linux/fs/btrfs/send.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2012 Alexander Block.  All rights reserved.
   4 */
   5
   6#include <linux/bsearch.h>
   7#include <linux/fs.h>
   8#include <linux/file.h>
   9#include <linux/sort.h>
  10#include <linux/mount.h>
  11#include <linux/xattr.h>
  12#include <linux/posix_acl_xattr.h>
  13#include <linux/radix-tree.h>
  14#include <linux/vmalloc.h>
  15#include <linux/string.h>
  16#include <linux/compat.h>
  17#include <linux/crc32c.h>
  18
  19#include "send.h"
  20#include "backref.h"
  21#include "locking.h"
  22#include "disk-io.h"
  23#include "btrfs_inode.h"
  24#include "transaction.h"
  25#include "compression.h"
  26#include "xattr.h"
  27
  28/*
  29 * Maximum number of references an extent can have in order for us to attempt to
  30 * issue clone operations instead of write operations. This currently exists to
  31 * avoid hitting limitations of the backreference walking code (taking a lot of
  32 * time and using too much memory for extents with large number of references).
  33 */
  34#define SEND_MAX_EXTENT_REFS    64
  35
  36/*
  37 * A fs_path is a helper to dynamically build path names with unknown size.
  38 * It reallocates the internal buffer on demand.
  39 * It allows fast adding of path elements on the right side (normal path) and
  40 * fast adding to the left side (reversed path). A reversed path can also be
  41 * unreversed if needed.
  42 */
  43struct fs_path {
  44        union {
  45                struct {
  46                        char *start;
  47                        char *end;
  48
  49                        char *buf;
  50                        unsigned short buf_len:15;
  51                        unsigned short reversed:1;
  52                        char inline_buf[];
  53                };
  54                /*
  55                 * Average path length does not exceed 200 bytes, we'll have
  56                 * better packing in the slab and higher chance to satisfy
  57                 * a allocation later during send.
  58                 */
  59                char pad[256];
  60        };
  61};
  62#define FS_PATH_INLINE_SIZE \
  63        (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
  64
  65
  66/* reused for each extent */
  67struct clone_root {
  68        struct btrfs_root *root;
  69        u64 ino;
  70        u64 offset;
  71
  72        u64 found_refs;
  73};
  74
  75#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
  76#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
  77
  78struct send_ctx {
  79        struct file *send_filp;
  80        loff_t send_off;
  81        char *send_buf;
  82        u32 send_size;
  83        u32 send_max_size;
  84        u64 total_send_size;
  85        u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
  86        u64 flags;      /* 'flags' member of btrfs_ioctl_send_args is u64 */
  87
  88        struct btrfs_root *send_root;
  89        struct btrfs_root *parent_root;
  90        struct clone_root *clone_roots;
  91        int clone_roots_cnt;
  92
  93        /* current state of the compare_tree call */
  94        struct btrfs_path *left_path;
  95        struct btrfs_path *right_path;
  96        struct btrfs_key *cmp_key;
  97
  98        /*
  99         * infos of the currently processed inode. In case of deleted inodes,
 100         * these are the values from the deleted inode.
 101         */
 102        u64 cur_ino;
 103        u64 cur_inode_gen;
 104        int cur_inode_new;
 105        int cur_inode_new_gen;
 106        int cur_inode_deleted;
 107        u64 cur_inode_size;
 108        u64 cur_inode_mode;
 109        u64 cur_inode_rdev;
 110        u64 cur_inode_last_extent;
 111        u64 cur_inode_next_write_offset;
 112        bool ignore_cur_inode;
 113
 114        u64 send_progress;
 115
 116        struct list_head new_refs;
 117        struct list_head deleted_refs;
 118
 119        struct radix_tree_root name_cache;
 120        struct list_head name_cache_list;
 121        int name_cache_size;
 122
 123        struct file_ra_state ra;
 124
 125        /*
 126         * We process inodes by their increasing order, so if before an
 127         * incremental send we reverse the parent/child relationship of
 128         * directories such that a directory with a lower inode number was
 129         * the parent of a directory with a higher inode number, and the one
 130         * becoming the new parent got renamed too, we can't rename/move the
 131         * directory with lower inode number when we finish processing it - we
 132         * must process the directory with higher inode number first, then
 133         * rename/move it and then rename/move the directory with lower inode
 134         * number. Example follows.
 135         *
 136         * Tree state when the first send was performed:
 137         *
 138         * .
 139         * |-- a                   (ino 257)
 140         *     |-- b               (ino 258)
 141         *         |
 142         *         |
 143         *         |-- c           (ino 259)
 144         *         |   |-- d       (ino 260)
 145         *         |
 146         *         |-- c2          (ino 261)
 147         *
 148         * Tree state when the second (incremental) send is performed:
 149         *
 150         * .
 151         * |-- a                   (ino 257)
 152         *     |-- b               (ino 258)
 153         *         |-- c2          (ino 261)
 154         *             |-- d2      (ino 260)
 155         *                 |-- cc  (ino 259)
 156         *
 157         * The sequence of steps that lead to the second state was:
 158         *
 159         * mv /a/b/c/d /a/b/c2/d2
 160         * mv /a/b/c /a/b/c2/d2/cc
 161         *
 162         * "c" has lower inode number, but we can't move it (2nd mv operation)
 163         * before we move "d", which has higher inode number.
 164         *
 165         * So we just memorize which move/rename operations must be performed
 166         * later when their respective parent is processed and moved/renamed.
 167         */
 168
 169        /* Indexed by parent directory inode number. */
 170        struct rb_root pending_dir_moves;
 171
 172        /*
 173         * Reverse index, indexed by the inode number of a directory that
 174         * is waiting for the move/rename of its immediate parent before its
 175         * own move/rename can be performed.
 176         */
 177        struct rb_root waiting_dir_moves;
 178
 179        /*
 180         * A directory that is going to be rm'ed might have a child directory
 181         * which is in the pending directory moves index above. In this case,
 182         * the directory can only be removed after the move/rename of its child
 183         * is performed. Example:
 184         *
 185         * Parent snapshot:
 186         *
 187         * .                        (ino 256)
 188         * |-- a/                   (ino 257)
 189         *     |-- b/               (ino 258)
 190         *         |-- c/           (ino 259)
 191         *         |   |-- x/       (ino 260)
 192         *         |
 193         *         |-- y/           (ino 261)
 194         *
 195         * Send snapshot:
 196         *
 197         * .                        (ino 256)
 198         * |-- a/                   (ino 257)
 199         *     |-- b/               (ino 258)
 200         *         |-- YY/          (ino 261)
 201         *              |-- x/      (ino 260)
 202         *
 203         * Sequence of steps that lead to the send snapshot:
 204         * rm -f /a/b/c/foo.txt
 205         * mv /a/b/y /a/b/YY
 206         * mv /a/b/c/x /a/b/YY
 207         * rmdir /a/b/c
 208         *
 209         * When the child is processed, its move/rename is delayed until its
 210         * parent is processed (as explained above), but all other operations
 211         * like update utimes, chown, chgrp, etc, are performed and the paths
 212         * that it uses for those operations must use the orphanized name of
 213         * its parent (the directory we're going to rm later), so we need to
 214         * memorize that name.
 215         *
 216         * Indexed by the inode number of the directory to be deleted.
 217         */
 218        struct rb_root orphan_dirs;
 219};
 220
 221struct pending_dir_move {
 222        struct rb_node node;
 223        struct list_head list;
 224        u64 parent_ino;
 225        u64 ino;
 226        u64 gen;
 227        struct list_head update_refs;
 228};
 229
 230struct waiting_dir_move {
 231        struct rb_node node;
 232        u64 ino;
 233        /*
 234         * There might be some directory that could not be removed because it
 235         * was waiting for this directory inode to be moved first. Therefore
 236         * after this directory is moved, we can try to rmdir the ino rmdir_ino.
 237         */
 238        u64 rmdir_ino;
 239        u64 rmdir_gen;
 240        bool orphanized;
 241};
 242
 243struct orphan_dir_info {
 244        struct rb_node node;
 245        u64 ino;
 246        u64 gen;
 247        u64 last_dir_index_offset;
 248};
 249
 250struct name_cache_entry {
 251        struct list_head list;
 252        /*
 253         * radix_tree has only 32bit entries but we need to handle 64bit inums.
 254         * We use the lower 32bit of the 64bit inum to store it in the tree. If
 255         * more then one inum would fall into the same entry, we use radix_list
 256         * to store the additional entries. radix_list is also used to store
 257         * entries where two entries have the same inum but different
 258         * generations.
 259         */
 260        struct list_head radix_list;
 261        u64 ino;
 262        u64 gen;
 263        u64 parent_ino;
 264        u64 parent_gen;
 265        int ret;
 266        int need_later_update;
 267        int name_len;
 268        char name[];
 269};
 270
 271#define ADVANCE                                                 1
 272#define ADVANCE_ONLY_NEXT                                       -1
 273
 274enum btrfs_compare_tree_result {
 275        BTRFS_COMPARE_TREE_NEW,
 276        BTRFS_COMPARE_TREE_DELETED,
 277        BTRFS_COMPARE_TREE_CHANGED,
 278        BTRFS_COMPARE_TREE_SAME,
 279};
 280
 281__cold
 282static void inconsistent_snapshot_error(struct send_ctx *sctx,
 283                                        enum btrfs_compare_tree_result result,
 284                                        const char *what)
 285{
 286        const char *result_string;
 287
 288        switch (result) {
 289        case BTRFS_COMPARE_TREE_NEW:
 290                result_string = "new";
 291                break;
 292        case BTRFS_COMPARE_TREE_DELETED:
 293                result_string = "deleted";
 294                break;
 295        case BTRFS_COMPARE_TREE_CHANGED:
 296                result_string = "updated";
 297                break;
 298        case BTRFS_COMPARE_TREE_SAME:
 299                ASSERT(0);
 300                result_string = "unchanged";
 301                break;
 302        default:
 303                ASSERT(0);
 304                result_string = "unexpected";
 305        }
 306
 307        btrfs_err(sctx->send_root->fs_info,
 308                  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
 309                  result_string, what, sctx->cmp_key->objectid,
 310                  sctx->send_root->root_key.objectid,
 311                  (sctx->parent_root ?
 312                   sctx->parent_root->root_key.objectid : 0));
 313}
 314
 315static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
 316
 317static struct waiting_dir_move *
 318get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
 319
 320static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
 321
 322static int need_send_hole(struct send_ctx *sctx)
 323{
 324        return (sctx->parent_root && !sctx->cur_inode_new &&
 325                !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
 326                S_ISREG(sctx->cur_inode_mode));
 327}
 328
 329static void fs_path_reset(struct fs_path *p)
 330{
 331        if (p->reversed) {
 332                p->start = p->buf + p->buf_len - 1;
 333                p->end = p->start;
 334                *p->start = 0;
 335        } else {
 336                p->start = p->buf;
 337                p->end = p->start;
 338                *p->start = 0;
 339        }
 340}
 341
 342static struct fs_path *fs_path_alloc(void)
 343{
 344        struct fs_path *p;
 345
 346        p = kmalloc(sizeof(*p), GFP_KERNEL);
 347        if (!p)
 348                return NULL;
 349        p->reversed = 0;
 350        p->buf = p->inline_buf;
 351        p->buf_len = FS_PATH_INLINE_SIZE;
 352        fs_path_reset(p);
 353        return p;
 354}
 355
 356static struct fs_path *fs_path_alloc_reversed(void)
 357{
 358        struct fs_path *p;
 359
 360        p = fs_path_alloc();
 361        if (!p)
 362                return NULL;
 363        p->reversed = 1;
 364        fs_path_reset(p);
 365        return p;
 366}
 367
 368static void fs_path_free(struct fs_path *p)
 369{
 370        if (!p)
 371                return;
 372        if (p->buf != p->inline_buf)
 373                kfree(p->buf);
 374        kfree(p);
 375}
 376
 377static int fs_path_len(struct fs_path *p)
 378{
 379        return p->end - p->start;
 380}
 381
 382static int fs_path_ensure_buf(struct fs_path *p, int len)
 383{
 384        char *tmp_buf;
 385        int path_len;
 386        int old_buf_len;
 387
 388        len++;
 389
 390        if (p->buf_len >= len)
 391                return 0;
 392
 393        if (len > PATH_MAX) {
 394                WARN_ON(1);
 395                return -ENOMEM;
 396        }
 397
 398        path_len = p->end - p->start;
 399        old_buf_len = p->buf_len;
 400
 401        /*
 402         * First time the inline_buf does not suffice
 403         */
 404        if (p->buf == p->inline_buf) {
 405                tmp_buf = kmalloc(len, GFP_KERNEL);
 406                if (tmp_buf)
 407                        memcpy(tmp_buf, p->buf, old_buf_len);
 408        } else {
 409                tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
 410        }
 411        if (!tmp_buf)
 412                return -ENOMEM;
 413        p->buf = tmp_buf;
 414        /*
 415         * The real size of the buffer is bigger, this will let the fast path
 416         * happen most of the time
 417         */
 418        p->buf_len = ksize(p->buf);
 419
 420        if (p->reversed) {
 421                tmp_buf = p->buf + old_buf_len - path_len - 1;
 422                p->end = p->buf + p->buf_len - 1;
 423                p->start = p->end - path_len;
 424                memmove(p->start, tmp_buf, path_len + 1);
 425        } else {
 426                p->start = p->buf;
 427                p->end = p->start + path_len;
 428        }
 429        return 0;
 430}
 431
 432static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
 433                                   char **prepared)
 434{
 435        int ret;
 436        int new_len;
 437
 438        new_len = p->end - p->start + name_len;
 439        if (p->start != p->end)
 440                new_len++;
 441        ret = fs_path_ensure_buf(p, new_len);
 442        if (ret < 0)
 443                goto out;
 444
 445        if (p->reversed) {
 446                if (p->start != p->end)
 447                        *--p->start = '/';
 448                p->start -= name_len;
 449                *prepared = p->start;
 450        } else {
 451                if (p->start != p->end)
 452                        *p->end++ = '/';
 453                *prepared = p->end;
 454                p->end += name_len;
 455                *p->end = 0;
 456        }
 457
 458out:
 459        return ret;
 460}
 461
 462static int fs_path_add(struct fs_path *p, const char *name, int name_len)
 463{
 464        int ret;
 465        char *prepared;
 466
 467        ret = fs_path_prepare_for_add(p, name_len, &prepared);
 468        if (ret < 0)
 469                goto out;
 470        memcpy(prepared, name, name_len);
 471
 472out:
 473        return ret;
 474}
 475
 476static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
 477{
 478        int ret;
 479        char *prepared;
 480
 481        ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
 482        if (ret < 0)
 483                goto out;
 484        memcpy(prepared, p2->start, p2->end - p2->start);
 485
 486out:
 487        return ret;
 488}
 489
 490static int fs_path_add_from_extent_buffer(struct fs_path *p,
 491                                          struct extent_buffer *eb,
 492                                          unsigned long off, int len)
 493{
 494        int ret;
 495        char *prepared;
 496
 497        ret = fs_path_prepare_for_add(p, len, &prepared);
 498        if (ret < 0)
 499                goto out;
 500
 501        read_extent_buffer(eb, prepared, off, len);
 502
 503out:
 504        return ret;
 505}
 506
 507static int fs_path_copy(struct fs_path *p, struct fs_path *from)
 508{
 509        int ret;
 510
 511        p->reversed = from->reversed;
 512        fs_path_reset(p);
 513
 514        ret = fs_path_add_path(p, from);
 515
 516        return ret;
 517}
 518
 519
 520static void fs_path_unreverse(struct fs_path *p)
 521{
 522        char *tmp;
 523        int len;
 524
 525        if (!p->reversed)
 526                return;
 527
 528        tmp = p->start;
 529        len = p->end - p->start;
 530        p->start = p->buf;
 531        p->end = p->start + len;
 532        memmove(p->start, tmp, len + 1);
 533        p->reversed = 0;
 534}
 535
 536static struct btrfs_path *alloc_path_for_send(void)
 537{
 538        struct btrfs_path *path;
 539
 540        path = btrfs_alloc_path();
 541        if (!path)
 542                return NULL;
 543        path->search_commit_root = 1;
 544        path->skip_locking = 1;
 545        path->need_commit_sem = 1;
 546        return path;
 547}
 548
 549static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
 550{
 551        int ret;
 552        u32 pos = 0;
 553
 554        while (pos < len) {
 555                ret = kernel_write(filp, buf + pos, len - pos, off);
 556                /* TODO handle that correctly */
 557                /*if (ret == -ERESTARTSYS) {
 558                        continue;
 559                }*/
 560                if (ret < 0)
 561                        return ret;
 562                if (ret == 0) {
 563                        return -EIO;
 564                }
 565                pos += ret;
 566        }
 567
 568        return 0;
 569}
 570
 571static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
 572{
 573        struct btrfs_tlv_header *hdr;
 574        int total_len = sizeof(*hdr) + len;
 575        int left = sctx->send_max_size - sctx->send_size;
 576
 577        if (unlikely(left < total_len))
 578                return -EOVERFLOW;
 579
 580        hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
 581        put_unaligned_le16(attr, &hdr->tlv_type);
 582        put_unaligned_le16(len, &hdr->tlv_len);
 583        memcpy(hdr + 1, data, len);
 584        sctx->send_size += total_len;
 585
 586        return 0;
 587}
 588
 589#define TLV_PUT_DEFINE_INT(bits) \
 590        static int tlv_put_u##bits(struct send_ctx *sctx,               \
 591                        u##bits attr, u##bits value)                    \
 592        {                                                               \
 593                __le##bits __tmp = cpu_to_le##bits(value);              \
 594                return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));      \
 595        }
 596
 597TLV_PUT_DEFINE_INT(64)
 598
 599static int tlv_put_string(struct send_ctx *sctx, u16 attr,
 600                          const char *str, int len)
 601{
 602        if (len == -1)
 603                len = strlen(str);
 604        return tlv_put(sctx, attr, str, len);
 605}
 606
 607static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
 608                        const u8 *uuid)
 609{
 610        return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
 611}
 612
 613static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
 614                                  struct extent_buffer *eb,
 615                                  struct btrfs_timespec *ts)
 616{
 617        struct btrfs_timespec bts;
 618        read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
 619        return tlv_put(sctx, attr, &bts, sizeof(bts));
 620}
 621
 622
 623#define TLV_PUT(sctx, attrtype, data, attrlen) \
 624        do { \
 625                ret = tlv_put(sctx, attrtype, data, attrlen); \
 626                if (ret < 0) \
 627                        goto tlv_put_failure; \
 628        } while (0)
 629
 630#define TLV_PUT_INT(sctx, attrtype, bits, value) \
 631        do { \
 632                ret = tlv_put_u##bits(sctx, attrtype, value); \
 633                if (ret < 0) \
 634                        goto tlv_put_failure; \
 635        } while (0)
 636
 637#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
 638#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
 639#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
 640#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
 641#define TLV_PUT_STRING(sctx, attrtype, str, len) \
 642        do { \
 643                ret = tlv_put_string(sctx, attrtype, str, len); \
 644                if (ret < 0) \
 645                        goto tlv_put_failure; \
 646        } while (0)
 647#define TLV_PUT_PATH(sctx, attrtype, p) \
 648        do { \
 649                ret = tlv_put_string(sctx, attrtype, p->start, \
 650                        p->end - p->start); \
 651                if (ret < 0) \
 652                        goto tlv_put_failure; \
 653        } while(0)
 654#define TLV_PUT_UUID(sctx, attrtype, uuid) \
 655        do { \
 656                ret = tlv_put_uuid(sctx, attrtype, uuid); \
 657                if (ret < 0) \
 658                        goto tlv_put_failure; \
 659        } while (0)
 660#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
 661        do { \
 662                ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
 663                if (ret < 0) \
 664                        goto tlv_put_failure; \
 665        } while (0)
 666
 667static int send_header(struct send_ctx *sctx)
 668{
 669        struct btrfs_stream_header hdr;
 670
 671        strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
 672        hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
 673
 674        return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
 675                                        &sctx->send_off);
 676}
 677
 678/*
 679 * For each command/item we want to send to userspace, we call this function.
 680 */
 681static int begin_cmd(struct send_ctx *sctx, int cmd)
 682{
 683        struct btrfs_cmd_header *hdr;
 684
 685        if (WARN_ON(!sctx->send_buf))
 686                return -EINVAL;
 687
 688        BUG_ON(sctx->send_size);
 689
 690        sctx->send_size += sizeof(*hdr);
 691        hdr = (struct btrfs_cmd_header *)sctx->send_buf;
 692        put_unaligned_le16(cmd, &hdr->cmd);
 693
 694        return 0;
 695}
 696
 697static int send_cmd(struct send_ctx *sctx)
 698{
 699        int ret;
 700        struct btrfs_cmd_header *hdr;
 701        u32 crc;
 702
 703        hdr = (struct btrfs_cmd_header *)sctx->send_buf;
 704        put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
 705        put_unaligned_le32(0, &hdr->crc);
 706
 707        crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
 708        put_unaligned_le32(crc, &hdr->crc);
 709
 710        ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
 711                                        &sctx->send_off);
 712
 713        sctx->total_send_size += sctx->send_size;
 714        sctx->cmd_send_size[get_unaligned_le16(&hdr->cmd)] += sctx->send_size;
 715        sctx->send_size = 0;
 716
 717        return ret;
 718}
 719
 720/*
 721 * Sends a move instruction to user space
 722 */
 723static int send_rename(struct send_ctx *sctx,
 724                     struct fs_path *from, struct fs_path *to)
 725{
 726        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 727        int ret;
 728
 729        btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
 730
 731        ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
 732        if (ret < 0)
 733                goto out;
 734
 735        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
 736        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
 737
 738        ret = send_cmd(sctx);
 739
 740tlv_put_failure:
 741out:
 742        return ret;
 743}
 744
 745/*
 746 * Sends a link instruction to user space
 747 */
 748static int send_link(struct send_ctx *sctx,
 749                     struct fs_path *path, struct fs_path *lnk)
 750{
 751        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 752        int ret;
 753
 754        btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
 755
 756        ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
 757        if (ret < 0)
 758                goto out;
 759
 760        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 761        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
 762
 763        ret = send_cmd(sctx);
 764
 765tlv_put_failure:
 766out:
 767        return ret;
 768}
 769
 770/*
 771 * Sends an unlink instruction to user space
 772 */
 773static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
 774{
 775        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 776        int ret;
 777
 778        btrfs_debug(fs_info, "send_unlink %s", path->start);
 779
 780        ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
 781        if (ret < 0)
 782                goto out;
 783
 784        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 785
 786        ret = send_cmd(sctx);
 787
 788tlv_put_failure:
 789out:
 790        return ret;
 791}
 792
 793/*
 794 * Sends a rmdir instruction to user space
 795 */
 796static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
 797{
 798        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
 799        int ret;
 800
 801        btrfs_debug(fs_info, "send_rmdir %s", path->start);
 802
 803        ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
 804        if (ret < 0)
 805                goto out;
 806
 807        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
 808
 809        ret = send_cmd(sctx);
 810
 811tlv_put_failure:
 812out:
 813        return ret;
 814}
 815
 816/*
 817 * Helper function to retrieve some fields from an inode item.
 818 */
 819static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
 820                          u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
 821                          u64 *gid, u64 *rdev)
 822{
 823        int ret;
 824        struct btrfs_inode_item *ii;
 825        struct btrfs_key key;
 826
 827        key.objectid = ino;
 828        key.type = BTRFS_INODE_ITEM_KEY;
 829        key.offset = 0;
 830        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 831        if (ret) {
 832                if (ret > 0)
 833                        ret = -ENOENT;
 834                return ret;
 835        }
 836
 837        ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
 838                        struct btrfs_inode_item);
 839        if (size)
 840                *size = btrfs_inode_size(path->nodes[0], ii);
 841        if (gen)
 842                *gen = btrfs_inode_generation(path->nodes[0], ii);
 843        if (mode)
 844                *mode = btrfs_inode_mode(path->nodes[0], ii);
 845        if (uid)
 846                *uid = btrfs_inode_uid(path->nodes[0], ii);
 847        if (gid)
 848                *gid = btrfs_inode_gid(path->nodes[0], ii);
 849        if (rdev)
 850                *rdev = btrfs_inode_rdev(path->nodes[0], ii);
 851
 852        return ret;
 853}
 854
 855static int get_inode_info(struct btrfs_root *root,
 856                          u64 ino, u64 *size, u64 *gen,
 857                          u64 *mode, u64 *uid, u64 *gid,
 858                          u64 *rdev)
 859{
 860        struct btrfs_path *path;
 861        int ret;
 862
 863        path = alloc_path_for_send();
 864        if (!path)
 865                return -ENOMEM;
 866        ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
 867                               rdev);
 868        btrfs_free_path(path);
 869        return ret;
 870}
 871
 872typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
 873                                   struct fs_path *p,
 874                                   void *ctx);
 875
 876/*
 877 * Helper function to iterate the entries in ONE btrfs_inode_ref or
 878 * btrfs_inode_extref.
 879 * The iterate callback may return a non zero value to stop iteration. This can
 880 * be a negative value for error codes or 1 to simply stop it.
 881 *
 882 * path must point to the INODE_REF or INODE_EXTREF when called.
 883 */
 884static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
 885                             struct btrfs_key *found_key, int resolve,
 886                             iterate_inode_ref_t iterate, void *ctx)
 887{
 888        struct extent_buffer *eb = path->nodes[0];
 889        struct btrfs_item *item;
 890        struct btrfs_inode_ref *iref;
 891        struct btrfs_inode_extref *extref;
 892        struct btrfs_path *tmp_path;
 893        struct fs_path *p;
 894        u32 cur = 0;
 895        u32 total;
 896        int slot = path->slots[0];
 897        u32 name_len;
 898        char *start;
 899        int ret = 0;
 900        int num = 0;
 901        int index;
 902        u64 dir;
 903        unsigned long name_off;
 904        unsigned long elem_size;
 905        unsigned long ptr;
 906
 907        p = fs_path_alloc_reversed();
 908        if (!p)
 909                return -ENOMEM;
 910
 911        tmp_path = alloc_path_for_send();
 912        if (!tmp_path) {
 913                fs_path_free(p);
 914                return -ENOMEM;
 915        }
 916
 917
 918        if (found_key->type == BTRFS_INODE_REF_KEY) {
 919                ptr = (unsigned long)btrfs_item_ptr(eb, slot,
 920                                                    struct btrfs_inode_ref);
 921                item = btrfs_item_nr(slot);
 922                total = btrfs_item_size(eb, item);
 923                elem_size = sizeof(*iref);
 924        } else {
 925                ptr = btrfs_item_ptr_offset(eb, slot);
 926                total = btrfs_item_size_nr(eb, slot);
 927                elem_size = sizeof(*extref);
 928        }
 929
 930        while (cur < total) {
 931                fs_path_reset(p);
 932
 933                if (found_key->type == BTRFS_INODE_REF_KEY) {
 934                        iref = (struct btrfs_inode_ref *)(ptr + cur);
 935                        name_len = btrfs_inode_ref_name_len(eb, iref);
 936                        name_off = (unsigned long)(iref + 1);
 937                        index = btrfs_inode_ref_index(eb, iref);
 938                        dir = found_key->offset;
 939                } else {
 940                        extref = (struct btrfs_inode_extref *)(ptr + cur);
 941                        name_len = btrfs_inode_extref_name_len(eb, extref);
 942                        name_off = (unsigned long)&extref->name;
 943                        index = btrfs_inode_extref_index(eb, extref);
 944                        dir = btrfs_inode_extref_parent(eb, extref);
 945                }
 946
 947                if (resolve) {
 948                        start = btrfs_ref_to_path(root, tmp_path, name_len,
 949                                                  name_off, eb, dir,
 950                                                  p->buf, p->buf_len);
 951                        if (IS_ERR(start)) {
 952                                ret = PTR_ERR(start);
 953                                goto out;
 954                        }
 955                        if (start < p->buf) {
 956                                /* overflow , try again with larger buffer */
 957                                ret = fs_path_ensure_buf(p,
 958                                                p->buf_len + p->buf - start);
 959                                if (ret < 0)
 960                                        goto out;
 961                                start = btrfs_ref_to_path(root, tmp_path,
 962                                                          name_len, name_off,
 963                                                          eb, dir,
 964                                                          p->buf, p->buf_len);
 965                                if (IS_ERR(start)) {
 966                                        ret = PTR_ERR(start);
 967                                        goto out;
 968                                }
 969                                BUG_ON(start < p->buf);
 970                        }
 971                        p->start = start;
 972                } else {
 973                        ret = fs_path_add_from_extent_buffer(p, eb, name_off,
 974                                                             name_len);
 975                        if (ret < 0)
 976                                goto out;
 977                }
 978
 979                cur += elem_size + name_len;
 980                ret = iterate(num, dir, index, p, ctx);
 981                if (ret)
 982                        goto out;
 983                num++;
 984        }
 985
 986out:
 987        btrfs_free_path(tmp_path);
 988        fs_path_free(p);
 989        return ret;
 990}
 991
 992typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
 993                                  const char *name, int name_len,
 994                                  const char *data, int data_len,
 995                                  u8 type, void *ctx);
 996
 997/*
 998 * Helper function to iterate the entries in ONE btrfs_dir_item.
 999 * The iterate callback may return a non zero value to stop iteration. This can
1000 * be a negative value for error codes or 1 to simply stop it.
1001 *
1002 * path must point to the dir item when called.
1003 */
1004static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1005                            iterate_dir_item_t iterate, void *ctx)
1006{
1007        int ret = 0;
1008        struct extent_buffer *eb;
1009        struct btrfs_item *item;
1010        struct btrfs_dir_item *di;
1011        struct btrfs_key di_key;
1012        char *buf = NULL;
1013        int buf_len;
1014        u32 name_len;
1015        u32 data_len;
1016        u32 cur;
1017        u32 len;
1018        u32 total;
1019        int slot;
1020        int num;
1021        u8 type;
1022
1023        /*
1024         * Start with a small buffer (1 page). If later we end up needing more
1025         * space, which can happen for xattrs on a fs with a leaf size greater
1026         * then the page size, attempt to increase the buffer. Typically xattr
1027         * values are small.
1028         */
1029        buf_len = PATH_MAX;
1030        buf = kmalloc(buf_len, GFP_KERNEL);
1031        if (!buf) {
1032                ret = -ENOMEM;
1033                goto out;
1034        }
1035
1036        eb = path->nodes[0];
1037        slot = path->slots[0];
1038        item = btrfs_item_nr(slot);
1039        di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1040        cur = 0;
1041        len = 0;
1042        total = btrfs_item_size(eb, item);
1043
1044        num = 0;
1045        while (cur < total) {
1046                name_len = btrfs_dir_name_len(eb, di);
1047                data_len = btrfs_dir_data_len(eb, di);
1048                type = btrfs_dir_type(eb, di);
1049                btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1050
1051                if (type == BTRFS_FT_XATTR) {
1052                        if (name_len > XATTR_NAME_MAX) {
1053                                ret = -ENAMETOOLONG;
1054                                goto out;
1055                        }
1056                        if (name_len + data_len >
1057                                        BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1058                                ret = -E2BIG;
1059                                goto out;
1060                        }
1061                } else {
1062                        /*
1063                         * Path too long
1064                         */
1065                        if (name_len + data_len > PATH_MAX) {
1066                                ret = -ENAMETOOLONG;
1067                                goto out;
1068                        }
1069                }
1070
1071                if (name_len + data_len > buf_len) {
1072                        buf_len = name_len + data_len;
1073                        if (is_vmalloc_addr(buf)) {
1074                                vfree(buf);
1075                                buf = NULL;
1076                        } else {
1077                                char *tmp = krealloc(buf, buf_len,
1078                                                GFP_KERNEL | __GFP_NOWARN);
1079
1080                                if (!tmp)
1081                                        kfree(buf);
1082                                buf = tmp;
1083                        }
1084                        if (!buf) {
1085                                buf = kvmalloc(buf_len, GFP_KERNEL);
1086                                if (!buf) {
1087                                        ret = -ENOMEM;
1088                                        goto out;
1089                                }
1090                        }
1091                }
1092
1093                read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1094                                name_len + data_len);
1095
1096                len = sizeof(*di) + name_len + data_len;
1097                di = (struct btrfs_dir_item *)((char *)di + len);
1098                cur += len;
1099
1100                ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1101                                data_len, type, ctx);
1102                if (ret < 0)
1103                        goto out;
1104                if (ret) {
1105                        ret = 0;
1106                        goto out;
1107                }
1108
1109                num++;
1110        }
1111
1112out:
1113        kvfree(buf);
1114        return ret;
1115}
1116
1117static int __copy_first_ref(int num, u64 dir, int index,
1118                            struct fs_path *p, void *ctx)
1119{
1120        int ret;
1121        struct fs_path *pt = ctx;
1122
1123        ret = fs_path_copy(pt, p);
1124        if (ret < 0)
1125                return ret;
1126
1127        /* we want the first only */
1128        return 1;
1129}
1130
1131/*
1132 * Retrieve the first path of an inode. If an inode has more then one
1133 * ref/hardlink, this is ignored.
1134 */
1135static int get_inode_path(struct btrfs_root *root,
1136                          u64 ino, struct fs_path *path)
1137{
1138        int ret;
1139        struct btrfs_key key, found_key;
1140        struct btrfs_path *p;
1141
1142        p = alloc_path_for_send();
1143        if (!p)
1144                return -ENOMEM;
1145
1146        fs_path_reset(path);
1147
1148        key.objectid = ino;
1149        key.type = BTRFS_INODE_REF_KEY;
1150        key.offset = 0;
1151
1152        ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1153        if (ret < 0)
1154                goto out;
1155        if (ret) {
1156                ret = 1;
1157                goto out;
1158        }
1159        btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1160        if (found_key.objectid != ino ||
1161            (found_key.type != BTRFS_INODE_REF_KEY &&
1162             found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1163                ret = -ENOENT;
1164                goto out;
1165        }
1166
1167        ret = iterate_inode_ref(root, p, &found_key, 1,
1168                                __copy_first_ref, path);
1169        if (ret < 0)
1170                goto out;
1171        ret = 0;
1172
1173out:
1174        btrfs_free_path(p);
1175        return ret;
1176}
1177
1178struct backref_ctx {
1179        struct send_ctx *sctx;
1180
1181        /* number of total found references */
1182        u64 found;
1183
1184        /*
1185         * used for clones found in send_root. clones found behind cur_objectid
1186         * and cur_offset are not considered as allowed clones.
1187         */
1188        u64 cur_objectid;
1189        u64 cur_offset;
1190
1191        /* may be truncated in case it's the last extent in a file */
1192        u64 extent_len;
1193
1194        /* Just to check for bugs in backref resolving */
1195        int found_itself;
1196};
1197
1198static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1199{
1200        u64 root = (u64)(uintptr_t)key;
1201        struct clone_root *cr = (struct clone_root *)elt;
1202
1203        if (root < cr->root->root_key.objectid)
1204                return -1;
1205        if (root > cr->root->root_key.objectid)
1206                return 1;
1207        return 0;
1208}
1209
1210static int __clone_root_cmp_sort(const void *e1, const void *e2)
1211{
1212        struct clone_root *cr1 = (struct clone_root *)e1;
1213        struct clone_root *cr2 = (struct clone_root *)e2;
1214
1215        if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1216                return -1;
1217        if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1218                return 1;
1219        return 0;
1220}
1221
1222/*
1223 * Called for every backref that is found for the current extent.
1224 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1225 */
1226static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1227{
1228        struct backref_ctx *bctx = ctx_;
1229        struct clone_root *found;
1230
1231        /* First check if the root is in the list of accepted clone sources */
1232        found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1233                        bctx->sctx->clone_roots_cnt,
1234                        sizeof(struct clone_root),
1235                        __clone_root_cmp_bsearch);
1236        if (!found)
1237                return 0;
1238
1239        if (found->root == bctx->sctx->send_root &&
1240            ino == bctx->cur_objectid &&
1241            offset == bctx->cur_offset) {
1242                bctx->found_itself = 1;
1243        }
1244
1245        /*
1246         * Make sure we don't consider clones from send_root that are
1247         * behind the current inode/offset.
1248         */
1249        if (found->root == bctx->sctx->send_root) {
1250                /*
1251                 * If the source inode was not yet processed we can't issue a
1252                 * clone operation, as the source extent does not exist yet at
1253                 * the destination of the stream.
1254                 */
1255                if (ino > bctx->cur_objectid)
1256                        return 0;
1257                /*
1258                 * We clone from the inode currently being sent as long as the
1259                 * source extent is already processed, otherwise we could try
1260                 * to clone from an extent that does not exist yet at the
1261                 * destination of the stream.
1262                 */
1263                if (ino == bctx->cur_objectid &&
1264                    offset + bctx->extent_len >
1265                    bctx->sctx->cur_inode_next_write_offset)
1266                        return 0;
1267        }
1268
1269        bctx->found++;
1270        found->found_refs++;
1271        if (ino < found->ino) {
1272                found->ino = ino;
1273                found->offset = offset;
1274        } else if (found->ino == ino) {
1275                /*
1276                 * same extent found more then once in the same file.
1277                 */
1278                if (found->offset > offset + bctx->extent_len)
1279                        found->offset = offset;
1280        }
1281
1282        return 0;
1283}
1284
1285/*
1286 * Given an inode, offset and extent item, it finds a good clone for a clone
1287 * instruction. Returns -ENOENT when none could be found. The function makes
1288 * sure that the returned clone is usable at the point where sending is at the
1289 * moment. This means, that no clones are accepted which lie behind the current
1290 * inode+offset.
1291 *
1292 * path must point to the extent item when called.
1293 */
1294static int find_extent_clone(struct send_ctx *sctx,
1295                             struct btrfs_path *path,
1296                             u64 ino, u64 data_offset,
1297                             u64 ino_size,
1298                             struct clone_root **found)
1299{
1300        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1301        int ret;
1302        int extent_type;
1303        u64 logical;
1304        u64 disk_byte;
1305        u64 num_bytes;
1306        u64 extent_item_pos;
1307        u64 flags = 0;
1308        struct btrfs_file_extent_item *fi;
1309        struct extent_buffer *eb = path->nodes[0];
1310        struct backref_ctx *backref_ctx = NULL;
1311        struct clone_root *cur_clone_root;
1312        struct btrfs_key found_key;
1313        struct btrfs_path *tmp_path;
1314        struct btrfs_extent_item *ei;
1315        int compressed;
1316        u32 i;
1317
1318        tmp_path = alloc_path_for_send();
1319        if (!tmp_path)
1320                return -ENOMEM;
1321
1322        /* We only use this path under the commit sem */
1323        tmp_path->need_commit_sem = 0;
1324
1325        backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1326        if (!backref_ctx) {
1327                ret = -ENOMEM;
1328                goto out;
1329        }
1330
1331        if (data_offset >= ino_size) {
1332                /*
1333                 * There may be extents that lie behind the file's size.
1334                 * I at least had this in combination with snapshotting while
1335                 * writing large files.
1336                 */
1337                ret = 0;
1338                goto out;
1339        }
1340
1341        fi = btrfs_item_ptr(eb, path->slots[0],
1342                        struct btrfs_file_extent_item);
1343        extent_type = btrfs_file_extent_type(eb, fi);
1344        if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1345                ret = -ENOENT;
1346                goto out;
1347        }
1348        compressed = btrfs_file_extent_compression(eb, fi);
1349
1350        num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1351        disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1352        if (disk_byte == 0) {
1353                ret = -ENOENT;
1354                goto out;
1355        }
1356        logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1357
1358        down_read(&fs_info->commit_root_sem);
1359        ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1360                                  &found_key, &flags);
1361        up_read(&fs_info->commit_root_sem);
1362
1363        if (ret < 0)
1364                goto out;
1365        if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1366                ret = -EIO;
1367                goto out;
1368        }
1369
1370        ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0],
1371                            struct btrfs_extent_item);
1372        /*
1373         * Backreference walking (iterate_extent_inodes() below) is currently
1374         * too expensive when an extent has a large number of references, both
1375         * in time spent and used memory. So for now just fallback to write
1376         * operations instead of clone operations when an extent has more than
1377         * a certain amount of references.
1378         */
1379        if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) {
1380                ret = -ENOENT;
1381                goto out;
1382        }
1383        btrfs_release_path(tmp_path);
1384
1385        /*
1386         * Setup the clone roots.
1387         */
1388        for (i = 0; i < sctx->clone_roots_cnt; i++) {
1389                cur_clone_root = sctx->clone_roots + i;
1390                cur_clone_root->ino = (u64)-1;
1391                cur_clone_root->offset = 0;
1392                cur_clone_root->found_refs = 0;
1393        }
1394
1395        backref_ctx->sctx = sctx;
1396        backref_ctx->found = 0;
1397        backref_ctx->cur_objectid = ino;
1398        backref_ctx->cur_offset = data_offset;
1399        backref_ctx->found_itself = 0;
1400        backref_ctx->extent_len = num_bytes;
1401
1402        /*
1403         * The last extent of a file may be too large due to page alignment.
1404         * We need to adjust extent_len in this case so that the checks in
1405         * __iterate_backrefs work.
1406         */
1407        if (data_offset + num_bytes >= ino_size)
1408                backref_ctx->extent_len = ino_size - data_offset;
1409
1410        /*
1411         * Now collect all backrefs.
1412         */
1413        if (compressed == BTRFS_COMPRESS_NONE)
1414                extent_item_pos = logical - found_key.objectid;
1415        else
1416                extent_item_pos = 0;
1417        ret = iterate_extent_inodes(fs_info, found_key.objectid,
1418                                    extent_item_pos, 1, __iterate_backrefs,
1419                                    backref_ctx, false);
1420
1421        if (ret < 0)
1422                goto out;
1423
1424        if (!backref_ctx->found_itself) {
1425                /* found a bug in backref code? */
1426                ret = -EIO;
1427                btrfs_err(fs_info,
1428                          "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1429                          ino, data_offset, disk_byte, found_key.objectid);
1430                goto out;
1431        }
1432
1433        btrfs_debug(fs_info,
1434                    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1435                    data_offset, ino, num_bytes, logical);
1436
1437        if (!backref_ctx->found)
1438                btrfs_debug(fs_info, "no clones found");
1439
1440        cur_clone_root = NULL;
1441        for (i = 0; i < sctx->clone_roots_cnt; i++) {
1442                if (sctx->clone_roots[i].found_refs) {
1443                        if (!cur_clone_root)
1444                                cur_clone_root = sctx->clone_roots + i;
1445                        else if (sctx->clone_roots[i].root == sctx->send_root)
1446                                /* prefer clones from send_root over others */
1447                                cur_clone_root = sctx->clone_roots + i;
1448                }
1449
1450        }
1451
1452        if (cur_clone_root) {
1453                *found = cur_clone_root;
1454                ret = 0;
1455        } else {
1456                ret = -ENOENT;
1457        }
1458
1459out:
1460        btrfs_free_path(tmp_path);
1461        kfree(backref_ctx);
1462        return ret;
1463}
1464
1465static int read_symlink(struct btrfs_root *root,
1466                        u64 ino,
1467                        struct fs_path *dest)
1468{
1469        int ret;
1470        struct btrfs_path *path;
1471        struct btrfs_key key;
1472        struct btrfs_file_extent_item *ei;
1473        u8 type;
1474        u8 compression;
1475        unsigned long off;
1476        int len;
1477
1478        path = alloc_path_for_send();
1479        if (!path)
1480                return -ENOMEM;
1481
1482        key.objectid = ino;
1483        key.type = BTRFS_EXTENT_DATA_KEY;
1484        key.offset = 0;
1485        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1486        if (ret < 0)
1487                goto out;
1488        if (ret) {
1489                /*
1490                 * An empty symlink inode. Can happen in rare error paths when
1491                 * creating a symlink (transaction committed before the inode
1492                 * eviction handler removed the symlink inode items and a crash
1493                 * happened in between or the subvol was snapshoted in between).
1494                 * Print an informative message to dmesg/syslog so that the user
1495                 * can delete the symlink.
1496                 */
1497                btrfs_err(root->fs_info,
1498                          "Found empty symlink inode %llu at root %llu",
1499                          ino, root->root_key.objectid);
1500                ret = -EIO;
1501                goto out;
1502        }
1503
1504        ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1505                        struct btrfs_file_extent_item);
1506        type = btrfs_file_extent_type(path->nodes[0], ei);
1507        compression = btrfs_file_extent_compression(path->nodes[0], ei);
1508        BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1509        BUG_ON(compression);
1510
1511        off = btrfs_file_extent_inline_start(ei);
1512        len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1513
1514        ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1515
1516out:
1517        btrfs_free_path(path);
1518        return ret;
1519}
1520
1521/*
1522 * Helper function to generate a file name that is unique in the root of
1523 * send_root and parent_root. This is used to generate names for orphan inodes.
1524 */
1525static int gen_unique_name(struct send_ctx *sctx,
1526                           u64 ino, u64 gen,
1527                           struct fs_path *dest)
1528{
1529        int ret = 0;
1530        struct btrfs_path *path;
1531        struct btrfs_dir_item *di;
1532        char tmp[64];
1533        int len;
1534        u64 idx = 0;
1535
1536        path = alloc_path_for_send();
1537        if (!path)
1538                return -ENOMEM;
1539
1540        while (1) {
1541                len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1542                                ino, gen, idx);
1543                ASSERT(len < sizeof(tmp));
1544
1545                di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1546                                path, BTRFS_FIRST_FREE_OBJECTID,
1547                                tmp, strlen(tmp), 0);
1548                btrfs_release_path(path);
1549                if (IS_ERR(di)) {
1550                        ret = PTR_ERR(di);
1551                        goto out;
1552                }
1553                if (di) {
1554                        /* not unique, try again */
1555                        idx++;
1556                        continue;
1557                }
1558
1559                if (!sctx->parent_root) {
1560                        /* unique */
1561                        ret = 0;
1562                        break;
1563                }
1564
1565                di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1566                                path, BTRFS_FIRST_FREE_OBJECTID,
1567                                tmp, strlen(tmp), 0);
1568                btrfs_release_path(path);
1569                if (IS_ERR(di)) {
1570                        ret = PTR_ERR(di);
1571                        goto out;
1572                }
1573                if (di) {
1574                        /* not unique, try again */
1575                        idx++;
1576                        continue;
1577                }
1578                /* unique */
1579                break;
1580        }
1581
1582        ret = fs_path_add(dest, tmp, strlen(tmp));
1583
1584out:
1585        btrfs_free_path(path);
1586        return ret;
1587}
1588
1589enum inode_state {
1590        inode_state_no_change,
1591        inode_state_will_create,
1592        inode_state_did_create,
1593        inode_state_will_delete,
1594        inode_state_did_delete,
1595};
1596
1597static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1598{
1599        int ret;
1600        int left_ret;
1601        int right_ret;
1602        u64 left_gen;
1603        u64 right_gen;
1604
1605        ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1606                        NULL, NULL);
1607        if (ret < 0 && ret != -ENOENT)
1608                goto out;
1609        left_ret = ret;
1610
1611        if (!sctx->parent_root) {
1612                right_ret = -ENOENT;
1613        } else {
1614                ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1615                                NULL, NULL, NULL, NULL);
1616                if (ret < 0 && ret != -ENOENT)
1617                        goto out;
1618                right_ret = ret;
1619        }
1620
1621        if (!left_ret && !right_ret) {
1622                if (left_gen == gen && right_gen == gen) {
1623                        ret = inode_state_no_change;
1624                } else if (left_gen == gen) {
1625                        if (ino < sctx->send_progress)
1626                                ret = inode_state_did_create;
1627                        else
1628                                ret = inode_state_will_create;
1629                } else if (right_gen == gen) {
1630                        if (ino < sctx->send_progress)
1631                                ret = inode_state_did_delete;
1632                        else
1633                                ret = inode_state_will_delete;
1634                } else  {
1635                        ret = -ENOENT;
1636                }
1637        } else if (!left_ret) {
1638                if (left_gen == gen) {
1639                        if (ino < sctx->send_progress)
1640                                ret = inode_state_did_create;
1641                        else
1642                                ret = inode_state_will_create;
1643                } else {
1644                        ret = -ENOENT;
1645                }
1646        } else if (!right_ret) {
1647                if (right_gen == gen) {
1648                        if (ino < sctx->send_progress)
1649                                ret = inode_state_did_delete;
1650                        else
1651                                ret = inode_state_will_delete;
1652                } else {
1653                        ret = -ENOENT;
1654                }
1655        } else {
1656                ret = -ENOENT;
1657        }
1658
1659out:
1660        return ret;
1661}
1662
1663static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1664{
1665        int ret;
1666
1667        if (ino == BTRFS_FIRST_FREE_OBJECTID)
1668                return 1;
1669
1670        ret = get_cur_inode_state(sctx, ino, gen);
1671        if (ret < 0)
1672                goto out;
1673
1674        if (ret == inode_state_no_change ||
1675            ret == inode_state_did_create ||
1676            ret == inode_state_will_delete)
1677                ret = 1;
1678        else
1679                ret = 0;
1680
1681out:
1682        return ret;
1683}
1684
1685/*
1686 * Helper function to lookup a dir item in a dir.
1687 */
1688static int lookup_dir_item_inode(struct btrfs_root *root,
1689                                 u64 dir, const char *name, int name_len,
1690                                 u64 *found_inode,
1691                                 u8 *found_type)
1692{
1693        int ret = 0;
1694        struct btrfs_dir_item *di;
1695        struct btrfs_key key;
1696        struct btrfs_path *path;
1697
1698        path = alloc_path_for_send();
1699        if (!path)
1700                return -ENOMEM;
1701
1702        di = btrfs_lookup_dir_item(NULL, root, path,
1703                        dir, name, name_len, 0);
1704        if (IS_ERR_OR_NULL(di)) {
1705                ret = di ? PTR_ERR(di) : -ENOENT;
1706                goto out;
1707        }
1708        btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1709        if (key.type == BTRFS_ROOT_ITEM_KEY) {
1710                ret = -ENOENT;
1711                goto out;
1712        }
1713        *found_inode = key.objectid;
1714        *found_type = btrfs_dir_type(path->nodes[0], di);
1715
1716out:
1717        btrfs_free_path(path);
1718        return ret;
1719}
1720
1721/*
1722 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1723 * generation of the parent dir and the name of the dir entry.
1724 */
1725static int get_first_ref(struct btrfs_root *root, u64 ino,
1726                         u64 *dir, u64 *dir_gen, struct fs_path *name)
1727{
1728        int ret;
1729        struct btrfs_key key;
1730        struct btrfs_key found_key;
1731        struct btrfs_path *path;
1732        int len;
1733        u64 parent_dir;
1734
1735        path = alloc_path_for_send();
1736        if (!path)
1737                return -ENOMEM;
1738
1739        key.objectid = ino;
1740        key.type = BTRFS_INODE_REF_KEY;
1741        key.offset = 0;
1742
1743        ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1744        if (ret < 0)
1745                goto out;
1746        if (!ret)
1747                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1748                                path->slots[0]);
1749        if (ret || found_key.objectid != ino ||
1750            (found_key.type != BTRFS_INODE_REF_KEY &&
1751             found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1752                ret = -ENOENT;
1753                goto out;
1754        }
1755
1756        if (found_key.type == BTRFS_INODE_REF_KEY) {
1757                struct btrfs_inode_ref *iref;
1758                iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1759                                      struct btrfs_inode_ref);
1760                len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1761                ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1762                                                     (unsigned long)(iref + 1),
1763                                                     len);
1764                parent_dir = found_key.offset;
1765        } else {
1766                struct btrfs_inode_extref *extref;
1767                extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1768                                        struct btrfs_inode_extref);
1769                len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1770                ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1771                                        (unsigned long)&extref->name, len);
1772                parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1773        }
1774        if (ret < 0)
1775                goto out;
1776        btrfs_release_path(path);
1777
1778        if (dir_gen) {
1779                ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1780                                     NULL, NULL, NULL);
1781                if (ret < 0)
1782                        goto out;
1783        }
1784
1785        *dir = parent_dir;
1786
1787out:
1788        btrfs_free_path(path);
1789        return ret;
1790}
1791
1792static int is_first_ref(struct btrfs_root *root,
1793                        u64 ino, u64 dir,
1794                        const char *name, int name_len)
1795{
1796        int ret;
1797        struct fs_path *tmp_name;
1798        u64 tmp_dir;
1799
1800        tmp_name = fs_path_alloc();
1801        if (!tmp_name)
1802                return -ENOMEM;
1803
1804        ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1805        if (ret < 0)
1806                goto out;
1807
1808        if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1809                ret = 0;
1810                goto out;
1811        }
1812
1813        ret = !memcmp(tmp_name->start, name, name_len);
1814
1815out:
1816        fs_path_free(tmp_name);
1817        return ret;
1818}
1819
1820/*
1821 * Used by process_recorded_refs to determine if a new ref would overwrite an
1822 * already existing ref. In case it detects an overwrite, it returns the
1823 * inode/gen in who_ino/who_gen.
1824 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1825 * to make sure later references to the overwritten inode are possible.
1826 * Orphanizing is however only required for the first ref of an inode.
1827 * process_recorded_refs does an additional is_first_ref check to see if
1828 * orphanizing is really required.
1829 */
1830static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1831                              const char *name, int name_len,
1832                              u64 *who_ino, u64 *who_gen, u64 *who_mode)
1833{
1834        int ret = 0;
1835        u64 gen;
1836        u64 other_inode = 0;
1837        u8 other_type = 0;
1838
1839        if (!sctx->parent_root)
1840                goto out;
1841
1842        ret = is_inode_existent(sctx, dir, dir_gen);
1843        if (ret <= 0)
1844                goto out;
1845
1846        /*
1847         * If we have a parent root we need to verify that the parent dir was
1848         * not deleted and then re-created, if it was then we have no overwrite
1849         * and we can just unlink this entry.
1850         */
1851        if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1852                ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1853                                     NULL, NULL, NULL);
1854                if (ret < 0 && ret != -ENOENT)
1855                        goto out;
1856                if (ret) {
1857                        ret = 0;
1858                        goto out;
1859                }
1860                if (gen != dir_gen)
1861                        goto out;
1862        }
1863
1864        ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1865                        &other_inode, &other_type);
1866        if (ret < 0 && ret != -ENOENT)
1867                goto out;
1868        if (ret) {
1869                ret = 0;
1870                goto out;
1871        }
1872
1873        /*
1874         * Check if the overwritten ref was already processed. If yes, the ref
1875         * was already unlinked/moved, so we can safely assume that we will not
1876         * overwrite anything at this point in time.
1877         */
1878        if (other_inode > sctx->send_progress ||
1879            is_waiting_for_move(sctx, other_inode)) {
1880                ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1881                                who_gen, who_mode, NULL, NULL, NULL);
1882                if (ret < 0)
1883                        goto out;
1884
1885                ret = 1;
1886                *who_ino = other_inode;
1887        } else {
1888                ret = 0;
1889        }
1890
1891out:
1892        return ret;
1893}
1894
1895/*
1896 * Checks if the ref was overwritten by an already processed inode. This is
1897 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1898 * thus the orphan name needs be used.
1899 * process_recorded_refs also uses it to avoid unlinking of refs that were
1900 * overwritten.
1901 */
1902static int did_overwrite_ref(struct send_ctx *sctx,
1903                            u64 dir, u64 dir_gen,
1904                            u64 ino, u64 ino_gen,
1905                            const char *name, int name_len)
1906{
1907        int ret = 0;
1908        u64 gen;
1909        u64 ow_inode;
1910        u8 other_type;
1911
1912        if (!sctx->parent_root)
1913                goto out;
1914
1915        ret = is_inode_existent(sctx, dir, dir_gen);
1916        if (ret <= 0)
1917                goto out;
1918
1919        if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1920                ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1921                                     NULL, NULL, NULL);
1922                if (ret < 0 && ret != -ENOENT)
1923                        goto out;
1924                if (ret) {
1925                        ret = 0;
1926                        goto out;
1927                }
1928                if (gen != dir_gen)
1929                        goto out;
1930        }
1931
1932        /* check if the ref was overwritten by another ref */
1933        ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1934                        &ow_inode, &other_type);
1935        if (ret < 0 && ret != -ENOENT)
1936                goto out;
1937        if (ret) {
1938                /* was never and will never be overwritten */
1939                ret = 0;
1940                goto out;
1941        }
1942
1943        ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1944                        NULL, NULL);
1945        if (ret < 0)
1946                goto out;
1947
1948        if (ow_inode == ino && gen == ino_gen) {
1949                ret = 0;
1950                goto out;
1951        }
1952
1953        /*
1954         * We know that it is or will be overwritten. Check this now.
1955         * The current inode being processed might have been the one that caused
1956         * inode 'ino' to be orphanized, therefore check if ow_inode matches
1957         * the current inode being processed.
1958         */
1959        if ((ow_inode < sctx->send_progress) ||
1960            (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1961             gen == sctx->cur_inode_gen))
1962                ret = 1;
1963        else
1964                ret = 0;
1965
1966out:
1967        return ret;
1968}
1969
1970/*
1971 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1972 * that got overwritten. This is used by process_recorded_refs to determine
1973 * if it has to use the path as returned by get_cur_path or the orphan name.
1974 */
1975static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1976{
1977        int ret = 0;
1978        struct fs_path *name = NULL;
1979        u64 dir;
1980        u64 dir_gen;
1981
1982        if (!sctx->parent_root)
1983                goto out;
1984
1985        name = fs_path_alloc();
1986        if (!name)
1987                return -ENOMEM;
1988
1989        ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1990        if (ret < 0)
1991                goto out;
1992
1993        ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1994                        name->start, fs_path_len(name));
1995
1996out:
1997        fs_path_free(name);
1998        return ret;
1999}
2000
2001/*
2002 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2003 * so we need to do some special handling in case we have clashes. This function
2004 * takes care of this with the help of name_cache_entry::radix_list.
2005 * In case of error, nce is kfreed.
2006 */
2007static int name_cache_insert(struct send_ctx *sctx,
2008                             struct name_cache_entry *nce)
2009{
2010        int ret = 0;
2011        struct list_head *nce_head;
2012
2013        nce_head = radix_tree_lookup(&sctx->name_cache,
2014                        (unsigned long)nce->ino);
2015        if (!nce_head) {
2016                nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2017                if (!nce_head) {
2018                        kfree(nce);
2019                        return -ENOMEM;
2020                }
2021                INIT_LIST_HEAD(nce_head);
2022
2023                ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2024                if (ret < 0) {
2025                        kfree(nce_head);
2026                        kfree(nce);
2027                        return ret;
2028                }
2029        }
2030        list_add_tail(&nce->radix_list, nce_head);
2031        list_add_tail(&nce->list, &sctx->name_cache_list);
2032        sctx->name_cache_size++;
2033
2034        return ret;
2035}
2036
2037static void name_cache_delete(struct send_ctx *sctx,
2038                              struct name_cache_entry *nce)
2039{
2040        struct list_head *nce_head;
2041
2042        nce_head = radix_tree_lookup(&sctx->name_cache,
2043                        (unsigned long)nce->ino);
2044        if (!nce_head) {
2045                btrfs_err(sctx->send_root->fs_info,
2046              "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2047                        nce->ino, sctx->name_cache_size);
2048        }
2049
2050        list_del(&nce->radix_list);
2051        list_del(&nce->list);
2052        sctx->name_cache_size--;
2053
2054        /*
2055         * We may not get to the final release of nce_head if the lookup fails
2056         */
2057        if (nce_head && list_empty(nce_head)) {
2058                radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2059                kfree(nce_head);
2060        }
2061}
2062
2063static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2064                                                    u64 ino, u64 gen)
2065{
2066        struct list_head *nce_head;
2067        struct name_cache_entry *cur;
2068
2069        nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2070        if (!nce_head)
2071                return NULL;
2072
2073        list_for_each_entry(cur, nce_head, radix_list) {
2074                if (cur->ino == ino && cur->gen == gen)
2075                        return cur;
2076        }
2077        return NULL;
2078}
2079
2080/*
2081 * Remove some entries from the beginning of name_cache_list.
2082 */
2083static void name_cache_clean_unused(struct send_ctx *sctx)
2084{
2085        struct name_cache_entry *nce;
2086
2087        if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2088                return;
2089
2090        while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2091                nce = list_entry(sctx->name_cache_list.next,
2092                                struct name_cache_entry, list);
2093                name_cache_delete(sctx, nce);
2094                kfree(nce);
2095        }
2096}
2097
2098static void name_cache_free(struct send_ctx *sctx)
2099{
2100        struct name_cache_entry *nce;
2101
2102        while (!list_empty(&sctx->name_cache_list)) {
2103                nce = list_entry(sctx->name_cache_list.next,
2104                                struct name_cache_entry, list);
2105                name_cache_delete(sctx, nce);
2106                kfree(nce);
2107        }
2108}
2109
2110/*
2111 * Used by get_cur_path for each ref up to the root.
2112 * Returns 0 if it succeeded.
2113 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2114 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2115 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2116 * Returns <0 in case of error.
2117 */
2118static int __get_cur_name_and_parent(struct send_ctx *sctx,
2119                                     u64 ino, u64 gen,
2120                                     u64 *parent_ino,
2121                                     u64 *parent_gen,
2122                                     struct fs_path *dest)
2123{
2124        int ret;
2125        int nce_ret;
2126        struct name_cache_entry *nce = NULL;
2127
2128        /*
2129         * First check if we already did a call to this function with the same
2130         * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2131         * return the cached result.
2132         */
2133        nce = name_cache_search(sctx, ino, gen);
2134        if (nce) {
2135                if (ino < sctx->send_progress && nce->need_later_update) {
2136                        name_cache_delete(sctx, nce);
2137                        kfree(nce);
2138                        nce = NULL;
2139                } else {
2140                        /*
2141                         * Removes the entry from the list and adds it back to
2142                         * the end.  This marks the entry as recently used so
2143                         * that name_cache_clean_unused does not remove it.
2144                         */
2145                        list_move_tail(&nce->list, &sctx->name_cache_list);
2146
2147                        *parent_ino = nce->parent_ino;
2148                        *parent_gen = nce->parent_gen;
2149                        ret = fs_path_add(dest, nce->name, nce->name_len);
2150                        if (ret < 0)
2151                                goto out;
2152                        ret = nce->ret;
2153                        goto out;
2154                }
2155        }
2156
2157        /*
2158         * If the inode is not existent yet, add the orphan name and return 1.
2159         * This should only happen for the parent dir that we determine in
2160         * __record_new_ref
2161         */
2162        ret = is_inode_existent(sctx, ino, gen);
2163        if (ret < 0)
2164                goto out;
2165
2166        if (!ret) {
2167                ret = gen_unique_name(sctx, ino, gen, dest);
2168                if (ret < 0)
2169                        goto out;
2170                ret = 1;
2171                goto out_cache;
2172        }
2173
2174        /*
2175         * Depending on whether the inode was already processed or not, use
2176         * send_root or parent_root for ref lookup.
2177         */
2178        if (ino < sctx->send_progress)
2179                ret = get_first_ref(sctx->send_root, ino,
2180                                    parent_ino, parent_gen, dest);
2181        else
2182                ret = get_first_ref(sctx->parent_root, ino,
2183                                    parent_ino, parent_gen, dest);
2184        if (ret < 0)
2185                goto out;
2186
2187        /*
2188         * Check if the ref was overwritten by an inode's ref that was processed
2189         * earlier. If yes, treat as orphan and return 1.
2190         */
2191        ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2192                        dest->start, dest->end - dest->start);
2193        if (ret < 0)
2194                goto out;
2195        if (ret) {
2196                fs_path_reset(dest);
2197                ret = gen_unique_name(sctx, ino, gen, dest);
2198                if (ret < 0)
2199                        goto out;
2200                ret = 1;
2201        }
2202
2203out_cache:
2204        /*
2205         * Store the result of the lookup in the name cache.
2206         */
2207        nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2208        if (!nce) {
2209                ret = -ENOMEM;
2210                goto out;
2211        }
2212
2213        nce->ino = ino;
2214        nce->gen = gen;
2215        nce->parent_ino = *parent_ino;
2216        nce->parent_gen = *parent_gen;
2217        nce->name_len = fs_path_len(dest);
2218        nce->ret = ret;
2219        strcpy(nce->name, dest->start);
2220
2221        if (ino < sctx->send_progress)
2222                nce->need_later_update = 0;
2223        else
2224                nce->need_later_update = 1;
2225
2226        nce_ret = name_cache_insert(sctx, nce);
2227        if (nce_ret < 0)
2228                ret = nce_ret;
2229        name_cache_clean_unused(sctx);
2230
2231out:
2232        return ret;
2233}
2234
2235/*
2236 * Magic happens here. This function returns the first ref to an inode as it
2237 * would look like while receiving the stream at this point in time.
2238 * We walk the path up to the root. For every inode in between, we check if it
2239 * was already processed/sent. If yes, we continue with the parent as found
2240 * in send_root. If not, we continue with the parent as found in parent_root.
2241 * If we encounter an inode that was deleted at this point in time, we use the
2242 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2243 * that were not created yet and overwritten inodes/refs.
2244 *
2245 * When do we have orphan inodes:
2246 * 1. When an inode is freshly created and thus no valid refs are available yet
2247 * 2. When a directory lost all it's refs (deleted) but still has dir items
2248 *    inside which were not processed yet (pending for move/delete). If anyone
2249 *    tried to get the path to the dir items, it would get a path inside that
2250 *    orphan directory.
2251 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2252 *    of an unprocessed inode. If in that case the first ref would be
2253 *    overwritten, the overwritten inode gets "orphanized". Later when we
2254 *    process this overwritten inode, it is restored at a new place by moving
2255 *    the orphan inode.
2256 *
2257 * sctx->send_progress tells this function at which point in time receiving
2258 * would be.
2259 */
2260static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2261                        struct fs_path *dest)
2262{
2263        int ret = 0;
2264        struct fs_path *name = NULL;
2265        u64 parent_inode = 0;
2266        u64 parent_gen = 0;
2267        int stop = 0;
2268
2269        name = fs_path_alloc();
2270        if (!name) {
2271                ret = -ENOMEM;
2272                goto out;
2273        }
2274
2275        dest->reversed = 1;
2276        fs_path_reset(dest);
2277
2278        while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2279                struct waiting_dir_move *wdm;
2280
2281                fs_path_reset(name);
2282
2283                if (is_waiting_for_rm(sctx, ino, gen)) {
2284                        ret = gen_unique_name(sctx, ino, gen, name);
2285                        if (ret < 0)
2286                                goto out;
2287                        ret = fs_path_add_path(dest, name);
2288                        break;
2289                }
2290
2291                wdm = get_waiting_dir_move(sctx, ino);
2292                if (wdm && wdm->orphanized) {
2293                        ret = gen_unique_name(sctx, ino, gen, name);
2294                        stop = 1;
2295                } else if (wdm) {
2296                        ret = get_first_ref(sctx->parent_root, ino,
2297                                            &parent_inode, &parent_gen, name);
2298                } else {
2299                        ret = __get_cur_name_and_parent(sctx, ino, gen,
2300                                                        &parent_inode,
2301                                                        &parent_gen, name);
2302                        if (ret)
2303                                stop = 1;
2304                }
2305
2306                if (ret < 0)
2307                        goto out;
2308
2309                ret = fs_path_add_path(dest, name);
2310                if (ret < 0)
2311                        goto out;
2312
2313                ino = parent_inode;
2314                gen = parent_gen;
2315        }
2316
2317out:
2318        fs_path_free(name);
2319        if (!ret)
2320                fs_path_unreverse(dest);
2321        return ret;
2322}
2323
2324/*
2325 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2326 */
2327static int send_subvol_begin(struct send_ctx *sctx)
2328{
2329        int ret;
2330        struct btrfs_root *send_root = sctx->send_root;
2331        struct btrfs_root *parent_root = sctx->parent_root;
2332        struct btrfs_path *path;
2333        struct btrfs_key key;
2334        struct btrfs_root_ref *ref;
2335        struct extent_buffer *leaf;
2336        char *name = NULL;
2337        int namelen;
2338
2339        path = btrfs_alloc_path();
2340        if (!path)
2341                return -ENOMEM;
2342
2343        name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2344        if (!name) {
2345                btrfs_free_path(path);
2346                return -ENOMEM;
2347        }
2348
2349        key.objectid = send_root->root_key.objectid;
2350        key.type = BTRFS_ROOT_BACKREF_KEY;
2351        key.offset = 0;
2352
2353        ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2354                                &key, path, 1, 0);
2355        if (ret < 0)
2356                goto out;
2357        if (ret) {
2358                ret = -ENOENT;
2359                goto out;
2360        }
2361
2362        leaf = path->nodes[0];
2363        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2364        if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2365            key.objectid != send_root->root_key.objectid) {
2366                ret = -ENOENT;
2367                goto out;
2368        }
2369        ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2370        namelen = btrfs_root_ref_name_len(leaf, ref);
2371        read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2372        btrfs_release_path(path);
2373
2374        if (parent_root) {
2375                ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2376                if (ret < 0)
2377                        goto out;
2378        } else {
2379                ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2380                if (ret < 0)
2381                        goto out;
2382        }
2383
2384        TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2385
2386        if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2387                TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2388                            sctx->send_root->root_item.received_uuid);
2389        else
2390                TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2391                            sctx->send_root->root_item.uuid);
2392
2393        TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2394                    btrfs_root_ctransid(&sctx->send_root->root_item));
2395        if (parent_root) {
2396                if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2397                        TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2398                                     parent_root->root_item.received_uuid);
2399                else
2400                        TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2401                                     parent_root->root_item.uuid);
2402                TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2403                            btrfs_root_ctransid(&sctx->parent_root->root_item));
2404        }
2405
2406        ret = send_cmd(sctx);
2407
2408tlv_put_failure:
2409out:
2410        btrfs_free_path(path);
2411        kfree(name);
2412        return ret;
2413}
2414
2415static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2416{
2417        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2418        int ret = 0;
2419        struct fs_path *p;
2420
2421        btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2422
2423        p = fs_path_alloc();
2424        if (!p)
2425                return -ENOMEM;
2426
2427        ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2428        if (ret < 0)
2429                goto out;
2430
2431        ret = get_cur_path(sctx, ino, gen, p);
2432        if (ret < 0)
2433                goto out;
2434        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2435        TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2436
2437        ret = send_cmd(sctx);
2438
2439tlv_put_failure:
2440out:
2441        fs_path_free(p);
2442        return ret;
2443}
2444
2445static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2446{
2447        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2448        int ret = 0;
2449        struct fs_path *p;
2450
2451        btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2452
2453        p = fs_path_alloc();
2454        if (!p)
2455                return -ENOMEM;
2456
2457        ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2458        if (ret < 0)
2459                goto out;
2460
2461        ret = get_cur_path(sctx, ino, gen, p);
2462        if (ret < 0)
2463                goto out;
2464        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2465        TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2466
2467        ret = send_cmd(sctx);
2468
2469tlv_put_failure:
2470out:
2471        fs_path_free(p);
2472        return ret;
2473}
2474
2475static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2476{
2477        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2478        int ret = 0;
2479        struct fs_path *p;
2480
2481        btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2482                    ino, uid, gid);
2483
2484        p = fs_path_alloc();
2485        if (!p)
2486                return -ENOMEM;
2487
2488        ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2489        if (ret < 0)
2490                goto out;
2491
2492        ret = get_cur_path(sctx, ino, gen, p);
2493        if (ret < 0)
2494                goto out;
2495        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2496        TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2497        TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2498
2499        ret = send_cmd(sctx);
2500
2501tlv_put_failure:
2502out:
2503        fs_path_free(p);
2504        return ret;
2505}
2506
2507static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2508{
2509        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2510        int ret = 0;
2511        struct fs_path *p = NULL;
2512        struct btrfs_inode_item *ii;
2513        struct btrfs_path *path = NULL;
2514        struct extent_buffer *eb;
2515        struct btrfs_key key;
2516        int slot;
2517
2518        btrfs_debug(fs_info, "send_utimes %llu", ino);
2519
2520        p = fs_path_alloc();
2521        if (!p)
2522                return -ENOMEM;
2523
2524        path = alloc_path_for_send();
2525        if (!path) {
2526                ret = -ENOMEM;
2527                goto out;
2528        }
2529
2530        key.objectid = ino;
2531        key.type = BTRFS_INODE_ITEM_KEY;
2532        key.offset = 0;
2533        ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2534        if (ret > 0)
2535                ret = -ENOENT;
2536        if (ret < 0)
2537                goto out;
2538
2539        eb = path->nodes[0];
2540        slot = path->slots[0];
2541        ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2542
2543        ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2544        if (ret < 0)
2545                goto out;
2546
2547        ret = get_cur_path(sctx, ino, gen, p);
2548        if (ret < 0)
2549                goto out;
2550        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2551        TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2552        TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2553        TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2554        /* TODO Add otime support when the otime patches get into upstream */
2555
2556        ret = send_cmd(sctx);
2557
2558tlv_put_failure:
2559out:
2560        fs_path_free(p);
2561        btrfs_free_path(path);
2562        return ret;
2563}
2564
2565/*
2566 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2567 * a valid path yet because we did not process the refs yet. So, the inode
2568 * is created as orphan.
2569 */
2570static int send_create_inode(struct send_ctx *sctx, u64 ino)
2571{
2572        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2573        int ret = 0;
2574        struct fs_path *p;
2575        int cmd;
2576        u64 gen;
2577        u64 mode;
2578        u64 rdev;
2579
2580        btrfs_debug(fs_info, "send_create_inode %llu", ino);
2581
2582        p = fs_path_alloc();
2583        if (!p)
2584                return -ENOMEM;
2585
2586        if (ino != sctx->cur_ino) {
2587                ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2588                                     NULL, NULL, &rdev);
2589                if (ret < 0)
2590                        goto out;
2591        } else {
2592                gen = sctx->cur_inode_gen;
2593                mode = sctx->cur_inode_mode;
2594                rdev = sctx->cur_inode_rdev;
2595        }
2596
2597        if (S_ISREG(mode)) {
2598                cmd = BTRFS_SEND_C_MKFILE;
2599        } else if (S_ISDIR(mode)) {
2600                cmd = BTRFS_SEND_C_MKDIR;
2601        } else if (S_ISLNK(mode)) {
2602                cmd = BTRFS_SEND_C_SYMLINK;
2603        } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2604                cmd = BTRFS_SEND_C_MKNOD;
2605        } else if (S_ISFIFO(mode)) {
2606                cmd = BTRFS_SEND_C_MKFIFO;
2607        } else if (S_ISSOCK(mode)) {
2608                cmd = BTRFS_SEND_C_MKSOCK;
2609        } else {
2610                btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2611                                (int)(mode & S_IFMT));
2612                ret = -EOPNOTSUPP;
2613                goto out;
2614        }
2615
2616        ret = begin_cmd(sctx, cmd);
2617        if (ret < 0)
2618                goto out;
2619
2620        ret = gen_unique_name(sctx, ino, gen, p);
2621        if (ret < 0)
2622                goto out;
2623
2624        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2625        TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2626
2627        if (S_ISLNK(mode)) {
2628                fs_path_reset(p);
2629                ret = read_symlink(sctx->send_root, ino, p);
2630                if (ret < 0)
2631                        goto out;
2632                TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2633        } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2634                   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2635                TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2636                TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2637        }
2638
2639        ret = send_cmd(sctx);
2640        if (ret < 0)
2641                goto out;
2642
2643
2644tlv_put_failure:
2645out:
2646        fs_path_free(p);
2647        return ret;
2648}
2649
2650/*
2651 * We need some special handling for inodes that get processed before the parent
2652 * directory got created. See process_recorded_refs for details.
2653 * This function does the check if we already created the dir out of order.
2654 */
2655static int did_create_dir(struct send_ctx *sctx, u64 dir)
2656{
2657        int ret = 0;
2658        struct btrfs_path *path = NULL;
2659        struct btrfs_key key;
2660        struct btrfs_key found_key;
2661        struct btrfs_key di_key;
2662        struct extent_buffer *eb;
2663        struct btrfs_dir_item *di;
2664        int slot;
2665
2666        path = alloc_path_for_send();
2667        if (!path) {
2668                ret = -ENOMEM;
2669                goto out;
2670        }
2671
2672        key.objectid = dir;
2673        key.type = BTRFS_DIR_INDEX_KEY;
2674        key.offset = 0;
2675        ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2676        if (ret < 0)
2677                goto out;
2678
2679        while (1) {
2680                eb = path->nodes[0];
2681                slot = path->slots[0];
2682                if (slot >= btrfs_header_nritems(eb)) {
2683                        ret = btrfs_next_leaf(sctx->send_root, path);
2684                        if (ret < 0) {
2685                                goto out;
2686                        } else if (ret > 0) {
2687                                ret = 0;
2688                                break;
2689                        }
2690                        continue;
2691                }
2692
2693                btrfs_item_key_to_cpu(eb, &found_key, slot);
2694                if (found_key.objectid != key.objectid ||
2695                    found_key.type != key.type) {
2696                        ret = 0;
2697                        goto out;
2698                }
2699
2700                di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2701                btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2702
2703                if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2704                    di_key.objectid < sctx->send_progress) {
2705                        ret = 1;
2706                        goto out;
2707                }
2708
2709                path->slots[0]++;
2710        }
2711
2712out:
2713        btrfs_free_path(path);
2714        return ret;
2715}
2716
2717/*
2718 * Only creates the inode if it is:
2719 * 1. Not a directory
2720 * 2. Or a directory which was not created already due to out of order
2721 *    directories. See did_create_dir and process_recorded_refs for details.
2722 */
2723static int send_create_inode_if_needed(struct send_ctx *sctx)
2724{
2725        int ret;
2726
2727        if (S_ISDIR(sctx->cur_inode_mode)) {
2728                ret = did_create_dir(sctx, sctx->cur_ino);
2729                if (ret < 0)
2730                        goto out;
2731                if (ret) {
2732                        ret = 0;
2733                        goto out;
2734                }
2735        }
2736
2737        ret = send_create_inode(sctx, sctx->cur_ino);
2738        if (ret < 0)
2739                goto out;
2740
2741out:
2742        return ret;
2743}
2744
2745struct recorded_ref {
2746        struct list_head list;
2747        char *name;
2748        struct fs_path *full_path;
2749        u64 dir;
2750        u64 dir_gen;
2751        int name_len;
2752};
2753
2754static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2755{
2756        ref->full_path = path;
2757        ref->name = (char *)kbasename(ref->full_path->start);
2758        ref->name_len = ref->full_path->end - ref->name;
2759}
2760
2761/*
2762 * We need to process new refs before deleted refs, but compare_tree gives us
2763 * everything mixed. So we first record all refs and later process them.
2764 * This function is a helper to record one ref.
2765 */
2766static int __record_ref(struct list_head *head, u64 dir,
2767                      u64 dir_gen, struct fs_path *path)
2768{
2769        struct recorded_ref *ref;
2770
2771        ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2772        if (!ref)
2773                return -ENOMEM;
2774
2775        ref->dir = dir;
2776        ref->dir_gen = dir_gen;
2777        set_ref_path(ref, path);
2778        list_add_tail(&ref->list, head);
2779        return 0;
2780}
2781
2782static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2783{
2784        struct recorded_ref *new;
2785
2786        new = kmalloc(sizeof(*ref), GFP_KERNEL);
2787        if (!new)
2788                return -ENOMEM;
2789
2790        new->dir = ref->dir;
2791        new->dir_gen = ref->dir_gen;
2792        new->full_path = NULL;
2793        INIT_LIST_HEAD(&new->list);
2794        list_add_tail(&new->list, list);
2795        return 0;
2796}
2797
2798static void __free_recorded_refs(struct list_head *head)
2799{
2800        struct recorded_ref *cur;
2801
2802        while (!list_empty(head)) {
2803                cur = list_entry(head->next, struct recorded_ref, list);
2804                fs_path_free(cur->full_path);
2805                list_del(&cur->list);
2806                kfree(cur);
2807        }
2808}
2809
2810static void free_recorded_refs(struct send_ctx *sctx)
2811{
2812        __free_recorded_refs(&sctx->new_refs);
2813        __free_recorded_refs(&sctx->deleted_refs);
2814}
2815
2816/*
2817 * Renames/moves a file/dir to its orphan name. Used when the first
2818 * ref of an unprocessed inode gets overwritten and for all non empty
2819 * directories.
2820 */
2821static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2822                          struct fs_path *path)
2823{
2824        int ret;
2825        struct fs_path *orphan;
2826
2827        orphan = fs_path_alloc();
2828        if (!orphan)
2829                return -ENOMEM;
2830
2831        ret = gen_unique_name(sctx, ino, gen, orphan);
2832        if (ret < 0)
2833                goto out;
2834
2835        ret = send_rename(sctx, path, orphan);
2836
2837out:
2838        fs_path_free(orphan);
2839        return ret;
2840}
2841
2842static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
2843                                                   u64 dir_ino, u64 dir_gen)
2844{
2845        struct rb_node **p = &sctx->orphan_dirs.rb_node;
2846        struct rb_node *parent = NULL;
2847        struct orphan_dir_info *entry, *odi;
2848
2849        while (*p) {
2850                parent = *p;
2851                entry = rb_entry(parent, struct orphan_dir_info, node);
2852                if (dir_ino < entry->ino)
2853                        p = &(*p)->rb_left;
2854                else if (dir_ino > entry->ino)
2855                        p = &(*p)->rb_right;
2856                else if (dir_gen < entry->gen)
2857                        p = &(*p)->rb_left;
2858                else if (dir_gen > entry->gen)
2859                        p = &(*p)->rb_right;
2860                else
2861                        return entry;
2862        }
2863
2864        odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2865        if (!odi)
2866                return ERR_PTR(-ENOMEM);
2867        odi->ino = dir_ino;
2868        odi->gen = dir_gen;
2869        odi->last_dir_index_offset = 0;
2870
2871        rb_link_node(&odi->node, parent, p);
2872        rb_insert_color(&odi->node, &sctx->orphan_dirs);
2873        return odi;
2874}
2875
2876static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
2877                                                   u64 dir_ino, u64 gen)
2878{
2879        struct rb_node *n = sctx->orphan_dirs.rb_node;
2880        struct orphan_dir_info *entry;
2881
2882        while (n) {
2883                entry = rb_entry(n, struct orphan_dir_info, node);
2884                if (dir_ino < entry->ino)
2885                        n = n->rb_left;
2886                else if (dir_ino > entry->ino)
2887                        n = n->rb_right;
2888                else if (gen < entry->gen)
2889                        n = n->rb_left;
2890                else if (gen > entry->gen)
2891                        n = n->rb_right;
2892                else
2893                        return entry;
2894        }
2895        return NULL;
2896}
2897
2898static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
2899{
2900        struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
2901
2902        return odi != NULL;
2903}
2904
2905static void free_orphan_dir_info(struct send_ctx *sctx,
2906                                 struct orphan_dir_info *odi)
2907{
2908        if (!odi)
2909                return;
2910        rb_erase(&odi->node, &sctx->orphan_dirs);
2911        kfree(odi);
2912}
2913
2914/*
2915 * Returns 1 if a directory can be removed at this point in time.
2916 * We check this by iterating all dir items and checking if the inode behind
2917 * the dir item was already processed.
2918 */
2919static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2920                     u64 send_progress)
2921{
2922        int ret = 0;
2923        struct btrfs_root *root = sctx->parent_root;
2924        struct btrfs_path *path;
2925        struct btrfs_key key;
2926        struct btrfs_key found_key;
2927        struct btrfs_key loc;
2928        struct btrfs_dir_item *di;
2929        struct orphan_dir_info *odi = NULL;
2930
2931        /*
2932         * Don't try to rmdir the top/root subvolume dir.
2933         */
2934        if (dir == BTRFS_FIRST_FREE_OBJECTID)
2935                return 0;
2936
2937        path = alloc_path_for_send();
2938        if (!path)
2939                return -ENOMEM;
2940
2941        key.objectid = dir;
2942        key.type = BTRFS_DIR_INDEX_KEY;
2943        key.offset = 0;
2944
2945        odi = get_orphan_dir_info(sctx, dir, dir_gen);
2946        if (odi)
2947                key.offset = odi->last_dir_index_offset;
2948
2949        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2950        if (ret < 0)
2951                goto out;
2952
2953        while (1) {
2954                struct waiting_dir_move *dm;
2955
2956                if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2957                        ret = btrfs_next_leaf(root, path);
2958                        if (ret < 0)
2959                                goto out;
2960                        else if (ret > 0)
2961                                break;
2962                        continue;
2963                }
2964                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2965                                      path->slots[0]);
2966                if (found_key.objectid != key.objectid ||
2967                    found_key.type != key.type)
2968                        break;
2969
2970                di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2971                                struct btrfs_dir_item);
2972                btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2973
2974                dm = get_waiting_dir_move(sctx, loc.objectid);
2975                if (dm) {
2976                        odi = add_orphan_dir_info(sctx, dir, dir_gen);
2977                        if (IS_ERR(odi)) {
2978                                ret = PTR_ERR(odi);
2979                                goto out;
2980                        }
2981                        odi->gen = dir_gen;
2982                        odi->last_dir_index_offset = found_key.offset;
2983                        dm->rmdir_ino = dir;
2984                        dm->rmdir_gen = dir_gen;
2985                        ret = 0;
2986                        goto out;
2987                }
2988
2989                if (loc.objectid > send_progress) {
2990                        odi = add_orphan_dir_info(sctx, dir, dir_gen);
2991                        if (IS_ERR(odi)) {
2992                                ret = PTR_ERR(odi);
2993                                goto out;
2994                        }
2995                        odi->gen = dir_gen;
2996                        odi->last_dir_index_offset = found_key.offset;
2997                        ret = 0;
2998                        goto out;
2999                }
3000
3001                path->slots[0]++;
3002        }
3003        free_orphan_dir_info(sctx, odi);
3004
3005        ret = 1;
3006
3007out:
3008        btrfs_free_path(path);
3009        return ret;
3010}
3011
3012static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3013{
3014        struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3015
3016        return entry != NULL;
3017}
3018
3019static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3020{
3021        struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3022        struct rb_node *parent = NULL;
3023        struct waiting_dir_move *entry, *dm;
3024
3025        dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3026        if (!dm)
3027                return -ENOMEM;
3028        dm->ino = ino;
3029        dm->rmdir_ino = 0;
3030        dm->rmdir_gen = 0;
3031        dm->orphanized = orphanized;
3032
3033        while (*p) {
3034                parent = *p;
3035                entry = rb_entry(parent, struct waiting_dir_move, node);
3036                if (ino < entry->ino) {
3037                        p = &(*p)->rb_left;
3038                } else if (ino > entry->ino) {
3039                        p = &(*p)->rb_right;
3040                } else {
3041                        kfree(dm);
3042                        return -EEXIST;
3043                }
3044        }
3045
3046        rb_link_node(&dm->node, parent, p);
3047        rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3048        return 0;
3049}
3050
3051static struct waiting_dir_move *
3052get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3053{
3054        struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3055        struct waiting_dir_move *entry;
3056
3057        while (n) {
3058                entry = rb_entry(n, struct waiting_dir_move, node);
3059                if (ino < entry->ino)
3060                        n = n->rb_left;
3061                else if (ino > entry->ino)
3062                        n = n->rb_right;
3063                else
3064                        return entry;
3065        }
3066        return NULL;
3067}
3068
3069static void free_waiting_dir_move(struct send_ctx *sctx,
3070                                  struct waiting_dir_move *dm)
3071{
3072        if (!dm)
3073                return;
3074        rb_erase(&dm->node, &sctx->waiting_dir_moves);
3075        kfree(dm);
3076}
3077
3078static int add_pending_dir_move(struct send_ctx *sctx,
3079                                u64 ino,
3080                                u64 ino_gen,
3081                                u64 parent_ino,
3082                                struct list_head *new_refs,
3083                                struct list_head *deleted_refs,
3084                                const bool is_orphan)
3085{
3086        struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3087        struct rb_node *parent = NULL;
3088        struct pending_dir_move *entry = NULL, *pm;
3089        struct recorded_ref *cur;
3090        int exists = 0;
3091        int ret;
3092
3093        pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3094        if (!pm)
3095                return -ENOMEM;
3096        pm->parent_ino = parent_ino;
3097        pm->ino = ino;
3098        pm->gen = ino_gen;
3099        INIT_LIST_HEAD(&pm->list);
3100        INIT_LIST_HEAD(&pm->update_refs);
3101        RB_CLEAR_NODE(&pm->node);
3102
3103        while (*p) {
3104                parent = *p;
3105                entry = rb_entry(parent, struct pending_dir_move, node);
3106                if (parent_ino < entry->parent_ino) {
3107                        p = &(*p)->rb_left;
3108                } else if (parent_ino > entry->parent_ino) {
3109                        p = &(*p)->rb_right;
3110                } else {
3111                        exists = 1;
3112                        break;
3113                }
3114        }
3115
3116        list_for_each_entry(cur, deleted_refs, list) {
3117                ret = dup_ref(cur, &pm->update_refs);
3118                if (ret < 0)
3119                        goto out;
3120        }
3121        list_for_each_entry(cur, new_refs, list) {
3122                ret = dup_ref(cur, &pm->update_refs);
3123                if (ret < 0)
3124                        goto out;
3125        }
3126
3127        ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3128        if (ret)
3129                goto out;
3130
3131        if (exists) {
3132                list_add_tail(&pm->list, &entry->list);
3133        } else {
3134                rb_link_node(&pm->node, parent, p);
3135                rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3136        }
3137        ret = 0;
3138out:
3139        if (ret) {
3140                __free_recorded_refs(&pm->update_refs);
3141                kfree(pm);
3142        }
3143        return ret;
3144}
3145
3146static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3147                                                      u64 parent_ino)
3148{
3149        struct rb_node *n = sctx->pending_dir_moves.rb_node;
3150        struct pending_dir_move *entry;
3151
3152        while (n) {
3153                entry = rb_entry(n, struct pending_dir_move, node);
3154                if (parent_ino < entry->parent_ino)
3155                        n = n->rb_left;
3156                else if (parent_ino > entry->parent_ino)
3157                        n = n->rb_right;
3158                else
3159                        return entry;
3160        }
3161        return NULL;
3162}
3163
3164static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3165                     u64 ino, u64 gen, u64 *ancestor_ino)
3166{
3167        int ret = 0;
3168        u64 parent_inode = 0;
3169        u64 parent_gen = 0;
3170        u64 start_ino = ino;
3171
3172        *ancestor_ino = 0;
3173        while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3174                fs_path_reset(name);
3175
3176                if (is_waiting_for_rm(sctx, ino, gen))
3177                        break;
3178                if (is_waiting_for_move(sctx, ino)) {
3179                        if (*ancestor_ino == 0)
3180                                *ancestor_ino = ino;
3181                        ret = get_first_ref(sctx->parent_root, ino,
3182                                            &parent_inode, &parent_gen, name);
3183                } else {
3184                        ret = __get_cur_name_and_parent(sctx, ino, gen,
3185                                                        &parent_inode,
3186                                                        &parent_gen, name);
3187                        if (ret > 0) {
3188                                ret = 0;
3189                                break;
3190                        }
3191                }
3192                if (ret < 0)
3193                        break;
3194                if (parent_inode == start_ino) {
3195                        ret = 1;
3196                        if (*ancestor_ino == 0)
3197                                *ancestor_ino = ino;
3198                        break;
3199                }
3200                ino = parent_inode;
3201                gen = parent_gen;
3202        }
3203        return ret;
3204}
3205
3206static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3207{
3208        struct fs_path *from_path = NULL;
3209        struct fs_path *to_path = NULL;
3210        struct fs_path *name = NULL;
3211        u64 orig_progress = sctx->send_progress;
3212        struct recorded_ref *cur;
3213        u64 parent_ino, parent_gen;
3214        struct waiting_dir_move *dm = NULL;
3215        u64 rmdir_ino = 0;
3216        u64 rmdir_gen;
3217        u64 ancestor;
3218        bool is_orphan;
3219        int ret;
3220
3221        name = fs_path_alloc();
3222        from_path = fs_path_alloc();
3223        if (!name || !from_path) {
3224                ret = -ENOMEM;
3225                goto out;
3226        }
3227
3228        dm = get_waiting_dir_move(sctx, pm->ino);
3229        ASSERT(dm);
3230        rmdir_ino = dm->rmdir_ino;
3231        rmdir_gen = dm->rmdir_gen;
3232        is_orphan = dm->orphanized;
3233        free_waiting_dir_move(sctx, dm);
3234
3235        if (is_orphan) {
3236                ret = gen_unique_name(sctx, pm->ino,
3237                                      pm->gen, from_path);
3238        } else {
3239                ret = get_first_ref(sctx->parent_root, pm->ino,
3240                                    &parent_ino, &parent_gen, name);
3241                if (ret < 0)
3242                        goto out;
3243                ret = get_cur_path(sctx, parent_ino, parent_gen,
3244                                   from_path);
3245                if (ret < 0)
3246                        goto out;
3247                ret = fs_path_add_path(from_path, name);
3248        }
3249        if (ret < 0)
3250                goto out;
3251
3252        sctx->send_progress = sctx->cur_ino + 1;
3253        ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3254        if (ret < 0)
3255                goto out;
3256        if (ret) {
3257                LIST_HEAD(deleted_refs);
3258                ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3259                ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3260                                           &pm->update_refs, &deleted_refs,
3261                                           is_orphan);
3262                if (ret < 0)
3263                        goto out;
3264                if (rmdir_ino) {
3265                        dm = get_waiting_dir_move(sctx, pm->ino);
3266                        ASSERT(dm);
3267                        dm->rmdir_ino = rmdir_ino;
3268                        dm->rmdir_gen = rmdir_gen;
3269                }
3270                goto out;
3271        }
3272        fs_path_reset(name);
3273        to_path = name;
3274        name = NULL;
3275        ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3276        if (ret < 0)
3277                goto out;
3278
3279        ret = send_rename(sctx, from_path, to_path);
3280        if (ret < 0)
3281                goto out;
3282
3283        if (rmdir_ino) {
3284                struct orphan_dir_info *odi;
3285                u64 gen;
3286
3287                odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3288                if (!odi) {
3289                        /* already deleted */
3290                        goto finish;
3291                }
3292                gen = odi->gen;
3293
3294                ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3295                if (ret < 0)
3296                        goto out;
3297                if (!ret)
3298                        goto finish;
3299
3300                name = fs_path_alloc();
3301                if (!name) {
3302                        ret = -ENOMEM;
3303                        goto out;
3304                }
3305                ret = get_cur_path(sctx, rmdir_ino, gen, name);
3306                if (ret < 0)
3307                        goto out;
3308                ret = send_rmdir(sctx, name);
3309                if (ret < 0)
3310                        goto out;
3311        }
3312
3313finish:
3314        ret = send_utimes(sctx, pm->ino, pm->gen);
3315        if (ret < 0)
3316                goto out;
3317
3318        /*
3319         * After rename/move, need to update the utimes of both new parent(s)
3320         * and old parent(s).
3321         */
3322        list_for_each_entry(cur, &pm->update_refs, list) {
3323                /*
3324                 * The parent inode might have been deleted in the send snapshot
3325                 */
3326                ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3327                                     NULL, NULL, NULL, NULL, NULL);
3328                if (ret == -ENOENT) {
3329                        ret = 0;
3330                        continue;
3331                }
3332                if (ret < 0)
3333                        goto out;
3334
3335                ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3336                if (ret < 0)
3337                        goto out;
3338        }
3339
3340out:
3341        fs_path_free(name);
3342        fs_path_free(from_path);
3343        fs_path_free(to_path);
3344        sctx->send_progress = orig_progress;
3345
3346        return ret;
3347}
3348
3349static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3350{
3351        if (!list_empty(&m->list))
3352                list_del(&m->list);
3353        if (!RB_EMPTY_NODE(&m->node))
3354                rb_erase(&m->node, &sctx->pending_dir_moves);
3355        __free_recorded_refs(&m->update_refs);
3356        kfree(m);
3357}
3358
3359static void tail_append_pending_moves(struct send_ctx *sctx,
3360                                      struct pending_dir_move *moves,
3361                                      struct list_head *stack)
3362{
3363        if (list_empty(&moves->list)) {
3364                list_add_tail(&moves->list, stack);
3365        } else {
3366                LIST_HEAD(list);
3367                list_splice_init(&moves->list, &list);
3368                list_add_tail(&moves->list, stack);
3369                list_splice_tail(&list, stack);
3370        }
3371        if (!RB_EMPTY_NODE(&moves->node)) {
3372                rb_erase(&moves->node, &sctx->pending_dir_moves);
3373                RB_CLEAR_NODE(&moves->node);
3374        }
3375}
3376
3377static int apply_children_dir_moves(struct send_ctx *sctx)
3378{
3379        struct pending_dir_move *pm;
3380        struct list_head stack;
3381        u64 parent_ino = sctx->cur_ino;
3382        int ret = 0;
3383
3384        pm = get_pending_dir_moves(sctx, parent_ino);
3385        if (!pm)
3386                return 0;
3387
3388        INIT_LIST_HEAD(&stack);
3389        tail_append_pending_moves(sctx, pm, &stack);
3390
3391        while (!list_empty(&stack)) {
3392                pm = list_first_entry(&stack, struct pending_dir_move, list);
3393                parent_ino = pm->ino;
3394                ret = apply_dir_move(sctx, pm);
3395                free_pending_move(sctx, pm);
3396                if (ret)
3397                        goto out;
3398                pm = get_pending_dir_moves(sctx, parent_ino);
3399                if (pm)
3400                        tail_append_pending_moves(sctx, pm, &stack);
3401        }
3402        return 0;
3403
3404out:
3405        while (!list_empty(&stack)) {
3406                pm = list_first_entry(&stack, struct pending_dir_move, list);
3407                free_pending_move(sctx, pm);
3408        }
3409        return ret;
3410}
3411
3412/*
3413 * We might need to delay a directory rename even when no ancestor directory
3414 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3415 * renamed. This happens when we rename a directory to the old name (the name
3416 * in the parent root) of some other unrelated directory that got its rename
3417 * delayed due to some ancestor with higher number that got renamed.
3418 *
3419 * Example:
3420 *
3421 * Parent snapshot:
3422 * .                                       (ino 256)
3423 * |---- a/                                (ino 257)
3424 * |     |---- file                        (ino 260)
3425 * |
3426 * |---- b/                                (ino 258)
3427 * |---- c/                                (ino 259)
3428 *
3429 * Send snapshot:
3430 * .                                       (ino 256)
3431 * |---- a/                                (ino 258)
3432 * |---- x/                                (ino 259)
3433 *       |---- y/                          (ino 257)
3434 *             |----- file                 (ino 260)
3435 *
3436 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3437 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3438 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3439 * must issue is:
3440 *
3441 * 1 - rename 259 from 'c' to 'x'
3442 * 2 - rename 257 from 'a' to 'x/y'
3443 * 3 - rename 258 from 'b' to 'a'
3444 *
3445 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3446 * be done right away and < 0 on error.
3447 */
3448static int wait_for_dest_dir_move(struct send_ctx *sctx,
3449                                  struct recorded_ref *parent_ref,
3450                                  const bool is_orphan)
3451{
3452        struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3453        struct btrfs_path *path;
3454        struct btrfs_key key;
3455        struct btrfs_key di_key;
3456        struct btrfs_dir_item *di;
3457        u64 left_gen;
3458        u64 right_gen;
3459        int ret = 0;
3460        struct waiting_dir_move *wdm;
3461
3462        if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3463                return 0;
3464
3465        path = alloc_path_for_send();
3466        if (!path)
3467                return -ENOMEM;
3468
3469        key.objectid = parent_ref->dir;
3470        key.type = BTRFS_DIR_ITEM_KEY;
3471        key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3472
3473        ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3474        if (ret < 0) {
3475                goto out;
3476        } else if (ret > 0) {
3477                ret = 0;
3478                goto out;
3479        }
3480
3481        di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3482                                       parent_ref->name_len);
3483        if (!di) {
3484                ret = 0;
3485                goto out;
3486        }
3487        /*
3488         * di_key.objectid has the number of the inode that has a dentry in the
3489         * parent directory with the same name that sctx->cur_ino is being
3490         * renamed to. We need to check if that inode is in the send root as
3491         * well and if it is currently marked as an inode with a pending rename,
3492         * if it is, we need to delay the rename of sctx->cur_ino as well, so
3493         * that it happens after that other inode is renamed.
3494         */
3495        btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3496        if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3497                ret = 0;
3498                goto out;
3499        }
3500
3501        ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3502                             &left_gen, NULL, NULL, NULL, NULL);
3503        if (ret < 0)
3504                goto out;
3505        ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3506                             &right_gen, NULL, NULL, NULL, NULL);
3507        if (ret < 0) {
3508                if (ret == -ENOENT)
3509                        ret = 0;
3510                goto out;
3511        }
3512
3513        /* Different inode, no need to delay the rename of sctx->cur_ino */
3514        if (right_gen != left_gen) {
3515                ret = 0;
3516                goto out;
3517        }
3518
3519        wdm = get_waiting_dir_move(sctx, di_key.objectid);
3520        if (wdm && !wdm->orphanized) {
3521                ret = add_pending_dir_move(sctx,
3522                                           sctx->cur_ino,
3523                                           sctx->cur_inode_gen,
3524                                           di_key.objectid,
3525                                           &sctx->new_refs,
3526                                           &sctx->deleted_refs,
3527                                           is_orphan);
3528                if (!ret)
3529                        ret = 1;
3530        }
3531out:
3532        btrfs_free_path(path);
3533        return ret;
3534}
3535
3536/*
3537 * Check if inode ino2, or any of its ancestors, is inode ino1.
3538 * Return 1 if true, 0 if false and < 0 on error.
3539 */
3540static int check_ino_in_path(struct btrfs_root *root,
3541                             const u64 ino1,
3542                             const u64 ino1_gen,
3543                             const u64 ino2,
3544                             const u64 ino2_gen,
3545                             struct fs_path *fs_path)
3546{
3547        u64 ino = ino2;
3548
3549        if (ino1 == ino2)
3550                return ino1_gen == ino2_gen;
3551
3552        while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3553                u64 parent;
3554                u64 parent_gen;
3555                int ret;
3556
3557                fs_path_reset(fs_path);
3558                ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3559                if (ret < 0)
3560                        return ret;
3561                if (parent == ino1)
3562                        return parent_gen == ino1_gen;
3563                ino = parent;
3564        }
3565        return 0;
3566}
3567
3568/*
3569 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3570 * possible path (in case ino2 is not a directory and has multiple hard links).
3571 * Return 1 if true, 0 if false and < 0 on error.
3572 */
3573static int is_ancestor(struct btrfs_root *root,
3574                       const u64 ino1,
3575                       const u64 ino1_gen,
3576                       const u64 ino2,
3577                       struct fs_path *fs_path)
3578{
3579        bool free_fs_path = false;
3580        int ret = 0;
3581        struct btrfs_path *path = NULL;
3582        struct btrfs_key key;
3583
3584        if (!fs_path) {
3585                fs_path = fs_path_alloc();
3586                if (!fs_path)
3587                        return -ENOMEM;
3588                free_fs_path = true;
3589        }
3590
3591        path = alloc_path_for_send();
3592        if (!path) {
3593                ret = -ENOMEM;
3594                goto out;
3595        }
3596
3597        key.objectid = ino2;
3598        key.type = BTRFS_INODE_REF_KEY;
3599        key.offset = 0;
3600
3601        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3602        if (ret < 0)
3603                goto out;
3604
3605        while (true) {
3606                struct extent_buffer *leaf = path->nodes[0];
3607                int slot = path->slots[0];
3608                u32 cur_offset = 0;
3609                u32 item_size;
3610
3611                if (slot >= btrfs_header_nritems(leaf)) {
3612                        ret = btrfs_next_leaf(root, path);
3613                        if (ret < 0)
3614                                goto out;
3615                        if (ret > 0)
3616                                break;
3617                        continue;
3618                }
3619
3620                btrfs_item_key_to_cpu(leaf, &key, slot);
3621                if (key.objectid != ino2)
3622                        break;
3623                if (key.type != BTRFS_INODE_REF_KEY &&
3624                    key.type != BTRFS_INODE_EXTREF_KEY)
3625                        break;
3626
3627                item_size = btrfs_item_size_nr(leaf, slot);
3628                while (cur_offset < item_size) {
3629                        u64 parent;
3630                        u64 parent_gen;
3631
3632                        if (key.type == BTRFS_INODE_EXTREF_KEY) {
3633                                unsigned long ptr;
3634                                struct btrfs_inode_extref *extref;
3635
3636                                ptr = btrfs_item_ptr_offset(leaf, slot);
3637                                extref = (struct btrfs_inode_extref *)
3638                                        (ptr + cur_offset);
3639                                parent = btrfs_inode_extref_parent(leaf,
3640                                                                   extref);
3641                                cur_offset += sizeof(*extref);
3642                                cur_offset += btrfs_inode_extref_name_len(leaf,
3643                                                                  extref);
3644                        } else {
3645                                parent = key.offset;
3646                                cur_offset = item_size;
3647                        }
3648
3649                        ret = get_inode_info(root, parent, NULL, &parent_gen,
3650                                             NULL, NULL, NULL, NULL);
3651                        if (ret < 0)
3652                                goto out;
3653                        ret = check_ino_in_path(root, ino1, ino1_gen,
3654                                                parent, parent_gen, fs_path);
3655                        if (ret)
3656                                goto out;
3657                }
3658                path->slots[0]++;
3659        }
3660        ret = 0;
3661 out:
3662        btrfs_free_path(path);
3663        if (free_fs_path)
3664                fs_path_free(fs_path);
3665        return ret;
3666}
3667
3668static int wait_for_parent_move(struct send_ctx *sctx,
3669                                struct recorded_ref *parent_ref,
3670                                const bool is_orphan)
3671{
3672        int ret = 0;
3673        u64 ino = parent_ref->dir;
3674        u64 ino_gen = parent_ref->dir_gen;
3675        u64 parent_ino_before, parent_ino_after;
3676        struct fs_path *path_before = NULL;
3677        struct fs_path *path_after = NULL;
3678        int len1, len2;
3679
3680        path_after = fs_path_alloc();
3681        path_before = fs_path_alloc();
3682        if (!path_after || !path_before) {
3683                ret = -ENOMEM;
3684                goto out;
3685        }
3686
3687        /*
3688         * Our current directory inode may not yet be renamed/moved because some
3689         * ancestor (immediate or not) has to be renamed/moved first. So find if
3690         * such ancestor exists and make sure our own rename/move happens after
3691         * that ancestor is processed to avoid path build infinite loops (done
3692         * at get_cur_path()).
3693         */
3694        while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3695                u64 parent_ino_after_gen;
3696
3697                if (is_waiting_for_move(sctx, ino)) {
3698                        /*
3699                         * If the current inode is an ancestor of ino in the
3700                         * parent root, we need to delay the rename of the
3701                         * current inode, otherwise don't delayed the rename
3702                         * because we can end up with a circular dependency
3703                         * of renames, resulting in some directories never
3704                         * getting the respective rename operations issued in
3705                         * the send stream or getting into infinite path build
3706                         * loops.
3707                         */
3708                        ret = is_ancestor(sctx->parent_root,
3709                                          sctx->cur_ino, sctx->cur_inode_gen,
3710                                          ino, path_before);
3711                        if (ret)
3712                                break;
3713                }
3714
3715                fs_path_reset(path_before);
3716                fs_path_reset(path_after);
3717
3718                ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3719                                    &parent_ino_after_gen, path_after);
3720                if (ret < 0)
3721                        goto out;
3722                ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3723                                    NULL, path_before);
3724                if (ret < 0 && ret != -ENOENT) {
3725                        goto out;
3726                } else if (ret == -ENOENT) {
3727                        ret = 0;
3728                        break;
3729                }
3730
3731                len1 = fs_path_len(path_before);
3732                len2 = fs_path_len(path_after);
3733                if (ino > sctx->cur_ino &&
3734                    (parent_ino_before != parent_ino_after || len1 != len2 ||
3735                     memcmp(path_before->start, path_after->start, len1))) {
3736                        u64 parent_ino_gen;
3737
3738                        ret = get_inode_info(sctx->parent_root, ino, NULL,
3739                                             &parent_ino_gen, NULL, NULL, NULL,
3740                                             NULL);
3741                        if (ret < 0)
3742                                goto out;
3743                        if (ino_gen == parent_ino_gen) {
3744                                ret = 1;
3745                                break;
3746                        }
3747                }
3748                ino = parent_ino_after;
3749                ino_gen = parent_ino_after_gen;
3750        }
3751
3752out:
3753        fs_path_free(path_before);
3754        fs_path_free(path_after);
3755
3756        if (ret == 1) {
3757                ret = add_pending_dir_move(sctx,
3758                                           sctx->cur_ino,
3759                                           sctx->cur_inode_gen,
3760                                           ino,
3761                                           &sctx->new_refs,
3762                                           &sctx->deleted_refs,
3763                                           is_orphan);
3764                if (!ret)
3765                        ret = 1;
3766        }
3767
3768        return ret;
3769}
3770
3771static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3772{
3773        int ret;
3774        struct fs_path *new_path;
3775
3776        /*
3777         * Our reference's name member points to its full_path member string, so
3778         * we use here a new path.
3779         */
3780        new_path = fs_path_alloc();
3781        if (!new_path)
3782                return -ENOMEM;
3783
3784        ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3785        if (ret < 0) {
3786                fs_path_free(new_path);
3787                return ret;
3788        }
3789        ret = fs_path_add(new_path, ref->name, ref->name_len);
3790        if (ret < 0) {
3791                fs_path_free(new_path);
3792                return ret;
3793        }
3794
3795        fs_path_free(ref->full_path);
3796        set_ref_path(ref, new_path);
3797
3798        return 0;
3799}
3800
3801/*
3802 * When processing the new references for an inode we may orphanize an existing
3803 * directory inode because its old name conflicts with one of the new references
3804 * of the current inode. Later, when processing another new reference of our
3805 * inode, we might need to orphanize another inode, but the path we have in the
3806 * reference reflects the pre-orphanization name of the directory we previously
3807 * orphanized. For example:
3808 *
3809 * parent snapshot looks like:
3810 *
3811 * .                                     (ino 256)
3812 * |----- f1                             (ino 257)
3813 * |----- f2                             (ino 258)
3814 * |----- d1/                            (ino 259)
3815 *        |----- d2/                     (ino 260)
3816 *
3817 * send snapshot looks like:
3818 *
3819 * .                                     (ino 256)
3820 * |----- d1                             (ino 258)
3821 * |----- f2/                            (ino 259)
3822 *        |----- f2_link/                (ino 260)
3823 *        |       |----- f1              (ino 257)
3824 *        |
3825 *        |----- d2                      (ino 258)
3826 *
3827 * When processing inode 257 we compute the name for inode 259 as "d1", and we
3828 * cache it in the name cache. Later when we start processing inode 258, when
3829 * collecting all its new references we set a full path of "d1/d2" for its new
3830 * reference with name "d2". When we start processing the new references we
3831 * start by processing the new reference with name "d1", and this results in
3832 * orphanizing inode 259, since its old reference causes a conflict. Then we
3833 * move on the next new reference, with name "d2", and we find out we must
3834 * orphanize inode 260, as its old reference conflicts with ours - but for the
3835 * orphanization we use a source path corresponding to the path we stored in the
3836 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
3837 * receiver fail since the path component "d1/" no longer exists, it was renamed
3838 * to "o259-6-0/" when processing the previous new reference. So in this case we
3839 * must recompute the path in the new reference and use it for the new
3840 * orphanization operation.
3841 */
3842static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3843{
3844        char *name;
3845        int ret;
3846
3847        name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
3848        if (!name)
3849                return -ENOMEM;
3850
3851        fs_path_reset(ref->full_path);
3852        ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
3853        if (ret < 0)
3854                goto out;
3855
3856        ret = fs_path_add(ref->full_path, name, ref->name_len);
3857        if (ret < 0)
3858                goto out;
3859
3860        /* Update the reference's base name pointer. */
3861        set_ref_path(ref, ref->full_path);
3862out:
3863        kfree(name);
3864        return ret;
3865}
3866
3867/*
3868 * This does all the move/link/unlink/rmdir magic.
3869 */
3870static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3871{
3872        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3873        int ret = 0;
3874        struct recorded_ref *cur;
3875        struct recorded_ref *cur2;
3876        struct list_head check_dirs;
3877        struct fs_path *valid_path = NULL;
3878        u64 ow_inode = 0;
3879        u64 ow_gen;
3880        u64 ow_mode;
3881        int did_overwrite = 0;
3882        int is_orphan = 0;
3883        u64 last_dir_ino_rm = 0;
3884        bool can_rename = true;
3885        bool orphanized_dir = false;
3886        bool orphanized_ancestor = false;
3887
3888        btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3889
3890        /*
3891         * This should never happen as the root dir always has the same ref
3892         * which is always '..'
3893         */
3894        BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3895        INIT_LIST_HEAD(&check_dirs);
3896
3897        valid_path = fs_path_alloc();
3898        if (!valid_path) {
3899                ret = -ENOMEM;
3900                goto out;
3901        }
3902
3903        /*
3904         * First, check if the first ref of the current inode was overwritten
3905         * before. If yes, we know that the current inode was already orphanized
3906         * and thus use the orphan name. If not, we can use get_cur_path to
3907         * get the path of the first ref as it would like while receiving at
3908         * this point in time.
3909         * New inodes are always orphan at the beginning, so force to use the
3910         * orphan name in this case.
3911         * The first ref is stored in valid_path and will be updated if it
3912         * gets moved around.
3913         */
3914        if (!sctx->cur_inode_new) {
3915                ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3916                                sctx->cur_inode_gen);
3917                if (ret < 0)
3918                        goto out;
3919                if (ret)
3920                        did_overwrite = 1;
3921        }
3922        if (sctx->cur_inode_new || did_overwrite) {
3923                ret = gen_unique_name(sctx, sctx->cur_ino,
3924                                sctx->cur_inode_gen, valid_path);
3925                if (ret < 0)
3926                        goto out;
3927                is_orphan = 1;
3928        } else {
3929                ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3930                                valid_path);
3931                if (ret < 0)
3932                        goto out;
3933        }
3934
3935        /*
3936         * Before doing any rename and link operations, do a first pass on the
3937         * new references to orphanize any unprocessed inodes that may have a
3938         * reference that conflicts with one of the new references of the current
3939         * inode. This needs to happen first because a new reference may conflict
3940         * with the old reference of a parent directory, so we must make sure
3941         * that the path used for link and rename commands don't use an
3942         * orphanized name when an ancestor was not yet orphanized.
3943         *
3944         * Example:
3945         *
3946         * Parent snapshot:
3947         *
3948         * .                                                      (ino 256)
3949         * |----- testdir/                                        (ino 259)
3950         * |          |----- a                                    (ino 257)
3951         * |
3952         * |----- b                                               (ino 258)
3953         *
3954         * Send snapshot:
3955         *
3956         * .                                                      (ino 256)
3957         * |----- testdir_2/                                      (ino 259)
3958         * |          |----- a                                    (ino 260)
3959         * |
3960         * |----- testdir                                         (ino 257)
3961         * |----- b                                               (ino 257)
3962         * |----- b2                                              (ino 258)
3963         *
3964         * Processing the new reference for inode 257 with name "b" may happen
3965         * before processing the new reference with name "testdir". If so, we
3966         * must make sure that by the time we send a link command to create the
3967         * hard link "b", inode 259 was already orphanized, since the generated
3968         * path in "valid_path" already contains the orphanized name for 259.
3969         * We are processing inode 257, so only later when processing 259 we do
3970         * the rename operation to change its temporary (orphanized) name to
3971         * "testdir_2".
3972         */
3973        list_for_each_entry(cur, &sctx->new_refs, list) {
3974                ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3975                if (ret < 0)
3976                        goto out;
3977                if (ret == inode_state_will_create)
3978                        continue;
3979
3980                /*
3981                 * Check if this new ref would overwrite the first ref of another
3982                 * unprocessed inode. If yes, orphanize the overwritten inode.
3983                 * If we find an overwritten ref that is not the first ref,
3984                 * simply unlink it.
3985                 */
3986                ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3987                                cur->name, cur->name_len,
3988                                &ow_inode, &ow_gen, &ow_mode);
3989                if (ret < 0)
3990                        goto out;
3991                if (ret) {
3992                        ret = is_first_ref(sctx->parent_root,
3993                                           ow_inode, cur->dir, cur->name,
3994                                           cur->name_len);
3995                        if (ret < 0)
3996                                goto out;
3997                        if (ret) {
3998                                struct name_cache_entry *nce;
3999                                struct waiting_dir_move *wdm;
4000
4001                                if (orphanized_dir) {
4002                                        ret = refresh_ref_path(sctx, cur);
4003                                        if (ret < 0)
4004                                                goto out;
4005                                }
4006
4007                                ret = orphanize_inode(sctx, ow_inode, ow_gen,
4008                                                cur->full_path);
4009                                if (ret < 0)
4010                                        goto out;
4011                                if (S_ISDIR(ow_mode))
4012                                        orphanized_dir = true;
4013
4014                                /*
4015                                 * If ow_inode has its rename operation delayed
4016                                 * make sure that its orphanized name is used in
4017                                 * the source path when performing its rename
4018                                 * operation.
4019                                 */
4020                                if (is_waiting_for_move(sctx, ow_inode)) {
4021                                        wdm = get_waiting_dir_move(sctx,
4022                                                                   ow_inode);
4023                                        ASSERT(wdm);
4024                                        wdm->orphanized = true;
4025                                }
4026
4027                                /*
4028                                 * Make sure we clear our orphanized inode's
4029                                 * name from the name cache. This is because the
4030                                 * inode ow_inode might be an ancestor of some
4031                                 * other inode that will be orphanized as well
4032                                 * later and has an inode number greater than
4033                                 * sctx->send_progress. We need to prevent
4034                                 * future name lookups from using the old name
4035                                 * and get instead the orphan name.
4036                                 */
4037                                nce = name_cache_search(sctx, ow_inode, ow_gen);
4038                                if (nce) {
4039                                        name_cache_delete(sctx, nce);
4040                                        kfree(nce);
4041                                }
4042
4043                                /*
4044                                 * ow_inode might currently be an ancestor of
4045                                 * cur_ino, therefore compute valid_path (the
4046                                 * current path of cur_ino) again because it
4047                                 * might contain the pre-orphanization name of
4048                                 * ow_inode, which is no longer valid.
4049                                 */
4050                                ret = is_ancestor(sctx->parent_root,
4051                                                  ow_inode, ow_gen,
4052                                                  sctx->cur_ino, NULL);
4053                                if (ret > 0) {
4054                                        orphanized_ancestor = true;
4055                                        fs_path_reset(valid_path);
4056                                        ret = get_cur_path(sctx, sctx->cur_ino,
4057                                                           sctx->cur_inode_gen,
4058                                                           valid_path);
4059                                }
4060                                if (ret < 0)
4061                                        goto out;
4062                        } else {
4063                                /*
4064                                 * If we previously orphanized a directory that
4065                                 * collided with a new reference that we already
4066                                 * processed, recompute the current path because
4067                                 * that directory may be part of the path.
4068                                 */
4069                                if (orphanized_dir) {
4070                                        ret = refresh_ref_path(sctx, cur);
4071                                        if (ret < 0)
4072                                                goto out;
4073                                }
4074                                ret = send_unlink(sctx, cur->full_path);
4075                                if (ret < 0)
4076                                        goto out;
4077                        }
4078                }
4079
4080        }
4081
4082        list_for_each_entry(cur, &sctx->new_refs, list) {
4083                /*
4084                 * We may have refs where the parent directory does not exist
4085                 * yet. This happens if the parent directories inum is higher
4086                 * than the current inum. To handle this case, we create the
4087                 * parent directory out of order. But we need to check if this
4088                 * did already happen before due to other refs in the same dir.
4089                 */
4090                ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4091                if (ret < 0)
4092                        goto out;
4093                if (ret == inode_state_will_create) {
4094                        ret = 0;
4095                        /*
4096                         * First check if any of the current inodes refs did
4097                         * already create the dir.
4098                         */
4099                        list_for_each_entry(cur2, &sctx->new_refs, list) {
4100                                if (cur == cur2)
4101                                        break;
4102                                if (cur2->dir == cur->dir) {
4103                                        ret = 1;
4104                                        break;
4105                                }
4106                        }
4107
4108                        /*
4109                         * If that did not happen, check if a previous inode
4110                         * did already create the dir.
4111                         */
4112                        if (!ret)
4113                                ret = did_create_dir(sctx, cur->dir);
4114                        if (ret < 0)
4115                                goto out;
4116                        if (!ret) {
4117                                ret = send_create_inode(sctx, cur->dir);
4118                                if (ret < 0)
4119                                        goto out;
4120                        }
4121                }
4122
4123                if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4124                        ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4125                        if (ret < 0)
4126                                goto out;
4127                        if (ret == 1) {
4128                                can_rename = false;
4129                                *pending_move = 1;
4130                        }
4131                }
4132
4133                if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4134                    can_rename) {
4135                        ret = wait_for_parent_move(sctx, cur, is_orphan);
4136                        if (ret < 0)
4137                                goto out;
4138                        if (ret == 1) {
4139                                can_rename = false;
4140                                *pending_move = 1;
4141                        }
4142                }
4143
4144                /*
4145                 * link/move the ref to the new place. If we have an orphan
4146                 * inode, move it and update valid_path. If not, link or move
4147                 * it depending on the inode mode.
4148                 */
4149                if (is_orphan && can_rename) {
4150                        ret = send_rename(sctx, valid_path, cur->full_path);
4151                        if (ret < 0)
4152                                goto out;
4153                        is_orphan = 0;
4154                        ret = fs_path_copy(valid_path, cur->full_path);
4155                        if (ret < 0)
4156                                goto out;
4157                } else if (can_rename) {
4158                        if (S_ISDIR(sctx->cur_inode_mode)) {
4159                                /*
4160                                 * Dirs can't be linked, so move it. For moved
4161                                 * dirs, we always have one new and one deleted
4162                                 * ref. The deleted ref is ignored later.
4163                                 */
4164                                ret = send_rename(sctx, valid_path,
4165                                                  cur->full_path);
4166                                if (!ret)
4167                                        ret = fs_path_copy(valid_path,
4168                                                           cur->full_path);
4169                                if (ret < 0)
4170                                        goto out;
4171                        } else {
4172                                /*
4173                                 * We might have previously orphanized an inode
4174                                 * which is an ancestor of our current inode,
4175                                 * so our reference's full path, which was
4176                                 * computed before any such orphanizations, must
4177                                 * be updated.
4178                                 */
4179                                if (orphanized_dir) {
4180                                        ret = update_ref_path(sctx, cur);
4181                                        if (ret < 0)
4182                                                goto out;
4183                                }
4184                                ret = send_link(sctx, cur->full_path,
4185                                                valid_path);
4186                                if (ret < 0)
4187                                        goto out;
4188                        }
4189                }
4190                ret = dup_ref(cur, &check_dirs);
4191                if (ret < 0)
4192                        goto out;
4193        }
4194
4195        if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4196                /*
4197                 * Check if we can already rmdir the directory. If not,
4198                 * orphanize it. For every dir item inside that gets deleted
4199                 * later, we do this check again and rmdir it then if possible.
4200                 * See the use of check_dirs for more details.
4201                 */
4202                ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4203                                sctx->cur_ino);
4204                if (ret < 0)
4205                        goto out;
4206                if (ret) {
4207                        ret = send_rmdir(sctx, valid_path);
4208                        if (ret < 0)
4209                                goto out;
4210                } else if (!is_orphan) {
4211                        ret = orphanize_inode(sctx, sctx->cur_ino,
4212                                        sctx->cur_inode_gen, valid_path);
4213                        if (ret < 0)
4214                                goto out;
4215                        is_orphan = 1;
4216                }
4217
4218                list_for_each_entry(cur, &sctx->deleted_refs, list) {
4219                        ret = dup_ref(cur, &check_dirs);
4220                        if (ret < 0)
4221                                goto out;
4222                }
4223        } else if (S_ISDIR(sctx->cur_inode_mode) &&
4224                   !list_empty(&sctx->deleted_refs)) {
4225                /*
4226                 * We have a moved dir. Add the old parent to check_dirs
4227                 */
4228                cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4229                                list);
4230                ret = dup_ref(cur, &check_dirs);
4231                if (ret < 0)
4232                        goto out;
4233        } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4234                /*
4235                 * We have a non dir inode. Go through all deleted refs and
4236                 * unlink them if they were not already overwritten by other
4237                 * inodes.
4238                 */
4239                list_for_each_entry(cur, &sctx->deleted_refs, list) {
4240                        ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4241                                        sctx->cur_ino, sctx->cur_inode_gen,
4242                                        cur->name, cur->name_len);
4243                        if (ret < 0)
4244                                goto out;
4245                        if (!ret) {
4246                                /*
4247                                 * If we orphanized any ancestor before, we need
4248                                 * to recompute the full path for deleted names,
4249                                 * since any such path was computed before we
4250                                 * processed any references and orphanized any
4251                                 * ancestor inode.
4252                                 */
4253                                if (orphanized_ancestor) {
4254                                        ret = update_ref_path(sctx, cur);
4255                                        if (ret < 0)
4256                                                goto out;
4257                                }
4258                                ret = send_unlink(sctx, cur->full_path);
4259                                if (ret < 0)
4260                                        goto out;
4261                        }
4262                        ret = dup_ref(cur, &check_dirs);
4263                        if (ret < 0)
4264                                goto out;
4265                }
4266                /*
4267                 * If the inode is still orphan, unlink the orphan. This may
4268                 * happen when a previous inode did overwrite the first ref
4269                 * of this inode and no new refs were added for the current
4270                 * inode. Unlinking does not mean that the inode is deleted in
4271                 * all cases. There may still be links to this inode in other
4272                 * places.
4273                 */
4274                if (is_orphan) {
4275                        ret = send_unlink(sctx, valid_path);
4276                        if (ret < 0)
4277                                goto out;
4278                }
4279        }
4280
4281        /*
4282         * We did collect all parent dirs where cur_inode was once located. We
4283         * now go through all these dirs and check if they are pending for
4284         * deletion and if it's finally possible to perform the rmdir now.
4285         * We also update the inode stats of the parent dirs here.
4286         */
4287        list_for_each_entry(cur, &check_dirs, list) {
4288                /*
4289                 * In case we had refs into dirs that were not processed yet,
4290                 * we don't need to do the utime and rmdir logic for these dirs.
4291                 * The dir will be processed later.
4292                 */
4293                if (cur->dir > sctx->cur_ino)
4294                        continue;
4295
4296                ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4297                if (ret < 0)
4298                        goto out;
4299
4300                if (ret == inode_state_did_create ||
4301                    ret == inode_state_no_change) {
4302                        /* TODO delayed utimes */
4303                        ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4304                        if (ret < 0)
4305                                goto out;
4306                } else if (ret == inode_state_did_delete &&
4307                           cur->dir != last_dir_ino_rm) {
4308                        ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4309                                        sctx->cur_ino);
4310                        if (ret < 0)
4311                                goto out;
4312                        if (ret) {
4313                                ret = get_cur_path(sctx, cur->dir,
4314                                                   cur->dir_gen, valid_path);
4315                                if (ret < 0)
4316                                        goto out;
4317                                ret = send_rmdir(sctx, valid_path);
4318                                if (ret < 0)
4319                                        goto out;
4320                                last_dir_ino_rm = cur->dir;
4321                        }
4322                }
4323        }
4324
4325        ret = 0;
4326
4327out:
4328        __free_recorded_refs(&check_dirs);
4329        free_recorded_refs(sctx);
4330        fs_path_free(valid_path);
4331        return ret;
4332}
4333
4334static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4335                      void *ctx, struct list_head *refs)
4336{
4337        int ret = 0;
4338        struct send_ctx *sctx = ctx;
4339        struct fs_path *p;
4340        u64 gen;
4341
4342        p = fs_path_alloc();
4343        if (!p)
4344                return -ENOMEM;
4345
4346        ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4347                        NULL, NULL);
4348        if (ret < 0)
4349                goto out;
4350
4351        ret = get_cur_path(sctx, dir, gen, p);
4352        if (ret < 0)
4353                goto out;
4354        ret = fs_path_add_path(p, name);
4355        if (ret < 0)
4356                goto out;
4357
4358        ret = __record_ref(refs, dir, gen, p);
4359
4360out:
4361        if (ret)
4362                fs_path_free(p);
4363        return ret;
4364}
4365
4366static int __record_new_ref(int num, u64 dir, int index,
4367                            struct fs_path *name,
4368                            void *ctx)
4369{
4370        struct send_ctx *sctx = ctx;
4371        return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4372}
4373
4374
4375static int __record_deleted_ref(int num, u64 dir, int index,
4376                                struct fs_path *name,
4377                                void *ctx)
4378{
4379        struct send_ctx *sctx = ctx;
4380        return record_ref(sctx->parent_root, dir, name, ctx,
4381                          &sctx->deleted_refs);
4382}
4383
4384static int record_new_ref(struct send_ctx *sctx)
4385{
4386        int ret;
4387
4388        ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4389                                sctx->cmp_key, 0, __record_new_ref, sctx);
4390        if (ret < 0)
4391                goto out;
4392        ret = 0;
4393
4394out:
4395        return ret;
4396}
4397
4398static int record_deleted_ref(struct send_ctx *sctx)
4399{
4400        int ret;
4401
4402        ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4403                                sctx->cmp_key, 0, __record_deleted_ref, sctx);
4404        if (ret < 0)
4405                goto out;
4406        ret = 0;
4407
4408out:
4409        return ret;
4410}
4411
4412struct find_ref_ctx {
4413        u64 dir;
4414        u64 dir_gen;
4415        struct btrfs_root *root;
4416        struct fs_path *name;
4417        int found_idx;
4418};
4419
4420static int __find_iref(int num, u64 dir, int index,
4421                       struct fs_path *name,
4422                       void *ctx_)
4423{
4424        struct find_ref_ctx *ctx = ctx_;
4425        u64 dir_gen;
4426        int ret;
4427
4428        if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4429            strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4430                /*
4431                 * To avoid doing extra lookups we'll only do this if everything
4432                 * else matches.
4433                 */
4434                ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4435                                     NULL, NULL, NULL);
4436                if (ret)
4437                        return ret;
4438                if (dir_gen != ctx->dir_gen)
4439                        return 0;
4440                ctx->found_idx = num;
4441                return 1;
4442        }
4443        return 0;
4444}
4445
4446static int find_iref(struct btrfs_root *root,
4447                     struct btrfs_path *path,
4448                     struct btrfs_key *key,
4449                     u64 dir, u64 dir_gen, struct fs_path *name)
4450{
4451        int ret;
4452        struct find_ref_ctx ctx;
4453
4454        ctx.dir = dir;
4455        ctx.name = name;
4456        ctx.dir_gen = dir_gen;
4457        ctx.found_idx = -1;
4458        ctx.root = root;
4459
4460        ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4461        if (ret < 0)
4462                return ret;
4463
4464        if (ctx.found_idx == -1)
4465                return -ENOENT;
4466
4467        return ctx.found_idx;
4468}
4469
4470static int __record_changed_new_ref(int num, u64 dir, int index,
4471                                    struct fs_path *name,
4472                                    void *ctx)
4473{
4474        u64 dir_gen;
4475        int ret;
4476        struct send_ctx *sctx = ctx;
4477
4478        ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4479                             NULL, NULL, NULL);
4480        if (ret)
4481                return ret;
4482
4483        ret = find_iref(sctx->parent_root, sctx->right_path,
4484                        sctx->cmp_key, dir, dir_gen, name);
4485        if (ret == -ENOENT)
4486                ret = __record_new_ref(num, dir, index, name, sctx);
4487        else if (ret > 0)
4488                ret = 0;
4489
4490        return ret;
4491}
4492
4493static int __record_changed_deleted_ref(int num, u64 dir, int index,
4494                                        struct fs_path *name,
4495                                        void *ctx)
4496{
4497        u64 dir_gen;
4498        int ret;
4499        struct send_ctx *sctx = ctx;
4500
4501        ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4502                             NULL, NULL, NULL);
4503        if (ret)
4504                return ret;
4505
4506        ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4507                        dir, dir_gen, name);
4508        if (ret == -ENOENT)
4509                ret = __record_deleted_ref(num, dir, index, name, sctx);
4510        else if (ret > 0)
4511                ret = 0;
4512
4513        return ret;
4514}
4515
4516static int record_changed_ref(struct send_ctx *sctx)
4517{
4518        int ret = 0;
4519
4520        ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4521                        sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4522        if (ret < 0)
4523                goto out;
4524        ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4525                        sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4526        if (ret < 0)
4527                goto out;
4528        ret = 0;
4529
4530out:
4531        return ret;
4532}
4533
4534/*
4535 * Record and process all refs at once. Needed when an inode changes the
4536 * generation number, which means that it was deleted and recreated.
4537 */
4538static int process_all_refs(struct send_ctx *sctx,
4539                            enum btrfs_compare_tree_result cmd)
4540{
4541        int ret;
4542        struct btrfs_root *root;
4543        struct btrfs_path *path;
4544        struct btrfs_key key;
4545        struct btrfs_key found_key;
4546        struct extent_buffer *eb;
4547        int slot;
4548        iterate_inode_ref_t cb;
4549        int pending_move = 0;
4550
4551        path = alloc_path_for_send();
4552        if (!path)
4553                return -ENOMEM;
4554
4555        if (cmd == BTRFS_COMPARE_TREE_NEW) {
4556                root = sctx->send_root;
4557                cb = __record_new_ref;
4558        } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4559                root = sctx->parent_root;
4560                cb = __record_deleted_ref;
4561        } else {
4562                btrfs_err(sctx->send_root->fs_info,
4563                                "Wrong command %d in process_all_refs", cmd);
4564                ret = -EINVAL;
4565                goto out;
4566        }
4567
4568        key.objectid = sctx->cmp_key->objectid;
4569        key.type = BTRFS_INODE_REF_KEY;
4570        key.offset = 0;
4571        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4572        if (ret < 0)
4573                goto out;
4574
4575        while (1) {
4576                eb = path->nodes[0];
4577                slot = path->slots[0];
4578                if (slot >= btrfs_header_nritems(eb)) {
4579                        ret = btrfs_next_leaf(root, path);
4580                        if (ret < 0)
4581                                goto out;
4582                        else if (ret > 0)
4583                                break;
4584                        continue;
4585                }
4586
4587                btrfs_item_key_to_cpu(eb, &found_key, slot);
4588
4589                if (found_key.objectid != key.objectid ||
4590                    (found_key.type != BTRFS_INODE_REF_KEY &&
4591                     found_key.type != BTRFS_INODE_EXTREF_KEY))
4592                        break;
4593
4594                ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4595                if (ret < 0)
4596                        goto out;
4597
4598                path->slots[0]++;
4599        }
4600        btrfs_release_path(path);
4601
4602        /*
4603         * We don't actually care about pending_move as we are simply
4604         * re-creating this inode and will be rename'ing it into place once we
4605         * rename the parent directory.
4606         */
4607        ret = process_recorded_refs(sctx, &pending_move);
4608out:
4609        btrfs_free_path(path);
4610        return ret;
4611}
4612
4613static int send_set_xattr(struct send_ctx *sctx,
4614                          struct fs_path *path,
4615                          const char *name, int name_len,
4616                          const char *data, int data_len)
4617{
4618        int ret = 0;
4619
4620        ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4621        if (ret < 0)
4622                goto out;
4623
4624        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4625        TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4626        TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4627
4628        ret = send_cmd(sctx);
4629
4630tlv_put_failure:
4631out:
4632        return ret;
4633}
4634
4635static int send_remove_xattr(struct send_ctx *sctx,
4636                          struct fs_path *path,
4637                          const char *name, int name_len)
4638{
4639        int ret = 0;
4640
4641        ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4642        if (ret < 0)
4643                goto out;
4644
4645        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4646        TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4647
4648        ret = send_cmd(sctx);
4649
4650tlv_put_failure:
4651out:
4652        return ret;
4653}
4654
4655static int __process_new_xattr(int num, struct btrfs_key *di_key,
4656                               const char *name, int name_len,
4657                               const char *data, int data_len,
4658                               u8 type, void *ctx)
4659{
4660        int ret;
4661        struct send_ctx *sctx = ctx;
4662        struct fs_path *p;
4663        struct posix_acl_xattr_header dummy_acl;
4664
4665        /* Capabilities are emitted by finish_inode_if_needed */
4666        if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4667                return 0;
4668
4669        p = fs_path_alloc();
4670        if (!p)
4671                return -ENOMEM;
4672
4673        /*
4674         * This hack is needed because empty acls are stored as zero byte
4675         * data in xattrs. Problem with that is, that receiving these zero byte
4676         * acls will fail later. To fix this, we send a dummy acl list that
4677         * only contains the version number and no entries.
4678         */
4679        if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4680            !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4681                if (data_len == 0) {
4682                        dummy_acl.a_version =
4683                                        cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4684                        data = (char *)&dummy_acl;
4685                        data_len = sizeof(dummy_acl);
4686                }
4687        }
4688
4689        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4690        if (ret < 0)
4691                goto out;
4692
4693        ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4694
4695out:
4696        fs_path_free(p);
4697        return ret;
4698}
4699
4700static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4701                                   const char *name, int name_len,
4702                                   const char *data, int data_len,
4703                                   u8 type, void *ctx)
4704{
4705        int ret;
4706        struct send_ctx *sctx = ctx;
4707        struct fs_path *p;
4708
4709        p = fs_path_alloc();
4710        if (!p)
4711                return -ENOMEM;
4712
4713        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4714        if (ret < 0)
4715                goto out;
4716
4717        ret = send_remove_xattr(sctx, p, name, name_len);
4718
4719out:
4720        fs_path_free(p);
4721        return ret;
4722}
4723
4724static int process_new_xattr(struct send_ctx *sctx)
4725{
4726        int ret = 0;
4727
4728        ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4729                               __process_new_xattr, sctx);
4730
4731        return ret;
4732}
4733
4734static int process_deleted_xattr(struct send_ctx *sctx)
4735{
4736        return iterate_dir_item(sctx->parent_root, sctx->right_path,
4737                                __process_deleted_xattr, sctx);
4738}
4739
4740struct find_xattr_ctx {
4741        const char *name;
4742        int name_len;
4743        int found_idx;
4744        char *found_data;
4745        int found_data_len;
4746};
4747
4748static int __find_xattr(int num, struct btrfs_key *di_key,
4749                        const char *name, int name_len,
4750                        const char *data, int data_len,
4751                        u8 type, void *vctx)
4752{
4753        struct find_xattr_ctx *ctx = vctx;
4754
4755        if (name_len == ctx->name_len &&
4756            strncmp(name, ctx->name, name_len) == 0) {
4757                ctx->found_idx = num;
4758                ctx->found_data_len = data_len;
4759                ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4760                if (!ctx->found_data)
4761                        return -ENOMEM;
4762                return 1;
4763        }
4764        return 0;
4765}
4766
4767static int find_xattr(struct btrfs_root *root,
4768                      struct btrfs_path *path,
4769                      struct btrfs_key *key,
4770                      const char *name, int name_len,
4771                      char **data, int *data_len)
4772{
4773        int ret;
4774        struct find_xattr_ctx ctx;
4775
4776        ctx.name = name;
4777        ctx.name_len = name_len;
4778        ctx.found_idx = -1;
4779        ctx.found_data = NULL;
4780        ctx.found_data_len = 0;
4781
4782        ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4783        if (ret < 0)
4784                return ret;
4785
4786        if (ctx.found_idx == -1)
4787                return -ENOENT;
4788        if (data) {
4789                *data = ctx.found_data;
4790                *data_len = ctx.found_data_len;
4791        } else {
4792                kfree(ctx.found_data);
4793        }
4794        return ctx.found_idx;
4795}
4796
4797
4798static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4799                                       const char *name, int name_len,
4800                                       const char *data, int data_len,
4801                                       u8 type, void *ctx)
4802{
4803        int ret;
4804        struct send_ctx *sctx = ctx;
4805        char *found_data = NULL;
4806        int found_data_len  = 0;
4807
4808        ret = find_xattr(sctx->parent_root, sctx->right_path,
4809                         sctx->cmp_key, name, name_len, &found_data,
4810                         &found_data_len);
4811        if (ret == -ENOENT) {
4812                ret = __process_new_xattr(num, di_key, name, name_len, data,
4813                                data_len, type, ctx);
4814        } else if (ret >= 0) {
4815                if (data_len != found_data_len ||
4816                    memcmp(data, found_data, data_len)) {
4817                        ret = __process_new_xattr(num, di_key, name, name_len,
4818                                        data, data_len, type, ctx);
4819                } else {
4820                        ret = 0;
4821                }
4822        }
4823
4824        kfree(found_data);
4825        return ret;
4826}
4827
4828static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4829                                           const char *name, int name_len,
4830                                           const char *data, int data_len,
4831                                           u8 type, void *ctx)
4832{
4833        int ret;
4834        struct send_ctx *sctx = ctx;
4835
4836        ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4837                         name, name_len, NULL, NULL);
4838        if (ret == -ENOENT)
4839                ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4840                                data_len, type, ctx);
4841        else if (ret >= 0)
4842                ret = 0;
4843
4844        return ret;
4845}
4846
4847static int process_changed_xattr(struct send_ctx *sctx)
4848{
4849        int ret = 0;
4850
4851        ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4852                        __process_changed_new_xattr, sctx);
4853        if (ret < 0)
4854                goto out;
4855        ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4856                        __process_changed_deleted_xattr, sctx);
4857
4858out:
4859        return ret;
4860}
4861
4862static int process_all_new_xattrs(struct send_ctx *sctx)
4863{
4864        int ret;
4865        struct btrfs_root *root;
4866        struct btrfs_path *path;
4867        struct btrfs_key key;
4868        struct btrfs_key found_key;
4869        struct extent_buffer *eb;
4870        int slot;
4871
4872        path = alloc_path_for_send();
4873        if (!path)
4874                return -ENOMEM;
4875
4876        root = sctx->send_root;
4877
4878        key.objectid = sctx->cmp_key->objectid;
4879        key.type = BTRFS_XATTR_ITEM_KEY;
4880        key.offset = 0;
4881        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4882        if (ret < 0)
4883                goto out;
4884
4885        while (1) {
4886                eb = path->nodes[0];
4887                slot = path->slots[0];
4888                if (slot >= btrfs_header_nritems(eb)) {
4889                        ret = btrfs_next_leaf(root, path);
4890                        if (ret < 0) {
4891                                goto out;
4892                        } else if (ret > 0) {
4893                                ret = 0;
4894                                break;
4895                        }
4896                        continue;
4897                }
4898
4899                btrfs_item_key_to_cpu(eb, &found_key, slot);
4900                if (found_key.objectid != key.objectid ||
4901                    found_key.type != key.type) {
4902                        ret = 0;
4903                        goto out;
4904                }
4905
4906                ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4907                if (ret < 0)
4908                        goto out;
4909
4910                path->slots[0]++;
4911        }
4912
4913out:
4914        btrfs_free_path(path);
4915        return ret;
4916}
4917
4918static inline u64 max_send_read_size(const struct send_ctx *sctx)
4919{
4920        return sctx->send_max_size - SZ_16K;
4921}
4922
4923static int put_data_header(struct send_ctx *sctx, u32 len)
4924{
4925        struct btrfs_tlv_header *hdr;
4926
4927        if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
4928                return -EOVERFLOW;
4929        hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
4930        put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
4931        put_unaligned_le16(len, &hdr->tlv_len);
4932        sctx->send_size += sizeof(*hdr);
4933        return 0;
4934}
4935
4936static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
4937{
4938        struct btrfs_root *root = sctx->send_root;
4939        struct btrfs_fs_info *fs_info = root->fs_info;
4940        struct inode *inode;
4941        struct page *page;
4942        pgoff_t index = offset >> PAGE_SHIFT;
4943        pgoff_t last_index;
4944        unsigned pg_offset = offset_in_page(offset);
4945        int ret;
4946
4947        ret = put_data_header(sctx, len);
4948        if (ret)
4949                return ret;
4950
4951        inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
4952        if (IS_ERR(inode))
4953                return PTR_ERR(inode);
4954
4955        last_index = (offset + len - 1) >> PAGE_SHIFT;
4956
4957        /* initial readahead */
4958        memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4959        file_ra_state_init(&sctx->ra, inode->i_mapping);
4960
4961        while (index <= last_index) {
4962                unsigned cur_len = min_t(unsigned, len,
4963                                         PAGE_SIZE - pg_offset);
4964
4965                page = find_lock_page(inode->i_mapping, index);
4966                if (!page) {
4967                        page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4968                                NULL, index, last_index + 1 - index);
4969
4970                        page = find_or_create_page(inode->i_mapping, index,
4971                                        GFP_KERNEL);
4972                        if (!page) {
4973                                ret = -ENOMEM;
4974                                break;
4975                        }
4976                }
4977
4978                if (PageReadahead(page)) {
4979                        page_cache_async_readahead(inode->i_mapping, &sctx->ra,
4980                                NULL, page, index, last_index + 1 - index);
4981                }
4982
4983                if (!PageUptodate(page)) {
4984                        btrfs_readpage(NULL, page);
4985                        lock_page(page);
4986                        if (!PageUptodate(page)) {
4987                                unlock_page(page);
4988                                put_page(page);
4989                                ret = -EIO;
4990                                break;
4991                        }
4992                }
4993
4994                memcpy_from_page(sctx->send_buf + sctx->send_size, page,
4995                                 pg_offset, cur_len);
4996                unlock_page(page);
4997                put_page(page);
4998                index++;
4999                pg_offset = 0;
5000                len -= cur_len;
5001                sctx->send_size += cur_len;
5002        }
5003        iput(inode);
5004        return ret;
5005}
5006
5007/*
5008 * Read some bytes from the current inode/file and send a write command to
5009 * user space.
5010 */
5011static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5012{
5013        struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5014        int ret = 0;
5015        struct fs_path *p;
5016
5017        p = fs_path_alloc();
5018        if (!p)
5019                return -ENOMEM;
5020
5021        btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5022
5023        ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5024        if (ret < 0)
5025                goto out;
5026
5027        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5028        if (ret < 0)
5029                goto out;
5030
5031        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5032        TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5033        ret = put_file_data(sctx, offset, len);
5034        if (ret < 0)
5035                goto out;
5036
5037        ret = send_cmd(sctx);
5038
5039tlv_put_failure:
5040out:
5041        fs_path_free(p);
5042        return ret;
5043}
5044
5045/*
5046 * Send a clone command to user space.
5047 */
5048static int send_clone(struct send_ctx *sctx,
5049                      u64 offset, u32 len,
5050                      struct clone_root *clone_root)
5051{
5052        int ret = 0;
5053        struct fs_path *p;
5054        u64 gen;
5055
5056        btrfs_debug(sctx->send_root->fs_info,
5057                    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5058                    offset, len, clone_root->root->root_key.objectid,
5059                    clone_root->ino, clone_root->offset);
5060
5061        p = fs_path_alloc();
5062        if (!p)
5063                return -ENOMEM;
5064
5065        ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5066        if (ret < 0)
5067                goto out;
5068
5069        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5070        if (ret < 0)
5071                goto out;
5072
5073        TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5074        TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5075        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5076
5077        if (clone_root->root == sctx->send_root) {
5078                ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
5079                                &gen, NULL, NULL, NULL, NULL);
5080                if (ret < 0)
5081                        goto out;
5082                ret = get_cur_path(sctx, clone_root->ino, gen, p);
5083        } else {
5084                ret = get_inode_path(clone_root->root, clone_root->ino, p);
5085        }
5086        if (ret < 0)
5087                goto out;
5088
5089        /*
5090         * If the parent we're using has a received_uuid set then use that as
5091         * our clone source as that is what we will look for when doing a
5092         * receive.
5093         *
5094         * This covers the case that we create a snapshot off of a received
5095         * subvolume and then use that as the parent and try to receive on a
5096         * different host.
5097         */
5098        if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5099                TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5100                             clone_root->root->root_item.received_uuid);
5101        else
5102                TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5103                             clone_root->root->root_item.uuid);
5104        TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5105                    btrfs_root_ctransid(&clone_root->root->root_item));
5106        TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5107        TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5108                        clone_root->offset);
5109
5110        ret = send_cmd(sctx);
5111
5112tlv_put_failure:
5113out:
5114        fs_path_free(p);
5115        return ret;
5116}
5117
5118/*
5119 * Send an update extent command to user space.
5120 */
5121static int send_update_extent(struct send_ctx *sctx,
5122                              u64 offset, u32 len)
5123{
5124        int ret = 0;
5125        struct fs_path *p;
5126
5127        p = fs_path_alloc();
5128        if (!p)
5129                return -ENOMEM;
5130
5131        ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5132        if (ret < 0)
5133                goto out;
5134
5135        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5136        if (ret < 0)
5137                goto out;
5138
5139        TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5140        TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5141        TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5142
5143        ret = send_cmd(sctx);
5144
5145tlv_put_failure:
5146out:
5147        fs_path_free(p);
5148        return ret;
5149}
5150
5151static int send_hole(struct send_ctx *sctx, u64 end)
5152{
5153        struct fs_path *p = NULL;
5154        u64 read_size = max_send_read_size(sctx);
5155        u64 offset = sctx->cur_inode_last_extent;
5156        int ret = 0;
5157
5158        /*
5159         * A hole that starts at EOF or beyond it. Since we do not yet support
5160         * fallocate (for extent preallocation and hole punching), sending a
5161         * write of zeroes starting at EOF or beyond would later require issuing
5162         * a truncate operation which would undo the write and achieve nothing.
5163         */
5164        if (offset >= sctx->cur_inode_size)
5165                return 0;
5166
5167        /*
5168         * Don't go beyond the inode's i_size due to prealloc extents that start
5169         * after the i_size.
5170         */
5171        end = min_t(u64, end, sctx->cur_inode_size);
5172
5173        if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5174                return send_update_extent(sctx, offset, end - offset);
5175
5176        p = fs_path_alloc();
5177        if (!p)
5178                return -ENOMEM;
5179        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5180        if (ret < 0)
5181                goto tlv_put_failure;
5182        while (offset < end) {
5183                u64 len = min(end - offset, read_size);
5184
5185                ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5186                if (ret < 0)
5187                        break;
5188                TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5189                TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5190                ret = put_data_header(sctx, len);
5191                if (ret < 0)
5192                        break;
5193                memset(sctx->send_buf + sctx->send_size, 0, len);
5194                sctx->send_size += len;
5195                ret = send_cmd(sctx);
5196                if (ret < 0)
5197                        break;
5198                offset += len;
5199        }
5200        sctx->cur_inode_next_write_offset = offset;
5201tlv_put_failure:
5202        fs_path_free(p);
5203        return ret;
5204}
5205
5206static int send_extent_data(struct send_ctx *sctx,
5207                            const u64 offset,
5208                            const u64 len)
5209{
5210        u64 read_size = max_send_read_size(sctx);
5211        u64 sent = 0;
5212
5213        if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5214                return send_update_extent(sctx, offset, len);
5215
5216        while (sent < len) {
5217                u64 size = min(len - sent, read_size);
5218                int ret;
5219
5220                ret = send_write(sctx, offset + sent, size);
5221                if (ret < 0)
5222                        return ret;
5223                sent += size;
5224        }
5225        return 0;
5226}
5227
5228/*
5229 * Search for a capability xattr related to sctx->cur_ino. If the capability is
5230 * found, call send_set_xattr function to emit it.
5231 *
5232 * Return 0 if there isn't a capability, or when the capability was emitted
5233 * successfully, or < 0 if an error occurred.
5234 */
5235static int send_capabilities(struct send_ctx *sctx)
5236{
5237        struct fs_path *fspath = NULL;
5238        struct btrfs_path *path;
5239        struct btrfs_dir_item *di;
5240        struct extent_buffer *leaf;
5241        unsigned long data_ptr;
5242        char *buf = NULL;
5243        int buf_len;
5244        int ret = 0;
5245
5246        path = alloc_path_for_send();
5247        if (!path)
5248                return -ENOMEM;
5249
5250        di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5251                                XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5252        if (!di) {
5253                /* There is no xattr for this inode */
5254                goto out;
5255        } else if (IS_ERR(di)) {
5256                ret = PTR_ERR(di);
5257                goto out;
5258        }
5259
5260        leaf = path->nodes[0];
5261        buf_len = btrfs_dir_data_len(leaf, di);
5262
5263        fspath = fs_path_alloc();
5264        buf = kmalloc(buf_len, GFP_KERNEL);
5265        if (!fspath || !buf) {
5266                ret = -ENOMEM;
5267                goto out;
5268        }
5269
5270        ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5271        if (ret < 0)
5272                goto out;
5273
5274        data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5275        read_extent_buffer(leaf, buf, data_ptr, buf_len);
5276
5277        ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5278                        strlen(XATTR_NAME_CAPS), buf, buf_len);
5279out:
5280        kfree(buf);
5281        fs_path_free(fspath);
5282        btrfs_free_path(path);
5283        return ret;
5284}
5285
5286static int clone_range(struct send_ctx *sctx,
5287                       struct clone_root *clone_root,
5288                       const u64 disk_byte,
5289                       u64 data_offset,
5290                       u64 offset,
5291                       u64 len)
5292{
5293        struct btrfs_path *path;
5294        struct btrfs_key key;
5295        int ret;
5296        u64 clone_src_i_size = 0;
5297
5298        /*
5299         * Prevent cloning from a zero offset with a length matching the sector
5300         * size because in some scenarios this will make the receiver fail.
5301         *
5302         * For example, if in the source filesystem the extent at offset 0
5303         * has a length of sectorsize and it was written using direct IO, then
5304         * it can never be an inline extent (even if compression is enabled).
5305         * Then this extent can be cloned in the original filesystem to a non
5306         * zero file offset, but it may not be possible to clone in the
5307         * destination filesystem because it can be inlined due to compression
5308         * on the destination filesystem (as the receiver's write operations are
5309         * always done using buffered IO). The same happens when the original
5310         * filesystem does not have compression enabled but the destination
5311         * filesystem has.
5312         */
5313        if (clone_root->offset == 0 &&
5314            len == sctx->send_root->fs_info->sectorsize)
5315                return send_extent_data(sctx, offset, len);
5316
5317        path = alloc_path_for_send();
5318        if (!path)
5319                return -ENOMEM;
5320
5321        /*
5322         * There are inodes that have extents that lie behind its i_size. Don't
5323         * accept clones from these extents.
5324         */
5325        ret = __get_inode_info(clone_root->root, path, clone_root->ino,
5326                               &clone_src_i_size, NULL, NULL, NULL, NULL, NULL);
5327        btrfs_release_path(path);
5328        if (ret < 0)
5329                goto out;
5330
5331        /*
5332         * We can't send a clone operation for the entire range if we find
5333         * extent items in the respective range in the source file that
5334         * refer to different extents or if we find holes.
5335         * So check for that and do a mix of clone and regular write/copy
5336         * operations if needed.
5337         *
5338         * Example:
5339         *
5340         * mkfs.btrfs -f /dev/sda
5341         * mount /dev/sda /mnt
5342         * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5343         * cp --reflink=always /mnt/foo /mnt/bar
5344         * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5345         * btrfs subvolume snapshot -r /mnt /mnt/snap
5346         *
5347         * If when we send the snapshot and we are processing file bar (which
5348         * has a higher inode number than foo) we blindly send a clone operation
5349         * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5350         * a file bar that matches the content of file foo - iow, doesn't match
5351         * the content from bar in the original filesystem.
5352         */
5353        key.objectid = clone_root->ino;
5354        key.type = BTRFS_EXTENT_DATA_KEY;
5355        key.offset = clone_root->offset;
5356        ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5357        if (ret < 0)
5358                goto out;
5359        if (ret > 0 && path->slots[0] > 0) {
5360                btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5361                if (key.objectid == clone_root->ino &&
5362                    key.type == BTRFS_EXTENT_DATA_KEY)
5363                        path->slots[0]--;
5364        }
5365
5366        while (true) {
5367                struct extent_buffer *leaf = path->nodes[0];
5368                int slot = path->slots[0];
5369                struct btrfs_file_extent_item *ei;
5370                u8 type;
5371                u64 ext_len;
5372                u64 clone_len;
5373                u64 clone_data_offset;
5374
5375                if (slot >= btrfs_header_nritems(leaf)) {
5376                        ret = btrfs_next_leaf(clone_root->root, path);
5377                        if (ret < 0)
5378                                goto out;
5379                        else if (ret > 0)
5380                                break;
5381                        continue;
5382                }
5383
5384                btrfs_item_key_to_cpu(leaf, &key, slot);
5385
5386                /*
5387                 * We might have an implicit trailing hole (NO_HOLES feature
5388                 * enabled). We deal with it after leaving this loop.
5389                 */
5390                if (key.objectid != clone_root->ino ||
5391                    key.type != BTRFS_EXTENT_DATA_KEY)
5392                        break;
5393
5394                ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5395                type = btrfs_file_extent_type(leaf, ei);
5396                if (type == BTRFS_FILE_EXTENT_INLINE) {
5397                        ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5398                        ext_len = PAGE_ALIGN(ext_len);
5399                } else {
5400                        ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5401                }
5402
5403                if (key.offset + ext_len <= clone_root->offset)
5404                        goto next;
5405
5406                if (key.offset > clone_root->offset) {
5407                        /* Implicit hole, NO_HOLES feature enabled. */
5408                        u64 hole_len = key.offset - clone_root->offset;
5409
5410                        if (hole_len > len)
5411                                hole_len = len;
5412                        ret = send_extent_data(sctx, offset, hole_len);
5413                        if (ret < 0)
5414                                goto out;
5415
5416                        len -= hole_len;
5417                        if (len == 0)
5418                                break;
5419                        offset += hole_len;
5420                        clone_root->offset += hole_len;
5421                        data_offset += hole_len;
5422                }
5423
5424                if (key.offset >= clone_root->offset + len)
5425                        break;
5426
5427                if (key.offset >= clone_src_i_size)
5428                        break;
5429
5430                if (key.offset + ext_len > clone_src_i_size)
5431                        ext_len = clone_src_i_size - key.offset;
5432
5433                clone_data_offset = btrfs_file_extent_offset(leaf, ei);
5434                if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
5435                        clone_root->offset = key.offset;
5436                        if (clone_data_offset < data_offset &&
5437                                clone_data_offset + ext_len > data_offset) {
5438                                u64 extent_offset;
5439
5440                                extent_offset = data_offset - clone_data_offset;
5441                                ext_len -= extent_offset;
5442                                clone_data_offset += extent_offset;
5443                                clone_root->offset += extent_offset;
5444                        }
5445                }
5446
5447                clone_len = min_t(u64, ext_len, len);
5448
5449                if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5450                    clone_data_offset == data_offset) {
5451                        const u64 src_end = clone_root->offset + clone_len;
5452                        const u64 sectorsize = SZ_64K;
5453
5454                        /*
5455                         * We can't clone the last block, when its size is not
5456                         * sector size aligned, into the middle of a file. If we
5457                         * do so, the receiver will get a failure (-EINVAL) when
5458                         * trying to clone or will silently corrupt the data in
5459                         * the destination file if it's on a kernel without the
5460                         * fix introduced by commit ac765f83f1397646
5461                         * ("Btrfs: fix data corruption due to cloning of eof
5462                         * block).
5463                         *
5464                         * So issue a clone of the aligned down range plus a
5465                         * regular write for the eof block, if we hit that case.
5466                         *
5467                         * Also, we use the maximum possible sector size, 64K,
5468                         * because we don't know what's the sector size of the
5469                         * filesystem that receives the stream, so we have to
5470                         * assume the largest possible sector size.
5471                         */
5472                        if (src_end == clone_src_i_size &&
5473                            !IS_ALIGNED(src_end, sectorsize) &&
5474                            offset + clone_len < sctx->cur_inode_size) {
5475                                u64 slen;
5476
5477                                slen = ALIGN_DOWN(src_end - clone_root->offset,
5478                                                  sectorsize);
5479                                if (slen > 0) {
5480                                        ret = send_clone(sctx, offset, slen,
5481                                                         clone_root);
5482                                        if (ret < 0)
5483                                                goto out;
5484                                }
5485                                ret = send_extent_data(sctx, offset + slen,
5486                                                       clone_len - slen);
5487                        } else {
5488                                ret = send_clone(sctx, offset, clone_len,
5489                                                 clone_root);
5490                        }
5491                } else {
5492                        ret = send_extent_data(sctx, offset, clone_len);
5493                }
5494
5495                if (ret < 0)
5496                        goto out;
5497
5498                len -= clone_len;
5499                if (len == 0)
5500                        break;
5501                offset += clone_len;
5502                clone_root->offset += clone_len;
5503
5504                /*
5505                 * If we are cloning from the file we are currently processing,
5506                 * and using the send root as the clone root, we must stop once
5507                 * the current clone offset reaches the current eof of the file
5508                 * at the receiver, otherwise we would issue an invalid clone
5509                 * operation (source range going beyond eof) and cause the
5510                 * receiver to fail. So if we reach the current eof, bail out
5511                 * and fallback to a regular write.
5512                 */
5513                if (clone_root->root == sctx->send_root &&
5514                    clone_root->ino == sctx->cur_ino &&
5515                    clone_root->offset >= sctx->cur_inode_next_write_offset)
5516                        break;
5517
5518                data_offset += clone_len;
5519next:
5520                path->slots[0]++;
5521        }
5522
5523        if (len > 0)
5524                ret = send_extent_data(sctx, offset, len);
5525        else
5526                ret = 0;
5527out:
5528        btrfs_free_path(path);
5529        return ret;
5530}
5531
5532static int send_write_or_clone(struct send_ctx *sctx,
5533                               struct btrfs_path *path,
5534                               struct btrfs_key *key,
5535                               struct clone_root *clone_root)
5536{
5537        int ret = 0;
5538        u64 offset = key->offset;
5539        u64 end;
5540        u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5541
5542        end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
5543        if (offset >= end)
5544                return 0;
5545
5546        if (clone_root && IS_ALIGNED(end, bs)) {
5547                struct btrfs_file_extent_item *ei;
5548                u64 disk_byte;
5549                u64 data_offset;
5550
5551                ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5552                                    struct btrfs_file_extent_item);
5553                disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5554                data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5555                ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5556                                  offset, end - offset);
5557        } else {
5558                ret = send_extent_data(sctx, offset, end - offset);
5559        }
5560        sctx->cur_inode_next_write_offset = end;
5561        return ret;
5562}
5563
5564static int is_extent_unchanged(struct send_ctx *sctx,
5565                               struct btrfs_path *left_path,
5566                               struct btrfs_key *ekey)
5567{
5568        int ret = 0;
5569        struct btrfs_key key;
5570        struct btrfs_path *path = NULL;
5571        struct extent_buffer *eb;
5572        int slot;
5573        struct btrfs_key found_key;
5574        struct btrfs_file_extent_item *ei;
5575        u64 left_disknr;
5576        u64 right_disknr;
5577        u64 left_offset;
5578        u64 right_offset;
5579        u64 left_offset_fixed;
5580        u64 left_len;
5581        u64 right_len;
5582        u64 left_gen;
5583        u64 right_gen;
5584        u8 left_type;
5585        u8 right_type;
5586
5587        path = alloc_path_for_send();
5588        if (!path)
5589                return -ENOMEM;
5590
5591        eb = left_path->nodes[0];
5592        slot = left_path->slots[0];
5593        ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5594        left_type = btrfs_file_extent_type(eb, ei);
5595
5596        if (left_type != BTRFS_FILE_EXTENT_REG) {
5597                ret = 0;
5598                goto out;
5599        }
5600        left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5601        left_len = btrfs_file_extent_num_bytes(eb, ei);
5602        left_offset = btrfs_file_extent_offset(eb, ei);
5603        left_gen = btrfs_file_extent_generation(eb, ei);
5604
5605        /*
5606         * Following comments will refer to these graphics. L is the left
5607         * extents which we are checking at the moment. 1-8 are the right
5608         * extents that we iterate.
5609         *
5610         *       |-----L-----|
5611         * |-1-|-2a-|-3-|-4-|-5-|-6-|
5612         *
5613         *       |-----L-----|
5614         * |--1--|-2b-|...(same as above)
5615         *
5616         * Alternative situation. Happens on files where extents got split.
5617         *       |-----L-----|
5618         * |-----------7-----------|-6-|
5619         *
5620         * Alternative situation. Happens on files which got larger.
5621         *       |-----L-----|
5622         * |-8-|
5623         * Nothing follows after 8.
5624         */
5625
5626        key.objectid = ekey->objectid;
5627        key.type = BTRFS_EXTENT_DATA_KEY;
5628        key.offset = ekey->offset;
5629        ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5630        if (ret < 0)
5631                goto out;
5632        if (ret) {
5633                ret = 0;
5634                goto out;
5635        }
5636
5637        /*
5638         * Handle special case where the right side has no extents at all.
5639         */
5640        eb = path->nodes[0];
5641        slot = path->slots[0];
5642        btrfs_item_key_to_cpu(eb, &found_key, slot);
5643        if (found_key.objectid != key.objectid ||
5644            found_key.type != key.type) {
5645                /* If we're a hole then just pretend nothing changed */
5646                ret = (left_disknr) ? 0 : 1;
5647                goto out;
5648        }
5649
5650        /*
5651         * We're now on 2a, 2b or 7.
5652         */
5653        key = found_key;
5654        while (key.offset < ekey->offset + left_len) {
5655                ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5656                right_type = btrfs_file_extent_type(eb, ei);
5657                if (right_type != BTRFS_FILE_EXTENT_REG &&
5658                    right_type != BTRFS_FILE_EXTENT_INLINE) {
5659                        ret = 0;
5660                        goto out;
5661                }
5662
5663                if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5664                        right_len = btrfs_file_extent_ram_bytes(eb, ei);
5665                        right_len = PAGE_ALIGN(right_len);
5666                } else {
5667                        right_len = btrfs_file_extent_num_bytes(eb, ei);
5668                }
5669
5670                /*
5671                 * Are we at extent 8? If yes, we know the extent is changed.
5672                 * This may only happen on the first iteration.
5673                 */
5674                if (found_key.offset + right_len <= ekey->offset) {
5675                        /* If we're a hole just pretend nothing changed */
5676                        ret = (left_disknr) ? 0 : 1;
5677                        goto out;
5678                }
5679
5680                /*
5681                 * We just wanted to see if when we have an inline extent, what
5682                 * follows it is a regular extent (wanted to check the above
5683                 * condition for inline extents too). This should normally not
5684                 * happen but it's possible for example when we have an inline
5685                 * compressed extent representing data with a size matching
5686                 * the page size (currently the same as sector size).
5687                 */
5688                if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5689                        ret = 0;
5690                        goto out;
5691                }
5692
5693                right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5694                right_offset = btrfs_file_extent_offset(eb, ei);
5695                right_gen = btrfs_file_extent_generation(eb, ei);
5696
5697                left_offset_fixed = left_offset;
5698                if (key.offset < ekey->offset) {
5699                        /* Fix the right offset for 2a and 7. */
5700                        right_offset += ekey->offset - key.offset;
5701                } else {
5702                        /* Fix the left offset for all behind 2a and 2b */
5703                        left_offset_fixed += key.offset - ekey->offset;
5704                }
5705
5706                /*
5707                 * Check if we have the same extent.
5708                 */
5709                if (left_disknr != right_disknr ||
5710                    left_offset_fixed != right_offset ||
5711                    left_gen != right_gen) {
5712                        ret = 0;
5713                        goto out;
5714                }
5715
5716                /*
5717                 * Go to the next extent.
5718                 */
5719                ret = btrfs_next_item(sctx->parent_root, path);
5720                if (ret < 0)
5721                        goto out;
5722                if (!ret) {
5723                        eb = path->nodes[0];
5724                        slot = path->slots[0];
5725                        btrfs_item_key_to_cpu(eb, &found_key, slot);
5726                }
5727                if (ret || found_key.objectid != key.objectid ||
5728                    found_key.type != key.type) {
5729                        key.offset += right_len;
5730                        break;
5731                }
5732                if (found_key.offset != key.offset + right_len) {
5733                        ret = 0;
5734                        goto out;
5735                }
5736                key = found_key;
5737        }
5738
5739        /*
5740         * We're now behind the left extent (treat as unchanged) or at the end
5741         * of the right side (treat as changed).
5742         */
5743        if (key.offset >= ekey->offset + left_len)
5744                ret = 1;
5745        else
5746                ret = 0;
5747
5748
5749out:
5750        btrfs_free_path(path);
5751        return ret;
5752}
5753
5754static int get_last_extent(struct send_ctx *sctx, u64 offset)
5755{
5756        struct btrfs_path *path;
5757        struct btrfs_root *root = sctx->send_root;
5758        struct btrfs_key key;
5759        int ret;
5760
5761        path = alloc_path_for_send();
5762        if (!path)
5763                return -ENOMEM;
5764
5765        sctx->cur_inode_last_extent = 0;
5766
5767        key.objectid = sctx->cur_ino;
5768        key.type = BTRFS_EXTENT_DATA_KEY;
5769        key.offset = offset;
5770        ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5771        if (ret < 0)
5772                goto out;
5773        ret = 0;
5774        btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5775        if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5776                goto out;
5777
5778        sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
5779out:
5780        btrfs_free_path(path);
5781        return ret;
5782}
5783
5784static int range_is_hole_in_parent(struct send_ctx *sctx,
5785                                   const u64 start,
5786                                   const u64 end)
5787{
5788        struct btrfs_path *path;
5789        struct btrfs_key key;
5790        struct btrfs_root *root = sctx->parent_root;
5791        u64 search_start = start;
5792        int ret;
5793
5794        path = alloc_path_for_send();
5795        if (!path)
5796                return -ENOMEM;
5797
5798        key.objectid = sctx->cur_ino;
5799        key.type = BTRFS_EXTENT_DATA_KEY;
5800        key.offset = search_start;
5801        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5802        if (ret < 0)
5803                goto out;
5804        if (ret > 0 && path->slots[0] > 0)
5805                path->slots[0]--;
5806
5807        while (search_start < end) {
5808                struct extent_buffer *leaf = path->nodes[0];
5809                int slot = path->slots[0];
5810                struct btrfs_file_extent_item *fi;
5811                u64 extent_end;
5812
5813                if (slot >= btrfs_header_nritems(leaf)) {
5814                        ret = btrfs_next_leaf(root, path);
5815                        if (ret < 0)
5816                                goto out;
5817                        else if (ret > 0)
5818                                break;
5819                        continue;
5820                }
5821
5822                btrfs_item_key_to_cpu(leaf, &key, slot);
5823                if (key.objectid < sctx->cur_ino ||
5824                    key.type < BTRFS_EXTENT_DATA_KEY)
5825                        goto next;
5826                if (key.objectid > sctx->cur_ino ||
5827                    key.type > BTRFS_EXTENT_DATA_KEY ||
5828                    key.offset >= end)
5829                        break;
5830
5831                fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5832                extent_end = btrfs_file_extent_end(path);
5833                if (extent_end <= start)
5834                        goto next;
5835                if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5836                        search_start = extent_end;
5837                        goto next;
5838                }
5839                ret = 0;
5840                goto out;
5841next:
5842                path->slots[0]++;
5843        }
5844        ret = 1;
5845out:
5846        btrfs_free_path(path);
5847        return ret;
5848}
5849
5850static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5851                           struct btrfs_key *key)
5852{
5853        int ret = 0;
5854
5855        if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5856                return 0;
5857
5858        if (sctx->cur_inode_last_extent == (u64)-1) {
5859                ret = get_last_extent(sctx, key->offset - 1);
5860                if (ret)
5861                        return ret;
5862        }
5863
5864        if (path->slots[0] == 0 &&
5865            sctx->cur_inode_last_extent < key->offset) {
5866                /*
5867                 * We might have skipped entire leafs that contained only
5868                 * file extent items for our current inode. These leafs have
5869                 * a generation number smaller (older) than the one in the
5870                 * current leaf and the leaf our last extent came from, and
5871                 * are located between these 2 leafs.
5872                 */
5873                ret = get_last_extent(sctx, key->offset - 1);
5874                if (ret)
5875                        return ret;
5876        }
5877
5878        if (sctx->cur_inode_last_extent < key->offset) {
5879                ret = range_is_hole_in_parent(sctx,
5880                                              sctx->cur_inode_last_extent,
5881                                              key->offset);
5882                if (ret < 0)
5883                        return ret;
5884                else if (ret == 0)
5885                        ret = send_hole(sctx, key->offset);
5886                else
5887                        ret = 0;
5888        }
5889        sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
5890        return ret;
5891}
5892
5893static int process_extent(struct send_ctx *sctx,
5894                          struct btrfs_path *path,
5895                          struct btrfs_key *key)
5896{
5897        struct clone_root *found_clone = NULL;
5898        int ret = 0;
5899
5900        if (S_ISLNK(sctx->cur_inode_mode))
5901                return 0;
5902
5903        if (sctx->parent_root && !sctx->cur_inode_new) {
5904                ret = is_extent_unchanged(sctx, path, key);
5905                if (ret < 0)
5906                        goto out;
5907                if (ret) {
5908                        ret = 0;
5909                        goto out_hole;
5910                }
5911        } else {
5912                struct btrfs_file_extent_item *ei;
5913                u8 type;
5914
5915                ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5916                                    struct btrfs_file_extent_item);
5917                type = btrfs_file_extent_type(path->nodes[0], ei);
5918                if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5919                    type == BTRFS_FILE_EXTENT_REG) {
5920                        /*
5921                         * The send spec does not have a prealloc command yet,
5922                         * so just leave a hole for prealloc'ed extents until
5923                         * we have enough commands queued up to justify rev'ing
5924                         * the send spec.
5925                         */
5926                        if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5927                                ret = 0;
5928                                goto out;
5929                        }
5930
5931                        /* Have a hole, just skip it. */
5932                        if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5933                                ret = 0;
5934                                goto out;
5935                        }
5936                }
5937        }
5938
5939        ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5940                        sctx->cur_inode_size, &found_clone);
5941        if (ret != -ENOENT && ret < 0)
5942                goto out;
5943
5944        ret = send_write_or_clone(sctx, path, key, found_clone);
5945        if (ret)
5946                goto out;
5947out_hole:
5948        ret = maybe_send_hole(sctx, path, key);
5949out:
5950        return ret;
5951}
5952
5953static int process_all_extents(struct send_ctx *sctx)
5954{
5955        int ret;
5956        struct btrfs_root *root;
5957        struct btrfs_path *path;
5958        struct btrfs_key key;
5959        struct btrfs_key found_key;
5960        struct extent_buffer *eb;
5961        int slot;
5962
5963        root = sctx->send_root;
5964        path = alloc_path_for_send();
5965        if (!path)
5966                return -ENOMEM;
5967
5968        key.objectid = sctx->cmp_key->objectid;
5969        key.type = BTRFS_EXTENT_DATA_KEY;
5970        key.offset = 0;
5971        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5972        if (ret < 0)
5973                goto out;
5974
5975        while (1) {
5976                eb = path->nodes[0];
5977                slot = path->slots[0];
5978
5979                if (slot >= btrfs_header_nritems(eb)) {
5980                        ret = btrfs_next_leaf(root, path);
5981                        if (ret < 0) {
5982                                goto out;
5983                        } else if (ret > 0) {
5984                                ret = 0;
5985                                break;
5986                        }
5987                        continue;
5988                }
5989
5990                btrfs_item_key_to_cpu(eb, &found_key, slot);
5991
5992                if (found_key.objectid != key.objectid ||
5993                    found_key.type != key.type) {
5994                        ret = 0;
5995                        goto out;
5996                }
5997
5998                ret = process_extent(sctx, path, &found_key);
5999                if (ret < 0)
6000                        goto out;
6001
6002                path->slots[0]++;
6003        }
6004
6005out:
6006        btrfs_free_path(path);
6007        return ret;
6008}
6009
6010static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6011                                           int *pending_move,
6012                                           int *refs_processed)
6013{
6014        int ret = 0;
6015
6016        if (sctx->cur_ino == 0)
6017                goto out;
6018        if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6019            sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6020                goto out;
6021        if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6022                goto out;
6023
6024        ret = process_recorded_refs(sctx, pending_move);
6025        if (ret < 0)
6026                goto out;
6027
6028        *refs_processed = 1;
6029out:
6030        return ret;
6031}
6032
6033static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6034{
6035        int ret = 0;
6036        u64 left_mode;
6037        u64 left_uid;
6038        u64 left_gid;
6039        u64 right_mode;
6040        u64 right_uid;
6041        u64 right_gid;
6042        int need_chmod = 0;
6043        int need_chown = 0;
6044        int need_truncate = 1;
6045        int pending_move = 0;
6046        int refs_processed = 0;
6047
6048        if (sctx->ignore_cur_inode)
6049                return 0;
6050
6051        ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6052                                              &refs_processed);
6053        if (ret < 0)
6054                goto out;
6055
6056        /*
6057         * We have processed the refs and thus need to advance send_progress.
6058         * Now, calls to get_cur_xxx will take the updated refs of the current
6059         * inode into account.
6060         *
6061         * On the other hand, if our current inode is a directory and couldn't
6062         * be moved/renamed because its parent was renamed/moved too and it has
6063         * a higher inode number, we can only move/rename our current inode
6064         * after we moved/renamed its parent. Therefore in this case operate on
6065         * the old path (pre move/rename) of our current inode, and the
6066         * move/rename will be performed later.
6067         */
6068        if (refs_processed && !pending_move)
6069                sctx->send_progress = sctx->cur_ino + 1;
6070
6071        if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6072                goto out;
6073        if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6074                goto out;
6075
6076        ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
6077                        &left_mode, &left_uid, &left_gid, NULL);
6078        if (ret < 0)
6079                goto out;
6080
6081        if (!sctx->parent_root || sctx->cur_inode_new) {
6082                need_chown = 1;
6083                if (!S_ISLNK(sctx->cur_inode_mode))
6084                        need_chmod = 1;
6085                if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6086                        need_truncate = 0;
6087        } else {
6088                u64 old_size;
6089
6090                ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
6091                                &old_size, NULL, &right_mode, &right_uid,
6092                                &right_gid, NULL);
6093                if (ret < 0)
6094                        goto out;
6095
6096                if (left_uid != right_uid || left_gid != right_gid)
6097                        need_chown = 1;
6098                if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6099                        need_chmod = 1;
6100                if ((old_size == sctx->cur_inode_size) ||
6101                    (sctx->cur_inode_size > old_size &&
6102                     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6103                        need_truncate = 0;
6104        }
6105
6106        if (S_ISREG(sctx->cur_inode_mode)) {
6107                if (need_send_hole(sctx)) {
6108                        if (sctx->cur_inode_last_extent == (u64)-1 ||
6109                            sctx->cur_inode_last_extent <
6110                            sctx->cur_inode_size) {
6111                                ret = get_last_extent(sctx, (u64)-1);
6112                                if (ret)
6113                                        goto out;
6114                        }
6115                        if (sctx->cur_inode_last_extent <
6116                            sctx->cur_inode_size) {
6117                                ret = send_hole(sctx, sctx->cur_inode_size);
6118                                if (ret)
6119                                        goto out;
6120                        }
6121                }
6122                if (need_truncate) {
6123                        ret = send_truncate(sctx, sctx->cur_ino,
6124                                            sctx->cur_inode_gen,
6125                                            sctx->cur_inode_size);
6126                        if (ret < 0)
6127                                goto out;
6128                }
6129        }
6130
6131        if (need_chown) {
6132                ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6133                                left_uid, left_gid);
6134                if (ret < 0)
6135                        goto out;
6136        }
6137        if (need_chmod) {
6138                ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6139                                left_mode);
6140                if (ret < 0)
6141                        goto out;
6142        }
6143
6144        ret = send_capabilities(sctx);
6145        if (ret < 0)
6146                goto out;
6147
6148        /*
6149         * If other directory inodes depended on our current directory
6150         * inode's move/rename, now do their move/rename operations.
6151         */
6152        if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6153                ret = apply_children_dir_moves(sctx);
6154                if (ret)
6155                        goto out;
6156                /*
6157                 * Need to send that every time, no matter if it actually
6158                 * changed between the two trees as we have done changes to
6159                 * the inode before. If our inode is a directory and it's
6160                 * waiting to be moved/renamed, we will send its utimes when
6161                 * it's moved/renamed, therefore we don't need to do it here.
6162                 */
6163                sctx->send_progress = sctx->cur_ino + 1;
6164                ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6165                if (ret < 0)
6166                        goto out;
6167        }
6168
6169out:
6170        return ret;
6171}
6172
6173struct parent_paths_ctx {
6174        struct list_head *refs;
6175        struct send_ctx *sctx;
6176};
6177
6178static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name,
6179                             void *ctx)
6180{
6181        struct parent_paths_ctx *ppctx = ctx;
6182
6183        return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx,
6184                          ppctx->refs);
6185}
6186
6187/*
6188 * Issue unlink operations for all paths of the current inode found in the
6189 * parent snapshot.
6190 */
6191static int btrfs_unlink_all_paths(struct send_ctx *sctx)
6192{
6193        LIST_HEAD(deleted_refs);
6194        struct btrfs_path *path;
6195        struct btrfs_key key;
6196        struct parent_paths_ctx ctx;
6197        int ret;
6198
6199        path = alloc_path_for_send();
6200        if (!path)
6201                return -ENOMEM;
6202
6203        key.objectid = sctx->cur_ino;
6204        key.type = BTRFS_INODE_REF_KEY;
6205        key.offset = 0;
6206        ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
6207        if (ret < 0)
6208                goto out;
6209
6210        ctx.refs = &deleted_refs;
6211        ctx.sctx = sctx;
6212
6213        while (true) {
6214                struct extent_buffer *eb = path->nodes[0];
6215                int slot = path->slots[0];
6216
6217                if (slot >= btrfs_header_nritems(eb)) {
6218                        ret = btrfs_next_leaf(sctx->parent_root, path);
6219                        if (ret < 0)
6220                                goto out;
6221                        else if (ret > 0)
6222                                break;
6223                        continue;
6224                }
6225
6226                btrfs_item_key_to_cpu(eb, &key, slot);
6227                if (key.objectid != sctx->cur_ino)
6228                        break;
6229                if (key.type != BTRFS_INODE_REF_KEY &&
6230                    key.type != BTRFS_INODE_EXTREF_KEY)
6231                        break;
6232
6233                ret = iterate_inode_ref(sctx->parent_root, path, &key, 1,
6234                                        record_parent_ref, &ctx);
6235                if (ret < 0)
6236                        goto out;
6237
6238                path->slots[0]++;
6239        }
6240
6241        while (!list_empty(&deleted_refs)) {
6242                struct recorded_ref *ref;
6243
6244                ref = list_first_entry(&deleted_refs, struct recorded_ref, list);
6245                ret = send_unlink(sctx, ref->full_path);
6246                if (ret < 0)
6247                        goto out;
6248                fs_path_free(ref->full_path);
6249                list_del(&ref->list);
6250                kfree(ref);
6251        }
6252        ret = 0;
6253out:
6254        btrfs_free_path(path);
6255        if (ret)
6256                __free_recorded_refs(&deleted_refs);
6257        return ret;
6258}
6259
6260static int changed_inode(struct send_ctx *sctx,
6261                         enum btrfs_compare_tree_result result)
6262{
6263        int ret = 0;
6264        struct btrfs_key *key = sctx->cmp_key;
6265        struct btrfs_inode_item *left_ii = NULL;
6266        struct btrfs_inode_item *right_ii = NULL;
6267        u64 left_gen = 0;
6268        u64 right_gen = 0;
6269
6270        sctx->cur_ino = key->objectid;
6271        sctx->cur_inode_new_gen = 0;
6272        sctx->cur_inode_last_extent = (u64)-1;
6273        sctx->cur_inode_next_write_offset = 0;
6274        sctx->ignore_cur_inode = false;
6275
6276        /*
6277         * Set send_progress to current inode. This will tell all get_cur_xxx
6278         * functions that the current inode's refs are not updated yet. Later,
6279         * when process_recorded_refs is finished, it is set to cur_ino + 1.
6280         */
6281        sctx->send_progress = sctx->cur_ino;
6282
6283        if (result == BTRFS_COMPARE_TREE_NEW ||
6284            result == BTRFS_COMPARE_TREE_CHANGED) {
6285                left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6286                                sctx->left_path->slots[0],
6287                                struct btrfs_inode_item);
6288                left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6289                                left_ii);
6290        } else {
6291                right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6292                                sctx->right_path->slots[0],
6293                                struct btrfs_inode_item);
6294                right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6295                                right_ii);
6296        }
6297        if (result == BTRFS_COMPARE_TREE_CHANGED) {
6298                right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6299                                sctx->right_path->slots[0],
6300                                struct btrfs_inode_item);
6301
6302                right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6303                                right_ii);
6304
6305                /*
6306                 * The cur_ino = root dir case is special here. We can't treat
6307                 * the inode as deleted+reused because it would generate a
6308                 * stream that tries to delete/mkdir the root dir.
6309                 */
6310                if (left_gen != right_gen &&
6311                    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6312                        sctx->cur_inode_new_gen = 1;
6313        }
6314
6315        /*
6316         * Normally we do not find inodes with a link count of zero (orphans)
6317         * because the most common case is to create a snapshot and use it
6318         * for a send operation. However other less common use cases involve
6319         * using a subvolume and send it after turning it to RO mode just
6320         * after deleting all hard links of a file while holding an open
6321         * file descriptor against it or turning a RO snapshot into RW mode,
6322         * keep an open file descriptor against a file, delete it and then
6323         * turn the snapshot back to RO mode before using it for a send
6324         * operation. So if we find such cases, ignore the inode and all its
6325         * items completely if it's a new inode, or if it's a changed inode
6326         * make sure all its previous paths (from the parent snapshot) are all
6327         * unlinked and all other the inode items are ignored.
6328         */
6329        if (result == BTRFS_COMPARE_TREE_NEW ||
6330            result == BTRFS_COMPARE_TREE_CHANGED) {
6331                u32 nlinks;
6332
6333                nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6334                if (nlinks == 0) {
6335                        sctx->ignore_cur_inode = true;
6336                        if (result == BTRFS_COMPARE_TREE_CHANGED)
6337                                ret = btrfs_unlink_all_paths(sctx);
6338                        goto out;
6339                }
6340        }
6341
6342        if (result == BTRFS_COMPARE_TREE_NEW) {
6343                sctx->cur_inode_gen = left_gen;
6344                sctx->cur_inode_new = 1;
6345                sctx->cur_inode_deleted = 0;
6346                sctx->cur_inode_size = btrfs_inode_size(
6347                                sctx->left_path->nodes[0], left_ii);
6348                sctx->cur_inode_mode = btrfs_inode_mode(
6349                                sctx->left_path->nodes[0], left_ii);
6350                sctx->cur_inode_rdev = btrfs_inode_rdev(
6351                                sctx->left_path->nodes[0], left_ii);
6352                if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6353                        ret = send_create_inode_if_needed(sctx);
6354        } else if (result == BTRFS_COMPARE_TREE_DELETED) {
6355                sctx->cur_inode_gen = right_gen;
6356                sctx->cur_inode_new = 0;
6357                sctx->cur_inode_deleted = 1;
6358                sctx->cur_inode_size = btrfs_inode_size(
6359                                sctx->right_path->nodes[0], right_ii);
6360                sctx->cur_inode_mode = btrfs_inode_mode(
6361                                sctx->right_path->nodes[0], right_ii);
6362        } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6363                /*
6364                 * We need to do some special handling in case the inode was
6365                 * reported as changed with a changed generation number. This
6366                 * means that the original inode was deleted and new inode
6367                 * reused the same inum. So we have to treat the old inode as
6368                 * deleted and the new one as new.
6369                 */
6370                if (sctx->cur_inode_new_gen) {
6371                        /*
6372                         * First, process the inode as if it was deleted.
6373                         */
6374                        sctx->cur_inode_gen = right_gen;
6375                        sctx->cur_inode_new = 0;
6376                        sctx->cur_inode_deleted = 1;
6377                        sctx->cur_inode_size = btrfs_inode_size(
6378                                        sctx->right_path->nodes[0], right_ii);
6379                        sctx->cur_inode_mode = btrfs_inode_mode(
6380                                        sctx->right_path->nodes[0], right_ii);
6381                        ret = process_all_refs(sctx,
6382                                        BTRFS_COMPARE_TREE_DELETED);
6383                        if (ret < 0)
6384                                goto out;
6385
6386                        /*
6387                         * Now process the inode as if it was new.
6388                         */
6389                        sctx->cur_inode_gen = left_gen;
6390                        sctx->cur_inode_new = 1;
6391                        sctx->cur_inode_deleted = 0;
6392                        sctx->cur_inode_size = btrfs_inode_size(
6393                                        sctx->left_path->nodes[0], left_ii);
6394                        sctx->cur_inode_mode = btrfs_inode_mode(
6395                                        sctx->left_path->nodes[0], left_ii);
6396                        sctx->cur_inode_rdev = btrfs_inode_rdev(
6397                                        sctx->left_path->nodes[0], left_ii);
6398                        ret = send_create_inode_if_needed(sctx);
6399                        if (ret < 0)
6400                                goto out;
6401
6402                        ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6403                        if (ret < 0)
6404                                goto out;
6405                        /*
6406                         * Advance send_progress now as we did not get into
6407                         * process_recorded_refs_if_needed in the new_gen case.
6408                         */
6409                        sctx->send_progress = sctx->cur_ino + 1;
6410
6411                        /*
6412                         * Now process all extents and xattrs of the inode as if
6413                         * they were all new.
6414                         */
6415                        ret = process_all_extents(sctx);
6416                        if (ret < 0)
6417                                goto out;
6418                        ret = process_all_new_xattrs(sctx);
6419                        if (ret < 0)
6420                                goto out;
6421                } else {
6422                        sctx->cur_inode_gen = left_gen;
6423                        sctx->cur_inode_new = 0;
6424                        sctx->cur_inode_new_gen = 0;
6425                        sctx->cur_inode_deleted = 0;
6426                        sctx->cur_inode_size = btrfs_inode_size(
6427                                        sctx->left_path->nodes[0], left_ii);
6428                        sctx->cur_inode_mode = btrfs_inode_mode(
6429                                        sctx->left_path->nodes[0], left_ii);
6430                }
6431        }
6432
6433out:
6434        return ret;
6435}
6436
6437/*
6438 * We have to process new refs before deleted refs, but compare_trees gives us
6439 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6440 * first and later process them in process_recorded_refs.
6441 * For the cur_inode_new_gen case, we skip recording completely because
6442 * changed_inode did already initiate processing of refs. The reason for this is
6443 * that in this case, compare_tree actually compares the refs of 2 different
6444 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6445 * refs of the right tree as deleted and all refs of the left tree as new.
6446 */
6447static int changed_ref(struct send_ctx *sctx,
6448                       enum btrfs_compare_tree_result result)
6449{
6450        int ret = 0;
6451
6452        if (sctx->cur_ino != sctx->cmp_key->objectid) {
6453                inconsistent_snapshot_error(sctx, result, "reference");
6454                return -EIO;
6455        }
6456
6457        if (!sctx->cur_inode_new_gen &&
6458            sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6459                if (result == BTRFS_COMPARE_TREE_NEW)
6460                        ret = record_new_ref(sctx);
6461                else if (result == BTRFS_COMPARE_TREE_DELETED)
6462                        ret = record_deleted_ref(sctx);
6463                else if (result == BTRFS_COMPARE_TREE_CHANGED)
6464                        ret = record_changed_ref(sctx);
6465        }
6466
6467        return ret;
6468}
6469
6470/*
6471 * Process new/deleted/changed xattrs. We skip processing in the
6472 * cur_inode_new_gen case because changed_inode did already initiate processing
6473 * of xattrs. The reason is the same as in changed_ref
6474 */
6475static int changed_xattr(struct send_ctx *sctx,
6476                         enum btrfs_compare_tree_result result)
6477{
6478        int ret = 0;
6479
6480        if (sctx->cur_ino != sctx->cmp_key->objectid) {
6481                inconsistent_snapshot_error(sctx, result, "xattr");
6482                return -EIO;
6483        }
6484
6485        if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6486                if (result == BTRFS_COMPARE_TREE_NEW)
6487                        ret = process_new_xattr(sctx);
6488                else if (result == BTRFS_COMPARE_TREE_DELETED)
6489                        ret = process_deleted_xattr(sctx);
6490                else if (result == BTRFS_COMPARE_TREE_CHANGED)
6491                        ret = process_changed_xattr(sctx);
6492        }
6493
6494        return ret;
6495}
6496
6497/*
6498 * Process new/deleted/changed extents. We skip processing in the
6499 * cur_inode_new_gen case because changed_inode did already initiate processing
6500 * of extents. The reason is the same as in changed_ref
6501 */
6502static int changed_extent(struct send_ctx *sctx,
6503                          enum btrfs_compare_tree_result result)
6504{
6505        int ret = 0;
6506
6507        /*
6508         * We have found an extent item that changed without the inode item
6509         * having changed. This can happen either after relocation (where the
6510         * disk_bytenr of an extent item is replaced at
6511         * relocation.c:replace_file_extents()) or after deduplication into a
6512         * file in both the parent and send snapshots (where an extent item can
6513         * get modified or replaced with a new one). Note that deduplication
6514         * updates the inode item, but it only changes the iversion (sequence
6515         * field in the inode item) of the inode, so if a file is deduplicated
6516         * the same amount of times in both the parent and send snapshots, its
6517         * iversion becomes the same in both snapshots, whence the inode item is
6518         * the same on both snapshots.
6519         */
6520        if (sctx->cur_ino != sctx->cmp_key->objectid)
6521                return 0;
6522
6523        if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6524                if (result != BTRFS_COMPARE_TREE_DELETED)
6525                        ret = process_extent(sctx, sctx->left_path,
6526                                        sctx->cmp_key);
6527        }
6528
6529        return ret;
6530}
6531
6532static int dir_changed(struct send_ctx *sctx, u64 dir)
6533{
6534        u64 orig_gen, new_gen;
6535        int ret;
6536
6537        ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6538                             NULL, NULL);
6539        if (ret)
6540                return ret;
6541
6542        ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6543                             NULL, NULL, NULL);
6544        if (ret)
6545                return ret;
6546
6547        return (orig_gen != new_gen) ? 1 : 0;
6548}
6549
6550static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6551                        struct btrfs_key *key)
6552{
6553        struct btrfs_inode_extref *extref;
6554        struct extent_buffer *leaf;
6555        u64 dirid = 0, last_dirid = 0;
6556        unsigned long ptr;
6557        u32 item_size;
6558        u32 cur_offset = 0;
6559        int ref_name_len;
6560        int ret = 0;
6561
6562        /* Easy case, just check this one dirid */
6563        if (key->type == BTRFS_INODE_REF_KEY) {
6564                dirid = key->offset;
6565
6566                ret = dir_changed(sctx, dirid);
6567                goto out;
6568        }
6569
6570        leaf = path->nodes[0];
6571        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6572        ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6573        while (cur_offset < item_size) {
6574                extref = (struct btrfs_inode_extref *)(ptr +
6575                                                       cur_offset);
6576                dirid = btrfs_inode_extref_parent(leaf, extref);
6577                ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6578                cur_offset += ref_name_len + sizeof(*extref);
6579                if (dirid == last_dirid)
6580                        continue;
6581                ret = dir_changed(sctx, dirid);
6582                if (ret)
6583                        break;
6584                last_dirid = dirid;
6585        }
6586out:
6587        return ret;
6588}
6589
6590/*
6591 * Updates compare related fields in sctx and simply forwards to the actual
6592 * changed_xxx functions.
6593 */
6594static int changed_cb(struct btrfs_path *left_path,
6595                      struct btrfs_path *right_path,
6596                      struct btrfs_key *key,
6597                      enum btrfs_compare_tree_result result,
6598                      struct send_ctx *sctx)
6599{
6600        int ret = 0;
6601
6602        if (result == BTRFS_COMPARE_TREE_SAME) {
6603                if (key->type == BTRFS_INODE_REF_KEY ||
6604                    key->type == BTRFS_INODE_EXTREF_KEY) {
6605                        ret = compare_refs(sctx, left_path, key);
6606                        if (!ret)
6607                                return 0;
6608                        if (ret < 0)
6609                                return ret;
6610                } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6611                        return maybe_send_hole(sctx, left_path, key);
6612                } else {
6613                        return 0;
6614                }
6615                result = BTRFS_COMPARE_TREE_CHANGED;
6616                ret = 0;
6617        }
6618
6619        sctx->left_path = left_path;
6620        sctx->right_path = right_path;
6621        sctx->cmp_key = key;
6622
6623        ret = finish_inode_if_needed(sctx, 0);
6624        if (ret < 0)
6625                goto out;
6626
6627        /* Ignore non-FS objects */
6628        if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6629            key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6630                goto out;
6631
6632        if (key->type == BTRFS_INODE_ITEM_KEY) {
6633                ret = changed_inode(sctx, result);
6634        } else if (!sctx->ignore_cur_inode) {
6635                if (key->type == BTRFS_INODE_REF_KEY ||
6636                    key->type == BTRFS_INODE_EXTREF_KEY)
6637                        ret = changed_ref(sctx, result);
6638                else if (key->type == BTRFS_XATTR_ITEM_KEY)
6639                        ret = changed_xattr(sctx, result);
6640                else if (key->type == BTRFS_EXTENT_DATA_KEY)
6641                        ret = changed_extent(sctx, result);
6642        }
6643
6644out:
6645        return ret;
6646}
6647
6648static int full_send_tree(struct send_ctx *sctx)
6649{
6650        int ret;
6651        struct btrfs_root *send_root = sctx->send_root;
6652        struct btrfs_key key;
6653        struct btrfs_path *path;
6654        struct extent_buffer *eb;
6655        int slot;
6656
6657        path = alloc_path_for_send();
6658        if (!path)
6659                return -ENOMEM;
6660        path->reada = READA_FORWARD_ALWAYS;
6661
6662        key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6663        key.type = BTRFS_INODE_ITEM_KEY;
6664        key.offset = 0;
6665
6666        ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6667        if (ret < 0)
6668                goto out;
6669        if (ret)
6670                goto out_finish;
6671
6672        while (1) {
6673                eb = path->nodes[0];
6674                slot = path->slots[0];
6675                btrfs_item_key_to_cpu(eb, &key, slot);
6676
6677                ret = changed_cb(path, NULL, &key,
6678                                 BTRFS_COMPARE_TREE_NEW, sctx);
6679                if (ret < 0)
6680                        goto out;
6681
6682                ret = btrfs_next_item(send_root, path);
6683                if (ret < 0)
6684                        goto out;
6685                if (ret) {
6686                        ret  = 0;
6687                        break;
6688                }
6689        }
6690
6691out_finish:
6692        ret = finish_inode_if_needed(sctx, 1);
6693
6694out:
6695        btrfs_free_path(path);
6696        return ret;
6697}
6698
6699static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
6700{
6701        struct extent_buffer *eb;
6702        struct extent_buffer *parent = path->nodes[*level];
6703        int slot = path->slots[*level];
6704        const int nritems = btrfs_header_nritems(parent);
6705        u64 reada_max;
6706        u64 reada_done = 0;
6707
6708        BUG_ON(*level == 0);
6709        eb = btrfs_read_node_slot(parent, slot);
6710        if (IS_ERR(eb))
6711                return PTR_ERR(eb);
6712
6713        /*
6714         * Trigger readahead for the next leaves we will process, so that it is
6715         * very likely that when we need them they are already in memory and we
6716         * will not block on disk IO. For nodes we only do readahead for one,
6717         * since the time window between processing nodes is typically larger.
6718         */
6719        reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
6720
6721        for (slot++; slot < nritems && reada_done < reada_max; slot++) {
6722                if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
6723                        btrfs_readahead_node_child(parent, slot);
6724                        reada_done += eb->fs_info->nodesize;
6725                }
6726        }
6727
6728        path->nodes[*level - 1] = eb;
6729        path->slots[*level - 1] = 0;
6730        (*level)--;
6731        return 0;
6732}
6733
6734static int tree_move_next_or_upnext(struct btrfs_path *path,
6735                                    int *level, int root_level)
6736{
6737        int ret = 0;
6738        int nritems;
6739        nritems = btrfs_header_nritems(path->nodes[*level]);
6740
6741        path->slots[*level]++;
6742
6743        while (path->slots[*level] >= nritems) {
6744                if (*level == root_level)
6745                        return -1;
6746
6747                /* move upnext */
6748                path->slots[*level] = 0;
6749                free_extent_buffer(path->nodes[*level]);
6750                path->nodes[*level] = NULL;
6751                (*level)++;
6752                path->slots[*level]++;
6753
6754                nritems = btrfs_header_nritems(path->nodes[*level]);
6755                ret = 1;
6756        }
6757        return ret;
6758}
6759
6760/*
6761 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
6762 * or down.
6763 */
6764static int tree_advance(struct btrfs_path *path,
6765                        int *level, int root_level,
6766                        int allow_down,
6767                        struct btrfs_key *key,
6768                        u64 reada_min_gen)
6769{
6770        int ret;
6771
6772        if (*level == 0 || !allow_down) {
6773                ret = tree_move_next_or_upnext(path, level, root_level);
6774        } else {
6775                ret = tree_move_down(path, level, reada_min_gen);
6776        }
6777        if (ret >= 0) {
6778                if (*level == 0)
6779                        btrfs_item_key_to_cpu(path->nodes[*level], key,
6780                                        path->slots[*level]);
6781                else
6782                        btrfs_node_key_to_cpu(path->nodes[*level], key,
6783                                        path->slots[*level]);
6784        }
6785        return ret;
6786}
6787
6788static int tree_compare_item(struct btrfs_path *left_path,
6789                             struct btrfs_path *right_path,
6790                             char *tmp_buf)
6791{
6792        int cmp;
6793        int len1, len2;
6794        unsigned long off1, off2;
6795
6796        len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
6797        len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
6798        if (len1 != len2)
6799                return 1;
6800
6801        off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
6802        off2 = btrfs_item_ptr_offset(right_path->nodes[0],
6803                                right_path->slots[0]);
6804
6805        read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
6806
6807        cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
6808        if (cmp)
6809                return 1;
6810        return 0;
6811}
6812
6813/*
6814 * This function compares two trees and calls the provided callback for
6815 * every changed/new/deleted item it finds.
6816 * If shared tree blocks are encountered, whole subtrees are skipped, making
6817 * the compare pretty fast on snapshotted subvolumes.
6818 *
6819 * This currently works on commit roots only. As commit roots are read only,
6820 * we don't do any locking. The commit roots are protected with transactions.
6821 * Transactions are ended and rejoined when a commit is tried in between.
6822 *
6823 * This function checks for modifications done to the trees while comparing.
6824 * If it detects a change, it aborts immediately.
6825 */
6826static int btrfs_compare_trees(struct btrfs_root *left_root,
6827                        struct btrfs_root *right_root, struct send_ctx *sctx)
6828{
6829        struct btrfs_fs_info *fs_info = left_root->fs_info;
6830        int ret;
6831        int cmp;
6832        struct btrfs_path *left_path = NULL;
6833        struct btrfs_path *right_path = NULL;
6834        struct btrfs_key left_key;
6835        struct btrfs_key right_key;
6836        char *tmp_buf = NULL;
6837        int left_root_level;
6838        int right_root_level;
6839        int left_level;
6840        int right_level;
6841        int left_end_reached;
6842        int right_end_reached;
6843        int advance_left;
6844        int advance_right;
6845        u64 left_blockptr;
6846        u64 right_blockptr;
6847        u64 left_gen;
6848        u64 right_gen;
6849        u64 reada_min_gen;
6850
6851        left_path = btrfs_alloc_path();
6852        if (!left_path) {
6853                ret = -ENOMEM;
6854                goto out;
6855        }
6856        right_path = btrfs_alloc_path();
6857        if (!right_path) {
6858                ret = -ENOMEM;
6859                goto out;
6860        }
6861
6862        tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
6863        if (!tmp_buf) {
6864                ret = -ENOMEM;
6865                goto out;
6866        }
6867
6868        left_path->search_commit_root = 1;
6869        left_path->skip_locking = 1;
6870        right_path->search_commit_root = 1;
6871        right_path->skip_locking = 1;
6872
6873        /*
6874         * Strategy: Go to the first items of both trees. Then do
6875         *
6876         * If both trees are at level 0
6877         *   Compare keys of current items
6878         *     If left < right treat left item as new, advance left tree
6879         *       and repeat
6880         *     If left > right treat right item as deleted, advance right tree
6881         *       and repeat
6882         *     If left == right do deep compare of items, treat as changed if
6883         *       needed, advance both trees and repeat
6884         * If both trees are at the same level but not at level 0
6885         *   Compare keys of current nodes/leafs
6886         *     If left < right advance left tree and repeat
6887         *     If left > right advance right tree and repeat
6888         *     If left == right compare blockptrs of the next nodes/leafs
6889         *       If they match advance both trees but stay at the same level
6890         *         and repeat
6891         *       If they don't match advance both trees while allowing to go
6892         *         deeper and repeat
6893         * If tree levels are different
6894         *   Advance the tree that needs it and repeat
6895         *
6896         * Advancing a tree means:
6897         *   If we are at level 0, try to go to the next slot. If that's not
6898         *   possible, go one level up and repeat. Stop when we found a level
6899         *   where we could go to the next slot. We may at this point be on a
6900         *   node or a leaf.
6901         *
6902         *   If we are not at level 0 and not on shared tree blocks, go one
6903         *   level deeper.
6904         *
6905         *   If we are not at level 0 and on shared tree blocks, go one slot to
6906         *   the right if possible or go up and right.
6907         */
6908
6909        down_read(&fs_info->commit_root_sem);
6910        left_level = btrfs_header_level(left_root->commit_root);
6911        left_root_level = left_level;
6912        left_path->nodes[left_level] =
6913                        btrfs_clone_extent_buffer(left_root->commit_root);
6914        if (!left_path->nodes[left_level]) {
6915                up_read(&fs_info->commit_root_sem);
6916                ret = -ENOMEM;
6917                goto out;
6918        }
6919
6920        right_level = btrfs_header_level(right_root->commit_root);
6921        right_root_level = right_level;
6922        right_path->nodes[right_level] =
6923                        btrfs_clone_extent_buffer(right_root->commit_root);
6924        if (!right_path->nodes[right_level]) {
6925                up_read(&fs_info->commit_root_sem);
6926                ret = -ENOMEM;
6927                goto out;
6928        }
6929        /*
6930         * Our right root is the parent root, while the left root is the "send"
6931         * root. We know that all new nodes/leaves in the left root must have
6932         * a generation greater than the right root's generation, so we trigger
6933         * readahead for those nodes and leaves of the left root, as we know we
6934         * will need to read them at some point.
6935         */
6936        reada_min_gen = btrfs_header_generation(right_root->commit_root);
6937        up_read(&fs_info->commit_root_sem);
6938
6939        if (left_level == 0)
6940                btrfs_item_key_to_cpu(left_path->nodes[left_level],
6941                                &left_key, left_path->slots[left_level]);
6942        else
6943                btrfs_node_key_to_cpu(left_path->nodes[left_level],
6944                                &left_key, left_path->slots[left_level]);
6945        if (right_level == 0)
6946                btrfs_item_key_to_cpu(right_path->nodes[right_level],
6947                                &right_key, right_path->slots[right_level]);
6948        else
6949                btrfs_node_key_to_cpu(right_path->nodes[right_level],
6950                                &right_key, right_path->slots[right_level]);
6951
6952        left_end_reached = right_end_reached = 0;
6953        advance_left = advance_right = 0;
6954
6955        while (1) {
6956                cond_resched();
6957                if (advance_left && !left_end_reached) {
6958                        ret = tree_advance(left_path, &left_level,
6959                                        left_root_level,
6960                                        advance_left != ADVANCE_ONLY_NEXT,
6961                                        &left_key, reada_min_gen);
6962                        if (ret == -1)
6963                                left_end_reached = ADVANCE;
6964                        else if (ret < 0)
6965                                goto out;
6966                        advance_left = 0;
6967                }
6968                if (advance_right && !right_end_reached) {
6969                        ret = tree_advance(right_path, &right_level,
6970                                        right_root_level,
6971                                        advance_right != ADVANCE_ONLY_NEXT,
6972                                        &right_key, reada_min_gen);
6973                        if (ret == -1)
6974                                right_end_reached = ADVANCE;
6975                        else if (ret < 0)
6976                                goto out;
6977                        advance_right = 0;
6978                }
6979
6980                if (left_end_reached && right_end_reached) {
6981                        ret = 0;
6982                        goto out;
6983                } else if (left_end_reached) {
6984                        if (right_level == 0) {
6985                                ret = changed_cb(left_path, right_path,
6986                                                &right_key,
6987                                                BTRFS_COMPARE_TREE_DELETED,
6988                                                sctx);
6989                                if (ret < 0)
6990                                        goto out;
6991                        }
6992                        advance_right = ADVANCE;
6993                        continue;
6994                } else if (right_end_reached) {
6995                        if (left_level == 0) {
6996                                ret = changed_cb(left_path, right_path,
6997                                                &left_key,
6998                                                BTRFS_COMPARE_TREE_NEW,
6999                                                sctx);
7000                                if (ret < 0)
7001                                        goto out;
7002                        }
7003                        advance_left = ADVANCE;
7004                        continue;
7005                }
7006
7007                if (left_level == 0 && right_level == 0) {
7008                        cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7009                        if (cmp < 0) {
7010                                ret = changed_cb(left_path, right_path,
7011                                                &left_key,
7012                                                BTRFS_COMPARE_TREE_NEW,
7013                                                sctx);
7014                                if (ret < 0)
7015                                        goto out;
7016                                advance_left = ADVANCE;
7017                        } else if (cmp > 0) {
7018                                ret = changed_cb(left_path, right_path,
7019                                                &right_key,
7020                                                BTRFS_COMPARE_TREE_DELETED,
7021                                                sctx);
7022                                if (ret < 0)
7023                                        goto out;
7024                                advance_right = ADVANCE;
7025                        } else {
7026                                enum btrfs_compare_tree_result result;
7027
7028                                WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7029                                ret = tree_compare_item(left_path, right_path,
7030                                                        tmp_buf);
7031                                if (ret)
7032                                        result = BTRFS_COMPARE_TREE_CHANGED;
7033                                else
7034                                        result = BTRFS_COMPARE_TREE_SAME;
7035                                ret = changed_cb(left_path, right_path,
7036                                                 &left_key, result, sctx);
7037                                if (ret < 0)
7038                                        goto out;
7039                                advance_left = ADVANCE;
7040                                advance_right = ADVANCE;
7041                        }
7042                } else if (left_level == right_level) {
7043                        cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7044                        if (cmp < 0) {
7045                                advance_left = ADVANCE;
7046                        } else if (cmp > 0) {
7047                                advance_right = ADVANCE;
7048                        } else {
7049                                left_blockptr = btrfs_node_blockptr(
7050                                                left_path->nodes[left_level],
7051                                                left_path->slots[left_level]);
7052                                right_blockptr = btrfs_node_blockptr(
7053                                                right_path->nodes[right_level],
7054                                                right_path->slots[right_level]);
7055                                left_gen = btrfs_node_ptr_generation(
7056                                                left_path->nodes[left_level],
7057                                                left_path->slots[left_level]);
7058                                right_gen = btrfs_node_ptr_generation(
7059                                                right_path->nodes[right_level],
7060                                                right_path->slots[right_level]);
7061                                if (left_blockptr == right_blockptr &&
7062                                    left_gen == right_gen) {
7063                                        /*
7064                                         * As we're on a shared block, don't
7065                                         * allow to go deeper.
7066                                         */
7067                                        advance_left = ADVANCE_ONLY_NEXT;
7068                                        advance_right = ADVANCE_ONLY_NEXT;
7069                                } else {
7070                                        advance_left = ADVANCE;
7071                                        advance_right = ADVANCE;
7072                                }
7073                        }
7074                } else if (left_level < right_level) {
7075                        advance_right = ADVANCE;
7076                } else {
7077                        advance_left = ADVANCE;
7078                }
7079        }
7080
7081out:
7082        btrfs_free_path(left_path);
7083        btrfs_free_path(right_path);
7084        kvfree(tmp_buf);
7085        return ret;
7086}
7087
7088static int send_subvol(struct send_ctx *sctx)
7089{
7090        int ret;
7091
7092        if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7093                ret = send_header(sctx);
7094                if (ret < 0)
7095                        goto out;
7096        }
7097
7098        ret = send_subvol_begin(sctx);
7099        if (ret < 0)
7100                goto out;
7101
7102        if (sctx->parent_root) {
7103                ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
7104                if (ret < 0)
7105                        goto out;
7106                ret = finish_inode_if_needed(sctx, 1);
7107                if (ret < 0)
7108                        goto out;
7109        } else {
7110                ret = full_send_tree(sctx);
7111                if (ret < 0)
7112                        goto out;
7113        }
7114
7115out:
7116        free_recorded_refs(sctx);
7117        return ret;
7118}
7119
7120/*
7121 * If orphan cleanup did remove any orphans from a root, it means the tree
7122 * was modified and therefore the commit root is not the same as the current
7123 * root anymore. This is a problem, because send uses the commit root and
7124 * therefore can see inode items that don't exist in the current root anymore,
7125 * and for example make calls to btrfs_iget, which will do tree lookups based
7126 * on the current root and not on the commit root. Those lookups will fail,
7127 * returning a -ESTALE error, and making send fail with that error. So make
7128 * sure a send does not see any orphans we have just removed, and that it will
7129 * see the same inodes regardless of whether a transaction commit happened
7130 * before it started (meaning that the commit root will be the same as the
7131 * current root) or not.
7132 */
7133static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
7134{
7135        int i;
7136        struct btrfs_trans_handle *trans = NULL;
7137
7138again:
7139        if (sctx->parent_root &&
7140            sctx->parent_root->node != sctx->parent_root->commit_root)
7141                goto commit_trans;
7142
7143        for (i = 0; i < sctx->clone_roots_cnt; i++)
7144                if (sctx->clone_roots[i].root->node !=
7145                    sctx->clone_roots[i].root->commit_root)
7146                        goto commit_trans;
7147
7148        if (trans)
7149                return btrfs_end_transaction(trans);
7150
7151        return 0;
7152
7153commit_trans:
7154        /* Use any root, all fs roots will get their commit roots updated. */
7155        if (!trans) {
7156                trans = btrfs_join_transaction(sctx->send_root);
7157                if (IS_ERR(trans))
7158                        return PTR_ERR(trans);
7159                goto again;
7160        }
7161
7162        return btrfs_commit_transaction(trans);
7163}
7164
7165/*
7166 * Make sure any existing dellaloc is flushed for any root used by a send
7167 * operation so that we do not miss any data and we do not race with writeback
7168 * finishing and changing a tree while send is using the tree. This could
7169 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
7170 * a send operation then uses the subvolume.
7171 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
7172 */
7173static int flush_delalloc_roots(struct send_ctx *sctx)
7174{
7175        struct btrfs_root *root = sctx->parent_root;
7176        int ret;
7177        int i;
7178
7179        if (root) {
7180                ret = btrfs_start_delalloc_snapshot(root, false);
7181                if (ret)
7182                        return ret;
7183                btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7184        }
7185
7186        for (i = 0; i < sctx->clone_roots_cnt; i++) {
7187                root = sctx->clone_roots[i].root;
7188                ret = btrfs_start_delalloc_snapshot(root, false);
7189                if (ret)
7190                        return ret;
7191                btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7192        }
7193
7194        return 0;
7195}
7196
7197static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
7198{
7199        spin_lock(&root->root_item_lock);
7200        root->send_in_progress--;
7201        /*
7202         * Not much left to do, we don't know why it's unbalanced and
7203         * can't blindly reset it to 0.
7204         */
7205        if (root->send_in_progress < 0)
7206                btrfs_err(root->fs_info,
7207                          "send_in_progress unbalanced %d root %llu",
7208                          root->send_in_progress, root->root_key.objectid);
7209        spin_unlock(&root->root_item_lock);
7210}
7211
7212static void dedupe_in_progress_warn(const struct btrfs_root *root)
7213{
7214        btrfs_warn_rl(root->fs_info,
7215"cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
7216                      root->root_key.objectid, root->dedupe_in_progress);
7217}
7218
7219long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
7220{
7221        int ret = 0;
7222        struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
7223        struct btrfs_fs_info *fs_info = send_root->fs_info;
7224        struct btrfs_root *clone_root;
7225        struct send_ctx *sctx = NULL;
7226        u32 i;
7227        u64 *clone_sources_tmp = NULL;
7228        int clone_sources_to_rollback = 0;
7229        size_t alloc_size;
7230        int sort_clone_roots = 0;
7231
7232        if (!capable(CAP_SYS_ADMIN))
7233                return -EPERM;
7234
7235        /*
7236         * The subvolume must remain read-only during send, protect against
7237         * making it RW. This also protects against deletion.
7238         */
7239        spin_lock(&send_root->root_item_lock);
7240        if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
7241                dedupe_in_progress_warn(send_root);
7242                spin_unlock(&send_root->root_item_lock);
7243                return -EAGAIN;
7244        }
7245        send_root->send_in_progress++;
7246        spin_unlock(&send_root->root_item_lock);
7247
7248        /*
7249         * Userspace tools do the checks and warn the user if it's
7250         * not RO.
7251         */
7252        if (!btrfs_root_readonly(send_root)) {
7253                ret = -EPERM;
7254                goto out;
7255        }
7256
7257        /*
7258         * Check that we don't overflow at later allocations, we request
7259         * clone_sources_count + 1 items, and compare to unsigned long inside
7260         * access_ok.
7261         */
7262        if (arg->clone_sources_count >
7263            ULONG_MAX / sizeof(struct clone_root) - 1) {
7264                ret = -EINVAL;
7265                goto out;
7266        }
7267
7268        if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
7269                ret = -EINVAL;
7270                goto out;
7271        }
7272
7273        sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
7274        if (!sctx) {
7275                ret = -ENOMEM;
7276                goto out;
7277        }
7278
7279        INIT_LIST_HEAD(&sctx->new_refs);
7280        INIT_LIST_HEAD(&sctx->deleted_refs);
7281        INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
7282        INIT_LIST_HEAD(&sctx->name_cache_list);
7283
7284        sctx->flags = arg->flags;
7285
7286        sctx->send_filp = fget(arg->send_fd);
7287        if (!sctx->send_filp) {
7288                ret = -EBADF;
7289                goto out;
7290        }
7291
7292        sctx->send_root = send_root;
7293        /*
7294         * Unlikely but possible, if the subvolume is marked for deletion but
7295         * is slow to remove the directory entry, send can still be started
7296         */
7297        if (btrfs_root_dead(sctx->send_root)) {
7298                ret = -EPERM;
7299                goto out;
7300        }
7301
7302        sctx->clone_roots_cnt = arg->clone_sources_count;
7303
7304        sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
7305        sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
7306        if (!sctx->send_buf) {
7307                ret = -ENOMEM;
7308                goto out;
7309        }
7310
7311        sctx->pending_dir_moves = RB_ROOT;
7312        sctx->waiting_dir_moves = RB_ROOT;
7313        sctx->orphan_dirs = RB_ROOT;
7314
7315        sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots),
7316                                     arg->clone_sources_count + 1,
7317                                     GFP_KERNEL);
7318        if (!sctx->clone_roots) {
7319                ret = -ENOMEM;
7320                goto out;
7321        }
7322
7323        alloc_size = array_size(sizeof(*arg->clone_sources),
7324                                arg->clone_sources_count);
7325
7326        if (arg->clone_sources_count) {
7327                clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
7328                if (!clone_sources_tmp) {
7329                        ret = -ENOMEM;
7330                        goto out;
7331                }
7332
7333                ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
7334                                alloc_size);
7335                if (ret) {
7336                        ret = -EFAULT;
7337                        goto out;
7338                }
7339
7340                for (i = 0; i < arg->clone_sources_count; i++) {
7341                        clone_root = btrfs_get_fs_root(fs_info,
7342                                                clone_sources_tmp[i], true);
7343                        if (IS_ERR(clone_root)) {
7344                                ret = PTR_ERR(clone_root);
7345                                goto out;
7346                        }
7347                        spin_lock(&clone_root->root_item_lock);
7348                        if (!btrfs_root_readonly(clone_root) ||
7349                            btrfs_root_dead(clone_root)) {
7350                                spin_unlock(&clone_root->root_item_lock);
7351                                btrfs_put_root(clone_root);
7352                                ret = -EPERM;
7353                                goto out;
7354                        }
7355                        if (clone_root->dedupe_in_progress) {
7356                                dedupe_in_progress_warn(clone_root);
7357                                spin_unlock(&clone_root->root_item_lock);
7358                                btrfs_put_root(clone_root);
7359                                ret = -EAGAIN;
7360                                goto out;
7361                        }
7362                        clone_root->send_in_progress++;
7363                        spin_unlock(&clone_root->root_item_lock);
7364
7365                        sctx->clone_roots[i].root = clone_root;
7366                        clone_sources_to_rollback = i + 1;
7367                }
7368                kvfree(clone_sources_tmp);
7369                clone_sources_tmp = NULL;
7370        }
7371
7372        if (arg->parent_root) {
7373                sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
7374                                                      true);
7375                if (IS_ERR(sctx->parent_root)) {
7376                        ret = PTR_ERR(sctx->parent_root);
7377                        goto out;
7378                }
7379
7380                spin_lock(&sctx->parent_root->root_item_lock);
7381                sctx->parent_root->send_in_progress++;
7382                if (!btrfs_root_readonly(sctx->parent_root) ||
7383                                btrfs_root_dead(sctx->parent_root)) {
7384                        spin_unlock(&sctx->parent_root->root_item_lock);
7385                        ret = -EPERM;
7386                        goto out;
7387                }
7388                if (sctx->parent_root->dedupe_in_progress) {
7389                        dedupe_in_progress_warn(sctx->parent_root);
7390                        spin_unlock(&sctx->parent_root->root_item_lock);
7391                        ret = -EAGAIN;
7392                        goto out;
7393                }
7394                spin_unlock(&sctx->parent_root->root_item_lock);
7395        }
7396
7397        /*
7398         * Clones from send_root are allowed, but only if the clone source
7399         * is behind the current send position. This is checked while searching
7400         * for possible clone sources.
7401         */
7402        sctx->clone_roots[sctx->clone_roots_cnt++].root =
7403                btrfs_grab_root(sctx->send_root);
7404
7405        /* We do a bsearch later */
7406        sort(sctx->clone_roots, sctx->clone_roots_cnt,
7407                        sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
7408                        NULL);
7409        sort_clone_roots = 1;
7410
7411        ret = flush_delalloc_roots(sctx);
7412        if (ret)
7413                goto out;
7414
7415        ret = ensure_commit_roots_uptodate(sctx);
7416        if (ret)
7417                goto out;
7418
7419        spin_lock(&fs_info->send_reloc_lock);
7420        if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
7421                spin_unlock(&fs_info->send_reloc_lock);
7422                btrfs_warn_rl(fs_info,
7423                "cannot run send because a relocation operation is in progress");
7424                ret = -EAGAIN;
7425                goto out;
7426        }
7427        fs_info->send_in_progress++;
7428        spin_unlock(&fs_info->send_reloc_lock);
7429
7430        ret = send_subvol(sctx);
7431        spin_lock(&fs_info->send_reloc_lock);
7432        fs_info->send_in_progress--;
7433        spin_unlock(&fs_info->send_reloc_lock);
7434        if (ret < 0)
7435                goto out;
7436
7437        if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
7438                ret = begin_cmd(sctx, BTRFS_SEND_C_END);
7439                if (ret < 0)
7440                        goto out;
7441                ret = send_cmd(sctx);
7442                if (ret < 0)
7443                        goto out;
7444        }
7445
7446out:
7447        WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
7448        while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
7449                struct rb_node *n;
7450                struct pending_dir_move *pm;
7451
7452                n = rb_first(&sctx->pending_dir_moves);
7453                pm = rb_entry(n, struct pending_dir_move, node);
7454                while (!list_empty(&pm->list)) {
7455                        struct pending_dir_move *pm2;
7456
7457                        pm2 = list_first_entry(&pm->list,
7458                                               struct pending_dir_move, list);
7459                        free_pending_move(sctx, pm2);
7460                }
7461                free_pending_move(sctx, pm);
7462        }
7463
7464        WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
7465        while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
7466                struct rb_node *n;
7467                struct waiting_dir_move *dm;
7468
7469                n = rb_first(&sctx->waiting_dir_moves);
7470                dm = rb_entry(n, struct waiting_dir_move, node);
7471                rb_erase(&dm->node, &sctx->waiting_dir_moves);
7472                kfree(dm);
7473        }
7474
7475        WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
7476        while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
7477                struct rb_node *n;
7478                struct orphan_dir_info *odi;
7479
7480                n = rb_first(&sctx->orphan_dirs);
7481                odi = rb_entry(n, struct orphan_dir_info, node);
7482                free_orphan_dir_info(sctx, odi);
7483        }
7484
7485        if (sort_clone_roots) {
7486                for (i = 0; i < sctx->clone_roots_cnt; i++) {
7487                        btrfs_root_dec_send_in_progress(
7488                                        sctx->clone_roots[i].root);
7489                        btrfs_put_root(sctx->clone_roots[i].root);
7490                }
7491        } else {
7492                for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
7493                        btrfs_root_dec_send_in_progress(
7494                                        sctx->clone_roots[i].root);
7495                        btrfs_put_root(sctx->clone_roots[i].root);
7496                }
7497
7498                btrfs_root_dec_send_in_progress(send_root);
7499        }
7500        if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
7501                btrfs_root_dec_send_in_progress(sctx->parent_root);
7502                btrfs_put_root(sctx->parent_root);
7503        }
7504
7505        kvfree(clone_sources_tmp);
7506
7507        if (sctx) {
7508                if (sctx->send_filp)
7509                        fput(sctx->send_filp);
7510
7511                kvfree(sctx->clone_roots);
7512                kvfree(sctx->send_buf);
7513
7514                name_cache_free(sctx);
7515
7516                kfree(sctx);
7517        }
7518
7519        return ret;
7520}
7521