work;
 458        atomic_t *pending;
 459};
 460
 461struct async_cow {
 462        /* Number of chunks in flight; must be first in the structure */
 463        atomic_t num_chunks;
 464        struct async_chunk chunks[];
 465};
 466
 467static noinline int add_async_extent(struct async_chunk *cow,
 468                                     u64 start, u64 ram_size,
 469                                     u64 compressed_size,
 470                                     struct page **pages,
 471                                     unsigned long nr_pages,
 472                                     int compress_type)
 473{
 474        struct async_extent *async_extent;
 475
 476        async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
 477        BUG_ON(!async_extent); /* -ENOMEM */
 478        async_extent->start = start;
 479        async_extent->ram_size = ram_size;
 480        async_extent->compressed_size = compressed_size;
 481        async_extent->pages = pages;
 482        async_extent->nr_pages = nr_pages;
 483        async_extent->compress_type = compress_type;
 484        list_add_tail(&async_extent->list, &cow->extents);
 485        return 0;
 486}
 487
 488/*
 489 * Check if the inode has flags compatible with compression
 490 */
 491static inline bool inode_can_compress(struct btrfs_inode *inode)
 492{
 493        if (inode->flags & BTRFS_INODE_NODATACOW ||
 494            inode->flags & BTRFS_INODE_NODATASUM)
 495                return false;
 496        return true;
 497}
 498
 499/*
 500 * Check if the inode needs to be submitted to compression, based on mount
 501 * options, defragmentation, properties or heuristics.
 502 */
 503static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
 504                                      u64 end)
 505{
 506        struct btrfs_fs_info *fs_info = inode->root->fs_info;
 507
 508        if (!inode_can_compress(inode)) {
 509                WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
 510                        KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
 511                        btrfs_ino(inode));
 512                return 0;
 513        }
 514        /* force compress */
 515        if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
 516                return 1;
 517        /* defrag ioctl */
 518        if (inode->defrag_compress)
 519                return 1;
 520        /* bad compression ratios */
 521        if (inode->flags & BTRFS_INODE_NOCOMPRESS)
 522                return 0;
 523        if (btrfs_test_opt(fs_info, COMPRESS) ||
 524            inode->flags & BTRFS_INODE_COMPRESS ||
 525            inode->prop_compress)
 526                return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
 527        return 0;
 528}
 529
 530static inline void inode_should_defrag(struct btrfs_inode *inode,
 531                u64 start, u64 end, u64 num_bytes, u64 small_write)
 532{
 533        /* If this is a small write inside eof, kick off a defrag */
 534        if (num_bytes < small_write &&
 535            (start > 0 || end + 1 < inode->disk_i_size))
 536                btrfs_add_inode_defrag(NULL, inode);
 537}
 538
 539/*
 540 * we create compressed extents in two phases.  The first
 541 * phase compresses a range of pages that have already been
 542 * locked (both pages and state bits are locked).
 543 *
 544 * This is done inside an ordered work queue, and the compression
 545 * is spread across many cpus.  The actual IO submission is step
 546 * two, and the ordered work queue takes care of making sure that
 547 * happens in the same order things were put onto the queue by
 548 * writepages and friends.
 549 *
 550 * If this code finds it can't get good compression, it puts an
 551 * entry onto the work queue to write the uncompressed bytes.  This
 552 * makes sure that both compressed inodes and uncompressed inodes
 553 * are written in the same order that the flusher thread sent them
 554 * down.
 555 */
 556static noinline int compress_file_range(struct async_chunk *async_chunk)
 557{
 558        struct inode *inode = async_chunk->inode;
 559        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 560        u64 blocksize = fs_info->sectorsize;
 561        u64 start = async_chunk->start;
 562        u64 end = async_chunk->end;
 563        u64 actual_end;
 564        u64 i_size;
 565        int ret = 0;
 566        struct page **pages = NULL;
 567        unsigned long nr_pages;
 568        unsigned long total_compressed = 0;
 569        unsigned long total_in = 0;
 570        int i;
 571        int will_compress;
 572        int compress_type = fs_info->compress_type;
 573        int compressed_extents = 0;
 574        int redirty = 0;
 575
 576        inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
 577                        SZ_16K);
 578
 579        /*
 580         * We need to save i_size before now because it could change in between
 581         * us evaluating the size and assigning it.  This is because we lock and
 582         * unlock the page in truncate and fallocate, and then modify the i_size
 583         * later on.
 584         *
 585         * The barriers are to emulate READ_ONCE, remove that once i_size_read
 586         * does that for us.
 587         */
 588        barrier();
 589        i_size = i_size_read(inode);
 590        barrier();
 591        actual_end = min_t(u64, i_size, end + 1);
 592again:
 593        will_compress = 0;
 594        nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
 595        BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
 596        nr_pages = min_t(unsigned long, nr_pages,
 597                        BTRFS_MAX_COMPRESSED / PAGE_SIZE);
 598
 599        /*
 600         * we don't want to send crud past the end of i_size through
 601         * compression, that's just a waste of CPU time.  So, if the
 602         * end of the file is before the start of our current
 603         * requested range of bytes, we bail out to the uncompressed
 604         * cleanup code that can deal with all of this.
 605         *
 606         * It isn't really the fastest way to fix things, but this is a
 607         * very uncommon corner.
 608         */
 609        if (actual_end <= start)
 610                goto cleanup_and_bail_uncompressed;
 611
 612        total_compressed = actual_end - start;
 613
 614        /*
 615         * skip compression for a small file range(<=blocksize) that
 616         * isn't an inline extent, since it doesn't save disk space at all.
 617         */
 618        if (total_compressed <= blocksize &&
 619           (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
 620                goto cleanup_and_bail_uncompressed;
 621
 622        total_compressed = min_t(unsigned long, total_compressed,
 623                        BTRFS_MAX_UNCOMPRESSED);
 624        total_in = 0;
 625        ret = 0;
 626
 627        /*
 628         * we do compression for mount -o compress and when the
 629         * inode has not been flagged as nocompress.  This flag can
 630         * change at any time if we discover bad compression ratios.
 631         */
 632        if (inode_need_compress(BTRFS_I(inode), start, end)) {
 633                WARN_ON(pages);
 634                pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
 635                if (!pages) {
 636                        /* just bail out to the uncompressed code */
 637                        nr_pages = 0;
 638                        goto cont;
 639                }
 640
 641                if (BTRFS_I(inode)->defrag_compress)
 642                        compress_type = BTRFS_I(inode)->defrag_compress;
 643                else if (BTRFS_I(inode)->prop_compress)
 644                        compress_type = BTRFS_I(inode)->prop_compress;
 645
 646                /*
 647                 * we need to call clear_page_dirty_for_io on each
 648                 * page in the range.  Otherwise applications with the file
 649                 * mmap'd can wander in and change the page contents while
 650                 * we are compressing them.
 651                 *
 652                 * If the compression fails for any reason, we set the pages
 653                 * dirty again later on.
 654                 *
 655                 * Note that the remaining part is redirtied, the start pointer
 656                 * has moved, the end is the original one.
 657                 */
 658                if (!redirty) {
 659                        extent_range_clear_dirty_for_io(inode, start, end);
 660                        redirty = 1;
 661                }
 662
 663                /* Compression level is applied here and only here */
 664                ret = btrfs_compress_pages(
 665                        compress_type | (fs_info->compress_level << 4),
 666                                           inode->i_mapping, start,
 667                                           pages,
 668                                           &nr_pages,
 669                                           &total_in,
 670                                           &total_compressed);
 671
 672                if (!ret) {
 673                        unsigned long offset = offset_in_page(total_compressed);
 674                        struct page *page = pages[nr_pages - 1];
 675
 676                        /* zero the tail end of the last page, we might be
 677                         * sending it down to disk
 678                         */
 679                        if (offset)
 680                                memzero_page(page, offset, PAGE_SIZE - offset);
 681                        will_compress = 1;
 682                }
 683        }
 684cont:
 685        if (start == 0) {
 686                /* lets try to make an inline extent */
 687                if (ret || total_in < actual_end) {
 688                        /* we didn't compress the entire range, try
 689                         * to make an uncompressed inline extent.
 690                         */
 691                        ret = cow_file_range_inline(BTRFS_I(inode), start, end,
 692                                                    0, BTRFS_COMPRESS_NONE,
 693                                                    NULL);
 694                } else {
 695                        /* try making a compressed inline extent */
 696                        ret = cow_file_range_inline(BTRFS_I(inode), start, end,
 697                                                    total_compressed,
 698                                                    compress_type, pages);
 699                }
 700                if (ret <= 0) {
 701                        unsigned long clear_flags = EXTENT_DELALLOC |
 702                                EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
 703                                EXTENT_DO_ACCOUNTING;
 704                        unsigned long page_error_op;
 705
 706                        page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
 707
 708                        /*
 709                         * inline extent creation worked or returned error,
 710                         * we don't need to create any more async work items.
 711                         * Unlock and free up our temp pages.
 712                         *
 713                         * We use DO_ACCOUNTING here because we need the
 714                         * delalloc_release_metadata to be done _after_ we drop
 715                         * our outstanding extent for clearing delalloc for this
 716                         * range.
 717                         */
 718                        extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
 719                                                     NULL,
 720                                                     clear_flags,
 721                                                     PAGE_UNLOCK |
 722                                                     PAGE_START_WRITEBACK |
 723                                                     page_error_op |
 724                                                     PAGE_END_WRITEBACK);
 725
 726                        /*
 727                         * Ensure we only free the compressed pages if we have
 728                         * them allocated, as we can still reach here with
 729                         * inode_need_compress() == false.
 730                         */
 731                        if (pages) {
 732                                for (i = 0; i < nr_pages; i++) {
 733                                        WARN_ON(pages[i]->mapping);
 734                                        put_page(pages[i]);
 735                                }
 736                                kfree(pages);
 737                        }
 738                        return 0;
 739                }
 740        }
 741
 742        if (will_compress) {
 743                /*
 744                 * we aren't doing an inline extent round the compressed size
 745                 * up to a block size boundary so the allocator does sane
 746                 * things
 747                 */
 748                total_compressed = ALIGN(total_compressed, blocksize);
 749
 750                /*
 751                 * one last check to make sure the compression is really a
 752                 * win, compare the page count read with the blocks on disk,
 753                 * compression must free at least one sector size
 754                 */
 755                total_in = ALIGN(total_in, PAGE_SIZE);
 756                if (total_compressed + blocksize <= total_in) {
 757                        compressed_extents++;
 758
 759                        /*
 760                         * The async work queues will take care of doing actual
 761                         * allocation on disk for these compressed pages, and
 762                         * will submit them to the elevator.
 763                         */
 764                        add_async_extent(async_chunk, start, total_in,
 765                                        total_compressed, pages, nr_pages,
 766                                        compress_type);
 767
 768                        if (start + total_in < end) {
 769                                start += total_in;
 770                                pages = NULL;
 771                                cond_resched();
 772                                goto again;
 773                        }
 774                        return compressed_extents;
 775                }
 776        }
 777        if (pages) {
 778                /*
 779                 * the compression code ran but failed to make things smaller,
 780                 * free any pages it allocated and our page pointer array
 781                 */
 782                for (i = 0; i < nr_pages; i++) {
 783                        WARN_ON(pages[i]->mapping);
 784                        put_page(pages[i]);
 785                }
 786                kfree(pages);
 787                pages = NULL;
 788                total_compressed = 0;
 789                nr_pages = 0;
 790
 791                /* flag the file so we don't compress in the future */
 792                if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
 793                    !(BTRFS_I(inode)->prop_compress)) {
 794                        BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
 795                }
 796        }
 797cleanup_and_bail_uncompressed:
 798        /*
 799         * No compression, but we still need to write the pages in the file
 800         * we've been given so far.  redirty the locked page if it corresponds
 801         * to our extent and set things up for the async work queue to run
 802         * cow_file_range to do the normal delalloc dance.
 803         */
 804        if (async_chunk->locked_page &&
 805            (page_offset(async_chunk->locked_page) >= start &&
 806             page_offset(async_chunk->locked_page)) <= end) {
 807                __set_page_dirty_nobuffers(async_chunk->locked_page);
 808                /* unlocked later on in the async handlers */
 809        }
 810
 811        if (redirty)
 812                extent_range_redirty_for_io(inode, start, end);
 813        add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
 814                         BTRFS_COMPRESS_NONE);
 815        compressed_extents++;
 816
 817        return compressed_extents;
 818}
 819
 820static void free_async_extent_pages(struct async_extent *async_extent)
 821{
 822        int i;
 823
 824        if (!async_extent->pages)
 825                return;
 826
 827        for (i = 0; i < async_extent->nr_pages; i++) {
 828                WARN_ON(async_extent->pages[i]->mapping);
 829                put_page(async_extent->pages[i]);
 830        }
 831        kfree(async_extent->pages);
 832        async_extent->nr_pages = 0;
 833        async_extent->pages = NULL;
 834}
 835
 836/*
 837 * phase two of compressed writeback.  This is the ordered portion
 838 * of the code, which only gets called in the order the work was
 839 * queued.  We walk all the async extents created by compress_file_range
 840 * and send them down to the disk.
 841 */
 842static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
 843{
 844        struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
 845        struct btrfs_fs_info *fs_info = inode->root->fs_info;
 846        struct async_extent *async_extent;
 847        u64 alloc_hint = 0;
 848        struct btrfs_key ins;
 849        struct extent_map *em;
 850        struct btrfs_root *root = inode->root;
 851        struct extent_io_tree *io_tree = &inode->io_tree;
 852        int ret = 0;
 853
 854again:
 855        while (!list_empty(&async_chunk->extents)) {
 856                async_extent = list_entry(async_chunk->extents.next,
 857                                          struct async_extent, list);
 858                list_del(&async_extent->list);
 859
 860retry:
 861                lock_extent(io_tree, async_extent->start,
 862                            async_extent->start + async_extent->ram_size - 1);
 863                /* did the compression code fall back to uncompressed IO? */
 864                if (!async_extent->pages) {
 865                        int page_started = 0;
 866                        unsigned long nr_written = 0;
 867
 868                        /* allocate blocks */
 869                        ret = cow_file_range(inode, async_chunk->locked_page,
 870                                             async_extent->start,
 871                                             async_extent->start +
 872                                             async_extent->ram_size - 1,
 873                                             &page_started, &nr_written, 0);
 874
 875                        /* JDM XXX */
 876
 877                        /*
 878                         * if page_started, cow_file_range inserted an
 879                         * inline extent and took care of all the unlocking
 880                         * and IO for us.  Otherwise, we need to submit
 881                         * all those pages down to the drive.
 882                         */
 883                        if (!page_started && !ret)
 884                                extent_write_locked_range(&inode->vfs_inode,
 885                                                  async_extent->start,
 886                                                  async_extent->start +
 887                                                  async_extent->ram_size - 1,
 888                                                  WB_SYNC_ALL);
 889                        else if (ret && async_chunk->locked_page)
 890                                unlock_page(async_chunk->locked_page);
 891                        kfree(async_extent);
 892                        cond_resched();
 893                        continue;
 894                }
 895
 896                ret = btrfs_reserve_extent(root, async_extent->ram_size,
 897                                           async_extent->compressed_size,
 898                                           async_extent->compressed_size,
 899                                           0, alloc_hint, &ins, 1, 1);
 900                if (ret) {
 901                        free_async_extent_pages(async_extent);
 902
 903                        if (ret == -ENOSPC) {
 904                                unlock_extent(io_tree, async_extent->start,
 905                                              async_extent->start +
 906                                              async_extent->ram_size - 1);
 907
 908                                /*
 909                                 * we need to redirty the pages if we decide to
 910                                 * fallback to uncompressed IO, otherwise we
 911                                 * will not submit these pages down to lower
 912                                 * layers.
 913                                 */
 914                                extent_range_redirty_for_io(&inode->vfs_inode,
 915                                                async_extent->start,
 916                                                async_extent->start +
 917                                                async_extent->ram_size - 1);
 918
 919                                goto retry;
 920                        }
 921                        goto out_free;
 922                }
 923                /*
 924                 * here we're doing allocation and writeback of the
 925                 * compressed pages
 926                 */
 927                em = create_io_em(inode, async_extent->start,
 928                                  async_extent->ram_size, /* len */
 929                                  async_extent->start, /* orig_start */
 930                                  ins.objectid, /* block_start */
 931                                  ins.offset, /* block_len */
 932                                  ins.offset, /* orig_block_len */
 933                                  async_extent->ram_size, /* ram_bytes */
 934                                  async_extent->compress_type,
 935                                  BTRFS_ORDERED_COMPRESSED);
 936                if (IS_ERR(em))
 937                        /* ret value is not necessary due to void function */
 938                        goto out_free_reserve;
 939                free_extent_map(em);
 940
 941                ret = btrfs_add_ordered_extent_compress(inode,
 942                                                async_extent->start,
 943                                                ins.objectid,
 944                                                async_extent->ram_size,
 945                                                ins.offset,
 946                                                async_extent->compress_type);
 947                if (ret) {
 948                        btrfs_drop_extent_cache(inode, async_extent->start,
 949                                                async_extent->start +
 950                                                async_extent->ram_size - 1, 0);
 951                        goto out_free_reserve;
 952                }
 953                btrfs_dec_block_group_reservations(fs_info, ins.objectid);
 954
 955                /*
 956                 * clear dirty, set writeback and unlock the pages.
 957                 */
 958                extent_clear_unlock_delalloc(inode, async_extent->start,
 959                                async_extent->start +
 960                                async_extent->ram_size - 1,
 961                                NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
 962                                PAGE_UNLOCK | PAGE_START_WRITEBACK);
 963                if (btrfs_submit_compressed_write(inode, async_extent->start,
 964                                    async_extent->ram_size,
 965                                    ins.objectid,
 966                                    ins.offset, async_extent->pages,
 967                                    async_extent->nr_pages,
 968                                    async_chunk->write_flags,
 969                                    async_chunk->blkcg_css)) {
 970                        struct page *p = async_extent->pages[0];
 971                        const u64 start = async_extent->start;
 972                        const u64 end = start + async_extent->ram_size - 1;
 973
 974                        p->mapping = inode->vfs_inode.i_mapping;
 975                        btrfs_writepage_endio_finish_ordered(inode, p, start,
 976                                                             end, 0);
 977
 978                        p->mapping = NULL;
 979                        extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
 980                                                     PAGE_END_WRITEBACK |
 981                                                     PAGE_SET_ERROR);
 982                        free_async_extent_pages(async_extent);
 983                }
 984                alloc_hint = ins.objectid + ins.offset;
 985                kfree(async_extent);
 986                cond_resched();
 987        }
 988        return;
 989out_free_reserve:
 990        btrfs_dec_block_group_reservations(fs_info, ins.objectid);
 991        btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
 992out_free:
 993        extent_clear_unlock_delalloc(inode, async_extent->start,
 994                                     async_extent->start +
 995                                     async_extent->ram_size - 1,
 996                                     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
 997                                     EXTENT_DELALLOC_NEW |
 998                                     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
 999                                     PAGE_UNLOCK | PAGE_START_WRITEBACK |
1000                                     PAGE_END_WRITEBACK | PAGE_SET_ERROR);
1001        free_async_extent_pages(async_extent);
1002        kfree(async_extent);
1003        goto again;
1004}
1005
1006static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1007                                      u64 num_bytes)
1008{
1009        struct extent_map_tree *em_tree = &inode->extent_tree;
1010        struct extent_map *em;
1011        u64 alloc_hint = 0;
1012
1013        read_lock(&em_tree->lock);
1014        em = search_extent_mapping(em_tree, start, num_bytes);
1015        if (em) {
1016                /*
1017                 * if block start isn't an actual block number then find the
1018                 * first block in this inode and use that as a hint.  If that
1019                 * block is also bogus then just don't worry about it.
1020                 */
1021                if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1022                        free_extent_map(em);
1023                        em = search_extent_mapping(em_tree, 0, 0);
1024                        if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1025                                alloc_hint = em->block_start;
1026                        if (em)
1027                                free_extent_map(em);
1028                } else {
1029                        alloc_hint = em->block_start;
1030                        free_extent_map(em);
1031                }
1032        }
1033        read_unlock(&em_tree->lock);
1034
1035        return alloc_hint;
1036}
1037
1038/*
1039 * when extent_io.c finds a delayed allocation range in the file,
1040 * the call backs end up in this code.  The basic idea is to
1041 * allocate extents on disk for the range, and create ordered data structs
1042 * in ram to track those extents.
1043 *
1044 * locked_page is the page that writepage had locked already.  We use
1045 * it to make sure we don't do extra locks or unlocks.
1046 *
1047 * *page_started is set to one if we unlock locked_page and do everything
1048 * required to start IO on it.  It may be clean and already done with
1049 * IO when we return.
1050 */
1051static noinline int cow_file_range(struct btrfs_inode *inode,
1052                                   struct page *locked_page,
1053                                   u64 start, u64 end, int *page_started,
1054                                   unsigned long *nr_written, int unlock)
1055{
1056        struct btrfs_root *root = inode->root;
1057        struct btrfs_fs_info *fs_info = root->fs_info;
1058        u64 alloc_hint = 0;
1059        u64 num_bytes;
1060        unsigned long ram_size;
1061        u64 cur_alloc_size = 0;
1062        u64 min_alloc_size;
1063        u64 blocksize = fs_info->sectorsize;
1064        struct btrfs_key ins;
1065        struct extent_map *em;
1066        unsigned clear_bits;
1067        unsigned long page_ops;
1068        bool extent_reserved = false;
1069        int ret = 0;
1070
1071        if (btrfs_is_free_space_inode(inode)) {
1072                WARN_ON_ONCE(1);
1073                ret = -EINVAL;
1074                goto out_unlock;
1075        }
1076
1077        num_bytes = ALIGN(end - start + 1, blocksize);
1078        num_bytes = max(blocksize,  num_bytes);
1079        ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1080
1081        inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1082
1083        if (start == 0) {
1084                /* lets try to make an inline extent */
1085                ret = cow_file_range_inline(inode, start, end, 0,
1086                                            BTRFS_COMPRESS_NONE, NULL);
1087                if (ret == 0) {
1088                        /*
1089                         * We use DO_ACCOUNTING here because we need the
1090                         * delalloc_release_metadata to be run _after_ we drop
1091                         * our outstanding extent for clearing delalloc for this
1092                         * range.
1093                         */
1094                        extent_clear_unlock_delalloc(inode, start, end,
1095                                     locked_page,
1096                                     EXTENT_LOCKED | EXTENT_DELALLOC |
1097                                     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1098                                     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1099                                     PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1100                        *nr_written = *nr_written +
1101                             (end - start + PAGE_SIZE) / PAGE_SIZE;
1102                        *page_started = 1;
1103                        /*
1104                         * locked_page is locked by the caller of
1105                         * writepage_delalloc(), not locked by
1106                         * __process_pages_contig().
1107                         *
1108                         * We can't let __process_pages_contig() to unlock it,
1109                         * as it doesn't have any subpage::writers recorded.
1110                         *
1111                         * Here we manually unlock the page, since the caller
1112                         * can't use page_started to determine if it's an
1113                         * inline extent or a compressed extent.
1114                         */
1115                        unlock_page(locked_page);
1116                        goto out;
1117                } else if (ret < 0) {
1118                        goto out_unlock;
1119                }
1120        }
1121
1122        alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1123        btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
1124
1125        /*
1126         * Relocation relies on the relocated extents to have exactly the same
1127         * size as the original extents. Normally writeback for relocation data
1128         * extents follows a NOCOW path because relocation preallocates the
1129         * extents. However, due to an operation such as scrub turning a block
1130         * group to RO mode, it may fallback to COW mode, so we must make sure
1131         * an extent allocated during COW has exactly the requested size and can
1132         * not be split into smaller extents, otherwise relocation breaks and
1133         * fails during the stage where it updates the bytenr of file extent
1134         * items.
1135         */
1136        if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1137                min_alloc_size = num_bytes;
1138        else
1139                min_alloc_size = fs_info->sectorsize;
1140
1141        while (num_bytes > 0) {
1142                cur_alloc_size = num_bytes;
1143                ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1144                                           min_alloc_size, 0, alloc_hint,
1145                                           &ins, 1, 1);
1146                if (ret < 0)
1147                        goto out_unlock;
1148                cur_alloc_size = ins.offset;
1149                extent_reserved = true;
1150
1151                ram_size = ins.offset;
1152                em = create_io_em(inode, start, ins.offset, /* len */
1153                                  start, /* orig_start */
1154                                  ins.objectid, /* block_start */
1155                                  ins.offset, /* block_len */
1156                                  ins.offset, /* orig_block_len */
1157                                  ram_size, /* ram_bytes */
1158                                  BTRFS_COMPRESS_NONE, /* compress_type */
1159                                  BTRFS_ORDERED_REGULAR /* type */);
1160                if (IS_ERR(em)) {
1161                        ret = PTR_ERR(em);
1162                        goto out_reserve;
1163                }
1164                free_extent_map(em);
1165
1166                ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1167                                               ram_size, cur_alloc_size,
1168                                               BTRFS_ORDERED_REGULAR);
1169                if (ret)
1170                        goto out_drop_extent_cache;
1171
1172                if (root->root_key.objectid ==
1173                    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1174                        ret = btrfs_reloc_clone_csums(inode, start,
1175                                                      cur_alloc_size);
1176                        /*
1177                         * Only drop cache here, and process as normal.
1178                         *
1179                         * We must not allow extent_clear_unlock_delalloc()
1180                         * at out_unlock label to free meta of this ordered
1181                         * extent, as its meta should be freed by
1182                         * btrfs_finish_ordered_io().
1183                         *
1184                         * So we must continue until @start is increased to
1185                         * skip current ordered extent.
1186                         */
1187                        if (ret)
1188                                btrfs_drop_extent_cache(inode, start,
1189                                                start + ram_size - 1, 0);
1190                }
1191
1192                btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1193
1194                /*
1195                 * We're not doing compressed IO, don't unlock the first page
1196                 * (which the caller expects to stay locked), don't clear any
1197                 * dirty bits and don't set any writeback bits
1198                 *
1199                 * Do set the Ordered (Private2) bit so we know this page was
1200                 * properly setup for writepage.
1201                 */
1202                page_ops = unlock ? PAGE_UNLOCK : 0;
1203                page_ops |= PAGE_SET_ORDERED;
1204
1205                extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1206                                             locked_page,
1207                                             EXTENT_LOCKED | EXTENT_DELALLOC,
1208                                             page_ops);
1209                if (num_bytes < cur_alloc_size)
1210                        num_bytes = 0;
1211                else
1212                        num_bytes -= cur_alloc_size;
1213                alloc_hint = ins.objectid + ins.offset;
1214                start += cur_alloc_size;
1215                extent_reserved = false;
1216
1217                /*
1218                 * btrfs_reloc_clone_csums() error, since start is increased
1219                 * extent_clear_unlock_delalloc() at out_unlock label won't
1220                 * free metadata of current ordered extent, we're OK to exit.
1221                 */
1222                if (ret)
1223                        goto out_unlock;
1224        }
1225out:
1226        return ret;
1227
1228out_drop_extent_cache:
1229        btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1230out_reserve:
1231        btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1232        btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1233out_unlock:
1234        clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1235                EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1236        page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1237        /*
1238         * If we reserved an extent for our delalloc range (or a subrange) and
1239         * failed to create the respective ordered extent, then it means that
1240         * when we reserved the extent we decremented the extent's size from
1241         * the data space_info's bytes_may_use counter and incremented the
1242         * space_info's bytes_reserved counter by the same amount. We must make
1243         * sure extent_clear_unlock_delalloc() does not try to decrement again
1244         * the data space_info's bytes_may_use counter, therefore we do not pass
1245         * it the flag EXTENT_CLEAR_DATA_RESV.
1246         */
1247        if (extent_reserved) {
1248                extent_clear_unlock_delalloc(inode, start,
1249                                             start + cur_alloc_size - 1,
1250                                             locked_page,
1251                                             clear_bits,
1252                                             page_ops);
1253                start += cur_alloc_size;
1254                if (start >= end)
1255                        goto out;
1256        }
1257        extent_clear_unlock_delalloc(inode, start, end, locked_page,
1258                                     clear_bits | EXTENT_CLEAR_DATA_RESV,
1259                                     page_ops);
1260        goto out;
1261}
1262
1263/*
1264 * work queue call back to started compression on a file and pages
1265 */
1266static noinline void async_cow_start(struct btrfs_work *work)
1267{
1268        struct async_chunk *async_chunk;
1269        int compressed_extents;
1270
1271        async_chunk = container_of(work, struct async_chunk, work);
1272
1273        compressed_extents = compress_file_range(async_chunk);
1274        if (compressed_extents == 0) {
1275                btrfs_add_delayed_iput(async_chunk->inode);
1276                async_chunk->inode = NULL;
1277        }
1278}
1279
1280/*
1281 * work queue call back to submit previously compressed pages
1282 */
1283static noinline void async_cow_submit(struct btrfs_work *work)
1284{
1285        struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1286                                                     work);
1287        struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1288        unsigned long nr_pages;
1289
1290        nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1291                PAGE_SHIFT;
1292
1293        /* atomic_sub_return implies a barrier */
1294        if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1295            5 * SZ_1M)
1296                cond_wake_up_nomb(&fs_info->async_submit_wait);
1297
1298        /*
1299         * ->inode could be NULL if async_chunk_start has failed to compress,
1300         * in which case we don't have anything to submit, yet we need to
1301         * always adjust ->async_delalloc_pages as its paired with the init
1302         * happening in cow_file_range_async
1303         */
1304        if (async_chunk->inode)
1305                submit_compressed_extents(async_chunk);
1306}
1307
1308static noinline void async_cow_free(struct btrfs_work *work)
1309{
1310        struct async_chunk *async_chunk;
1311
1312        async_chunk = container_of(work, struct async_chunk, work);
1313        if (async_chunk->inode)
1314                btrfs_add_delayed_iput(async_chunk->inode);
1315        if (async_chunk->blkcg_css)
1316                css_put(async_chunk->blkcg_css);
1317        /*
1318         * Since the pointer to 'pending' is at the beginning of the array of
1319         * async_chunk's, freeing it ensures the whole array has been freed.
1320         */
1321        if (atomic_dec_and_test(async_chunk->pending))
1322                kvfree(async_chunk->pending);
1323}
1324
1325static int cow_file_range_async(struct btrfs_inode *inode,
1326                                struct writeback_control *wbc,
1327                                struct page *locked_page,
1328                                u64 start, u64 end, int *page_started,
1329                                unsigned long *nr_written)
1330{
1331        struct btrfs_fs_info *fs_info = inode->root->fs_info;
1332        struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1333        struct async_cow *ctx;
1334        struct async_chunk *async_chunk;
1335        unsigned long nr_pages;
1336        u64 cur_end;
1337        u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1338        int i;
1339        bool should_compress;
1340        unsigned nofs_flag;
1341        const unsigned int write_flags = wbc_to_write_flags(wbc);
1342
1343        unlock_extent(&inode->io_tree, start, end);
1344
1345        if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
1346            !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1347                num_chunks = 1;
1348                should_compress = false;
1349        } else {
1350                should_compress = true;
1351        }
1352
1353        nofs_flag = memalloc_nofs_save();
1354        ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1355        memalloc_nofs_restore(nofs_flag);
1356
1357        if (!ctx) {
1358                unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1359                        EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1360                        EXTENT_DO_ACCOUNTING;
1361                unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK |
1362                                         PAGE_END_WRITEBACK | PAGE_SET_ERROR;
1363
1364                extent_clear_unlock_delalloc(inode, start, end, locked_page,
1365                                             clear_bits, page_ops);
1366                return -ENOMEM;
1367        }
1368
1369        async_chunk = ctx->chunks;
1370        atomic_set(&ctx->num_chunks, num_chunks);
1371
1372        for (i = 0; i < num_chunks; i++) {
1373                if (should_compress)
1374                        cur_end = min(end, start + SZ_512K - 1);
1375                else
1376                        cur_end = end;
1377
1378                /*
1379                 * igrab is called higher up in the call chain, take only the
1380                 * lightweight reference for the callback lifetime
1381                 */
1382                ihold(&inode->vfs_inode);
1383                async_chunk[i].pending = &ctx->num_chunks;
1384                async_chunk[i].inode = &inode->vfs_inode;
1385                async_chunk[i].start = start;
1386                async_chunk[i].end = cur_end;
1387                async_chunk[i].write_flags = write_flags;
1388                INIT_LIST_HEAD(&async_chunk[i].extents);
1389
1390                /*
1391                 * The locked_page comes all the way from writepage and its
1392                 * the original page we were actually given.  As we spread
1393                 * this large delalloc region across multiple async_chunk
1394                 * structs, only the first struct needs a pointer to locked_page
1395                 *
1396                 * This way we don't need racey decisions about who is supposed
1397                 * to unlock it.
1398                 */
1399                if (locked_page) {
1400                        /*
1401                         * Depending on the compressibility, the pages might or
1402                         * might not go through async.  We want all of them to
1403                         * be accounted against wbc once.  Let's do it here
1404                         * before the paths diverge.  wbc accounting is used
1405                         * only for foreign writeback detection and doesn't
1406                         * need full accuracy.  Just account the whole thing
1407                         * against the first page.
1408                         */
1409                        wbc_account_cgroup_owner(wbc, locked_page,
1410                                                 cur_end - start);
1411                        async_chunk[i].locked_page = locked_page;
1412                        locked_page = NULL;
1413                } else {
1414                        async_chunk[i].locked_page = NULL;
1415                }
1416
1417                if (blkcg_css != blkcg_root_css) {
1418                        css_get(blkcg_css);
1419                        async_chunk[i].blkcg_css = blkcg_css;
1420                } else {
1421                        async_chunk[i].blkcg_css = NULL;
1422                }
1423
1424                btrfs_init_work(&async_chunk[i].work, async_cow_start,
1425                                async_cow_submit, async_cow_free);
1426
1427                nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1428                atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1429
1430                btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1431
1432                *nr_written += nr_pages;
1433                start = cur_end + 1;
1434        }
1435        *page_started = 1;
1436        return 0;
1437}
1438
1439static noinline int run_delalloc_zoned(struct btrfs_inode *inode,
1440                                       struct page *locked_page, u64 start,
1441                                       u64 end, int *page_started,
1442                                       unsigned long *nr_written)
1443{
1444        int ret;
1445
1446        ret = cow_file_range(inode, locked_page, start, end, page_started,
1447                             nr_written, 0);
1448        if (ret)
1449                return ret;
1450
1451        if (*page_started)
1452                return 0;
1453
1454        __set_page_dirty_nobuffers(locked_page);
1455        account_page_redirty(locked_page);
1456        extent_write_locked_range(&inode->vfs_inode, start, end, WB_SYNC_ALL);
1457        *page_started = 1;
1458
1459        return 0;
1460}
1461
1462static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1463                                        u64 bytenr, u64 num_bytes)
1464{
1465        int ret;
1466        struct btrfs_ordered_sum *sums;
1467        LIST_HEAD(list);
1468
1469        ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1470                                       bytenr + num_bytes - 1, &list, 0);
1471        if (ret == 0 && list_empty(&list))
1472                return 0;
1473
1474        while (!list_empty(&list)) {
1475                sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1476                list_del(&sums->list);
1477                kfree(sums);
1478        }
1479        if (ret < 0)
1480                return ret;
1481        return 1;
1482}
1483
1484static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1485                           const u64 start, const u64 end,
1486                           int *page_started, unsigned long *nr_written)
1487{
1488        const bool is_space_ino = btrfs_is_free_space_inode(inode);
1489        const bool is_reloc_ino = (inode->root->root_key.objectid ==
1490                                   BTRFS_DATA_RELOC_TREE_OBJECTID);
1491        const u64 range_bytes = end + 1 - start;
1492        struct extent_io_tree *io_tree = &inode->io_tree;
1493        u64 range_start = start;
1494        u64 count;
1495
1496        /*
1497         * If EXTENT_NORESERVE is set it means that when the buffered write was
1498         * made we had not enough available data space and therefore we did not
1499         * reserve data space for it, since we though we could do NOCOW for the
1500         * respective file range (either there is prealloc extent or the inode
1501         * has the NOCOW bit set).
1502         *
1503         * However when we need to fallback to COW mode (because for example the
1504         * block group for the corresponding extent was turned to RO mode by a
1505         * scrub or relocation) we need to do the following:
1506         *
1507         * 1) We increment the bytes_may_use counter of the data space info.
1508         *    If COW succeeds, it allocates a new data extent and after doing
1509         *    that it decrements the space info's bytes_may_use counter and
1510         *    increments its bytes_reserved counter by the same amount (we do
1511         *    this at btrfs_add_reserved_bytes()). So we need to increment the
1512         *    bytes_may_use counter to compensate (when space is reserved at
1513         *    buffered write time, the bytes_may_use counter is incremented);
1514         *
1515         * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1516         *    that if the COW path fails for any reason, it decrements (through
1517         *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1518         *    data space info, which we incremented in the step above.
1519         *
1520         * If we need to fallback to cow and the inode corresponds to a free
1521         * space cache inode or an inode of the data relocation tree, we must
1522         * also increment bytes_may_use of the data space_info for the same
1523         * reason. Space caches and relocated data extents always get a prealloc
1524         * extent for them, however scrub or balance may have set the block
1525         * group that contains that extent to RO mode and therefore force COW
1526         * when starting writeback.
1527         */
1528        count = count_range_bits(io_tree, &range_start, end, range_bytes,
1529                                 EXTENT_NORESERVE, 0);
1530        if (count > 0 || is_space_ino || is_reloc_ino) {
1531                u64 bytes = count;
1532                struct btrfs_fs_info *fs_info = inode->root->fs_info;
1533                struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1534
1535                if (is_space_ino || is_reloc_ino)
1536                        bytes = range_bytes;
1537
1538                spin_lock(&sinfo->lock);
1539                btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1540                spin_unlock(&sinfo->lock);
1541
1542                if (count > 0)
1543                        clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1544                                         0, 0, NULL);
1545        }
1546
1547        return cow_file_range(inode, locked_page, start, end, page_started,
1548                              nr_written, 1);
1549}
1550
1551/*
1552 * when nowcow writeback call back.  This checks for snapshots or COW copies
1553 * of the extents that exist in the file, and COWs the file as required.
1554 *
1555 * If no cow copies or snapshots exist, we write directly to the existing
1556 * blocks on disk
1557 */
1558static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1559                                       struct page *locked_page,
1560                                       const u64 start, const u64 end,
1561                                       int *page_started,
1562                                       unsigned long *nr_written)
1563{
1564        struct btrfs_fs_info *fs_info = inode->root->fs_info;
1565        struct btrfs_root *root = inode->root;
1566        struct btrfs_path *path;
1567        u64 cow_start = (u64)-1;
1568        u64 cur_offset = start;
1569        int ret;
1570        bool check_prev = true;
1571        const bool freespace_inode = btrfs_is_free_space_inode(inode);
1572        u64 ino = btrfs_ino(inode);
1573        bool nocow = false;
1574        u64 disk_bytenr = 0;
1575        const bool force = inode->flags & BTRFS_INODE_NODATACOW;
1576
1577        path = btrfs_alloc_path();
1578        if (!path) {
1579                extent_clear_unlock_delalloc(inode, start, end, locked_page,
1580                                             EXTENT_LOCKED | EXTENT_DELALLOC |
1581                                             EXTENT_DO_ACCOUNTING |
1582                                             EXTENT_DEFRAG, PAGE_UNLOCK |
1583                                             PAGE_START_WRITEBACK |
1584                                             PAGE_END_WRITEBACK);
1585                return -ENOMEM;
1586        }
1587
1588        while (1) {
1589                struct btrfs_key found_key;
1590                struct btrfs_file_extent_item *fi;
1591                struct extent_buffer *leaf;
1592                u64 extent_end;
1593                u64 extent_offset;
1594                u64 num_bytes = 0;
1595                u64 disk_num_bytes;
1596                u64 ram_bytes;
1597                int extent_type;
1598
1599                nocow = false;
1600
1601                ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1602                                               cur_offset, 0);
1603                if (ret < 0)
1604                        goto error;
1605
1606                /*
1607                 * If there is no extent for our range when doing the initial
1608                 * search, then go back to the previous slot as it will be the
1609                 * one containing the search offset
1610                 */
1611                if (ret > 0 && path->slots[0] > 0 && check_prev) {
1612                        leaf = path->nodes[0];
1613                        btrfs_item_key_to_cpu(leaf, &found_key,
1614                                              path->slots[0] - 1);
1615                        if (found_key.objectid == ino &&
1616                            found_key.type == BTRFS_EXTENT_DATA_KEY)
1617                                path->slots[0]--;
1618                }
1619                check_prev = false;
1620next_slot:
1621                /* Go to next leaf if we have exhausted the current one */
1622                leaf = path->nodes[0];
1623                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1624                        ret = btrfs_next_leaf(root, path);
1625                        if (ret < 0) {
1626                                if (cow_start != (u64)-1)
1627                                        cur_offset = cow_start;
1628                                goto error;
1629                        }
1630                        if (ret > 0)
1631                                break;
1632                        leaf = path->nodes[0];
1633                }
1634
1635                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1636
1637                /* Didn't find anything for our INO */
1638                if (found_key.objectid > ino)
1639                        break;
1640                /*
1641                 * Keep searching until we find an EXTENT_ITEM or there are no
1642                 * more extents for this inode
1643                 */
1644                if (WARN_ON_ONCE(found_key.objectid < ino) ||
1645                    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1646                        path->slots[0]++;
1647                        goto next_slot;
1648                }
1649
1650                /* Found key is not EXTENT_DATA_KEY or starts after req range */
1651                if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1652                    found_key.offset > end)
1653                        break;
1654
1655                /*
1656                 * If the found extent starts after requested offset, then
1657                 * adjust extent_end to be right before this extent begins
1658                 */
1659                if (found_key.offset > cur_offset) {
1660                        extent_end = found_key.offset;
1661                        extent_type = 0;
1662                        goto out_check;
1663                }
1664
1665                /*
1666                 * Found extent which begins before our range and potentially
1667                 * intersect it
1668                 */
1669                fi = btrfs_item_ptr(leaf, path->slots[0],
1670                                    struct btrfs_file_extent_item);
1671                extent_type = btrfs_file_extent_type(leaf, fi);
1672
1673                ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1674                if (extent_type == BTRFS_FILE_EXTENT_REG ||
1675                    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1676                        disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1677                        extent_offset = btrfs_file_extent_offset(leaf, fi);
1678                        extent_end = found_key.offset +
1679                                btrfs_file_extent_num_bytes(leaf, fi);
1680                        disk_num_bytes =
1681                                btrfs_file_extent_disk_num_bytes(leaf, fi);
1682                        /*
1683                         * If the extent we got ends before our current offset,
1684                         * skip to the next extent.
1685                         */
1686                        if (extent_end <= cur_offset) {
1687                                path->slots[0]++;
1688                                goto next_slot;
1689                        }
1690                        /* Skip holes */
1691                        if (disk_bytenr == 0)
1692                                goto out_check;
1693                        /* Skip compressed/encrypted/encoded extents */
1694                        if (btrfs_file_extent_compression(leaf, fi) ||
1695                            btrfs_file_extent_encryption(leaf, fi) ||
1696                            btrfs_file_extent_other_encoding(leaf, fi))
1697                                goto out_check;
1698                        /*
1699                         * If extent is created before the last volume's snapshot
1700                         * this implies the extent is shared, hence we can't do
1701                         * nocow. This is the same check as in
1702                         * btrfs_cross_ref_exist but without calling
1703                         * btrfs_search_slot.
1704                         */
1705                        if (!freespace_inode &&
1706                            btrfs_file_extent_generation(leaf, fi) <=
1707                            btrfs_root_last_snapshot(&root->root_item))
1708                                goto out_check;
1709                        if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1710                                goto out_check;
1711
1712                        /*
1713                         * The following checks can be expensive, as they need to
1714                         * take other locks and do btree or rbtree searches, so
1715                         * release the path to avoid blocking other tasks for too
1716                         * long.
1717                         */
1718                        btrfs_release_path(path);
1719
1720                        ret = btrfs_cross_ref_exist(root, ino,
1721                                                    found_key.offset -
1722                                                    extent_offset, disk_bytenr, false);
1723                        if (ret) {
1724                                /*
1725                                 * ret could be -EIO if the above fails to read
1726                                 * metadata.
1727                                 */
1728                                if (ret < 0) {
1729                                        if (cow_start != (u64)-1)
1730                                                cur_offset = cow_start;
1731                                        goto error;
1732                                }
1733
1734                                WARN_ON_ONCE(freespace_inode);
1735                                goto out_check;
1736                        }
1737                        disk_bytenr += extent_offset;
1738                        disk_bytenr += cur_offset - found_key.offset;
1739                        num_bytes = min(end + 1, extent_end) - cur_offset;
1740                        /*
1741                         * If there are pending snapshots for this root, we
1742                         * fall into common COW way
1743                         */
1744                        if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
1745                                goto out_check;
1746                        /*
1747                         * force cow if csum exists in the range.
1748                         * this ensure that csum for a given extent are
1749                         * either valid or do not exist.
1750                         */
1751                        ret = csum_exist_in_range(fs_info, disk_bytenr,
1752                                                  num_bytes);
1753                        if (ret) {
1754                                /*
1755                                 * ret could be -EIO if the above fails to read
1756                                 * metadata.
1757                                 */
1758                                if (ret < 0) {
1759                                        if (cow_start != (u64)-1)
1760                                                cur_offset = cow_start;
1761                                        goto error;
1762                                }
1763                                WARN_ON_ONCE(freespace_inode);
1764                                goto out_check;
1765                        }
1766                        /* If the extent's block group is RO, we must COW */
1767                        if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1768                                goto out_check;
1769                        nocow = true;
1770                } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1771                        extent_end = found_key.offset + ram_bytes;
1772                        extent_end = ALIGN(extent_end, fs_info->sectorsize);
1773                        /* Skip extents outside of our requested range */
1774                        if (extent_end <= start) {
1775                                path->slots[0]++;
1776                                goto next_slot;
1777                        }
1778                } else {
1779                        /* If this triggers then we have a memory corruption */
1780                        BUG();
1781                }
1782out_check:
1783                /*
1784                 * If nocow is false then record the beginning of the range
1785                 * that needs to be COWed
1786                 */
1787                if (!nocow) {
1788                        if (cow_start == (u64)-1)
1789                                cow_start = cur_offset;
1790                        cur_offset = extent_end;
1791                        if (cur_offset > end)
1792                                break;
1793                        if (!path->nodes[0])
1794                                continue;
1795                        path->slots[0]++;
1796                        goto next_slot;
1797                }
1798
1799                /*
1800                 * COW range from cow_start to found_key.offset - 1. As the key
1801                 * will contain the beginning of the first extent that can be
1802                 * NOCOW, following one which needs to be COW'ed
1803                 */
1804                if (cow_start != (u64)-1) {
1805                        ret = fallback_to_cow(inode, locked_page,
1806                                              cow_start, found_key.offset - 1,
1807                                              page_started, nr_written);
1808                        if (ret)
1809                                goto error;
1810                        cow_start = (u64)-1;
1811                }
1812
1813                if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1814                        u64 orig_start = found_key.offset - extent_offset;
1815                        struct extent_map *em;
1816
1817                        em = create_io_em(inode, cur_offset, num_bytes,
1818                                          orig_start,
1819                                          disk_bytenr, /* block_start */
1820                                          num_bytes, /* block_len */
1821                                          disk_num_bytes, /* orig_block_len */
1822                                          ram_bytes, BTRFS_COMPRESS_NONE,
1823                                          BTRFS_ORDERED_PREALLOC);
1824                        if (IS_ERR(em)) {
1825                                ret = PTR_ERR(em);
1826                                goto error;
1827                        }
1828                        free_extent_map(em);
1829                        ret = btrfs_add_ordered_extent(inode, cur_offset,
1830                                                       disk_bytenr, num_bytes,
1831                                                       num_bytes,
1832                                                       BTRFS_ORDERED_PREALLOC);
1833                        if (ret) {
1834                                btrfs_drop_extent_cache(inode, cur_offset,
1835                                                        cur_offset + num_bytes - 1,
1836                                                        0);
1837                                goto error;
1838                        }
1839                } else {
1840                        ret = btrfs_add_ordered_extent(inode, cur_offset,
1841                                                       disk_bytenr, num_bytes,
1842                                                       num_bytes,
1843                                                       BTRFS_ORDERED_NOCOW);
1844                        if (ret)
1845                                goto error;
1846                }
1847
1848                if (nocow)
1849                        btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1850                nocow = false;
1851
1852                if (root->root_key.objectid ==
1853                    BTRFS_DATA_RELOC_TREE_OBJECTID)
1854                        /*
1855                         * Error handled later, as we must prevent
1856                         * extent_clear_unlock_delalloc() in error handler
1857                         * from freeing metadata of created ordered extent.
1858                         */
1859                        ret = btrfs_reloc_clone_csums(inode, cur_offset,
1860                                                      num_bytes);
1861
1862                extent_clear_unlock_delalloc(inode, cur_offset,
1863                                             cur_offset + num_bytes - 1,
1864                                             locked_page, EXTENT_LOCKED |
1865                                             EXTENT_DELALLOC |
1866                                             EXTENT_CLEAR_DATA_RESV,
1867                                             PAGE_UNLOCK | PAGE_SET_ORDERED);
1868
1869                cur_offset = extent_end;
1870
1871                /*
1872                 * btrfs_reloc_clone_csums() error, now we're OK to call error
1873                 * handler, as metadata for created ordered extent will only
1874                 * be freed by btrfs_finish_ordered_io().
1875                 */
1876                if (ret)
1877                        goto error;
1878                if (cur_offset > end)
1879                        break;
1880        }
1881        btrfs_release_path(path);
1882
1883        if (cur_offset <= end && cow_start == (u64)-1)
1884                cow_start = cur_offset;
1885
1886        if (cow_start != (u64)-1) {
1887                cur_offset = end;
1888                ret = fallback_to_cow(inode, locked_page, cow_start, end,
1889                                      page_started, nr_written);
1890                if (ret)
1891                        goto error;
1892        }
1893
1894error:
1895        if (nocow)
1896                btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1897
1898        if (ret && cur_offset < end)
1899                extent_clear_unlock_delalloc(inode, cur_offset, end,
1900                                             locked_page, EXTENT_LOCKED |
1901                                             EXTENT_DELALLOC | EXTENT_DEFRAG |
1902                                             EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1903                                             PAGE_START_WRITEBACK |
1904                                             PAGE_END_WRITEBACK);
1905        btrfs_free_path(path);
1906        return ret;
1907}
1908
1909static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
1910{
1911        if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
1912                if (inode->defrag_bytes &&
1913                    test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
1914                                   0, NULL))
1915                        return false;
1916                return true;
1917        }
1918        return false;
1919}
1920
1921/*
1922 * Function to process delayed allocation (create CoW) for ranges which are
1923 * being touched for the first time.
1924 */
1925int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
1926                u64 start, u64 end, int *page_started, unsigned long *nr_written,
1927                struct writeback_control *wbc)
1928{
1929        int ret;
1930        const bool zoned = btrfs_is_zoned(inode->root->fs_info);
1931
1932        if (should_nocow(inode, start, end)) {
1933                ASSERT(!zoned);
1934                ret = run_delalloc_nocow(inode, locked_page, start, end,
1935                                         page_started, nr_written);
1936        } else if (!inode_can_compress(inode) ||
1937                   !inode_need_compress(inode, start, end)) {
1938                if (zoned)
1939                        ret = run_delalloc_zoned(inode, locked_page, start, end,
1940                                                 page_started, nr_written);
1941                else
1942                        ret = cow_file_range(inode, locked_page, start, end,
1943                                             page_started, nr_written, 1);
1944        } else {
1945                set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1946                ret = cow_file_range_async(inode, wbc, locked_page, start, end,
1947                                           page_started, nr_written);
1948        }
1949        if (ret)
1950                btrfs_cleanup_ordered_extents(inode, locked_page, start,
1951                                              end - start + 1);
1952        return ret;
1953}
1954
1955void btrfs_split_delalloc_extent(struct inode *inode,
1956                                 struct extent_state *orig, u64 split)
1957{
1958        u64 size;
1959
1960        /* not delalloc, ignore it */
1961        if (!(orig->state & EXTENT_DELALLOC))
1962                return;
1963
1964        size = orig->end - orig->start + 1;
1965        if (size > BTRFS_MAX_EXTENT_SIZE) {
1966                u32 num_extents;
1967                u64 new_size;
1968
1969                /*
1970                 * See the explanation in btrfs_merge_delalloc_extent, the same
1971                 * applies here, just in reverse.
1972                 */
1973                new_size = orig->end - split + 1;
1974                num_extents = count_max_extents(new_size);
1975                new_size = split - orig->start;
1976                num_extents += count_max_extents(new_size);
1977                if (count_max_extents(size) >= num_extents)
1978                        return;
1979        }
1980
1981        spin_lock(&BTRFS_I(inode)->lock);
1982        btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1983        spin_unlock(&BTRFS_I(inode)->lock);
1984}
1985
1986/*
1987 * Handle merged delayed allocation extents so we can keep track of new extents
1988 * that are just merged onto old extents, such as when we are doing sequential
1989 * writes, so we can properly account for the metadata space we'll need.
1990 */
1991void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1992                                 struct extent_state *other)
1993{
1994        u64 new_size, old_size;
1995        u32 num_extents;
1996
1997        /* not delalloc, ignore it */
1998        if (!(other->state & EXTENT_DELALLOC))
1999                return;
2000
2001        if (new->start > other->start)
2002                new_size = new->end - other->start + 1;
2003        else
2004                new_size = other->end - new->start + 1;
2005
2006        /* we're not bigger than the max, unreserve the space and go */
2007        if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
2008                spin_lock(&BTRFS_I(inode)->lock);
2009                btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
2010                spin_unlock(&BTRFS_I(inode)->lock);
2011                return;
2012        }
2013
2014        /*
2015         * We have to add up either side to figure out how many extents were
2016         * accounted for before we merged into one big extent.  If the number of
2017         * extents we accounted for is <= the amount we need for the new range
2018         * then we can return, otherwise drop.  Think of it like this
2019         *
2020         * [ 4k][MAX_SIZE]
2021         *
2022         * So we've grown the extent by a MAX_SIZE extent, this would mean we
2023         * need 2 outstanding extents, on one side we have 1 and the other side
2024         * we have 1 so they are == and we can return.  But in this case
2025         *
2026         * [MAX_SIZE+4k][MAX_SIZE+4k]
2027         *
2028         * Each range on their own accounts for 2 extents, but merged together
2029         * they are only 3 extents worth of accounting, so we need to drop in
2030         * this case.
2031         */
2032        old_size = other->end - other->start + 1;
2033        num_extents = count_max_extents(old_size);
2034        old_size = new->end - new->start + 1;
2035        num_extents += count_max_extents(old_size);
2036        if (count_max_extents(new_size) >= num_extents)
2037                return;
2038
2039        spin_lock(&BTRFS_I(inode)->lock);
2040        btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
2041        spin_unlock(&BTRFS_I(inode)->lock);
2042}
2043
2044static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2045                                      struct inode *inode)
2046{
2047        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2048
2049        spin_lock(&root->delalloc_lock);
2050        if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
2051                list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
2052                              &root->delalloc_inodes);
2053                set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2054                        &BTRFS_I(inode)->runtime_flags);
2055                root->nr_delalloc_inodes++;
2056                if (root->nr_delalloc_inodes == 1) {
2057                        spin_lock(&fs_info->delalloc_root_lock);
2058                        BUG_ON(!list_empty(&root->delalloc_root));
2059                        list_add_tail(&root->delalloc_root,
2060                                      &fs_info->delalloc_roots);
2061                        spin_unlock(&fs_info->delalloc_root_lock);
2062                }
2063        }
2064        spin_unlock(&root->delalloc_lock);
2065}
2066
2067
2068void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2069                                struct btrfs_inode *inode)
2070{
2071        struct btrfs_fs_info *fs_info = root->fs_info;
2072
2073        if (!list_empty(&inode->delalloc_inodes)) {
2074                list_del_init(&inode->delalloc_inodes);
2075                clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2076                          &inode->runtime_flags);
2077                root->nr_delalloc_inodes--;
2078                if (!root->nr_delalloc_inodes) {
2079                        ASSERT(list_empty(&root->delalloc_inodes));
2080                        spin_lock(&fs_info->delalloc_root_lock);
2081                        BUG_ON(list_empty(&root->delalloc_root));
2082                        list_del_init(&root->delalloc_root);
2083                        spin_unlock(&fs_info->delalloc_root_lock);
2084                }
2085        }
2086}
2087
2088static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2089                                     struct btrfs_inode *inode)
2090{
2091        spin_lock(&root->delalloc_lock);
2092        __btrfs_del_delalloc_inode(root, inode);
2093        spin_unlock(&root->delalloc_lock);
2094}
2095
2096/*
2097 * Properly track delayed allocation bytes in the inode and to maintain the
2098 * list of inodes that have pending delalloc work to be done.
2099 */
2100void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
2101                               unsigned *bits)
2102{
2103        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2104
2105        if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
2106                WARN_ON(1);
2107        /*
2108         * set_bit and clear bit hooks normally require _irqsave/restore
2109         * but in this case, we are only testing for the DELALLOC
2110         * bit, which is only set or cleared with irqs on
2111         */
2112        if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2113                struct btrfs_root *root = BTRFS_I(inode)->root;
2114                u64 len = state->end + 1 - state->start;
2115                u32 num_extents = count_max_extents(len);
2116                bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
2117
2118                spin_lock(&BTRFS_I(inode)->lock);
2119                btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2120                spin_unlock(&BTRFS_I(inode)->lock);
2121
2122                /* For sanity tests */
2123                if (btrfs_is_testing(fs_info))
2124                        return;
2125
2126                percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2127                                         fs_info->delalloc_batch);
2128                spin_lock(&BTRFS_I(inode)->lock);
2129                BTRFS_I(inode)->delalloc_bytes += len;
2130                if (*bits & EXTENT_DEFRAG)
2131                        BTRFS_I(inode)->defrag_bytes += len;
2132                if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2133                                         &BTRFS_I(inode)->runtime_flags))
2134                        btrfs_add_delalloc_inodes(root, inode);
2135                spin_unlock(&BTRFS_I(inode)->lock);
2136        }
2137
2138        if (!(state->state & EXTENT_DELALLOC_NEW) &&
2139            (*bits & EXTENT_DELALLOC_NEW)) {
2140                spin_lock(&BTRFS_I(inode)->lock);
2141                BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2142                        state->start;
2143                spin_unlock(&BTRFS_I(inode)->lock);
2144        }
2145}
2146
2147/*
2148 * Once a range is no longer delalloc this function ensures that proper
2149 * accounting happens.
2150 */
2151void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2152                                 struct extent_state *state, unsigned *bits)
2153{
2154        struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2155        struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
2156        u64 len = state->end + 1 - state->start;
2157        u32 num_extents = count_max_extents(len);
2158
2159        if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2160                spin_lock(&inode->lock);
2161                inode->defrag_bytes -= len;
2162                spin_unlock(&inode->lock);
2163        }
2164
2165        /*
2166         * set_bit and clear bit hooks normally require _irqsave/restore
2167         * but in this case, we are only testing for the DELALLOC
2168         * bit, which is only set or cleared with irqs on
2169         */
2170        if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2171                struct btrfs_root *root = inode->root;
2172                bool do_list = !btrfs_is_free_space_inode(inode);
2173
2174                spin_lock(&inode->lock);
2175                btrfs_mod_outstanding_extents(inode, -num_extents);
2176                spin_unlock(&inode->lock);
2177
2178                /*
2179                 * We don't reserve metadata space for space cache inodes so we
2180                 * don't need to call delalloc_release_metadata if there is an
2181                 * error.
2182                 */
2183                if (*bits & EXTENT_CLEAR_META_RESV &&
2184                    root != fs_info->tree_root)
2185                        btrfs_delalloc_release_metadata(inode, len, false);
2186
2187                /* For sanity tests. */
2188                if (btrfs_is_testing(fs_info))
2189                        return;
2190
2191                if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
2192                    do_list && !(state->state & EXTENT_NORESERVE) &&
2193                    (*bits & EXTENT_CLEAR_DATA_RESV))
2194                        btrfs_free_reserved_data_space_noquota(fs_info, len);
2195
2196                percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2197                                         fs_info->delalloc_batch);
2198                spin_lock(&inode->lock);
2199                inode->delalloc_bytes -= len;
2200                if (do_list && inode->delalloc_bytes == 0 &&
2201                    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2202                                        &inode->runtime_flags))
2203                        btrfs_del_delalloc_inode(root, inode);
2204                spin_unlock(&inode->lock);
2205        }
2206
2207        if ((state->state & EXTENT_DELALLOC_NEW) &&
2208            (*bits & EXTENT_DELALLOC_NEW)) {
2209                spin_lock(&inode->lock);
2210                ASSERT(inode->new_delalloc_bytes >= len);
2211                inode->new_delalloc_bytes -= len;
2212                if (*bits & EXTENT_ADD_INODE_BYTES)
2213                        inode_add_bytes(&inode->vfs_inode, len);
2214                spin_unlock(&inode->lock);
2215        }
2216}
2217
2218/*
2219 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2220 * in a chunk's stripe. This function ensures that bios do not span a
2221 * stripe/chunk
2222 *
2223 * @page - The page we are about to add to the bio
2224 * @size - size we want to add to the bio
2225 * @bio - bio we want to ensure is smaller than a stripe
2226 * @bio_flags - flags of the bio
2227 *
2228 * return 1 if page cannot be added to the bio
2229 * return 0 if page can be added to the bio
2230 * return error otherwise
2231 */
2232int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2233                             unsigned long bio_flags)
2234{
2235        struct inode *inode = page->mapping->host;
2236        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2237        u64 logical = bio->bi_iter.bi_sector << 9;
2238        u32 bio_len = bio->bi_iter.bi_size;
2239        struct extent_map *em;
2240        int ret = 0;
2241        struct btrfs_io_geometry geom;
2242
2243        if (bio_flags & EXTENT_BIO_COMPRESSED)
2244                return 0;
2245
2246        em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
2247        if (IS_ERR(em))
2248                return PTR_ERR(em);
2249        ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), logical, &geom);
2250        if (ret < 0)
2251                goto out;
2252
2253        if (geom.len < bio_len + size)
2254                ret = 1;
2255out:
2256        free_extent_map(em);
2257        return ret;
2258}
2259
2260/*
2261 * in order to insert checksums into the metadata in large chunks,
2262 * we wait until bio submission time.   All the pages in the bio are
2263 * checksummed and sums are attached onto the ordered extent record.
2264 *
2265 * At IO completion time the cums attached on the ordered extent record
2266 * are inserted into the btree
2267 */
2268static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
2269                                           u64 dio_file_offset)
2270{
2271        return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2272}
2273
2274/*
2275 * Split an extent_map at [start, start + len]
2276 *
2277 * This function is intended to be used only for extract_ordered_extent().
2278 */
2279static int split_zoned_em(struct btrfs_inode *inode, u64 start, u64 len,
2280                          u64 pre, u64 post)
2281{
2282        struct extent_map_tree *em_tree = &inode->extent_tree;
2283        struct extent_map *em;
2284        struct extent_map *split_pre = NULL;
2285        struct extent_map *split_mid = NULL;
2286        struct extent_map *split_post = NULL;
2287        int ret = 0;
2288        int modified;
2289        unsigned long flags;
2290
2291        /* Sanity check */
2292        if (pre == 0 && post == 0)
2293                return 0;
2294
2295        split_pre = alloc_extent_map();
2296        if (pre)
2297                split_mid = alloc_extent_map();
2298        if (post)
2299                split_post = alloc_extent_map();
2300        if (!split_pre || (pre && !split_mid) || (post && !split_post)) {
2301                ret = -ENOMEM;
2302                goto out;
2303        }
2304
2305        ASSERT(pre + post < len);
2306
2307        lock_extent(&inode->io_tree, start, start + len - 1);
2308        write_lock(&em_tree->lock);
2309        em = lookup_extent_mapping(em_tree, start, len);
2310        if (!em) {
2311                ret = -EIO;
2312                goto out_unlock;
2313        }
2314
2315        ASSERT(em->len == len);
2316        ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
2317        ASSERT(em->block_start < EXTENT_MAP_LAST_BYTE);
2318
2319        flags = em->flags;
2320        clear_bit(EXTENT_FLAG_PINNED, &em->flags);
2321        clear_bit(EXTENT_FLAG_LOGGING, &flags);
2322        modified = !list_empty(&em->list);
2323
2324        /* First, replace the em with a new extent_map starting from * em->start */
2325        split_pre->start = em->start;
2326        split_pre->len = (pre ? pre : em->len - post);
2327        split_pre->orig_start = split_pre->start;
2328        split_pre->block_start = em->block_start;
2329        split_pre->block_len = split_pre->len;
2330        split_pre->orig_block_len = split_pre->block_len;
2331        split_pre->ram_bytes = split_pre->len;
2332        split_pre->flags = flags;
2333        split_pre->compress_type = em->compress_type;
2334        split_pre->generation = em->generation;
2335
2336        replace_extent_mapping(em_tree, em, split_pre, modified);
2337
2338        /*
2339         * Now we only have an extent_map at:
2340         *     [em->start, em->start + pre] if pre != 0
2341         *     [em->start, em->start + em->len - post] if pre == 0
2342         */
2343
2344        if (pre) {
2345                /* Insert the middle extent_map */
2346                split_mid->start = em->start + pre;
2347                split_mid->len = em->len - pre - post;
2348                split_mid->orig_start = split_mid->start;
2349                split_mid->block_start = em->block_start + pre;
2350                split_mid->block_len = split_mid->len;
2351                split_mid->orig_block_len = split_mid->block_len;
2352                split_mid->ram_bytes = split_mid->len;
2353                split_mid->flags = flags;
2354                split_mid->compress_type = em->compress_type;
2355                split_mid->generation = em->generation;
2356                add_extent_mapping(em_tree, split_mid, modified);
2357        }
2358
2359        if (post) {
2360                split_post->start = em->start + em->len - post;
2361                split_post->len = post;
2362                split_post->orig_start = split_post->start;
2363                split_post->block_start = em->block_start + em->len - post;
2364                split_post->block_len = split_post->len;
2365                split_post->orig_block_len = split_post->block_len;
2366                split_post->ram_bytes = split_post->len;
2367                split_post->flags = flags;
2368                split_post->compress_type = em->compress_type;
2369                split_post->generation = em->generation;
2370                add_extent_mapping(em_tree, split_post, modified);
2371        }
2372
2373        /* Once for us */
2374        free_extent_map(em);
2375        /* Once for the tree */
2376        free_extent_map(em);
2377
2378out_unlock:
2379        write_unlock(&em_tree->lock);
2380        unlock_extent(&inode->io_tree, start, start + len - 1);
2381out:
2382        free_extent_map(split_pre);
2383        free_extent_map(split_mid);
2384        free_extent_map(split_post);
2385
2386        return ret;
2387}
2388
2389static blk_status_t extract_ordered_extent(struct btrfs_inode *inode,
2390                                           struct bio *bio, loff_t file_offset)
2391{
2392        struct btrfs_ordered_extent *ordered;
2393        u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT;
2394        u64 file_len;
2395        u64 len = bio->bi_iter.bi_size;
2396        u64 end = start + len;
2397        u64 ordered_end;
2398        u64 pre, post;
2399        int ret = 0;
2400
2401        ordered = btrfs_lookup_ordered_extent(inode, file_offset);
2402        if (WARN_ON_ONCE(!ordered))
2403                return BLK_STS_IOERR;
2404
2405        /* No need to split */
2406        if (ordered->disk_num_bytes == len)
2407                goto out;
2408
2409        /* We cannot split once end_bio'd ordered extent */
2410        if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) {
2411                ret = -EINVAL;
2412                goto out;
2413        }
2414
2415        /* We cannot split a compressed ordered extent */
2416        if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) {
2417                ret = -EINVAL;
2418                goto out;
2419        }
2420
2421        ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes;
2422        /* bio must be in one ordered extent */
2423        if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) {
2424                ret = -EINVAL;
2425                goto out;
2426        }
2427
2428        /* Checksum list should be empty */
2429        if (WARN_ON_ONCE(!list_empty(&ordered->list))) {
2430                ret = -EINVAL;
2431                goto out;
2432        }
2433
2434        file_len = ordered->num_bytes;
2435        pre = start - ordered->disk_bytenr;
2436        post = ordered_end - end;
2437
2438        ret = btrfs_split_ordered_extent(ordered, pre, post);
2439        if (ret)
2440                goto out;
2441        ret = split_zoned_em(inode, file_offset, file_len, pre, post);
2442
2443out:
2444        btrfs_put_ordered_extent(ordered);
2445
2446        return errno_to_blk_status(ret);
2447}
2448
2449/*
2450 * extent_io.c submission hook. This does the right thing for csum calculation
2451 * on write, or reading the csums from the tree before a read.
2452 *
2453 * Rules about async/sync submit,
2454 * a) read:                             sync submit
2455 *
2456 * b) write without checksum:           sync submit
2457 *
2458 * c) write with checksum:
2459 *    c-1) if bio is issued by fsync:   sync submit
2460 *         (sync_writers != 0)
2461 *
2462 *    c-2) if root is reloc root:       sync submit
2463 *         (only in case of buffered IO)
2464 *
2465 *    c-3) otherwise:                   async submit
2466 */
2467blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
2468                                   int mirror_num, unsigned long bio_flags)
2469
2470{
2471        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2472        struct btrfs_root *root = BTRFS_I(inode)->root;
2473        enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2474        blk_status_t ret = 0;
2475        int skip_sum;
2476        int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2477
2478        skip_sum = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) ||
2479                   !fs_info->csum_root;
2480
2481        if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2482                metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2483
2484        if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
2485                struct page *page = bio_first_bvec_all(bio)->bv_page;
2486                loff_t file_offset = page_offset(page);
2487
2488                ret = extract_ordered_extent(BTRFS_I(inode), bio, file_offset);
2489                if (ret)
2490                        goto out;
2491        }
2492
2493        if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
2494                ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2495                if (ret)
2496                        goto out;
2497
2498                if (bio_flags & EXTENT_BIO_COMPRESSED) {
2499                        ret = btrfs_submit_compressed_read(inode, bio,
2500                                                           mirror_num,
2501                                                           bio_flags);
2502                        goto out;
2503                } else {
2504                        /*
2505                         * Lookup bio sums does extra checks around whether we
2506                         * need to csum or not, which is why we ignore skip_sum
2507                         * here.
2508                         */
2509                        ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2510                        if (ret)
2511                                goto out;
2512                }
2513                goto mapit;
2514        } else if (async && !skip_sum) {
2515                /* csum items have already been cloned */
2516                if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2517                        goto mapit;
2518                /* we're doing a write, do the async checksumming */
2519                ret = btrfs_wq_submit_bio(inode, bio, mirror_num, bio_flags,
2520                                          0, btrfs_submit_bio_start);
2521                goto out;
2522        } else if (!skip_sum) {
2523                ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2524                if (ret)
2525                        goto out;
2526        }
2527
2528mapit:
2529        ret = btrfs_map_bio(fs_info, bio, mirror_num);
2530
2531out:
2532        if (ret) {
2533                bio->bi_status = ret;
2534                bio_endio(bio);
2535        }
2536        return ret;
2537}
2538
2539/*
2540 * given a list of ordered sums record them in the inode.  This happens
2541 * at IO completion time based on sums calculated at bio submission time.
2542 */
2543static int add_pending_csums(struct btrfs_trans_handle *trans,
2544                             struct list_head *list)
2545{
2546        struct btrfs_ordered_sum *sum;
2547        int ret;
2548
2549        list_for_each_entry(sum, list, list) {
2550                trans->adding_csums = true;
2551                ret = btrfs_csum_file_blocks(trans, trans->fs_info->csum_root, sum);
2552                trans->adding_csums = false;
2553                if (ret)
2554                        return ret;
2555        }
2556        return 0;
2557}
2558
2559static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2560                                         const u64 start,
2561                                         const u64 len,
2562                                         struct extent_state **cached_state)
2563{
2564        u64 search_start = start;
2565        const u64 end = start + len - 1;
2566
2567        while (search_start < end) {
2568                const u64 search_len = end - search_start + 1;
2569                struct extent_map *em;
2570                u64 em_len;
2571                int ret = 0;
2572
2573                em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2574                if (IS_ERR(em))
2575                        return PTR_ERR(em);
2576
2577                if (em->block_start != EXTENT_MAP_HOLE)
2578                        goto next;
2579
2580                em_len = em->len;
2581                if (em->start < search_start)
2582                        em_len -= search_start - em->start;
2583                if (em_len > search_len)
2584                        em_len = search_len;
2585
2586                ret = set_extent_bit(&inode->io_tree, search_start,
2587                                     search_start + em_len - 1,
2588                                     EXTENT_DELALLOC_NEW, 0, NULL, cached_state,
2589                                     GFP_NOFS, NULL);
2590next:
2591                search_start = extent_map_end(em);
2592                free_extent_map(em);
2593                if (ret)
2594                        return ret;
2595        }
2596        return 0;
2597}
2598
2599int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2600                              unsigned int extra_bits,
2601                              struct extent_state **cached_state)
2602{
2603        WARN_ON(PAGE_ALIGNED(end));
2604
2605        if (start >= i_size_read(&inode->vfs_inode) &&
2606            !(inode->flags & BTRFS_INODE_PREALLOC)) {
2607                /*
2608                 * There can't be any extents following eof in this case so just
2609                 * set the delalloc new bit for the range directly.
2610                 */
2611                extra_bits |= EXTENT_DELALLOC_NEW;
2612        } else {
2613                int ret;
2614
2615                ret = btrfs_find_new_delalloc_bytes(inode, start,
2616                                                    end + 1 - start,
2617                                                    cached_state);
2618                if (ret)
2619                        return ret;
2620        }
2621
2622        return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2623                                   cached_state);
2624}
2625
2626/* see btrfs_writepage_start_hook for details on why this is required */
2627struct btrfs_writepage_fixup {
2628        struct page *page;
2629        struct inode *inode;
2630        struct btrfs_work work;
2631};
2632
2633static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2634{
2635        struct btrfs_writepage_fixup *fixup;
2636        struct btrfs_ordered_extent *ordered;
2637        struct extent_state *cached_state = NULL;
2638        struct extent_changeset *data_reserved = NULL;
2639        struct page *page;
2640        struct btrfs_inode *inode;
2641        u64 page_start;
2642        u64 page_end;
2643        int ret = 0;
2644        bool free_delalloc_space = true;
2645
2646        fixup = container_of(work, struct btrfs_writepage_fixup, work);
2647        page = fixup->page;
2648        inode = BTRFS_I(fixup->inode);
2649        page_start = page_offset(page);
2650        page_end = page_offset(page) + PAGE_SIZE - 1;
2651
2652        /*
2653         * This is similar to page_mkwrite, we need to reserve the space before
2654         * we take the page lock.
2655         */
2656        ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2657                                           PAGE_SIZE);
2658again:
2659        lock_page(page);
2660
2661        /*
2662         * Before we queued this fixup, we took a reference on the page.
2663         * page->mapping may go NULL, but it shouldn't be moved to a different
2664         * address space.
2665         */
2666        if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2667                /*
2668                 * Unfortunately this is a little tricky, either
2669                 *
2670                 * 1) We got here and our page had already been dealt with and
2671                 *    we reserved our space, thus ret == 0, so we need to just
2672                 *    drop our space reservation and bail.  This can happen the
2673                 *    first time we come into the fixup worker, or could happen
2674                 *    while waiting for the ordered extent.
2675                 * 2) Our page was already dealt with, but we happened to get an
2676                 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2677                 *    this case we obviously don't have anything to release, but
2678                 *    because the page was already dealt with we don't want to
2679                 *    mark the page with an error, so make sure we're resetting
2680                 *    ret to 0.  This is why we have this check _before_ the ret
2681                 *    check, because we do not want to have a surprise ENOSPC
2682                 *    when the page was already properly dealt with.
2683                 */
2684                if (!ret) {
2685                        btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2686                        btrfs_delalloc_release_space(inode, data_reserved,
2687                                                     page_start, PAGE_SIZE,
2688                                                     true);
2689                }
2690                ret = 0;
2691                goto out_page;
2692        }
2693
2694        /*
2695         * We can't mess with the page state unless it is locked, so now that
2696         * it is locked bail if we failed to make our space reservation.
2697         */
2698        if (ret)
2699                goto out_page;
2700
2701        lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
2702
2703        /* already ordered? We're done */
2704        if (PageOrdered(page))
2705                goto out_reserved;
2706
2707        ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2708        if (ordered) {
2709                unlock_extent_cached(&inode->io_tree, page_start, page_end,
2710                                     &cached_state);
2711                unlock_page(page);
2712                btrfs_start_ordered_extent(ordered, 1);
2713                btrfs_put_ordered_extent(ordered);
2714                goto again;
2715        }
2716
2717        ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2718                                        &cached_state);
2719        if (ret)
2720                goto out_reserved;
2721
2722        /*
2723         * Everything went as planned, we're now the owner of a dirty page with
2724         * delayed allocation bits set and space reserved for our COW
2725         * destination.
2726         *
2727         * The page was dirty when we started, nothing should have cleaned it.
2728         */
2729        BUG_ON(!PageDirty(page));
2730        free_delalloc_space = false;
2731out_reserved:
2732        btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2733        if (free_delalloc_space)
2734                btrfs_delalloc_release_space(inode, data_reserved, page_start,
2735                                             PAGE_SIZE, true);
2736        unlock_extent_cached(&inode->io_tree, page_start, page_end,
2737                             &cached_state);
2738out_page:
2739        if (ret) {
2740                /*
2741                 * We hit ENOSPC or other errors.  Update the mapping and page
2742                 * to reflect the errors and clean the page.
2743                 */
2744                mapping_set_error(page->mapping, ret);
2745                end_extent_writepage(page, ret, page_start, page_end);
2746                clear_page_dirty_for_io(page);
2747                SetPageError(page);
2748        }
2749        ClearPageChecked(page);
2750        unlock_page(page);
2751        put_page(page);
2752        kfree(fixup);
2753        extent_changeset_free(data_reserved);
2754        /*
2755         * As a precaution, do a delayed iput in case it would be the last iput
2756         * that could need flushing space. Recursing back to fixup worker would
2757         * deadlock.
2758         */
2759        btrfs_add_delayed_iput(&inode->vfs_inode);
2760}
2761
2762/*
2763 * There are a few paths in the higher layers of the kernel that directly
2764 * set the page dirty bit without asking the filesystem if it is a
2765 * good idea.  This causes problems because we want to make sure COW
2766 * properly happens and the data=ordered rules are followed.
2767 *
2768 * In our case any range that doesn't have the ORDERED bit set
2769 * hasn't been properly setup for IO.  We kick off an async process
2770 * to fix it up.  The async helper will wait for ordered extents, set
2771 * the delalloc bit and make it safe to write the page.
2772 */
2773int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2774{
2775        struct inode *inode = page->mapping->host;
2776        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2777        struct btrfs_writepage_fixup *fixup;
2778
2779        /* This page has ordered extent covering it already */
2780        if (PageOrdered(page))
2781                return 0;
2782
2783        /*
2784         * PageChecked is set below when we create a fixup worker for this page,
2785         * don't try to create another one if we're already PageChecked()
2786         *
2787         * The extent_io writepage code will redirty the page if we send back
2788         * EAGAIN.
2789         */
2790        if (PageChecked(page))
2791                return -EAGAIN;
2792
2793        fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2794        if (!fixup)
2795                return -EAGAIN;
2796
2797        /*
2798         * We are already holding a reference to this inode from
2799         * write_cache_pages.  We need to hold it because the space reservation
2800         * takes place outside of the page lock, and we can't trust
2801         * page->mapping outside of the page lock.
2802         */
2803        ihold(inode);
2804        SetPageChecked(page);
2805        get_page(page);
2806        btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2807        fixup->page = page;
2808        fixup->inode = inode;
2809        btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2810
2811        return -EAGAIN;
2812}
2813
2814static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2815                                       struct btrfs_inode *inode, u64 file_pos,
2816                                       struct btrfs_file_extent_item *stack_fi,
2817                                       const bool update_inode_bytes,
2818                                       u64 qgroup_reserved)
2819{
2820        struct btrfs_root *root = inode->root;
2821        const u64 sectorsize = root->fs_info->sectorsize;
2822        struct btrfs_path *path;
2823        struct extent_buffer *leaf;
2824        struct btrfs_key ins;
2825        u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2826        u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2827        u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2828        u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2829        struct btrfs_drop_extents_args drop_args = { 0 };
2830        int ret;
2831
2832        path = btrfs_alloc_path();
2833        if (!path)
2834                return -ENOMEM;
2835
2836        /*
2837         * we may be replacing one extent in the tree with another.
2838         * The new extent is pinned in the extent map, and we don't want
2839         * to drop it from the cache until it is completely in the btree.
2840         *
2841         * So, tell btrfs_drop_extents to leave this extent in the cache.
2842         * the caller is expected to unpin it and allow it to be merged
2843         * with the others.
2844         */
2845        drop_args.path = path;
2846        drop_args.start = file_pos;
2847        drop_args.end = file_pos + num_bytes;
2848        drop_args.replace_extent = true;
2849        drop_args.extent_item_size = sizeof(*stack_fi);
2850        ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2851        if (ret)
2852                goto out;
2853
2854        if (!drop_args.extent_inserted) {
2855                ins.objectid = btrfs_ino(inode);
2856                ins.offset = file_pos;
2857                ins.type = BTRFS_EXTENT_DATA_KEY;
2858
2859                ret = btrfs_insert_empty_item(trans, root, path, &ins,
2860                                              sizeof(*stack_fi));
2861                if (ret)
2862                        goto out;
2863        }
2864        leaf = path->nodes[0];
2865        btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2866        write_extent_buffer(leaf, stack_fi,
2867                        btrfs_item_ptr_offset(leaf, path->slots[0]),
2868                        sizeof(struct btrfs_file_extent_item));
2869
2870        btrfs_mark_buffer_dirty(leaf);
2871        btrfs_release_path(path);
2872
2873        /*
2874         * If we dropped an inline extent here, we know the range where it is
2875         * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2876         * number of bytes only for that range containing the inline extent.
2877         * The remaining of the range will be processed when clearning the
2878         * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2879         */
2880        if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2881                u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2882
2883                inline_size = drop_args.bytes_found - inline_size;
2884                btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2885                drop_args.bytes_found -= inline_size;
2886                num_bytes -= sectorsize;
2887        }
2888
2889        if (update_inode_bytes)
2890                btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2891
2892        ins.objectid = disk_bytenr;
2893        ins.offset = disk_num_bytes;
2894        ins.type = BTRFS_EXTENT_ITEM_KEY;
2895
2896        ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2897        if (ret)
2898                goto out;
2899
2900        ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2901                                               file_pos, qgroup_reserved, &ins);
2902out:
2903        btrfs_free_path(path);
2904
2905        return ret;
2906}
2907
2908static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2909                                         u64 start, u64 len)
2910{
2911        struct btrfs_block_group *cache;
2912
2913        cache = btrfs_lookup_block_group(fs_info, start);
2914        ASSERT(cache);
2915
2916        spin_lock(&cache->lock);
2917        cache->delalloc_bytes -= len;
2918        spin_unlock(&cache->lock);
2919
2920        btrfs_put_block_group(cache);
2921}
2922
2923static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2924                                             struct btrfs_ordered_extent *oe)
2925{
2926        struct btrfs_file_extent_item stack_fi;
2927        u64 logical_len;
2928        bool update_inode_bytes;
2929
2930        memset(&stack_fi, 0, sizeof(stack_fi));
2931        btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2932        btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2933        btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2934                                                   oe->disk_num_bytes);
2935        if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
2936                logical_len = oe->truncated_len;
2937        else
2938                logical_len = oe->num_bytes;
2939        btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len);
2940        btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len);
2941        btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2942        /* Encryption and other encoding is reserved and all 0 */
2943
2944        /*
2945         * For delalloc, when completing an ordered extent we update the inode's
2946         * bytes when clearing the range in the inode's io tree, so pass false
2947         * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
2948         * except if the ordered extent was truncated.
2949         */
2950        update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
2951                             test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
2952
2953        return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
2954                                           oe->file_offset, &stack_fi,
2955                                           update_inode_bytes, oe->qgroup_rsv);
2956}
2957
2958/*
2959 * As ordered data IO finishes, this gets called so we can finish
2960 * an ordered extent if the range of bytes in the file it covers are
2961 * fully written.
2962 */
2963static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2964{
2965        struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
2966        struct btrfs_root *root = inode->root;
2967        struct btrfs_fs_info *fs_info = root->fs_info;
2968        struct btrfs_trans_handle *trans = NULL;
2969        struct extent_io_tree *io_tree = &inode->io_tree;
2970        struct extent_state *cached_state = NULL;
2971        u64 start, end;
2972        int compress_type = 0;
2973        int ret = 0;
2974        u64 logical_len = ordered_extent->num_bytes;
2975        bool freespace_inode;
2976        bool truncated = false;
2977        bool clear_reserved_extent = true;
2978        unsigned int clear_bits = EXTENT_DEFRAG;
2979
2980        start = ordered_extent->file_offset;
2981        end = start + ordered_extent->num_bytes - 1;
2982
2983        if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2984            !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2985            !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2986                clear_bits |= EXTENT_DELALLOC_NEW;
2987
2988        freespace_inode = btrfs_is_free_space_inode(inode);
2989
2990        if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2991                ret = -EIO;
2992                goto out;
2993        }
2994
2995        if (ordered_extent->bdev)
2996                btrfs_rewrite_logical_zoned(ordered_extent);
2997
2998        btrfs_free_io_failure_record(inode, start, end);
2999
3000        if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3001                truncated = true;
3002                logical_len = ordered_extent->truncated_len;
3003                /* Truncated the entire extent, don't bother adding */
3004                if (!logical_len)
3005                        goto out;
3006        }
3007
3008        if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3009                BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3010
3011                btrfs_inode_safe_disk_i_size_write(inode, 0);
3012                if (freespace_inode)
3013                        trans = btrfs_join_transaction_spacecache(root);
3014                else
3015                        trans = btrfs_join_transaction(root);
3016                if (IS_ERR(trans)) {
3017                        ret = PTR_ERR(trans);
3018                        trans = NULL;
3019                        goto out;
3020                }
3021                trans->block_rsv = &inode->block_rsv;
3022                ret = btrfs_update_inode_fallback(trans, root, inode);
3023                if (ret) /* -ENOMEM or corruption */
3024                        btrfs_abort_transaction(trans, ret);
3025                goto out;
3026        }
3027
3028        clear_bits |= EXTENT_LOCKED;
3029        lock_extent_bits(io_tree, start, end, &cached_state);
3030
3031        if (freespace_inode)
3032                trans = btrfs_join_transaction_spacecache(root);
3033        else
3034                trans = btrfs_join_transaction(root);
3035        if (IS_ERR(trans)) {
3036                ret = PTR_ERR(trans);
3037                trans = NULL;
3038                goto out;
3039        }
3040
3041        trans->block_rsv = &inode->block_rsv;
3042
3043        if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3044                compress_type = ordered_extent->compress_type;
3045        if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3046                BUG_ON(compress_type);
3047                ret = btrfs_mark_extent_written(trans, inode,
3048                                                ordered_extent->file_offset,
3049                                                ordered_extent->file_offset +
3050                                                logical_len);
3051        } else {
3052                BUG_ON(root == fs_info->tree_root);
3053                ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3054                if (!ret) {
3055                        clear_reserved_extent = false;
3056                        btrfs_release_delalloc_bytes(fs_info,
3057                                                ordered_extent->disk_bytenr,
3058                                                ordered_extent->disk_num_bytes);
3059                }
3060        }
3061        unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
3062                           ordered_extent->num_bytes, trans->transid);
3063        if (ret < 0) {
3064                btrfs_abort_transaction(trans, ret);
3065                goto out;
3066        }
3067
3068        ret = add_pending_csums(trans, &ordered_extent->list);
3069        if (ret) {
3070                btrfs_abort_transaction(trans, ret);
3071                goto out;
3072        }
3073
3074        /*
3075         * If this is a new delalloc range, clear its new delalloc flag to
3076         * update the inode's number of bytes. This needs to be done first
3077         * before updating the inode item.
3078         */
3079        if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3080            !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3081                clear_extent_bit(&inode->io_tree, start, end,
3082                                 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3083                                 0, 0, &cached_state);
3084
3085        btrfs_inode_safe_disk_i_size_write(inode, 0);
3086        ret = btrfs_update_inode_fallback(trans, root, inode);
3087        if (ret) { /* -ENOMEM or corruption */
3088                btrfs_abort_transaction(trans, ret);
3089                goto out;
3090        }
3091        ret = 0;
3092out:
3093        clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3094                         (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
3095                         &cached_state);
3096
3097        if (trans)
3098                btrfs_end_transaction(trans);
3099
3100        if (ret || truncated) {
3101                u64 unwritten_start = start;
3102
3103                /*
3104                 * If we failed to finish this ordered extent for any reason we
3105                 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3106                 * extent, and mark the inode with the error if it wasn't
3107                 * already set.  Any error during writeback would have already
3108                 * set the mapping error, so we need to set it if we're the ones
3109                 * marking this ordered extent as failed.
3110                 */
3111                if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3112                                             &ordered_extent->flags))
3113                        mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3114
3115                if (truncated)
3116                        unwritten_start += logical_len;
3117                clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3118
3119                /* Drop the cache for the part of the extent we didn't write. */
3120                btrfs_drop_extent_cache(inode, unwritten_start, end, 0);
3121
3122                /*
3123                 * If the ordered extent had an IOERR or something else went
3124                 * wrong we need to return the space for this ordered extent
3125                 * back to the allocator.  We only free the extent in the
3126                 * truncated case if we didn't write out the extent at all.
3127                 *
3128                 * If we made it past insert_reserved_file_extent before we
3129                 * errored out then we don't need to do this as the accounting
3130                 * has already been done.
3131                 */
3132                if ((ret || !logical_len) &&
3133                    clear_reserved_extent &&
3134                    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3135                    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3136                        /*
3137                         * Discard the range before returning it back to the
3138                         * free space pool
3139                         */
3140                        if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3141                                btrfs_discard_extent(fs_info,
3142                                                ordered_extent->disk_bytenr,
3143                                                ordered_extent->disk_num_bytes,
3144                                                NULL);
3145                        btrfs_free_reserved_extent(fs_info,
3146                                        ordered_extent->disk_bytenr,
3147                                        ordered_extent->disk_num_bytes, 1);
3148                }
3149        }
3150
3151        /*
3152         * This needs to be done to make sure anybody waiting knows we are done
3153         * updating everything for this ordered extent.
3154         */
3155        btrfs_remove_ordered_extent(inode, ordered_extent);
3156
3157        /* once for us */
3158        btrfs_put_ordered_extent(ordered_extent);
3159        /* once for the tree */
3160        btrfs_put_ordered_extent(ordered_extent);
3161
3162        return ret;
3163}
3164
3165static void finish_ordered_fn(struct btrfs_work *work)
3166{
3167        struct btrfs_ordered_extent *ordered_extent;
3168        ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3169        btrfs_finish_ordered_io(ordered_extent);
3170}
3171
3172void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3173                                          struct page *page, u64 start,
3174                                          u64 end, int uptodate)
3175{
3176        trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate);
3177
3178        btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start,
3179                                       finish_ordered_fn, uptodate);
3180}
3181
3182/*
3183 * check_data_csum - verify checksum of one sector of uncompressed data
3184 * @inode:      inode
3185 * @io_bio:     btrfs_io_bio which contains the csum
3186 * @bio_offset: offset to the beginning of the bio (in bytes)
3187 * @page:       page where is the data to be verified
3188 * @pgoff:      offset inside the page
3189 * @start:      logical offset in the file
3190 *
3191 * The length of such check is always one sector size.
3192 */
3193static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio,
3194                           u32 bio_offset, struct page *page, u32 pgoff,
3195                           u64 start)
3196{
3197        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3198        SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3199        char *kaddr;
3200        u32 len = fs_info->sectorsize;
3201        const u32 csum_size = fs_info->csum_size;
3202        unsigned int offset_sectors;
3203        u8 *csum_expected;
3204        u8 csum[BTRFS_CSUM_SIZE];
3205
3206        ASSERT(pgoff + len <= PAGE_SIZE);
3207
3208        offset_sectors = bio_offset >> fs_info->sectorsize_bits;
3209        csum_expected = ((u8 *)io_bio->csum) + offset_sectors * csum_size;
3210
3211        kaddr = kmap_atomic(page);
3212        shash->tfm = fs_info->csum_shash;
3213
3214        crypto_shash_digest(shash, kaddr + pgoff, len, csum);
3215
3216        if (memcmp(csum, csum_expected, csum_size))
3217                goto zeroit;
3218
3219        kunmap_atomic(kaddr);
3220        return 0;
3221zeroit:
3222        btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3223                                    io_bio->mirror_num);
3224        if (io_bio->device)
3225                btrfs_dev_stat_inc_and_print(io_bio->device,
3226                                             BTRFS_DEV_STAT_CORRUPTION_ERRS);
3227        memset(kaddr + pgoff, 1, len);
3228        flush_dcache_page(page);
3229        kunmap_atomic(kaddr);
3230        return -EIO;
3231}
3232
3233/*
3234 * When reads are done, we need to check csums to verify the data is correct.
3235 * if there's a match, we allow the bio to finish.  If not, the code in
3236 * extent_io.c will try to find good copies for us.
3237 *
3238 * @bio_offset: offset to the beginning of the bio (in bytes)
3239 * @start:      file offset of the range start
3240 * @end:        file offset of the range end (inclusive)
3241 *
3242 * Return a bitmap where bit set means a csum mismatch, and bit not set means
3243 * csum match.
3244 */
3245unsigned int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u32 bio_offset,
3246                                    struct page *page, u64 start, u64 end)
3247{
3248        struct inode *inode = page->mapping->host;
3249        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3250        struct btrfs_root *root = BTRFS_I(inode)->root;
3251        const u32 sectorsize = root->fs_info->sectorsize;
3252        u32 pg_off;
3253        unsigned int result = 0;
3254
3255        if (PageChecked(page)) {
3256                ClearPageChecked(page);
3257                return 0;
3258        }
3259
3260        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3261                return 0;
3262
3263        if (!root->fs_info->csum_root)
3264                return 0;
3265
3266        if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3267            test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3268                clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3269                return 0;
3270        }
3271
3272        ASSERT(page_offset(page) <= start &&
3273               end <= page_offset(page) + PAGE_SIZE - 1);
3274        for (pg_off = offset_in_page(start);
3275             pg_off < offset_in_page(end);
3276             pg_off += sectorsize, bio_offset += sectorsize) {
3277                int ret;
3278
3279                ret = check_data_csum(inode, io_bio, bio_offset, page, pg_off,
3280                                      page_offset(page) + pg_off);
3281                if (ret < 0) {
3282                        const int nr_bit = (pg_off - offset_in_page(start)) >>
3283                                     root->fs_info->sectorsize_bits;
3284
3285                        result |= (1U << nr_bit);
3286                }
3287        }
3288        return result;
3289}
3290
3291/*
3292 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3293 *
3294 * @inode: The inode we want to perform iput on
3295 *
3296 * This function uses the generic vfs_inode::i_count to track whether we should
3297 * just decrement it (in case it's > 1) or if this is the last iput then link
3298 * the inode to the delayed iput machinery. Delayed iputs are processed at
3299 * transaction commit time/superblock commit/cleaner kthread.
3300 */
3301void btrfs_add_delayed_iput(struct inode *inode)
3302{
3303        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3304        struct btrfs_inode *binode = BTRFS_I(inode);
3305
3306        if (atomic_add_unless(&inode->i_count, -1, 1))
3307                return;
3308
3309        atomic_inc(&fs_info->nr_delayed_iputs);
3310        spin_lock(&fs_info->delayed_iput_lock);
3311        ASSERT(list_empty(&binode->delayed_iput));
3312        list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3313        spin_unlock(&fs_info->delayed_iput_lock);
3314        if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3315                wake_up_process(fs_info->cleaner_kthread);
3316}
3317
3318static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3319                                    struct btrfs_inode *inode)
3320{
3321        list_del_init(&inode->delayed_iput);
3322        spin_unlock(&fs_info->delayed_iput_lock);
3323        iput(&inode->vfs_inode);
3324        if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3325                wake_up(&fs_info->delayed_iputs_wait);
3326        spin_lock(&fs_info->delayed_iput_lock);
3327}
3328
3329static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3330                                   struct btrfs_inode *inode)
3331{
3332        if (!list_empty(&inode->delayed_iput)) {
3333                spin_lock(&fs_info->delayed_iput_lock);
3334                if (!list_empty(&inode->delayed_iput))
3335                        run_delayed_iput_locked(fs_info, inode);
3336                spin_unlock(&fs_info->delayed_iput_lock);
3337        }
3338}
3339
3340void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3341{
3342
3343        spin_lock(&fs_info->delayed_iput_lock);
3344        while (!list_empty(&fs_info->delayed_iputs)) {
3345                struct btrfs_inode *inode;
3346
3347                inode = list_first_entry(&fs_info->delayed_iputs,
3348                                struct btrfs_inode, delayed_iput);
3349                run_delayed_iput_locked(fs_info, inode);
3350                cond_resched_lock(&fs_info->delayed_iput_lock);
3351        }
3352        spin_unlock(&fs_info->delayed_iput_lock);
3353}
3354
3355/**
3356 * Wait for flushing all delayed iputs
3357 *
3358 * @fs_info:  the filesystem
3359 *
3360 * This will wait on any delayed iputs that are currently running with KILLABLE
3361 * set.  Once they are all done running we will return, unless we are killed in
3362 * which case we return EINTR. This helps in user operations like fallocate etc
3363 * that might get blocked on the iputs.
3364 *
3365 * Return EINTR if we were killed, 0 if nothing's pending
3366 */
3367int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3368{
3369        int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3370                        atomic_read(&fs_info->nr_delayed_iputs) == 0);
3371        if (ret)
3372                return -EINTR;
3373        return 0;
3374}
3375
3376/*
3377 * This creates an orphan entry for the given inode in case something goes wrong
3378 * in the middle of an unlink.
3379 */
3380int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3381                     struct btrfs_inode *inode)
3382{
3383        int ret;
3384
3385        ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3386        if (ret && ret != -EEXIST) {
3387                btrfs_abort_transaction(trans, ret);
3388                return ret;
3389        }
3390
3391        return 0;
3392}
3393
3394/*
3395 * We have done the delete so we can go ahead and remove the orphan item for
3396 * this particular inode.
3397 */
3398static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3399                            struct btrfs_inode *inode)
3400{
3401        return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3402}
3403
3404/*
3405 * this cleans up any orphans that may be left on the list from the last use
3406 * of this root.
3407 */
3408int btrfs_orphan_cleanup(struct btrfs_root *root)
3409{
3410        struct btrfs_fs_info *fs_info = root->fs_info;
3411        struct btrfs_path *path;
3412        struct extent_buffer *leaf;
3413        struct btrfs_key key, found_key;
3414        struct btrfs_trans_handle *trans;
3415        struct inode *inode;
3416        u64 last_objectid = 0;
3417        int ret = 0, nr_unlink = 0;
3418
3419        if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3420                return 0;
3421
3422        path = btrfs_alloc_path();
3423        if (!path) {
3424                ret = -ENOMEM;
3425                goto out;
3426        }
3427        path->reada = READA_BACK;
3428
3429        key.objectid = BTRFS_ORPHAN_OBJECTID;
3430        key.type = BTRFS_ORPHAN_ITEM_KEY;
3431        key.offset = (u64)-1;
3432
3433        while (1) {
3434                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3435                if (ret < 0)
3436                        goto out;
3437
3438                /*
3439                 * if ret == 0 means we found what we were searching for, which
3440                 * is weird, but possible, so only screw with path if we didn't
3441                 * find the key and see if we have stuff that matches
3442                 */
3443                if (ret > 0) {
3444                        ret = 0;
3445                        if (path->slots[0] == 0)
3446                                break;
3447                        path->slots[0]--;
3448                }
3449
3450                /* pull out the item */
3451                leaf = path->nodes[0];
3452                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3453
3454                /* make sure the item matches what we want */
3455                if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3456                        break;
3457                if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3458                        break;
3459
3460                /* release the path since we're done with it */
3461                btrfs_release_path(path);
3462
3463                /*
3464                 * this is where we are basically btrfs_lookup, without the
3465                 * crossing root thing.  we store the inode number in the
3466                 * offset of the orphan item.
3467                 */
3468
3469                if (found_key.offset == last_objectid) {
3470                        btrfs_err(fs_info,
3471                                  "Error removing orphan entry, stopping orphan cleanup");
3472                        ret = -EINVAL;
3473                        goto out;
3474                }
3475
3476                last_objectid = found_key.offset;
3477
3478                found_key.objectid = found_key.offset;
3479                found_key.type = BTRFS_INODE_ITEM_KEY;
3480                found_key.offset = 0;
3481                inode = btrfs_iget(fs_info->sb, last_objectid, root);
3482                ret = PTR_ERR_OR_ZERO(inode);
3483                if (ret && ret != -ENOENT)
3484                        goto out;
3485
3486                if (ret == -ENOENT && root == fs_info->tree_root) {
3487                        struct btrfs_root *dead_root;
3488                        int is_dead_root = 0;
3489
3490                        /*
3491                         * This is an orphan in the tree root. Currently these
3492                         * could come from 2 sources:
3493                         *  a) a root (snapshot/subvolume) deletion in progress
3494                         *  b) a free space cache inode
3495                         * We need to distinguish those two, as the orphan item
3496                         * for a root must not get deleted before the deletion
3497                         * of the snapshot/subvolume's tree completes.
3498                         *
3499                         * btrfs_find_orphan_roots() ran before us, which has
3500                         * found all deleted roots and loaded them into
3501                         * fs_info->fs_roots_radix. So here we can find if an
3502                         * orphan item corresponds to a deleted root by looking
3503                         * up the root from that radix tree.
3504                         */
3505
3506                        spin_lock(&fs_info->fs_roots_radix_lock);
3507                        dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3508                                                         (unsigned long)found_key.objectid);
3509                        if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3510                                is_dead_root = 1;
3511                        spin_unlock(&fs_info->fs_roots_radix_lock);
3512
3513                        if (is_dead_root) {
3514                                /* prevent this orphan from being found again */
3515                                key.offset = found_key.objectid - 1;
3516                                continue;
3517                        }
3518
3519                }
3520
3521                /*
3522                 * If we have an inode with links, there are a couple of
3523                 * possibilities. Old kernels (before v3.12) used to create an
3524                 * orphan item for truncate indicating that there were possibly
3525                 * extent items past i_size that needed to be deleted. In v3.12,
3526                 * truncate was changed to update i_size in sync with the extent
3527                 * items, but the (useless) orphan item was still created. Since
3528                 * v4.18, we don't create the orphan item for truncate at all.
3529                 *
3530                 * So, this item could mean that we need to do a truncate, but
3531                 * only if this filesystem was last used on a pre-v3.12 kernel
3532                 * and was not cleanly unmounted. The odds of that are quite
3533                 * slim, and it's a pain to do the truncate now, so just delete
3534                 * the orphan item.
3535                 *
3536                 * It's also possible that this orphan item was supposed to be
3537                 * deleted but wasn't. The inode number may have been reused,
3538                 * but either way, we can delete the orphan item.
3539                 */
3540                if (ret == -ENOENT || inode->i_nlink) {
3541                        if (!ret)
3542                                iput(inode);
3543                        trans = btrfs_start_transaction(root, 1);
3544                        if (IS_ERR(trans)) {
3545                                ret = PTR_ERR(trans);
3546                                goto out;
3547                        }
3548                        btrfs_debug(fs_info, "auto deleting %Lu",
3549                                    found_key.objectid);
3550                        ret = btrfs_del_orphan_item(trans, root,
3551                                                    found_key.objectid);
3552                        btrfs_end_transaction(trans);
3553                        if (ret)
3554                                goto out;
3555                        continue;
3556                }
3557
3558                nr_unlink++;
3559
3560                /* this will do delete_inode and everything for us */
3561                iput(inode);
3562        }
3563        /* release the path since we're done with it */
3564        btrfs_release_path(path);
3565
3566        root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3567
3568        if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3569                trans = btrfs_join_transaction(root);
3570                if (!IS_ERR(trans))
3571                        btrfs_end_transaction(trans);
3572        }
3573
3574        if (nr_unlink)
3575                btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3576
3577out:
3578        if (ret)
3579                btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3580        btrfs_free_path(path);
3581        return ret;
3582}
3583
3584/*
3585 * very simple check to peek ahead in the leaf looking for xattrs.  If we
3586 * don't find any xattrs, we know there can't be any acls.
3587 *
3588 * slot is the slot the inode is in, objectid is the objectid of the inode
3589 */
3590static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3591                                          int slot, u64 objectid,
3592                                          int *first_xattr_slot)
3593{
3594        u32 nritems = btrfs_header_nritems(leaf);
3595        struct btrfs_key found_key;
3596        static u64 xattr_access = 0;
3597        static u64 xattr_default = 0;
3598        int scanned = 0;
3599
3600        if (!xattr_access) {
3601                xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3602                                        strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3603                xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3604                                        strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3605        }
3606
3607        slot++;
3608        *first_xattr_slot = -1;
3609        while (slot < nritems) {
3610                btrfs_item_key_to_cpu(leaf, &found_key, slot);
3611
3612                /* we found a different objectid, there must not be acls */
3613                if (found_key.objectid != objectid)
3614                        return 0;
3615
3616                /* we found an xattr, assume we've got an acl */
3617                if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3618                        if (*first_xattr_slot == -1)
3619                                *first_xattr_slot = slot;
3620                        if (found_key.offset == xattr_access ||
3621                            found_key.offset == xattr_default)
3622                                return 1;
3623                }
3624
3625                /*
3626                 * we found a key greater than an xattr key, there can't
3627                 * be any acls later on
3628                 */
3629                if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3630                        return 0;
3631
3632                slot++;
3633                scanned++;
3634
3635                /*
3636                 * it goes inode, inode backrefs, xattrs, extents,
3637                 * so if there are a ton of hard links to an inode there can
3638                 * be a lot of backrefs.  Don't waste time searching too hard,
3639                 * this is just an optimization
3640                 */
3641                if (scanned >= 8)
3642                        break;
3643        }
3644        /* we hit the end of the leaf before we found an xattr or
3645         * something larger than an xattr.  We have to assume the inode
3646         * has acls
3647         */
3648        if (*first_xattr_slot == -1)
3649                *first_xattr_slot = slot;
3650        return 1;
3651}
3652
3653/*
3654 * read an inode from the btree into the in-memory inode
3655 */
3656static int btrfs_read_locked_inode(struct inode *inode,
3657                                   struct btrfs_path *in_path)
3658{
3659        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3660        struct btrfs_path *path = in_path;
3661        struct extent_buffer *leaf;
3662        struct btrfs_inode_item *inode_item;
3663        struct btrfs_root *root = BTRFS_I(inode)->root;
3664        struct btrfs_key location;
3665        unsigned long ptr;
3666        int maybe_acls;
3667        u32 rdev;
3668        int ret;
3669        bool filled = false;
3670        int first_xattr_slot;
3671
3672        ret = btrfs_fill_inode(inode, &rdev);
3673        if (!ret)
3674                filled = true;
3675
3676        if (!path) {
3677                path = btrfs_alloc_path();
3678                if (!path)
3679                        return -ENOMEM;
3680        }
3681
3682        memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3683
3684        ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3685        if (ret) {
3686                if (path != in_path)
3687                        btrfs_free_path(path);
3688                return ret;
3689        }
3690
3691        leaf = path->nodes[0];
3692
3693        if (filled)
3694                goto cache_index;
3695
3696        inode_item = btrfs_item_ptr(leaf, path->slots[0],
3697                                    struct btrfs_inode_item);
3698        inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3699        set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3700        i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3701        i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3702        btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3703        btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3704                        round_up(i_size_read(inode), fs_info->sectorsize));
3705
3706        inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3707        inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3708
3709        inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3710        inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3711
3712        inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3713        inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3714
3715        BTRFS_I(inode)->i_otime.tv_sec =
3716                btrfs_timespec_sec(leaf, &inode_item->otime);
3717        BTRFS_I(inode)->i_otime.tv_nsec =
3718                btrfs_timespec_nsec(leaf, &inode_item->otime);
3719
3720        inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3721        BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3722        BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3723
3724        inode_set_iversion_queried(inode,
3725                                   btrfs_inode_sequence(leaf, inode_item));
3726        inode->i_generation = BTRFS_I(inode)->generation;
3727        inode->i_rdev = 0;
3728        rdev = btrfs_inode_rdev(leaf, inode_item);
3729
3730        BTRFS_I(inode)->index_cnt = (u64)-1;
3731        BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3732
3733cache_index:
3734        /*
3735         * If we were modified in the current generation and evicted from memory
3736         * and then re-read we need to do a full sync since we don't have any
3737         * idea about which extents were modified before we were evicted from
3738         * cache.
3739         *
3740         * This is required for both inode re-read from disk and delayed inode
3741         * in delayed_nodes_tree.
3742         */
3743        if (BTRFS_I(inode)->last_trans == fs_info->generation)
3744                set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3745                        &BTRFS_I(inode)->runtime_flags);
3746
3747        /*
3748         * We don't persist the id of the transaction where an unlink operation
3749         * against the inode was last made. So here we assume the inode might
3750         * have been evicted, and therefore the exact value of last_unlink_trans
3751         * lost, and set it to last_trans to avoid metadata inconsistencies
3752         * between the inode and its parent if the inode is fsync'ed and the log
3753         * replayed. For example, in the scenario:
3754         *
3755         * touch mydir/foo
3756         * ln mydir/foo mydir/bar
3757         * sync
3758         * unlink mydir/bar
3759         * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3760         * xfs_io -c fsync mydir/foo
3761         * <power failure>
3762         * mount fs, triggers fsync log replay
3763         *
3764         * We must make sure that when we fsync our inode foo we also log its
3765         * parent inode, otherwise after log replay the parent still has the
3766         * dentry with the "bar" name but our inode foo has a link count of 1
3767         * and doesn't have an inode ref with the name "bar" anymore.
3768         *
3769         * Setting last_unlink_trans to last_trans is a pessimistic approach,
3770         * but it guarantees correctness at the expense of occasional full
3771         * transaction commits on fsync if our inode is a directory, or if our
3772         * inode is not a directory, logging its parent unnecessarily.
3773         */
3774        BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3775
3776        /*
3777         * Same logic as for last_unlink_trans. We don't persist the generation
3778         * of the last transaction where this inode was used for a reflink
3779         * operation, so after eviction and reloading the inode we must be
3780         * pessimistic and assume the last transaction that modified the inode.
3781         */
3782        BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3783
3784        path->slots[0]++;
3785        if (inode->i_nlink != 1 ||
3786            path->slots[0] >= btrfs_header_nritems(leaf))
3787                goto cache_acl;
3788
3789        btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3790        if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3791                goto cache_acl;
3792
3793        ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3794        if (location.type == BTRFS_INODE_REF_KEY) {
3795                struct btrfs_inode_ref *ref;
3796
3797                ref = (struct btrfs_inode_ref *)ptr;
3798                BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3799        } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3800                struct btrfs_inode_extref *extref;
3801
3802                extref = (struct btrfs_inode_extref *)ptr;
3803                BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3804                                                                     extref);
3805        }
3806cache_acl:
3807        /*
3808         * try to precache a NULL acl entry for files that don't have
3809         * any xattrs or acls
3810         */
3811        maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3812                        btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3813        if (first_xattr_slot != -1) {
3814                path->slots[0] = first_xattr_slot;
3815                ret = btrfs_load_inode_props(inode, path);
3816                if (ret)
3817                        btrfs_err(fs_info,
3818                                  "error loading props for ino %llu (root %llu): %d",
3819                                  btrfs_ino(BTRFS_I(inode)),
3820                                  root->root_key.objectid, ret);
3821        }
3822        if (path != in_path)
3823                btrfs_free_path(path);
3824
3825        if (!maybe_acls)
3826                cache_no_acl(inode);
3827
3828        switch (inode->i_mode & S_IFMT) {
3829        case S_IFREG:
3830                inode->i_mapping->a_ops = &btrfs_aops;
3831                inode->i_fop = &btrfs_file_operations;
3832                inode->i_op = &btrfs_file_inode_operations;
3833                break;
3834        case S_IFDIR:
3835                inode->i_fop = &btrfs_dir_file_operations;
3836                inode->i_op = &btrfs_dir_inode_operations;
3837                break;
3838        case S_IFLNK:
3839                inode->i_op = &btrfs_symlink_inode_operations;
3840                inode_nohighmem(inode);
3841                inode->i_mapping->a_ops = &btrfs_aops;
3842                break;
3843        default:
3844                inode->i_op = &btrfs_special_inode_operations;
3845                init_special_inode(inode, inode->i_mode, rdev);
3846                break;
3847        }
3848
3849        btrfs_sync_inode_flags_to_i_flags(inode);
3850        return 0;
3851}
3852
3853/*
3854 * given a leaf and an inode, copy the inode fields into the leaf
3855 */
3856static void fill_inode_item(struct btrfs_trans_handle *trans,
3857                            struct extent_buffer *leaf,
3858                            struct btrfs_inode_item *item,
3859                            struct inode *inode)
3860{
3861        struct btrfs_map_token token;
3862
3863        btrfs_init_map_token(&token, leaf);
3864
3865        btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3866        btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3867        btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3868        btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3869        btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3870
3871        btrfs_set_token_timespec_sec(&token, &item->atime,
3872                                     inode->i_atime.tv_sec);
3873        btrfs_set_token_timespec_nsec(&token, &item->atime,
3874                                      inode->i_atime.tv_nsec);
3875
3876        btrfs_set_token_timespec_sec(&token, &item->mtime,
3877                                     inode->i_mtime.tv_sec);
3878        btrfs_set_token_timespec_nsec(&token, &item->mtime,
3879                                      inode->i_mtime.tv_nsec);
3880
3881        btrfs_set_token_timespec_sec(&token, &item->ctime,
3882                                     inode->i_ctime.tv_sec);
3883        btrfs_set_token_timespec_nsec(&token, &item->ctime,
3884                                      inode->i_ctime.tv_nsec);
3885
3886        btrfs_set_token_timespec_sec(&token, &item->otime,
3887                                     BTRFS_I(inode)->i_otime.tv_sec);
3888        btrfs_set_token_timespec_nsec(&token, &item->otime,
3889                                      BTRFS_I(inode)->i_otime.tv_nsec);
3890
3891        btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3892        btrfs_set_token_inode_generation(&token, item,
3893                                         BTRFS_I(inode)->generation);
3894        btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3895        btrfs_set_token_inode_transid(&token, item, trans->transid);
3896        btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3897        btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3898        btrfs_set_token_inode_block_group(&token, item, 0);
3899}
3900
3901/*
3902 * copy everything in the in-memory inode into the btree.
3903 */
3904static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3905                                struct btrfs_root *root,
3906                                struct btrfs_inode *inode)
3907{
3908        struct btrfs_inode_item *inode_item;
3909        struct btrfs_path *path;
3910        struct extent_buffer *leaf;
3911        int ret;
3912
3913        path = btrfs_alloc_path();
3914        if (!path)
3915                return -ENOMEM;
3916
3917        ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
3918        if (ret) {
3919                if (ret > 0)
3920                        ret = -ENOENT;
3921                goto failed;
3922        }
3923
3924        leaf = path->nodes[0];
3925        inode_item = btrfs_item_ptr(leaf, path->slots[0],
3926                                    struct btrfs_inode_item);
3927
3928        fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
3929        btrfs_mark_buffer_dirty(leaf);
3930        btrfs_set_inode_last_trans(trans, inode);
3931        ret = 0;
3932failed:
3933        btrfs_free_path(path);
3934        return ret;
3935}
3936
3937/*
3938 * copy everything in the in-memory inode into the btree.
3939 */
3940noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3941                                struct btrfs_root *root,
3942                                struct btrfs_inode *inode)
3943{
3944        struct btrfs_fs_info *fs_info = root->fs_info;
3945        int ret;
3946
3947        /*
3948         * If the inode is a free space inode, we can deadlock during commit
3949         * if we put it into the delayed code.
3950         *
3951         * The data relocation inode should also be directly updated
3952         * without delay
3953         */
3954        if (!btrfs_is_free_space_inode(inode)
3955            && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3956            && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3957                btrfs_update_root_times(trans, root);
3958
3959                ret = btrfs_delayed_update_inode(trans, root, inode);
3960                if (!ret)
3961                        btrfs_set_inode_last_trans(trans, inode);
3962                return ret;
3963        }
3964
3965        return btrfs_update_inode_item(trans, root, inode);
3966}
3967
3968int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3969                                struct btrfs_root *root, struct btrfs_inode *inode)
3970{
3971        int ret;
3972
3973        ret = btrfs_update_inode(trans, root, inode);
3974        if (ret == -ENOSPC)
3975                return btrfs_update_inode_item(trans, root, inode);
3976        return ret;
3977}
3978
3979/*
3980 * unlink helper that gets used here in inode.c and in the tree logging
3981 * recovery code.  It remove a link in a directory with a given name, and
3982 * also drops the back refs in the inode to the directory
3983 */
3984static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3985                                struct btrfs_root *root,
3986                                struct btrfs_inode *dir,
3987                                struct btrfs_inode *inode,
3988                                const char *name, int name_len)
3989{
3990        struct btrfs_fs_info *fs_info = root->fs_info;
3991        struct btrfs_path *path;
3992        int ret = 0;
3993        struct btrfs_dir_item *di;
3994        u64 index;
3995        u64 ino = btrfs_ino(inode);
3996        u64 dir_ino = btrfs_ino(dir);
3997
3998        path = btrfs_alloc_path();
3999        if (!path) {
4000                ret = -ENOMEM;
4001                goto out;
4002        }
4003
4004        di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4005                                    name, name_len, -1);
4006        if (IS_ERR_OR_NULL(di)) {
4007                ret = di ? PTR_ERR(di) : -ENOENT;
4008                goto err;
4009        }
4010        ret = btrfs_delete_one_dir_name(trans, root, path, di);
4011        if (ret)
4012                goto err;
4013        btrfs_release_path(path);
4014
4015        /*
4016         * If we don't have dir index, we have to get it by looking up
4017         * the inode ref, since we get the inode ref, remove it directly,
4018         * it is unnecessary to do delayed deletion.
4019         *
4020         * But if we have dir index, needn't search inode ref to get it.
4021         * Since the inode ref is close to the inode item, it is better
4022         * that we delay to delete it, and just do this deletion when
4023         * we update the inode item.
4024         */
4025        if (inode->dir_index) {
4026                ret = btrfs_delayed_delete_inode_ref(inode);
4027                if (!ret) {
4028                        index = inode->dir_index;
4029                        goto skip_backref;
4030                }
4031        }
4032
4033        ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4034                                  dir_ino, &index);
4035        if (ret) {
4036                btrfs_info(fs_info,
4037                        "failed to delete reference to %.*s, inode %llu parent %llu",
4038                        name_len, name, ino, dir_ino);
4039                btrfs_abort_transaction(trans, ret);
4040                goto err;
4041        }
4042skip_backref:
4043        ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4044        if (ret) {
4045                btrfs_abort_transaction(trans, ret);
4046                goto err;
4047        }
4048
4049        ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4050                        dir_ino);
4051        if (ret != 0 && ret != -ENOENT) {
4052                btrfs_abort_transaction(trans, ret);
4053                goto err;
4054        }
4055
4056        ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4057                        index);
4058        if (ret == -ENOENT)
4059                ret = 0;
4060        else if (ret)
4061                btrfs_abort_transaction(trans, ret);
4062
4063        /*
4064         * If we have a pending delayed iput we could end up with the final iput
4065         * being run in btrfs-cleaner context.  If we have enough of these built
4066         * up we can end up burning a lot of time in btrfs-cleaner without any
4067         * way to throttle the unlinks.  Since we're currently holding a ref on
4068         * the inode we can run the delayed iput here without any issues as the
4069         * final iput won't be done until after we drop the ref we're currently
4070         * holding.
4071         */
4072        btrfs_run_delayed_iput(fs_info, inode);
4073err:
4074        btrfs_free_path(path);
4075        if (ret)
4076                goto out;
4077
4078        btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4079        inode_inc_iversion(&inode->vfs_inode);
4080        inode_inc_iversion(&dir->vfs_inode);
4081        inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4082                dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4083        ret = btrfs_update_inode(trans, root, dir);
4084out:
4085        return ret;
4086}
4087
4088int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4089                       struct btrfs_root *root,
4090                       struct btrfs_inode *dir, struct btrfs_inode *inode,
4091                       const char *name, int name_len)
4092{
4093        int ret;
4094        ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4095        if (!ret) {
4096                drop_nlink(&inode->vfs_inode);
4097                ret = btrfs_update_inode(trans, root, inode);
4098        }
4099        return ret;
4100}
4101
4102/*
4103 * helper to start transaction for unlink and rmdir.
4104 *
4105 * unlink and rmdir are special in btrfs, they do not always free space, so
4106 * if we cannot make our reservations the normal way try and see if there is
4107 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4108 * allow the unlink to occur.
4109 */
4110static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4111{
4112        struct btrfs_root *root = BTRFS_I(dir)->root;
4113
4114        /*
4115         * 1 for the possible orphan item
4116         * 1 for the dir item
4117         * 1 for the dir index
4118         * 1 for the inode ref
4119         * 1 for the inode
4120         */
4121        return btrfs_start_transaction_fallback_global_rsv(root, 5);
4122}
4123
4124static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4125{
4126        struct btrfs_root *root = BTRFS_I(dir)->root;
4127        struct btrfs_trans_handle *trans;
4128        struct inode *inode = d_inode(dentry);
4129        int ret;
4130
4131        trans = __unlink_start_trans(dir);
4132        if (IS_ERR(trans))
4133                return PTR_ERR(trans);
4134
4135        btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4136                        0);
4137
4138        ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4139                        BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4140                        dentry->d_name.len);
4141        if (ret)
4142                goto out;
4143
4144        if (inode->i_nlink == 0) {
4145                ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4146                if (ret)
4147                        goto out;
4148        }
4149
4150out:
4151        btrfs_end_transaction(trans);
4152        btrfs_btree_balance_dirty(root->fs_info);
4153        return ret;
4154}
4155
4156static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4157                               struct inode *dir, struct dentry *dentry)
4158{
4159        struct btrfs_root *root = BTRFS_I(dir)->root;
4160        struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4161        struct btrfs_path *path;
4162        struct extent_buffer *leaf;
4163        struct btrfs_dir_item *di;
4164        struct btrfs_key key;
4165        const char *name = dentry->d_name.name;
4166        int name_len = dentry->d_name.len;
4167        u64 index;
4168        int ret;
4169        u64 objectid;
4170        u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4171
4172        if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4173                objectid = inode->root->root_key.objectid;
4174        } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4175                objectid = inode->location.objectid;
4176        } else {
4177                WARN_ON(1);
4178                return -EINVAL;
4179        }
4180
4181        path = btrfs_alloc_path();
4182        if (!path)
4183                return -ENOMEM;
4184
4185        di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4186                                   name, name_len, -1);
4187        if (IS_ERR_OR_NULL(di)) {
4188                ret = di ? PTR_ERR(di) : -ENOENT;
4189                goto out;
4190        }
4191
4192        leaf = path->nodes[0];
4193        btrfs_dir_item_key_to_cpu(leaf, di, &key);
4194        WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4195        ret = btrfs_delete_one_dir_name(trans, root, path, di);
4196        if (ret) {
4197                btrfs_abort_transaction(trans, ret);
4198                goto out;
4199        }
4200        btrfs_release_path(path);
4201
4202        /*
4203         * This is a placeholder inode for a subvolume we didn't have a
4204         * reference to at the time of the snapshot creation.  In the meantime
4205         * we could have renamed the real subvol link into our snapshot, so
4206         * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4207         * Instead simply lookup the dir_index_item for this entry so we can
4208         * remove it.  Otherwise we know we have a ref to the root and we can
4209         * call btrfs_del_root_ref, and it _shouldn't_ fail.
4210         */
4211        if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4212                di = btrfs_search_dir_index_item(root, path, dir_ino,
4213                                                 name, name_len);
4214                if (IS_ERR_OR_NULL(di)) {
4215                        if (!di)
4216                                ret = -ENOENT;
4217                        else
4218                                ret = PTR_ERR(di);
4219                        btrfs_abort_transaction(trans, ret);
4220                        goto out;
4221                }
4222
4223                leaf = path->nodes[0];
4224                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4225                index = key.offset;
4226                btrfs_release_path(path);
4227        } else {
4228                ret = btrfs_del_root_ref(trans, objectid,
4229                                         root->root_key.objectid, dir_ino,
4230                                         &index, name, name_len);
4231                if (ret) {
4232                        btrfs_abort_transaction(trans, ret);
4233                        goto out;
4234                }
4235        }
4236
4237        ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4238        if (ret) {
4239                btrfs_abort_transaction(trans, ret);
4240                goto out;
4241        }
4242
4243        btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4244        inode_inc_iversion(dir);
4245        dir->i_mtime = dir->i_ctime = current_time(dir);
4246        ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir));
4247        if (ret)
4248                btrfs_abort_transaction(trans, ret);
4249out:
4250        btrfs_free_path(path);
4251        return ret;
4252}
4253
4254/*
4255 * Helper to check if the subvolume references other subvolumes or if it's
4256 * default.
4257 */
4258static noinline int may_destroy_subvol(struct btrfs_root *root)
4259{
4260        struct btrfs_fs_info *fs_info = root->fs_info;
4261        struct btrfs_path *path;
4262        struct btrfs_dir_item *di;
4263        struct btrfs_key key;
4264        u64 dir_id;
4265        int ret;
4266
4267        path = btrfs_alloc_path();
4268        if (!path)
4269                return -ENOMEM;
4270
4271        /* Make sure this root isn't set as the default subvol */
4272        dir_id = btrfs_super_root_dir(fs_info->super_copy);
4273        di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4274                                   dir_id, "default", 7, 0);
4275        if (di && !IS_ERR(di)) {
4276                btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4277                if (key.objectid == root->root_key.objectid) {
4278                        ret = -EPERM;
4279                        btrfs_err(fs_info,
4280                                  "deleting default subvolume %llu is not allowed",
4281                                  key.objectid);
4282                        goto out;
4283                }
4284                btrfs_release_path(path);
4285        }
4286
4287        key.objectid = root->root_key.objectid;
4288        key.type = BTRFS_ROOT_REF_KEY;
4289        key.offset = (u64)-1;
4290
4291        ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4292        if (ret < 0)
4293                goto out;
4294        BUG_ON(ret == 0);
4295
4296        ret = 0;
4297        if (path->slots[0] > 0) {
4298                path->slots[0]--;
4299                btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4300                if (key.objectid == root->root_key.objectid &&
4301                    key.type == BTRFS_ROOT_REF_KEY)
4302                        ret = -ENOTEMPTY;
4303        }
4304out:
4305        btrfs_free_path(path);
4306        return ret;
4307}
4308
4309/* Delete all dentries for inodes belonging to the root */
4310static void btrfs_prune_dentries(struct btrfs_root *root)
4311{
4312        struct btrfs_fs_info *fs_info = root->fs_info;
4313        struct rb_node *node;
4314        struct rb_node *prev;
4315        struct btrfs_inode *entry;
4316        struct inode *inode;
4317        u64 objectid = 0;
4318
4319        if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4320                WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4321
4322        spin_lock(&root->inode_lock);
4323again:
4324        node = root->inode_tree.rb_node;
4325        prev = NULL;
4326        while (node) {
4327                prev = node;
4328                entry = rb_entry(node, struct btrfs_inode, rb_node);
4329
4330                if (objectid < btrfs_ino(entry))
4331                        node = node->rb_left;
4332                else if (objectid > btrfs_ino(entry))
4333                        node = node->rb_right;
4334                else
4335                        break;
4336        }
4337        if (!node) {
4338                while (prev) {
4339                        entry = rb_entry(prev, struct btrfs_inode, rb_node);
4340                        if (objectid <= btrfs_ino(entry)) {
4341                                node = prev;
4342                                break;
4343                        }
4344                        prev = rb_next(prev);
4345                }
4346        }
4347        while (node) {
4348                entry = rb_entry(node, struct btrfs_inode, rb_node);
4349                objectid = btrfs_ino(entry) + 1;
4350                inode = igrab(&entry->vfs_inode);
4351                if (inode) {
4352                        spin_unlock(&root->inode_lock);
4353                        if (atomic_read(&inode->i_count) > 1)
4354                                d_prune_aliases(inode);
4355                        /*
4356                         * btrfs_drop_inode will have it removed from the inode
4357                         * cache when its usage count hits zero.
4358                         */
4359                        iput(inode);
4360                        cond_resched();
4361                        spin_lock(&root->inode_lock);
4362                        goto again;
4363                }
4364
4365                if (cond_resched_lock(&root->inode_lock))
4366                        goto again;
4367
4368                node = rb_next(node);
4369        }
4370        spin_unlock(&root->inode_lock);
4371}
4372
4373int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4374{
4375        struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4376        struct btrfs_root *root = BTRFS_I(dir)->root;
4377        struct inode *inode = d_inode(dentry);
4378        struct btrfs_root *dest = BTRFS_I(inode)->root;
4379        struct btrfs_trans_handle *trans;
4380        struct btrfs_block_rsv block_rsv;
4381        u64 root_flags;
4382        int ret;
4383
4384        /*
4385         * Don't allow to delete a subvolume with send in progress. This is
4386         * inside the inode lock so the error handling that has to drop the bit
4387         * again is not run concurrently.
4388         */
4389        spin_lock(&dest->root_item_lock);
4390        if (dest->send_in_progress) {
4391                spin_unlock(&dest->root_item_lock);
4392                btrfs_warn(fs_info,
4393                           "attempt to delete subvolume %llu during send",
4394                           dest->root_key.objectid);
4395                return -EPERM;
4396        }
4397        root_flags = btrfs_root_flags(&dest->root_item);
4398        btrfs_set_root_flags(&dest->root_item,
4399                             root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4400        spin_unlock(&dest->root_item_lock);
4401
4402        down_write(&fs_info->subvol_sem);
4403
4404        ret = may_destroy_subvol(dest);
4405        if (ret)
4406                goto out_up_write;
4407
4408        btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4409        /*
4410         * One for dir inode,
4411         * two for dir entries,
4412         * two for root ref/backref.
4413         */
4414        ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4415        if (ret)
4416                goto out_up_write;
4417
4418        trans = btrfs_start_transaction(root, 0);
4419        if (IS_ERR(trans)) {
4420                ret = PTR_ERR(trans);
4421                goto out_release;
4422        }
4423        trans->block_rsv = &block_rsv;
4424        trans->bytes_reserved = block_rsv.size;
4425
4426        btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4427
4428        ret = btrfs_unlink_subvol(trans, dir, dentry);
4429        if (ret) {
4430                btrfs_abort_transaction(trans, ret);
4431                goto out_end_trans;
4432        }
4433
4434        ret = btrfs_record_root_in_trans(trans, dest);
4435        if (ret) {
4436                btrfs_abort_transaction(trans, ret);
4437                goto out_end_trans;
4438        }
4439
4440        memset(&dest->root_item.drop_progress, 0,
4441                sizeof(dest->root_item.drop_progress));
4442        btrfs_set_root_drop_level(&dest->root_item, 0);
4443        btrfs_set_root_refs(&dest->root_item, 0);
4444
4445        if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4446                ret = btrfs_insert_orphan_item(trans,
4447                                        fs_info->tree_root,
4448                                        dest->root_key.objectid);
4449                if (ret) {
4450                        btrfs_abort_transaction(trans, ret);
4451                        goto out_end_trans;
4452                }
4453        }
4454
4455        ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4456                                  BTRFS_UUID_KEY_SUBVOL,
4457                                  dest->root_key.objectid);
4458        if (ret && ret != -ENOENT) {
4459                btrfs_abort_transaction(trans, ret);
4460                goto out_end_trans;
4461        }
4462        if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4463                ret = btrfs_uuid_tree_remove(trans,
4464                                          dest->root_item.received_uuid,
4465                                          BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4466                                          dest->root_key.objectid);
4467                if (ret && ret != -ENOENT) {
4468                        btrfs_abort_transaction(trans, ret);
4469                        goto out_end_trans;
4470                }
4471        }
4472
4473        free_anon_bdev(dest->anon_dev);
4474        dest->anon_dev = 0;
4475out_end_trans:
4476        trans->block_rsv = NULL;
4477        trans->bytes_reserved = 0;
4478        ret = btrfs_end_transaction(trans);
4479        inode->i_flags |= S_DEAD;
4480out_release:
4481        btrfs_subvolume_release_metadata(root, &block_rsv);
4482out_up_write:
4483        up_write(&fs_info->subvol_sem);
4484        if (ret) {
4485                spin_lock(&dest->root_item_lock);
4486                root_flags = btrfs_root_flags(&dest->root_item);
4487                btrfs_set_root_flags(&dest->root_item,
4488                                root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4489                spin_unlock(&dest->root_item_lock);
4490        } else {
4491                d_invalidate(dentry);
4492                btrfs_prune_dentries(dest);
4493                ASSERT(dest->send_in_progress == 0);
4494        }
4495
4496        return ret;
4497}
4498
4499static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4500{
4501        struct inode *inode = d_inode(dentry);
4502        int err = 0;
4503        struct btrfs_root *root = BTRFS_I(dir)->root;
4504        struct btrfs_trans_handle *trans;
4505        u64 last_unlink_trans;
4506
4507        if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4508                return -ENOTEMPTY;
4509        if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4510                return btrfs_delete_subvolume(dir, dentry);
4511
4512        trans = __unlink_start_trans(dir);
4513        if (IS_ERR(trans))
4514                return PTR_ERR(trans);
4515
4516        if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4517                err = btrfs_unlink_subvol(trans, dir, dentry);
4518                goto out;
4519        }
4520
4521        err = btrfs_orphan_add(trans, BTRFS_I(inode));
4522        if (err)
4523                goto out;
4524
4525        last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4526
4527        /* now the directory is empty */
4528        err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4529                        BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4530                        dentry->d_name.len);
4531        if (!err) {
4532                btrfs_i_size_write(BTRFS_I(inode), 0);
4533                /*
4534                 * Propagate the last_unlink_trans value of the deleted dir to
4535                 * its parent directory. This is to prevent an unrecoverable
4536                 * log tree in the case we do something like this:
4537                 * 1) create dir foo
4538                 * 2) create snapshot under dir foo
4539                 * 3) delete the snapshot
4540                 * 4) rmdir foo
4541                 * 5) mkdir foo
4542                 * 6) fsync foo or some file inside foo
4543                 */
4544                if (last_unlink_trans >= trans->transid)
4545                        BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4546        }
4547out:
4548        btrfs_end_transaction(trans);
4549        btrfs_btree_balance_dirty(root->fs_info);
4550
4551        return err;
4552}
4553
4554/*
4555 * Return this if we need to call truncate_block for the last bit of the
4556 * truncate.
4557 */
4558#define NEED_TRUNCATE_BLOCK 1
4559
4560/*
4561 * Remove inode items from a given root.
4562 *
4563 * @trans:              A transaction handle.
4564 * @root:               The root from which to remove items.
4565 * @inode:              The inode whose items we want to remove.
4566 * @new_size:           The new i_size for the inode. This is only applicable when
4567 *                      @min_type is BTRFS_EXTENT_DATA_KEY, must be 0 otherwise.
4568 * @min_type:           The minimum key type to remove. All keys with a type
4569 *                      greater than this value are removed and all keys with
4570 *                      this type are removed only if their offset is >= @new_size.
4571 * @extents_found:      Output parameter that will contain the number of file
4572 *                      extent items that were removed or adjusted to the new
4573 *                      inode i_size. The caller is responsible for initializing
4574 *                      the counter. Also, it can be NULL if the caller does not
4575 *                      need this counter.
4576 *
4577 * Remove all keys associated with the inode from the given root that have a key
4578 * with a type greater than or equals to @min_type. When @min_type has a value of
4579 * BTRFS_EXTENT_DATA_KEY, only remove file extent items that have an offset value
4580 * greater than or equals to @new_size. If a file extent item that starts before
4581 * @new_size and ends after it is found, its length is adjusted.
4582 *
4583 * Returns: 0 on success, < 0 on error and NEED_TRUNCATE_BLOCK when @min_type is
4584 * BTRFS_EXTENT_DATA_KEY and the caller must truncate the last block.
4585 */
4586int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4587                               struct btrfs_root *root,
4588                               struct btrfs_inode *inode,
4589                               u64 new_size, u32 min_type,
4590                               u64 *extents_found)
4591{
4592        struct btrfs_fs_info *fs_info = root->fs_info;
4593        struct btrfs_path *path;
4594        struct extent_buffer *leaf;
4595        struct btrfs_file_extent_item *fi;
4596        struct btrfs_key key;
4597        struct btrfs_key found_key;
4598        u64 extent_start = 0;
4599        u64 extent_num_bytes = 0;
4600        u64 extent_offset = 0;
4601        u64 item_end = 0;
4602        u64 last_size = new_size;
4603        u32 found_type = (u8)-1;
4604        int found_extent;
4605        int del_item;
4606        int pending_del_nr = 0;
4607        int pending_del_slot = 0;
4608        int extent_type = -1;
4609        int ret;
4610        u64 ino = btrfs_ino(inode);
4611        u64 bytes_deleted = 0;
4612        bool be_nice = false;
4613        bool should_throttle = false;
4614        const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
4615        struct extent_state *cached_state = NULL;
4616
4617        BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4618
4619        /*
4620         * For non-free space inodes and non-shareable roots, we want to back
4621         * off from time to time.  This means all inodes in subvolume roots,
4622         * reloc roots, and data reloc roots.
4623         */
4624        if (!btrfs_is_free_space_inode(inode) &&
4625            test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4626                be_nice = true;
4627
4628        path = btrfs_alloc_path();
4629        if (!path)
4630                return -ENOMEM;
4631        path->reada = READA_BACK;
4632
4633        if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4634                lock_extent_bits(&inode->io_tree, lock_start, (u64)-1,
4635                                 &cached_state);
4636
4637                /*
4638                 * We want to drop from the next block forward in case this
4639                 * new size is not block aligned since we will be keeping the
4640                 * last block of the extent just the way it is.
4641                 */
4642                btrfs_drop_extent_cache(inode, ALIGN(new_size,
4643                                        fs_info->sectorsize),
4644                                        (u64)-1, 0);
4645        }
4646
4647        /*
4648         * This function is also used to drop the items in the log tree before
4649         * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4650         * it is used to drop the logged items. So we shouldn't kill the delayed
4651         * items.
4652         */
4653        if (min_type == 0 && root == inode->root)
4654                btrfs_kill_delayed_inode_items(inode);
4655
4656        key.objectid = ino;
4657        key.offset = (u64)-1;
4658        key.type = (u8)-1;
4659
4660search_again:
4661        /*
4662         * with a 16K leaf size and 128MB extents, you can actually queue
4663         * up a huge file in a single leaf.  Most of the time that
4664         * bytes_deleted is > 0, it will be huge by the time we get here
4665         */
4666        if (be_nice && bytes_deleted > SZ_32M &&
4667            btrfs_should_end_transaction(trans)) {
4668                ret = -EAGAIN;
4669                goto out;
4670        }
4671
4672        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4673        if (ret < 0)
4674                goto out;
4675
4676        if (ret > 0) {
4677                ret = 0;
4678                /* there are no items in the tree for us to truncate, we're
4679                 * done
4680                 */
4681                if (path->slots[0] == 0)
4682                        goto out;
4683                path->slots[0]--;
4684        }
4685
4686        while (1) {
4687                u64 clear_start = 0, clear_len = 0;
4688
4689                fi = NULL;
4690                leaf = path->nodes[0];
4691                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4692                found_type = found_key.type;
4693
4694                if (found_key.objectid != ino)
4695                        break;
4696
4697                if (found_type < min_type)
4698                        break;
4699
4700                item_end = found_key.offset;
4701                if (found_type == BTRFS_EXTENT_DATA_KEY) {
4702                        fi = btrfs_item_ptr(leaf, path->slots[0],
4703                                            struct btrfs_file_extent_item);
4704                        extent_type = btrfs_file_extent_type(leaf, fi);
4705                        if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4706                                item_end +=
4707                                    btrfs_file_extent_num_bytes(leaf, fi);
4708
4709                                trace_btrfs_truncate_show_fi_regular(
4710                                        inode, leaf, fi, found_key.offset);
4711                        } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4712                                item_end += btrfs_file_extent_ram_bytes(leaf,
4713                                                                        fi);
4714
4715                                trace_btrfs_truncate_show_fi_inline(
4716                                        inode, leaf, fi, path->slots[0],
4717                                        found_key.offset);
4718                        }
4719                        item_end--;
4720                }
4721                if (found_type > min_type) {
4722                        del_item = 1;
4723                } else {
4724                        if (item_end < new_size)
4725                                break;
4726                        if (found_key.offset >= new_size)
4727                                del_item = 1;
4728                        else
4729                                del_item = 0;
4730                }
4731                found_extent = 0;
4732                /* FIXME, shrink the extent if the ref count is only 1 */
4733                if (found_type != BTRFS_EXTENT_DATA_KEY)
4734                        goto delete;
4735
4736                if (extents_found != NULL)
4737                        (*extents_found)++;
4738
4739                if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4740                        u64 num_dec;
4741
4742                        clear_start = found_key.offset;
4743                        extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4744                        if (!del_item) {
4745                                u64 orig_num_bytes =
4746                                        btrfs_file_extent_num_bytes(leaf, fi);
4747                                extent_num_bytes = ALIGN(new_size -
4748                                                found_key.offset,
4749                                                fs_info->sectorsize);
4750                                clear_start = ALIGN(new_size, fs_info->sectorsize);
4751                                btrfs_set_file_extent_num_bytes(leaf, fi,
4752                                                         extent_num_bytes);
4753                                num_dec = (orig_num_bytes -
4754                                           extent_num_bytes);
4755                                if (test_bit(BTRFS_ROOT_SHAREABLE,
4756                                             &root->state) &&
4757                                    extent_start != 0)
4758                                        inode_sub_bytes(&inode->vfs_inode,
4759                                                        num_dec);
4760                                btrfs_mark_buffer_dirty(leaf);
4761                        } else {
4762                                extent_num_bytes =
4763                                        btrfs_file_extent_disk_num_bytes(leaf,
4764                                                                         fi);
4765                                extent_offset = found_key.offset -
4766                                        btrfs_file_extent_offset(leaf, fi);
4767
4768                                /* FIXME blocksize != 4096 */
4769                                num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4770                                if (extent_start != 0) {
4771                                        found_extent = 1;
4772                                        if (test_bit(BTRFS_ROOT_SHAREABLE,
4773                                                     &root->state))
4774                                                inode_sub_bytes(&inode->vfs_inode,
4775                                                                num_dec);
4776                                }
4777                        }
4778                        clear_len = num_dec;
4779                } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4780                        /*
4781                         * we can't truncate inline items that have had
4782                         * special encodings
4783                         */
4784                        if (!del_item &&
4785                            btrfs_file_extent_encryption(leaf, fi) == 0 &&
4786                            btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4787                            btrfs_file_extent_compression(leaf, fi) == 0) {
4788                                u32 size = (u32)(new_size - found_key.offset);
4789
4790                                btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4791                                size = btrfs_file_extent_calc_inline_size(size);
4792                                btrfs_truncate_item(path, size, 1);
4793                        } else if (!del_item) {
4794                                /*
4795                                 * We have to bail so the last_size is set to
4796                                 * just before this extent.
4797                                 */
4798                                ret = NEED_TRUNCATE_BLOCK;
4799                                break;
4800                        } else {
4801                                /*
4802                                 * Inline extents are special, we just treat
4803                                 * them as a full sector worth in the file
4804                                 * extent tree just for simplicity sake.
4805                                 */
4806                                clear_len = fs_info->sectorsize;
4807                        }
4808
4809                        if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4810                                inode_sub_bytes(&inode->vfs_inode,
4811                                                item_end + 1 - new_size);
4812                }
4813delete:
4814                /*
4815                 * We use btrfs_truncate_inode_items() to clean up log trees for
4816                 * multiple fsyncs, and in this case we don't want to clear the
4817                 * file extent range because it's just the log.
4818                 */
4819                if (root == inode->root) {
4820                        ret = btrfs_inode_clear_file_extent_range(inode,
4821                                                  clear_start, clear_len);
4822                        if (ret) {
4823                                btrfs_abort_transaction(trans, ret);
4824                                break;
4825                        }
4826                }
4827
4828                if (del_item)
4829                        last_size = found_key.offset;
4830                else
4831                        last_size = new_size;
4832                if (del_item) {
4833                        if (!pending_del_nr) {
4834                                /* no pending yet, add ourselves */
4835                                pending_del_slot = path->slots[0];
4836                                pending_del_nr = 1;
4837                        } else if (pending_del_nr &&
4838                                   path->slots[0] + 1 == pending_del_slot) {
4839                                /* hop on the pending chunk */
4840                                pending_del_nr++;
4841                                pending_del_slot = path->slots[0];
4842                        } else {
4843                                BUG();
4844                        }
4845                } else {
4846                        break;
4847                }
4848                should_throttle = false;
4849
4850                if (found_extent &&
4851                    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4852                        struct btrfs_ref ref = { 0 };
4853
4854                        bytes_deleted += extent_num_bytes;
4855
4856                        btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4857                                        extent_start, extent_num_bytes, 0);
4858                        ref.real_root = root->root_key.objectid;
4859                        btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4860                                        ino, extent_offset);
4861                        ret = btrfs_free_extent(trans, &ref);
4862                        if (ret) {
4863                                btrfs_abort_transaction(trans, ret);
4864                                break;
4865                        }
4866                        if (be_nice) {
4867                                if (btrfs_should_throttle_delayed_refs(trans))
4868                                        should_throttle = true;
4869                        }
4870                }
4871
4872                if (found_type == BTRFS_INODE_ITEM_KEY)
4873                        break;
4874
4875                if (path->slots[0] == 0 ||
4876                    path->slots[0] != pending_del_slot ||
4877                    should_throttle) {
4878                        if (pending_del_nr) {
4879                                ret = btrfs_del_items(trans, root, path,
4880                                                pending_del_slot,
4881                                                pending_del_nr);
4882                                if (ret) {
4883                                        btrfs_abort_transaction(trans, ret);
4884                                        break;
4885                                }
4886                                pending_del_nr = 0;
4887                        }
4888                        btrfs_release_path(path);
4889
4890                        /*
4891                         * We can generate a lot of delayed refs, so we need to
4892                         * throttle every once and a while and make sure we're
4893                         * adding enough space to keep up with the work we are
4894                         * generating.  Since we hold a transaction here we
4895                         * can't flush, and we don't want to FLUSH_LIMIT because
4896                         * we could have generated too many delayed refs to
4897                         * actually allocate, so just bail if we're short and
4898                         * let the normal reservation dance happen higher up.
4899                         */
4900                        if (should_throttle) {
4901                                ret = btrfs_delayed_refs_rsv_refill(fs_info,
4902                                                        BTRFS_RESERVE_NO_FLUSH);
4903                                if (ret) {
4904                                        ret = -EAGAIN;
4905                                        break;
4906                                }
4907                        }
4908                        goto search_again;
4909                } else {
4910                        path->slots[0]--;
4911                }
4912        }
4913out:
4914        if (ret >= 0 && pending_del_nr) {
4915                int err;
4916
4917                err = btrfs_del_items(trans, root, path, pending_del_slot,
4918                                      pending_del_nr);
4919                if (err) {
4920                        btrfs_abort_transaction(trans, err);
4921                        ret = err;
4922                }
4923        }
4924        if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4925                ASSERT(last_size >= new_size);
4926                if (!ret && last_size > new_size)
4927                        last_size = new_size;
4928                btrfs_inode_safe_disk_i_size_write(inode, last_size);
4929                unlock_extent_cached(&inode->io_tree, lock_start, (u64)-1,
4930                                     &cached_state);
4931        }
4932
4933        btrfs_free_path(path);
4934        return ret;
4935}
4936
4937/*
4938 * btrfs_truncate_block - read, zero a chunk and write a block
4939 * @inode - inode that we're zeroing
4940 * @from - the offset to start zeroing
4941 * @len - the length to zero, 0 to zero the entire range respective to the
4942 *      offset
4943 * @front - zero up to the offset instead of from the offset on
4944 *
4945 * This will find the block for the "from" offset and cow the block and zero the
4946 * part we want to zero.  This is used with truncate and hole punching.
4947 */
4948int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4949                         int front)
4950{
4951        struct btrfs_fs_info *fs_info = inode->root->fs_info;
4952        struct address_space *mapping = inode->vfs_inode.i_mapping;
4953        struct extent_io_tree *io_tree = &inode->io_tree;
4954        struct btrfs_ordered_extent *ordered;
4955        struct extent_state *cached_state = NULL;
4956        struct extent_changeset *data_reserved = NULL;
4957        bool only_release_metadata = false;
4958        u32 blocksize = fs_info->sectorsize;
4959        pgoff_t index = from >> PAGE_SHIFT;
4960        unsigned offset = from & (blocksize - 1);
4961        struct page *page;
4962        gfp_t mask = btrfs_alloc_write_mask(mapping);
4963        size_t write_bytes = blocksize;
4964        int ret = 0;
4965        u64 block_start;
4966        u64 block_end;
4967
4968        if (IS_ALIGNED(offset, blocksize) &&
4969            (!len || IS_ALIGNED(len, blocksize)))
4970                goto out;
4971
4972        block_start = round_down(from, blocksize);
4973        block_end = block_start + blocksize - 1;
4974
4975        ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4976                                          blocksize);
4977        if (ret < 0) {
4978                if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) {
4979                        /* For nocow case, no need to reserve data space */
4980                        only_release_metadata = true;
4981                } else {
4982                        goto out;
4983                }
4984        }
4985        ret = btrfs_delalloc_reserve_metadata(inode, blocksize);
4986        if (ret < 0) {
4987                if (!only_release_metadata)
4988                        btrfs_free_reserved_data_space(inode, data_reserved,
4989                                                       block_start, blocksize);
4990                goto out;
4991        }
4992again:
4993        page = find_or_create_page(mapping, index, mask);
4994        if (!page) {
4995                btrfs_delalloc_release_space(inode, data_reserved, block_start,
4996                                             blocksize, true);
4997                btrfs_delalloc_release_extents(inode, blocksize);
4998                ret = -ENOMEM;
4999                goto out;
5000        }
5001        ret = set_page_extent_mapped(page);
5002        if (ret < 0)
5003                goto out_unlock;
5004
5005        if (!PageUptodate(page)) {
5006                ret = btrfs_readpage(NULL, page);
5007                lock_page(page);
5008                if (page->mapping != mapping) {
5009                        unlock_page(page);
5010                        put_page(page);
5011                        goto again;
5012                }
5013                if (!PageUptodate(page)) {
5014                        ret = -EIO;
5015                        goto out_unlock;
5016                }
5017        }
5018        wait_on_page_writeback(page);
5019
5020        lock_extent_bits(io_tree, block_start, block_end, &cached_state);
5021
5022        ordered = btrfs_lookup_ordered_extent(inode, block_start);
5023        if (ordered) {
5024                unlock_extent_cached(io_tree, block_start, block_end,
5025                                     &cached_state);
5026                unlock_page(page);
5027                put_page(page);
5028                btrfs_start_ordered_extent(ordered, 1);
5029                btrfs_put_ordered_extent(ordered);
5030                goto again;
5031        }
5032
5033        clear_extent_bit(&inode->io_tree, block_start, block_end,
5034                         EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
5035                         0, 0, &cached_state);
5036
5037        ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
5038                                        &cached_state);
5039        if (ret) {
5040                unlock_extent_cached(io_tree, block_start, block_end,
5041                                     &cached_state);
5042                goto out_unlock;
5043        }
5044
5045        if (offset != blocksize) {
5046                if (!len)
5047                        len = blocksize - offset;
5048                if (front)
5049                        memzero_page(page, (block_start - page_offset(page)),
5050                                     offset);
5051                else
5052                        memzero_page(page, (block_start - page_offset(page)) + offset,
5053                                     len);
5054                flush_dcache_page(page);
5055        }
5056        ClearPageChecked(page);
5057        btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
5058        unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
5059
5060        if (only_release_metadata)
5061                set_extent_bit(&inode->io_tree, block_start, block_end,
5062                               EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL);
5063
5064out_unlock:
5065        if (ret) {
5066                if (only_release_metadata)
5067                        btrfs_delalloc_release_metadata(inode, blocksize, true);
5068                else
5069                        btrfs_delalloc_release_space(inode, data_reserved,
5070                                        block_start, blocksize, true);
5071        }
5072        btrfs_delalloc_release_extents(inode, blocksize);
5073        unlock_page(page);
5074        put_page(page);
5075out:
5076        if (only_release_metadata)
5077                btrfs_check_nocow_unlock(inode);
5078        extent_changeset_free(data_reserved);
5079        return ret;
5080}
5081
5082static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
5083                             u64 offset, u64 len)
5084{
5085        struct btrfs_fs_info *fs_info = root->fs_info;
5086        struct btrfs_trans_handle *trans;
5087        struct btrfs_drop_extents_args drop_args = { 0 };
5088        int ret;
5089
5090        /*
5091         * Still need to make sure the inode looks like it's been updated so
5092         * that any holes get logged if we fsync.
5093         */
5094        if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
5095                inode->last_trans = fs_info->generation;
5096                inode->last_sub_trans = root->log_transid;
5097                inode->last_log_commit = root->last_log_commit;
5098                return 0;
5099        }
5100
5101        /*
5102         * 1 - for the one we're dropping
5103         * 1 - for the one we're adding
5104         * 1 - for updating the inode.
5105         */
5106        trans = btrfs_start_transaction(root, 3);
5107        if (IS_ERR(trans))
5108                return PTR_ERR(trans);
5109
5110        drop_args.start = offset;
5111        drop_args.end = offset + len;
5112        drop_args.drop_cache = true;
5113
5114        ret = btrfs_drop_extents(trans, root, inode, &drop_args);
5115        if (ret) {
5116                btrfs_abort_transaction(trans, ret);
5117                btrfs_end_transaction(trans);
5118                return ret;
5119        }
5120
5121        ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
5122                        offset, 0, 0, len, 0, len, 0, 0, 0);
5123        if (ret) {
5124                btrfs_abort_transaction(trans, ret);
5125        } else {
5126                btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
5127                btrfs_update_inode(trans, root, inode);
5128        }
5129        btrfs_end_transaction(trans);
5130        return ret;
5131}
5132
5133/*
5134 * This function puts in dummy file extents for the area we're creating a hole
5135 * for.  So if we are truncating this file to a larger size we need to insert
5136 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5137 * the range between oldsize and size
5138 */
5139int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
5140{
5141        struct btrfs_root *root = inode->root;
5142        struct btrfs_fs_info *fs_info = root->fs_info;
5143        struct extent_io_tree *io_tree = &inode->io_tree;
5144        struct extent_map *em = NULL;
5145        struct extent_state *cached_state = NULL;
5146        struct extent_map_tree *em_tree = &inode->extent_tree;
5147        u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5148        u64 block_end = ALIGN(size, fs_info->sectorsize);
5149        u64 last_byte;
5150        u64 cur_offset;
5151        u64 hole_size;
5152        int err = 0;
5153
5154        /*
5155         * If our size started in the middle of a block we need to zero out the
5156         * rest of the block before we expand the i_size, otherwise we could
5157         * expose stale data.
5158         */
5159        err = btrfs_truncate_block(inode, oldsize, 0, 0);
5160        if (err)
5161                return err;
5162
5163        if (size <= hole_start)
5164                return 0;
5165
5166        btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
5167                                           &cached_state);
5168        cur_offset = hole_start;
5169        while (1) {
5170                em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5171                                      block_end - cur_offset);
5172                if (IS_ERR(em)) {
5173                        err = PTR_ERR(em);
5174                        em = NULL;
5175                        break;
5176                }
5177                last_byte = min(extent_map_end(em), block_end);
5178                last_byte = ALIGN(last_byte, fs_info->sectorsize);
5179                hole_size = last_byte - cur_offset;
5180
5181                if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5182                        struct extent_map *hole_em;
5183
5184                        err = maybe_insert_hole(root, inode, cur_offset,
5185                                                hole_size);
5186                        if (err)
5187                                break;
5188
5189                        err = btrfs_inode_set_file_extent_range(inode,
5190                                                        cur_offset, hole_size);
5191                        if (err)
5192                                break;
5193
5194                        btrfs_drop_extent_cache(inode, cur_offset,
5195                                                cur_offset + hole_size - 1, 0);
5196                        hole_em = alloc_extent_map();
5197                        if (!hole_em) {
5198                                set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5199                                        &inode->runtime_flags);
5200                                goto next;
5201                        }
5202                        hole_em->start = cur_offset;
5203                        hole_em->len = hole_size;
5204                        hole_em->orig_start = cur_offset;
5205
5206                        hole_em->block_start = EXTENT_MAP_HOLE;
5207                        hole_em->block_len = 0;
5208                        hole_em->orig_block_len = 0;
5209                        hole_em->ram_bytes = hole_size;
5210                        hole_em->compress_type = BTRFS_COMPRESS_NONE;
5211                        hole_em->generation = fs_info->generation;
5212
5213                        while (1) {
5214                                write_lock(&em_tree->lock);
5215                                err = add_extent_mapping(em_tree, hole_em, 1);
5216                                write_unlock(&em_tree->lock);
5217                                if (err != -EEXIST)
5218                                        break;
5219                                btrfs_drop_extent_cache(inode, cur_offset,
5220                                                        cur_offset +
5221                                                        hole_size - 1, 0);
5222                        }
5223                        free_extent_map(hole_em);
5224                } else {
5225                        err = btrfs_inode_set_file_extent_range(inode,
5226                                                        cur_offset, hole_size);
5227                        if (err)
5228                                break;
5229                }
5230next:
5231                free_extent_map(em);
5232                em = NULL;
5233                cur_offset = last_byte;
5234                if (cur_offset >= block_end)
5235                        break;
5236        }
5237        free_extent_map(em);
5238        unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5239        return err;
5240}
5241
5242static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5243{
5244        struct btrfs_root *root = BTRFS_I(inode)->root;
5245        struct btrfs_trans_handle *trans;
5246        loff_t oldsize = i_size_read(inode);
5247        loff_t newsize = attr->ia_size;
5248        int mask = attr->ia_valid;
5249        int ret;
5250
5251        /*
5252         * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5253         * special case where we need to update the times despite not having
5254         * these flags set.  For all other operations the VFS set these flags
5255         * explicitly if it wants a timestamp update.
5256         */
5257        if (newsize != oldsize) {
5258                inode_inc_iversion(inode);
5259                if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5260                        inode->i_ctime = inode->i_mtime =
5261                                current_time(inode);
5262        }
5263
5264        if (newsize > oldsize) {
5265                /*
5266                 * Don't do an expanding truncate while snapshotting is ongoing.
5267                 * This is to ensure the snapshot captures a fully consistent
5268                 * state of this file - if the snapshot captures this expanding
5269                 * truncation, it must capture all writes that happened before
5270                 * this truncation.
5271                 */
5272                btrfs_drew_write_lock(&root->snapshot_lock);
5273                ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5274                if (ret) {
5275                        btrfs_drew_write_unlock(&root->snapshot_lock);
5276                        return ret;
5277                }
5278
5279                trans = btrfs_start_transaction(root, 1);
5280                if (IS_ERR(trans)) {
5281                        btrfs_drew_write_unlock(&root->snapshot_lock);
5282                        return PTR_ERR(trans);
5283                }
5284
5285                i_size_write(inode, newsize);
5286                btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5287                pagecache_isize_extended(inode, oldsize, newsize);
5288                ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5289                btrfs_drew_write_unlock(&root->snapshot_lock);
5290                btrfs_end_transaction(trans);
5291        } else {
5292                struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5293
5294                if (btrfs_is_zoned(fs_info)) {
5295                        ret = btrfs_wait_ordered_range(inode,
5296                                        ALIGN(newsize, fs_info->sectorsize),
5297                                        (u64)-1);
5298                        if (ret)
5299                                return ret;
5300                }
5301
5302                /*
5303                 * We're truncating a file that used to have good data down to
5304                 * zero. Make sure any new writes to the file get on disk
5305                 * on close.
5306                 */
5307                if (newsize == 0)
5308                        set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5309                                &BTRFS_I(inode)->runtime_flags);
5310
5311                truncate_setsize(inode, newsize);
5312
5313                inode_dio_wait(inode);
5314
5315                ret = btrfs_truncate(inode, newsize == oldsize);
5316                if (ret && inode->i_nlink) {
5317                        int err;
5318
5319                        /*
5320                         * Truncate failed, so fix up the in-memory size. We
5321                         * adjusted disk_i_size down as we removed extents, so
5322                         * wait for disk_i_size to be stable and then update the
5323                         * in-memory size to match.
5324                         */
5325                        err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5326                        if (err)
5327                                return err;
5328                        i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5329                }
5330        }
5331
5332        return ret;
5333}
5334
5335static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5336                         struct iattr *attr)
5337{
5338        struct inode *inode = d_inode(dentry);
5339        struct btrfs_root *root = BTRFS_I(inode)->root;
5340        int err;
5341
5342        if (btrfs_root_readonly(root))
5343                return -EROFS;
5344
5345        err = setattr_prepare(&init_user_ns, dentry, attr);
5346        if (err)
5347                return err;
5348
5349        if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5350                err = btrfs_setsize(inode, attr);
5351                if (err)
5352                        return err;
5353        }
5354
5355        if (attr->ia_valid) {
5356                setattr_copy(&init_user_ns, inode, attr);
5357                inode_inc_iversion(inode);
5358                err = btrfs_dirty_inode(inode);
5359
5360                if (!err && attr->ia_valid & ATTR_MODE)
5361                        err = posix_acl_chmod(&init_user_ns, inode,
5362                                              inode->i_mode);
5363        }
5364
5365        return err;
5366}
5367
5368/*
5369 * While truncating the inode pages during eviction, we get the VFS calling
5370 * btrfs_invalidatepage() against each page of the inode. This is slow because
5371 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5372 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5373 * extent_state structures over and over, wasting lots of time.
5374 *
5375 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5376 * those expensive operations on a per page basis and do only the ordered io
5377 * finishing, while we release here the extent_map and extent_state structures,
5378 * without the excessive merging and splitting.
5379 */
5380static void evict_inode_truncate_pages(struct inode *inode)
5381{
5382        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5383        struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5384        struct rb_node *node;
5385
5386        ASSERT(inode->i_state & I_FREEING);
5387        truncate_inode_pages_final(&inode->i_data);
5388
5389        write_lock(&map_tree->lock);
5390        while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5391                struct extent_map *em;
5392
5393                node = rb_first_cached(&map_tree->map);
5394                em = rb_entry(node, struct extent_map, rb_node);
5395                clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5396                clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5397                remove_extent_mapping(map_tree, em);
5398                free_extent_map(em);
5399                if (need_resched()) {
5400                        write_unlock(&map_tree->lock);
5401                        cond_resched();
5402                        write_lock(&map_tree->lock);
5403                }
5404        }
5405        write_unlock(&map_tree->lock);
5406
5407        /*
5408         * Keep looping until we have no more ranges in the io tree.
5409         * We can have ongoing bios started by readahead that have
5410         * their endio callback (extent_io.c:end_bio_extent_readpage)
5411         * still in progress (unlocked the pages in the bio but did not yet
5412         * unlocked the ranges in the io tree). Therefore this means some
5413         * ranges can still be locked and eviction started because before
5414         * submitting those bios, which are executed by a separate task (work
5415         * queue kthread), inode references (inode->i_count) were not taken
5416         * (which would be dropped in the end io callback of each bio).
5417         * Therefore here we effectively end up waiting for those bios and
5418         * anyone else holding locked ranges without having bumped the inode's
5419         * reference count - if we don't do it, when they access the inode's
5420         * io_tree to unlock a range it may be too late, leading to an
5421         * use-after-free issue.
5422         */
5423        spin_lock(&io_tree->lock);
5424        while (!RB_EMPTY_ROOT(&io_tree->state)) {
5425                struct extent_state *state;
5426                struct extent_state *cached_state = NULL;
5427                u64 start;
5428                u64 end;
5429                unsigned state_flags;
5430
5431                node = rb_first(&io_tree->state);
5432                state = rb_entry(node, struct extent_state, rb_node);
5433                start = state->start;
5434                end = state->end;
5435                state_flags = state->state;
5436                spin_unlock(&io_tree->lock);
5437
5438                lock_extent_bits(io_tree, start, end, &cached_state);
5439
5440                /*
5441                 * If still has DELALLOC flag, the extent didn't reach disk,
5442                 * and its reserved space won't be freed by delayed_ref.
5443                 * So we need to free its reserved space here.
5444                 * (Refer to comment in btrfs_invalidatepage, case 2)
5445                 *
5446                 * Note, end is the bytenr of last byte, so we need + 1 here.
5447                 */
5448                if (state_flags & EXTENT_DELALLOC)
5449                        btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5450                                               end - start + 1);
5451
5452                clear_extent_bit(io_tree, start, end,
5453                                 EXTENT_LOCKED | EXTENT_DELALLOC |
5454                                 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5455                                 &cached_state);
5456
5457                cond_resched();
5458                spin_lock(&io_tree->lock);
5459        }
5460        spin_unlock(&io_tree->lock);
5461}
5462
5463static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5464                                                        struct btrfs_block_rsv *rsv)
5465{
5466        struct btrfs_fs_info *fs_info = root->fs_info;
5467        struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5468        struct btrfs_trans_handle *trans;
5469        u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5470        int ret;
5471
5472        /*
5473         * Eviction should be taking place at some place safe because of our
5474         * delayed iputs.  However the normal flushing code will run delayed
5475         * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5476         *
5477         * We reserve the delayed_refs_extra here again because we can't use
5478         * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5479         * above.  We reserve our extra bit here because we generate a ton of
5480         * delayed refs activity by truncating.
5481         *
5482         * If we cannot make our reservation we'll attempt to steal from the
5483         * global reserve, because we really want to be able to free up space.
5484         */
5485        ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5486                                     BTRFS_RESERVE_FLUSH_EVICT);
5487        if (ret) {
5488                /*
5489                 * Try to steal from the global reserve if there is space for
5490                 * it.
5491                 */
5492                if (btrfs_check_space_for_delayed_refs(fs_info) ||
5493                    btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5494                        btrfs_warn(fs_info,
5495                                   "could not allocate space for delete; will truncate on mount");
5496                        return ERR_PTR(-ENOSPC);
5497                }
5498                delayed_refs_extra = 0;
5499        }
5500
5501        trans = btrfs_join_transaction(root);
5502        if (IS_ERR(trans))
5503                return trans;
5504
5505        if (delayed_refs_extra) {
5506                trans->block_rsv = &fs_info->trans_block_rsv;
5507                trans->bytes_reserved = delayed_refs_extra;
5508                btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5509                                        delayed_refs_extra, 1);
5510        }
5511        return trans;
5512}
5513
5514void btrfs_evict_inode(struct inode *inode)
5515{
5516        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5517        struct btrfs_trans_handle *trans;
5518        struct btrfs_root *root = BTRFS_I(inode)->root;
5519        struct btrfs_block_rsv *rsv;
5520        int ret;
5521
5522        trace_btrfs_inode_evict(inode);
5523
5524        if (!root) {
5525                clear_inode(inode);
5526                return;
5527        }
5528
5529        evict_inode_truncate_pages(inode);
5530
5531        if (inode->i_nlink &&
5532            ((btrfs_root_refs(&root->root_item) != 0 &&
5533              root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5534             btrfs_is_free_space_inode(BTRFS_I(inode))))
5535                goto no_delete;
5536
5537        if (is_bad_inode(inode))
5538                goto no_delete;
5539
5540        btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5541
5542        if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5543                goto no_delete;
5544
5545        if (inode->i_nlink > 0) {
5546                BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5547                       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5548                goto no_delete;
5549        }
5550
5551        ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5552        if (ret)
5553                goto no_delete;
5554
5555        rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5556        if (!rsv)
5557                goto no_delete;
5558        rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5559        rsv->failfast = 1;
5560
5561        btrfs_i_size_write(BTRFS_I(inode), 0);
5562
5563        while (1) {
5564                trans = evict_refill_and_join(root, rsv);
5565                if (IS_ERR(trans))
5566                        goto free_rsv;
5567
5568                trans->block_rsv = rsv;
5569
5570                ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode),
5571                                                 0, 0, NULL);
5572                trans->block_rsv = &fs_info->trans_block_rsv;
5573                btrfs_end_transaction(trans);
5574                btrfs_btree_balance_dirty(fs_info);
5575                if (ret && ret != -ENOSPC && ret != -EAGAIN)
5576                        goto free_rsv;
5577                else if (!ret)
5578                        break;
5579        }
5580
5581        /*
5582         * Errors here aren't a big deal, it just means we leave orphan items in
5583         * the tree. They will be cleaned up on the next mount. If the inode
5584         * number gets reused, cleanup deletes the orphan item without doing
5585         * anything, and unlink reuses the existing orphan item.
5586         *
5587         * If it turns out that we are dropping too many of these, we might want
5588         * to add a mechanism for retrying these after a commit.
5589         */
5590        trans = evict_refill_and_join(root, rsv);
5591        if (!IS_ERR(trans)) {
5592                trans->block_rsv = rsv;
5593                btrfs_orphan_del(trans, BTRFS_I(inode));
5594                trans->block_rsv = &fs_info->trans_block_rsv;
5595                btrfs_end_transaction(trans);
5596        }
5597
5598free_rsv:
5599        btrfs_free_block_rsv(fs_info, rsv);
5600no_delete:
5601        /*
5602         * If we didn't successfully delete, the orphan item will still be in
5603         * the tree and we'll retry on the next mount. Again, we might also want
5604         * to retry these periodically in the future.
5605         */
5606        btrfs_remove_delayed_node(BTRFS_I(inode));
5607        clear_inode(inode);
5608}
5609
5610/*
5611 * Return the key found in the dir entry in the location pointer, fill @type
5612 * with BTRFS_FT_*, and return 0.
5613 *
5614 * If no dir entries were found, returns -ENOENT.
5615 * If found a corrupted location in dir entry, returns -EUCLEAN.
5616 */
5617static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5618                               struct btrfs_key *location, u8 *type)
5619{
5620        const char *name = dentry->d_name.name;
5621        int namelen = dentry->d_name.len;
5622        struct btrfs_dir_item *di;
5623        struct btrfs_path *path;
5624        struct btrfs_root *root = BTRFS_I(dir)->root;
5625        int ret = 0;
5626
5627        path = btrfs_alloc_path();
5628        if (!path)
5629                return -ENOMEM;
5630
5631        di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5632                        name, namelen, 0);
5633        if (IS_ERR_OR_NULL(di)) {
5634                ret = di ? PTR_ERR(di) : -ENOENT;
5635                goto out;
5636        }
5637
5638        btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5639        if (location->type != BTRFS_INODE_ITEM_KEY &&
5640            location->type != BTRFS_ROOT_ITEM_KEY) {
5641                ret = -EUCLEAN;
5642                btrfs_warn(root->fs_info,
5643"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5644                           __func__, name, btrfs_ino(BTRFS_I(dir)),
5645                           location->objectid, location->type, location->offset);
5646        }
5647        if (!ret)
5648                *type = btrfs_dir_type(path->nodes[0], di);
5649out:
5650        btrfs_free_path(path);
5651        return ret;
5652}
5653
5654/*
5655 * when we hit a tree root in a directory, the btrfs part of the inode
5656 * needs to be changed to reflect the root directory of the tree root.  This
5657 * is kind of like crossing a mount point.
5658 */
5659static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5660                                    struct inode *dir,
5661                                    struct dentry *dentry,
5662                                    struct btrfs_key *location,
5663                                    struct btrfs_root **sub_root)
5664{
5665        struct btrfs_path *path;
5666        struct btrfs_root *new_root;
5667        struct btrfs_root_ref *ref;
5668        struct extent_buffer *leaf;
5669        struct btrfs_key key;
5670        int ret;
5671        int err = 0;
5672
5673        path = btrfs_alloc_path();
5674        if (!path) {
5675                err = -ENOMEM;
5676                goto out;
5677        }
5678
5679        err = -ENOENT;
5680        key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5681        key.type = BTRFS_ROOT_REF_KEY;
5682        key.offset = location->objectid;
5683
5684        ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5685        if (ret) {
5686                if (ret < 0)
5687                        err = ret;
5688                goto out;
5689        }
5690
5691        leaf = path->nodes[0];
5692        ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5693        if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5694            btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5695                goto out;
5696
5697        ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5698                                   (unsigned long)(ref + 1),
5699                                   dentry->d_name.len);
5700        if (ret)
5701                goto out;
5702
5703        btrfs_release_path(path);
5704
5705        new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5706        if (IS_ERR(new_root)) {
5707                err = PTR_ERR(new_root);
5708                goto out;
5709        }
5710
5711        *sub_root = new_root;
5712        location->objectid = btrfs_root_dirid(&new_root->root_item);
5713        location->type = BTRFS_INODE_ITEM_KEY;
5714        location->offset = 0;
5715        err = 0;
5716out:
5717        btrfs_free_path(path);
5718        return err;
5719}
5720
5721static void inode_tree_add(struct inode *inode)
5722{
5723        struct btrfs_root *root = BTRFS_I(inode)->root;
5724        struct btrfs_inode *entry;
5725        struct rb_node **p;
5726        struct rb_node *parent;
5727        struct rb_node *new = &BTRFS_I(inode)->rb_node;
5728        u64 ino = btrfs_ino(BTRFS_I(inode));
5729
5730        if (inode_unhashed(inode))
5731                return;
5732        parent = NULL;
5733        spin_lock(&root->inode_lock);
5734        p = &root->inode_tree.rb_node;
5735        while (*p) {
5736                parent = *p;
5737                entry = rb_entry(parent, struct btrfs_inode, rb_node);
5738
5739                if (ino < btrfs_ino(entry))
5740                        p = &parent->rb_left;
5741                else if (ino > btrfs_ino(entry))
5742                        p = &parent->rb_right;
5743                else {
5744                        WARN_ON(!(entry->vfs_inode.i_state &
5745                                  (I_WILL_FREE | I_FREEING)));
5746                        rb_replace_node(parent, new, &root->inode_tree);
5747                        RB_CLEAR_NODE(parent);
5748                        spin_unlock(&root->inode_lock);
5749                        return;
5750                }
5751        }
5752        rb_link_node(new, parent, p);
5753        rb_insert_color(new, &root->inode_tree);
5754        spin_unlock(&root->inode_lock);
5755}
5756
5757static void inode_tree_del(struct btrfs_inode *inode)
5758{
5759        struct btrfs_root *root = inode->root;
5760        int empty = 0;
5761
5762        spin_lock(&root->inode_lock);
5763        if (!RB_EMPTY_NODE(&inode->rb_node)) {
5764                rb_erase(&inode->rb_node, &root->inode_tree);
5765                RB_CLEAR_NODE(&inode->rb_node);
5766                empty = RB_EMPTY_ROOT(&root->inode_tree);
5767        }
5768        spin_unlock(&root->inode_lock);
5769
5770        if (empty && btrfs_root_refs(&root->root_item) == 0) {
5771                spin_lock(&root->inode_lock);
5772                empty = RB_EMPTY_ROOT(&root->inode_tree);
5773                spin_unlock(&root->inode_lock);
5774                if (empty)
5775                        btrfs_add_dead_root(root);
5776        }
5777}
5778
5779
5780static int btrfs_init_locked_inode(struct inode *inode, void *p)
5781{
5782        struct btrfs_iget_args *args = p;
5783
5784        inode->i_ino = args->ino;
5785        BTRFS_I(inode)->location.objectid = args->ino;
5786        BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5787        BTRFS_I(inode)->location.offset = 0;
5788        BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5789        BUG_ON(args->root && !BTRFS_I(inode)->root);
5790        return 0;
5791}
5792
5793static int btrfs_find_actor(struct inode *inode, void *opaque)
5794{
5795        struct btrfs_iget_args *args = opaque;
5796
5797        return args->ino == BTRFS_I(inode)->location.objectid &&
5798                args->root == BTRFS_I(inode)->root;
5799}
5800
5801static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5802                                       struct btrfs_root *root)
5803{
5804        struct inode *inode;
5805        struct btrfs_iget_args args;
5806        unsigned long hashval = btrfs_inode_hash(ino, root);
5807
5808        args.ino = ino;
5809        args.root = root;
5810
5811        inode = iget5_locked(s, hashval, btrfs_find_actor,
5812                             btrfs_init_locked_inode,
5813                             (void *)&args);
5814        return inode;
5815}
5816
5817/*
5818 * Get an inode object given its inode number and corresponding root.
5819 * Path can be preallocated to prevent recursing back to iget through
5820 * allocator. NULL is also valid but may require an additional allocation
5821 * later.
5822 */
5823struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5824                              struct btrfs_root *root, struct btrfs_path *path)
5825{
5826        struct inode *inode;
5827
5828        inode = btrfs_iget_locked(s, ino, root);
5829        if (!inode)
5830                return ERR_PTR(-ENOMEM);
5831
5832        if (inode->i_state & I_NEW) {
5833                int ret;
5834
5835                ret = btrfs_read_locked_inode(inode, path);
5836                if (!ret) {
5837                        inode_tree_add(inode);
5838                        unlock_new_inode(inode);
5839                } else {
5840                        iget_failed(inode);
5841                        /*
5842                         * ret > 0 can come from btrfs_search_slot called by
5843                         * btrfs_read_locked_inode, this means the inode item
5844                         * was not found.
5845                         */
5846                        if (ret > 0)
5847                                ret = -ENOENT;
5848                        inode = ERR_PTR(ret);
5849                }
5850        }
5851
5852        return inode;
5853}
5854
5855struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5856{
5857        return btrfs_iget_path(s, ino, root, NULL);
5858}
5859
5860static struct inode *new_simple_dir(struct super_block *s,
5861                                    struct btrfs_key *key,
5862                                    struct btrfs_root *root)
5863{
5864        struct inode *inode = new_inode(s);
5865
5866        if (!inode)
5867                return ERR_PTR(-ENOMEM);
5868
5869        BTRFS_I(inode)->root = btrfs_grab_root(root);
5870        memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5871        set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5872
5873        inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5874        /*
5875         * We only need lookup, the rest is read-only and there's no inode
5876         * associated with the dentry
5877         */
5878        inode->i_op = &simple_dir_inode_operations;
5879        inode->i_opflags &= ~IOP_XATTR;
5880        inode->i_fop = &simple_dir_operations;
5881        inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5882        inode->i_mtime = current_time(inode);
5883        inode->i_atime = inode->i_mtime;
5884        inode->i_ctime = inode->i_mtime;
5885        BTRFS_I(inode)->i_otime = inode->i_mtime;
5886
5887        return inode;
5888}
5889
5890static inline u8 btrfs_inode_type(struct inode *inode)
5891{
5892        /*
5893         * Compile-time asserts that generic FT_* types still match
5894         * BTRFS_FT_* types
5895         */
5896        BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5897        BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5898        BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5899        BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5900        BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5901        BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5902        BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5903        BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5904
5905        return fs_umode_to_ftype(inode->i_mode);
5906}
5907
5908struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5909{
5910        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5911        struct inode *inode;
5912        struct btrfs_root *root = BTRFS_I(dir)->root;
5913        struct btrfs_root *sub_root = root;
5914        struct btrfs_key location;
5915        u8 di_type = 0;
5916        int ret = 0;
5917
5918        if (dentry->d_name.len > BTRFS_NAME_LEN)
5919                return ERR_PTR(-ENAMETOOLONG);
5920
5921        ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5922        if (ret < 0)
5923                return ERR_PTR(ret);
5924
5925        if (location.type == BTRFS_INODE_ITEM_KEY) {
5926                inode = btrfs_iget(dir->i_sb, location.objectid, root);
5927                if (IS_ERR(inode))
5928                        return inode;
5929
5930                /* Do extra check against inode mode with di_type */
5931                if (btrfs_inode_type(inode) != di_type) {
5932                        btrfs_crit(fs_info,
5933"inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5934                                  inode->i_mode, btrfs_inode_type(inode),
5935                                  di_type);
5936                        iput(inode);
5937                        return ERR_PTR(-EUCLEAN);
5938                }
5939                return inode;
5940        }
5941
5942        ret = fixup_tree_root_location(fs_info, dir, dentry,
5943                                       &location, &sub_root);
5944        if (ret < 0) {
5945                if (ret != -ENOENT)
5946                        inode = ERR_PTR(ret);
5947                else
5948                        inode = new_simple_dir(dir->i_sb, &location, sub_root);
5949        } else {
5950                inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5951        }
5952        if (root != sub_root)
5953                btrfs_put_root(sub_root);
5954
5955        if (!IS_ERR(inode) && root != sub_root) {
5956                down_read(&fs_info->cleanup_work_sem);
5957                if (!sb_rdonly(inode->i_sb))
5958                        ret = btrfs_orphan_cleanup(sub_root);
5959                up_read(&fs_info->cleanup_work_sem);
5960                if (ret) {
5961                        iput(inode);
5962                        inode = ERR_PTR(ret);
5963                }
5964        }
5965
5966        return inode;
5967}
5968
5969static int btrfs_dentry_delete(const struct dentry *dentry)
5970{
5971        struct btrfs_root *root;
5972        struct inode *inode = d_inode(dentry);
5973
5974        if (!inode && !IS_ROOT(dentry))
5975                inode = d_inode(dentry->d_parent);
5976
5977        if (inode) {
5978                root = BTRFS_I(inode)->root;
5979                if (btrfs_root_refs(&root->root_item) == 0)
5980                        return 1;
5981
5982                if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5983                        return 1;
5984        }
5985        return 0;
5986}
5987
5988static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5989                                   unsigned int flags)
5990{
5991        struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5992
5993        if (inode == ERR_PTR(-ENOENT))
5994                inode = NULL;
5995        return d_splice_alias(inode, dentry);
5996}
5997
5998/*
5999 * All this infrastructure exists because dir_emit can fault, and we are holding
6000 * the tree lock when doing readdir.  For now just allocate a buffer and copy
6001 * our information into that, and then dir_emit from the buffer.  This is
6002 * similar to what NFS does, only we don't keep the buffer around in pagecache
6003 * because I'm afraid I'll mess that up.  Long term we need to make filldir do
6004 * copy_to_user_inatomic so we don't have to worry about page faulting under the
6005 * tree lock.
6006 */
6007static int btrfs_opendir(struct inode *inode, struct file *file)
6008{
6009        struct btrfs_file_private *private;
6010
6011        private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
6012        if (!private)
6013                return -ENOMEM;
6014        private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
6015        if (!private->filldir_buf) {
6016                kfree(private);
6017                return -ENOMEM;
6018        }
6019        file->private_data = private;
6020        return 0;
6021}
6022
6023struct dir_entry {
6024        u64 ino;
6025        u64 offset;
6026        unsigned type;
6027        int name_len;
6028};
6029
6030static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
6031{
6032        while (entries--) {
6033                struct dir_entry *entry = addr;
6034                char *name = (char *)(entry + 1);
6035
6036                ctx->pos = get_unaligned(&entry->offset);
6037                if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
6038                                         get_unaligned(&entry->ino),
6039                                         get_unaligned(&entry->type)))
6040                        return 1;
6041                addr += sizeof(struct dir_entry) +
6042                        get_unaligned(&entry->name_len);
6043                ctx->pos++;
6044        }
6045        return 0;
6046}
6047
6048static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
6049{
6050        struct inode *inode = file_inode(file);
6051        struct btrfs_root *root = BTRFS_I(inode)->root;
6052        struct btrfs_file_private *private = file->private_data;
6053        struct btrfs_dir_item *di;
6054        struct btrfs_key key;
6055        struct btrfs_key found_key;
6056        struct btrfs_path *path;
6057        void *addr;
6058        struct list_head ins_list;
6059        struct list_head del_list;
6060        int ret;
6061        struct extent_buffer *leaf;
6062        int slot;
6063        char *name_ptr;
6064        int name_len;
6065        int entries = 0;
6066        int total_len = 0;
6067        bool put = false;
6068        struct btrfs_key location;
6069
6070        if (!dir_emit_dots(file, ctx))
6071                return 0;
6072
6073        path = btrfs_alloc_path();
6074        if (!path)
6075                return -ENOMEM;
6076
6077        addr = private->filldir_buf;
6078        path->reada = READA_FORWARD;
6079
6080        INIT_LIST_HEAD(&ins_list);
6081        INIT_LIST_HEAD(&del_list);
6082        put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
6083
6084again:
6085        key.type = BTRFS_DIR_INDEX_KEY;
6086        key.offset = ctx->pos;
6087        key.objectid = btrfs_ino(BTRFS_I(inode));
6088
6089        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6090        if (ret < 0)
6091                goto err;
6092
6093        while (1) {
6094                struct dir_entry *entry;
6095
6096                leaf = path->nodes[0];
6097                slot = path->slots[0];
6098                if (slot >= btrfs_header_nritems(leaf)) {
6099                        ret = btrfs_next_leaf(root, path);
6100                        if (ret < 0)
6101                                goto err;
6102                        else if (ret > 0)
6103                                break;
6104                        continue;
6105                }
6106
6107                btrfs_item_key_to_cpu(leaf, &found_key, slot);
6108
6109                if (found_key.objectid != key.objectid)
6110                        break;
6111                if (found_key.type != BTRFS_DIR_INDEX_KEY)
6112                        break;
6113                if (found_key.offset < ctx->pos)
6114                        goto next;
6115                if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6116                        goto next;
6117                di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
6118                name_len = btrfs_dir_name_len(leaf, di);
6119                if ((total_len + sizeof(struct dir_entry) + name_len) >=
6120                    PAGE_SIZE) {
6121                        btrfs_release_path(path);
6122                        ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6123                        if (ret)
6124                                goto nopos;
6125                        addr = private->filldir_buf;
6126                        entries = 0;
6127                        total_len = 0;
6128                        goto again;
6129                }
6130
6131                entry = addr;
6132                put_unaligned(name_len, &entry->name_len);
6133                name_ptr = (char *)(entry + 1);
6134                read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6135                                   name_len);
6136                put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
6137                                &entry->type);
6138                btrfs_dir_item_key_to_cpu(leaf, di, &location);
6139                put_unaligned(location.objectid, &entry->ino);
6140                put_unaligned(found_key.offset, &entry->offset);
6141                entries++;
6142                addr += sizeof(struct dir_entry) + name_len;
6143                total_len += sizeof(struct dir_entry) + name_len;
6144next:
6145                path->slots[0]++;
6146        }
6147        btrfs_release_path(path);
6148
6149        ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6150        if (ret)
6151                goto nopos;
6152
6153        ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6154        if (ret)
6155                goto nopos;
6156
6157        /*
6158         * Stop new entries from being returned after we return the last
6159         * entry.
6160         *
6161         * New directory entries are assigned a strictly increasing
6162         * offset.  This means that new entries created during readdir
6163         * are *guaranteed* to be seen in the future by that readdir.
6164         * This has broken buggy programs which operate on names as
6165         * they're returned by readdir.  Until we re-use freed offsets
6166         * we have this hack to stop new entries from being returned
6167         * under the assumption that they'll never reach this huge
6168         * offset.
6169         *
6170         * This is being careful not to overflow 32bit loff_t unless the
6171         * last entry requires it because doing so has broken 32bit apps
6172         * in the past.
6173         */
6174        if (ctx->pos >= INT_MAX)
6175                ctx->pos = LLONG_MAX;
6176        else
6177                ctx->pos = INT_MAX;
6178nopos:
6179        ret = 0;
6180err:
6181        if (put)
6182                btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6183        btrfs_free_path(path);
6184        return ret;
6185}
6186
6187/*
6188 * This is somewhat expensive, updating the tree every time the
6189 * inode changes.  But, it is most likely to find the inode in cache.
6190 * FIXME, needs more benchmarking...there are no reasons other than performance
6191 * to keep or drop this code.
6192 */
6193static int btrfs_dirty_inode(struct inode *inode)
6194{
6195        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6196        struct btrfs_root *root = BTRFS_I(inode)->root;
6197        struct btrfs_trans_handle *trans;
6198        int ret;
6199
6200        if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6201                return 0;
6202
6203        trans = btrfs_join_transaction(root);
6204        if (IS_ERR(trans))
6205                return PTR_ERR(trans);
6206
6207        ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
6208        if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
6209                /* whoops, lets try again with the full transaction */
6210                btrfs_end_transaction(trans);
6211                trans = btrfs_start_transaction(root, 1);
6212                if (IS_ERR(trans))
6213                        return PTR_ERR(trans);
6214
6215                ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
6216        }
6217        btrfs_end_transaction(trans);
6218        if (BTRFS_I(inode)->delayed_node)
6219                btrfs_balance_delayed_items(fs_info);
6220
6221        return ret;
6222}
6223
6224/*
6225 * This is a copy of file_update_time.  We need this so we can return error on
6226 * ENOSPC for updating the inode in the case of file write and mmap writes.
6227 */
6228static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6229                             int flags)
6230{
6231        struct btrfs_root *root = BTRFS_I(inode)->root;
6232        bool dirty = flags & ~S_VERSION;
6233
6234        if (btrfs_root_readonly(root))
6235                return -EROFS;
6236
6237        if (flags & S_VERSION)
6238                dirty |= inode_maybe_inc_iversion(inode, dirty);
6239        if (flags & S_CTIME)
6240                inode->i_ctime = *now;
6241        if (flags & S_MTIME)
6242                inode->i_mtime = *now;
6243        if (flags & S_ATIME)
6244                inode->i_atime = *now;
6245        return dirty ? btrfs_dirty_inode(inode) : 0;
6246}
6247
6248/*
6249 * find the highest existing sequence number in a directory
6250 * and then set the in-memory index_cnt variable to reflect
6251 * free sequence numbers
6252 */
6253static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6254{
6255        struct btrfs_root *root = inode->root;
6256        struct btrfs_key key, found_key;
6257        struct btrfs_path *path;
6258        struct extent_buffer *leaf;
6259        int ret;
6260
6261        key.objectid = btrfs_ino(inode);
6262        key.type = BTRFS_DIR_INDEX_KEY;
6263        key.offset = (u64)-1;
6264
6265        path = btrfs_alloc_path();
6266        if (!path)
6267                return -ENOMEM;
6268
6269        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6270        if (ret < 0)
6271                goto out;
6272        /* FIXME: we should be able to handle this */
6273        if (ret == 0)
6274                goto out;
6275        ret = 0;
6276
6277        /*
6278         * MAGIC NUMBER EXPLANATION:
6279         * since we search a directory based on f_pos we have to start at 2
6280         * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6281         * else has to start at 2
6282         */
6283        if (path->slots[0] == 0) {
6284                inode->index_cnt = 2;
6285                goto out;
6286        }
6287
6288        path->slots[0]--;
6289
6290        leaf = path->nodes[0];
6291        btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6292
6293        if (found_key.objectid != btrfs_ino(inode) ||
6294            found_key.type != BTRFS_DIR_INDEX_KEY) {
6295                inode->index_cnt = 2;
6296                goto out;
6297        }
6298
6299        inode->index_cnt = found_key.offset + 1;
6300out:
6301        btrfs_free_path(path);
6302        return ret;
6303}
6304
6305/*
6306 * helper to find a free sequence number in a given directory.  This current
6307 * code is very simple, later versions will do smarter things in the btree
6308 */
6309int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6310{
6311        int ret = 0;
6312
6313        if (dir->index_cnt == (u64)-1) {
6314                ret = btrfs_inode_delayed_dir_index_count(dir);
6315                if (ret) {
6316                        ret = btrfs_set_inode_index_count(dir);
6317                        if (ret)
6318                                return ret;
6319                }
6320        }
6321
6322        *index = dir->index_cnt;
6323        dir->index_cnt++;
6324
6325        return ret;
6326}
6327
6328static int btrfs_insert_inode_locked(struct inode *inode)
6329{
6330        struct btrfs_iget_args args;
6331
6332        args.ino = BTRFS_I(inode)->location.objectid;
6333        args.root = BTRFS_I(inode)->root;
6334
6335        return insert_inode_locked4(inode,
6336                   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6337                   btrfs_find_actor, &args);
6338}
6339
6340/*
6341 * Inherit flags from the parent inode.
6342 *
6343 * Currently only the compression flags and the cow flags are inherited.
6344 */
6345static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6346{
6347        unsigned int flags;
6348
6349        if (!dir)
6350                return;
6351
6352        flags = BTRFS_I(dir)->flags;
6353
6354        if (flags & BTRFS_INODE_NOCOMPRESS) {
6355                BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6356                BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6357        } else if (flags & BTRFS_INODE_COMPRESS) {
6358                BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6359                BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6360        }
6361
6362        if (flags & BTRFS_INODE_NODATACOW) {
6363                BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6364                if (S_ISREG(inode->i_mode))
6365                        BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6366        }
6367
6368        btrfs_sync_inode_flags_to_i_flags(inode);
6369}
6370
6371static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6372                                     struct btrfs_root *root,
6373                                     struct inode *dir,
6374                                     const char *name, int name_len,
6375                                     u64 ref_objectid, u64 objectid,
6376                                     umode_t mode, u64 *index)
6377{
6378        struct btrfs_fs_info *fs_info = root->fs_info;
6379        struct inode *inode;
6380        struct btrfs_inode_item *inode_item;
6381        struct btrfs_key *location;
6382        struct btrfs_path *path;
6383        struct btrfs_inode_ref *ref;
6384        struct btrfs_key key[2];
6385        u32 sizes[2];
6386        int nitems = name ? 2 : 1;
6387        unsigned long ptr;
6388        unsigned int nofs_flag;
6389        int ret;
6390
6391        path = btrfs_alloc_path();
6392        if (!path)
6393                return ERR_PTR(-ENOMEM);
6394
6395        nofs_flag = memalloc_nofs_save();
6396        inode = new_inode(fs_info->sb);
6397        memalloc_nofs_restore(nofs_flag);
6398        if (!inode) {
6399                btrfs_free_path(path);
6400                return ERR_PTR(-ENOMEM);
6401        }
6402
6403        /*
6404         * O_TMPFILE, set link count to 0, so that after this point,
6405         * we fill in an inode item with the correct link count.
6406         */
6407        if (!name)
6408                set_nlink(inode, 0);
6409
6410        /*
6411         * we have to initialize this early, so we can reclaim the inode
6412         * number if we fail afterwards in this function.
6413         */
6414        inode->i_ino = objectid;
6415
6416        if (dir && name) {
6417                trace_btrfs_inode_request(dir);
6418
6419                ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6420                if (ret) {
6421                        btrfs_free_path(path);
6422                        iput(inode);
6423                        return ERR_PTR(ret);
6424                }
6425        } else if (dir) {
6426                *index = 0;
6427        }
6428        /*
6429         * index_cnt is ignored for everything but a dir,
6430         * btrfs_set_inode_index_count has an explanation for the magic
6431         * number
6432         */
6433        BTRFS_I(inode)->index_cnt = 2;
6434        BTRFS_I(inode)->dir_index = *index;
6435        BTRFS_I(inode)->root = btrfs_grab_root(root);
6436        BTRFS_I(inode)->generation = trans->transid;
6437        inode->i_generation = BTRFS_I(inode)->generation;
6438
6439        /*
6440         * We could have gotten an inode number from somebody who was fsynced
6441         * and then removed in this same transaction, so let's just set full
6442         * sync since it will be a full sync anyway and this will blow away the
6443         * old info in the log.
6444         */
6445        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6446
6447        key[0].objectid = objectid;
6448        key[0].type = BTRFS_INODE_ITEM_KEY;
6449        key[0].offset = 0;
6450
6451        sizes[0] = sizeof(struct btrfs_inode_item);
6452
6453        if (name) {
6454                /*
6455                 * Start new inodes with an inode_ref. This is slightly more
6456                 * efficient for small numbers of hard links since they will
6457                 * be packed into one item. Extended refs will kick in if we
6458                 * add more hard links than can fit in the ref item.
6459                 */
6460                key[1].objectid = objectid;
6461                key[1].type = BTRFS_INODE_REF_KEY;
6462                key[1].offset = ref_objectid;
6463
6464                sizes[1] = name_len + sizeof(*ref);
6465        }
6466
6467        location = &BTRFS_I(inode)->location;
6468        location->objectid = objectid;
6469        location->offset = 0;
6470        location->type = BTRFS_INODE_ITEM_KEY;
6471
6472        ret = btrfs_insert_inode_locked(inode);
6473        if (ret < 0) {
6474                iput(inode);
6475                goto fail;
6476        }
6477
6478        ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6479        if (ret != 0)
6480                goto fail_unlock;
6481
6482        inode_init_owner(&init_user_ns, inode, dir, mode);
6483        inode_set_bytes(inode, 0);
6484
6485        inode->i_mtime = current_time(inode);
6486        inode->i_atime = inode->i_mtime;
6487        inode->i_ctime = inode->i_mtime;
6488        BTRFS_I(inode)->i_otime = inode->i_mtime;
6489
6490        inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6491                                  struct btrfs_inode_item);
6492        memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6493                             sizeof(*inode_item));
6494        fill_inode_item(trans, path->nodes[0], inode_item, inode);
6495
6496        if (name) {
6497                ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6498                                     struct btrfs_inode_ref);
6499                btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6500                btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6501                ptr = (unsigned long)(ref + 1);
6502                write_extent_buffer(path->nodes[0], name, ptr, name_len);
6503        }
6504
6505        btrfs_mark_buffer_dirty(path->nodes[0]);
6506        btrfs_free_path(path);
6507
6508        btrfs_inherit_iflags(inode, dir);
6509
6510        if (S_ISREG(mode)) {
6511                if (btrfs_test_opt(fs_info, NODATASUM))
6512                        BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6513                if (btrfs_test_opt(fs_info, NODATACOW))
6514                        BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6515                                BTRFS_INODE_NODATASUM;
6516        }
6517
6518        inode_tree_add(inode);
6519
6520        trace_btrfs_inode_new(inode);
6521        btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6522
6523        btrfs_update_root_times(trans, root);
6524
6525        ret = btrfs_inode_inherit_props(trans, inode, dir);
6526        if (ret)
6527                btrfs_err(fs_info,
6528                          "error inheriting props for ino %llu (root %llu): %d",
6529                        btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6530
6531        return inode;
6532
6533fail_unlock:
6534        discard_new_inode(inode);
6535fail:
6536        if (dir && name)
6537                BTRFS_I(dir)->index_cnt--;
6538        btrfs_free_path(path);
6539        return ERR_PTR(ret);
6540}
6541
6542/*
6543 * utility function to add 'inode' into 'parent_inode' with
6544 * a give name and a given sequence number.
6545 * if 'add_backref' is true, also insert a backref from the
6546 * inode to the parent directory.
6547 */
6548int btrfs_add_link(struct btrfs_trans_handle *trans,
6549                   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6550                   const char *name, int name_len, int add_backref, u64 index)
6551{
6552        int ret = 0;
6553        struct btrfs_key key;
6554        struct btrfs_root *root = parent_inode->root;
6555        u64 ino = btrfs_ino(inode);
6556        u64 parent_ino = btrfs_ino(parent_inode);
6557
6558        if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6559                memcpy(&key, &inode->root->root_key, sizeof(key));
6560        } else {
6561                key.objectid = ino;
6562                key.type = BTRFS_INODE_ITEM_KEY;
6563                key.offset = 0;
6564        }
6565
6566        if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6567                ret = btrfs_add_root_ref(trans, key.objectid,
6568                                         root->root_key.objectid, parent_ino,
6569                                         index, name, name_len);
6570        } else if (add_backref) {
6571                ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6572                                             parent_ino, index);
6573        }
6574
6575        /* Nothing to clean up yet */
6576        if (ret)
6577                return ret;
6578
6579        ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6580                                    btrfs_inode_type(&inode->vfs_inode), index);
6581        if (ret == -EEXIST || ret == -EOVERFLOW)
6582                goto fail_dir_item;
6583        else if (ret) {
6584                btrfs_abort_transaction(trans, ret);
6585                return ret;
6586        }
6587
6588        btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6589                           name_len * 2);
6590        inode_inc_iversion(&parent_inode->vfs_inode);
6591        /*
6592         * If we are replaying a log tree, we do not want to update the mtime
6593         * and ctime of the parent directory with the current time, since the
6594         * log replay procedure is responsible for setting them to their correct
6595         * values (the ones it had when the fsync was done).
6596         */
6597        if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6598                struct timespec64 now = current_time(&parent_inode->vfs_inode);
6599
6600                parent_inode->vfs_inode.i_mtime = now;
6601                parent_inode->vfs_inode.i_ctime = now;
6602        }
6603        ret = btrfs_update_inode(trans, root, parent_inode);
6604        if (ret)
6605                btrfs_abort_transaction(trans, ret);
6606        return ret;
6607
6608fail_dir_item:
6609        if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6610                u64 local_index;
6611                int err;
6612                err = btrfs_del_root_ref(trans, key.objectid,
6613                                         root->root_key.objectid, parent_ino,
6614                                         &local_index, name, name_len);
6615                if (err)
6616                        btrfs_abort_transaction(trans, err);
6617        } else if (add_backref) {
6618                u64 local_index;
6619                int err;
6620
6621                err = btrfs_del_inode_ref(trans, root, name, name_len,
6622                                          ino, parent_ino, &local_index);
6623                if (err)
6624                        btrfs_abort_transaction(trans, err);
6625        }
6626
6627        /* Return the original error code */
6628        return ret;
6629}
6630
6631static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6632                            struct btrfs_inode *dir, struct dentry *dentry,
6633                            struct btrfs_inode *inode, int backref, u64 index)
6634{
6635        int err = btrfs_add_link(trans, dir, inode,
6636                                 dentry->d_name.name, dentry->d_name.len,
6637                                 backref, index);
6638        if (err > 0)
6639                err = -EEXIST;
6640        return err;
6641}
6642
6643static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
6644                       struct dentry *dentry, umode_t mode, dev_t rdev)
6645{
6646        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6647        struct btrfs_trans_handle *trans;
6648        struct btrfs_root *root = BTRFS_I(dir)->root;
6649        struct inode *inode = NULL;
6650        int err;
6651        u64 objectid;
6652        u64 index = 0;
6653
6654        /*
6655         * 2 for inode item and ref
6656         * 2 for dir items
6657         * 1 for xattr if selinux is on
6658         */
6659        trans = btrfs_start_transaction(root, 5);
6660        if (IS_ERR(trans))
6661                return PTR_ERR(trans);
6662
6663        err = btrfs_get_free_objectid(root, &objectid);
6664        if (err)
6665                goto out_unlock;
6666
6667        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6668                        dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6669                        mode, &index);
6670        if (IS_ERR(inode)) {
6671                err = PTR_ERR(inode);
6672                inode = NULL;
6673                goto out_unlock;
6674        }
6675
6676        /*
6677        * If the active LSM wants to access the inode during
6678        * d_instantiate it needs these. Smack checks to see
6679        * if the filesystem supports xattrs by looking at the
6680        * ops vector.
6681        */
6682        inode->i_op = &btrfs_special_inode_operations;
6683        init_special_inode(inode, inode->i_mode, rdev);
6684
6685        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6686        if (err)
6687                goto out_unlock;
6688
6689        err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6690                        0, index);
6691        if (err)
6692                goto out_unlock;
6693
6694        btrfs_update_inode(trans, root, BTRFS_I(inode));
6695        d_instantiate_new(dentry, inode);
6696
6697out_unlock:
6698        btrfs_end_transaction(trans);
6699        btrfs_btree_balance_dirty(fs_info);
6700        if (err && inode) {
6701                inode_dec_link_count(inode);
6702                discard_new_inode(inode);
6703        }
6704        return err;
6705}
6706
6707static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir,
6708                        struct dentry *dentry, umode_t mode, bool excl)
6709{
6710        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6711        struct btrfs_trans_handle *trans;
6712        struct btrfs_root *root = BTRFS_I(dir)->root;
6713        struct inode *inode = NULL;
6714        int err;
6715        u64 objectid;
6716        u64 index = 0;
6717
6718        /*
6719         * 2 for inode item and ref
6720         * 2 for dir items
6721         * 1 for xattr if selinux is on
6722         */
6723        trans = btrfs_start_transaction(root, 5);
6724        if (IS_ERR(trans))
6725                return PTR_ERR(trans);
6726
6727        err = btrfs_get_free_objectid(root, &objectid);
6728        if (err)
6729                goto out_unlock;
6730
6731        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6732                        dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6733                        mode, &index);
6734        if (IS_ERR(inode)) {
6735                err = PTR_ERR(inode);
6736                inode = NULL;
6737                goto out_unlock;
6738        }
6739        /*
6740        * If the active LSM wants to access the inode during
6741        * d_instantiate it needs these. Smack checks to see
6742        * if the filesystem supports xattrs by looking at the
6743        * ops vector.
6744        */
6745        inode->i_fop = &btrfs_file_operations;
6746        inode->i_op = &btrfs_file_inode_operations;
6747        inode->i_mapping->a_ops = &btrfs_aops;
6748
6749        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6750        if (err)
6751                goto out_unlock;
6752
6753        err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6754        if (err)
6755                goto out_unlock;
6756
6757        err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6758                        0, index);
6759        if (err)
6760                goto out_unlock;
6761
6762        d_instantiate_new(dentry, inode);
6763
6764out_unlock:
6765        btrfs_end_transaction(trans);
6766        if (err && inode) {
6767                inode_dec_link_count(inode);
6768                discard_new_inode(inode);
6769        }
6770        btrfs_btree_balance_dirty(fs_info);
6771        return err;
6772}
6773
6774static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6775                      struct dentry *dentry)
6776{
6777        struct btrfs_trans_handle *trans = NULL;
6778        struct btrfs_root *root = BTRFS_I(dir)->root;
6779        struct inode *inode = d_inode(old_dentry);
6780        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6781        u64 index;
6782        int err;
6783        int drop_inode = 0;
6784
6785        /* do not allow sys_link's with other subvols of the same device */
6786        if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6787                return -EXDEV;
6788
6789        if (inode->i_nlink >= BTRFS_LINK_MAX)
6790                return -EMLINK;
6791
6792        err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6793        if (err)
6794                goto fail;
6795
6796        /*
6797         * 2 items for inode and inode ref
6798         * 2 items for dir items
6799         * 1 item for parent inode
6800         * 1 item for orphan item deletion if O_TMPFILE
6801         */
6802        trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6803        if (IS_ERR(trans)) {
6804                err = PTR_ERR(trans);
6805                trans = NULL;
6806                goto fail;
6807        }
6808
6809        /* There are several dir indexes for this inode, clear the cache. */
6810        BTRFS_I(inode)->dir_index = 0ULL;
6811        inc_nlink(inode);
6812        inode_inc_iversion(inode);
6813        inode->i_ctime = current_time(inode);
6814        ihold(inode);
6815        set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6816
6817        err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6818                        1, index);
6819
6820        if (err) {
6821                drop_inode = 1;
6822        } else {
6823                struct dentry *parent = dentry->d_parent;
6824
6825                err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6826                if (err)
6827                        goto fail;
6828                if (inode->i_nlink == 1) {
6829                        /*
6830                         * If new hard link count is 1, it's a file created
6831                         * with open(2) O_TMPFILE flag.
6832                         */
6833                        err = btrfs_orphan_del(trans, BTRFS_I(inode));
6834                        if (err)
6835                                goto fail;
6836                }
6837                d_instantiate(dentry, inode);
6838                btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
6839        }
6840
6841fail:
6842        if (trans)
6843                btrfs_end_transaction(trans);
6844        if (drop_inode) {
6845                inode_dec_link_count(inode);
6846                iput(inode);
6847        }
6848        btrfs_btree_balance_dirty(fs_info);
6849        return err;
6850}
6851
6852static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
6853                       struct dentry *dentry, umode_t mode)
6854{
6855        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6856        struct inode *inode = NULL;
6857        struct btrfs_trans_handle *trans;
6858        struct btrfs_root *root = BTRFS_I(dir)->root;
6859        int err = 0;
6860        u64 objectid = 0;
6861        u64 index = 0;
6862
6863        /*
6864         * 2 items for inode and ref
6865         * 2 items for dir items
6866         * 1 for xattr if selinux is on
6867         */
6868        trans = btrfs_start_transaction(root, 5);
6869        if (IS_ERR(trans))
6870                return PTR_ERR(trans);
6871
6872        err = btrfs_get_free_objectid(root, &objectid);
6873        if (err)
6874                goto out_fail;
6875
6876        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6877                        dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6878                        S_IFDIR | mode, &index);
6879        if (IS_ERR(inode)) {
6880                err = PTR_ERR(inode);
6881                inode = NULL;
6882                goto out_fail;
6883        }
6884
6885        /* these must be set before we unlock the inode */
6886        inode->i_op = &btrfs_dir_inode_operations;
6887        inode->i_fop = &btrfs_dir_file_operations;
6888
6889        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6890        if (err)
6891                goto out_fail;
6892
6893        btrfs_i_size_write(BTRFS_I(inode), 0);
6894        err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6895        if (err)
6896                goto out_fail;
6897
6898        err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6899                        dentry->d_name.name,
6900                        dentry->d_name.len, 0, index);
6901        if (err)
6902                goto out_fail;
6903
6904        d_instantiate_new(dentry, inode);
6905
6906out_fail:
6907        btrfs_end_transaction(trans);
6908        if (err && inode) {
6909                inode_dec_link_count(inode);
6910                discard_new_inode(inode);
6911        }
6912        btrfs_btree_balance_dirty(fs_info);
6913        return err;
6914}
6915
6916static noinline int uncompress_inline(struct btrfs_path *path,
6917                                      struct page *page,
6918                                      size_t pg_offset, u64 extent_offset,
6919                                      struct btrfs_file_extent_item *item)
6920{
6921        int ret;
6922        struct extent_buffer *leaf = path->nodes[0];
6923        char *tmp;
6924        size_t max_size;
6925        unsigned long inline_size;
6926        unsigned long ptr;
6927        int compress_type;
6928
6929        WARN_ON(pg_offset != 0);
6930        compress_type = btrfs_file_extent_compression(leaf, item);
6931        max_size = btrfs_file_extent_ram_bytes(leaf, item);
6932        inline_size = btrfs_file_extent_inline_item_len(leaf,
6933                                        btrfs_item_nr(path->slots[0]));
6934        tmp = kmalloc(inline_size, GFP_NOFS);
6935        if (!tmp)
6936                return -ENOMEM;
6937        ptr = btrfs_file_extent_inline_start(item);
6938
6939        read_extent_buffer(leaf, tmp, ptr, inline_size);
6940
6941        max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6942        ret = btrfs_decompress(compress_type, tmp, page,
6943                               extent_offset, inline_size, max_size);
6944
6945        /*
6946         * decompression code contains a memset to fill in any space between the end
6947         * of the uncompressed data and the end of max_size in case the decompressed
6948         * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6949         * the end of an inline extent and the beginning of the next block, so we
6950         * cover that region here.
6951         */
6952
6953        if (max_size + pg_offset < PAGE_SIZE)
6954                memzero_page(page,  pg_offset + max_size,
6955                             PAGE_SIZE - max_size - pg_offset);
6956        kfree(tmp);
6957        return ret;
6958}
6959
6960/**
6961 * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6962 * @inode:      file to search in
6963 * @page:       page to read extent data into if the extent is inline
6964 * @pg_offset:  offset into @page to copy to
6965 * @start:      file offset
6966 * @len:        length of range starting at @start
6967 *
6968 * This returns the first &struct extent_map which overlaps with the given
6969 * range, reading it from the B-tree and caching it if necessary. Note that
6970 * there may be more extents which overlap the given range after the returned
6971 * extent_map.
6972 *
6973 * If @page is not NULL and the extent is inline, this also reads the extent
6974 * data directly into the page and marks the extent up to date in the io_tree.
6975 *
6976 * Return: ERR_PTR on error, non-NULL extent_map on success.
6977 */
6978struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6979                                    struct page *page, size_t pg_offset,
6980                                    u64 start, u64 len)
6981{
6982        struct btrfs_fs_info *fs_info = inode->root->fs_info;
6983        int ret = 0;
6984        u64 extent_start = 0;
6985        u64 extent_end = 0;
6986        u64 objectid = btrfs_ino(inode);
6987        int extent_type = -1;
6988        struct btrfs_path *path = NULL;
6989        struct btrfs_root *root = inode->root;
6990        struct btrfs_file_extent_item *item;
6991        struct extent_buffer *leaf;
6992        struct btrfs_key found_key;
6993        struct extent_map *em = NULL;
6994        struct extent_map_tree *em_tree = &inode->extent_tree;
6995        struct extent_io_tree *io_tree = &inode->io_tree;
6996
6997        read_lock(&em_tree->lock);
6998        em = lookup_extent_mapping(em_tree, start, len);
6999        read_unlock(&em_tree->lock);
7000
7001        if (em) {
7002                if (em->start > start || em->start + em->len <= start)
7003                        free_extent_map(em);
7004                else if (em->block_start == EXTENT_MAP_INLINE && page)
7005                        free_extent_map(em);
7006                else
7007                        goto out;
7008        }
7009        em = alloc_extent_map();
7010        if (!em) {
7011                ret = -ENOMEM;
7012                goto out;
7013        }
7014        em->start = EXTENT_MAP_HOLE;
7015        em->orig_start = EXTENT_MAP_HOLE;
7016        em->len = (u64)-1;
7017        em->block_len = (u64)-1;
7018
7019        path = btrfs_alloc_path();
7020        if (!path) {
7021                ret = -ENOMEM;
7022                goto out;
7023        }
7024
7025        /* Chances are we'll be called again, so go ahead and do readahead */
7026        path->reada = READA_FORWARD;
7027
7028        /*
7029         * The same explanation in load_free_space_cache applies here as well,
7030         * we only read when we're loading the free space cache, and at that
7031         * point the commit_root has everything we need.
7032         */
7033        if (btrfs_is_free_space_inode(inode)) {
7034                path->search_commit_root = 1;
7035                path->skip_locking = 1;
7036        }
7037
7038        ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
7039        if (ret < 0) {
7040                goto out;
7041        } else if (ret > 0) {
7042                if (path->slots[0] == 0)
7043                        goto not_found;
7044                path->slots[0]--;
7045                ret = 0;
7046        }
7047
7048        leaf = path->nodes[0];
7049        item = btrfs_item_ptr(leaf, path->slots[0],
7050                              struct btrfs_file_extent_item);
7051        btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7052        if (found_key.objectid != objectid ||
7053            found_key.type != BTRFS_EXTENT_DATA_KEY) {
7054                /*
7055                 * If we backup past the first extent we want to move forward
7056                 * and see if there is an extent in front of us, otherwise we'll
7057                 * say there is a hole for our whole search range which can
7058                 * cause problems.
7059                 */
7060                extent_end = start;
7061                goto next;
7062        }
7063
7064        extent_type = btrfs_file_extent_type(leaf, item);
7065        extent_start = found_key.offset;
7066        extent_end = btrfs_file_extent_end(path);
7067        if (extent_type == BTRFS_FILE_EXTENT_REG ||
7068            extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7069                /* Only regular file could have regular/prealloc extent */
7070                if (!S_ISREG(inode->vfs_inode.i_mode)) {
7071                        ret = -EUCLEAN;
7072                        btrfs_crit(fs_info,
7073                "regular/prealloc extent found for non-regular inode %llu",
7074                                   btrfs_ino(inode));
7075                        goto out;
7076                }
7077                trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7078                                                       extent_start);
7079        } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7080                trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7081                                                      path->slots[0],
7082                                                      extent_start);
7083        }
7084next:
7085        if (start >= extent_end) {
7086                path->slots[0]++;
7087                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7088                        ret = btrfs_next_leaf(root, path);
7089                        if (ret < 0)
7090                                goto out;
7091                        else if (ret > 0)
7092                                goto not_found;
7093
7094                        leaf = path->nodes[0];
7095                }
7096                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7097                if (found_key.objectid != objectid ||
7098                    found_key.type != BTRFS_EXTENT_DATA_KEY)
7099                        goto not_found;
7100                if (start + len <= found_key.offset)
7101                        goto not_found;
7102                if (start > found_key.offset)
7103                        goto next;
7104
7105                /* New extent overlaps with existing one */
7106                em->start = start;
7107                em->orig_start = start;
7108                em->len = found_key.offset - start;
7109                em->block_start = EXTENT_MAP_HOLE;
7110                goto insert;
7111        }
7112
7113        btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
7114
7115        if (extent_type == BTRFS_FILE_EXTENT_REG ||
7116            extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7117                goto insert;
7118        } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7119                unsigned long ptr;
7120                char *map;
7121                size_t size;
7122                size_t extent_offset;
7123                size_t copy_size;
7124
7125                if (!page)
7126                        goto out;
7127
7128                size = btrfs_file_extent_ram_bytes(leaf, item);
7129                extent_offset = page_offset(page) + pg_offset - extent_start;
7130                copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7131                                  size - extent_offset);
7132                em->start = extent_start + extent_offset;
7133                em->len = ALIGN(copy_size, fs_info->sectorsize);
7134                em->orig_block_len = em->len;
7135                em->orig_start = em->start;
7136                ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7137
7138                if (!PageUptodate(page)) {
7139                        if (btrfs_file_extent_compression(leaf, item) !=
7140                            BTRFS_COMPRESS_NONE) {
7141                                ret = uncompress_inline(path, page, pg_offset,
7142                                                        extent_offset, item);
7143                                if (ret)
7144                                        goto out;
7145                        } else {
7146                                map = kmap_local_page(page);
7147                                read_extent_buffer(leaf, map + pg_offset, ptr,
7148                                                   copy_size);
7149                                if (pg_offset + copy_size < PAGE_SIZE) {
7150                                        memset(map + pg_offset + copy_size, 0,
7151                                               PAGE_SIZE - pg_offset -
7152                                               copy_size);
7153                                }
7154                                kunmap_local(map);
7155                        }
7156                        flush_dcache_page(page);
7157                }
7158                set_extent_uptodate(io_tree, em->start,
7159                                    extent_map_end(em) - 1, NULL, GFP_NOFS);
7160                goto insert;
7161        }
7162not_found:
7163        em->start = start;
7164        em->orig_start = start;
7165        em->len = len;
7166        em->block_start = EXTENT_MAP_HOLE;
7167insert:
7168        ret = 0;
7169        btrfs_release_path(path);
7170        if (em->start > start || extent_map_end(em) <= start) {
7171                btrfs_err(fs_info,
7172                          "bad extent! em: [%llu %llu] passed [%llu %llu]",
7173                          em->start, em->len, start, len);
7174                ret = -EIO;
7175                goto out;
7176        }
7177
7178        write_lock(&em_tree->lock);
7179        ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
7180        write_unlock(&em_tree->lock);
7181out:
7182        btrfs_free_path(path);
7183
7184        trace_btrfs_get_extent(root, inode, em);
7185
7186        if (ret) {
7187                free_extent_map(em);
7188                return ERR_PTR(ret);
7189        }
7190        return em;
7191}
7192
7193struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7194                                           u64 start, u64 len)
7195{
7196        struct extent_map *em;
7197        struct extent_map *hole_em = NULL;
7198        u64 delalloc_start = start;
7199        u64 end;
7200        u64 delalloc_len;
7201        u64 delalloc_end;
7202        int err = 0;
7203
7204        em = btrfs_get_extent(inode, NULL, 0, start, len);
7205        if (IS_ERR(em))
7206                return em;
7207        /*
7208         * If our em maps to:
7209         * - a hole or
7210         * - a pre-alloc extent,
7211         * there might actually be delalloc bytes behind it.
7212         */
7213        if (em->block_start != EXTENT_MAP_HOLE &&
7214            !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7215                return em;
7216        else
7217                hole_em = em;
7218
7219        /* check to see if we've wrapped (len == -1 or similar) */
7220        end = start + len;
7221        if (end < start)
7222                end = (u64)-1;
7223        else
7224                end -= 1;
7225
7226        em = NULL;
7227
7228        /* ok, we didn't find anything, lets look for delalloc */
7229        delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
7230                                 end, len, EXTENT_DELALLOC, 1);
7231        delalloc_end = delalloc_start + delalloc_len;
7232        if (delalloc_end < delalloc_start)
7233                delalloc_end = (u64)-1;
7234
7235        /*
7236         * We didn't find anything useful, return the original results from
7237         * get_extent()
7238         */
7239        if (delalloc_start > end || delalloc_end <= start) {
7240                em = hole_em;
7241                hole_em = NULL;
7242                goto out;
7243        }
7244
7245        /*
7246         * Adjust the delalloc_start to make sure it doesn't go backwards from
7247         * the start they passed in
7248         */
7249        delalloc_start = max(start, delalloc_start);
7250        delalloc_len = delalloc_end - delalloc_start;
7251
7252        if (delalloc_len > 0) {
7253                u64 hole_start;
7254                u64 hole_len;
7255                const u64 hole_end = extent_map_end(hole_em);
7256
7257                em = alloc_extent_map();
7258                if (!em) {
7259                        err = -ENOMEM;
7260                        goto out;
7261                }
7262
7263                ASSERT(hole_em);
7264                /*
7265                 * When btrfs_get_extent can't find anything it returns one
7266                 * huge hole
7267                 *
7268                 * Make sure what it found really fits our range, and adjust to
7269                 * make sure it is based on the start from the caller
7270                 */
7271                if (hole_end <= start || hole_em->start > end) {
7272                       free_extent_map(hole_em);
7273                       hole_em = NULL;
7274                } else {
7275                       hole_start = max(hole_em->start, start);
7276                       hole_len = hole_end - hole_start;
7277                }
7278
7279                if (hole_em && delalloc_start > hole_start) {
7280                        /*
7281                         * Our hole starts before our delalloc, so we have to
7282                         * return just the parts of the hole that go until the
7283                         * delalloc starts
7284                         */
7285                        em->len = min(hole_len, delalloc_start - hole_start);
7286                        em->start = hole_start;
7287                        em->orig_start = hole_start;
7288                        /*
7289                         * Don't adjust block start at all, it is fixed at
7290                         * EXTENT_MAP_HOLE
7291                         */
7292                        em->block_start = hole_em->block_start;
7293                        em->block_len = hole_len;
7294                        if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7295                                set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7296                } else {
7297                        /*
7298                         * Hole is out of passed range or it starts after
7299                         * delalloc range
7300                         */
7301                        em->start = delalloc_start;
7302                        em->len = delalloc_len;
7303                        em->orig_start = delalloc_start;
7304                        em->block_start = EXTENT_MAP_DELALLOC;
7305                        em->block_len = delalloc_len;
7306                }
7307        } else {
7308                return hole_em;
7309        }
7310out:
7311
7312        free_extent_map(hole_em);
7313        if (err) {
7314                free_extent_map(em);
7315                return ERR_PTR(err);
7316        }
7317        return em;
7318}
7319
7320static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
7321                                                  const u64 start,
7322                                                  const u64 len,
7323                                                  const u64 orig_start,
7324                                                  const u64 block_start,
7325                                                  const u64 block_len,
7326                                                  const u64 orig_block_len,
7327                                                  const u64 ram_bytes,
7328                                                  const int type)
7329{
7330        struct extent_map *em = NULL;
7331        int ret;
7332
7333        if (type != BTRFS_ORDERED_NOCOW) {
7334                em = create_io_em(inode, start, len, orig_start, block_start,
7335                                  block_len, orig_block_len, ram_bytes,
7336                                  BTRFS_COMPRESS_NONE, /* compress_type */
7337                                  type);
7338                if (IS_ERR(em))
7339                        goto out;
7340        }
7341        ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len,
7342                                           block_len, type);
7343        if (ret) {
7344                if (em) {
7345                        free_extent_map(em);
7346                        btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
7347                }
7348                em = ERR_PTR(ret);
7349        }
7350 out:
7351
7352        return em;
7353}
7354
7355static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
7356                                                  u64 start, u64 len)
7357{
7358        struct btrfs_root *root = inode->root;
7359        struct btrfs_fs_info *fs_info = root->fs_info;
7360        struct extent_map *em;
7361        struct btrfs_key ins;
7362        u64 alloc_hint;
7363        int ret;
7364
7365        alloc_hint = get_extent_allocation_hint(inode, start, len);
7366        ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7367                                   0, alloc_hint, &ins, 1, 1);
7368        if (ret)
7369                return ERR_PTR(ret);
7370
7371        em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7372                                     ins.objectid, ins.offset, ins.offset,
7373                                     ins.offset, BTRFS_ORDERED_REGULAR);
7374        btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7375        if (IS_ERR(em))
7376                btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7377                                           1);
7378
7379        return em;
7380}
7381
7382static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7383{
7384        struct btrfs_block_group *block_group;
7385        bool readonly = false;
7386
7387        block_group = btrfs_lookup_block_group(fs_info, bytenr);
7388        if (!block_group || block_group->ro)
7389                readonly = true;
7390        if (block_group)
7391                btrfs_put_block_group(block_group);
7392        return readonly;
7393}
7394
7395/*
7396 * Check if we can do nocow write into the range [@offset, @offset + @len)
7397 *
7398 * @offset:     File offset
7399 * @len:        The length to write, will be updated to the nocow writeable
7400 *              range
7401 * @orig_start: (optional) Return the original file offset of the file extent
7402 * @orig_len:   (optional) Return the original on-disk length of the file extent
7403 * @ram_bytes:  (optional) Return the ram_bytes of the file extent
7404 * @strict:     if true, omit optimizations that might force us into unnecessary
7405 *              cow. e.g., don't trust generation number.
7406 *
7407 * Return:
7408 * >0   and update @len if we can do nocow write
7409 *  0   if we can't do nocow write
7410 * <0   if error happened
7411 *
7412 * NOTE: This only checks the file extents, caller is responsible to wait for
7413 *       any ordered extents.
7414 */
7415noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7416                              u64 *orig_start, u64 *orig_block_len,
7417                              u64 *ram_bytes, bool strict)
7418{
7419        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7420        struct btrfs_path *path;
7421        int ret;
7422        struct extent_buffer *leaf;
7423        struct btrfs_root *root = BTRFS_I(inode)->root;
7424        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7425        struct btrfs_file_extent_item *fi;
7426        struct btrfs_key key;
7427        u64 disk_bytenr;
7428        u64 backref_offset;
7429        u64 extent_end;
7430        u64 num_bytes;
7431        int slot;
7432        int found_type;
7433        bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7434
7435        path = btrfs_alloc_path();
7436        if (!path)
7437                return -ENOMEM;
7438
7439        ret = btrfs_lookup_file_extent(NULL, root, path,
7440                        btrfs_ino(BTRFS_I(inode)), offset, 0);
7441        if (ret < 0)
7442                goto out;
7443
7444        slot = path->slots[0];
7445        if (ret == 1) {
7446                if (slot == 0) {
7447                        /* can't find the item, must cow */
7448                        ret = 0;
7449                        goto out;
7450                }
7451                slot--;
7452        }
7453        ret = 0;
7454        leaf = path->nodes[0];
7455        btrfs_item_key_to_cpu(leaf, &key, slot);
7456        if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7457            key.type != BTRFS_EXTENT_DATA_KEY) {
7458                /* not our file or wrong item type, must cow */
7459                goto out;
7460        }
7461
7462        if (key.offset > offset) {
7463                /* Wrong offset, must cow */
7464                goto out;
7465        }
7466
7467        fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7468        found_type = btrfs_file_extent_type(leaf, fi);
7469        if (found_type != BTRFS_FILE_EXTENT_REG &&
7470            found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7471                /* not a regular extent, must cow */
7472                goto out;
7473        }
7474
7475        if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7476                goto out;
7477
7478        extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7479        if (extent_end <= offset)
7480                goto out;
7481
7482        disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7483        if (disk_bytenr == 0)
7484                goto out;
7485
7486        if (btrfs_file_extent_compression(leaf, fi) ||
7487            btrfs_file_extent_encryption(leaf, fi) ||
7488            btrfs_file_extent_other_encoding(leaf, fi))
7489                goto out;
7490
7491        /*
7492         * Do the same check as in btrfs_cross_ref_exist but without the
7493         * unnecessary search.
7494         */
7495        if (!strict &&
7496            (btrfs_file_extent_generation(leaf, fi) <=
7497             btrfs_root_last_snapshot(&root->root_item)))
7498                goto out;
7499
7500        backref_offset = btrfs_file_extent_offset(leaf, fi);
7501
7502        if (orig_start) {
7503                *orig_start = key.offset - backref_offset;
7504                *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7505                *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7506        }
7507
7508        if (btrfs_extent_readonly(fs_info, disk_bytenr))
7509                goto out;
7510
7511        num_bytes = min(offset + *len, extent_end) - offset;
7512        if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7513                u64 range_end;
7514
7515                range_end = round_up(offset + num_bytes,
7516                                     root->fs_info->sectorsize) - 1;
7517                ret = test_range_bit(io_tree, offset, range_end,
7518                                     EXTENT_DELALLOC, 0, NULL);
7519                if (ret) {
7520                        ret = -EAGAIN;
7521                        goto out;
7522                }
7523        }
7524
7525        btrfs_release_path(path);
7526
7527        /*
7528         * look for other files referencing this extent, if we
7529         * find any we must cow
7530         */
7531
7532        ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7533                                    key.offset - backref_offset, disk_bytenr,
7534                                    strict);
7535        if (ret) {
7536                ret = 0;
7537                goto out;
7538        }
7539
7540        /*
7541         * adjust disk_bytenr and num_bytes to cover just the bytes
7542         * in this extent we are about to write.  If there
7543         * are any csums in that range we have to cow in order
7544         * to keep the csums correct
7545         */
7546        disk_bytenr += backref_offset;
7547        disk_bytenr += offset - key.offset;
7548        if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7549                goto out;
7550        /*
7551         * all of the above have passed, it is safe to overwrite this extent
7552         * without cow
7553         */
7554        *len = num_bytes;
7555        ret = 1;
7556out:
7557        btrfs_free_path(path);
7558        return ret;
7559}
7560
7561static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7562                              struct extent_state **cached_state, bool writing)
7563{
7564        struct btrfs_ordered_extent *ordered;
7565        int ret = 0;
7566
7567        while (1) {
7568                lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7569                                 cached_state);
7570                /*
7571                 * We're concerned with the entire range that we're going to be
7572                 * doing DIO to, so we need to make sure there's no ordered
7573                 * extents in this range.
7574                 */
7575                ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7576                                                     lockend - lockstart + 1);
7577
7578                /*
7579                 * We need to make sure there are no buffered pages in this
7580                 * range either, we could have raced between the invalidate in
7581                 * generic_file_direct_write and locking the extent.  The
7582                 * invalidate needs to happen so that reads after a write do not
7583                 * get stale data.
7584                 */
7585                if (!ordered &&
7586                    (!writing || !filemap_range_has_page(inode->i_mapping,
7587                                                         lockstart, lockend)))
7588                        break;
7589
7590                unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7591                                     cached_state);
7592
7593                if (ordered) {
7594                        /*
7595                         * If we are doing a DIO read and the ordered extent we
7596                         * found is for a buffered write, we can not wait for it
7597                         * to complete and retry, because if we do so we can
7598                         * deadlock with concurrent buffered writes on page
7599                         * locks. This happens only if our DIO read covers more
7600                         * than one extent map, if at this point has already
7601                         * created an ordered extent for a previous extent map
7602                         * and locked its range in the inode's io tree, and a
7603                         * concurrent write against that previous extent map's
7604                         * range and this range started (we unlock the ranges
7605                         * in the io tree only when the bios complete and
7606                         * buffered writes always lock pages before attempting
7607                         * to lock range in the io tree).
7608                         */
7609                        if (writing ||
7610                            test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7611                                btrfs_start_ordered_extent(ordered, 1);
7612                        else
7613                                ret = -ENOTBLK;
7614                        btrfs_put_ordered_extent(ordered);
7615                } else {
7616                        /*
7617                         * We could trigger writeback for this range (and wait
7618                         * for it to complete) and then invalidate the pages for
7619                         * this range (through invalidate_inode_pages2_range()),
7620                         * but that can lead us to a deadlock with a concurrent
7621                         * call to readahead (a buffered read or a defrag call
7622                         * triggered a readahead) on a page lock due to an
7623                         * ordered dio extent we created before but did not have
7624                         * yet a corresponding bio submitted (whence it can not
7625                         * complete), which makes readahead wait for that
7626                         * ordered extent to complete while holding a lock on
7627                         * that page.
7628                         */
7629                        ret = -ENOTBLK;
7630                }
7631
7632                if (ret)
7633                        break;
7634
7635                cond_resched();
7636        }
7637
7638        return ret;
7639}
7640
7641/* The callers of this must take lock_extent() */
7642static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7643                                       u64 len, u64 orig_start, u64 block_start,
7644                                       u64 block_len, u64 orig_block_len,
7645                                       u64 ram_bytes, int compress_type,
7646                                       int type)
7647{
7648        struct extent_map_tree *em_tree;
7649        struct extent_map *em;
7650        int ret;
7651
7652        ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7653               type == BTRFS_ORDERED_COMPRESSED ||
7654               type == BTRFS_ORDERED_NOCOW ||
7655               type == BTRFS_ORDERED_REGULAR);
7656
7657        em_tree = &inode->extent_tree;
7658        em = alloc_extent_map();
7659        if (!em)
7660                return ERR_PTR(-ENOMEM);
7661
7662        em->start = start;
7663        em->orig_start = orig_start;
7664        em->len = len;
7665        em->block_len = block_len;
7666        em->block_start = block_start;
7667        em->orig_block_len = orig_block_len;
7668        em->ram_bytes = ram_bytes;
7669        em->generation = -1;
7670        set_bit(EXTENT_FLAG_PINNED, &em->flags);
7671        if (type == BTRFS_ORDERED_PREALLOC) {
7672                set_bit(EXTENT_FLAG_FILLING, &em->flags);
7673        } else if (type == BTRFS_ORDERED_COMPRESSED) {
7674                set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7675                em->compress_type = compress_type;
7676        }
7677
7678        do {
7679                btrfs_drop_extent_cache(inode, em->start,
7680                                        em->start + em->len - 1, 0);
7681                write_lock(&em_tree->lock);
7682                ret = add_extent_mapping(em_tree, em, 1);
7683                write_unlock(&em_tree->lock);
7684                /*
7685                 * The caller has taken lock_extent(), who could race with us
7686                 * to add em?
7687                 */
7688        } while (ret == -EEXIST);
7689
7690        if (ret) {
7691                free_extent_map(em);
7692                return ERR_PTR(ret);
7693        }
7694
7695        /* em got 2 refs now, callers needs to do free_extent_map once. */
7696        return em;
7697}
7698
7699
7700static int btrfs_get_blocks_direct_write(struct extent_map **map,
7701                                         struct inode *inode,
7702                                         struct btrfs_dio_data *dio_data,
7703                                         u64 start, u64 len)
7704{
7705        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7706        struct extent_map *em = *map;
7707        int ret = 0;
7708
7709        /*
7710         * We don't allocate a new extent in the following cases
7711         *
7712         * 1) The inode is marked as NODATACOW. In this case we'll just use the
7713         * existing extent.
7714         * 2) The extent is marked as PREALLOC. We're good to go here and can
7715         * just use the extent.
7716         *
7717         */
7718        if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7719            ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7720             em->block_start != EXTENT_MAP_HOLE)) {
7721                int type;
7722                u64 block_start, orig_start, orig_block_len, ram_bytes;
7723
7724                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7725                        type = BTRFS_ORDERED_PREALLOC;
7726                else
7727                        type = BTRFS_ORDERED_NOCOW;
7728                len = min(len, em->len - (start - em->start));
7729                block_start = em->block_start + (start - em->start);
7730
7731                if (can_nocow_extent(inode, start, &len, &orig_start,
7732                                     &orig_block_len, &ram_bytes, false) == 1 &&
7733                    btrfs_inc_nocow_writers(fs_info, block_start)) {
7734                        struct extent_map *em2;
7735
7736                        em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
7737                                                      orig_start, block_start,
7738                                                      len, orig_block_len,
7739                                                      ram_bytes, type);
7740                        btrfs_dec_nocow_writers(fs_info, block_start);
7741                        if (type == BTRFS_ORDERED_PREALLOC) {
7742                                free_extent_map(em);
7743                                *map = em = em2;
7744                        }
7745
7746                        if (em2 && IS_ERR(em2)) {
7747                                ret = PTR_ERR(em2);
7748                                goto out;
7749                        }
7750                        /*
7751                         * For inode marked NODATACOW or extent marked PREALLOC,
7752                         * use the existing or preallocated extent, so does not
7753                         * need to adjust btrfs_space_info's bytes_may_use.
7754                         */
7755                        btrfs_free_reserved_data_space_noquota(fs_info, len);
7756                        goto skip_cow;
7757                }
7758        }
7759
7760        /* this will cow the extent */
7761        free_extent_map(em);
7762        *map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
7763        if (IS_ERR(em)) {
7764                ret = PTR_ERR(em);
7765                goto out;
7766        }
7767
7768        len = min(len, em->len - (start - em->start));
7769
7770skip_cow:
7771        /*
7772         * Need to update the i_size under the extent lock so buffered
7773         * readers will get the updated i_size when we unlock.
7774         */
7775        if (start + len > i_size_read(inode))
7776                i_size_write(inode, start + len);
7777
7778        dio_data->reserve -= len;
7779out:
7780        return ret;
7781}
7782
7783static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7784                loff_t length, unsigned int flags, struct iomap *iomap,
7785                struct iomap *srcmap)
7786{
7787        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7788        struct extent_map *em;
7789        struct extent_state *cached_state = NULL;
7790        struct btrfs_dio_data *dio_data = NULL;
7791        u64 lockstart, lockend;
7792        const bool write = !!(flags & IOMAP_WRITE);
7793        int ret = 0;
7794        u64 len = length;
7795        bool unlock_extents = false;
7796
7797        if (!write)
7798                len = min_t(u64, len, fs_info->sectorsize);
7799
7800        lockstart = start;
7801        lockend = start + len - 1;
7802
7803        /*
7804         * The generic stuff only does filemap_write_and_wait_range, which
7805         * isn't enough if we've written compressed pages to this area, so we
7806         * need to flush the dirty pages again to make absolutely sure that any
7807         * outstanding dirty pages are on disk.
7808         */
7809        if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7810                     &BTRFS_I(inode)->runtime_flags)) {
7811                ret = filemap_fdatawrite_range(inode->i_mapping, start,
7812                                               start + length - 1);
7813                if (ret)
7814                        return ret;
7815        }
7816
7817        dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS);
7818        if (!dio_data)
7819                return -ENOMEM;
7820
7821        dio_data->length = length;
7822        if (write) {
7823                dio_data->reserve = round_up(length, fs_info->sectorsize);
7824                ret = btrfs_delalloc_reserve_space(BTRFS_I(inode),
7825                                &dio_data->data_reserved,
7826                                start, dio_data->reserve);
7827                if (ret) {
7828                        extent_changeset_free(dio_data->data_reserved);
7829                        kfree(dio_data);
7830                        return ret;
7831                }
7832        }
7833        iomap->private = dio_data;
7834
7835
7836        /*
7837         * If this errors out it's because we couldn't invalidate pagecache for
7838         * this range and we need to fallback to buffered.
7839         */
7840        if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) {
7841                ret = -ENOTBLK;
7842                goto err;
7843        }
7844
7845        em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7846        if (IS_ERR(em)) {
7847                ret = PTR_ERR(em);
7848                goto unlock_err;
7849        }
7850
7851        /*
7852         * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7853         * io.  INLINE is special, and we could probably kludge it in here, but
7854         * it's still buffered so for safety lets just fall back to the generic
7855         * buffered path.
7856         *
7857         * For COMPRESSED we _have_ to read the entire extent in so we can
7858         * decompress it, so there will be buffering required no matter what we
7859         * do, so go ahead and fallback to buffered.
7860         *
7861         * We return -ENOTBLK because that's what makes DIO go ahead and go back
7862         * to buffered IO.  Don't blame me, this is the price we pay for using
7863         * the generic code.
7864         */
7865        if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7866            em->block_start == EXTENT_MAP_INLINE) {
7867                free_extent_map(em);
7868                ret = -ENOTBLK;
7869                goto unlock_err;
7870        }
7871
7872        len = min(len, em->len - (start - em->start));
7873        if (write) {
7874                ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7875                                                    start, len);
7876                if (ret < 0)
7877                        goto unlock_err;
7878                unlock_extents = true;
7879                /* Recalc len in case the new em is smaller than requested */
7880                len = min(len, em->len - (start - em->start));
7881        } else {
7882                /*
7883                 * We need to unlock only the end area that we aren't using.
7884                 * The rest is going to be unlocked by the endio routine.
7885                 */
7886                lockstart = start + len;
7887                if (lockstart < lockend)
7888                        unlock_extents = true;
7889        }
7890
7891        if (unlock_extents)
7892                unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7893                                     lockstart, lockend, &cached_state);
7894        else
7895                free_extent_state(cached_state);
7896
7897        /*
7898         * Translate extent map information to iomap.
7899         * We trim the extents (and move the addr) even though iomap code does
7900         * that, since we have locked only the parts we are performing I/O in.
7901         */
7902        if ((em->block_start == EXTENT_MAP_HOLE) ||
7903            (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7904                iomap->addr = IOMAP_NULL_ADDR;
7905                iomap->type = IOMAP_HOLE;
7906        } else {
7907                iomap->addr = em->block_start + (start - em->start);
7908                iomap->type = IOMAP_MAPPED;
7909        }
7910        iomap->offset = start;
7911        iomap->bdev = fs_info->fs_devices->latest_bdev;
7912        iomap->length = len;
7913
7914        if (write && btrfs_use_zone_append(BTRFS_I(inode), em->block_start))
7915                iomap->flags |= IOMAP_F_ZONE_APPEND;
7916
7917        free_extent_map(em);
7918
7919        return 0;
7920
7921unlock_err:
7922        unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7923                             &cached_state);
7924err:
7925        if (dio_data) {
7926                btrfs_delalloc_release_space(BTRFS_I(inode),
7927                                dio_data->data_reserved, start,
7928                                dio_data->reserve, true);
7929                btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->reserve);
7930                extent_changeset_free(dio_data->data_reserved);
7931                kfree(dio_data);
7932        }
7933        return ret;
7934}
7935
7936static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7937                ssize_t written, unsigned int flags, struct iomap *iomap)
7938{
7939        int ret = 0;
7940        struct btrfs_dio_data *dio_data = iomap->private;
7941        size_t submitted = dio_data->submitted;
7942        const bool write = !!(flags & IOMAP_WRITE);
7943
7944        if (!write && (iomap->type == IOMAP_HOLE)) {
7945                /* If reading from a hole, unlock and return */
7946                unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1);
7947                goto out;
7948        }
7949
7950        if (submitted < length) {
7951                pos += submitted;
7952                length -= submitted;
7953                if (write)
7954                        __endio_write_update_ordered(BTRFS_I(inode), pos,
7955                                        length, false);
7956                else
7957                        unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7958                                      pos + length - 1);
7959                ret = -ENOTBLK;
7960        }
7961
7962        if (write) {
7963                if (dio_data->reserve)
7964                        btrfs_delalloc_release_space(BTRFS_I(inode),
7965                                        dio_data->data_reserved, pos,
7966                                        dio_data->reserve, true);
7967                btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->length);
7968                extent_changeset_free(dio_data->data_reserved);
7969        }
7970out:
7971        kfree(dio_data);
7972        iomap->private = NULL;
7973
7974        return ret;
7975}
7976
7977static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
7978{
7979        /*
7980         * This implies a barrier so that stores to dio_bio->bi_status before
7981         * this and loads of dio_bio->bi_status after this are fully ordered.
7982         */
7983        if (!refcount_dec_and_test(&dip->refs))
7984                return;
7985
7986        if (btrfs_op(dip->dio_bio) == BTRFS_MAP_WRITE) {
7987                __endio_write_update_ordered(BTRFS_I(dip->inode),
7988                                             dip->logical_offset,
7989                                             dip->bytes,
7990                                             !dip->dio_bio->bi_status);
7991        } else {
7992                unlock_extent(&BTRFS_I(dip->inode)->io_tree,
7993                              dip->logical_offset,
7994                              dip->logical_offset + dip->bytes - 1);
7995        }
7996
7997        bio_endio(dip->dio_bio);
7998        kfree(dip);
7999}
8000
8001static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio,
8002                                          int mirror_num,
8003                                          unsigned long bio_flags)
8004{
8005        struct btrfs_dio_private *dip = bio->bi_private;
8006        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8007        blk_status_t ret;
8008
8009        BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8010
8011        ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8012        if (ret)
8013                return ret;
8014
8015        refcount_inc(&dip->refs);
8016        ret = btrfs_map_bio(fs_info, bio, mirror_num);
8017        if (ret)
8018                refcount_dec(&dip->refs);
8019        return ret;
8020}
8021
8022static blk_status_t btrfs_check_read_dio_bio(struct inode *inode,
8023                                             struct btrfs_io_bio *io_bio,
8024                                             const bool uptodate)
8025{
8026        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
8027        const u32 sectorsize = fs_info->sectorsize;
8028        struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
8029        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8030        const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
8031        struct bio_vec bvec;
8032        struct bvec_iter iter;
8033        u64 start = io_bio->logical;
8034        u32 bio_offset = 0;
8035        blk_status_t err = BLK_STS_OK;
8036
8037        __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) {
8038                unsigned int i, nr_sectors, pgoff;
8039
8040                nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8041                pgoff = bvec.bv_offset;
8042                for (i = 0; i < nr_sectors; i++) {
8043                        ASSERT(pgoff < PAGE_SIZE);
8044                        if (uptodate &&
8045                            (!csum || !check_data_csum(inode, io_bio,
8046                                                       bio_offset, bvec.bv_page,
8047                                                       pgoff, start))) {
8048                                clean_io_failure(fs_info, failure_tree, io_tree,
8049                                                 start, bvec.bv_page,
8050                                                 btrfs_ino(BTRFS_I(inode)),
8051                                                 pgoff);
8052                        } else {
8053                                int ret;
8054
8055                                ASSERT((start - io_bio->logical) < UINT_MAX);
8056                                ret = btrfs_repair_one_sector(inode,
8057                                                &io_bio->bio,
8058                                                start - io_bio->logical,
8059                                                bvec.bv_page, pgoff,
8060                                                start, io_bio->mirror_num,
8061                                                submit_dio_repair_bio);
8062                                if (ret)
8063                                        err = errno_to_blk_status(ret);
8064                        }
8065                        start += sectorsize;
8066                        ASSERT(bio_offset + sectorsize > bio_offset);
8067                        bio_offset += sectorsize;
8068                        pgoff += sectorsize;
8069                }
8070        }
8071        return err;
8072}
8073
8074static void __endio_write_update_ordered(struct btrfs_inode *inode,
8075                                         const u64 offset, const u64 bytes,
8076                                         const bool uptodate)
8077{
8078        btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes,
8079                                       finish_ordered_fn, uptodate);
8080}
8081
8082static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode,
8083                                                     struct bio *bio,
8084                                                     u64 dio_file_offset)
8085{
8086        return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, 1);
8087}
8088
8089static void btrfs_end_dio_bio(struct bio *bio)
8090{
8091        struct btrfs_dio_private *dip = bio->bi_private;
8092        blk_status_t err = bio->bi_status;
8093
8094        if (err)
8095                btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8096                           "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8097                           btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8098                           bio->bi_opf, bio->bi_iter.bi_sector,
8099                           bio->bi_iter.bi_size, err);
8100
8101        if (bio_op(bio) == REQ_OP_READ) {
8102                err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio),
8103                                               !err);
8104        }
8105
8106        if (err)
8107                dip->dio_bio->bi_status = err;
8108
8109        btrfs_record_physical_zoned(dip->inode, dip->logical_offset, bio);
8110
8111        bio_put(bio);
8112        btrfs_dio_private_put(dip);
8113}
8114
8115static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8116                struct inode *inode, u64 file_offset, int async_submit)
8117{
8118        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8119        struct btrfs_dio_private *dip = bio->bi_private;
8120        bool write = btrfs_op(bio) == BTRFS_MAP_WRITE;
8121        blk_status_t ret;
8122
8123        /* Check btrfs_submit_bio_hook() for rules about async submit. */
8124        if (async_submit)
8125                async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8126
8127        if (!write) {
8128                ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8129                if (ret)
8130                        goto err;
8131        }
8132
8133        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8134                goto map;
8135
8136        if (write && async_submit) {
8137                ret = btrfs_wq_submit_bio(inode, bio, 0, 0, file_offset,
8138                                          btrfs_submit_bio_start_direct_io);
8139                goto err;
8140        } else if (write) {
8141                /*
8142                 * If we aren't doing async submit, calculate the csum of the
8143                 * bio now.
8144                 */
8145                ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1);
8146                if (ret)
8147                        goto err;
8148        } else {
8149                u64 csum_offset;
8150
8151                csum_offset = file_offset - dip->logical_offset;
8152                csum_offset >>= fs_info->sectorsize_bits;
8153                csum_offset *= fs_info->csum_size;
8154                btrfs_io_bio(bio)->csum = dip->csums + csum_offset;
8155        }
8156map:
8157        ret = btrfs_map_bio(fs_info, bio, 0);
8158err:
8159        return ret;
8160}
8161
8162/*
8163 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
8164 * or ordered extents whether or not we submit any bios.
8165 */
8166static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
8167                                                          struct inode *inode,
8168                                                          loff_t file_offset)
8169{
8170        const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
8171        const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
8172        size_t dip_size;
8173        struct btrfs_dio_private *dip;
8174
8175        dip_size = sizeof(*dip);
8176        if (!write && csum) {
8177                struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8178                size_t nblocks;
8179
8180                nblocks = dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits;
8181                dip_size += fs_info->csum_size * nblocks;
8182        }
8183
8184        dip = kzalloc(dip_size, GFP_NOFS);
8185        if (!dip)
8186                return NULL;
8187
8188        dip->inode = inode;
8189        dip->logical_offset = file_offset;
8190        dip->bytes = dio_bio->bi_iter.bi_size;
8191        dip->disk_bytenr = dio_bio->bi_iter.bi_sector << 9;
8192        dip->dio_bio = dio_bio;
8193        refcount_set(&dip->refs, 1);
8194        return dip;
8195}
8196
8197static blk_qc_t btrfs_submit_direct(struct inode *inode, struct iomap *iomap,
8198                struct bio *dio_bio, loff_t file_offset)
8199{
8200        const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
8201        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8202        const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
8203                             BTRFS_BLOCK_GROUP_RAID56_MASK);
8204        struct btrfs_dio_private *dip;
8205        struct bio *bio;
8206        u64 start_sector;
8207        int async_submit = 0;
8208        u64 submit_len;
8209        int clone_offset = 0;
8210        int clone_len;
8211        u64 logical;
8212        int ret;
8213        blk_status_t status;
8214        struct btrfs_io_geometry geom;
8215        struct btrfs_dio_data *dio_data = iomap->private;
8216        struct extent_map *em = NULL;
8217
8218        dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
8219        if (!dip) {
8220                if (!write) {
8221                        unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8222                                file_offset + dio_bio->bi_iter.bi_size - 1);
8223                }
8224                dio_bio->bi_status = BLK_STS_RESOURCE;
8225                bio_endio(dio_bio);
8226                return BLK_QC_T_NONE;
8227        }
8228
8229        if (!write) {
8230                /*
8231                 * Load the csums up front to reduce csum tree searches and
8232                 * contention when submitting bios.
8233                 *
8234                 * If we have csums disabled this will do nothing.
8235                 */
8236                status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums);
8237                if (status != BLK_STS_OK)
8238                        goto out_err;
8239        }
8240
8241        start_sector = dio_bio->bi_iter.bi_sector;
8242        submit_len = dio_bio->bi_iter.bi_size;
8243
8244        do {
8245                logical = start_sector << 9;
8246                em = btrfs_get_chunk_map(fs_info, logical, submit_len);
8247                if (IS_ERR(em)) {
8248                        status = errno_to_blk_status(PTR_ERR(em));
8249                        em = NULL;
8250                        goto out_err_em;
8251                }
8252                ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio),
8253                                            logical, &geom);
8254                if (ret) {
8255                        status = errno_to_blk_status(ret);
8256                        goto out_err_em;
8257                }
8258                ASSERT(geom.len <= INT_MAX);
8259
8260                clone_len = min_t(int, submit_len, geom.len);
8261
8262                /*
8263                 * This will never fail as it's passing GPF_NOFS and
8264                 * the allocation is backed by btrfs_bioset.
8265                 */
8266                bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
8267                bio->bi_private = dip;
8268                bio->bi_end_io = btrfs_end_dio_bio;
8269                btrfs_io_bio(bio)->logical = file_offset;
8270
8271                if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
8272                        status = extract_ordered_extent(BTRFS_I(inode), bio,
8273                                                        file_offset);
8274                        if (status) {
8275                                bio_put(bio);
8276                                goto out_err;
8277                        }
8278                }
8279
8280                ASSERT(submit_len >= clone_len);
8281                submit_len -= clone_len;
8282
8283                /*
8284                 * Increase the count before we submit the bio so we know
8285                 * the end IO handler won't happen before we increase the
8286                 * count. Otherwise, the dip might get freed before we're
8287                 * done setting it up.
8288                 *
8289                 * We transfer the initial reference to the last bio, so we
8290                 * don't need to increment the reference count for the last one.
8291                 */
8292                if (submit_len > 0) {
8293                        refcount_inc(&dip->refs);
8294                        /*
8295                         * If we are submitting more than one bio, submit them
8296                         * all asynchronously. The exception is RAID 5 or 6, as
8297                         * asynchronous checksums make it difficult to collect
8298                         * full stripe writes.
8299                         */
8300                        if (!raid56)
8301                                async_submit = 1;
8302                }
8303
8304                status = btrfs_submit_dio_bio(bio, inode, file_offset,
8305                                                async_submit);
8306                if (status) {
8307                        bio_put(bio);
8308                        if (submit_len > 0)
8309                                refcount_dec(&dip->refs);
8310                        goto out_err_em;
8311                }
8312
8313                dio_data->submitted += clone_len;
8314                clone_offset += clone_len;
8315                start_sector += clone_len >> 9;
8316                file_offset += clone_len;
8317
8318                free_extent_map(em);
8319        } while (submit_len > 0);
8320        return BLK_QC_T_NONE;
8321
8322out_err_em:
8323        free_extent_map(em);
8324out_err:
8325        dip->dio_bio->bi_status = status;
8326        btrfs_dio_private_put(dip);
8327
8328        return BLK_QC_T_NONE;
8329}
8330
8331const struct iomap_ops btrfs_dio_iomap_ops = {
8332        .iomap_begin            = btrfs_dio_iomap_begin,
8333        .iomap_end              = btrfs_dio_iomap_end,
8334};
8335
8336const struct iomap_dio_ops btrfs_dio_ops = {
8337        .submit_io              = btrfs_submit_direct,
8338};
8339
8340static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8341                        u64 start, u64 len)
8342{
8343        int     ret;
8344
8345        ret = fiemap_prep(inode, fieinfo, start, &len, 0);
8346        if (ret)
8347                return ret;
8348
8349        return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
8350}
8351
8352int btrfs_readpage(struct file *file, struct page *page)
8353{
8354        struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8355        u64 start = page_offset(page);
8356        u64 end = start + PAGE_SIZE - 1;
8357        struct btrfs_bio_ctrl bio_ctrl = { 0 };
8358        int ret;
8359
8360        btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
8361
8362        ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL);
8363        if (bio_ctrl.bio)
8364                ret = submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags);
8365        return ret;
8366}
8367
8368static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8369{
8370        struct inode *inode = page->mapping->host;
8371        int ret;
8372
8373        if (current->flags & PF_MEMALLOC) {
8374                redirty_page_for_writepage(wbc, page);
8375                unlock_page(page);
8376                return 0;
8377        }
8378
8379        /*
8380         * If we are under memory pressure we will call this directly from the
8381         * VM, we need to make sure we have the inode referenced for the ordered
8382         * extent.  If not just return like we didn't do anything.
8383         */
8384        if (!igrab(inode)) {
8385                redirty_page_for_writepage(wbc, page);
8386                return AOP_WRITEPAGE_ACTIVATE;
8387        }
8388        ret = extent_write_full_page(page, wbc);
8389        btrfs_add_delayed_iput(inode);
8390        return ret;
8391}
8392
8393static int btrfs_writepages(struct address_space *mapping,
8394                            struct writeback_control *wbc)
8395{
8396        return extent_writepages(mapping, wbc);
8397}
8398
8399static void btrfs_readahead(struct readahead_control *rac)
8400{
8401        extent_readahead(rac);
8402}
8403
8404static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8405{
8406        int ret = try_release_extent_mapping(page, gfp_flags);
8407        if (ret == 1)
8408                clear_page_extent_mapped(page);
8409        return ret;
8410}
8411
8412static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8413{
8414        if (PageWriteback(page) || PageDirty(page))
8415                return 0;
8416        return __btrfs_releasepage(page, gfp_flags);
8417}
8418
8419#ifdef CONFIG_MIGRATION
8420static int btrfs_migratepage(struct address_space *mapping,
8421                             struct page *newpage, struct page *page,
8422                             enum migrate_mode mode)
8423{
8424        int ret;
8425
8426        ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8427        if (ret != MIGRATEPAGE_SUCCESS)
8428                return ret;
8429
8430        if (page_has_private(page))
8431                attach_page_private(newpage, detach_page_private(page));
8432
8433        if (PageOrdered(page)) {
8434                ClearPageOrdered(page);
8435                SetPageOrdered(newpage);
8436        }
8437
8438        if (mode != MIGRATE_SYNC_NO_COPY)
8439                migrate_page_copy(newpage, page);
8440        else
8441                migrate_page_states(newpage, page);
8442        return MIGRATEPAGE_SUCCESS;
8443}
8444#endif
8445
8446static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8447                                 unsigned int length)
8448{
8449        struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8450        struct btrfs_fs_info *fs_info = inode->root->fs_info;
8451        struct extent_io_tree *tree = &inode->io_tree;
8452        struct extent_state *cached_state = NULL;
8453        u64 page_start = page_offset(page);
8454        u64 page_end = page_start + PAGE_SIZE - 1;
8455        u64 cur;
8456        int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
8457
8458        /*
8459         * We have page locked so no new ordered extent can be created on this
8460         * page, nor bio can be submitted for this page.
8461         *
8462         * But already submitted bio can still be finished on this page.
8463         * Furthermore, endio function won't skip page which has Ordered
8464         * (Private2) already cleared, so it's possible for endio and
8465         * invalidatepage to do the same ordered extent accounting twice
8466         * on one page.
8467         *
8468         * So here we wait for any submitted bios to finish, so that we won't
8469         * do double ordered extent accounting on the same page.
8470         */
8471        wait_on_page_writeback(page);
8472
8473        /*
8474         * For subpage case, we have call sites like
8475         * btrfs_punch_hole_lock_range() which passes range not aligned to
8476         * sectorsize.
8477         * If the range doesn't cover the full page, we don't need to and
8478         * shouldn't clear page extent mapped, as page->private can still
8479         * record subpage dirty bits for other part of the range.
8480         *
8481         * For cases that can invalidate the full even the range doesn't
8482         * cover the full page, like invalidating the last page, we're
8483         * still safe to wait for ordered extent to finish.
8484         */
8485        if (!(offset == 0 && length == PAGE_SIZE)) {
8486                btrfs_releasepage(page, GFP_NOFS);
8487                return;
8488        }
8489
8490        if (!inode_evicting)
8491                lock_extent_bits(tree, page_start, page_end, &cached_state);
8492
8493        cur = page_start;
8494        while (cur < page_end) {
8495                struct btrfs_ordered_extent *ordered;
8496                bool delete_states;
8497                u64 range_end;
8498                u32 range_len;
8499
8500                ordered = btrfs_lookup_first_ordered_range(inode, cur,
8501                                                           page_end + 1 - cur);
8502                if (!ordered) {
8503                        range_end = page_end;
8504                        /*
8505                         * No ordered extent covering this range, we are safe
8506                         * to delete all extent states in the range.
8507                         */
8508                        delete_states = true;
8509                        goto next;
8510                }
8511                if (ordered->file_offset > cur) {
8512                        /*
8513                         * There is a range between [cur, oe->file_offset) not
8514                         * covered by any ordered extent.
8515                         * We are safe to delete all extent states, and handle
8516                         * the ordered extent in the next iteration.
8517                         */
8518                        range_end = ordered->file_offset - 1;
8519                        delete_states = true;
8520                        goto next;
8521                }
8522
8523                range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8524                                page_end);
8525                ASSERT(range_end + 1 - cur < U32_MAX);
8526                range_len = range_end + 1 - cur;
8527                if (!btrfs_page_test_ordered(fs_info, page, cur, range_len)) {
8528                        /*
8529                         * If Ordered (Private2) is cleared, it means endio has
8530                         * already been executed for the range.
8531                         * We can't delete the extent states as
8532                         * btrfs_finish_ordered_io() may still use some of them.
8533                         */
8534                        delete_states = false;
8535                        goto next;
8536                }
8537                btrfs_page_clear_ordered(fs_info, page, cur, range_len);
8538
8539                /*
8540                 * IO on this page will never be started, so we need to account
8541                 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8542                 * here, must leave that up for the ordered extent completion.
8543                 *
8544                 * This will also unlock the range for incoming
8545                 * btrfs_finish_ordered_io().
8546                 */
8547                if (!inode_evicting)
8548                        clear_extent_bit(tree, cur, range_end,
8549                                         EXTENT_DELALLOC |
8550                                         EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8551                                         EXTENT_DEFRAG, 1, 0, &cached_state);
8552
8553                spin_lock_irq(&inode->ordered_tree.lock);
8554                set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8555                ordered->truncated_len = min(ordered->truncated_len,
8556                                             cur - ordered->file_offset);
8557                spin_unlock_irq(&inode->ordered_tree.lock);
8558
8559                if (btrfs_dec_test_ordered_pending(inode, &ordered,
8560                                        cur, range_end + 1 - cur, 1)) {
8561                        btrfs_finish_ordered_io(ordered);
8562                        /*
8563                         * The ordered extent has finished, now we're again
8564                         * safe to delete all extent states of the range.
8565                         */
8566                        delete_states = true;
8567                } else {
8568                        /*
8569                         * btrfs_finish_ordered_io() will get executed by endio
8570                         * of other pages, thus we can't delete extent states
8571                         * anymore
8572                         */
8573                        delete_states = false;
8574                }
8575next:
8576                if (ordered)
8577                        btrfs_put_ordered_extent(ordered);
8578                /*
8579                 * Qgroup reserved space handler
8580                 * Sector(s) here will be either:
8581                 *
8582                 * 1) Already written to disk or bio already finished
8583                 *    Then its QGROUP_RESERVED bit in io_tree is already cleared.
8584                 *    Qgroup will be handled by its qgroup_record then.
8585                 *    btrfs_qgroup_free_data() call will do nothing here.
8586                 *
8587                 * 2) Not written to disk yet
8588                 *    Then btrfs_qgroup_free_data() call will clear the
8589                 *    QGROUP_RESERVED bit of its io_tree, and free the qgroup
8590                 *    reserved data space.
8591                 *    Since the IO will never happen for this page.
8592                 */
8593                btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur);
8594                if (!inode_evicting) {
8595                        clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8596                                 EXTENT_DELALLOC | EXTENT_UPTODATE |
8597                                 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1,
8598                                 delete_states, &cached_state);
8599                }
8600                cur = range_end + 1;
8601        }
8602        /*
8603         * We have iterated through all ordered extents of the page, the page
8604         * should not have Ordered (Private2) anymore, or the above iteration
8605         * did something wrong.
8606         */
8607        ASSERT(!PageOrdered(page));
8608        if (!inode_evicting)
8609                __btrfs_releasepage(page, GFP_NOFS);
8610        ClearPageChecked(page);
8611        clear_page_extent_mapped(page);
8612}
8613
8614/*
8615 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8616 * called from a page fault handler when a page is first dirtied. Hence we must
8617 * be careful to check for EOF conditions here. We set the page up correctly
8618 * for a written page which means we get ENOSPC checking when writing into
8619 * holes and correct delalloc and unwritten extent mapping on filesystems that
8620 * support these features.
8621 *
8622 * We are not allowed to take the i_mutex here so we have to play games to
8623 * protect against truncate races as the page could now be beyond EOF.  Because
8624 * truncate_setsize() writes the inode size before removing pages, once we have
8625 * the page lock we can determine safely if the page is beyond EOF. If it is not
8626 * beyond EOF, then the page is guaranteed safe against truncation until we
8627 * unlock the page.
8628 */
8629vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8630{
8631        struct page *page = vmf->page;
8632        struct inode *inode = file_inode(vmf->vma->vm_file);
8633        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8634        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8635        struct btrfs_ordered_extent *ordered;
8636        struct extent_state *cached_state = NULL;
8637        struct extent_changeset *data_reserved = NULL;
8638        unsigned long zero_start;
8639        loff_t size;
8640        vm_fault_t ret;
8641        int ret2;
8642        int reserved = 0;
8643        u64 reserved_space;
8644        u64 page_start;
8645        u64 page_end;
8646        u64 end;
8647
8648        reserved_space = PAGE_SIZE;
8649
8650        sb_start_pagefault(inode->i_sb);
8651        page_start = page_offset(page);
8652        page_end = page_start + PAGE_SIZE - 1;
8653        end = page_end;
8654
8655        /*
8656         * Reserving delalloc space after obtaining the page lock can lead to
8657         * deadlock. For example, if a dirty page is locked by this function
8658         * and the call to btrfs_delalloc_reserve_space() ends up triggering
8659         * dirty page write out, then the btrfs_writepage() function could
8660         * end up waiting indefinitely to get a lock on the page currently
8661         * being processed by btrfs_page_mkwrite() function.
8662         */
8663        ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8664                                            page_start, reserved_space);
8665        if (!ret2) {
8666                ret2 = file_update_time(vmf->vma->vm_file);
8667                reserved = 1;
8668        }
8669        if (ret2) {
8670                ret = vmf_error(ret2);
8671                if (reserved)
8672                        goto out;
8673                goto out_noreserve;
8674        }
8675
8676        ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8677again:
8678        down_read(&BTRFS_I(inode)->i_mmap_lock);
8679        lock_page(page);
8680        size = i_size_read(inode);
8681
8682        if ((page->mapping != inode->i_mapping) ||
8683            (page_start >= size)) {
8684                /* page got truncated out from underneath us */
8685                goto out_unlock;
8686        }
8687        wait_on_page_writeback(page);
8688
8689        lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8690        ret2 = set_page_extent_mapped(page);
8691        if (ret2 < 0) {
8692                ret = vmf_error(ret2);
8693                unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8694                goto out_unlock;
8695        }
8696
8697        /*
8698         * we can't set the delalloc bits if there are pending ordered
8699         * extents.  Drop our locks and wait for them to finish
8700         */
8701        ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8702                        PAGE_SIZE);
8703        if (ordered) {
8704                unlock_extent_cached(io_tree, page_start, page_end,
8705                                     &cached_state);
8706                unlock_page(page);
8707                up_read(&BTRFS_I(inode)->i_mmap_lock);
8708                btrfs_start_ordered_extent(ordered, 1);
8709                btrfs_put_ordered_extent(ordered);
8710                goto again;
8711        }
8712
8713        if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8714                reserved_space = round_up(size - page_start,
8715                                          fs_info->sectorsize);
8716                if (reserved_space < PAGE_SIZE) {
8717                        end = page_start + reserved_space - 1;
8718                        btrfs_delalloc_release_space(BTRFS_I(inode),
8719                                        data_reserved, page_start,
8720                                        PAGE_SIZE - reserved_space, true);
8721                }
8722        }
8723
8724        /*
8725         * page_mkwrite gets called when the page is firstly dirtied after it's
8726         * faulted in, but write(2) could also dirty a page and set delalloc
8727         * bits, thus in this case for space account reason, we still need to
8728         * clear any delalloc bits within this page range since we have to
8729         * reserve data&meta space before lock_page() (see above comments).
8730         */
8731        clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8732                          EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8733                          EXTENT_DEFRAG, 0, 0, &cached_state);
8734
8735        ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8736                                        &cached_state);
8737        if (ret2) {
8738                unlock_extent_cached(io_tree, page_start, page_end,
8739                                     &cached_state);
8740                ret = VM_FAULT_SIGBUS;
8741                goto out_unlock;
8742        }
8743
8744        /* page is wholly or partially inside EOF */
8745        if (page_start + PAGE_SIZE > size)
8746                zero_start = offset_in_page(size);
8747        else
8748                zero_start = PAGE_SIZE;
8749
8750        if (zero_start != PAGE_SIZE) {
8751                memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8752                flush_dcache_page(page);
8753        }
8754        ClearPageChecked(page);
8755        btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
8756        btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
8757
8758        btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8759
8760        unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8761        up_read(&BTRFS_I(inode)->i_mmap_lock);
8762
8763        btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8764        sb_end_pagefault(inode->i_sb);
8765        extent_changeset_free(data_reserved);
8766        return VM_FAULT_LOCKED;
8767
8768out_unlock:
8769        unlock_page(page);
8770        up_read(&BTRFS_I(inode)->i_mmap_lock);
8771out:
8772        btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8773        btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8774                                     reserved_space, (ret != 0));
8775out_noreserve:
8776        sb_end_pagefault(inode->i_sb);
8777        extent_changeset_free(data_reserved);
8778        return ret;
8779}
8780
8781static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8782{
8783        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8784        struct btrfs_root *root = BTRFS_I(inode)->root;
8785        struct btrfs_block_rsv *rsv;
8786        int ret;
8787        struct btrfs_trans_handle *trans;
8788        u64 mask = fs_info->sectorsize - 1;
8789        u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8790        u64 extents_found = 0;
8791
8792        if (!skip_writeback) {
8793                ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8794                                               (u64)-1);
8795                if (ret)
8796                        return ret;
8797        }
8798
8799        /*
8800         * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8801         * things going on here:
8802         *
8803         * 1) We need to reserve space to update our inode.
8804         *
8805         * 2) We need to have something to cache all the space that is going to
8806         * be free'd up by the truncate operation, but also have some slack
8807         * space reserved in case it uses space during the truncate (thank you
8808         * very much snapshotting).
8809         *
8810         * And we need these to be separate.  The fact is we can use a lot of
8811         * space doing the truncate, and we have no earthly idea how much space
8812         * we will use, so we need the truncate reservation to be separate so it
8813         * doesn't end up using space reserved for updating the inode.  We also
8814         * need to be able to stop the transaction and start a new one, which
8815         * means we need to be able to update the inode several times, and we
8816         * have no idea of knowing how many times that will be, so we can't just
8817         * reserve 1 item for the entirety of the operation, so that has to be
8818         * done separately as well.
8819         *
8820         * So that leaves us with
8821         *
8822         * 1) rsv - for the truncate reservation, which we will steal from the
8823         * transaction reservation.
8824         * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8825         * updating the inode.
8826         */
8827        rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8828        if (!rsv)
8829                return -ENOMEM;
8830        rsv->size = min_size;
8831        rsv->failfast = 1;
8832
8833        /*
8834         * 1 for the truncate slack space
8835         * 1 for updating the inode.
8836         */
8837        trans = btrfs_start_transaction(root, 2);
8838        if (IS_ERR(trans)) {
8839                ret = PTR_ERR(trans);
8840                goto out;
8841        }
8842
8843        /* Migrate the slack space for the truncate to our reserve */
8844        ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8845                                      min_size, false);
8846        BUG_ON(ret);
8847
8848        trans->block_rsv = rsv;
8849
8850        while (1) {
8851                ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode),
8852                                                 inode->i_size,
8853                                                 BTRFS_EXTENT_DATA_KEY,
8854                                                 &extents_found);
8855                trans->block_rsv = &fs_info->trans_block_rsv;
8856                if (ret != -ENOSPC && ret != -EAGAIN)
8857                        break;
8858
8859                ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
8860                if (ret)
8861                        break;
8862
8863                btrfs_end_transaction(trans);
8864                btrfs_btree_balance_dirty(fs_info);
8865
8866                trans = btrfs_start_transaction(root, 2);
8867                if (IS_ERR(trans)) {
8868                        ret = PTR_ERR(trans);
8869                        trans = NULL;
8870                        break;
8871                }
8872
8873                btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8874                ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8875                                              rsv, min_size, false);
8876                BUG_ON(ret);    /* shouldn't happen */
8877                trans->block_rsv = rsv;
8878        }
8879
8880        /*
8881         * We can't call btrfs_truncate_block inside a trans handle as we could
8882         * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
8883         * we've truncated everything except the last little bit, and can do
8884         * btrfs_truncate_block and then update the disk_i_size.
8885         */
8886        if (ret == NEED_TRUNCATE_BLOCK) {
8887                btrfs_end_transaction(trans);
8888                btrfs_btree_balance_dirty(fs_info);
8889
8890                ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
8891                if (ret)
8892                        goto out;
8893                trans = btrfs_start_transaction(root, 1);
8894                if (IS_ERR(trans)) {
8895                        ret = PTR_ERR(trans);
8896                        goto out;
8897                }
8898                btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
8899        }
8900
8901        if (trans) {
8902                int ret2;
8903
8904                trans->block_rsv = &fs_info->trans_block_rsv;
8905                ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode));
8906                if (ret2 && !ret)
8907                        ret = ret2;
8908
8909                ret2 = btrfs_end_transaction(trans);
8910                if (ret2 && !ret)
8911                        ret = ret2;
8912                btrfs_btree_balance_dirty(fs_info);
8913        }
8914out:
8915        btrfs_free_block_rsv(fs_info, rsv);
8916        /*
8917         * So if we truncate and then write and fsync we normally would just
8918         * write the extents that changed, which is a problem if we need to
8919         * first truncate that entire inode.  So set this flag so we write out
8920         * all of the extents in the inode to the sync log so we're completely
8921         * safe.
8922         *
8923         * If no extents were dropped or trimmed we don't need to force the next
8924         * fsync to truncate all the inode's items from the log and re-log them
8925         * all. This means the truncate operation did not change the file size,
8926         * or changed it to a smaller size but there was only an implicit hole
8927         * between the old i_size and the new i_size, and there were no prealloc
8928         * extents beyond i_size to drop.
8929         */
8930        if (extents_found > 0)
8931                set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8932
8933        return ret;
8934}
8935
8936/*
8937 * create a new subvolume directory/inode (helper for the ioctl).
8938 */
8939int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8940                             struct btrfs_root *new_root,
8941                             struct btrfs_root *parent_root)
8942{
8943        struct inode *inode;
8944        int err;
8945        u64 index = 0;
8946        u64 ino;
8947
8948        err = btrfs_get_free_objectid(new_root, &ino);
8949        if (err < 0)
8950                return err;
8951
8952        inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, ino, ino,
8953                                S_IFDIR | (~current_umask() & S_IRWXUGO),
8954                                &index);
8955        if (IS_ERR(inode))
8956                return PTR_ERR(inode);
8957        inode->i_op = &btrfs_dir_inode_operations;
8958        inode->i_fop = &btrfs_dir_file_operations;
8959
8960        set_nlink(inode, 1);
8961        btrfs_i_size_write(BTRFS_I(inode), 0);
8962        unlock_new_inode(inode);
8963
8964        err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8965        if (err)
8966                btrfs_err(new_root->fs_info,
8967                          "error inheriting subvolume %llu properties: %d",
8968                          new_root->root_key.objectid, err);
8969
8970        err = btrfs_update_inode(trans, new_root, BTRFS_I(inode));
8971
8972        iput(inode);
8973        return err;
8974}
8975
8976struct inode *btrfs_alloc_inode(struct super_block *sb)
8977{
8978        struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8979        struct btrfs_inode *ei;
8980        struct inode *inode;
8981
8982        ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
8983        if (!ei)
8984                return NULL;
8985
8986        ei->root = NULL;
8987        ei->generation = 0;
8988        ei->last_trans = 0;
8989        ei->last_sub_trans = 0;
8990        ei->logged_trans = 0;
8991        ei->delalloc_bytes = 0;
8992        ei->new_delalloc_bytes = 0;
8993        ei->defrag_bytes = 0;
8994        ei->disk_i_size = 0;
8995        ei->flags = 0;
8996        ei->csum_bytes = 0;
8997        ei->index_cnt = (u64)-1;
8998        ei->dir_index = 0;
8999        ei->last_unlink_trans = 0;
9000        ei->last_reflink_trans = 0;
9001        ei->last_log_commit = 0;
9002
9003        spin_lock_init(&ei->lock);
9004        ei->outstanding_extents = 0;
9005        if (sb->s_magic != BTRFS_TEST_MAGIC)
9006                btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9007                                              BTRFS_BLOCK_RSV_DELALLOC);
9008        ei->runtime_flags = 0;
9009        ei->prop_compress = BTRFS_COMPRESS_NONE;
9010        ei->defrag_compress = BTRFS_COMPRESS_NONE;
9011
9012        ei->delayed_node = NULL;
9013
9014        ei->i_otime.tv_sec = 0;
9015        ei->i_otime.tv_nsec = 0;
9016
9017        inode = &ei->vfs_inode;
9018        extent_map_tree_init(&ei->extent_tree);
9019        extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
9020        extent_io_tree_init(fs_info, &ei->io_failure_tree,
9021                            IO_TREE_INODE_IO_FAILURE, inode);
9022        extent_io_tree_init(fs_info, &ei->file_extent_tree,
9023                            IO_TREE_INODE_FILE_EXTENT, inode);
9024        ei->io_tree.track_uptodate = true;
9025        ei->io_failure_tree.track_uptodate = true;
9026        atomic_set(&ei->sync_writers, 0);
9027        mutex_init(&ei->log_mutex);
9028        btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9029        INIT_LIST_HEAD(&ei->delalloc_inodes);
9030        INIT_LIST_HEAD(&ei->delayed_iput);
9031        RB_CLEAR_NODE(&ei->rb_node);
9032        init_rwsem(&ei->i_mmap_lock);
9033
9034        return inode;
9035}
9036
9037#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9038void btrfs_test_destroy_inode(struct inode *inode)
9039{
9040        btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9041        kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9042}
9043#endif
9044
9045void btrfs_free_inode(struct inode *inode)
9046{
9047        kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9048}
9049
9050void btrfs_destroy_inode(struct inode *vfs_inode)
9051{
9052        struct btrfs_ordered_extent *ordered;
9053        struct btrfs_inode *inode = BTRFS_I(vfs_inode);
9054        struct btrfs_root *root = inode->root;
9055
9056        WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
9057        WARN_ON(vfs_inode->i_data.nrpages);
9058        WARN_ON(inode->block_rsv.reserved);
9059        WARN_ON(inode->block_rsv.size);
9060        WARN_ON(inode->outstanding_extents);
9061        WARN_ON(inode->delalloc_bytes);
9062        WARN_ON(inode->new_delalloc_bytes);
9063        WARN_ON(inode->csum_bytes);
9064        WARN_ON(inode->defrag_bytes);
9065
9066        /*
9067         * This can happen where we create an inode, but somebody else also
9068         * created the same inode and we need to destroy the one we already
9069         * created.
9070         */
9071        if (!root)
9072                return;
9073
9074        while (1) {
9075                ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9076                if (!ordered)
9077                        break;
9078                else {
9079                        btrfs_err(root->fs_info,
9080                                  "found ordered extent %llu %llu on inode cleanup",
9081                                  ordered->file_offset, ordered->num_bytes);
9082                        btrfs_remove_ordered_extent(inode, ordered);
9083                        btrfs_put_ordered_extent(ordered);
9084                        btrfs_put_ordered_extent(ordered);
9085                }
9086        }
9087        btrfs_qgroup_check_reserved_leak(inode);
9088        inode_tree_del(inode);
9089        btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9090        btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
9091        btrfs_put_root(inode->root);
9092}
9093
9094int btrfs_drop_inode(struct inode *inode)
9095{
9096        struct btrfs_root *root = BTRFS_I(inode)->root;
9097
9098        if (root == NULL)
9099                return 1;
9100
9101        /* the snap/subvol tree is on deleting */
9102        if (btrfs_root_refs(&root->root_item) == 0)
9103                return 1;
9104        else
9105                return generic_drop_inode(inode);
9106}
9107
9108static void init_once(void *foo)
9109{
9110        struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9111
9112        inode_init_once(&ei->vfs_inode);
9113}
9114
9115void __cold btrfs_destroy_cachep(void)
9116{
9117        /*
9118         * Make sure all delayed rcu free inodes are flushed before we
9119         * destroy cache.
9120         */
9121        rcu_barrier();
9122        kmem_cache_destroy(btrfs_inode_cachep);
9123        kmem_cache_destroy(btrfs_trans_handle_cachep);
9124        kmem_cache_destroy(btrfs_path_cachep);
9125        kmem_cache_destroy(btrfs_free_space_cachep);
9126        kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
9127}
9128
9129int __init btrfs_init_cachep(void)
9130{
9131        btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9132                        sizeof(struct btrfs_inode), 0,
9133                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9134                        init_once);
9135        if (!btrfs_inode_cachep)
9136                goto fail;
9137
9138        btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9139                        sizeof(struct btrfs_trans_handle), 0,
9140                        SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9141        if (!btrfs_trans_handle_cachep)
9142                goto fail;
9143
9144        btrfs_path_cachep = kmem_cache_create("btrfs_path",
9145                        sizeof(struct btrfs_path), 0,
9146                        SLAB_MEM_SPREAD, NULL);
9147        if (!btrfs_path_cachep)
9148                goto fail;
9149
9150        btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9151                        sizeof(struct btrfs_free_space), 0,
9152                        SLAB_MEM_SPREAD, NULL);
9153        if (!btrfs_free_space_cachep)
9154                goto fail;
9155
9156        btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
9157                                                        PAGE_SIZE, PAGE_SIZE,
9158                                                        SLAB_MEM_SPREAD, NULL);
9159        if (!btrfs_free_space_bitmap_cachep)
9160                goto fail;
9161
9162        return 0;
9163fail:
9164        btrfs_destroy_cachep();
9165        return -ENOMEM;
9166}
9167
9168static int btrfs_getattr(struct user_namespace *mnt_userns,
9169                         const struct path *path, struct kstat *stat,
9170                         u32 request_mask, unsigned int flags)
9171{
9172        u64 delalloc_bytes;
9173        u64 inode_bytes;
9174        struct inode *inode = d_inode(path->dentry);
9175        u32 blocksize = inode->i_sb->s_blocksize;
9176        u32 bi_flags = BTRFS_I(inode)->flags;
9177
9178        stat->result_mask |= STATX_BTIME;
9179        stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9180        stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9181        if (bi_flags & BTRFS_INODE_APPEND)
9182                stat->attributes |= STATX_ATTR_APPEND;
9183        if (bi_flags & BTRFS_INODE_COMPRESS)
9184                stat->attributes |= STATX_ATTR_COMPRESSED;
9185        if (bi_flags & BTRFS_INODE_IMMUTABLE)
9186                stat->attributes |= STATX_ATTR_IMMUTABLE;
9187        if (bi_flags & BTRFS_INODE_NODUMP)
9188                stat->attributes |= STATX_ATTR_NODUMP;
9189
9190        stat->attributes_mask |= (STATX_ATTR_APPEND |
9191                                  STATX_ATTR_COMPRESSED |
9192                                  STATX_ATTR_IMMUTABLE |
9193                                  STATX_ATTR_NODUMP);
9194
9195        generic_fillattr(&init_user_ns, inode, stat);
9196        stat->dev = BTRFS_I(inode)->root->anon_dev;
9197
9198        spin_lock(&BTRFS_I(inode)->lock);
9199        delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9200        inode_bytes = inode_get_bytes(inode);
9201        spin_unlock(&BTRFS_I(inode)->lock);
9202        stat->blocks = (ALIGN(inode_bytes, blocksize) +
9203                        ALIGN(delalloc_bytes, blocksize)) >> 9;
9204        return 0;
9205}
9206
9207static int btrfs_rename_exchange(struct inode *old_dir,
9208                              struct dentry *old_dentry,
9209                              struct inode *new_dir,
9210                              struct dentry *new_dentry)
9211{
9212        struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9213        struct btrfs_trans_handle *trans;
9214        struct btrfs_root *root = BTRFS_I(old_dir)->root;
9215        struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9216        struct inode *new_inode = new_dentry->d_inode;
9217        struct inode *old_inode = old_dentry->d_inode;
9218        struct timespec64 ctime = current_time(old_inode);
9219        u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9220        u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9221        u64 old_idx = 0;
9222        u64 new_idx = 0;
9223        int ret;
9224        int ret2;
9225        bool root_log_pinned = false;
9226        bool dest_log_pinned = false;
9227        bool need_abort = false;
9228
9229        /*
9230         * For non-subvolumes allow exchange only within one subvolume, in the
9231         * same inode namespace. Two subvolumes (represented as directory) can
9232         * be exchanged as they're a logical link and have a fixed inode number.
9233         */
9234        if (root != dest &&
9235            (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
9236             new_ino != BTRFS_FIRST_FREE_OBJECTID))
9237                return -EXDEV;
9238
9239        /* close the race window with snapshot create/destroy ioctl */
9240        if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
9241            new_ino == BTRFS_FIRST_FREE_OBJECTID)
9242                down_read(&fs_info->subvol_sem);
9243
9244        /*
9245         * We want to reserve the absolute worst case amount of items.  So if
9246         * both inodes are subvols and we need to unlink them then that would
9247         * require 4 item modifications, but if they are both normal inodes it
9248         * would require 5 item modifications, so we'll assume their normal
9249         * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9250         * should cover the worst case number of items we'll modify.
9251         */
9252        trans = btrfs_start_transaction(root, 12);
9253        if (IS_ERR(trans)) {
9254                ret = PTR_ERR(trans);
9255                goto out_notrans;
9256        }
9257
9258        if (dest != root) {
9259                ret = btrfs_record_root_in_trans(trans, dest);
9260                if (ret)
9261                        goto out_fail;
9262        }
9263
9264        /*
9265         * We need to find a free sequence number both in the source and
9266         * in the destination directory for the exchange.
9267         */
9268        ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9269        if (ret)
9270                goto out_fail;
9271        ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9272        if (ret)
9273                goto out_fail;
9274
9275        BTRFS_I(old_inode)->dir_index = 0ULL;
9276        BTRFS_I(new_inode)->dir_index = 0ULL;
9277
9278        /* Reference for the source. */
9279        if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9280                /* force full log commit if subvolume involved. */
9281                btrfs_set_log_full_commit(trans);
9282        } else {
9283                btrfs_pin_log_trans(root);
9284                root_log_pinned = true;
9285                ret = btrfs_insert_inode_ref(trans, dest,
9286                                             new_dentry->d_name.name,
9287                                             new_dentry->d_name.len,
9288                                             old_ino,
9289                                             btrfs_ino(BTRFS_I(new_dir)),
9290                                             old_idx);
9291                if (ret)
9292                        goto out_fail;
9293                need_abort = true;
9294        }
9295
9296        /* And now for the dest. */
9297        if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9298                /* force full log commit if subvolume involved. */
9299                btrfs_set_log_full_commit(trans);
9300        } else {
9301                btrfs_pin_log_trans(dest);
9302                dest_log_pinned = true;
9303                ret = btrfs_insert_inode_ref(trans, root,
9304                                             old_dentry->d_name.name,
9305                                             old_dentry->d_name.len,
9306                                             new_ino,
9307                                             btrfs_ino(BTRFS_I(old_dir)),
9308                                             new_idx);
9309                if (ret) {
9310                        if (need_abort)
9311                                btrfs_abort_transaction(trans, ret);
9312                        goto out_fail;
9313                }
9314        }
9315
9316        /* Update inode version and ctime/mtime. */
9317        inode_inc_iversion(old_dir);
9318        inode_inc_iversion(new_dir);
9319        inode_inc_iversion(old_inode);
9320        inode_inc_iversion(new_inode);
9321        old_dir->i_ctime = old_dir->i_mtime = ctime;
9322        new_dir->i_ctime = new_dir->i_mtime = ctime;
9323        old_inode->i_ctime = ctime;
9324        new_inode->i_ctime = ctime;
9325
9326        if (old_dentry->d_parent != new_dentry->d_parent) {
9327                btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9328                                BTRFS_I(old_inode), 1);
9329                btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9330                                BTRFS_I(new_inode), 1);
9331        }
9332
9333        /* src is a subvolume */
9334        if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9335                ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9336        } else { /* src is an inode */
9337                ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9338                                           BTRFS_I(old_dentry->d_inode),
9339                                           old_dentry->d_name.name,
9340                                           old_dentry->d_name.len);
9341                if (!ret)
9342                        ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9343        }
9344        if (ret) {
9345                btrfs_abort_transaction(trans, ret);
9346                goto out_fail;
9347        }
9348
9349        /* dest is a subvolume */
9350        if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9351                ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9352        } else { /* dest is an inode */
9353                ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9354                                           BTRFS_I(new_dentry->d_inode),
9355                                           new_dentry->d_name.name,
9356                                           new_dentry->d_name.len);
9357                if (!ret)
9358                        ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
9359        }
9360        if (ret) {
9361                btrfs_abort_transaction(trans, ret);
9362                goto out_fail;
9363        }
9364
9365        ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9366                             new_dentry->d_name.name,
9367                             new_dentry->d_name.len, 0, old_idx);
9368        if (ret) {
9369                btrfs_abort_transaction(trans, ret);
9370                goto out_fail;
9371        }
9372
9373        ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9374                             old_dentry->d_name.name,
9375                             old_dentry->d_name.len, 0, new_idx);
9376        if (ret) {
9377                btrfs_abort_transaction(trans, ret);
9378                goto out_fail;
9379        }
9380
9381        if (old_inode->i_nlink == 1)
9382                BTRFS_I(old_inode)->dir_index = old_idx;
9383        if (new_inode->i_nlink == 1)
9384                BTRFS_I(new_inode)->dir_index = new_idx;
9385
9386        if (root_log_pinned) {
9387                btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9388                                   new_dentry->d_parent);
9389                btrfs_end_log_trans(root);
9390                root_log_pinned = false;
9391        }
9392        if (dest_log_pinned) {
9393                btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9394                                   old_dentry->d_parent);
9395                btrfs_end_log_trans(dest);
9396                dest_log_pinned = false;
9397        }
9398out_fail:
9399        /*
9400         * If we have pinned a log and an error happened, we unpin tasks
9401         * trying to sync the log and force them to fallback to a transaction
9402         * commit if the log currently contains any of the inodes involved in
9403         * this rename operation (to ensure we do not persist a log with an
9404         * inconsistent state for any of these inodes or leading to any
9405         * inconsistencies when replayed). If the transaction was aborted, the
9406         * abortion reason is propagated to userspace when attempting to commit
9407         * the transaction. If the log does not contain any of these inodes, we
9408         * allow the tasks to sync it.
9409         */
9410        if (ret && (root_log_pinned || dest_log_pinned)) {
9411                if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9412                    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9413                    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9414                    (new_inode &&
9415                     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9416                        btrfs_set_log_full_commit(trans);
9417
9418                if (root_log_pinned) {
9419                        btrfs_end_log_trans(root);
9420                        root_log_pinned = false;
9421                }
9422                if (dest_log_pinned) {
9423                        btrfs_end_log_trans(dest);
9424                        dest_log_pinned = false;
9425                }
9426        }
9427        ret2 = btrfs_end_transaction(trans);
9428        ret = ret ? ret : ret2;
9429out_notrans:
9430        if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9431            old_ino == BTRFS_FIRST_FREE_OBJECTID)
9432                up_read(&fs_info->subvol_sem);
9433
9434        return ret;
9435}
9436
9437static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9438                                     struct btrfs_root *root,
9439                                     struct inode *dir,
9440                                     struct dentry *dentry)
9441{
9442        int ret;
9443        struct inode *inode;
9444        u64 objectid;
9445        u64 index;
9446
9447        ret = btrfs_get_free_objectid(root, &objectid);
9448        if (ret)
9449                return ret;
9450
9451        inode = btrfs_new_inode(trans, root, dir,
9452                                dentry->d_name.name,
9453                                dentry->d_name.len,
9454                                btrfs_ino(BTRFS_I(dir)),
9455                                objectid,
9456                                S_IFCHR | WHITEOUT_MODE,
9457                                &index);
9458
9459        if (IS_ERR(inode)) {
9460                ret = PTR_ERR(inode);
9461                return ret;
9462        }
9463
9464        inode->i_op = &btrfs_special_inode_operations;
9465        init_special_inode(inode, inode->i_mode,
9466                WHITEOUT_DEV);
9467
9468        ret = btrfs_init_inode_security(trans, inode, dir,
9469                                &dentry->d_name);
9470        if (ret)
9471                goto out;
9472
9473        ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9474                                BTRFS_I(inode), 0, index);
9475        if (ret)
9476                goto out;
9477
9478        ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9479out:
9480        unlock_new_inode(inode);
9481        if (ret)
9482                inode_dec_link_count(inode);
9483        iput(inode);
9484
9485        return ret;
9486}
9487
9488static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9489                           struct inode *new_dir, struct dentry *new_dentry,
9490                           unsigned int flags)
9491{
9492        struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9493        struct btrfs_trans_handle *trans;
9494        unsigned int trans_num_items;
9495        struct btrfs_root *root = BTRFS_I(old_dir)->root;
9496        struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9497        struct inode *new_inode = d_inode(new_dentry);
9498        struct inode *old_inode = d_inode(old_dentry);
9499        u64 index = 0;
9500        int ret;
9501        int ret2;
9502        u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9503        bool log_pinned = false;
9504
9505        if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9506                return -EPERM;
9507
9508        /* we only allow rename subvolume link between subvolumes */
9509        if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9510                return -EXDEV;
9511
9512        if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9513            (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9514                return -ENOTEMPTY;
9515
9516        if (S_ISDIR(old_inode->i_mode) && new_inode &&
9517            new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9518                return -ENOTEMPTY;
9519
9520
9521        /* check for collisions, even if the  name isn't there */
9522        ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9523                             new_dentry->d_name.name,
9524                             new_dentry->d_name.len);
9525
9526        if (ret) {
9527                if (ret == -EEXIST) {
9528                        /* we shouldn't get
9529                         * eexist without a new_inode */
9530                        if (WARN_ON(!new_inode)) {
9531                                return ret;
9532                        }
9533                } else {
9534                        /* maybe -EOVERFLOW */
9535                        return ret;
9536                }
9537        }
9538        ret = 0;
9539
9540        /*
9541         * we're using rename to replace one file with another.  Start IO on it
9542         * now so  we don't add too much work to the end of the transaction
9543         */
9544        if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9545                filemap_flush(old_inode->i_mapping);
9546
9547        /* close the racy window with snapshot create/destroy ioctl */
9548        if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9549                down_read(&fs_info->subvol_sem);
9550        /*
9551         * We want to reserve the absolute worst case amount of items.  So if
9552         * both inodes are subvols and we need to unlink them then that would
9553         * require 4 item modifications, but if they are both normal inodes it
9554         * would require 5 item modifications, so we'll assume they are normal
9555         * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9556         * should cover the worst case number of items we'll modify.
9557         * If our rename has the whiteout flag, we need more 5 units for the
9558         * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9559         * when selinux is enabled).
9560         */
9561        trans_num_items = 11;
9562        if (flags & RENAME_WHITEOUT)
9563                trans_num_items += 5;
9564        trans = btrfs_start_transaction(root, trans_num_items);
9565        if (IS_ERR(trans)) {
9566                ret = PTR_ERR(trans);
9567                goto out_notrans;
9568        }
9569
9570        if (dest != root) {
9571                ret = btrfs_record_root_in_trans(trans, dest);
9572                if (ret)
9573                        goto out_fail;
9574        }
9575
9576        ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9577        if (ret)
9578                goto out_fail;
9579
9580        BTRFS_I(old_inode)->dir_index = 0ULL;
9581        if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9582                /* force full log commit if subvolume involved. */
9583                btrfs_set_log_full_commit(trans);
9584        } else {
9585                btrfs_pin_log_trans(root);
9586                log_pinned = true;
9587                ret = btrfs_insert_inode_ref(trans, dest,
9588                                             new_dentry->d_name.name,
9589                                             new_dentry->d_name.len,
9590                                             old_ino,
9591                                             btrfs_ino(BTRFS_I(new_dir)), index);
9592                if (ret)
9593                        goto out_fail;
9594        }
9595
9596        inode_inc_iversion(old_dir);
9597        inode_inc_iversion(new_dir);
9598        inode_inc_iversion(old_inode);
9599        old_dir->i_ctime = old_dir->i_mtime =
9600        new_dir->i_ctime = new_dir->i_mtime =
9601        old_inode->i_ctime = current_time(old_dir);
9602
9603        if (old_dentry->d_parent != new_dentry->d_parent)
9604                btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9605                                BTRFS_I(old_inode), 1);
9606
9607        if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9608                ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9609        } else {
9610                ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9611                                        BTRFS_I(d_inode(old_dentry)),
9612                                        old_dentry->d_name.name,
9613                                        old_dentry->d_name.len);
9614                if (!ret)
9615                        ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9616        }
9617        if (ret) {
9618                btrfs_abort_transaction(trans, ret);
9619                goto out_fail;
9620        }
9621
9622        if (new_inode) {
9623                inode_inc_iversion(new_inode);
9624                new_inode->i_ctime = current_time(new_inode);
9625                if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9626                             BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9627                        ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9628                        BUG_ON(new_inode->i_nlink == 0);
9629                } else {
9630                        ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9631                                                 BTRFS_I(d_inode(new_dentry)),
9632                                                 new_dentry->d_name.name,
9633                                                 new_dentry->d_name.len);
9634                }
9635                if (!ret && new_inode->i_nlink == 0)
9636                        ret = btrfs_orphan_add(trans,
9637                                        BTRFS_I(d_inode(new_dentry)));
9638                if (ret) {
9639                        btrfs_abort_transaction(trans, ret);
9640                        goto out_fail;
9641                }
9642        }
9643
9644        ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9645                             new_dentry->d_name.name,
9646                             new_dentry->d_name.len, 0, index);
9647        if (ret) {
9648                btrfs_abort_transaction(trans, ret);
9649                goto out_fail;
9650        }
9651
9652        if (old_inode->i_nlink == 1)
9653                BTRFS_I(old_inode)->dir_index = index;
9654
9655        if (log_pinned) {
9656                btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9657                                   new_dentry->d_parent);
9658                btrfs_end_log_trans(root);
9659                log_pinned = false;
9660        }
9661
9662        if (flags & RENAME_WHITEOUT) {
9663                ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9664                                                old_dentry);
9665
9666                if (ret) {
9667                        btrfs_abort_transaction(trans, ret);
9668                        goto out_fail;
9669                }
9670        }
9671out_fail:
9672        /*
9673         * If we have pinned the log and an error happened, we unpin tasks
9674         * trying to sync the log and force them to fallback to a transaction
9675         * commit if the log currently contains any of the inodes involved in
9676         * this rename operation (to ensure we do not persist a log with an
9677         * inconsistent state for any of these inodes or leading to any
9678         * inconsistencies when replayed). If the transaction was aborted, the
9679         * abortion reason is propagated to userspace when attempting to commit
9680         * the transaction. If the log does not contain any of these inodes, we
9681         * allow the tasks to sync it.
9682         */
9683        if (ret && log_pinned) {
9684                if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9685                    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9686                    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9687                    (new_inode &&
9688                     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9689                        btrfs_set_log_full_commit(trans);
9690
9691                btrfs_end_log_trans(root);
9692                log_pinned = false;
9693        }
9694        ret2 = btrfs_end_transaction(trans);
9695        ret = ret ? ret : ret2;
9696out_notrans:
9697        if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9698                up_read(&fs_info->subvol_sem);
9699
9700        return ret;
9701}
9702
9703static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir,
9704                         struct dentry *old_dentry, struct inode *new_dir,
9705                         struct dentry *new_dentry, unsigned int flags)
9706{
9707        if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9708                return -EINVAL;
9709
9710        if (flags & RENAME_EXCHANGE)
9711                return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9712                                          new_dentry);
9713
9714        return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9715}
9716
9717struct btrfs_delalloc_work {
9718        struct inode *inode;
9719        struct completion completion;
9720        struct list_head list;
9721        struct btrfs_work work;
9722};
9723
9724static void btrfs_run_delalloc_work(struct btrfs_work *work)
9725{
9726        struct btrfs_delalloc_work *delalloc_work;
9727        struct inode *inode;
9728
9729        delalloc_work = container_of(work, struct btrfs_delalloc_work,
9730                                     work);
9731        inode = delalloc_work->inode;
9732        filemap_flush(inode->i_mapping);
9733        if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9734                                &BTRFS_I(inode)->runtime_flags))
9735                filemap_flush(inode->i_mapping);
9736
9737        iput(inode);
9738        complete(&delalloc_work->completion);
9739}
9740
9741static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9742{
9743        struct btrfs_delalloc_work *work;
9744
9745        work = kmalloc(sizeof(*work), GFP_NOFS);
9746        if (!work)
9747                return NULL;
9748
9749        init_completion(&work->completion);
9750        INIT_LIST_HEAD(&work->list);
9751        work->inode = inode;
9752        btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9753
9754        return work;
9755}
9756
9757/*
9758 * some fairly slow code that needs optimization. This walks the list
9759 * of all the inodes with pending delalloc and forces them to disk.
9760 */
9761static int start_delalloc_inodes(struct btrfs_root *root,
9762                                 struct writeback_control *wbc, bool snapshot,
9763                                 bool in_reclaim_context)
9764{
9765        struct btrfs_inode *binode;
9766        struct inode *inode;
9767        struct btrfs_delalloc_work *work, *next;
9768        struct list_head works;
9769        struct list_head splice;
9770        int ret = 0;
9771        bool full_flush = wbc->nr_to_write == LONG_MAX;
9772
9773        INIT_LIST_HEAD(&works);
9774        INIT_LIST_HEAD(&splice);
9775
9776        mutex_lock(&root->delalloc_mutex);
9777        spin_lock(&root->delalloc_lock);
9778        list_splice_init(&root->delalloc_inodes, &splice);
9779        while (!list_empty(&splice)) {
9780                binode = list_entry(splice.next, struct btrfs_inode,
9781                                    delalloc_inodes);
9782
9783                list_move_tail(&binode->delalloc_inodes,
9784                               &root->delalloc_inodes);
9785
9786                if (in_reclaim_context &&
9787                    test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9788                        continue;
9789
9790                inode = igrab(&binode->vfs_inode);
9791                if (!inode) {
9792                        cond_resched_lock(&root->delalloc_lock);
9793                        continue;
9794                }
9795                spin_unlock(&root->delalloc_lock);
9796
9797                if (snapshot)
9798                        set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9799                                &binode->runtime_flags);
9800                if (full_flush) {
9801                        work = btrfs_alloc_delalloc_work(inode);
9802                        if (!work) {
9803                                iput(inode);
9804                                ret = -ENOMEM;
9805                                goto out;
9806                        }
9807                        list_add_tail(&work->list, &works);
9808                        btrfs_queue_work(root->fs_info->flush_workers,
9809                                         &work->work);
9810                } else {
9811                        ret = sync_inode(inode, wbc);
9812                        if (!ret &&
9813                            test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9814                                     &BTRFS_I(inode)->runtime_flags))
9815                                ret = sync_inode(inode, wbc);
9816                        btrfs_add_delayed_iput(inode);
9817                        if (ret || wbc->nr_to_write <= 0)
9818                                goto out;
9819                }
9820                cond_resched();
9821                spin_lock(&root->delalloc_lock);
9822        }
9823        spin_unlock(&root->delalloc_lock);
9824
9825out:
9826        list_for_each_entry_safe(work, next, &works, list) {
9827                list_del_init(&work->list);
9828                wait_for_completion(&work->completion);
9829                kfree(work);
9830        }
9831
9832        if (!list_empty(&splice)) {
9833                spin_lock(&root->delalloc_lock);
9834                list_splice_tail(&splice, &root->delalloc_inodes);
9835                spin_unlock(&root->delalloc_lock);
9836        }
9837        mutex_unlock(&root->delalloc_mutex);
9838        return ret;
9839}
9840
9841int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9842{
9843        struct writeback_control wbc = {
9844                .nr_to_write = LONG_MAX,
9845                .sync_mode = WB_SYNC_NONE,
9846                .range_start = 0,
9847                .range_end = LLONG_MAX,
9848        };
9849        struct btrfs_fs_info *fs_info = root->fs_info;
9850
9851        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9852                return -EROFS;
9853
9854        return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9855}
9856
9857int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9858                               bool in_reclaim_context)
9859{
9860        struct writeback_control wbc = {
9861                .nr_to_write = nr,
9862                .sync_mode = WB_SYNC_NONE,
9863                .range_start = 0,
9864                .range_end = LLONG_MAX,
9865        };
9866        struct btrfs_root *root;
9867        struct list_head splice;
9868        int ret;
9869
9870        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9871                return -EROFS;
9872
9873        INIT_LIST_HEAD(&splice);
9874
9875        mutex_lock(&fs_info->delalloc_root_mutex);
9876        spin_lock(&fs_info->delalloc_root_lock);
9877        list_splice_init(&fs_info->delalloc_roots, &splice);
9878        while (!list_empty(&splice)) {
9879                /*
9880                 * Reset nr_to_write here so we know that we're doing a full
9881                 * flush.
9882                 */
9883                if (nr == LONG_MAX)
9884                        wbc.nr_to_write = LONG_MAX;
9885
9886                root = list_first_entry(&splice, struct btrfs_root,
9887                                        delalloc_root);
9888                root = btrfs_grab_root(root);
9889                BUG_ON(!root);
9890                list_move_tail(&root->delalloc_root,
9891                               &fs_info->delalloc_roots);
9892                spin_unlock(&fs_info->delalloc_root_lock);
9893
9894                ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9895                btrfs_put_root(root);
9896                if (ret < 0 || wbc.nr_to_write <= 0)
9897                        goto out;
9898                spin_lock(&fs_info->delalloc_root_lock);
9899        }
9900        spin_unlock(&fs_info->delalloc_root_lock);
9901
9902        ret = 0;
9903out:
9904        if (!list_empty(&splice)) {
9905                spin_lock(&fs_info->delalloc_root_lock);
9906                list_splice_tail(&splice, &fs_info->delalloc_roots);
9907                spin_unlock(&fs_info->delalloc_root_lock);
9908        }
9909        mutex_unlock(&fs_info->delalloc_root_mutex);
9910        return ret;
9911}
9912
9913static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
9914                         struct dentry *dentry, const char *symname)
9915{
9916        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9917        struct btrfs_trans_handle *trans;
9918        struct btrfs_root *root = BTRFS_I(dir)->root;
9919        struct btrfs_path *path;
9920        struct btrfs_key key;
9921        struct inode *inode = NULL;
9922        int err;
9923        u64 objectid;
9924        u64 index = 0;
9925        int name_len;
9926        int datasize;
9927        unsigned long ptr;
9928        struct btrfs_file_extent_item *ei;
9929        struct extent_buffer *leaf;
9930
9931        name_len = strlen(symname);
9932        if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9933                return -ENAMETOOLONG;
9934
9935        /*
9936         * 2 items for inode item and ref
9937         * 2 items for dir items
9938         * 1 item for updating parent inode item
9939         * 1 item for the inline extent item
9940         * 1 item for xattr if selinux is on
9941         */
9942        trans = btrfs_start_transaction(root, 7);
9943        if (IS_ERR(trans))
9944                return PTR_ERR(trans);
9945
9946        err = btrfs_get_free_objectid(root, &objectid);
9947        if (err)
9948                goto out_unlock;
9949
9950        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9951                                dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
9952                                objectid, S_IFLNK|S_IRWXUGO, &index);
9953        if (IS_ERR(inode)) {
9954                err = PTR_ERR(inode);
9955                inode = NULL;
9956                goto out_unlock;
9957        }
9958
9959        /*
9960        * If the active LSM wants to access the inode during
9961        * d_instantiate it needs these. Smack checks to see
9962        * if the filesystem supports xattrs by looking at the
9963        * ops vector.
9964        */
9965        inode->i_fop = &btrfs_file_operations;
9966        inode->i_op = &btrfs_file_inode_operations;
9967        inode->i_mapping->a_ops = &btrfs_aops;
9968
9969        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9970        if (err)
9971                goto out_unlock;
9972
9973        path = btrfs_alloc_path();
9974        if (!path) {
9975                err = -ENOMEM;
9976                goto out_unlock;
9977        }
9978        key.objectid = btrfs_ino(BTRFS_I(inode));
9979        key.offset = 0;
9980        key.type = BTRFS_EXTENT_DATA_KEY;
9981        datasize = btrfs_file_extent_calc_inline_size(name_len);
9982        err = btrfs_insert_empty_item(trans, root, path, &key,
9983                                      datasize);
9984        if (err) {
9985                btrfs_free_path(path);
9986                goto out_unlock;
9987        }
9988        leaf = path->nodes[0];
9989        ei = btrfs_item_ptr(leaf, path->slots[0],
9990                            struct btrfs_file_extent_item);
9991        btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9992        btrfs_set_file_extent_type(leaf, ei,
9993                                   BTRFS_FILE_EXTENT_INLINE);
9994        btrfs_set_file_extent_encryption(leaf, ei, 0);
9995        btrfs_set_file_extent_compression(leaf, ei, 0);
9996        btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9997        btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9998
9999        ptr = btrfs_file_extent_inline_start(ei);
10000        write_extent_buffer(leaf, symname, ptr, name_len);
10001        btrfs_mark_buffer_dirty(leaf);
10002        btrfs_free_path(path);
10003
10004        inode->i_op = &btrfs_symlink_inode_operations;
10005        inode_nohighmem(inode);
10006        inode_set_bytes(inode, name_len);
10007        btrfs_i_size_write(BTRFS_I(inode), name_len);
10008        err = btrfs_update_inode(trans, root, BTRFS_I(inode));
10009        /*
10010         * Last step, add directory indexes for our symlink inode. This is the
10011         * last step to avoid extra cleanup of these indexes if an error happens
10012         * elsewhere above.
10013         */
10014        if (!err)
10015                err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10016                                BTRFS_I(inode), 0, index);
10017        if (err)
10018                goto out_unlock;
10019
10020        d_instantiate_new(dentry, inode);
10021
10022out_unlock:
10023        btrfs_end_transaction(trans);
10024        if (err && inode) {
10025                inode_dec_link_count(inode);
10026                discard_new_inode(inode);
10027        }
10028        btrfs_btree_balance_dirty(fs_info);
10029        return err;
10030}
10031
10032static struct btrfs_trans_handle *insert_prealloc_file_extent(
10033                                       struct btrfs_trans_handle *trans_in,
10034                                       struct btrfs_inode *inode,
10035                                       struct btrfs_key *ins,
10036                                       u64 file_offset)
10037{
10038        struct btrfs_file_extent_item stack_fi;
10039        struct btrfs_replace_extent_info extent_info;
10040        struct btrfs_trans_handle *trans = trans_in;
10041        struct btrfs_path *path;
10042        u64 start = ins->objectid;
10043        u64 len = ins->offset;
10044        int qgroup_released;
10045        int ret;
10046
10047        memset(&stack_fi, 0, sizeof(stack_fi));
10048
10049        btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
10050        btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
10051        btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
10052        btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
10053        btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
10054        btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
10055        /* Encryption and other encoding is reserved and all 0 */
10056
10057        qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len);
10058        if (qgroup_released < 0)
10059                return ERR_PTR(qgroup_released);
10060
10061        if (trans) {
10062                ret = insert_reserved_file_extent(trans, inode,
10063                                                  file_offset, &stack_fi,
10064                                                  true, qgroup_released);
10065                if (ret)
10066                        goto free_qgroup;
10067                return trans;
10068        }
10069
10070        extent_info.disk_offset = start;
10071        extent_info.disk_len = len;
10072        extent_info.data_offset = 0;
10073        extent_info.data_len = len;
10074        extent_info.file_offset = file_offset;
10075        extent_info.extent_buf = (char *)&stack_fi;
10076        extent_info.is_new_extent = true;
10077        extent_info.qgroup_reserved = qgroup_released;
10078        extent_info.insertions = 0;
10079
10080        path = btrfs_alloc_path();
10081        if (!path) {
10082                ret = -ENOMEM;
10083                goto free_qgroup;
10084        }
10085
10086        ret = btrfs_replace_file_extents(inode, path, file_offset,
10087                                     file_offset + len - 1, &extent_info,
10088                                     &trans);
10089        btrfs_free_path(path);
10090        if (ret)
10091                goto free_qgroup;
10092        return trans;
10093
10094free_qgroup:
10095        /*
10096         * We have released qgroup data range at the beginning of the function,
10097         * and normally qgroup_released bytes will be freed when committing
10098         * transaction.
10099         * But if we error out early, we have to free what we have released
10100         * or we leak qgroup data reservation.
10101         */
10102        btrfs_qgroup_free_refroot(inode->root->fs_info,
10103                        inode->root->root_key.objectid, qgroup_released,
10104                        BTRFS_QGROUP_RSV_DATA);
10105        return ERR_PTR(ret);
10106}
10107
10108static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10109                                       u64 start, u64 num_bytes, u64 min_size,
10110                                       loff_t actual_len, u64 *alloc_hint,
10111                                       struct btrfs_trans_handle *trans)
10112{
10113        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10114        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10115        struct extent_map *em;
10116        struct btrfs_root *root = BTRFS_I(inode)->root;
10117        struct btrfs_key ins;
10118        u64 cur_offset = start;
10119        u64 clear_offset = start;
10120        u64 i_size;
10121        u64 cur_bytes;
10122        u64 last_alloc = (u64)-1;
10123        int ret = 0;
10124        bool own_trans = true;
10125        u64 end = start + num_bytes - 1;
10126
10127        if (trans)
10128                own_trans = false;
10129        while (num_bytes > 0) {
10130                cur_bytes = min_t(u64, num_bytes, SZ_256M);
10131                cur_bytes = max(cur_bytes, min_size);
10132                /*
10133                 * If we are severely fragmented we could end up with really
10134                 * small allocations, so if the allocator is returning small
10135                 * chunks lets make its job easier by only searching for those
10136                 * sized chunks.
10137                 */
10138                cur_bytes = min(cur_bytes, last_alloc);
10139                ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10140                                min_size, 0, *alloc_hint, &ins, 1, 0);
10141                if (ret)
10142                        break;
10143
10144                /*
10145                 * We've reserved this space, and thus converted it from
10146                 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
10147                 * from here on out we will only need to clear our reservation
10148                 * for the remaining unreserved area, so advance our
10149                 * clear_offset by our extent size.
10150                 */
10151                clear_offset += ins.offset;
10152
10153                last_alloc = ins.offset;
10154                trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
10155                                                    &ins, cur_offset);
10156                /*
10157                 * Now that we inserted the prealloc extent we can finally
10158                 * decrement the number of reservations in the block group.
10159                 * If we did it before, we could race with relocation and have
10160                 * relocation miss the reserved extent, making it fail later.
10161                 */
10162                btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10163                if (IS_ERR(trans)) {
10164                        ret = PTR_ERR(trans);
10165                        btrfs_free_reserved_extent(fs_info, ins.objectid,
10166                                                   ins.offset, 0);
10167                        break;
10168                }
10169
10170                btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10171                                        cur_offset + ins.offset -1, 0);
10172
10173                em = alloc_extent_map();
10174                if (!em) {
10175                        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10176                                &BTRFS_I(inode)->runtime_flags);
10177                        goto next;
10178                }
10179
10180                em->start = cur_offset;
10181                em->orig_start = cur_offset;
10182                em->len = ins.offset;
10183                em->block_start = ins.objectid;
10184                em->block_len = ins.offset;
10185                em->orig_block_len = ins.offset;
10186                em->ram_bytes = ins.offset;
10187                set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10188                em->generation = trans->transid;
10189
10190                while (1) {
10191                        write_lock(&em_tree->lock);
10192                        ret = add_extent_mapping(em_tree, em, 1);
10193                        write_unlock(&em_tree->lock);
10194                        if (ret != -EEXIST)
10195                                break;
10196                        btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10197                                                cur_offset + ins.offset - 1,
10198                                                0);
10199                }
10200                free_extent_map(em);
10201next:
10202                num_bytes -= ins.offset;
10203                cur_offset += ins.offset;
10204                *alloc_hint = ins.objectid + ins.offset;
10205
10206                inode_inc_iversion(inode);
10207                inode->i_ctime = current_time(inode);
10208                BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10209                if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10210                    (actual_len > inode->i_size) &&
10211                    (cur_offset > inode->i_size)) {
10212                        if (cur_offset > actual_len)
10213                                i_size = actual_len;
10214                        else
10215                                i_size = cur_offset;
10216                        i_size_write(inode, i_size);
10217                        btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
10218                }
10219
10220                ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
10221
10222                if (ret) {
10223                        btrfs_abort_transaction(trans, ret);
10224                        if (own_trans)
10225                                btrfs_end_transaction(trans);
10226                        break;
10227                }
10228
10229                if (own_trans) {
10230                        btrfs_end_transaction(trans);
10231                        trans = NULL;
10232                }
10233        }
10234        if (clear_offset < end)
10235                btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
10236                        end - clear_offset + 1);
10237        return ret;
10238}
10239
10240int btrfs_prealloc_file_range(struct inode *inode, int mode,
10241                              u64 start, u64 num_bytes, u64 min_size,
10242                              loff_t actual_len, u64 *alloc_hint)
10243{
10244        return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10245                                           min_size, actual_len, alloc_hint,
10246                                           NULL);
10247}
10248
10249int btrfs_prealloc_file_range_trans(struct inode *inode,
10250                                    struct btrfs_trans_handle *trans, int mode,
10251                                    u64 start, u64 num_bytes, u64 min_size,
10252                                    loff_t actual_len, u64 *alloc_hint)
10253{
10254        return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10255                                           min_size, actual_len, alloc_hint, trans);
10256}
10257
10258static int btrfs_set_page_dirty(struct page *page)
10259{
10260        return __set_page_dirty_nobuffers(page);
10261}
10262
10263static int btrfs_permission(struct user_namespace *mnt_userns,
10264                            struct inode *inode, int mask)
10265{
10266        struct btrfs_root *root = BTRFS_I(inode)->root;
10267        umode_t mode = inode->i_mode;
10268
10269        if (mask & MAY_WRITE &&
10270            (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10271                if (btrfs_root_readonly(root))
10272                        return -EROFS;
10273                if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10274                        return -EACCES;
10275        }
10276        return generic_permission(&init_user_ns, inode, mask);
10277}
10278
10279static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
10280                         struct dentry *dentry, umode_t mode)
10281{
10282        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10283        struct btrfs_trans_handle *trans;
10284        struct btrfs_root *root = BTRFS_I(dir)->root;
10285        struct inode *inode = NULL;
10286        u64 objectid;
10287        u64 index;
10288        int ret = 0;
10289
10290        /*
10291         * 5 units required for adding orphan entry
10292         */
10293        trans = btrfs_start_transaction(root, 5);
10294        if (IS_ERR(trans))
10295                return PTR_ERR(trans);
10296
10297        ret = btrfs_get_free_objectid(root, &objectid);
10298        if (ret)
10299                goto out;
10300
10301        inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10302                        btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10303        if (IS_ERR(inode)) {
10304                ret = PTR_ERR(inode);
10305                inode = NULL;
10306                goto out;
10307        }
10308
10309        inode->i_fop = &btrfs_file_operations;
10310        inode->i_op = &btrfs_file_inode_operations;
10311
10312        inode->i_mapping->a_ops = &btrfs_aops;
10313
10314        ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10315        if (ret)
10316                goto out;
10317
10318        ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
10319        if (ret)
10320                goto out;
10321        ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10322        if (ret)
10323                goto out;
10324
10325        /*
10326         * We set number of links to 0 in btrfs_new_inode(), and here we set
10327         * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10328         * through:
10329         *
10330         *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10331         */
10332        set_nlink(inode, 1);
10333        d_tmpfile(dentry, inode);
10334        unlock_new_inode(inode);
10335        mark_inode_dirty(inode);
10336out:
10337        btrfs_end_transaction(trans);
10338        if (ret && inode)
10339                discard_new_inode(inode);
10340        btrfs_btree_balance_dirty(fs_info);
10341        return ret;
10342}
10343
10344void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
10345{
10346        struct btrfs_fs_info *fs_info = inode->root->fs_info;
10347        unsigned long index = start >> PAGE_SHIFT;
10348        unsigned long end_index = end >> PAGE_SHIFT;
10349        struct page *page;
10350        u32 len;
10351
10352        ASSERT(end + 1 - start <= U32_MAX);
10353        len = end + 1 - start;
10354        while (index <= end_index) {
10355                page = find_get_page(inode->vfs_inode.i_mapping, index);
10356                ASSERT(page); /* Pages should be in the extent_io_tree */
10357
10358                btrfs_page_set_writeback(fs_info, page, start, len);
10359                put_page(page);
10360                index++;
10361        }
10362}
10363
10364#ifdef CONFIG_SWAP
10365/*
10366 * Add an entry indicating a block group or device which is pinned by a
10367 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10368 * negative errno on failure.
10369 */
10370static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10371                                  bool is_block_group)
10372{
10373        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10374        struct btrfs_swapfile_pin *sp, *entry;
10375        struct rb_node **p;
10376        struct rb_node *parent = NULL;
10377
10378        sp = kmalloc(sizeof(*sp), GFP_NOFS);
10379        if (!sp)
10380                return -ENOMEM;
10381        sp->ptr = ptr;
10382        sp->inode = inode;
10383        sp->is_block_group = is_block_group;
10384        sp->bg_extent_count = 1;
10385
10386        spin_lock(&fs_info->swapfile_pins_lock);
10387        p = &fs_info->swapfile_pins.rb_node;
10388        while (*p) {
10389                parent = *p;
10390                entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10391                if (sp->ptr < entry->ptr ||
10392                    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10393                        p = &(*p)->rb_left;
10394                } else if (sp->ptr > entry->ptr ||
10395                           (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10396                        p = &(*p)->rb_right;
10397                } else {
10398                        if (is_block_group)
10399                                entry->bg_extent_count++;
10400                        spin_unlock(&fs_info->swapfile_pins_lock);
10401                        kfree(sp);
10402                        return 1;
10403                }
10404        }
10405        rb_link_node(&sp->node, parent, p);
10406        rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10407        spin_unlock(&fs_info->swapfile_pins_lock);
10408        return 0;
10409}
10410
10411/* Free all of the entries pinned by this swapfile. */
10412static void btrfs_free_swapfile_pins(struct inode *inode)
10413{
10414        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10415        struct btrfs_swapfile_pin *sp;
10416        struct rb_node *node, *next;
10417
10418        spin_lock(&fs_info->swapfile_pins_lock);
10419        node = rb_first(&fs_info->swapfile_pins);
10420        while (node) {
10421                next = rb_next(node);
10422                sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10423                if (sp->inode == inode) {
10424                        rb_erase(&sp->node, &fs_info->swapfile_pins);
10425                        if (sp->is_block_group) {
10426                                btrfs_dec_block_group_swap_extents(sp->ptr,
10427                                                           sp->bg_extent_count);
10428                                btrfs_put_block_group(sp->ptr);
10429                        }
10430                        kfree(sp);
10431                }
10432                node = next;
10433        }
10434        spin_unlock(&fs_info->swapfile_pins_lock);
10435}
10436
10437struct btrfs_swap_info {
10438        u64 start;
10439        u64 block_start;
10440        u64 block_len;
10441        u64 lowest_ppage;
10442        u64 highest_ppage;
10443        unsigned long nr_pages;
10444        int nr_extents;
10445};
10446
10447static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10448                                 struct btrfs_swap_info *bsi)
10449{
10450        unsigned long nr_pages;
10451        u64 first_ppage, first_ppage_reported, next_ppage;
10452        int ret;
10453
10454        first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10455        next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10456                                PAGE_SIZE) >> PAGE_SHIFT;
10457
10458        if (first_ppage >= next_ppage)
10459                return 0;
10460        nr_pages = next_ppage - first_ppage;
10461
10462        first_ppage_reported = first_ppage;
10463        if (bsi->start == 0)
10464                first_ppage_reported++;
10465        if (bsi->lowest_ppage > first_ppage_reported)
10466                bsi->lowest_ppage = first_ppage_reported;
10467        if (bsi->highest_ppage < (next_ppage - 1))
10468                bsi->highest_ppage = next_ppage - 1;
10469
10470        ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10471        if (ret < 0)
10472                return ret;
10473        bsi->nr_extents += ret;
10474        bsi->nr_pages += nr_pages;
10475        return 0;
10476}
10477
10478static void btrfs_swap_deactivate(struct file *file)
10479{
10480        struct inode *inode = file_inode(file);
10481
10482        btrfs_free_swapfile_pins(inode);
10483        atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10484}
10485
10486static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10487                               sector_t *span)
10488{
10489        struct inode *inode = file_inode(file);
10490        struct btrfs_root *root = BTRFS_I(inode)->root;
10491        struct btrfs_fs_info *fs_info = root->fs_info;
10492        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10493        struct extent_state *cached_state = NULL;
10494        struct extent_map *em = NULL;
10495        struct btrfs_device *device = NULL;
10496        struct btrfs_swap_info bsi = {
10497                .lowest_ppage = (sector_t)-1ULL,
10498        };
10499        int ret = 0;
10500        u64 isize;
10501        u64 start;
10502
10503        /*
10504         * If the swap file was just created, make sure delalloc is done. If the
10505         * file changes again after this, the user is doing something stupid and
10506         * we don't really care.
10507         */
10508        ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10509        if (ret)
10510                return ret;
10511
10512        /*
10513         * The inode is locked, so these flags won't change after we check them.
10514         */
10515        if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10516                btrfs_warn(fs_info, "swapfile must not be compressed");
10517                return -EINVAL;
10518        }
10519        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10520                btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10521                return -EINVAL;
10522        }
10523        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10524                btrfs_warn(fs_info, "swapfile must not be checksummed");
10525                return -EINVAL;
10526        }
10527
10528        /*
10529         * Balance or device remove/replace/resize can move stuff around from
10530         * under us. The exclop protection makes sure they aren't running/won't
10531         * run concurrently while we are mapping the swap extents, and
10532         * fs_info->swapfile_pins prevents them from running while the swap
10533         * file is active and moving the extents. Note that this also prevents
10534         * a concurrent device add which isn't actually necessary, but it's not
10535         * really worth the trouble to allow it.
10536         */
10537        if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10538                btrfs_warn(fs_info,
10539           "cannot activate swapfile while exclusive operation is running");
10540                return -EBUSY;
10541        }
10542
10543        /*
10544         * Prevent snapshot creation while we are activating the swap file.
10545         * We do not want to race with snapshot creation. If snapshot creation
10546         * already started before we bumped nr_swapfiles from 0 to 1 and
10547         * completes before the first write into the swap file after it is
10548         * activated, than that write would fallback to COW.
10549         */
10550        if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10551                btrfs_exclop_finish(fs_info);
10552                btrfs_warn(fs_info,
10553           "cannot activate swapfile because snapshot creation is in progress");
10554                return -EINVAL;
10555        }
10556        /*
10557         * Snapshots can create extents which require COW even if NODATACOW is
10558         * set. We use this counter to prevent snapshots. We must increment it
10559         * before walking the extents because we don't want a concurrent
10560         * snapshot to run after we've already checked the extents.
10561         */
10562        atomic_inc(&root->nr_swapfiles);
10563
10564        isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10565
10566        lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10567        start = 0;
10568        while (start < isize) {
10569                u64 logical_block_start, physical_block_start;
10570                struct btrfs_block_group *bg;
10571                u64 len = isize - start;
10572
10573                em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10574                if (IS_ERR(em)) {
10575                        ret = PTR_ERR(em);
10576                        goto out;
10577                }
10578
10579                if (em->block_start == EXTENT_MAP_HOLE) {
10580                        btrfs_warn(fs_info, "swapfile must not have holes");
10581                        ret = -EINVAL;
10582                        goto out;
10583                }
10584                if (em->block_start == EXTENT_MAP_INLINE) {
10585                        /*
10586                         * It's unlikely we'll ever actually find ourselves
10587                         * here, as a file small enough to fit inline won't be
10588                         * big enough to store more than the swap header, but in
10589                         * case something changes in the future, let's catch it
10590                         * here rather than later.
10591                         */
10592                        btrfs_warn(fs_info, "swapfile must not be inline");
10593                        ret = -EINVAL;
10594                        goto out;
10595                }
10596                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10597                        btrfs_warn(fs_info, "swapfile must not be compressed");
10598                        ret = -EINVAL;
10599                        goto out;
10600                }
10601
10602                logical_block_start = em->block_start + (start - em->start);
10603                len = min(len, em->len - (start - em->start));
10604                free_extent_map(em);
10605                em = NULL;
10606
10607                ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
10608                if (ret < 0) {
10609                        goto out;
10610                } else if (ret) {
10611                        ret = 0;
10612                } else {
10613                        btrfs_warn(fs_info,
10614                                   "swapfile must not be copy-on-write");
10615                        ret = -EINVAL;
10616                        goto out;
10617                }
10618
10619                em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10620                if (IS_ERR(em)) {
10621                        ret = PTR_ERR(em);
10622                        goto out;
10623                }
10624
10625                if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10626                        btrfs_warn(fs_info,
10627                                   "swapfile must have single data profile");
10628                        ret = -EINVAL;
10629                        goto out;
10630                }
10631
10632                if (device == NULL) {
10633                        device = em->map_lookup->stripes[0].dev;
10634                        ret = btrfs_add_swapfile_pin(inode, device, false);
10635                        if (ret == 1)
10636                                ret = 0;
10637                        else if (ret)
10638                                goto out;
10639                } else if (device != em->map_lookup->stripes[0].dev) {
10640                        btrfs_warn(fs_info, "swapfile must be on one device");
10641                        ret = -EINVAL;
10642                        goto out;
10643                }
10644
10645                physical_block_start = (em->map_lookup->stripes[0].physical +
10646                                        (logical_block_start - em->start));
10647                len = min(len, em->len - (logical_block_start - em->start));
10648                free_extent_map(em);
10649                em = NULL;
10650
10651                bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10652                if (!bg) {
10653                        btrfs_warn(fs_info,
10654                           "could not find block group containing swapfile");
10655                        ret = -EINVAL;
10656                        goto out;
10657                }
10658
10659                if (!btrfs_inc_block_group_swap_extents(bg)) {
10660                        btrfs_warn(fs_info,
10661                           "block group for swapfile at %llu is read-only%s",
10662                           bg->start,
10663                           atomic_read(&fs_info->scrubs_running) ?
10664                                       " (scrub running)" : "");
10665                        btrfs_put_block_group(bg);
10666                        ret = -EINVAL;
10667                        goto out;
10668                }
10669
10670                ret = btrfs_add_swapfile_pin(inode, bg, true);
10671                if (ret) {
10672                        btrfs_put_block_group(bg);
10673                        if (ret == 1)
10674                                ret = 0;
10675                        else
10676                                goto out;
10677                }
10678
10679                if (bsi.block_len &&
10680                    bsi.block_start + bsi.block_len == physical_block_start) {
10681                        bsi.block_len += len;
10682                } else {
10683                        if (bsi.block_len) {
10684                                ret = btrfs_add_swap_extent(sis, &bsi);
10685                                if (ret)
10686                                        goto out;
10687                        }
10688                        bsi.start = start;
10689                        bsi.block_start = physical_block_start;
10690                        bsi.block_len = len;
10691                }
10692
10693                start += len;
10694        }
10695
10696        if (bsi.block_len)
10697                ret = btrfs_add_swap_extent(sis, &bsi);
10698
10699out:
10700        if (!IS_ERR_OR_NULL(em))
10701                free_extent_map(em);
10702
10703        unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10704
10705        if (ret)
10706                btrfs_swap_deactivate(file);
10707
10708        btrfs_drew_write_unlock(&root->snapshot_lock);
10709
10710        btrfs_exclop_finish(fs_info);
10711
10712        if (ret)
10713                return ret;
10714
10715        if (device)
10716                sis->bdev = device->bdev;
10717        *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10718        sis->max = bsi.nr_pages;
10719        sis->pages = bsi.nr_pages - 1;
10720        sis->highest_bit = bsi.nr_pages - 1;
10721        return bsi.nr_extents;
10722}
10723#else
10724static void btrfs_swap_deactivate(struct file *file)
10725{
10726}
10727
10728static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10729                               sector_t *span)
10730{
10731        return -EOPNOTSUPP;
10732}
10733#endif
10734
10735/*
10736 * Update the number of bytes used in the VFS' inode. When we replace extents in
10737 * a range (clone, dedupe, fallocate's zero range), we must update the number of
10738 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10739 * always get a correct value.
10740 */
10741void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10742                              const u64 add_bytes,
10743                              const u64 del_bytes)
10744{
10745        if (add_bytes == del_bytes)
10746                return;
10747
10748        spin_lock(&inode->lock);
10749        if (del_bytes > 0)
10750                inode_sub_bytes(&inode->vfs_inode, del_bytes);
10751        if (add_bytes > 0)
10752                inode_add_bytes(&inode->vfs_inode, add_bytes);
10753        spin_unlock(&inode->lock);
10754}
10755
10756static const struct inode_operations btrfs_dir_inode_operations = {
10757        .getattr        = btrfs_getattr,
10758        .lookup         = btrfs_lookup,
10759        .create         = btrfs_create,
10760        .unlink         = btrfs_unlink,
10761        .link           = btrfs_link,
10762        .mkdir          = btrfs_mkdir,
10763        .rmdir          = btrfs_rmdir,
10764        .rename         = btrfs_rename2,
10765        .symlink        = btrfs_symlink,
10766        .setattr        = btrfs_setattr,
10767        .mknod          = btrfs_mknod,
10768        .listxattr      = btrfs_listxattr,
10769        .permission     = btrfs_permission,
10770        .get_acl        = btrfs_get_acl,
10771        .set_acl        = btrfs_set_acl,
10772        .update_time    = btrfs_update_time,
10773        .tmpfile        = btrfs_tmpfile,
10774        .fileattr_get   = btrfs_fileattr_get,
10775        .fileattr_set   = btrfs_fileattr_set,
10776};
10777
10778static const struct file_operations btrfs_dir_file_operations = {
10779        .llseek         = generic_file_llseek,
10780        .read           = generic_read_dir,
10781        .iterate_shared = btrfs_real_readdir,
10782        .open           = btrfs_opendir,
10783        .unlocked_ioctl = btrfs_ioctl,
10784#ifdef CONFIG_COMPAT
10785        .compat_ioctl   = btrfs_compat_ioctl,
10786#endif
10787        .release        = btrfs_release_file,
10788        .fsync          = btrfs_sync_file,
10789};
10790
10791/*
10792 * btrfs doesn't support the bmap operation because swapfiles
10793 * use bmap to make a mapping of extents in the file.  They assume
10794 * these extents won't change over the life of the file and they
10795 * use the bmap result to do IO directly to the drive.
10796 *
10797 * the btrfs bmap call would return logical addresses that aren't
10798 * suitable for IO and they also will change frequently as COW
10799 * operations happen.  So, swapfile + btrfs == corruption.
10800 *
10801 * For now we're avoiding this by dropping bmap.
10802 */
10803static const struct address_space_operations btrfs_aops = {
10804        .readpage       = btrfs_readpage,
10805        .writepage      = btrfs_writepage,
10806        .writepages     = btrfs_writepages,
10807        .readahead      = btrfs_readahead,
10808        .direct_IO      = noop_direct_IO,
10809        .invalidatepage = btrfs_invalidatepage,
10810        .releasepage    = btrfs_releasepage,
10811#ifdef CONFIG_MIGRATION
10812        .migratepage    = btrfs_migratepage,
10813#endif
10814        .set_page_dirty = btrfs_set_page_dirty,
10815        .error_remove_page = generic_error_remove_page,
10816        .swap_activate  = btrfs_swap_activate,
10817        .swap_deactivate = btrfs_swap_deactivate,
10818};
10819
10820static const struct inode_operations btrfs_file_inode_operations = {
10821        .getattr        = btrfs_getattr,
10822        .setattr        = btrfs_setattr,
10823        .listxattr      = btrfs_listxattr,
10824        .permission     = btrfs_permission,
10825        .fiemap         = btrfs_fiemap,
10826        .get_acl        = btrfs_get_acl,
10827        .set_acl        = btrfs_set_acl,
10828        .update_time    = btrfs_update_time,
10829        .fileattr_get   = btrfs_fileattr_get,
10830        .fileattr_set   = btrfs_fileattr_set,
10831};
10832static const struct inode_operations btrfs_special_inode_operations = {
10833        .getattr        = btrfs_getattr,
10834        .setattr        = btrfs_setattr,
10835        .permission     = btrfs_permission,
10836        .listxattr      = btrfs_listxattr,
10837        .get_acl        = btrfs_get_acl,
10838        .set_acl        = btrfs_set_acl,
10839        .update_time    = btrfs_update_time,
10840};
10841static const struct inode_operations btrfs_symlink_inode_operations = {
10842        .get_link       = page_get_link,
10843        .getattr        = btrfs_getattr,
10844        .setattr        = btrfs_setattr,
10845        .permission     = btrfs_permission,
10846        .listxattr      = btrfs_listxattr,
10847        .update_time    = btrfs_update_time,
10848};
10849
10850const struct dentry_operations btrfs_dentry_operations = {
10851        .d_delete       = btrfs_dentry_delete,
10852};
10853