linux/fs/btrfs/volumes.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/sched/mm.h>
   8#include <linux/bio.h>
   9#include <linux/slab.h>
  10#include <linux/blkdev.h>
  11#include <linux/ratelimit.h>
  12#include <linux/kthread.h>
  13#include <linux/raid/pq.h>
  14#include <linux/semaphore.h>
  15#include <linux/uuid.h>
  16#include <linux/list_sort.h>
  17#include "misc.h"
  18#include "ctree.h"
  19#include "extent_map.h"
  20#include "disk-io.h"
  21#include "transaction.h"
  22#include "print-tree.h"
  23#include "volumes.h"
  24#include "raid56.h"
  25#include "async-thread.h"
  26#include "check-integrity.h"
  27#include "rcu-string.h"
  28#include "dev-replace.h"
  29#include "sysfs.h"
  30#include "tree-checker.h"
  31#include "space-info.h"
  32#include "block-group.h"
  33#include "discard.h"
  34#include "zoned.h"
  35
  36const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
  37        [BTRFS_RAID_RAID10] = {
  38                .sub_stripes    = 2,
  39                .dev_stripes    = 1,
  40                .devs_max       = 0,    /* 0 == as many as possible */
  41                .devs_min       = 4,
  42                .tolerated_failures = 1,
  43                .devs_increment = 2,
  44                .ncopies        = 2,
  45                .nparity        = 0,
  46                .raid_name      = "raid10",
  47                .bg_flag        = BTRFS_BLOCK_GROUP_RAID10,
  48                .mindev_error   = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
  49        },
  50        [BTRFS_RAID_RAID1] = {
  51                .sub_stripes    = 1,
  52                .dev_stripes    = 1,
  53                .devs_max       = 2,
  54                .devs_min       = 2,
  55                .tolerated_failures = 1,
  56                .devs_increment = 2,
  57                .ncopies        = 2,
  58                .nparity        = 0,
  59                .raid_name      = "raid1",
  60                .bg_flag        = BTRFS_BLOCK_GROUP_RAID1,
  61                .mindev_error   = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
  62        },
  63        [BTRFS_RAID_RAID1C3] = {
  64                .sub_stripes    = 1,
  65                .dev_stripes    = 1,
  66                .devs_max       = 3,
  67                .devs_min       = 3,
  68                .tolerated_failures = 2,
  69                .devs_increment = 3,
  70                .ncopies        = 3,
  71                .nparity        = 0,
  72                .raid_name      = "raid1c3",
  73                .bg_flag        = BTRFS_BLOCK_GROUP_RAID1C3,
  74                .mindev_error   = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
  75        },
  76        [BTRFS_RAID_RAID1C4] = {
  77                .sub_stripes    = 1,
  78                .dev_stripes    = 1,
  79                .devs_max       = 4,
  80                .devs_min       = 4,
  81                .tolerated_failures = 3,
  82                .devs_increment = 4,
  83                .ncopies        = 4,
  84                .nparity        = 0,
  85                .raid_name      = "raid1c4",
  86                .bg_flag        = BTRFS_BLOCK_GROUP_RAID1C4,
  87                .mindev_error   = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
  88        },
  89        [BTRFS_RAID_DUP] = {
  90                .sub_stripes    = 1,
  91                .dev_stripes    = 2,
  92                .devs_max       = 1,
  93                .devs_min       = 1,
  94                .tolerated_failures = 0,
  95                .devs_increment = 1,
  96                .ncopies        = 2,
  97                .nparity        = 0,
  98                .raid_name      = "dup",
  99                .bg_flag        = BTRFS_BLOCK_GROUP_DUP,
 100                .mindev_error   = 0,
 101        },
 102        [BTRFS_RAID_RAID0] = {
 103                .sub_stripes    = 1,
 104                .dev_stripes    = 1,
 105                .devs_max       = 0,
 106                .devs_min       = 2,
 107                .tolerated_failures = 0,
 108                .devs_increment = 1,
 109                .ncopies        = 1,
 110                .nparity        = 0,
 111                .raid_name      = "raid0",
 112                .bg_flag        = BTRFS_BLOCK_GROUP_RAID0,
 113                .mindev_error   = 0,
 114        },
 115        [BTRFS_RAID_SINGLE] = {
 116                .sub_stripes    = 1,
 117                .dev_stripes    = 1,
 118                .devs_max       = 1,
 119                .devs_min       = 1,
 120                .tolerated_failures = 0,
 121                .devs_increment = 1,
 122                .ncopies        = 1,
 123                .nparity        = 0,
 124                .raid_name      = "single",
 125                .bg_flag        = 0,
 126                .mindev_error   = 0,
 127        },
 128        [BTRFS_RAID_RAID5] = {
 129                .sub_stripes    = 1,
 130                .dev_stripes    = 1,
 131                .devs_max       = 0,
 132                .devs_min       = 2,
 133                .tolerated_failures = 1,
 134                .devs_increment = 1,
 135                .ncopies        = 1,
 136                .nparity        = 1,
 137                .raid_name      = "raid5",
 138                .bg_flag        = BTRFS_BLOCK_GROUP_RAID5,
 139                .mindev_error   = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
 140        },
 141        [BTRFS_RAID_RAID6] = {
 142                .sub_stripes    = 1,
 143                .dev_stripes    = 1,
 144                .devs_max       = 0,
 145                .devs_min       = 3,
 146                .tolerated_failures = 2,
 147                .devs_increment = 1,
 148                .ncopies        = 1,
 149                .nparity        = 2,
 150                .raid_name      = "raid6",
 151                .bg_flag        = BTRFS_BLOCK_GROUP_RAID6,
 152                .mindev_error   = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
 153        },
 154};
 155
 156const char *btrfs_bg_type_to_raid_name(u64 flags)
 157{
 158        const int index = btrfs_bg_flags_to_raid_index(flags);
 159
 160        if (index >= BTRFS_NR_RAID_TYPES)
 161                return NULL;
 162
 163        return btrfs_raid_array[index].raid_name;
 164}
 165
 166/*
 167 * Fill @buf with textual description of @bg_flags, no more than @size_buf
 168 * bytes including terminating null byte.
 169 */
 170void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
 171{
 172        int i;
 173        int ret;
 174        char *bp = buf;
 175        u64 flags = bg_flags;
 176        u32 size_bp = size_buf;
 177
 178        if (!flags) {
 179                strcpy(bp, "NONE");
 180                return;
 181        }
 182
 183#define DESCRIBE_FLAG(flag, desc)                                               \
 184        do {                                                            \
 185                if (flags & (flag)) {                                   \
 186                        ret = snprintf(bp, size_bp, "%s|", (desc));     \
 187                        if (ret < 0 || ret >= size_bp)                  \
 188                                goto out_overflow;                      \
 189                        size_bp -= ret;                                 \
 190                        bp += ret;                                      \
 191                        flags &= ~(flag);                               \
 192                }                                                       \
 193        } while (0)
 194
 195        DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
 196        DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
 197        DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
 198
 199        DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
 200        for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
 201                DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
 202                              btrfs_raid_array[i].raid_name);
 203#undef DESCRIBE_FLAG
 204
 205        if (flags) {
 206                ret = snprintf(bp, size_bp, "0x%llx|", flags);
 207                size_bp -= ret;
 208        }
 209
 210        if (size_bp < size_buf)
 211                buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
 212
 213        /*
 214         * The text is trimmed, it's up to the caller to provide sufficiently
 215         * large buffer
 216         */
 217out_overflow:;
 218}
 219
 220static int init_first_rw_device(struct btrfs_trans_handle *trans);
 221static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
 222static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
 223static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
 224static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
 225                             enum btrfs_map_op op,
 226                             u64 logical, u64 *length,
 227                             struct btrfs_bio **bbio_ret,
 228                             int mirror_num, int need_raid_map);
 229
 230/*
 231 * Device locking
 232 * ==============
 233 *
 234 * There are several mutexes that protect manipulation of devices and low-level
 235 * structures like chunks but not block groups, extents or files
 236 *
 237 * uuid_mutex (global lock)
 238 * ------------------------
 239 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
 240 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
 241 * device) or requested by the device= mount option
 242 *
 243 * the mutex can be very coarse and can cover long-running operations
 244 *
 245 * protects: updates to fs_devices counters like missing devices, rw devices,
 246 * seeding, structure cloning, opening/closing devices at mount/umount time
 247 *
 248 * global::fs_devs - add, remove, updates to the global list
 249 *
 250 * does not protect: manipulation of the fs_devices::devices list in general
 251 * but in mount context it could be used to exclude list modifications by eg.
 252 * scan ioctl
 253 *
 254 * btrfs_device::name - renames (write side), read is RCU
 255 *
 256 * fs_devices::device_list_mutex (per-fs, with RCU)
 257 * ------------------------------------------------
 258 * protects updates to fs_devices::devices, ie. adding and deleting
 259 *
 260 * simple list traversal with read-only actions can be done with RCU protection
 261 *
 262 * may be used to exclude some operations from running concurrently without any
 263 * modifications to the list (see write_all_supers)
 264 *
 265 * Is not required at mount and close times, because our device list is
 266 * protected by the uuid_mutex at that point.
 267 *
 268 * balance_mutex
 269 * -------------
 270 * protects balance structures (status, state) and context accessed from
 271 * several places (internally, ioctl)
 272 *
 273 * chunk_mutex
 274 * -----------
 275 * protects chunks, adding or removing during allocation, trim or when a new
 276 * device is added/removed. Additionally it also protects post_commit_list of
 277 * individual devices, since they can be added to the transaction's
 278 * post_commit_list only with chunk_mutex held.
 279 *
 280 * cleaner_mutex
 281 * -------------
 282 * a big lock that is held by the cleaner thread and prevents running subvolume
 283 * cleaning together with relocation or delayed iputs
 284 *
 285 *
 286 * Lock nesting
 287 * ============
 288 *
 289 * uuid_mutex
 290 *   device_list_mutex
 291 *     chunk_mutex
 292 *   balance_mutex
 293 *
 294 *
 295 * Exclusive operations
 296 * ====================
 297 *
 298 * Maintains the exclusivity of the following operations that apply to the
 299 * whole filesystem and cannot run in parallel.
 300 *
 301 * - Balance (*)
 302 * - Device add
 303 * - Device remove
 304 * - Device replace (*)
 305 * - Resize
 306 *
 307 * The device operations (as above) can be in one of the following states:
 308 *
 309 * - Running state
 310 * - Paused state
 311 * - Completed state
 312 *
 313 * Only device operations marked with (*) can go into the Paused state for the
 314 * following reasons:
 315 *
 316 * - ioctl (only Balance can be Paused through ioctl)
 317 * - filesystem remounted as read-only
 318 * - filesystem unmounted and mounted as read-only
 319 * - system power-cycle and filesystem mounted as read-only
 320 * - filesystem or device errors leading to forced read-only
 321 *
 322 * The status of exclusive operation is set and cleared atomically.
 323 * During the course of Paused state, fs_info::exclusive_operation remains set.
 324 * A device operation in Paused or Running state can be canceled or resumed
 325 * either by ioctl (Balance only) or when remounted as read-write.
 326 * The exclusive status is cleared when the device operation is canceled or
 327 * completed.
 328 */
 329
 330DEFINE_MUTEX(uuid_mutex);
 331static LIST_HEAD(fs_uuids);
 332struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
 333{
 334        return &fs_uuids;
 335}
 336
 337/*
 338 * alloc_fs_devices - allocate struct btrfs_fs_devices
 339 * @fsid:               if not NULL, copy the UUID to fs_devices::fsid
 340 * @metadata_fsid:      if not NULL, copy the UUID to fs_devices::metadata_fsid
 341 *
 342 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
 343 * The returned struct is not linked onto any lists and can be destroyed with
 344 * kfree() right away.
 345 */
 346static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
 347                                                 const u8 *metadata_fsid)
 348{
 349        struct btrfs_fs_devices *fs_devs;
 350
 351        fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
 352        if (!fs_devs)
 353                return ERR_PTR(-ENOMEM);
 354
 355        mutex_init(&fs_devs->device_list_mutex);
 356
 357        INIT_LIST_HEAD(&fs_devs->devices);
 358        INIT_LIST_HEAD(&fs_devs->alloc_list);
 359        INIT_LIST_HEAD(&fs_devs->fs_list);
 360        INIT_LIST_HEAD(&fs_devs->seed_list);
 361        if (fsid)
 362                memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
 363
 364        if (metadata_fsid)
 365                memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
 366        else if (fsid)
 367                memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
 368
 369        return fs_devs;
 370}
 371
 372void btrfs_free_device(struct btrfs_device *device)
 373{
 374        WARN_ON(!list_empty(&device->post_commit_list));
 375        rcu_string_free(device->name);
 376        extent_io_tree_release(&device->alloc_state);
 377        bio_put(device->flush_bio);
 378        btrfs_destroy_dev_zone_info(device);
 379        kfree(device);
 380}
 381
 382static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
 383{
 384        struct btrfs_device *device;
 385        WARN_ON(fs_devices->opened);
 386        while (!list_empty(&fs_devices->devices)) {
 387                device = list_entry(fs_devices->devices.next,
 388                                    struct btrfs_device, dev_list);
 389                list_del(&device->dev_list);
 390                btrfs_free_device(device);
 391        }
 392        kfree(fs_devices);
 393}
 394
 395void __exit btrfs_cleanup_fs_uuids(void)
 396{
 397        struct btrfs_fs_devices *fs_devices;
 398
 399        while (!list_empty(&fs_uuids)) {
 400                fs_devices = list_entry(fs_uuids.next,
 401                                        struct btrfs_fs_devices, fs_list);
 402                list_del(&fs_devices->fs_list);
 403                free_fs_devices(fs_devices);
 404        }
 405}
 406
 407/*
 408 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
 409 * Returned struct is not linked onto any lists and must be destroyed using
 410 * btrfs_free_device.
 411 */
 412static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info)
 413{
 414        struct btrfs_device *dev;
 415
 416        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
 417        if (!dev)
 418                return ERR_PTR(-ENOMEM);
 419
 420        /*
 421         * Preallocate a bio that's always going to be used for flushing device
 422         * barriers and matches the device lifespan
 423         */
 424        dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
 425        if (!dev->flush_bio) {
 426                kfree(dev);
 427                return ERR_PTR(-ENOMEM);
 428        }
 429
 430        INIT_LIST_HEAD(&dev->dev_list);
 431        INIT_LIST_HEAD(&dev->dev_alloc_list);
 432        INIT_LIST_HEAD(&dev->post_commit_list);
 433
 434        atomic_set(&dev->reada_in_flight, 0);
 435        atomic_set(&dev->dev_stats_ccnt, 0);
 436        btrfs_device_data_ordered_init(dev);
 437        INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
 438        INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
 439        extent_io_tree_init(fs_info, &dev->alloc_state,
 440                            IO_TREE_DEVICE_ALLOC_STATE, NULL);
 441
 442        return dev;
 443}
 444
 445static noinline struct btrfs_fs_devices *find_fsid(
 446                const u8 *fsid, const u8 *metadata_fsid)
 447{
 448        struct btrfs_fs_devices *fs_devices;
 449
 450        ASSERT(fsid);
 451
 452        /* Handle non-split brain cases */
 453        list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 454                if (metadata_fsid) {
 455                        if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
 456                            && memcmp(metadata_fsid, fs_devices->metadata_uuid,
 457                                      BTRFS_FSID_SIZE) == 0)
 458                                return fs_devices;
 459                } else {
 460                        if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
 461                                return fs_devices;
 462                }
 463        }
 464        return NULL;
 465}
 466
 467static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
 468                                struct btrfs_super_block *disk_super)
 469{
 470
 471        struct btrfs_fs_devices *fs_devices;
 472
 473        /*
 474         * Handle scanned device having completed its fsid change but
 475         * belonging to a fs_devices that was created by first scanning
 476         * a device which didn't have its fsid/metadata_uuid changed
 477         * at all and the CHANGING_FSID_V2 flag set.
 478         */
 479        list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 480                if (fs_devices->fsid_change &&
 481                    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
 482                           BTRFS_FSID_SIZE) == 0 &&
 483                    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
 484                           BTRFS_FSID_SIZE) == 0) {
 485                        return fs_devices;
 486                }
 487        }
 488        /*
 489         * Handle scanned device having completed its fsid change but
 490         * belonging to a fs_devices that was created by a device that
 491         * has an outdated pair of fsid/metadata_uuid and
 492         * CHANGING_FSID_V2 flag set.
 493         */
 494        list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 495                if (fs_devices->fsid_change &&
 496                    memcmp(fs_devices->metadata_uuid,
 497                           fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
 498                    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
 499                           BTRFS_FSID_SIZE) == 0) {
 500                        return fs_devices;
 501                }
 502        }
 503
 504        return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
 505}
 506
 507
 508static int
 509btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
 510                      int flush, struct block_device **bdev,
 511                      struct btrfs_super_block **disk_super)
 512{
 513        int ret;
 514
 515        *bdev = blkdev_get_by_path(device_path, flags, holder);
 516
 517        if (IS_ERR(*bdev)) {
 518                ret = PTR_ERR(*bdev);
 519                goto error;
 520        }
 521
 522        if (flush)
 523                filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
 524        ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
 525        if (ret) {
 526                blkdev_put(*bdev, flags);
 527                goto error;
 528        }
 529        invalidate_bdev(*bdev);
 530        *disk_super = btrfs_read_dev_super(*bdev);
 531        if (IS_ERR(*disk_super)) {
 532                ret = PTR_ERR(*disk_super);
 533                blkdev_put(*bdev, flags);
 534                goto error;
 535        }
 536
 537        return 0;
 538
 539error:
 540        *bdev = NULL;
 541        return ret;
 542}
 543
 544static bool device_path_matched(const char *path, struct btrfs_device *device)
 545{
 546        int found;
 547
 548        rcu_read_lock();
 549        found = strcmp(rcu_str_deref(device->name), path);
 550        rcu_read_unlock();
 551
 552        return found == 0;
 553}
 554
 555/*
 556 *  Search and remove all stale (devices which are not mounted) devices.
 557 *  When both inputs are NULL, it will search and release all stale devices.
 558 *  path:       Optional. When provided will it release all unmounted devices
 559 *              matching this path only.
 560 *  skip_dev:   Optional. Will skip this device when searching for the stale
 561 *              devices.
 562 *  Return:     0 for success or if @path is NULL.
 563 *              -EBUSY if @path is a mounted device.
 564 *              -ENOENT if @path does not match any device in the list.
 565 */
 566static int btrfs_free_stale_devices(const char *path,
 567                                     struct btrfs_device *skip_device)
 568{
 569        struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
 570        struct btrfs_device *device, *tmp_device;
 571        int ret = 0;
 572
 573        if (path)
 574                ret = -ENOENT;
 575
 576        list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
 577
 578                mutex_lock(&fs_devices->device_list_mutex);
 579                list_for_each_entry_safe(device, tmp_device,
 580                                         &fs_devices->devices, dev_list) {
 581                        if (skip_device && skip_device == device)
 582                                continue;
 583                        if (path && !device->name)
 584                                continue;
 585                        if (path && !device_path_matched(path, device))
 586                                continue;
 587                        if (fs_devices->opened) {
 588                                /* for an already deleted device return 0 */
 589                                if (path && ret != 0)
 590                                        ret = -EBUSY;
 591                                break;
 592                        }
 593
 594                        /* delete the stale device */
 595                        fs_devices->num_devices--;
 596                        list_del(&device->dev_list);
 597                        btrfs_free_device(device);
 598
 599                        ret = 0;
 600                }
 601                mutex_unlock(&fs_devices->device_list_mutex);
 602
 603                if (fs_devices->num_devices == 0) {
 604                        btrfs_sysfs_remove_fsid(fs_devices);
 605                        list_del(&fs_devices->fs_list);
 606                        free_fs_devices(fs_devices);
 607                }
 608        }
 609
 610        return ret;
 611}
 612
 613/*
 614 * This is only used on mount, and we are protected from competing things
 615 * messing with our fs_devices by the uuid_mutex, thus we do not need the
 616 * fs_devices->device_list_mutex here.
 617 */
 618static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
 619                        struct btrfs_device *device, fmode_t flags,
 620                        void *holder)
 621{
 622        struct request_queue *q;
 623        struct block_device *bdev;
 624        struct btrfs_super_block *disk_super;
 625        u64 devid;
 626        int ret;
 627
 628        if (device->bdev)
 629                return -EINVAL;
 630        if (!device->name)
 631                return -EINVAL;
 632
 633        ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
 634                                    &bdev, &disk_super);
 635        if (ret)
 636                return ret;
 637
 638        devid = btrfs_stack_device_id(&disk_super->dev_item);
 639        if (devid != device->devid)
 640                goto error_free_page;
 641
 642        if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
 643                goto error_free_page;
 644
 645        device->generation = btrfs_super_generation(disk_super);
 646
 647        if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
 648                if (btrfs_super_incompat_flags(disk_super) &
 649                    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
 650                        pr_err(
 651                "BTRFS: Invalid seeding and uuid-changed device detected\n");
 652                        goto error_free_page;
 653                }
 654
 655                clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 656                fs_devices->seeding = true;
 657        } else {
 658                if (bdev_read_only(bdev))
 659                        clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 660                else
 661                        set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 662        }
 663
 664        q = bdev_get_queue(bdev);
 665        if (!blk_queue_nonrot(q))
 666                fs_devices->rotating = true;
 667
 668        device->bdev = bdev;
 669        clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
 670        device->mode = flags;
 671
 672        fs_devices->open_devices++;
 673        if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
 674            device->devid != BTRFS_DEV_REPLACE_DEVID) {
 675                fs_devices->rw_devices++;
 676                list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
 677        }
 678        btrfs_release_disk_super(disk_super);
 679
 680        return 0;
 681
 682error_free_page:
 683        btrfs_release_disk_super(disk_super);
 684        blkdev_put(bdev, flags);
 685
 686        return -EINVAL;
 687}
 688
 689/*
 690 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
 691 * being created with a disk that has already completed its fsid change. Such
 692 * disk can belong to an fs which has its FSID changed or to one which doesn't.
 693 * Handle both cases here.
 694 */
 695static struct btrfs_fs_devices *find_fsid_inprogress(
 696                                        struct btrfs_super_block *disk_super)
 697{
 698        struct btrfs_fs_devices *fs_devices;
 699
 700        list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 701                if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
 702                           BTRFS_FSID_SIZE) != 0 &&
 703                    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
 704                           BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
 705                        return fs_devices;
 706                }
 707        }
 708
 709        return find_fsid(disk_super->fsid, NULL);
 710}
 711
 712
 713static struct btrfs_fs_devices *find_fsid_changed(
 714                                        struct btrfs_super_block *disk_super)
 715{
 716        struct btrfs_fs_devices *fs_devices;
 717
 718        /*
 719         * Handles the case where scanned device is part of an fs that had
 720         * multiple successful changes of FSID but currently device didn't
 721         * observe it. Meaning our fsid will be different than theirs. We need
 722         * to handle two subcases :
 723         *  1 - The fs still continues to have different METADATA/FSID uuids.
 724         *  2 - The fs is switched back to its original FSID (METADATA/FSID
 725         *  are equal).
 726         */
 727        list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 728                /* Changed UUIDs */
 729                if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
 730                           BTRFS_FSID_SIZE) != 0 &&
 731                    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
 732                           BTRFS_FSID_SIZE) == 0 &&
 733                    memcmp(fs_devices->fsid, disk_super->fsid,
 734                           BTRFS_FSID_SIZE) != 0)
 735                        return fs_devices;
 736
 737                /* Unchanged UUIDs */
 738                if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
 739                           BTRFS_FSID_SIZE) == 0 &&
 740                    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
 741                           BTRFS_FSID_SIZE) == 0)
 742                        return fs_devices;
 743        }
 744
 745        return NULL;
 746}
 747
 748static struct btrfs_fs_devices *find_fsid_reverted_metadata(
 749                                struct btrfs_super_block *disk_super)
 750{
 751        struct btrfs_fs_devices *fs_devices;
 752
 753        /*
 754         * Handle the case where the scanned device is part of an fs whose last
 755         * metadata UUID change reverted it to the original FSID. At the same
 756         * time * fs_devices was first created by another constitutent device
 757         * which didn't fully observe the operation. This results in an
 758         * btrfs_fs_devices created with metadata/fsid different AND
 759         * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
 760         * fs_devices equal to the FSID of the disk.
 761         */
 762        list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 763                if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
 764                           BTRFS_FSID_SIZE) != 0 &&
 765                    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
 766                           BTRFS_FSID_SIZE) == 0 &&
 767                    fs_devices->fsid_change)
 768                        return fs_devices;
 769        }
 770
 771        return NULL;
 772}
 773/*
 774 * Add new device to list of registered devices
 775 *
 776 * Returns:
 777 * device pointer which was just added or updated when successful
 778 * error pointer when failed
 779 */
 780static noinline struct btrfs_device *device_list_add(const char *path,
 781                           struct btrfs_super_block *disk_super,
 782                           bool *new_device_added)
 783{
 784        struct btrfs_device *device;
 785        struct btrfs_fs_devices *fs_devices = NULL;
 786        struct rcu_string *name;
 787        u64 found_transid = btrfs_super_generation(disk_super);
 788        u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
 789        bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
 790                BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
 791        bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
 792                                        BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
 793
 794        if (fsid_change_in_progress) {
 795                if (!has_metadata_uuid)
 796                        fs_devices = find_fsid_inprogress(disk_super);
 797                else
 798                        fs_devices = find_fsid_changed(disk_super);
 799        } else if (has_metadata_uuid) {
 800                fs_devices = find_fsid_with_metadata_uuid(disk_super);
 801        } else {
 802                fs_devices = find_fsid_reverted_metadata(disk_super);
 803                if (!fs_devices)
 804                        fs_devices = find_fsid(disk_super->fsid, NULL);
 805        }
 806
 807
 808        if (!fs_devices) {
 809                if (has_metadata_uuid)
 810                        fs_devices = alloc_fs_devices(disk_super->fsid,
 811                                                      disk_super->metadata_uuid);
 812                else
 813                        fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
 814
 815                if (IS_ERR(fs_devices))
 816                        return ERR_CAST(fs_devices);
 817
 818                fs_devices->fsid_change = fsid_change_in_progress;
 819
 820                mutex_lock(&fs_devices->device_list_mutex);
 821                list_add(&fs_devices->fs_list, &fs_uuids);
 822
 823                device = NULL;
 824        } else {
 825                mutex_lock(&fs_devices->device_list_mutex);
 826                device = btrfs_find_device(fs_devices, devid,
 827                                disk_super->dev_item.uuid, NULL);
 828
 829                /*
 830                 * If this disk has been pulled into an fs devices created by
 831                 * a device which had the CHANGING_FSID_V2 flag then replace the
 832                 * metadata_uuid/fsid values of the fs_devices.
 833                 */
 834                if (fs_devices->fsid_change &&
 835                    found_transid > fs_devices->latest_generation) {
 836                        memcpy(fs_devices->fsid, disk_super->fsid,
 837                                        BTRFS_FSID_SIZE);
 838
 839                        if (has_metadata_uuid)
 840                                memcpy(fs_devices->metadata_uuid,
 841                                       disk_super->metadata_uuid,
 842                                       BTRFS_FSID_SIZE);
 843                        else
 844                                memcpy(fs_devices->metadata_uuid,
 845                                       disk_super->fsid, BTRFS_FSID_SIZE);
 846
 847                        fs_devices->fsid_change = false;
 848                }
 849        }
 850
 851        if (!device) {
 852                if (fs_devices->opened) {
 853                        mutex_unlock(&fs_devices->device_list_mutex);
 854                        return ERR_PTR(-EBUSY);
 855                }
 856
 857                device = btrfs_alloc_device(NULL, &devid,
 858                                            disk_super->dev_item.uuid);
 859                if (IS_ERR(device)) {
 860                        mutex_unlock(&fs_devices->device_list_mutex);
 861                        /* we can safely leave the fs_devices entry around */
 862                        return device;
 863                }
 864
 865                name = rcu_string_strdup(path, GFP_NOFS);
 866                if (!name) {
 867                        btrfs_free_device(device);
 868                        mutex_unlock(&fs_devices->device_list_mutex);
 869                        return ERR_PTR(-ENOMEM);
 870                }
 871                rcu_assign_pointer(device->name, name);
 872
 873                list_add_rcu(&device->dev_list, &fs_devices->devices);
 874                fs_devices->num_devices++;
 875
 876                device->fs_devices = fs_devices;
 877                *new_device_added = true;
 878
 879                if (disk_super->label[0])
 880                        pr_info(
 881        "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
 882                                disk_super->label, devid, found_transid, path,
 883                                current->comm, task_pid_nr(current));
 884                else
 885                        pr_info(
 886        "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
 887                                disk_super->fsid, devid, found_transid, path,
 888                                current->comm, task_pid_nr(current));
 889
 890        } else if (!device->name || strcmp(device->name->str, path)) {
 891                /*
 892                 * When FS is already mounted.
 893                 * 1. If you are here and if the device->name is NULL that
 894                 *    means this device was missing at time of FS mount.
 895                 * 2. If you are here and if the device->name is different
 896                 *    from 'path' that means either
 897                 *      a. The same device disappeared and reappeared with
 898                 *         different name. or
 899                 *      b. The missing-disk-which-was-replaced, has
 900                 *         reappeared now.
 901                 *
 902                 * We must allow 1 and 2a above. But 2b would be a spurious
 903                 * and unintentional.
 904                 *
 905                 * Further in case of 1 and 2a above, the disk at 'path'
 906                 * would have missed some transaction when it was away and
 907                 * in case of 2a the stale bdev has to be updated as well.
 908                 * 2b must not be allowed at all time.
 909                 */
 910
 911                /*
 912                 * For now, we do allow update to btrfs_fs_device through the
 913                 * btrfs dev scan cli after FS has been mounted.  We're still
 914                 * tracking a problem where systems fail mount by subvolume id
 915                 * when we reject replacement on a mounted FS.
 916                 */
 917                if (!fs_devices->opened && found_transid < device->generation) {
 918                        /*
 919                         * That is if the FS is _not_ mounted and if you
 920                         * are here, that means there is more than one
 921                         * disk with same uuid and devid.We keep the one
 922                         * with larger generation number or the last-in if
 923                         * generation are equal.
 924                         */
 925                        mutex_unlock(&fs_devices->device_list_mutex);
 926                        return ERR_PTR(-EEXIST);
 927                }
 928
 929                /*
 930                 * We are going to replace the device path for a given devid,
 931                 * make sure it's the same device if the device is mounted
 932                 */
 933                if (device->bdev) {
 934                        int error;
 935                        dev_t path_dev;
 936
 937                        error = lookup_bdev(path, &path_dev);
 938                        if (error) {
 939                                mutex_unlock(&fs_devices->device_list_mutex);
 940                                return ERR_PTR(error);
 941                        }
 942
 943                        if (device->bdev->bd_dev != path_dev) {
 944                                mutex_unlock(&fs_devices->device_list_mutex);
 945                                /*
 946                                 * device->fs_info may not be reliable here, so
 947                                 * pass in a NULL instead. This avoids a
 948                                 * possible use-after-free when the fs_info and
 949                                 * fs_info->sb are already torn down.
 950                                 */
 951                                btrfs_warn_in_rcu(NULL,
 952        "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
 953                                                  path, devid, found_transid,
 954                                                  current->comm,
 955                                                  task_pid_nr(current));
 956                                return ERR_PTR(-EEXIST);
 957                        }
 958                        btrfs_info_in_rcu(device->fs_info,
 959        "devid %llu device path %s changed to %s scanned by %s (%d)",
 960                                          devid, rcu_str_deref(device->name),
 961                                          path, current->comm,
 962                                          task_pid_nr(current));
 963                }
 964
 965                name = rcu_string_strdup(path, GFP_NOFS);
 966                if (!name) {
 967                        mutex_unlock(&fs_devices->device_list_mutex);
 968                        return ERR_PTR(-ENOMEM);
 969                }
 970                rcu_string_free(device->name);
 971                rcu_assign_pointer(device->name, name);
 972                if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
 973                        fs_devices->missing_devices--;
 974                        clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
 975                }
 976        }
 977
 978        /*
 979         * Unmount does not free the btrfs_device struct but would zero
 980         * generation along with most of the other members. So just update
 981         * it back. We need it to pick the disk with largest generation
 982         * (as above).
 983         */
 984        if (!fs_devices->opened) {
 985                device->generation = found_transid;
 986                fs_devices->latest_generation = max_t(u64, found_transid,
 987                                                fs_devices->latest_generation);
 988        }
 989
 990        fs_devices->total_devices = btrfs_super_num_devices(disk_super);
 991
 992        mutex_unlock(&fs_devices->device_list_mutex);
 993        return device;
 994}
 995
 996static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
 997{
 998        struct btrfs_fs_devices *fs_devices;
 999        struct btrfs_device *device;
1000        struct btrfs_device *orig_dev;
1001        int ret = 0;
1002
1003        fs_devices = alloc_fs_devices(orig->fsid, NULL);
1004        if (IS_ERR(fs_devices))
1005                return fs_devices;
1006
1007        mutex_lock(&orig->device_list_mutex);
1008        fs_devices->total_devices = orig->total_devices;
1009
1010        list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1011                struct rcu_string *name;
1012
1013                device = btrfs_alloc_device(NULL, &orig_dev->devid,
1014                                            orig_dev->uuid);
1015                if (IS_ERR(device)) {
1016                        ret = PTR_ERR(device);
1017                        goto error;
1018                }
1019
1020                /*
1021                 * This is ok to do without rcu read locked because we hold the
1022                 * uuid mutex so nothing we touch in here is going to disappear.
1023                 */
1024                if (orig_dev->name) {
1025                        name = rcu_string_strdup(orig_dev->name->str,
1026                                        GFP_KERNEL);
1027                        if (!name) {
1028                                btrfs_free_device(device);
1029                                ret = -ENOMEM;
1030                                goto error;
1031                        }
1032                        rcu_assign_pointer(device->name, name);
1033                }
1034
1035                list_add(&device->dev_list, &fs_devices->devices);
1036                device->fs_devices = fs_devices;
1037                fs_devices->num_devices++;
1038        }
1039        mutex_unlock(&orig->device_list_mutex);
1040        return fs_devices;
1041error:
1042        mutex_unlock(&orig->device_list_mutex);
1043        free_fs_devices(fs_devices);
1044        return ERR_PTR(ret);
1045}
1046
1047static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1048                                      struct btrfs_device **latest_dev)
1049{
1050        struct btrfs_device *device, *next;
1051
1052        /* This is the initialized path, it is safe to release the devices. */
1053        list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1054                if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1055                        if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1056                                      &device->dev_state) &&
1057                            !test_bit(BTRFS_DEV_STATE_MISSING,
1058                                      &device->dev_state) &&
1059                            (!*latest_dev ||
1060                             device->generation > (*latest_dev)->generation)) {
1061                                *latest_dev = device;
1062                        }
1063                        continue;
1064                }
1065
1066                /*
1067                 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1068                 * in btrfs_init_dev_replace() so just continue.
1069                 */
1070                if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1071                        continue;
1072
1073                if (device->bdev) {
1074                        blkdev_put(device->bdev, device->mode);
1075                        device->bdev = NULL;
1076                        fs_devices->open_devices--;
1077                }
1078                if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1079                        list_del_init(&device->dev_alloc_list);
1080                        clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1081                        fs_devices->rw_devices--;
1082                }
1083                list_del_init(&device->dev_list);
1084                fs_devices->num_devices--;
1085                btrfs_free_device(device);
1086        }
1087
1088}
1089
1090/*
1091 * After we have read the system tree and know devids belonging to this
1092 * filesystem, remove the device which does not belong there.
1093 */
1094void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1095{
1096        struct btrfs_device *latest_dev = NULL;
1097        struct btrfs_fs_devices *seed_dev;
1098
1099        mutex_lock(&uuid_mutex);
1100        __btrfs_free_extra_devids(fs_devices, &latest_dev);
1101
1102        list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1103                __btrfs_free_extra_devids(seed_dev, &latest_dev);
1104
1105        fs_devices->latest_bdev = latest_dev->bdev;
1106
1107        mutex_unlock(&uuid_mutex);
1108}
1109
1110static void btrfs_close_bdev(struct btrfs_device *device)
1111{
1112        if (!device->bdev)
1113                return;
1114
1115        if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1116                sync_blockdev(device->bdev);
1117                invalidate_bdev(device->bdev);
1118        }
1119
1120        blkdev_put(device->bdev, device->mode);
1121}
1122
1123static void btrfs_close_one_device(struct btrfs_device *device)
1124{
1125        struct btrfs_fs_devices *fs_devices = device->fs_devices;
1126
1127        if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1128            device->devid != BTRFS_DEV_REPLACE_DEVID) {
1129                list_del_init(&device->dev_alloc_list);
1130                fs_devices->rw_devices--;
1131        }
1132
1133        if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1134                fs_devices->missing_devices--;
1135
1136        btrfs_close_bdev(device);
1137        if (device->bdev) {
1138                fs_devices->open_devices--;
1139                device->bdev = NULL;
1140        }
1141        clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1142        btrfs_destroy_dev_zone_info(device);
1143
1144        device->fs_info = NULL;
1145        atomic_set(&device->dev_stats_ccnt, 0);
1146        extent_io_tree_release(&device->alloc_state);
1147
1148        /* Verify the device is back in a pristine state  */
1149        ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1150        ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1151        ASSERT(list_empty(&device->dev_alloc_list));
1152        ASSERT(list_empty(&device->post_commit_list));
1153        ASSERT(atomic_read(&device->reada_in_flight) == 0);
1154}
1155
1156static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1157{
1158        struct btrfs_device *device, *tmp;
1159
1160        lockdep_assert_held(&uuid_mutex);
1161
1162        if (--fs_devices->opened > 0)
1163                return;
1164
1165        list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1166                btrfs_close_one_device(device);
1167
1168        WARN_ON(fs_devices->open_devices);
1169        WARN_ON(fs_devices->rw_devices);
1170        fs_devices->opened = 0;
1171        fs_devices->seeding = false;
1172        fs_devices->fs_info = NULL;
1173}
1174
1175void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1176{
1177        LIST_HEAD(list);
1178        struct btrfs_fs_devices *tmp;
1179
1180        mutex_lock(&uuid_mutex);
1181        close_fs_devices(fs_devices);
1182        if (!fs_devices->opened)
1183                list_splice_init(&fs_devices->seed_list, &list);
1184
1185        list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1186                close_fs_devices(fs_devices);
1187                list_del(&fs_devices->seed_list);
1188                free_fs_devices(fs_devices);
1189        }
1190        mutex_unlock(&uuid_mutex);
1191}
1192
1193static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1194                                fmode_t flags, void *holder)
1195{
1196        struct btrfs_device *device;
1197        struct btrfs_device *latest_dev = NULL;
1198        struct btrfs_device *tmp_device;
1199
1200        flags |= FMODE_EXCL;
1201
1202        list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1203                                 dev_list) {
1204                int ret;
1205
1206                ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1207                if (ret == 0 &&
1208                    (!latest_dev || device->generation > latest_dev->generation)) {
1209                        latest_dev = device;
1210                } else if (ret == -ENODATA) {
1211                        fs_devices->num_devices--;
1212                        list_del(&device->dev_list);
1213                        btrfs_free_device(device);
1214                }
1215        }
1216        if (fs_devices->open_devices == 0)
1217                return -EINVAL;
1218
1219        fs_devices->opened = 1;
1220        fs_devices->latest_bdev = latest_dev->bdev;
1221        fs_devices->total_rw_bytes = 0;
1222        fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1223        fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1224
1225        return 0;
1226}
1227
1228static int devid_cmp(void *priv, const struct list_head *a,
1229                     const struct list_head *b)
1230{
1231        struct btrfs_device *dev1, *dev2;
1232
1233        dev1 = list_entry(a, struct btrfs_device, dev_list);
1234        dev2 = list_entry(b, struct btrfs_device, dev_list);
1235
1236        if (dev1->devid < dev2->devid)
1237                return -1;
1238        else if (dev1->devid > dev2->devid)
1239                return 1;
1240        return 0;
1241}
1242
1243int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1244                       fmode_t flags, void *holder)
1245{
1246        int ret;
1247
1248        lockdep_assert_held(&uuid_mutex);
1249        /*
1250         * The device_list_mutex cannot be taken here in case opening the
1251         * underlying device takes further locks like open_mutex.
1252         *
1253         * We also don't need the lock here as this is called during mount and
1254         * exclusion is provided by uuid_mutex
1255         */
1256
1257        if (fs_devices->opened) {
1258                fs_devices->opened++;
1259                ret = 0;
1260        } else {
1261                list_sort(NULL, &fs_devices->devices, devid_cmp);
1262                ret = open_fs_devices(fs_devices, flags, holder);
1263        }
1264
1265        return ret;
1266}
1267
1268void btrfs_release_disk_super(struct btrfs_super_block *super)
1269{
1270        struct page *page = virt_to_page(super);
1271
1272        put_page(page);
1273}
1274
1275static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1276                                                       u64 bytenr, u64 bytenr_orig)
1277{
1278        struct btrfs_super_block *disk_super;
1279        struct page *page;
1280        void *p;
1281        pgoff_t index;
1282
1283        /* make sure our super fits in the device */
1284        if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1285                return ERR_PTR(-EINVAL);
1286
1287        /* make sure our super fits in the page */
1288        if (sizeof(*disk_super) > PAGE_SIZE)
1289                return ERR_PTR(-EINVAL);
1290
1291        /* make sure our super doesn't straddle pages on disk */
1292        index = bytenr >> PAGE_SHIFT;
1293        if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1294                return ERR_PTR(-EINVAL);
1295
1296        /* pull in the page with our super */
1297        page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1298
1299        if (IS_ERR(page))
1300                return ERR_CAST(page);
1301
1302        p = page_address(page);
1303
1304        /* align our pointer to the offset of the super block */
1305        disk_super = p + offset_in_page(bytenr);
1306
1307        if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1308            btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1309                btrfs_release_disk_super(p);
1310                return ERR_PTR(-EINVAL);
1311        }
1312
1313        if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1314                disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1315
1316        return disk_super;
1317}
1318
1319int btrfs_forget_devices(const char *path)
1320{
1321        int ret;
1322
1323        mutex_lock(&uuid_mutex);
1324        ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1325        mutex_unlock(&uuid_mutex);
1326
1327        return ret;
1328}
1329
1330/*
1331 * Look for a btrfs signature on a device. This may be called out of the mount path
1332 * and we are not allowed to call set_blocksize during the scan. The superblock
1333 * is read via pagecache
1334 */
1335struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1336                                           void *holder)
1337{
1338        struct btrfs_super_block *disk_super;
1339        bool new_device_added = false;
1340        struct btrfs_device *device = NULL;
1341        struct block_device *bdev;
1342        u64 bytenr, bytenr_orig;
1343        int ret;
1344
1345        lockdep_assert_held(&uuid_mutex);
1346
1347        /*
1348         * we would like to check all the supers, but that would make
1349         * a btrfs mount succeed after a mkfs from a different FS.
1350         * So, we need to add a special mount option to scan for
1351         * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1352         */
1353        flags |= FMODE_EXCL;
1354
1355        bdev = blkdev_get_by_path(path, flags, holder);
1356        if (IS_ERR(bdev))
1357                return ERR_CAST(bdev);
1358
1359        bytenr_orig = btrfs_sb_offset(0);
1360        ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1361        if (ret)
1362                return ERR_PTR(ret);
1363
1364        disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1365        if (IS_ERR(disk_super)) {
1366                device = ERR_CAST(disk_super);
1367                goto error_bdev_put;
1368        }
1369
1370        device = device_list_add(path, disk_super, &new_device_added);
1371        if (!IS_ERR(device)) {
1372                if (new_device_added)
1373                        btrfs_free_stale_devices(path, device);
1374        }
1375
1376        btrfs_release_disk_super(disk_super);
1377
1378error_bdev_put:
1379        blkdev_put(bdev, flags);
1380
1381        return device;
1382}
1383
1384/*
1385 * Try to find a chunk that intersects [start, start + len] range and when one
1386 * such is found, record the end of it in *start
1387 */
1388static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1389                                    u64 len)
1390{
1391        u64 physical_start, physical_end;
1392
1393        lockdep_assert_held(&device->fs_info->chunk_mutex);
1394
1395        if (!find_first_extent_bit(&device->alloc_state, *start,
1396                                   &physical_start, &physical_end,
1397                                   CHUNK_ALLOCATED, NULL)) {
1398
1399                if (in_range(physical_start, *start, len) ||
1400                    in_range(*start, physical_start,
1401                             physical_end - physical_start)) {
1402                        *start = physical_end + 1;
1403                        return true;
1404                }
1405        }
1406        return false;
1407}
1408
1409static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1410{
1411        switch (device->fs_devices->chunk_alloc_policy) {
1412        case BTRFS_CHUNK_ALLOC_REGULAR:
1413                /*
1414                 * We don't want to overwrite the superblock on the drive nor
1415                 * any area used by the boot loader (grub for example), so we
1416                 * make sure to start at an offset of at least 1MB.
1417                 */
1418                return max_t(u64, start, SZ_1M);
1419        case BTRFS_CHUNK_ALLOC_ZONED:
1420                /*
1421                 * We don't care about the starting region like regular
1422                 * allocator, because we anyway use/reserve the first two zones
1423                 * for superblock logging.
1424                 */
1425                return ALIGN(start, device->zone_info->zone_size);
1426        default:
1427                BUG();
1428        }
1429}
1430
1431static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1432                                        u64 *hole_start, u64 *hole_size,
1433                                        u64 num_bytes)
1434{
1435        u64 zone_size = device->zone_info->zone_size;
1436        u64 pos;
1437        int ret;
1438        bool changed = false;
1439
1440        ASSERT(IS_ALIGNED(*hole_start, zone_size));
1441
1442        while (*hole_size > 0) {
1443                pos = btrfs_find_allocatable_zones(device, *hole_start,
1444                                                   *hole_start + *hole_size,
1445                                                   num_bytes);
1446                if (pos != *hole_start) {
1447                        *hole_size = *hole_start + *hole_size - pos;
1448                        *hole_start = pos;
1449                        changed = true;
1450                        if (*hole_size < num_bytes)
1451                                break;
1452                }
1453
1454                ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1455
1456                /* Range is ensured to be empty */
1457                if (!ret)
1458                        return changed;
1459
1460                /* Given hole range was invalid (outside of device) */
1461                if (ret == -ERANGE) {
1462                        *hole_start += *hole_size;
1463                        *hole_size = 0;
1464                        return true;
1465                }
1466
1467                *hole_start += zone_size;
1468                *hole_size -= zone_size;
1469                changed = true;
1470        }
1471
1472        return changed;
1473}
1474
1475/**
1476 * dev_extent_hole_check - check if specified hole is suitable for allocation
1477 * @device:     the device which we have the hole
1478 * @hole_start: starting position of the hole
1479 * @hole_size:  the size of the hole
1480 * @num_bytes:  the size of the free space that we need
1481 *
1482 * This function may modify @hole_start and @hole_size to reflect the suitable
1483 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1484 */
1485static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1486                                  u64 *hole_size, u64 num_bytes)
1487{
1488        bool changed = false;
1489        u64 hole_end = *hole_start + *hole_size;
1490
1491        for (;;) {
1492                /*
1493                 * Check before we set max_hole_start, otherwise we could end up
1494                 * sending back this offset anyway.
1495                 */
1496                if (contains_pending_extent(device, hole_start, *hole_size)) {
1497                        if (hole_end >= *hole_start)
1498                                *hole_size = hole_end - *hole_start;
1499                        else
1500                                *hole_size = 0;
1501                        changed = true;
1502                }
1503
1504                switch (device->fs_devices->chunk_alloc_policy) {
1505                case BTRFS_CHUNK_ALLOC_REGULAR:
1506                        /* No extra check */
1507                        break;
1508                case BTRFS_CHUNK_ALLOC_ZONED:
1509                        if (dev_extent_hole_check_zoned(device, hole_start,
1510                                                        hole_size, num_bytes)) {
1511                                changed = true;
1512                                /*
1513                                 * The changed hole can contain pending extent.
1514                                 * Loop again to check that.
1515                                 */
1516                                continue;
1517                        }
1518                        break;
1519                default:
1520                        BUG();
1521                }
1522
1523                break;
1524        }
1525
1526        return changed;
1527}
1528
1529/*
1530 * find_free_dev_extent_start - find free space in the specified device
1531 * @device:       the device which we search the free space in
1532 * @num_bytes:    the size of the free space that we need
1533 * @search_start: the position from which to begin the search
1534 * @start:        store the start of the free space.
1535 * @len:          the size of the free space. that we find, or the size
1536 *                of the max free space if we don't find suitable free space
1537 *
1538 * this uses a pretty simple search, the expectation is that it is
1539 * called very infrequently and that a given device has a small number
1540 * of extents
1541 *
1542 * @start is used to store the start of the free space if we find. But if we
1543 * don't find suitable free space, it will be used to store the start position
1544 * of the max free space.
1545 *
1546 * @len is used to store the size of the free space that we find.
1547 * But if we don't find suitable free space, it is used to store the size of
1548 * the max free space.
1549 *
1550 * NOTE: This function will search *commit* root of device tree, and does extra
1551 * check to ensure dev extents are not double allocated.
1552 * This makes the function safe to allocate dev extents but may not report
1553 * correct usable device space, as device extent freed in current transaction
1554 * is not reported as available.
1555 */
1556static int find_free_dev_extent_start(struct btrfs_device *device,
1557                                u64 num_bytes, u64 search_start, u64 *start,
1558                                u64 *len)
1559{
1560        struct btrfs_fs_info *fs_info = device->fs_info;
1561        struct btrfs_root *root = fs_info->dev_root;
1562        struct btrfs_key key;
1563        struct btrfs_dev_extent *dev_extent;
1564        struct btrfs_path *path;
1565        u64 hole_size;
1566        u64 max_hole_start;
1567        u64 max_hole_size;
1568        u64 extent_end;
1569        u64 search_end = device->total_bytes;
1570        int ret;
1571        int slot;
1572        struct extent_buffer *l;
1573
1574        search_start = dev_extent_search_start(device, search_start);
1575
1576        WARN_ON(device->zone_info &&
1577                !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1578
1579        path = btrfs_alloc_path();
1580        if (!path)
1581                return -ENOMEM;
1582
1583        max_hole_start = search_start;
1584        max_hole_size = 0;
1585
1586again:
1587        if (search_start >= search_end ||
1588                test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1589                ret = -ENOSPC;
1590                goto out;
1591        }
1592
1593        path->reada = READA_FORWARD;
1594        path->search_commit_root = 1;
1595        path->skip_locking = 1;
1596
1597        key.objectid = device->devid;
1598        key.offset = search_start;
1599        key.type = BTRFS_DEV_EXTENT_KEY;
1600
1601        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1602        if (ret < 0)
1603                goto out;
1604        if (ret > 0) {
1605                ret = btrfs_previous_item(root, path, key.objectid, key.type);
1606                if (ret < 0)
1607                        goto out;
1608        }
1609
1610        while (1) {
1611                l = path->nodes[0];
1612                slot = path->slots[0];
1613                if (slot >= btrfs_header_nritems(l)) {
1614                        ret = btrfs_next_leaf(root, path);
1615                        if (ret == 0)
1616                                continue;
1617                        if (ret < 0)
1618                                goto out;
1619
1620                        break;
1621                }
1622                btrfs_item_key_to_cpu(l, &key, slot);
1623
1624                if (key.objectid < device->devid)
1625                        goto next;
1626
1627                if (key.objectid > device->devid)
1628                        break;
1629
1630                if (key.type != BTRFS_DEV_EXTENT_KEY)
1631                        goto next;
1632
1633                if (key.offset > search_start) {
1634                        hole_size = key.offset - search_start;
1635                        dev_extent_hole_check(device, &search_start, &hole_size,
1636                                              num_bytes);
1637
1638                        if (hole_size > max_hole_size) {
1639                                max_hole_start = search_start;
1640                                max_hole_size = hole_size;
1641                        }
1642
1643                        /*
1644                         * If this free space is greater than which we need,
1645                         * it must be the max free space that we have found
1646                         * until now, so max_hole_start must point to the start
1647                         * of this free space and the length of this free space
1648                         * is stored in max_hole_size. Thus, we return
1649                         * max_hole_start and max_hole_size and go back to the
1650                         * caller.
1651                         */
1652                        if (hole_size >= num_bytes) {
1653                                ret = 0;
1654                                goto out;
1655                        }
1656                }
1657
1658                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1659                extent_end = key.offset + btrfs_dev_extent_length(l,
1660                                                                  dev_extent);
1661                if (extent_end > search_start)
1662                        search_start = extent_end;
1663next:
1664                path->slots[0]++;
1665                cond_resched();
1666        }
1667
1668        /*
1669         * At this point, search_start should be the end of
1670         * allocated dev extents, and when shrinking the device,
1671         * search_end may be smaller than search_start.
1672         */
1673        if (search_end > search_start) {
1674                hole_size = search_end - search_start;
1675                if (dev_extent_hole_check(device, &search_start, &hole_size,
1676                                          num_bytes)) {
1677                        btrfs_release_path(path);
1678                        goto again;
1679                }
1680
1681                if (hole_size > max_hole_size) {
1682                        max_hole_start = search_start;
1683                        max_hole_size = hole_size;
1684                }
1685        }
1686
1687        /* See above. */
1688        if (max_hole_size < num_bytes)
1689                ret = -ENOSPC;
1690        else
1691                ret = 0;
1692
1693out:
1694        btrfs_free_path(path);
1695        *start = max_hole_start;
1696        if (len)
1697                *len = max_hole_size;
1698        return ret;
1699}
1700
1701int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1702                         u64 *start, u64 *len)
1703{
1704        /* FIXME use last free of some kind */
1705        return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1706}
1707
1708static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1709                          struct btrfs_device *device,
1710                          u64 start, u64 *dev_extent_len)
1711{
1712        struct btrfs_fs_info *fs_info = device->fs_info;
1713        struct btrfs_root *root = fs_info->dev_root;
1714        int ret;
1715        struct btrfs_path *path;
1716        struct btrfs_key key;
1717        struct btrfs_key found_key;
1718        struct extent_buffer *leaf = NULL;
1719        struct btrfs_dev_extent *extent = NULL;
1720
1721        path = btrfs_alloc_path();
1722        if (!path)
1723                return -ENOMEM;
1724
1725        key.objectid = device->devid;
1726        key.offset = start;
1727        key.type = BTRFS_DEV_EXTENT_KEY;
1728again:
1729        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1730        if (ret > 0) {
1731                ret = btrfs_previous_item(root, path, key.objectid,
1732                                          BTRFS_DEV_EXTENT_KEY);
1733                if (ret)
1734                        goto out;
1735                leaf = path->nodes[0];
1736                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1737                extent = btrfs_item_ptr(leaf, path->slots[0],
1738                                        struct btrfs_dev_extent);
1739                BUG_ON(found_key.offset > start || found_key.offset +
1740                       btrfs_dev_extent_length(leaf, extent) < start);
1741                key = found_key;
1742                btrfs_release_path(path);
1743                goto again;
1744        } else if (ret == 0) {
1745                leaf = path->nodes[0];
1746                extent = btrfs_item_ptr(leaf, path->slots[0],
1747                                        struct btrfs_dev_extent);
1748        } else {
1749                goto out;
1750        }
1751
1752        *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1753
1754        ret = btrfs_del_item(trans, root, path);
1755        if (ret == 0)
1756                set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1757out:
1758        btrfs_free_path(path);
1759        return ret;
1760}
1761
1762static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1763                                  struct btrfs_device *device,
1764                                  u64 chunk_offset, u64 start, u64 num_bytes)
1765{
1766        int ret;
1767        struct btrfs_path *path;
1768        struct btrfs_fs_info *fs_info = device->fs_info;
1769        struct btrfs_root *root = fs_info->dev_root;
1770        struct btrfs_dev_extent *extent;
1771        struct extent_buffer *leaf;
1772        struct btrfs_key key;
1773
1774        WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1775        WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1776        path = btrfs_alloc_path();
1777        if (!path)
1778                return -ENOMEM;
1779
1780        key.objectid = device->devid;
1781        key.offset = start;
1782        key.type = BTRFS_DEV_EXTENT_KEY;
1783        ret = btrfs_insert_empty_item(trans, root, path, &key,
1784                                      sizeof(*extent));
1785        if (ret)
1786                goto out;
1787
1788        leaf = path->nodes[0];
1789        extent = btrfs_item_ptr(leaf, path->slots[0],
1790                                struct btrfs_dev_extent);
1791        btrfs_set_dev_extent_chunk_tree(leaf, extent,
1792                                        BTRFS_CHUNK_TREE_OBJECTID);
1793        btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1794                                            BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1795        btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1796
1797        btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1798        btrfs_mark_buffer_dirty(leaf);
1799out:
1800        btrfs_free_path(path);
1801        return ret;
1802}
1803
1804static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1805{
1806        struct extent_map_tree *em_tree;
1807        struct extent_map *em;
1808        struct rb_node *n;
1809        u64 ret = 0;
1810
1811        em_tree = &fs_info->mapping_tree;
1812        read_lock(&em_tree->lock);
1813        n = rb_last(&em_tree->map.rb_root);
1814        if (n) {
1815                em = rb_entry(n, struct extent_map, rb_node);
1816                ret = em->start + em->len;
1817        }
1818        read_unlock(&em_tree->lock);
1819
1820        return ret;
1821}
1822
1823static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1824                                    u64 *devid_ret)
1825{
1826        int ret;
1827        struct btrfs_key key;
1828        struct btrfs_key found_key;
1829        struct btrfs_path *path;
1830
1831        path = btrfs_alloc_path();
1832        if (!path)
1833                return -ENOMEM;
1834
1835        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1836        key.type = BTRFS_DEV_ITEM_KEY;
1837        key.offset = (u64)-1;
1838
1839        ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1840        if (ret < 0)
1841                goto error;
1842
1843        if (ret == 0) {
1844                /* Corruption */
1845                btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1846                ret = -EUCLEAN;
1847                goto error;
1848        }
1849
1850        ret = btrfs_previous_item(fs_info->chunk_root, path,
1851                                  BTRFS_DEV_ITEMS_OBJECTID,
1852                                  BTRFS_DEV_ITEM_KEY);
1853        if (ret) {
1854                *devid_ret = 1;
1855        } else {
1856                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1857                                      path->slots[0]);
1858                *devid_ret = found_key.offset + 1;
1859        }
1860        ret = 0;
1861error:
1862        btrfs_free_path(path);
1863        return ret;
1864}
1865
1866/*
1867 * the device information is stored in the chunk root
1868 * the btrfs_device struct should be fully filled in
1869 */
1870static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1871                            struct btrfs_device *device)
1872{
1873        int ret;
1874        struct btrfs_path *path;
1875        struct btrfs_dev_item *dev_item;
1876        struct extent_buffer *leaf;
1877        struct btrfs_key key;
1878        unsigned long ptr;
1879
1880        path = btrfs_alloc_path();
1881        if (!path)
1882                return -ENOMEM;
1883
1884        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1885        key.type = BTRFS_DEV_ITEM_KEY;
1886        key.offset = device->devid;
1887
1888        ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1889                                      &key, sizeof(*dev_item));
1890        if (ret)
1891                goto out;
1892
1893        leaf = path->nodes[0];
1894        dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1895
1896        btrfs_set_device_id(leaf, dev_item, device->devid);
1897        btrfs_set_device_generation(leaf, dev_item, 0);
1898        btrfs_set_device_type(leaf, dev_item, device->type);
1899        btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1900        btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1901        btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1902        btrfs_set_device_total_bytes(leaf, dev_item,
1903                                     btrfs_device_get_disk_total_bytes(device));
1904        btrfs_set_device_bytes_used(leaf, dev_item,
1905                                    btrfs_device_get_bytes_used(device));
1906        btrfs_set_device_group(leaf, dev_item, 0);
1907        btrfs_set_device_seek_speed(leaf, dev_item, 0);
1908        btrfs_set_device_bandwidth(leaf, dev_item, 0);
1909        btrfs_set_device_start_offset(leaf, dev_item, 0);
1910
1911        ptr = btrfs_device_uuid(dev_item);
1912        write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1913        ptr = btrfs_device_fsid(dev_item);
1914        write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1915                            ptr, BTRFS_FSID_SIZE);
1916        btrfs_mark_buffer_dirty(leaf);
1917
1918        ret = 0;
1919out:
1920        btrfs_free_path(path);
1921        return ret;
1922}
1923
1924/*
1925 * Function to update ctime/mtime for a given device path.
1926 * Mainly used for ctime/mtime based probe like libblkid.
1927 */
1928static void update_dev_time(const char *path_name)
1929{
1930        struct file *filp;
1931
1932        filp = filp_open(path_name, O_RDWR, 0);
1933        if (IS_ERR(filp))
1934                return;
1935        file_update_time(filp);
1936        filp_close(filp, NULL);
1937}
1938
1939static int btrfs_rm_dev_item(struct btrfs_device *device)
1940{
1941        struct btrfs_root *root = device->fs_info->chunk_root;
1942        int ret;
1943        struct btrfs_path *path;
1944        struct btrfs_key key;
1945        struct btrfs_trans_handle *trans;
1946
1947        path = btrfs_alloc_path();
1948        if (!path)
1949                return -ENOMEM;
1950
1951        trans = btrfs_start_transaction(root, 0);
1952        if (IS_ERR(trans)) {
1953                btrfs_free_path(path);
1954                return PTR_ERR(trans);
1955        }
1956        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1957        key.type = BTRFS_DEV_ITEM_KEY;
1958        key.offset = device->devid;
1959
1960        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1961        if (ret) {
1962                if (ret > 0)
1963                        ret = -ENOENT;
1964                btrfs_abort_transaction(trans, ret);
1965                btrfs_end_transaction(trans);
1966                goto out;
1967        }
1968
1969        ret = btrfs_del_item(trans, root, path);
1970        if (ret) {
1971                btrfs_abort_transaction(trans, ret);
1972                btrfs_end_transaction(trans);
1973        }
1974
1975out:
1976        btrfs_free_path(path);
1977        if (!ret)
1978                ret = btrfs_commit_transaction(trans);
1979        return ret;
1980}
1981
1982/*
1983 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1984 * filesystem. It's up to the caller to adjust that number regarding eg. device
1985 * replace.
1986 */
1987static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1988                u64 num_devices)
1989{
1990        u64 all_avail;
1991        unsigned seq;
1992        int i;
1993
1994        do {
1995                seq = read_seqbegin(&fs_info->profiles_lock);
1996
1997                all_avail = fs_info->avail_data_alloc_bits |
1998                            fs_info->avail_system_alloc_bits |
1999                            fs_info->avail_metadata_alloc_bits;
2000        } while (read_seqretry(&fs_info->profiles_lock, seq));
2001
2002        for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2003                if (!(all_avail & btrfs_raid_array[i].bg_flag))
2004                        continue;
2005
2006                if (num_devices < btrfs_raid_array[i].devs_min) {
2007                        int ret = btrfs_raid_array[i].mindev_error;
2008
2009                        if (ret)
2010                                return ret;
2011                }
2012        }
2013
2014        return 0;
2015}
2016
2017static struct btrfs_device * btrfs_find_next_active_device(
2018                struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2019{
2020        struct btrfs_device *next_device;
2021
2022        list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2023                if (next_device != device &&
2024                    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2025                    && next_device->bdev)
2026                        return next_device;
2027        }
2028
2029        return NULL;
2030}
2031
2032/*
2033 * Helper function to check if the given device is part of s_bdev / latest_bdev
2034 * and replace it with the provided or the next active device, in the context
2035 * where this function called, there should be always be another device (or
2036 * this_dev) which is active.
2037 */
2038void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2039                                            struct btrfs_device *next_device)
2040{
2041        struct btrfs_fs_info *fs_info = device->fs_info;
2042
2043        if (!next_device)
2044                next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2045                                                            device);
2046        ASSERT(next_device);
2047
2048        if (fs_info->sb->s_bdev &&
2049                        (fs_info->sb->s_bdev == device->bdev))
2050                fs_info->sb->s_bdev = next_device->bdev;
2051
2052        if (fs_info->fs_devices->latest_bdev == device->bdev)
2053                fs_info->fs_devices->latest_bdev = next_device->bdev;
2054}
2055
2056/*
2057 * Return btrfs_fs_devices::num_devices excluding the device that's being
2058 * currently replaced.
2059 */
2060static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2061{
2062        u64 num_devices = fs_info->fs_devices->num_devices;
2063
2064        down_read(&fs_info->dev_replace.rwsem);
2065        if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2066                ASSERT(num_devices > 1);
2067                num_devices--;
2068        }
2069        up_read(&fs_info->dev_replace.rwsem);
2070
2071        return num_devices;
2072}
2073
2074void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2075                               struct block_device *bdev,
2076                               const char *device_path)
2077{
2078        struct btrfs_super_block *disk_super;
2079        int copy_num;
2080
2081        if (!bdev)
2082                return;
2083
2084        for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2085                struct page *page;
2086                int ret;
2087
2088                disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2089                if (IS_ERR(disk_super))
2090                        continue;
2091
2092                if (bdev_is_zoned(bdev)) {
2093                        btrfs_reset_sb_log_zones(bdev, copy_num);
2094                        continue;
2095                }
2096
2097                memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2098
2099                page = virt_to_page(disk_super);
2100                set_page_dirty(page);
2101                lock_page(page);
2102                /* write_on_page() unlocks the page */
2103                ret = write_one_page(page);
2104                if (ret)
2105                        btrfs_warn(fs_info,
2106                                "error clearing superblock number %d (%d)",
2107                                copy_num, ret);
2108                btrfs_release_disk_super(disk_super);
2109
2110        }
2111
2112        /* Notify udev that device has changed */
2113        btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2114
2115        /* Update ctime/mtime for device path for libblkid */
2116        update_dev_time(device_path);
2117}
2118
2119int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2120                    u64 devid)
2121{
2122        struct btrfs_device *device;
2123        struct btrfs_fs_devices *cur_devices;
2124        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2125        u64 num_devices;
2126        int ret = 0;
2127
2128        mutex_lock(&uuid_mutex);
2129
2130        num_devices = btrfs_num_devices(fs_info);
2131
2132        ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2133        if (ret)
2134                goto out;
2135
2136        device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2137
2138        if (IS_ERR(device)) {
2139                if (PTR_ERR(device) == -ENOENT &&
2140                    strcmp(device_path, "missing") == 0)
2141                        ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2142                else
2143                        ret = PTR_ERR(device);
2144                goto out;
2145        }
2146
2147        if (btrfs_pinned_by_swapfile(fs_info, device)) {
2148                btrfs_warn_in_rcu(fs_info,
2149                  "cannot remove device %s (devid %llu) due to active swapfile",
2150                                  rcu_str_deref(device->name), device->devid);
2151                ret = -ETXTBSY;
2152                goto out;
2153        }
2154
2155        if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2156                ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2157                goto out;
2158        }
2159
2160        if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2161            fs_info->fs_devices->rw_devices == 1) {
2162                ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2163                goto out;
2164        }
2165
2166        if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2167                mutex_lock(&fs_info->chunk_mutex);
2168                list_del_init(&device->dev_alloc_list);
2169                device->fs_devices->rw_devices--;
2170                mutex_unlock(&fs_info->chunk_mutex);
2171        }
2172
2173        mutex_unlock(&uuid_mutex);
2174        ret = btrfs_shrink_device(device, 0);
2175        if (!ret)
2176                btrfs_reada_remove_dev(device);
2177        mutex_lock(&uuid_mutex);
2178        if (ret)
2179                goto error_undo;
2180
2181        /*
2182         * TODO: the superblock still includes this device in its num_devices
2183         * counter although write_all_supers() is not locked out. This
2184         * could give a filesystem state which requires a degraded mount.
2185         */
2186        ret = btrfs_rm_dev_item(device);
2187        if (ret)
2188                goto error_undo;
2189
2190        clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2191        btrfs_scrub_cancel_dev(device);
2192
2193        /*
2194         * the device list mutex makes sure that we don't change
2195         * the device list while someone else is writing out all
2196         * the device supers. Whoever is writing all supers, should
2197         * lock the device list mutex before getting the number of
2198         * devices in the super block (super_copy). Conversely,
2199         * whoever updates the number of devices in the super block
2200         * (super_copy) should hold the device list mutex.
2201         */
2202
2203        /*
2204         * In normal cases the cur_devices == fs_devices. But in case
2205         * of deleting a seed device, the cur_devices should point to
2206         * its own fs_devices listed under the fs_devices->seed.
2207         */
2208        cur_devices = device->fs_devices;
2209        mutex_lock(&fs_devices->device_list_mutex);
2210        list_del_rcu(&device->dev_list);
2211
2212        cur_devices->num_devices--;
2213        cur_devices->total_devices--;
2214        /* Update total_devices of the parent fs_devices if it's seed */
2215        if (cur_devices != fs_devices)
2216                fs_devices->total_devices--;
2217
2218        if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2219                cur_devices->missing_devices--;
2220
2221        btrfs_assign_next_active_device(device, NULL);
2222
2223        if (device->bdev) {
2224                cur_devices->open_devices--;
2225                /* remove sysfs entry */
2226                btrfs_sysfs_remove_device(device);
2227        }
2228
2229        num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2230        btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2231        mutex_unlock(&fs_devices->device_list_mutex);
2232
2233        /*
2234         * at this point, the device is zero sized and detached from
2235         * the devices list.  All that's left is to zero out the old
2236         * supers and free the device.
2237         */
2238        if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2239                btrfs_scratch_superblocks(fs_info, device->bdev,
2240                                          device->name->str);
2241
2242        btrfs_close_bdev(device);
2243        synchronize_rcu();
2244        btrfs_free_device(device);
2245
2246        if (cur_devices->open_devices == 0) {
2247                list_del_init(&cur_devices->seed_list);
2248                close_fs_devices(cur_devices);
2249                free_fs_devices(cur_devices);
2250        }
2251
2252out:
2253        mutex_unlock(&uuid_mutex);
2254        return ret;
2255
2256error_undo:
2257        btrfs_reada_undo_remove_dev(device);
2258        if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2259                mutex_lock(&fs_info->chunk_mutex);
2260                list_add(&device->dev_alloc_list,
2261                         &fs_devices->alloc_list);
2262                device->fs_devices->rw_devices++;
2263                mutex_unlock(&fs_info->chunk_mutex);
2264        }
2265        goto out;
2266}
2267
2268void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2269{
2270        struct btrfs_fs_devices *fs_devices;
2271
2272        lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2273
2274        /*
2275         * in case of fs with no seed, srcdev->fs_devices will point
2276         * to fs_devices of fs_info. However when the dev being replaced is
2277         * a seed dev it will point to the seed's local fs_devices. In short
2278         * srcdev will have its correct fs_devices in both the cases.
2279         */
2280        fs_devices = srcdev->fs_devices;
2281
2282        list_del_rcu(&srcdev->dev_list);
2283        list_del(&srcdev->dev_alloc_list);
2284        fs_devices->num_devices--;
2285        if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2286                fs_devices->missing_devices--;
2287
2288        if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2289                fs_devices->rw_devices--;
2290
2291        if (srcdev->bdev)
2292                fs_devices->open_devices--;
2293}
2294
2295void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2296{
2297        struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2298
2299        mutex_lock(&uuid_mutex);
2300
2301        btrfs_close_bdev(srcdev);
2302        synchronize_rcu();
2303        btrfs_free_device(srcdev);
2304
2305        /* if this is no devs we rather delete the fs_devices */
2306        if (!fs_devices->num_devices) {
2307                /*
2308                 * On a mounted FS, num_devices can't be zero unless it's a
2309                 * seed. In case of a seed device being replaced, the replace
2310                 * target added to the sprout FS, so there will be no more
2311                 * device left under the seed FS.
2312                 */
2313                ASSERT(fs_devices->seeding);
2314
2315                list_del_init(&fs_devices->seed_list);
2316                close_fs_devices(fs_devices);
2317                free_fs_devices(fs_devices);
2318        }
2319        mutex_unlock(&uuid_mutex);
2320}
2321
2322void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2323{
2324        struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2325
2326        mutex_lock(&fs_devices->device_list_mutex);
2327
2328        btrfs_sysfs_remove_device(tgtdev);
2329
2330        if (tgtdev->bdev)
2331                fs_devices->open_devices--;
2332
2333        fs_devices->num_devices--;
2334
2335        btrfs_assign_next_active_device(tgtdev, NULL);
2336
2337        list_del_rcu(&tgtdev->dev_list);
2338
2339        mutex_unlock(&fs_devices->device_list_mutex);
2340
2341        /*
2342         * The update_dev_time() with in btrfs_scratch_superblocks()
2343         * may lead to a call to btrfs_show_devname() which will try
2344         * to hold device_list_mutex. And here this device
2345         * is already out of device list, so we don't have to hold
2346         * the device_list_mutex lock.
2347         */
2348        btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2349                                  tgtdev->name->str);
2350
2351        btrfs_close_bdev(tgtdev);
2352        synchronize_rcu();
2353        btrfs_free_device(tgtdev);
2354}
2355
2356static struct btrfs_device *btrfs_find_device_by_path(
2357                struct btrfs_fs_info *fs_info, const char *device_path)
2358{
2359        int ret = 0;
2360        struct btrfs_super_block *disk_super;
2361        u64 devid;
2362        u8 *dev_uuid;
2363        struct block_device *bdev;
2364        struct btrfs_device *device;
2365
2366        ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2367                                    fs_info->bdev_holder, 0, &bdev, &disk_super);
2368        if (ret)
2369                return ERR_PTR(ret);
2370
2371        devid = btrfs_stack_device_id(&disk_super->dev_item);
2372        dev_uuid = disk_super->dev_item.uuid;
2373        if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2374                device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2375                                           disk_super->metadata_uuid);
2376        else
2377                device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2378                                           disk_super->fsid);
2379
2380        btrfs_release_disk_super(disk_super);
2381        if (!device)
2382                device = ERR_PTR(-ENOENT);
2383        blkdev_put(bdev, FMODE_READ);
2384        return device;
2385}
2386
2387/*
2388 * Lookup a device given by device id, or the path if the id is 0.
2389 */
2390struct btrfs_device *btrfs_find_device_by_devspec(
2391                struct btrfs_fs_info *fs_info, u64 devid,
2392                const char *device_path)
2393{
2394        struct btrfs_device *device;
2395
2396        if (devid) {
2397                device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2398                                           NULL);
2399                if (!device)
2400                        return ERR_PTR(-ENOENT);
2401                return device;
2402        }
2403
2404        if (!device_path || !device_path[0])
2405                return ERR_PTR(-EINVAL);
2406
2407        if (strcmp(device_path, "missing") == 0) {
2408                /* Find first missing device */
2409                list_for_each_entry(device, &fs_info->fs_devices->devices,
2410                                    dev_list) {
2411                        if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2412                                     &device->dev_state) && !device->bdev)
2413                                return device;
2414                }
2415                return ERR_PTR(-ENOENT);
2416        }
2417
2418        return btrfs_find_device_by_path(fs_info, device_path);
2419}
2420
2421/*
2422 * does all the dirty work required for changing file system's UUID.
2423 */
2424static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2425{
2426        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2427        struct btrfs_fs_devices *old_devices;
2428        struct btrfs_fs_devices *seed_devices;
2429        struct btrfs_super_block *disk_super = fs_info->super_copy;
2430        struct btrfs_device *device;
2431        u64 super_flags;
2432
2433        lockdep_assert_held(&uuid_mutex);
2434        if (!fs_devices->seeding)
2435                return -EINVAL;
2436
2437        /*
2438         * Private copy of the seed devices, anchored at
2439         * fs_info->fs_devices->seed_list
2440         */
2441        seed_devices = alloc_fs_devices(NULL, NULL);
2442        if (IS_ERR(seed_devices))
2443                return PTR_ERR(seed_devices);
2444
2445        /*
2446         * It's necessary to retain a copy of the original seed fs_devices in
2447         * fs_uuids so that filesystems which have been seeded can successfully
2448         * reference the seed device from open_seed_devices. This also supports
2449         * multiple fs seed.
2450         */
2451        old_devices = clone_fs_devices(fs_devices);
2452        if (IS_ERR(old_devices)) {
2453                kfree(seed_devices);
2454                return PTR_ERR(old_devices);
2455        }
2456
2457        list_add(&old_devices->fs_list, &fs_uuids);
2458
2459        memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2460        seed_devices->opened = 1;
2461        INIT_LIST_HEAD(&seed_devices->devices);
2462        INIT_LIST_HEAD(&seed_devices->alloc_list);
2463        mutex_init(&seed_devices->device_list_mutex);
2464
2465        mutex_lock(&fs_devices->device_list_mutex);
2466        list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2467                              synchronize_rcu);
2468        list_for_each_entry(device, &seed_devices->devices, dev_list)
2469                device->fs_devices = seed_devices;
2470
2471        fs_devices->seeding = false;
2472        fs_devices->num_devices = 0;
2473        fs_devices->open_devices = 0;
2474        fs_devices->missing_devices = 0;
2475        fs_devices->rotating = false;
2476        list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2477
2478        generate_random_uuid(fs_devices->fsid);
2479        memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2480        memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2481        mutex_unlock(&fs_devices->device_list_mutex);
2482
2483        super_flags = btrfs_super_flags(disk_super) &
2484                      ~BTRFS_SUPER_FLAG_SEEDING;
2485        btrfs_set_super_flags(disk_super, super_flags);
2486
2487        return 0;
2488}
2489
2490/*
2491 * Store the expected generation for seed devices in device items.
2492 */
2493static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2494{
2495        struct btrfs_fs_info *fs_info = trans->fs_info;
2496        struct btrfs_root *root = fs_info->chunk_root;
2497        struct btrfs_path *path;
2498        struct extent_buffer *leaf;
2499        struct btrfs_dev_item *dev_item;
2500        struct btrfs_device *device;
2501        struct btrfs_key key;
2502        u8 fs_uuid[BTRFS_FSID_SIZE];
2503        u8 dev_uuid[BTRFS_UUID_SIZE];
2504        u64 devid;
2505        int ret;
2506
2507        path = btrfs_alloc_path();
2508        if (!path)
2509                return -ENOMEM;
2510
2511        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2512        key.offset = 0;
2513        key.type = BTRFS_DEV_ITEM_KEY;
2514
2515        while (1) {
2516                ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2517                if (ret < 0)
2518                        goto error;
2519
2520                leaf = path->nodes[0];
2521next_slot:
2522                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2523                        ret = btrfs_next_leaf(root, path);
2524                        if (ret > 0)
2525                                break;
2526                        if (ret < 0)
2527                                goto error;
2528                        leaf = path->nodes[0];
2529                        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2530                        btrfs_release_path(path);
2531                        continue;
2532                }
2533
2534                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2535                if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2536                    key.type != BTRFS_DEV_ITEM_KEY)
2537                        break;
2538
2539                dev_item = btrfs_item_ptr(leaf, path->slots[0],
2540                                          struct btrfs_dev_item);
2541                devid = btrfs_device_id(leaf, dev_item);
2542                read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2543                                   BTRFS_UUID_SIZE);
2544                read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2545                                   BTRFS_FSID_SIZE);
2546                device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2547                                           fs_uuid);
2548                BUG_ON(!device); /* Logic error */
2549
2550                if (device->fs_devices->seeding) {
2551                        btrfs_set_device_generation(leaf, dev_item,
2552                                                    device->generation);
2553                        btrfs_mark_buffer_dirty(leaf);
2554                }
2555
2556                path->slots[0]++;
2557                goto next_slot;
2558        }
2559        ret = 0;
2560error:
2561        btrfs_free_path(path);
2562        return ret;
2563}
2564
2565int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2566{
2567        struct btrfs_root *root = fs_info->dev_root;
2568        struct request_queue *q;
2569        struct btrfs_trans_handle *trans;
2570        struct btrfs_device *device;
2571        struct block_device *bdev;
2572        struct super_block *sb = fs_info->sb;
2573        struct rcu_string *name;
2574        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2575        u64 orig_super_total_bytes;
2576        u64 orig_super_num_devices;
2577        int seeding_dev = 0;
2578        int ret = 0;
2579        bool locked = false;
2580
2581        if (sb_rdonly(sb) && !fs_devices->seeding)
2582                return -EROFS;
2583
2584        bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2585                                  fs_info->bdev_holder);
2586        if (IS_ERR(bdev))
2587                return PTR_ERR(bdev);
2588
2589        if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2590                ret = -EINVAL;
2591                goto error;
2592        }
2593
2594        if (fs_devices->seeding) {
2595                seeding_dev = 1;
2596                down_write(&sb->s_umount);
2597                mutex_lock(&uuid_mutex);
2598                locked = true;
2599        }
2600
2601        sync_blockdev(bdev);
2602
2603        rcu_read_lock();
2604        list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2605                if (device->bdev == bdev) {
2606                        ret = -EEXIST;
2607                        rcu_read_unlock();
2608                        goto error;
2609                }
2610        }
2611        rcu_read_unlock();
2612
2613        device = btrfs_alloc_device(fs_info, NULL, NULL);
2614        if (IS_ERR(device)) {
2615                /* we can safely leave the fs_devices entry around */
2616                ret = PTR_ERR(device);
2617                goto error;
2618        }
2619
2620        name = rcu_string_strdup(device_path, GFP_KERNEL);
2621        if (!name) {
2622                ret = -ENOMEM;
2623                goto error_free_device;
2624        }
2625        rcu_assign_pointer(device->name, name);
2626
2627        device->fs_info = fs_info;
2628        device->bdev = bdev;
2629
2630        ret = btrfs_get_dev_zone_info(device);
2631        if (ret)
2632                goto error_free_device;
2633
2634        trans = btrfs_start_transaction(root, 0);
2635        if (IS_ERR(trans)) {
2636                ret = PTR_ERR(trans);
2637                goto error_free_zone;
2638        }
2639
2640        q = bdev_get_queue(bdev);
2641        set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2642        device->generation = trans->transid;
2643        device->io_width = fs_info->sectorsize;
2644        device->io_align = fs_info->sectorsize;
2645        device->sector_size = fs_info->sectorsize;
2646        device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2647                                         fs_info->sectorsize);
2648        device->disk_total_bytes = device->total_bytes;
2649        device->commit_total_bytes = device->total_bytes;
2650        set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2651        clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2652        device->mode = FMODE_EXCL;
2653        device->dev_stats_valid = 1;
2654        set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2655
2656        if (seeding_dev) {
2657                btrfs_clear_sb_rdonly(sb);
2658                ret = btrfs_prepare_sprout(fs_info);
2659                if (ret) {
2660                        btrfs_abort_transaction(trans, ret);
2661                        goto error_trans;
2662                }
2663        }
2664
2665        device->fs_devices = fs_devices;
2666
2667        mutex_lock(&fs_devices->device_list_mutex);
2668        mutex_lock(&fs_info->chunk_mutex);
2669        list_add_rcu(&device->dev_list, &fs_devices->devices);
2670        list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2671        fs_devices->num_devices++;
2672        fs_devices->open_devices++;
2673        fs_devices->rw_devices++;
2674        fs_devices->total_devices++;
2675        fs_devices->total_rw_bytes += device->total_bytes;
2676
2677        atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2678
2679        if (!blk_queue_nonrot(q))
2680                fs_devices->rotating = true;
2681
2682        orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2683        btrfs_set_super_total_bytes(fs_info->super_copy,
2684                round_down(orig_super_total_bytes + device->total_bytes,
2685                           fs_info->sectorsize));
2686
2687        orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2688        btrfs_set_super_num_devices(fs_info->super_copy,
2689                                    orig_super_num_devices + 1);
2690
2691        /*
2692         * we've got more storage, clear any full flags on the space
2693         * infos
2694         */
2695        btrfs_clear_space_info_full(fs_info);
2696
2697        mutex_unlock(&fs_info->chunk_mutex);
2698
2699        /* Add sysfs device entry */
2700        btrfs_sysfs_add_device(device);
2701
2702        mutex_unlock(&fs_devices->device_list_mutex);
2703
2704        if (seeding_dev) {
2705                mutex_lock(&fs_info->chunk_mutex);
2706                ret = init_first_rw_device(trans);
2707                mutex_unlock(&fs_info->chunk_mutex);
2708                if (ret) {
2709                        btrfs_abort_transaction(trans, ret);
2710                        goto error_sysfs;
2711                }
2712        }
2713
2714        ret = btrfs_add_dev_item(trans, device);
2715        if (ret) {
2716                btrfs_abort_transaction(trans, ret);
2717                goto error_sysfs;
2718        }
2719
2720        if (seeding_dev) {
2721                ret = btrfs_finish_sprout(trans);
2722                if (ret) {
2723                        btrfs_abort_transaction(trans, ret);
2724                        goto error_sysfs;
2725                }
2726
2727                /*
2728                 * fs_devices now represents the newly sprouted filesystem and
2729                 * its fsid has been changed by btrfs_prepare_sprout
2730                 */
2731                btrfs_sysfs_update_sprout_fsid(fs_devices);
2732        }
2733
2734        ret = btrfs_commit_transaction(trans);
2735
2736        if (seeding_dev) {
2737                mutex_unlock(&uuid_mutex);
2738                up_write(&sb->s_umount);
2739                locked = false;
2740
2741                if (ret) /* transaction commit */
2742                        return ret;
2743
2744                ret = btrfs_relocate_sys_chunks(fs_info);
2745                if (ret < 0)
2746                        btrfs_handle_fs_error(fs_info, ret,
2747                                    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2748                trans = btrfs_attach_transaction(root);
2749                if (IS_ERR(trans)) {
2750                        if (PTR_ERR(trans) == -ENOENT)
2751                                return 0;
2752                        ret = PTR_ERR(trans);
2753                        trans = NULL;
2754                        goto error_sysfs;
2755                }
2756                ret = btrfs_commit_transaction(trans);
2757        }
2758
2759        /*
2760         * Now that we have written a new super block to this device, check all
2761         * other fs_devices list if device_path alienates any other scanned
2762         * device.
2763         * We can ignore the return value as it typically returns -EINVAL and
2764         * only succeeds if the device was an alien.
2765         */
2766        btrfs_forget_devices(device_path);
2767
2768        /* Update ctime/mtime for blkid or udev */
2769        update_dev_time(device_path);
2770
2771        return ret;
2772
2773error_sysfs:
2774        btrfs_sysfs_remove_device(device);
2775        mutex_lock(&fs_info->fs_devices->device_list_mutex);
2776        mutex_lock(&fs_info->chunk_mutex);
2777        list_del_rcu(&device->dev_list);
2778        list_del(&device->dev_alloc_list);
2779        fs_info->fs_devices->num_devices--;
2780        fs_info->fs_devices->open_devices--;
2781        fs_info->fs_devices->rw_devices--;
2782        fs_info->fs_devices->total_devices--;
2783        fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2784        atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2785        btrfs_set_super_total_bytes(fs_info->super_copy,
2786                                    orig_super_total_bytes);
2787        btrfs_set_super_num_devices(fs_info->super_copy,
2788                                    orig_super_num_devices);
2789        mutex_unlock(&fs_info->chunk_mutex);
2790        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2791error_trans:
2792        if (seeding_dev)
2793                btrfs_set_sb_rdonly(sb);
2794        if (trans)
2795                btrfs_end_transaction(trans);
2796error_free_zone:
2797        btrfs_destroy_dev_zone_info(device);
2798error_free_device:
2799        btrfs_free_device(device);
2800error:
2801        blkdev_put(bdev, FMODE_EXCL);
2802        if (locked) {
2803                mutex_unlock(&uuid_mutex);
2804                up_write(&sb->s_umount);
2805        }
2806        return ret;
2807}
2808
2809static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2810                                        struct btrfs_device *device)
2811{
2812        int ret;
2813        struct btrfs_path *path;
2814        struct btrfs_root *root = device->fs_info->chunk_root;
2815        struct btrfs_dev_item *dev_item;
2816        struct extent_buffer *leaf;
2817        struct btrfs_key key;
2818
2819        path = btrfs_alloc_path();
2820        if (!path)
2821                return -ENOMEM;
2822
2823        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2824        key.type = BTRFS_DEV_ITEM_KEY;
2825        key.offset = device->devid;
2826
2827        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2828        if (ret < 0)
2829                goto out;
2830
2831        if (ret > 0) {
2832                ret = -ENOENT;
2833                goto out;
2834        }
2835
2836        leaf = path->nodes[0];
2837        dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2838
2839        btrfs_set_device_id(leaf, dev_item, device->devid);
2840        btrfs_set_device_type(leaf, dev_item, device->type);
2841        btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2842        btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2843        btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2844        btrfs_set_device_total_bytes(leaf, dev_item,
2845                                     btrfs_device_get_disk_total_bytes(device));
2846        btrfs_set_device_bytes_used(leaf, dev_item,
2847                                    btrfs_device_get_bytes_used(device));
2848        btrfs_mark_buffer_dirty(leaf);
2849
2850out:
2851        btrfs_free_path(path);
2852        return ret;
2853}
2854
2855int btrfs_grow_device(struct btrfs_trans_handle *trans,
2856                      struct btrfs_device *device, u64 new_size)
2857{
2858        struct btrfs_fs_info *fs_info = device->fs_info;
2859        struct btrfs_super_block *super_copy = fs_info->super_copy;
2860        u64 old_total;
2861        u64 diff;
2862
2863        if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2864                return -EACCES;
2865
2866        new_size = round_down(new_size, fs_info->sectorsize);
2867
2868        mutex_lock(&fs_info->chunk_mutex);
2869        old_total = btrfs_super_total_bytes(super_copy);
2870        diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2871
2872        if (new_size <= device->total_bytes ||
2873            test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2874                mutex_unlock(&fs_info->chunk_mutex);
2875                return -EINVAL;
2876        }
2877
2878        btrfs_set_super_total_bytes(super_copy,
2879                        round_down(old_total + diff, fs_info->sectorsize));
2880        device->fs_devices->total_rw_bytes += diff;
2881
2882        btrfs_device_set_total_bytes(device, new_size);
2883        btrfs_device_set_disk_total_bytes(device, new_size);
2884        btrfs_clear_space_info_full(device->fs_info);
2885        if (list_empty(&device->post_commit_list))
2886                list_add_tail(&device->post_commit_list,
2887                              &trans->transaction->dev_update_list);
2888        mutex_unlock(&fs_info->chunk_mutex);
2889
2890        return btrfs_update_device(trans, device);
2891}
2892
2893static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2894{
2895        struct btrfs_fs_info *fs_info = trans->fs_info;
2896        struct btrfs_root *root = fs_info->chunk_root;
2897        int ret;
2898        struct btrfs_path *path;
2899        struct btrfs_key key;
2900
2901        path = btrfs_alloc_path();
2902        if (!path)
2903                return -ENOMEM;
2904
2905        key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2906        key.offset = chunk_offset;
2907        key.type = BTRFS_CHUNK_ITEM_KEY;
2908
2909        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2910        if (ret < 0)
2911                goto out;
2912        else if (ret > 0) { /* Logic error or corruption */
2913                btrfs_handle_fs_error(fs_info, -ENOENT,
2914                                      "Failed lookup while freeing chunk.");
2915                ret = -ENOENT;
2916                goto out;
2917        }
2918
2919        ret = btrfs_del_item(trans, root, path);
2920        if (ret < 0)
2921                btrfs_handle_fs_error(fs_info, ret,
2922                                      "Failed to delete chunk item.");
2923out:
2924        btrfs_free_path(path);
2925        return ret;
2926}
2927
2928static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2929{
2930        struct btrfs_super_block *super_copy = fs_info->super_copy;
2931        struct btrfs_disk_key *disk_key;
2932        struct btrfs_chunk *chunk;
2933        u8 *ptr;
2934        int ret = 0;
2935        u32 num_stripes;
2936        u32 array_size;
2937        u32 len = 0;
2938        u32 cur;
2939        struct btrfs_key key;
2940
2941        lockdep_assert_held(&fs_info->chunk_mutex);
2942        array_size = btrfs_super_sys_array_size(super_copy);
2943
2944        ptr = super_copy->sys_chunk_array;
2945        cur = 0;
2946
2947        while (cur < array_size) {
2948                disk_key = (struct btrfs_disk_key *)ptr;
2949                btrfs_disk_key_to_cpu(&key, disk_key);
2950
2951                len = sizeof(*disk_key);
2952
2953                if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2954                        chunk = (struct btrfs_chunk *)(ptr + len);
2955                        num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2956                        len += btrfs_chunk_item_size(num_stripes);
2957                } else {
2958                        ret = -EIO;
2959                        break;
2960                }
2961                if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2962                    key.offset == chunk_offset) {
2963                        memmove(ptr, ptr + len, array_size - (cur + len));
2964                        array_size -= len;
2965                        btrfs_set_super_sys_array_size(super_copy, array_size);
2966                } else {
2967                        ptr += len;
2968                        cur += len;
2969                }
2970        }
2971        return ret;
2972}
2973
2974/*
2975 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2976 * @logical: Logical block offset in bytes.
2977 * @length: Length of extent in bytes.
2978 *
2979 * Return: Chunk mapping or ERR_PTR.
2980 */
2981struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2982                                       u64 logical, u64 length)
2983{
2984        struct extent_map_tree *em_tree;
2985        struct extent_map *em;
2986
2987        em_tree = &fs_info->mapping_tree;
2988        read_lock(&em_tree->lock);
2989        em = lookup_extent_mapping(em_tree, logical, length);
2990        read_unlock(&em_tree->lock);
2991
2992        if (!em) {
2993                btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2994                           logical, length);
2995                return ERR_PTR(-EINVAL);
2996        }
2997
2998        if (em->start > logical || em->start + em->len < logical) {
2999                btrfs_crit(fs_info,
3000                           "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3001                           logical, length, em->start, em->start + em->len);
3002                free_extent_map(em);
3003                return ERR_PTR(-EINVAL);
3004        }
3005
3006        /* callers are responsible for dropping em's ref. */
3007        return em;
3008}
3009
3010static int remove_chunk_item(struct btrfs_trans_handle *trans,
3011                             struct map_lookup *map, u64 chunk_offset)
3012{
3013        int i;
3014
3015        /*
3016         * Removing chunk items and updating the device items in the chunks btree
3017         * requires holding the chunk_mutex.
3018         * See the comment at btrfs_chunk_alloc() for the details.
3019         */
3020        lockdep_assert_held(&trans->fs_info->chunk_mutex);
3021
3022        for (i = 0; i < map->num_stripes; i++) {
3023                int ret;
3024
3025                ret = btrfs_update_device(trans, map->stripes[i].dev);
3026                if (ret)
3027                        return ret;
3028        }
3029
3030        return btrfs_free_chunk(trans, chunk_offset);
3031}
3032
3033int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3034{
3035        struct btrfs_fs_info *fs_info = trans->fs_info;
3036        struct extent_map *em;
3037        struct map_lookup *map;
3038        u64 dev_extent_len = 0;
3039        int i, ret = 0;
3040        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3041
3042        em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3043        if (IS_ERR(em)) {
3044                /*
3045                 * This is a logic error, but we don't want to just rely on the
3046                 * user having built with ASSERT enabled, so if ASSERT doesn't
3047                 * do anything we still error out.
3048                 */
3049                ASSERT(0);
3050                return PTR_ERR(em);
3051        }
3052        map = em->map_lookup;
3053
3054        /*
3055         * First delete the device extent items from the devices btree.
3056         * We take the device_list_mutex to avoid racing with the finishing phase
3057         * of a device replace operation. See the comment below before acquiring
3058         * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3059         * because that can result in a deadlock when deleting the device extent
3060         * items from the devices btree - COWing an extent buffer from the btree
3061         * may result in allocating a new metadata chunk, which would attempt to
3062         * lock again fs_info->chunk_mutex.
3063         */
3064        mutex_lock(&fs_devices->device_list_mutex);
3065        for (i = 0; i < map->num_stripes; i++) {
3066                struct btrfs_device *device = map->stripes[i].dev;
3067                ret = btrfs_free_dev_extent(trans, device,
3068                                            map->stripes[i].physical,
3069                                            &dev_extent_len);
3070                if (ret) {
3071                        mutex_unlock(&fs_devices->device_list_mutex);
3072                        btrfs_abort_transaction(trans, ret);
3073                        goto out;
3074                }
3075
3076                if (device->bytes_used > 0) {
3077                        mutex_lock(&fs_info->chunk_mutex);
3078                        btrfs_device_set_bytes_used(device,
3079                                        device->bytes_used - dev_extent_len);
3080                        atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3081                        btrfs_clear_space_info_full(fs_info);
3082                        mutex_unlock(&fs_info->chunk_mutex);
3083                }
3084        }
3085        mutex_unlock(&fs_devices->device_list_mutex);
3086
3087        /*
3088         * We acquire fs_info->chunk_mutex for 2 reasons:
3089         *
3090         * 1) Just like with the first phase of the chunk allocation, we must
3091         *    reserve system space, do all chunk btree updates and deletions, and
3092         *    update the system chunk array in the superblock while holding this
3093         *    mutex. This is for similar reasons as explained on the comment at
3094         *    the top of btrfs_chunk_alloc();
3095         *
3096         * 2) Prevent races with the final phase of a device replace operation
3097         *    that replaces the device object associated with the map's stripes,
3098         *    because the device object's id can change at any time during that
3099         *    final phase of the device replace operation
3100         *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3101         *    replaced device and then see it with an ID of
3102         *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3103         *    the device item, which does not exists on the chunk btree.
3104         *    The finishing phase of device replace acquires both the
3105         *    device_list_mutex and the chunk_mutex, in that order, so we are
3106         *    safe by just acquiring the chunk_mutex.
3107         */
3108        trans->removing_chunk = true;
3109        mutex_lock(&fs_info->chunk_mutex);
3110
3111        check_system_chunk(trans, map->type);
3112
3113        ret = remove_chunk_item(trans, map, chunk_offset);
3114        /*
3115         * Normally we should not get -ENOSPC since we reserved space before
3116         * through the call to check_system_chunk().
3117         *
3118         * Despite our system space_info having enough free space, we may not
3119         * be able to allocate extents from its block groups, because all have
3120         * an incompatible profile, which will force us to allocate a new system
3121         * block group with the right profile, or right after we called
3122         * check_system_space() above, a scrub turned the only system block group
3123         * with enough free space into RO mode.
3124         * This is explained with more detail at do_chunk_alloc().
3125         *
3126         * So if we get -ENOSPC, allocate a new system chunk and retry once.
3127         */
3128        if (ret == -ENOSPC) {
3129                const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3130                struct btrfs_block_group *sys_bg;
3131
3132                sys_bg = btrfs_alloc_chunk(trans, sys_flags);
3133                if (IS_ERR(sys_bg)) {
3134                        ret = PTR_ERR(sys_bg);
3135                        btrfs_abort_transaction(trans, ret);
3136                        goto out;
3137                }
3138
3139                ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3140                if (ret) {
3141                        btrfs_abort_transaction(trans, ret);
3142                        goto out;
3143                }
3144
3145                ret = remove_chunk_item(trans, map, chunk_offset);
3146                if (ret) {
3147                        btrfs_abort_transaction(trans, ret);
3148                        goto out;
3149                }
3150        } else if (ret) {
3151                btrfs_abort_transaction(trans, ret);
3152                goto out;
3153        }
3154
3155        trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3156
3157        if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3158                ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3159                if (ret) {
3160                        btrfs_abort_transaction(trans, ret);
3161                        goto out;
3162                }
3163        }
3164
3165        mutex_unlock(&fs_info->chunk_mutex);
3166        trans->removing_chunk = false;
3167
3168        /*
3169         * We are done with chunk btree updates and deletions, so release the
3170         * system space we previously reserved (with check_system_chunk()).
3171         */
3172        btrfs_trans_release_chunk_metadata(trans);
3173
3174        ret = btrfs_remove_block_group(trans, chunk_offset, em);
3175        if (ret) {
3176                btrfs_abort_transaction(trans, ret);
3177                goto out;
3178        }
3179
3180out:
3181        if (trans->removing_chunk) {
3182                mutex_unlock(&fs_info->chunk_mutex);
3183                trans->removing_chunk = false;
3184        }
3185        /* once for us */
3186        free_extent_map(em);
3187        return ret;
3188}
3189
3190int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3191{
3192        struct btrfs_root *root = fs_info->chunk_root;
3193        struct btrfs_trans_handle *trans;
3194        struct btrfs_block_group *block_group;
3195        u64 length;
3196        int ret;
3197
3198        /*
3199         * Prevent races with automatic removal of unused block groups.
3200         * After we relocate and before we remove the chunk with offset
3201         * chunk_offset, automatic removal of the block group can kick in,
3202         * resulting in a failure when calling btrfs_remove_chunk() below.
3203         *
3204         * Make sure to acquire this mutex before doing a tree search (dev
3205         * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3206         * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3207         * we release the path used to search the chunk/dev tree and before
3208         * the current task acquires this mutex and calls us.
3209         */
3210        lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3211
3212        /* step one, relocate all the extents inside this chunk */
3213        btrfs_scrub_pause(fs_info);
3214        ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3215        btrfs_scrub_continue(fs_info);
3216        if (ret)
3217                return ret;
3218
3219        block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3220        if (!block_group)
3221                return -ENOENT;
3222        btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3223        length = block_group->length;
3224        btrfs_put_block_group(block_group);
3225
3226        /*
3227         * On a zoned file system, discard the whole block group, this will
3228         * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3229         * resetting the zone fails, don't treat it as a fatal problem from the
3230         * filesystem's point of view.
3231         */
3232        if (btrfs_is_zoned(fs_info)) {
3233                ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3234                if (ret)
3235                        btrfs_info(fs_info,
3236                                "failed to reset zone %llu after relocation",
3237                                chunk_offset);
3238        }
3239
3240        trans = btrfs_start_trans_remove_block_group(root->fs_info,
3241                                                     chunk_offset);
3242        if (IS_ERR(trans)) {
3243                ret = PTR_ERR(trans);
3244                btrfs_handle_fs_error(root->fs_info, ret, NULL);
3245                return ret;
3246        }
3247
3248        /*
3249         * step two, delete the device extents and the
3250         * chunk tree entries
3251         */
3252        ret = btrfs_remove_chunk(trans, chunk_offset);
3253        btrfs_end_transaction(trans);
3254        return ret;
3255}
3256
3257static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3258{
3259        struct btrfs_root *chunk_root = fs_info->chunk_root;
3260        struct btrfs_path *path;
3261        struct extent_buffer *leaf;
3262        struct btrfs_chunk *chunk;
3263        struct btrfs_key key;
3264        struct btrfs_key found_key;
3265        u64 chunk_type;
3266        bool retried = false;
3267        int failed = 0;
3268        int ret;
3269
3270        path = btrfs_alloc_path();
3271        if (!path)
3272                return -ENOMEM;
3273
3274again:
3275        key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3276        key.offset = (u64)-1;
3277        key.type = BTRFS_CHUNK_ITEM_KEY;
3278
3279        while (1) {
3280                mutex_lock(&fs_info->reclaim_bgs_lock);
3281                ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3282                if (ret < 0) {
3283                        mutex_unlock(&fs_info->reclaim_bgs_lock);
3284                        goto error;
3285                }
3286                BUG_ON(ret == 0); /* Corruption */
3287
3288                ret = btrfs_previous_item(chunk_root, path, key.objectid,
3289                                          key.type);
3290                if (ret)
3291                        mutex_unlock(&fs_info->reclaim_bgs_lock);
3292                if (ret < 0)
3293                        goto error;
3294                if (ret > 0)
3295                        break;
3296
3297                leaf = path->nodes[0];
3298                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3299
3300                chunk = btrfs_item_ptr(leaf, path->slots[0],
3301                                       struct btrfs_chunk);
3302                chunk_type = btrfs_chunk_type(leaf, chunk);
3303                btrfs_release_path(path);
3304
3305                if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3306                        ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3307                        if (ret == -ENOSPC)
3308                                failed++;
3309                        else
3310                                BUG_ON(ret);
3311                }
3312                mutex_unlock(&fs_info->reclaim_bgs_lock);
3313
3314                if (found_key.offset == 0)
3315                        break;
3316                key.offset = found_key.offset - 1;
3317        }
3318        ret = 0;
3319        if (failed && !retried) {
3320                failed = 0;
3321                retried = true;
3322                goto again;
3323        } else if (WARN_ON(failed && retried)) {
3324                ret = -ENOSPC;
3325        }
3326error:
3327        btrfs_free_path(path);
3328        return ret;
3329}
3330
3331/*
3332 * return 1 : allocate a data chunk successfully,
3333 * return <0: errors during allocating a data chunk,
3334 * return 0 : no need to allocate a data chunk.
3335 */
3336static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3337                                      u64 chunk_offset)
3338{
3339        struct btrfs_block_group *cache;
3340        u64 bytes_used;
3341        u64 chunk_type;
3342
3343        cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3344        ASSERT(cache);
3345        chunk_type = cache->flags;
3346        btrfs_put_block_group(cache);
3347
3348        if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3349                return 0;
3350
3351        spin_lock(&fs_info->data_sinfo->lock);
3352        bytes_used = fs_info->data_sinfo->bytes_used;
3353        spin_unlock(&fs_info->data_sinfo->lock);
3354
3355        if (!bytes_used) {
3356                struct btrfs_trans_handle *trans;
3357                int ret;
3358
3359                trans = btrfs_join_transaction(fs_info->tree_root);
3360                if (IS_ERR(trans))
3361                        return PTR_ERR(trans);
3362
3363                ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3364                btrfs_end_transaction(trans);
3365                if (ret < 0)
3366                        return ret;
3367                return 1;
3368        }
3369
3370        return 0;
3371}
3372
3373static int insert_balance_item(struct btrfs_fs_info *fs_info,
3374                               struct btrfs_balance_control *bctl)
3375{
3376        struct btrfs_root *root = fs_info->tree_root;
3377        struct btrfs_trans_handle *trans;
3378        struct btrfs_balance_item *item;
3379        struct btrfs_disk_balance_args disk_bargs;
3380        struct btrfs_path *path;
3381        struct extent_buffer *leaf;
3382        struct btrfs_key key;
3383        int ret, err;
3384
3385        path = btrfs_alloc_path();
3386        if (!path)
3387                return -ENOMEM;
3388
3389        trans = btrfs_start_transaction(root, 0);
3390        if (IS_ERR(trans)) {
3391                btrfs_free_path(path);
3392                return PTR_ERR(trans);
3393        }
3394
3395        key.objectid = BTRFS_BALANCE_OBJECTID;
3396        key.type = BTRFS_TEMPORARY_ITEM_KEY;
3397        key.offset = 0;
3398
3399        ret = btrfs_insert_empty_item(trans, root, path, &key,
3400                                      sizeof(*item));
3401        if (ret)
3402                goto out;
3403
3404        leaf = path->nodes[0];
3405        item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3406
3407        memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3408
3409        btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3410        btrfs_set_balance_data(leaf, item, &disk_bargs);
3411        btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3412        btrfs_set_balance_meta(leaf, item, &disk_bargs);
3413        btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3414        btrfs_set_balance_sys(leaf, item, &disk_bargs);
3415
3416        btrfs_set_balance_flags(leaf, item, bctl->flags);
3417
3418        btrfs_mark_buffer_dirty(leaf);
3419out:
3420        btrfs_free_path(path);
3421        err = btrfs_commit_transaction(trans);
3422        if (err && !ret)
3423                ret = err;
3424        return ret;
3425}
3426
3427static int del_balance_item(struct btrfs_fs_info *fs_info)
3428{
3429        struct btrfs_root *root = fs_info->tree_root;
3430        struct btrfs_trans_handle *trans;
3431        struct btrfs_path *path;
3432        struct btrfs_key key;
3433        int ret, err;
3434
3435        path = btrfs_alloc_path();
3436        if (!path)
3437                return -ENOMEM;
3438
3439        trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3440        if (IS_ERR(trans)) {
3441                btrfs_free_path(path);
3442                return PTR_ERR(trans);
3443        }
3444
3445        key.objectid = BTRFS_BALANCE_OBJECTID;
3446        key.type = BTRFS_TEMPORARY_ITEM_KEY;
3447        key.offset = 0;
3448
3449        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3450        if (ret < 0)
3451                goto out;
3452        if (ret > 0) {
3453                ret = -ENOENT;
3454                goto out;
3455        }
3456
3457        ret = btrfs_del_item(trans, root, path);
3458out:
3459        btrfs_free_path(path);
3460        err = btrfs_commit_transaction(trans);
3461        if (err && !ret)
3462                ret = err;
3463        return ret;
3464}
3465
3466/*
3467 * This is a heuristic used to reduce the number of chunks balanced on
3468 * resume after balance was interrupted.
3469 */
3470static void update_balance_args(struct btrfs_balance_control *bctl)
3471{
3472        /*
3473         * Turn on soft mode for chunk types that were being converted.
3474         */
3475        if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3476                bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3477        if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3478                bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3479        if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3480                bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3481
3482        /*
3483         * Turn on usage filter if is not already used.  The idea is
3484         * that chunks that we have already balanced should be
3485         * reasonably full.  Don't do it for chunks that are being
3486         * converted - that will keep us from relocating unconverted
3487         * (albeit full) chunks.
3488         */
3489        if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3490            !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3491            !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3492                bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3493                bctl->data.usage = 90;
3494        }
3495        if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3496            !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3497            !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3498                bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3499                bctl->sys.usage = 90;
3500        }
3501        if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3502            !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3503            !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3504                bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3505                bctl->meta.usage = 90;
3506        }
3507}
3508
3509/*
3510 * Clear the balance status in fs_info and delete the balance item from disk.
3511 */
3512static void reset_balance_state(struct btrfs_fs_info *fs_info)
3513{
3514        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3515        int ret;
3516
3517        BUG_ON(!fs_info->balance_ctl);
3518
3519        spin_lock(&fs_info->balance_lock);
3520        fs_info->balance_ctl = NULL;
3521        spin_unlock(&fs_info->balance_lock);
3522
3523        kfree(bctl);
3524        ret = del_balance_item(fs_info);
3525        if (ret)
3526                btrfs_handle_fs_error(fs_info, ret, NULL);
3527}
3528
3529/*
3530 * Balance filters.  Return 1 if chunk should be filtered out
3531 * (should not be balanced).
3532 */
3533static int chunk_profiles_filter(u64 chunk_type,
3534                                 struct btrfs_balance_args *bargs)
3535{
3536        chunk_type = chunk_to_extended(chunk_type) &
3537                                BTRFS_EXTENDED_PROFILE_MASK;
3538
3539        if (bargs->profiles & chunk_type)
3540                return 0;
3541
3542        return 1;
3543}
3544
3545static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3546                              struct btrfs_balance_args *bargs)
3547{
3548        struct btrfs_block_group *cache;
3549        u64 chunk_used;
3550        u64 user_thresh_min;
3551        u64 user_thresh_max;
3552        int ret = 1;
3553
3554        cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3555        chunk_used = cache->used;
3556
3557        if (bargs->usage_min == 0)
3558                user_thresh_min = 0;
3559        else
3560                user_thresh_min = div_factor_fine(cache->length,
3561                                                  bargs->usage_min);
3562
3563        if (bargs->usage_max == 0)
3564                user_thresh_max = 1;
3565        else if (bargs->usage_max > 100)
3566                user_thresh_max = cache->length;
3567        else
3568                user_thresh_max = div_factor_fine(cache->length,
3569                                                  bargs->usage_max);
3570
3571        if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3572                ret = 0;
3573
3574        btrfs_put_block_group(cache);
3575        return ret;
3576}
3577
3578static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3579                u64 chunk_offset, struct btrfs_balance_args *bargs)
3580{
3581        struct btrfs_block_group *cache;
3582        u64 chunk_used, user_thresh;
3583        int ret = 1;
3584
3585        cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3586        chunk_used = cache->used;
3587
3588        if (bargs->usage_min == 0)
3589                user_thresh = 1;
3590        else if (bargs->usage > 100)
3591                user_thresh = cache->length;
3592        else
3593                user_thresh = div_factor_fine(cache->length, bargs->usage);
3594
3595        if (chunk_used < user_thresh)
3596                ret = 0;
3597
3598        btrfs_put_block_group(cache);
3599        return ret;
3600}
3601
3602static int chunk_devid_filter(struct extent_buffer *leaf,
3603                              struct btrfs_chunk *chunk,
3604                              struct btrfs_balance_args *bargs)
3605{
3606        struct btrfs_stripe *stripe;
3607        int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3608        int i;
3609
3610        for (i = 0; i < num_stripes; i++) {
3611                stripe = btrfs_stripe_nr(chunk, i);
3612                if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3613                        return 0;
3614        }
3615
3616        return 1;
3617}
3618
3619static u64 calc_data_stripes(u64 type, int num_stripes)
3620{
3621        const int index = btrfs_bg_flags_to_raid_index(type);
3622        const int ncopies = btrfs_raid_array[index].ncopies;
3623        const int nparity = btrfs_raid_array[index].nparity;
3624
3625        if (nparity)
3626                return num_stripes - nparity;
3627        else
3628                return num_stripes / ncopies;
3629}
3630
3631/* [pstart, pend) */
3632static int chunk_drange_filter(struct extent_buffer *leaf,
3633                               struct btrfs_chunk *chunk,
3634                               struct btrfs_balance_args *bargs)
3635{
3636        struct btrfs_stripe *stripe;
3637        int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3638        u64 stripe_offset;
3639        u64 stripe_length;
3640        u64 type;
3641        int factor;
3642        int i;
3643
3644        if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3645                return 0;
3646
3647        type = btrfs_chunk_type(leaf, chunk);
3648        factor = calc_data_stripes(type, num_stripes);
3649
3650        for (i = 0; i < num_stripes; i++) {
3651                stripe = btrfs_stripe_nr(chunk, i);
3652                if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3653                        continue;
3654
3655                stripe_offset = btrfs_stripe_offset(leaf, stripe);
3656                stripe_length = btrfs_chunk_length(leaf, chunk);
3657                stripe_length = div_u64(stripe_length, factor);
3658
3659                if (stripe_offset < bargs->pend &&
3660                    stripe_offset + stripe_length > bargs->pstart)
3661                        return 0;
3662        }
3663
3664        return 1;
3665}
3666
3667/* [vstart, vend) */
3668static int chunk_vrange_filter(struct extent_buffer *leaf,
3669                               struct btrfs_chunk *chunk,
3670                               u64 chunk_offset,
3671                               struct btrfs_balance_args *bargs)
3672{
3673        if (chunk_offset < bargs->vend &&
3674            chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3675                /* at least part of the chunk is inside this vrange */
3676                return 0;
3677
3678        return 1;
3679}
3680
3681static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3682                               struct btrfs_chunk *chunk,
3683                               struct btrfs_balance_args *bargs)
3684{
3685        int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3686
3687        if (bargs->stripes_min <= num_stripes
3688                        && num_stripes <= bargs->stripes_max)
3689                return 0;
3690
3691        return 1;
3692}
3693
3694static int chunk_soft_convert_filter(u64 chunk_type,
3695                                     struct btrfs_balance_args *bargs)
3696{
3697        if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3698                return 0;
3699
3700        chunk_type = chunk_to_extended(chunk_type) &
3701                                BTRFS_EXTENDED_PROFILE_MASK;
3702
3703        if (bargs->target == chunk_type)
3704                return 1;
3705
3706        return 0;
3707}
3708
3709static int should_balance_chunk(struct extent_buffer *leaf,
3710                                struct btrfs_chunk *chunk, u64 chunk_offset)
3711{
3712        struct btrfs_fs_info *fs_info = leaf->fs_info;
3713        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3714        struct btrfs_balance_args *bargs = NULL;
3715        u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3716
3717        /* type filter */
3718        if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3719              (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3720                return 0;
3721        }
3722
3723        if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3724                bargs = &bctl->data;
3725        else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3726                bargs = &bctl->sys;
3727        else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3728                bargs = &bctl->meta;
3729
3730        /* profiles filter */
3731        if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3732            chunk_profiles_filter(chunk_type, bargs)) {
3733                return 0;
3734        }
3735
3736        /* usage filter */
3737        if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3738            chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3739                return 0;
3740        } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3741            chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3742                return 0;
3743        }
3744
3745        /* devid filter */
3746        if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3747            chunk_devid_filter(leaf, chunk, bargs)) {
3748                return 0;
3749        }
3750
3751        /* drange filter, makes sense only with devid filter */
3752        if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3753            chunk_drange_filter(leaf, chunk, bargs)) {
3754                return 0;
3755        }
3756
3757        /* vrange filter */
3758        if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3759            chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3760                return 0;
3761        }
3762
3763        /* stripes filter */
3764        if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3765            chunk_stripes_range_filter(leaf, chunk, bargs)) {
3766                return 0;
3767        }
3768
3769        /* soft profile changing mode */
3770        if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3771            chunk_soft_convert_filter(chunk_type, bargs)) {
3772                return 0;
3773        }
3774
3775        /*
3776         * limited by count, must be the last filter
3777         */
3778        if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3779                if (bargs->limit == 0)
3780                        return 0;
3781                else
3782                        bargs->limit--;
3783        } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3784                /*
3785                 * Same logic as the 'limit' filter; the minimum cannot be
3786                 * determined here because we do not have the global information
3787                 * about the count of all chunks that satisfy the filters.
3788                 */
3789                if (bargs->limit_max == 0)
3790                        return 0;
3791                else
3792                        bargs->limit_max--;
3793        }
3794
3795        return 1;
3796}
3797
3798static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3799{
3800        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3801        struct btrfs_root *chunk_root = fs_info->chunk_root;
3802        u64 chunk_type;
3803        struct btrfs_chunk *chunk;
3804        struct btrfs_path *path = NULL;
3805        struct btrfs_key key;
3806        struct btrfs_key found_key;
3807        struct extent_buffer *leaf;
3808        int slot;
3809        int ret;
3810        int enospc_errors = 0;
3811        bool counting = true;
3812        /* The single value limit and min/max limits use the same bytes in the */
3813        u64 limit_data = bctl->data.limit;
3814        u64 limit_meta = bctl->meta.limit;
3815        u64 limit_sys = bctl->sys.limit;
3816        u32 count_data = 0;
3817        u32 count_meta = 0;
3818        u32 count_sys = 0;
3819        int chunk_reserved = 0;
3820
3821        path = btrfs_alloc_path();
3822        if (!path) {
3823                ret = -ENOMEM;
3824                goto error;
3825        }
3826
3827        /* zero out stat counters */
3828        spin_lock(&fs_info->balance_lock);
3829        memset(&bctl->stat, 0, sizeof(bctl->stat));
3830        spin_unlock(&fs_info->balance_lock);
3831again:
3832        if (!counting) {
3833                /*
3834                 * The single value limit and min/max limits use the same bytes
3835                 * in the
3836                 */
3837                bctl->data.limit = limit_data;
3838                bctl->meta.limit = limit_meta;
3839                bctl->sys.limit = limit_sys;
3840        }
3841        key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3842        key.offset = (u64)-1;
3843        key.type = BTRFS_CHUNK_ITEM_KEY;
3844
3845        while (1) {
3846                if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3847                    atomic_read(&fs_info->balance_cancel_req)) {
3848                        ret = -ECANCELED;
3849                        goto error;
3850                }
3851
3852                mutex_lock(&fs_info->reclaim_bgs_lock);
3853                ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3854                if (ret < 0) {
3855                        mutex_unlock(&fs_info->reclaim_bgs_lock);
3856                        goto error;
3857                }
3858
3859                /*
3860                 * this shouldn't happen, it means the last relocate
3861                 * failed
3862                 */
3863                if (ret == 0)
3864                        BUG(); /* FIXME break ? */
3865
3866                ret = btrfs_previous_item(chunk_root, path, 0,
3867                                          BTRFS_CHUNK_ITEM_KEY);
3868                if (ret) {
3869                        mutex_unlock(&fs_info->reclaim_bgs_lock);
3870                        ret = 0;
3871                        break;
3872                }
3873
3874                leaf = path->nodes[0];
3875                slot = path->slots[0];
3876                btrfs_item_key_to_cpu(leaf, &found_key, slot);
3877
3878                if (found_key.objectid != key.objectid) {
3879                        mutex_unlock(&fs_info->reclaim_bgs_lock);
3880                        break;
3881                }
3882
3883                chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3884                chunk_type = btrfs_chunk_type(leaf, chunk);
3885
3886                if (!counting) {
3887                        spin_lock(&fs_info->balance_lock);
3888                        bctl->stat.considered++;
3889                        spin_unlock(&fs_info->balance_lock);
3890                }
3891
3892                ret = should_balance_chunk(leaf, chunk, found_key.offset);
3893
3894                btrfs_release_path(path);
3895                if (!ret) {
3896                        mutex_unlock(&fs_info->reclaim_bgs_lock);
3897                        goto loop;
3898                }
3899
3900                if (counting) {
3901                        mutex_unlock(&fs_info->reclaim_bgs_lock);
3902                        spin_lock(&fs_info->balance_lock);
3903                        bctl->stat.expected++;
3904                        spin_unlock(&fs_info->balance_lock);
3905
3906                        if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3907                                count_data++;
3908                        else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3909                                count_sys++;
3910                        else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3911                                count_meta++;
3912
3913                        goto loop;
3914                }
3915
3916                /*
3917                 * Apply limit_min filter, no need to check if the LIMITS
3918                 * filter is used, limit_min is 0 by default
3919                 */
3920                if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3921                                        count_data < bctl->data.limit_min)
3922                                || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3923                                        count_meta < bctl->meta.limit_min)
3924                                || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3925                                        count_sys < bctl->sys.limit_min)) {
3926                        mutex_unlock(&fs_info->reclaim_bgs_lock);
3927                        goto loop;
3928                }
3929
3930                if (!chunk_reserved) {
3931                        /*
3932                         * We may be relocating the only data chunk we have,
3933                         * which could potentially end up with losing data's
3934                         * raid profile, so lets allocate an empty one in
3935                         * advance.
3936                         */
3937                        ret = btrfs_may_alloc_data_chunk(fs_info,
3938                                                         found_key.offset);
3939                        if (ret < 0) {
3940                                mutex_unlock(&fs_info->reclaim_bgs_lock);
3941                                goto error;
3942                        } else if (ret == 1) {
3943                                chunk_reserved = 1;
3944                        }
3945                }
3946
3947                ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3948                mutex_unlock(&fs_info->reclaim_bgs_lock);
3949                if (ret == -ENOSPC) {
3950                        enospc_errors++;
3951                } else if (ret == -ETXTBSY) {
3952                        btrfs_info(fs_info,
3953           "skipping relocation of block group %llu due to active swapfile",
3954                                   found_key.offset);
3955                        ret = 0;
3956                } else if (ret) {
3957                        goto error;
3958                } else {
3959                        spin_lock(&fs_info->balance_lock);
3960                        bctl->stat.completed++;
3961                        spin_unlock(&fs_info->balance_lock);
3962                }
3963loop:
3964                if (found_key.offset == 0)
3965                        break;
3966                key.offset = found_key.offset - 1;
3967        }
3968
3969        if (counting) {
3970                btrfs_release_path(path);
3971                counting = false;
3972                goto again;
3973        }
3974error:
3975        btrfs_free_path(path);
3976        if (enospc_errors) {
3977                btrfs_info(fs_info, "%d enospc errors during balance",
3978                           enospc_errors);
3979                if (!ret)
3980                        ret = -ENOSPC;
3981        }
3982
3983        return ret;
3984}
3985
3986/**
3987 * alloc_profile_is_valid - see if a given profile is valid and reduced
3988 * @flags: profile to validate
3989 * @extended: if true @flags is treated as an extended profile
3990 */
3991static int alloc_profile_is_valid(u64 flags, int extended)
3992{
3993        u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3994                               BTRFS_BLOCK_GROUP_PROFILE_MASK);
3995
3996        flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3997
3998        /* 1) check that all other bits are zeroed */
3999        if (flags & ~mask)
4000                return 0;
4001
4002        /* 2) see if profile is reduced */
4003        if (flags == 0)
4004                return !extended; /* "0" is valid for usual profiles */
4005
4006        return has_single_bit_set(flags);
4007}
4008
4009static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4010{
4011        /* cancel requested || normal exit path */
4012        return atomic_read(&fs_info->balance_cancel_req) ||
4013                (atomic_read(&fs_info->balance_pause_req) == 0 &&
4014                 atomic_read(&fs_info->balance_cancel_req) == 0);
4015}
4016
4017/*
4018 * Validate target profile against allowed profiles and return true if it's OK.
4019 * Otherwise print the error message and return false.
4020 */
4021static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4022                const struct btrfs_balance_args *bargs,
4023                u64 allowed, const char *type)
4024{
4025        if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4026                return true;
4027
4028        /* Profile is valid and does not have bits outside of the allowed set */
4029        if (alloc_profile_is_valid(bargs->target, 1) &&
4030            (bargs->target & ~allowed) == 0)
4031                return true;
4032
4033        btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4034                        type, btrfs_bg_type_to_raid_name(bargs->target));
4035        return false;
4036}
4037
4038/*
4039 * Fill @buf with textual description of balance filter flags @bargs, up to
4040 * @size_buf including the terminating null. The output may be trimmed if it
4041 * does not fit into the provided buffer.
4042 */
4043static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4044                                 u32 size_buf)
4045{
4046        int ret;
4047        u32 size_bp = size_buf;
4048        char *bp = buf;
4049        u64 flags = bargs->flags;
4050        char tmp_buf[128] = {'\0'};
4051
4052        if (!flags)
4053                return;
4054
4055#define CHECK_APPEND_NOARG(a)                                           \
4056        do {                                                            \
4057                ret = snprintf(bp, size_bp, (a));                       \
4058                if (ret < 0 || ret >= size_bp)                          \
4059                        goto out_overflow;                              \
4060                size_bp -= ret;                                         \
4061                bp += ret;                                              \
4062        } while (0)
4063
4064#define CHECK_APPEND_1ARG(a, v1)                                        \
4065        do {                                                            \
4066                ret = snprintf(bp, size_bp, (a), (v1));                 \
4067                if (ret < 0 || ret >= size_bp)                          \
4068                        goto out_overflow;                              \
4069                size_bp -= ret;                                         \
4070                bp += ret;                                              \
4071        } while (0)
4072
4073#define CHECK_APPEND_2ARG(a, v1, v2)                                    \
4074        do {                                                            \
4075                ret = snprintf(bp, size_bp, (a), (v1), (v2));           \
4076                if (ret < 0 || ret >= size_bp)                          \
4077                        goto out_overflow;                              \
4078                size_bp -= ret;                                         \
4079                bp += ret;                                              \
4080        } while (0)
4081
4082        if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4083                CHECK_APPEND_1ARG("convert=%s,",
4084                                  btrfs_bg_type_to_raid_name(bargs->target));
4085
4086        if (flags & BTRFS_BALANCE_ARGS_SOFT)
4087                CHECK_APPEND_NOARG("soft,");
4088
4089        if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4090                btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4091                                            sizeof(tmp_buf));
4092                CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4093        }
4094
4095        if (flags & BTRFS_BALANCE_ARGS_USAGE)
4096                CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4097
4098        if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4099                CHECK_APPEND_2ARG("usage=%u..%u,",
4100                                  bargs->usage_min, bargs->usage_max);
4101
4102        if (flags & BTRFS_BALANCE_ARGS_DEVID)
4103                CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4104
4105        if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4106                CHECK_APPEND_2ARG("drange=%llu..%llu,",
4107                                  bargs->pstart, bargs->pend);
4108
4109        if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4110                CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4111                                  bargs->vstart, bargs->vend);
4112
4113        if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4114                CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4115
4116        if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4117                CHECK_APPEND_2ARG("limit=%u..%u,",
4118                                bargs->limit_min, bargs->limit_max);
4119
4120        if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4121                CHECK_APPEND_2ARG("stripes=%u..%u,",
4122                                  bargs->stripes_min, bargs->stripes_max);
4123
4124#undef CHECK_APPEND_2ARG
4125#undef CHECK_APPEND_1ARG
4126#undef CHECK_APPEND_NOARG
4127
4128out_overflow:
4129
4130        if (size_bp < size_buf)
4131                buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4132        else
4133                buf[0] = '\0';
4134}
4135
4136static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4137{
4138        u32 size_buf = 1024;
4139        char tmp_buf[192] = {'\0'};
4140        char *buf;
4141        char *bp;
4142        u32 size_bp = size_buf;
4143        int ret;
4144        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4145
4146        buf = kzalloc(size_buf, GFP_KERNEL);
4147        if (!buf)
4148                return;
4149
4150        bp = buf;
4151
4152#define CHECK_APPEND_1ARG(a, v1)                                        \
4153        do {                                                            \
4154                ret = snprintf(bp, size_bp, (a), (v1));                 \
4155                if (ret < 0 || ret >= size_bp)                          \
4156                        goto out_overflow;                              \
4157                size_bp -= ret;                                         \
4158                bp += ret;                                              \
4159        } while (0)
4160
4161        if (bctl->flags & BTRFS_BALANCE_FORCE)
4162                CHECK_APPEND_1ARG("%s", "-f ");
4163
4164        if (bctl->flags & BTRFS_BALANCE_DATA) {
4165                describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4166                CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4167        }
4168
4169        if (bctl->flags & BTRFS_BALANCE_METADATA) {
4170                describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4171                CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4172        }
4173
4174        if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4175                describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4176                CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4177        }
4178
4179#undef CHECK_APPEND_1ARG
4180
4181out_overflow:
4182
4183        if (size_bp < size_buf)
4184                buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4185        btrfs_info(fs_info, "balance: %s %s",
4186                   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4187                   "resume" : "start", buf);
4188
4189        kfree(buf);
4190}
4191
4192/*
4193 * Should be called with balance mutexe held
4194 */
4195int btrfs_balance(struct btrfs_fs_info *fs_info,
4196                  struct btrfs_balance_control *bctl,
4197                  struct btrfs_ioctl_balance_args *bargs)
4198{
4199        u64 meta_target, data_target;
4200        u64 allowed;
4201        int mixed = 0;
4202        int ret;
4203        u64 num_devices;
4204        unsigned seq;
4205        bool reducing_redundancy;
4206        int i;
4207
4208        if (btrfs_fs_closing(fs_info) ||
4209            atomic_read(&fs_info->balance_pause_req) ||
4210            btrfs_should_cancel_balance(fs_info)) {
4211                ret = -EINVAL;
4212                goto out;
4213        }
4214
4215        allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4216        if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4217                mixed = 1;
4218
4219        /*
4220         * In case of mixed groups both data and meta should be picked,
4221         * and identical options should be given for both of them.
4222         */
4223        allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4224        if (mixed && (bctl->flags & allowed)) {
4225                if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4226                    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4227                    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4228                        btrfs_err(fs_info,
4229          "balance: mixed groups data and metadata options must be the same");
4230                        ret = -EINVAL;
4231                        goto out;
4232                }
4233        }
4234
4235        /*
4236         * rw_devices will not change at the moment, device add/delete/replace
4237         * are exclusive
4238         */
4239        num_devices = fs_info->fs_devices->rw_devices;
4240
4241        /*
4242         * SINGLE profile on-disk has no profile bit, but in-memory we have a
4243         * special bit for it, to make it easier to distinguish.  Thus we need
4244         * to set it manually, or balance would refuse the profile.
4245         */
4246        allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4247        for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4248                if (num_devices >= btrfs_raid_array[i].devs_min)
4249                        allowed |= btrfs_raid_array[i].bg_flag;
4250
4251        if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4252            !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4253            !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4254                ret = -EINVAL;
4255                goto out;
4256        }
4257
4258        /*
4259         * Allow to reduce metadata or system integrity only if force set for
4260         * profiles with redundancy (copies, parity)
4261         */
4262        allowed = 0;
4263        for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4264                if (btrfs_raid_array[i].ncopies >= 2 ||
4265                    btrfs_raid_array[i].tolerated_failures >= 1)
4266                        allowed |= btrfs_raid_array[i].bg_flag;
4267        }
4268        do {
4269                seq = read_seqbegin(&fs_info->profiles_lock);
4270
4271                if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4272                     (fs_info->avail_system_alloc_bits & allowed) &&
4273                     !(bctl->sys.target & allowed)) ||
4274                    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4275                     (fs_info->avail_metadata_alloc_bits & allowed) &&
4276                     !(bctl->meta.target & allowed)))
4277                        reducing_redundancy = true;
4278                else
4279                        reducing_redundancy = false;
4280
4281                /* if we're not converting, the target field is uninitialized */
4282                meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4283                        bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4284                data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4285                        bctl->data.target : fs_info->avail_data_alloc_bits;
4286        } while (read_seqretry(&fs_info->profiles_lock, seq));
4287
4288        if (reducing_redundancy) {
4289                if (bctl->flags & BTRFS_BALANCE_FORCE) {
4290                        btrfs_info(fs_info,
4291                           "balance: force reducing metadata redundancy");
4292                } else {
4293                        btrfs_err(fs_info,
4294        "balance: reduces metadata redundancy, use --force if you want this");
4295                        ret = -EINVAL;
4296                        goto out;
4297                }
4298        }
4299
4300        if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4301                btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4302                btrfs_warn(fs_info,
4303        "balance: metadata profile %s has lower redundancy than data profile %s",
4304                                btrfs_bg_type_to_raid_name(meta_target),
4305                                btrfs_bg_type_to_raid_name(data_target));
4306        }
4307
4308        ret = insert_balance_item(fs_info, bctl);
4309        if (ret && ret != -EEXIST)
4310                goto out;
4311
4312        if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4313                BUG_ON(ret == -EEXIST);
4314                BUG_ON(fs_info->balance_ctl);
4315                spin_lock(&fs_info->balance_lock);
4316                fs_info->balance_ctl = bctl;
4317                spin_unlock(&fs_info->balance_lock);
4318        } else {
4319                BUG_ON(ret != -EEXIST);
4320                spin_lock(&fs_info->balance_lock);
4321                update_balance_args(bctl);
4322                spin_unlock(&fs_info->balance_lock);
4323        }
4324
4325        ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4326        set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4327        describe_balance_start_or_resume(fs_info);
4328        mutex_unlock(&fs_info->balance_mutex);
4329
4330        ret = __btrfs_balance(fs_info);
4331
4332        mutex_lock(&fs_info->balance_mutex);
4333        if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4334                btrfs_info(fs_info, "balance: paused");
4335        /*
4336         * Balance can be canceled by:
4337         *
4338         * - Regular cancel request
4339         *   Then ret == -ECANCELED and balance_cancel_req > 0
4340         *
4341         * - Fatal signal to "btrfs" process
4342         *   Either the signal caught by wait_reserve_ticket() and callers
4343         *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4344         *   got -ECANCELED.
4345         *   Either way, in this case balance_cancel_req = 0, and
4346         *   ret == -EINTR or ret == -ECANCELED.
4347         *
4348         * So here we only check the return value to catch canceled balance.
4349         */
4350        else if (ret == -ECANCELED || ret == -EINTR)
4351                btrfs_info(fs_info, "balance: canceled");
4352        else
4353                btrfs_info(fs_info, "balance: ended with status: %d", ret);
4354
4355        clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4356
4357        if (bargs) {
4358                memset(bargs, 0, sizeof(*bargs));
4359                btrfs_update_ioctl_balance_args(fs_info, bargs);
4360        }
4361
4362        if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4363            balance_need_close(fs_info)) {
4364                reset_balance_state(fs_info);
4365                btrfs_exclop_finish(fs_info);
4366        }
4367
4368        wake_up(&fs_info->balance_wait_q);
4369
4370        return ret;
4371out:
4372        if (bctl->flags & BTRFS_BALANCE_RESUME)
4373                reset_balance_state(fs_info);
4374        else
4375                kfree(bctl);
4376        btrfs_exclop_finish(fs_info);
4377
4378        return ret;
4379}
4380
4381static int balance_kthread(void *data)
4382{
4383        struct btrfs_fs_info *fs_info = data;
4384        int ret = 0;
4385
4386        mutex_lock(&fs_info->balance_mutex);
4387        if (fs_info->balance_ctl)
4388                ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4389        mutex_unlock(&fs_info->balance_mutex);
4390
4391        return ret;
4392}
4393
4394int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4395{
4396        struct task_struct *tsk;
4397
4398        mutex_lock(&fs_info->balance_mutex);
4399        if (!fs_info->balance_ctl) {
4400                mutex_unlock(&fs_info->balance_mutex);
4401                return 0;
4402        }
4403        mutex_unlock(&fs_info->balance_mutex);
4404
4405        if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4406                btrfs_info(fs_info, "balance: resume skipped");
4407                return 0;
4408        }
4409
4410        /*
4411         * A ro->rw remount sequence should continue with the paused balance
4412         * regardless of who pauses it, system or the user as of now, so set
4413         * the resume flag.
4414         */
4415        spin_lock(&fs_info->balance_lock);
4416        fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4417        spin_unlock(&fs_info->balance_lock);
4418
4419        tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4420        return PTR_ERR_OR_ZERO(tsk);
4421}
4422
4423int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4424{
4425        struct btrfs_balance_control *bctl;
4426        struct btrfs_balance_item *item;
4427        struct btrfs_disk_balance_args disk_bargs;
4428        struct btrfs_path *path;
4429        struct extent_buffer *leaf;
4430        struct btrfs_key key;
4431        int ret;
4432
4433        path = btrfs_alloc_path();
4434        if (!path)
4435                return -ENOMEM;
4436
4437        key.objectid = BTRFS_BALANCE_OBJECTID;
4438        key.type = BTRFS_TEMPORARY_ITEM_KEY;
4439        key.offset = 0;
4440
4441        ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4442        if (ret < 0)
4443                goto out;
4444        if (ret > 0) { /* ret = -ENOENT; */
4445                ret = 0;
4446                goto out;
4447        }
4448
4449        bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4450        if (!bctl) {
4451                ret = -ENOMEM;
4452                goto out;
4453        }
4454
4455        leaf = path->nodes[0];
4456        item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4457
4458        bctl->flags = btrfs_balance_flags(leaf, item);
4459        bctl->flags |= BTRFS_BALANCE_RESUME;
4460
4461        btrfs_balance_data(leaf, item, &disk_bargs);
4462        btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4463        btrfs_balance_meta(leaf, item, &disk_bargs);
4464        btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4465        btrfs_balance_sys(leaf, item, &disk_bargs);
4466        btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4467
4468        /*
4469         * This should never happen, as the paused balance state is recovered
4470         * during mount without any chance of other exclusive ops to collide.
4471         *
4472         * This gives the exclusive op status to balance and keeps in paused
4473         * state until user intervention (cancel or umount). If the ownership
4474         * cannot be assigned, show a message but do not fail. The balance
4475         * is in a paused state and must have fs_info::balance_ctl properly
4476         * set up.
4477         */
4478        if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4479                btrfs_warn(fs_info,
4480        "balance: cannot set exclusive op status, resume manually");
4481
4482        btrfs_release_path(path);
4483
4484        mutex_lock(&fs_info->balance_mutex);
4485        BUG_ON(fs_info->balance_ctl);
4486        spin_lock(&fs_info->balance_lock);
4487        fs_info->balance_ctl = bctl;
4488        spin_unlock(&fs_info->balance_lock);
4489        mutex_unlock(&fs_info->balance_mutex);
4490out:
4491        btrfs_free_path(path);
4492        return ret;
4493}
4494
4495int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4496{
4497        int ret = 0;
4498
4499        mutex_lock(&fs_info->balance_mutex);
4500        if (!fs_info->balance_ctl) {
4501                mutex_unlock(&fs_info->balance_mutex);
4502                return -ENOTCONN;
4503        }
4504
4505        if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4506                atomic_inc(&fs_info->balance_pause_req);
4507                mutex_unlock(&fs_info->balance_mutex);
4508
4509                wait_event(fs_info->balance_wait_q,
4510                           !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4511
4512                mutex_lock(&fs_info->balance_mutex);
4513                /* we are good with balance_ctl ripped off from under us */
4514                BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4515                atomic_dec(&fs_info->balance_pause_req);
4516        } else {
4517                ret = -ENOTCONN;
4518        }
4519
4520        mutex_unlock(&fs_info->balance_mutex);
4521        return ret;
4522}
4523
4524int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4525{
4526        mutex_lock(&fs_info->balance_mutex);
4527        if (!fs_info->balance_ctl) {
4528                mutex_unlock(&fs_info->balance_mutex);
4529                return -ENOTCONN;
4530        }
4531
4532        /*
4533         * A paused balance with the item stored on disk can be resumed at
4534         * mount time if the mount is read-write. Otherwise it's still paused
4535         * and we must not allow cancelling as it deletes the item.
4536         */
4537        if (sb_rdonly(fs_info->sb)) {
4538                mutex_unlock(&fs_info->balance_mutex);
4539                return -EROFS;
4540        }
4541
4542        atomic_inc(&fs_info->balance_cancel_req);
4543        /*
4544         * if we are running just wait and return, balance item is
4545         * deleted in btrfs_balance in this case
4546         */
4547        if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4548                mutex_unlock(&fs_info->balance_mutex);
4549                wait_event(fs_info->balance_wait_q,
4550                           !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4551                mutex_lock(&fs_info->balance_mutex);
4552        } else {
4553                mutex_unlock(&fs_info->balance_mutex);
4554                /*
4555                 * Lock released to allow other waiters to continue, we'll
4556                 * reexamine the status again.
4557                 */
4558                mutex_lock(&fs_info->balance_mutex);
4559
4560                if (fs_info->balance_ctl) {
4561                        reset_balance_state(fs_info);
4562                        btrfs_exclop_finish(fs_info);
4563                        btrfs_info(fs_info, "balance: canceled");
4564                }
4565        }
4566
4567        BUG_ON(fs_info->balance_ctl ||
4568                test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4569        atomic_dec(&fs_info->balance_cancel_req);
4570        mutex_unlock(&fs_info->balance_mutex);
4571        return 0;
4572}
4573
4574int btrfs_uuid_scan_kthread(void *data)
4575{
4576        struct btrfs_fs_info *fs_info = data;
4577        struct btrfs_root *root = fs_info->tree_root;
4578        struct btrfs_key key;
4579        struct btrfs_path *path = NULL;
4580        int ret = 0;
4581        struct extent_buffer *eb;
4582        int slot;
4583        struct btrfs_root_item root_item;
4584        u32 item_size;
4585        struct btrfs_trans_handle *trans = NULL;
4586        bool closing = false;
4587
4588        path = btrfs_alloc_path();
4589        if (!path) {
4590                ret = -ENOMEM;
4591                goto out;
4592        }
4593
4594        key.objectid = 0;
4595        key.type = BTRFS_ROOT_ITEM_KEY;
4596        key.offset = 0;
4597
4598        while (1) {
4599                if (btrfs_fs_closing(fs_info)) {
4600                        closing = true;
4601                        break;
4602                }
4603                ret = btrfs_search_forward(root, &key, path,
4604                                BTRFS_OLDEST_GENERATION);
4605                if (ret) {
4606                        if (ret > 0)
4607                                ret = 0;
4608                        break;
4609                }
4610
4611                if (key.type != BTRFS_ROOT_ITEM_KEY ||
4612                    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4613                     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4614                    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4615                        goto skip;
4616
4617                eb = path->nodes[0];
4618                slot = path->slots[0];
4619                item_size = btrfs_item_size_nr(eb, slot);
4620                if (item_size < sizeof(root_item))
4621                        goto skip;
4622
4623                read_extent_buffer(eb, &root_item,
4624                                   btrfs_item_ptr_offset(eb, slot),
4625                                   (int)sizeof(root_item));
4626                if (btrfs_root_refs(&root_item) == 0)
4627                        goto skip;
4628
4629                if (!btrfs_is_empty_uuid(root_item.uuid) ||
4630                    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4631                        if (trans)
4632                                goto update_tree;
4633
4634                        btrfs_release_path(path);
4635                        /*
4636                         * 1 - subvol uuid item
4637                         * 1 - received_subvol uuid item
4638                         */
4639                        trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4640                        if (IS_ERR(trans)) {
4641                                ret = PTR_ERR(trans);
4642                                break;
4643                        }
4644                        continue;
4645                } else {
4646                        goto skip;
4647                }
4648update_tree:
4649                btrfs_release_path(path);
4650                if (!btrfs_is_empty_uuid(root_item.uuid)) {
4651                        ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4652                                                  BTRFS_UUID_KEY_SUBVOL,
4653                                                  key.objectid);
4654                        if (ret < 0) {
4655                                btrfs_warn(fs_info, "uuid_tree_add failed %d",
4656                                        ret);
4657                                break;
4658                        }
4659                }
4660
4661                if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4662                        ret = btrfs_uuid_tree_add(trans,
4663                                                  root_item.received_uuid,
4664                                                 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4665                                                  key.objectid);
4666                        if (ret < 0) {
4667                                btrfs_warn(fs_info, "uuid_tree_add failed %d",
4668                                        ret);
4669                                break;
4670                        }
4671                }
4672
4673skip:
4674                btrfs_release_path(path);
4675                if (trans) {
4676                        ret = btrfs_end_transaction(trans);
4677                        trans = NULL;
4678                        if (ret)
4679                                break;
4680                }
4681
4682                if (key.offset < (u64)-1) {
4683                        key.offset++;
4684                } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4685                        key.offset = 0;
4686                        key.type = BTRFS_ROOT_ITEM_KEY;
4687                } else if (key.objectid < (u64)-1) {
4688                        key.offset = 0;
4689                        key.type = BTRFS_ROOT_ITEM_KEY;
4690                        key.objectid++;
4691                } else {
4692                        break;
4693                }
4694                cond_resched();
4695        }
4696
4697out:
4698        btrfs_free_path(path);
4699        if (trans && !IS_ERR(trans))
4700                btrfs_end_transaction(trans);
4701        if (ret)
4702                btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4703        else if (!closing)
4704                set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4705        up(&fs_info->uuid_tree_rescan_sem);
4706        return 0;
4707}
4708
4709int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4710{
4711        struct btrfs_trans_handle *trans;
4712        struct btrfs_root *tree_root = fs_info->tree_root;
4713        struct btrfs_root *uuid_root;
4714        struct task_struct *task;
4715        int ret;
4716
4717        /*
4718         * 1 - root node
4719         * 1 - root item
4720         */
4721        trans = btrfs_start_transaction(tree_root, 2);
4722        if (IS_ERR(trans))
4723                return PTR_ERR(trans);
4724
4725        uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4726        if (IS_ERR(uuid_root)) {
4727                ret = PTR_ERR(uuid_root);
4728                btrfs_abort_transaction(trans, ret);
4729                btrfs_end_transaction(trans);
4730                return ret;
4731        }
4732
4733        fs_info->uuid_root = uuid_root;
4734
4735        ret = btrfs_commit_transaction(trans);
4736        if (ret)
4737                return ret;
4738
4739        down(&fs_info->uuid_tree_rescan_sem);
4740        task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4741        if (IS_ERR(task)) {
4742                /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4743                btrfs_warn(fs_info, "failed to start uuid_scan task");
4744                up(&fs_info->uuid_tree_rescan_sem);
4745                return PTR_ERR(task);
4746        }
4747
4748        return 0;
4749}
4750
4751/*
4752 * shrinking a device means finding all of the device extents past
4753 * the new size, and then following the back refs to the chunks.
4754 * The chunk relocation code actually frees the device extent
4755 */
4756int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4757{
4758        struct btrfs_fs_info *fs_info = device->fs_info;
4759        struct btrfs_root *root = fs_info->dev_root;
4760        struct btrfs_trans_handle *trans;
4761        struct btrfs_dev_extent *dev_extent = NULL;
4762        struct btrfs_path *path;
4763        u64 length;
4764        u64 chunk_offset;
4765        int ret;
4766        int slot;
4767        int failed = 0;
4768        bool retried = false;
4769        struct extent_buffer *l;
4770        struct btrfs_key key;
4771        struct btrfs_super_block *super_copy = fs_info->super_copy;
4772        u64 old_total = btrfs_super_total_bytes(super_copy);
4773        u64 old_size = btrfs_device_get_total_bytes(device);
4774        u64 diff;
4775        u64 start;
4776
4777        new_size = round_down(new_size, fs_info->sectorsize);
4778        start = new_size;
4779        diff = round_down(old_size - new_size, fs_info->sectorsize);
4780
4781        if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4782                return -EINVAL;
4783
4784        path = btrfs_alloc_path();
4785        if (!path)
4786                return -ENOMEM;
4787
4788        path->reada = READA_BACK;
4789
4790        trans = btrfs_start_transaction(root, 0);
4791        if (IS_ERR(trans)) {
4792                btrfs_free_path(path);
4793                return PTR_ERR(trans);
4794        }
4795
4796        mutex_lock(&fs_info->chunk_mutex);
4797
4798        btrfs_device_set_total_bytes(device, new_size);
4799        if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4800                device->fs_devices->total_rw_bytes -= diff;
4801                atomic64_sub(diff, &fs_info->free_chunk_space);
4802        }
4803
4804        /*
4805         * Once the device's size has been set to the new size, ensure all
4806         * in-memory chunks are synced to disk so that the loop below sees them
4807         * and relocates them accordingly.
4808         */
4809        if (contains_pending_extent(device, &start, diff)) {
4810                mutex_unlock(&fs_info->chunk_mutex);
4811                ret = btrfs_commit_transaction(trans);
4812                if (ret)
4813                        goto done;
4814        } else {
4815                mutex_unlock(&fs_info->chunk_mutex);
4816                btrfs_end_transaction(trans);
4817        }
4818
4819again:
4820        key.objectid = device->devid;
4821        key.offset = (u64)-1;
4822        key.type = BTRFS_DEV_EXTENT_KEY;
4823
4824        do {
4825                mutex_lock(&fs_info->reclaim_bgs_lock);
4826                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4827                if (ret < 0) {
4828                        mutex_unlock(&fs_info->reclaim_bgs_lock);
4829                        goto done;
4830                }
4831
4832                ret = btrfs_previous_item(root, path, 0, key.type);
4833                if (ret) {
4834                        mutex_unlock(&fs_info->reclaim_bgs_lock);
4835                        if (ret < 0)
4836                                goto done;
4837                        ret = 0;
4838                        btrfs_release_path(path);
4839                        break;
4840                }
4841
4842                l = path->nodes[0];
4843                slot = path->slots[0];
4844                btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4845
4846                if (key.objectid != device->devid) {
4847                        mutex_unlock(&fs_info->reclaim_bgs_lock);
4848                        btrfs_release_path(path);
4849                        break;
4850                }
4851
4852                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4853                length = btrfs_dev_extent_length(l, dev_extent);
4854
4855                if (key.offset + length <= new_size) {
4856                        mutex_unlock(&fs_info->reclaim_bgs_lock);
4857                        btrfs_release_path(path);
4858                        break;
4859                }
4860
4861                chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4862                btrfs_release_path(path);
4863
4864                /*
4865                 * We may be relocating the only data chunk we have,
4866                 * which could potentially end up with losing data's
4867                 * raid profile, so lets allocate an empty one in
4868                 * advance.
4869                 */
4870                ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4871                if (ret < 0) {
4872                        mutex_unlock(&fs_info->reclaim_bgs_lock);
4873                        goto done;
4874                }
4875
4876                ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4877                mutex_unlock(&fs_info->reclaim_bgs_lock);
4878                if (ret == -ENOSPC) {
4879                        failed++;
4880                } else if (ret) {
4881                        if (ret == -ETXTBSY) {
4882                                btrfs_warn(fs_info,
4883                   "could not shrink block group %llu due to active swapfile",
4884                                           chunk_offset);
4885                        }
4886                        goto done;
4887                }
4888        } while (key.offset-- > 0);
4889
4890        if (failed && !retried) {
4891                failed = 0;
4892                retried = true;
4893                goto again;
4894        } else if (failed && retried) {
4895                ret = -ENOSPC;
4896                goto done;
4897        }
4898
4899        /* Shrinking succeeded, else we would be at "done". */
4900        trans = btrfs_start_transaction(root, 0);
4901        if (IS_ERR(trans)) {
4902                ret = PTR_ERR(trans);
4903                goto done;
4904        }
4905
4906        mutex_lock(&fs_info->chunk_mutex);
4907        /* Clear all state bits beyond the shrunk device size */
4908        clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4909                          CHUNK_STATE_MASK);
4910
4911        btrfs_device_set_disk_total_bytes(device, new_size);
4912        if (list_empty(&device->post_commit_list))
4913                list_add_tail(&device->post_commit_list,
4914                              &trans->transaction->dev_update_list);
4915
4916        WARN_ON(diff > old_total);
4917        btrfs_set_super_total_bytes(super_copy,
4918                        round_down(old_total - diff, fs_info->sectorsize));
4919        mutex_unlock(&fs_info->chunk_mutex);
4920
4921        /* Now btrfs_update_device() will change the on-disk size. */
4922        ret = btrfs_update_device(trans, device);
4923        if (ret < 0) {
4924                btrfs_abort_transaction(trans, ret);
4925                btrfs_end_transaction(trans);
4926        } else {
4927                ret = btrfs_commit_transaction(trans);
4928        }
4929done:
4930        btrfs_free_path(path);
4931        if (ret) {
4932                mutex_lock(&fs_info->chunk_mutex);
4933                btrfs_device_set_total_bytes(device, old_size);
4934                if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4935                        device->fs_devices->total_rw_bytes += diff;
4936                atomic64_add(diff, &fs_info->free_chunk_space);
4937                mutex_unlock(&fs_info->chunk_mutex);
4938        }
4939        return ret;
4940}
4941
4942static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4943                           struct btrfs_key *key,
4944                           struct btrfs_chunk *chunk, int item_size)
4945{
4946        struct btrfs_super_block *super_copy = fs_info->super_copy;
4947        struct btrfs_disk_key disk_key;
4948        u32 array_size;
4949        u8 *ptr;
4950
4951        lockdep_assert_held(&fs_info->chunk_mutex);
4952
4953        array_size = btrfs_super_sys_array_size(super_copy);
4954        if (array_size + item_size + sizeof(disk_key)
4955                        > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
4956                return -EFBIG;
4957
4958        ptr = super_copy->sys_chunk_array + array_size;
4959        btrfs_cpu_key_to_disk(&disk_key, key);
4960        memcpy(ptr, &disk_key, sizeof(disk_key));
4961        ptr += sizeof(disk_key);
4962        memcpy(ptr, chunk, item_size);
4963        item_size += sizeof(disk_key);
4964        btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4965
4966        return 0;
4967}
4968
4969/*
4970 * sort the devices in descending order by max_avail, total_avail
4971 */
4972static int btrfs_cmp_device_info(const void *a, const void *b)
4973{
4974        const struct btrfs_device_info *di_a = a;
4975        const struct btrfs_device_info *di_b = b;
4976
4977        if (di_a->max_avail > di_b->max_avail)
4978                return -1;
4979        if (di_a->max_avail < di_b->max_avail)
4980                return 1;
4981        if (di_a->total_avail > di_b->total_avail)
4982                return -1;
4983        if (di_a->total_avail < di_b->total_avail)
4984                return 1;
4985        return 0;
4986}
4987
4988static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4989{
4990        if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4991                return;
4992
4993        btrfs_set_fs_incompat(info, RAID56);
4994}
4995
4996static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4997{
4998        if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4999                return;
5000
5001        btrfs_set_fs_incompat(info, RAID1C34);
5002}
5003
5004/*
5005 * Structure used internally for __btrfs_alloc_chunk() function.
5006 * Wraps needed parameters.
5007 */
5008struct alloc_chunk_ctl {
5009        u64 start;
5010        u64 type;
5011        /* Total number of stripes to allocate */
5012        int num_stripes;
5013        /* sub_stripes info for map */
5014        int sub_stripes;
5015        /* Stripes per device */
5016        int dev_stripes;
5017        /* Maximum number of devices to use */
5018        int devs_max;
5019        /* Minimum number of devices to use */
5020        int devs_min;
5021        /* ndevs has to be a multiple of this */
5022        int devs_increment;
5023        /* Number of copies */
5024        int ncopies;
5025        /* Number of stripes worth of bytes to store parity information */
5026        int nparity;
5027        u64 max_stripe_size;
5028        u64 max_chunk_size;
5029        u64 dev_extent_min;
5030        u64 stripe_size;
5031        u64 chunk_size;
5032        int ndevs;
5033};
5034
5035static void init_alloc_chunk_ctl_policy_regular(
5036                                struct btrfs_fs_devices *fs_devices,
5037                                struct alloc_chunk_ctl *ctl)
5038{
5039        u64 type = ctl->type;
5040
5041        if (type & BTRFS_BLOCK_GROUP_DATA) {
5042                ctl->max_stripe_size = SZ_1G;
5043                ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
5044        } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5045                /* For larger filesystems, use larger metadata chunks */
5046                if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
5047                        ctl->max_stripe_size = SZ_1G;
5048                else
5049                        ctl->max_stripe_size = SZ_256M;
5050                ctl->max_chunk_size = ctl->max_stripe_size;
5051        } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5052                ctl->max_stripe_size = SZ_32M;
5053                ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5054                ctl->devs_max = min_t(int, ctl->devs_max,
5055                                      BTRFS_MAX_DEVS_SYS_CHUNK);
5056        } else {
5057                BUG();
5058        }
5059
5060        /* We don't want a chunk larger than 10% of writable space */
5061        ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5062                                  ctl->max_chunk_size);
5063        ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5064}
5065
5066static void init_alloc_chunk_ctl_policy_zoned(
5067                                      struct btrfs_fs_devices *fs_devices,
5068                                      struct alloc_chunk_ctl *ctl)
5069{
5070        u64 zone_size = fs_devices->fs_info->zone_size;
5071        u64 limit;
5072        int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5073        int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5074        u64 min_chunk_size = min_data_stripes * zone_size;
5075        u64 type = ctl->type;
5076
5077        ctl->max_stripe_size = zone_size;
5078        if (type & BTRFS_BLOCK_GROUP_DATA) {
5079                ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5080                                                 zone_size);
5081        } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5082                ctl->max_chunk_size = ctl->max_stripe_size;
5083        } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5084                ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5085                ctl->devs_max = min_t(int, ctl->devs_max,
5086                                      BTRFS_MAX_DEVS_SYS_CHUNK);
5087        } else {
5088                BUG();
5089        }
5090
5091        /* We don't want a chunk larger than 10% of writable space */
5092        limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5093                               zone_size),
5094                    min_chunk_size);
5095        ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5096        ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5097}
5098
5099static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5100                                 struct alloc_chunk_ctl *ctl)
5101{
5102        int index = btrfs_bg_flags_to_raid_index(ctl->type);
5103
5104        ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5105        ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5106        ctl->devs_max = btrfs_raid_array[index].devs_max;
5107        if (!ctl->devs_max)
5108                ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5109        ctl->devs_min = btrfs_raid_array[index].devs_min;
5110        ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5111        ctl->ncopies = btrfs_raid_array[index].ncopies;
5112        ctl->nparity = btrfs_raid_array[index].nparity;
5113        ctl->ndevs = 0;
5114
5115        switch (fs_devices->chunk_alloc_policy) {
5116        case BTRFS_CHUNK_ALLOC_REGULAR:
5117                init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5118                break;
5119        case BTRFS_CHUNK_ALLOC_ZONED:
5120                init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5121                break;
5122        default:
5123                BUG();
5124        }
5125}
5126
5127static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5128                              struct alloc_chunk_ctl *ctl,
5129                              struct btrfs_device_info *devices_info)
5130{
5131        struct btrfs_fs_info *info = fs_devices->fs_info;
5132        struct btrfs_device *device;
5133        u64 total_avail;
5134        u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5135        int ret;
5136        int ndevs = 0;
5137        u64 max_avail;
5138        u64 dev_offset;
5139
5140        /*
5141         * in the first pass through the devices list, we gather information
5142         * about the available holes on each device.
5143         */
5144        list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5145                if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5146                        WARN(1, KERN_ERR
5147                               "BTRFS: read-only device in alloc_list\n");
5148                        continue;
5149                }
5150
5151                if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5152                                        &device->dev_state) ||
5153                    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5154                        continue;
5155
5156                if (device->total_bytes > device->bytes_used)
5157                        total_avail = device->total_bytes - device->bytes_used;
5158                else
5159                        total_avail = 0;
5160
5161                /* If there is no space on this device, skip it. */
5162                if (total_avail < ctl->dev_extent_min)
5163                        continue;
5164
5165                ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5166                                           &max_avail);
5167                if (ret && ret != -ENOSPC)
5168                        return ret;
5169
5170                if (ret == 0)
5171                        max_avail = dev_extent_want;
5172
5173                if (max_avail < ctl->dev_extent_min) {
5174                        if (btrfs_test_opt(info, ENOSPC_DEBUG))
5175                                btrfs_debug(info,
5176                        "%s: devid %llu has no free space, have=%llu want=%llu",
5177                                            __func__, device->devid, max_avail,
5178                                            ctl->dev_extent_min);
5179                        continue;
5180                }
5181
5182                if (ndevs == fs_devices->rw_devices) {
5183                        WARN(1, "%s: found more than %llu devices\n",
5184                             __func__, fs_devices->rw_devices);
5185                        break;
5186                }
5187                devices_info[ndevs].dev_offset = dev_offset;
5188                devices_info[ndevs].max_avail = max_avail;
5189                devices_info[ndevs].total_avail = total_avail;
5190                devices_info[ndevs].dev = device;
5191                ++ndevs;
5192        }
5193        ctl->ndevs = ndevs;
5194
5195        /*
5196         * now sort the devices by hole size / available space
5197         */
5198        sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5199             btrfs_cmp_device_info, NULL);
5200
5201        return 0;
5202}
5203
5204static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5205                                      struct btrfs_device_info *devices_info)
5206{
5207        /* Number of stripes that count for block group size */
5208        int data_stripes;
5209
5210        /*
5211         * The primary goal is to maximize the number of stripes, so use as
5212         * many devices as possible, even if the stripes are not maximum sized.
5213         *
5214         * The DUP profile stores more than one stripe per device, the
5215         * max_avail is the total size so we have to adjust.
5216         */
5217        ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5218                                   ctl->dev_stripes);
5219        ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5220
5221        /* This will have to be fixed for RAID1 and RAID10 over more drives */
5222        data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5223
5224        /*
5225         * Use the number of data stripes to figure out how big this chunk is
5226         * really going to be in terms of logical address space, and compare
5227         * that answer with the max chunk size. If it's higher, we try to
5228         * reduce stripe_size.
5229         */
5230        if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5231                /*
5232                 * Reduce stripe_size, round it up to a 16MB boundary again and
5233                 * then use it, unless it ends up being even bigger than the
5234                 * previous value we had already.
5235                 */
5236                ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5237                                                        data_stripes), SZ_16M),
5238                                       ctl->stripe_size);
5239        }
5240
5241        /* Align to BTRFS_STRIPE_LEN */
5242        ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5243        ctl->chunk_size = ctl->stripe_size * data_stripes;
5244
5245        return 0;
5246}
5247
5248static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5249                                    struct btrfs_device_info *devices_info)
5250{
5251        u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5252        /* Number of stripes that count for block group size */
5253        int data_stripes;
5254
5255        /*
5256         * It should hold because:
5257         *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5258         */
5259        ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5260
5261        ctl->stripe_size = zone_size;
5262        ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5263        data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5264
5265        /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5266        if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5267                ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5268                                             ctl->stripe_size) + ctl->nparity,
5269                                     ctl->dev_stripes);
5270                ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5271                data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5272                ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5273        }
5274
5275        ctl->chunk_size = ctl->stripe_size * data_stripes;
5276
5277        return 0;
5278}
5279
5280static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5281                              struct alloc_chunk_ctl *ctl,
5282                              struct btrfs_device_info *devices_info)
5283{
5284        struct btrfs_fs_info *info = fs_devices->fs_info;
5285
5286        /*
5287         * Round down to number of usable stripes, devs_increment can be any
5288         * number so we can't use round_down() that requires power of 2, while
5289         * rounddown is safe.
5290         */
5291        ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5292
5293        if (ctl->ndevs < ctl->devs_min) {
5294                if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5295                        btrfs_debug(info,
5296        "%s: not enough devices with free space: have=%d minimum required=%d",
5297                                    __func__, ctl->ndevs, ctl->devs_min);
5298                }
5299                return -ENOSPC;
5300        }
5301
5302        ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5303
5304        switch (fs_devices->chunk_alloc_policy) {
5305        case BTRFS_CHUNK_ALLOC_REGULAR:
5306                return decide_stripe_size_regular(ctl, devices_info);
5307        case BTRFS_CHUNK_ALLOC_ZONED:
5308                return decide_stripe_size_zoned(ctl, devices_info);
5309        default:
5310                BUG();
5311        }
5312}
5313
5314static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5315                        struct alloc_chunk_ctl *ctl,
5316                        struct btrfs_device_info *devices_info)
5317{
5318        struct btrfs_fs_info *info = trans->fs_info;
5319        struct map_lookup *map = NULL;
5320        struct extent_map_tree *em_tree;
5321        struct btrfs_block_group *block_group;
5322        struct extent_map *em;
5323        u64 start = ctl->start;
5324        u64 type = ctl->type;
5325        int ret;
5326        int i;
5327        int j;
5328
5329        map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5330        if (!map)
5331                return ERR_PTR(-ENOMEM);
5332        map->num_stripes = ctl->num_stripes;
5333
5334        for (i = 0; i < ctl->ndevs; ++i) {
5335                for (j = 0; j < ctl->dev_stripes; ++j) {
5336                        int s = i * ctl->dev_stripes + j;
5337                        map->stripes[s].dev = devices_info[i].dev;
5338                        map->stripes[s].physical = devices_info[i].dev_offset +
5339                                                   j * ctl->stripe_size;
5340                }
5341        }
5342        map->stripe_len = BTRFS_STRIPE_LEN;
5343        map->io_align = BTRFS_STRIPE_LEN;
5344        map->io_width = BTRFS_STRIPE_LEN;
5345        map->type = type;
5346        map->sub_stripes = ctl->sub_stripes;
5347
5348        trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5349
5350        em = alloc_extent_map();
5351        if (!em) {
5352                kfree(map);
5353                return ERR_PTR(-ENOMEM);
5354        }
5355        set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5356        em->map_lookup = map;
5357        em->start = start;
5358        em->len = ctl->chunk_size;
5359        em->block_start = 0;
5360        em->block_len = em->len;
5361        em->orig_block_len = ctl->stripe_size;
5362
5363        em_tree = &info->mapping_tree;
5364        write_lock(&em_tree->lock);
5365        ret = add_extent_mapping(em_tree, em, 0);
5366        if (ret) {
5367                write_unlock(&em_tree->lock);
5368                free_extent_map(em);
5369                return ERR_PTR(ret);
5370        }
5371        write_unlock(&em_tree->lock);
5372
5373        block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5374        if (IS_ERR(block_group))
5375                goto error_del_extent;
5376
5377        for (i = 0; i < map->num_stripes; i++) {
5378                struct btrfs_device *dev = map->stripes[i].dev;
5379
5380                btrfs_device_set_bytes_used(dev,
5381                                            dev->bytes_used + ctl->stripe_size);
5382                if (list_empty(&dev->post_commit_list))
5383                        list_add_tail(&dev->post_commit_list,
5384                                      &trans->transaction->dev_update_list);
5385        }
5386
5387        atomic64_sub(ctl->stripe_size * map->num_stripes,
5388                     &info->free_chunk_space);
5389
5390        free_extent_map(em);
5391        check_raid56_incompat_flag(info, type);
5392        check_raid1c34_incompat_flag(info, type);
5393
5394        return block_group;
5395
5396error_del_extent:
5397        write_lock(&em_tree->lock);
5398        remove_extent_mapping(em_tree, em);
5399        write_unlock(&em_tree->lock);
5400
5401        /* One for our allocation */
5402        free_extent_map(em);
5403        /* One for the tree reference */
5404        free_extent_map(em);
5405
5406        return block_group;
5407}
5408
5409struct btrfs_block_group *btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5410                                            u64 type)
5411{
5412        struct btrfs_fs_info *info = trans->fs_info;
5413        struct btrfs_fs_devices *fs_devices = info->fs_devices;
5414        struct btrfs_device_info *devices_info = NULL;
5415        struct alloc_chunk_ctl ctl;
5416        struct btrfs_block_group *block_group;
5417        int ret;
5418
5419        lockdep_assert_held(&info->chunk_mutex);
5420
5421        if (!alloc_profile_is_valid(type, 0)) {
5422                ASSERT(0);
5423                return ERR_PTR(-EINVAL);
5424        }
5425
5426        if (list_empty(&fs_devices->alloc_list)) {
5427                if (btrfs_test_opt(info, ENOSPC_DEBUG))
5428                        btrfs_debug(info, "%s: no writable device", __func__);
5429                return ERR_PTR(-ENOSPC);
5430        }
5431
5432        if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5433                btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5434                ASSERT(0);
5435                return ERR_PTR(-EINVAL);
5436        }
5437
5438        ctl.start = find_next_chunk(info);
5439        ctl.type = type;
5440        init_alloc_chunk_ctl(fs_devices, &ctl);
5441
5442        devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5443                               GFP_NOFS);
5444        if (!devices_info)
5445                return ERR_PTR(-ENOMEM);
5446
5447        ret = gather_device_info(fs_devices, &ctl, devices_info);
5448        if (ret < 0) {
5449                block_group = ERR_PTR(ret);
5450                goto out;
5451        }
5452
5453        ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5454        if (ret < 0) {
5455                block_group = ERR_PTR(ret);
5456                goto out;
5457        }
5458
5459        block_group = create_chunk(trans, &ctl, devices_info);
5460
5461out:
5462        kfree(devices_info);
5463        return block_group;
5464}
5465
5466/*
5467 * This function, btrfs_finish_chunk_alloc(), belongs to phase 2.
5468 *
5469 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5470 * phases.
5471 */
5472int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5473                             u64 chunk_offset, u64 chunk_size)
5474{
5475        struct btrfs_fs_info *fs_info = trans->fs_info;
5476        struct btrfs_device *device;
5477        struct extent_map *em;
5478        struct map_lookup *map;
5479        u64 dev_offset;
5480        u64 stripe_size;
5481        int i;
5482        int ret = 0;
5483
5484        em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5485        if (IS_ERR(em))
5486                return PTR_ERR(em);
5487
5488        map = em->map_lookup;
5489        stripe_size = em->orig_block_len;
5490
5491        /*
5492         * Take the device list mutex to prevent races with the final phase of
5493         * a device replace operation that replaces the device object associated
5494         * with the map's stripes, because the device object's id can change
5495         * at any time during that final phase of the device replace operation
5496         * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5497         * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5498         * resulting in persisting a device extent item with such ID.
5499         */
5500        mutex_lock(&fs_info->fs_devices->device_list_mutex);
5501        for (i = 0; i < map->num_stripes; i++) {
5502                device = map->stripes[i].dev;
5503                dev_offset = map->stripes[i].physical;
5504
5505                ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5506                                             dev_offset, stripe_size);
5507                if (ret)
5508                        break;
5509        }
5510        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5511
5512        free_extent_map(em);
5513        return ret;
5514}
5515
5516/*
5517 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5518 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5519 * chunks.
5520 *
5521 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5522 * phases.
5523 */
5524int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5525                                     struct btrfs_block_group *bg)
5526{
5527        struct btrfs_fs_info *fs_info = trans->fs_info;
5528        struct btrfs_root *extent_root = fs_info->extent_root;
5529        struct btrfs_root *chunk_root = fs_info->chunk_root;
5530        struct btrfs_key key;
5531        struct btrfs_chunk *chunk;
5532        struct btrfs_stripe *stripe;
5533        struct extent_map *em;
5534        struct map_lookup *map;
5535        size_t item_size;
5536        int i;
5537        int ret;
5538
5539        /*
5540         * We take the chunk_mutex for 2 reasons:
5541         *
5542         * 1) Updates and insertions in the chunk btree must be done while holding
5543         *    the chunk_mutex, as well as updating the system chunk array in the
5544         *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5545         *    details;
5546         *
5547         * 2) To prevent races with the final phase of a device replace operation
5548         *    that replaces the device object associated with the map's stripes,
5549         *    because the device object's id can change at any time during that
5550         *    final phase of the device replace operation
5551         *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5552         *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5553         *    which would cause a failure when updating the device item, which does
5554         *    not exists, or persisting a stripe of the chunk item with such ID.
5555         *    Here we can't use the device_list_mutex because our caller already
5556         *    has locked the chunk_mutex, and the final phase of device replace
5557         *    acquires both mutexes - first the device_list_mutex and then the
5558         *    chunk_mutex. Using any of those two mutexes protects us from a
5559         *    concurrent device replace.
5560         */
5561        lockdep_assert_held(&fs_info->chunk_mutex);
5562
5563        em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5564        if (IS_ERR(em)) {
5565                ret = PTR_ERR(em);
5566                btrfs_abort_transaction(trans, ret);
5567                return ret;
5568        }
5569
5570        map = em->map_lookup;
5571        item_size = btrfs_chunk_item_size(map->num_stripes);
5572
5573        chunk = kzalloc(item_size, GFP_NOFS);
5574        if (!chunk) {
5575                ret = -ENOMEM;
5576                btrfs_abort_transaction(trans, ret);
5577                goto out;
5578        }
5579
5580        for (i = 0; i < map->num_stripes; i++) {
5581                struct btrfs_device *device = map->stripes[i].dev;
5582
5583                ret = btrfs_update_device(trans, device);
5584                if (ret)
5585                        goto out;
5586        }
5587
5588        stripe = &chunk->stripe;
5589        for (i = 0; i < map->num_stripes; i++) {
5590                struct btrfs_device *device = map->stripes[i].dev;
5591                const u64 dev_offset = map->stripes[i].physical;
5592
5593                btrfs_set_stack_stripe_devid(stripe, device->devid);
5594                btrfs_set_stack_stripe_offset(stripe, dev_offset);
5595                memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5596                stripe++;
5597        }
5598
5599        btrfs_set_stack_chunk_length(chunk, bg->length);
5600        btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5601        btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5602        btrfs_set_stack_chunk_type(chunk, map->type);
5603        btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5604        btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5605        btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5606        btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5607        btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5608
5609        key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5610        key.type = BTRFS_CHUNK_ITEM_KEY;
5611        key.offset = bg->start;
5612
5613        ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5614        if (ret)
5615                goto out;
5616
5617        bg->chunk_item_inserted = 1;
5618
5619        if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5620                ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5621                if (ret)
5622                        goto out;
5623        }
5624
5625out:
5626        kfree(chunk);
5627        free_extent_map(em);
5628        return ret;
5629}
5630
5631static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5632{
5633        struct btrfs_fs_info *fs_info = trans->fs_info;
5634        u64 alloc_profile;
5635        struct btrfs_block_group *meta_bg;
5636        struct btrfs_block_group *sys_bg;
5637
5638        /*
5639         * When adding a new device for sprouting, the seed device is read-only
5640         * so we must first allocate a metadata and a system chunk. But before
5641         * adding the block group items to the extent, device and chunk btrees,
5642         * we must first:
5643         *
5644         * 1) Create both chunks without doing any changes to the btrees, as
5645         *    otherwise we would get -ENOSPC since the block groups from the
5646         *    seed device are read-only;
5647         *
5648         * 2) Add the device item for the new sprout device - finishing the setup
5649         *    of a new block group requires updating the device item in the chunk
5650         *    btree, so it must exist when we attempt to do it. The previous step
5651         *    ensures this does not fail with -ENOSPC.
5652         *
5653         * After that we can add the block group items to their btrees:
5654         * update existing device item in the chunk btree, add a new block group
5655         * item to the extent btree, add a new chunk item to the chunk btree and
5656         * finally add the new device extent items to the devices btree.
5657         */
5658
5659        alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5660        meta_bg = btrfs_alloc_chunk(trans, alloc_profile);
5661        if (IS_ERR(meta_bg))
5662                return PTR_ERR(meta_bg);
5663
5664        alloc_profile = btrfs_system_alloc_profile(fs_info);
5665        sys_bg = btrfs_alloc_chunk(trans, alloc_profile);
5666        if (IS_ERR(sys_bg))
5667                return PTR_ERR(sys_bg);
5668
5669        return 0;
5670}
5671
5672static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5673{
5674        const int index = btrfs_bg_flags_to_raid_index(map->type);
5675
5676        return btrfs_raid_array[index].tolerated_failures;
5677}
5678
5679int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5680{
5681        struct extent_map *em;
5682        struct map_lookup *map;
5683        int readonly = 0;
5684        int miss_ndevs = 0;
5685        int i;
5686
5687        em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5688        if (IS_ERR(em))
5689                return 1;
5690
5691        map = em->map_lookup;
5692        for (i = 0; i < map->num_stripes; i++) {
5693                if (test_bit(BTRFS_DEV_STATE_MISSING,
5694                                        &map->stripes[i].dev->dev_state)) {
5695                        miss_ndevs++;
5696                        continue;
5697                }
5698                if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5699                                        &map->stripes[i].dev->dev_state)) {
5700                        readonly = 1;
5701                        goto end;
5702                }
5703        }
5704
5705        /*
5706         * If the number of missing devices is larger than max errors,
5707         * we can not write the data into that chunk successfully, so
5708         * set it readonly.
5709         */
5710        if (miss_ndevs > btrfs_chunk_max_errors(map))
5711                readonly = 1;
5712end:
5713        free_extent_map(em);
5714        return readonly;
5715}
5716
5717void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5718{
5719        struct extent_map *em;
5720
5721        while (1) {
5722                write_lock(&tree->lock);
5723                em = lookup_extent_mapping(tree, 0, (u64)-1);
5724                if (em)
5725                        remove_extent_mapping(tree, em);
5726                write_unlock(&tree->lock);
5727                if (!em)
5728                        break;
5729                /* once for us */
5730                free_extent_map(em);
5731                /* once for the tree */
5732                free_extent_map(em);
5733        }
5734}
5735
5736int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5737{
5738        struct extent_map *em;
5739        struct map_lookup *map;
5740        int ret;
5741
5742        em = btrfs_get_chunk_map(fs_info, logical, len);
5743        if (IS_ERR(em))
5744                /*
5745                 * We could return errors for these cases, but that could get
5746                 * ugly and we'd probably do the same thing which is just not do
5747                 * anything else and exit, so return 1 so the callers don't try
5748                 * to use other copies.
5749                 */
5750                return 1;
5751
5752        map = em->map_lookup;
5753        if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5754                ret = map->num_stripes;
5755        else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5756                ret = map->sub_stripes;
5757        else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5758                ret = 2;
5759        else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5760                /*
5761                 * There could be two corrupted data stripes, we need
5762                 * to loop retry in order to rebuild the correct data.
5763                 *
5764                 * Fail a stripe at a time on every retry except the
5765                 * stripe under reconstruction.
5766                 */
5767                ret = map->num_stripes;
5768        else
5769                ret = 1;
5770        free_extent_map(em);
5771
5772        down_read(&fs_info->dev_replace.rwsem);
5773        if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5774            fs_info->dev_replace.tgtdev)
5775                ret++;
5776        up_read(&fs_info->dev_replace.rwsem);
5777
5778        return ret;
5779}
5780
5781unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5782                                    u64 logical)
5783{
5784        struct extent_map *em;
5785        struct map_lookup *map;
5786        unsigned long len = fs_info->sectorsize;
5787
5788        em = btrfs_get_chunk_map(fs_info, logical, len);
5789
5790        if (!WARN_ON(IS_ERR(em))) {
5791                map = em->map_lookup;
5792                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5793                        len = map->stripe_len * nr_data_stripes(map);
5794                free_extent_map(em);
5795        }
5796        return len;
5797}
5798
5799int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5800{
5801        struct extent_map *em;
5802        struct map_lookup *map;
5803        int ret = 0;
5804
5805        em = btrfs_get_chunk_map(fs_info, logical, len);
5806
5807        if(!WARN_ON(IS_ERR(em))) {
5808                map = em->map_lookup;
5809                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5810                        ret = 1;
5811                free_extent_map(em);
5812        }
5813        return ret;
5814}
5815
5816static int find_live_mirror(struct btrfs_fs_info *fs_info,
5817                            struct map_lookup *map, int first,
5818                            int dev_replace_is_ongoing)
5819{
5820        int i;
5821        int num_stripes;
5822        int preferred_mirror;
5823        int tolerance;
5824        struct btrfs_device *srcdev;
5825
5826        ASSERT((map->type &
5827                 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5828
5829        if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5830                num_stripes = map->sub_stripes;
5831        else
5832                num_stripes = map->num_stripes;
5833
5834        switch (fs_info->fs_devices->read_policy) {
5835        default:
5836                /* Shouldn't happen, just warn and use pid instead of failing */
5837                btrfs_warn_rl(fs_info,
5838                              "unknown read_policy type %u, reset to pid",
5839                              fs_info->fs_devices->read_policy);
5840                fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5841                fallthrough;
5842        case BTRFS_READ_POLICY_PID:
5843                preferred_mirror = first + (current->pid % num_stripes);
5844                break;
5845        }
5846
5847        if (dev_replace_is_ongoing &&
5848            fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5849             BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5850                srcdev = fs_info->dev_replace.srcdev;
5851        else
5852                srcdev = NULL;
5853
5854        /*
5855         * try to avoid the drive that is the source drive for a
5856         * dev-replace procedure, only choose it if no other non-missing
5857         * mirror is available
5858         */
5859        for (tolerance = 0; tolerance < 2; tolerance++) {
5860                if (map->stripes[preferred_mirror].dev->bdev &&
5861                    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5862                        return preferred_mirror;
5863                for (i = first; i < first + num_stripes; i++) {
5864                        if (map->stripes[i].dev->bdev &&
5865                            (tolerance || map->stripes[i].dev != srcdev))
5866                                return i;
5867                }
5868        }
5869
5870        /* we couldn't find one that doesn't fail.  Just return something
5871         * and the io error handling code will clean up eventually
5872         */
5873        return preferred_mirror;
5874}
5875
5876/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5877static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5878{
5879        int i;
5880        int again = 1;
5881
5882        while (again) {
5883                again = 0;
5884                for (i = 0; i < num_stripes - 1; i++) {
5885                        /* Swap if parity is on a smaller index */
5886                        if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5887                                swap(bbio->stripes[i], bbio->stripes[i + 1]);
5888                                swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5889                                again = 1;
5890                        }
5891                }
5892        }
5893}
5894
5895static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5896{
5897        struct btrfs_bio *bbio = kzalloc(
5898                 /* the size of the btrfs_bio */
5899                sizeof(struct btrfs_bio) +
5900                /* plus the variable array for the stripes */
5901                sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5902                /* plus the variable array for the tgt dev */
5903                sizeof(int) * (real_stripes) +
5904                /*
5905                 * plus the raid_map, which includes both the tgt dev
5906                 * and the stripes
5907                 */
5908                sizeof(u64) * (total_stripes),
5909                GFP_NOFS|__GFP_NOFAIL);
5910
5911        atomic_set(&bbio->error, 0);
5912        refcount_set(&bbio->refs, 1);
5913
5914        bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5915        bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5916
5917        return bbio;
5918}
5919
5920void btrfs_get_bbio(struct btrfs_bio *bbio)
5921{
5922        WARN_ON(!refcount_read(&bbio->refs));
5923        refcount_inc(&bbio->refs);
5924}
5925
5926void btrfs_put_bbio(struct btrfs_bio *bbio)
5927{
5928        if (!bbio)
5929                return;
5930        if (refcount_dec_and_test(&bbio->refs))
5931                kfree(bbio);
5932}
5933
5934/* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5935/*
5936 * Please note that, discard won't be sent to target device of device
5937 * replace.
5938 */
5939static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5940                                         u64 logical, u64 *length_ret,
5941                                         struct btrfs_bio **bbio_ret)
5942{
5943        struct extent_map *em;
5944        struct map_lookup *map;
5945        struct btrfs_bio *bbio;
5946        u64 length = *length_ret;
5947        u64 offset;
5948        u64 stripe_nr;
5949        u64 stripe_nr_end;
5950        u64 stripe_end_offset;
5951        u64 stripe_cnt;
5952        u64 stripe_len;
5953        u64 stripe_offset;
5954        u64 num_stripes;
5955        u32 stripe_index;
5956        u32 factor = 0;
5957        u32 sub_stripes = 0;
5958        u64 stripes_per_dev = 0;
5959        u32 remaining_stripes = 0;
5960        u32 last_stripe = 0;
5961        int ret = 0;
5962        int i;
5963
5964        /* discard always return a bbio */
5965        ASSERT(bbio_ret);
5966
5967        em = btrfs_get_chunk_map(fs_info, logical, length);
5968        if (IS_ERR(em))
5969                return PTR_ERR(em);
5970
5971        map = em->map_lookup;
5972        /* we don't discard raid56 yet */
5973        if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5974                ret = -EOPNOTSUPP;
5975                goto out;
5976        }
5977
5978        offset = logical - em->start;
5979        length = min_t(u64, em->start + em->len - logical, length);
5980        *length_ret = length;
5981
5982        stripe_len = map->stripe_len;
5983        /*
5984         * stripe_nr counts the total number of stripes we have to stride
5985         * to get to this block
5986         */
5987        stripe_nr = div64_u64(offset, stripe_len);
5988
5989        /* stripe_offset is the offset of this block in its stripe */
5990        stripe_offset = offset - stripe_nr * stripe_len;
5991
5992        stripe_nr_end = round_up(offset + length, map->stripe_len);
5993        stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5994        stripe_cnt = stripe_nr_end - stripe_nr;
5995        stripe_end_offset = stripe_nr_end * map->stripe_len -
5996                            (offset + length);
5997        /*
5998         * after this, stripe_nr is the number of stripes on this
5999         * device we have to walk to find the data, and stripe_index is
6000         * the number of our device in the stripe array
6001         */
6002        num_stripes = 1;
6003        stripe_index = 0;
6004        if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6005                         BTRFS_BLOCK_GROUP_RAID10)) {
6006                if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6007                        sub_stripes = 1;
6008                else
6009                        sub_stripes = map->sub_stripes;
6010
6011                factor = map->num_stripes / sub_stripes;
6012                num_stripes = min_t(u64, map->num_stripes,
6013                                    sub_stripes * stripe_cnt);
6014                stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6015                stripe_index *= sub_stripes;
6016                stripes_per_dev = div_u64_rem(stripe_cnt, factor,
6017                                              &remaining_stripes);
6018                div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
6019                last_stripe *= sub_stripes;
6020        } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6021                                BTRFS_BLOCK_GROUP_DUP)) {
6022                num_stripes = map->num_stripes;
6023        } else {
6024                stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6025                                        &stripe_index);
6026        }
6027
6028        bbio = alloc_btrfs_bio(num_stripes, 0);
6029        if (!bbio) {
6030                ret = -ENOMEM;
6031                goto out;
6032        }
6033
6034        for (i = 0; i < num_stripes; i++) {
6035                bbio->stripes[i].physical =
6036                        map->stripes[stripe_index].physical +
6037                        stripe_offset + stripe_nr * map->stripe_len;
6038                bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6039
6040                if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6041                                 BTRFS_BLOCK_GROUP_RAID10)) {
6042                        bbio->stripes[i].length = stripes_per_dev *
6043                                map->stripe_len;
6044
6045                        if (i / sub_stripes < remaining_stripes)
6046                                bbio->stripes[i].length +=
6047                                        map->stripe_len;
6048
6049                        /*
6050                         * Special for the first stripe and
6051                         * the last stripe:
6052                         *
6053                         * |-------|...|-------|
6054                         *     |----------|
6055                         *    off     end_off
6056                         */
6057                        if (i < sub_stripes)
6058                                bbio->stripes[i].length -=
6059                                        stripe_offset;
6060
6061                        if (stripe_index >= last_stripe &&
6062                            stripe_index <= (last_stripe +
6063                                             sub_stripes - 1))
6064                                bbio->stripes[i].length -=
6065                                        stripe_end_offset;
6066
6067                        if (i == sub_stripes - 1)
6068                                stripe_offset = 0;
6069                } else {
6070                        bbio->stripes[i].length = length;
6071                }
6072
6073                stripe_index++;
6074                if (stripe_index == map->num_stripes) {
6075                        stripe_index = 0;
6076                        stripe_nr++;
6077                }
6078        }
6079
6080        *bbio_ret = bbio;
6081        bbio->map_type = map->type;
6082        bbio->num_stripes = num_stripes;
6083out:
6084        free_extent_map(em);
6085        return ret;
6086}
6087
6088/*
6089 * In dev-replace case, for repair case (that's the only case where the mirror
6090 * is selected explicitly when calling btrfs_map_block), blocks left of the
6091 * left cursor can also be read from the target drive.
6092 *
6093 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6094 * array of stripes.
6095 * For READ, it also needs to be supported using the same mirror number.
6096 *
6097 * If the requested block is not left of the left cursor, EIO is returned. This
6098 * can happen because btrfs_num_copies() returns one more in the dev-replace
6099 * case.
6100 */
6101static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6102                                         u64 logical, u64 length,
6103                                         u64 srcdev_devid, int *mirror_num,
6104                                         u64 *physical)
6105{
6106        struct btrfs_bio *bbio = NULL;
6107        int num_stripes;
6108        int index_srcdev = 0;
6109        int found = 0;
6110        u64 physical_of_found = 0;
6111        int i;
6112        int ret = 0;
6113
6114        ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6115                                logical, &length, &bbio, 0, 0);
6116        if (ret) {
6117                ASSERT(bbio == NULL);
6118                return ret;
6119        }
6120
6121        num_stripes = bbio->num_stripes;
6122        if (*mirror_num > num_stripes) {
6123                /*
6124                 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6125                 * that means that the requested area is not left of the left
6126                 * cursor
6127                 */
6128                btrfs_put_bbio(bbio);
6129                return -EIO;
6130        }
6131
6132        /*
6133         * process the rest of the function using the mirror_num of the source
6134         * drive. Therefore look it up first.  At the end, patch the device
6135         * pointer to the one of the target drive.
6136         */
6137        for (i = 0; i < num_stripes; i++) {
6138                if (bbio->stripes[i].dev->devid != srcdev_devid)
6139                        continue;
6140
6141                /*
6142                 * In case of DUP, in order to keep it simple, only add the
6143                 * mirror with the lowest physical address
6144                 */
6145                if (found &&
6146                    physical_of_found <= bbio->stripes[i].physical)
6147                        continue;
6148
6149                index_srcdev = i;
6150                found = 1;
6151                physical_of_found = bbio->stripes[i].physical;
6152        }
6153
6154        btrfs_put_bbio(bbio);
6155
6156        ASSERT(found);
6157        if (!found)
6158                return -EIO;
6159
6160        *mirror_num = index_srcdev + 1;
6161        *physical = physical_of_found;
6162        return ret;
6163}
6164
6165static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6166{
6167        struct btrfs_block_group *cache;
6168        bool ret;
6169
6170        /* Non zoned filesystem does not use "to_copy" flag */
6171        if (!btrfs_is_zoned(fs_info))
6172                return false;
6173
6174        cache = btrfs_lookup_block_group(fs_info, logical);
6175
6176        spin_lock(&cache->lock);
6177        ret = cache->to_copy;
6178        spin_unlock(&cache->lock);
6179
6180        btrfs_put_block_group(cache);
6181        return ret;
6182}
6183
6184static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6185                                      struct btrfs_bio **bbio_ret,
6186                                      struct btrfs_dev_replace *dev_replace,
6187                                      u64 logical,
6188                                      int *num_stripes_ret, int *max_errors_ret)
6189{
6190        struct btrfs_bio *bbio = *bbio_ret;
6191        u64 srcdev_devid = dev_replace->srcdev->devid;
6192        int tgtdev_indexes = 0;
6193        int num_stripes = *num_stripes_ret;
6194        int max_errors = *max_errors_ret;
6195        int i;
6196
6197        if (op == BTRFS_MAP_WRITE) {
6198                int index_where_to_add;
6199
6200                /*
6201                 * A block group which have "to_copy" set will eventually
6202                 * copied by dev-replace process. We can avoid cloning IO here.
6203                 */
6204                if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6205                        return;
6206
6207                /*
6208                 * duplicate the write operations while the dev replace
6209                 * procedure is running. Since the copying of the old disk to
6210                 * the new disk takes place at run time while the filesystem is
6211                 * mounted writable, the regular write operations to the old
6212                 * disk have to be duplicated to go to the new disk as well.
6213                 *
6214                 * Note that device->missing is handled by the caller, and that
6215                 * the write to the old disk is already set up in the stripes
6216                 * array.
6217                 */
6218                index_where_to_add = num_stripes;
6219                for (i = 0; i < num_stripes; i++) {
6220                        if (bbio->stripes[i].dev->devid == srcdev_devid) {
6221                                /* write to new disk, too */
6222                                struct btrfs_bio_stripe *new =
6223                                        bbio->stripes + index_where_to_add;
6224                                struct btrfs_bio_stripe *old =
6225                                        bbio->stripes + i;
6226
6227                                new->physical = old->physical;
6228                                new->length = old->length;
6229                                new->dev = dev_replace->tgtdev;
6230                                bbio->tgtdev_map[i] = index_where_to_add;
6231                                index_where_to_add++;
6232                                max_errors++;
6233                                tgtdev_indexes++;
6234                        }
6235                }
6236                num_stripes = index_where_to_add;
6237        } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6238                int index_srcdev = 0;
6239                int found = 0;
6240                u64 physical_of_found = 0;
6241
6242                /*
6243                 * During the dev-replace procedure, the target drive can also
6244                 * be used to read data in case it is needed to repair a corrupt
6245                 * block elsewhere. This is possible if the requested area is
6246                 * left of the left cursor. In this area, the target drive is a
6247                 * full copy of the source drive.
6248                 */
6249                for (i = 0; i < num_stripes; i++) {
6250                        if (bbio->stripes[i].dev->devid == srcdev_devid) {
6251                                /*
6252                                 * In case of DUP, in order to keep it simple,
6253                                 * only add the mirror with the lowest physical
6254                                 * address
6255                                 */
6256                                if (found &&
6257                                    physical_of_found <=
6258                                     bbio->stripes[i].physical)
6259                                        continue;
6260                                index_srcdev = i;
6261                                found = 1;
6262                                physical_of_found = bbio->stripes[i].physical;
6263                        }
6264                }
6265                if (found) {
6266                        struct btrfs_bio_stripe *tgtdev_stripe =
6267                                bbio->stripes + num_stripes;
6268
6269                        tgtdev_stripe->physical = physical_of_found;
6270                        tgtdev_stripe->length =
6271                                bbio->stripes[index_srcdev].length;
6272                        tgtdev_stripe->dev = dev_replace->tgtdev;
6273                        bbio->tgtdev_map[index_srcdev] = num_stripes;
6274
6275                        tgtdev_indexes++;
6276                        num_stripes++;
6277                }
6278        }
6279
6280        *num_stripes_ret = num_stripes;
6281        *max_errors_ret = max_errors;
6282        bbio->num_tgtdevs = tgtdev_indexes;
6283        *bbio_ret = bbio;
6284}
6285
6286static bool need_full_stripe(enum btrfs_map_op op)
6287{
6288        return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6289}
6290
6291/*
6292 * Calculate the geometry of a particular (address, len) tuple. This
6293 * information is used to calculate how big a particular bio can get before it
6294 * straddles a stripe.
6295 *
6296 * @fs_info: the filesystem
6297 * @em:      mapping containing the logical extent
6298 * @op:      type of operation - write or read
6299 * @logical: address that we want to figure out the geometry of
6300 * @io_geom: pointer used to return values
6301 *
6302 * Returns < 0 in case a chunk for the given logical address cannot be found,
6303 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6304 */
6305int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6306                          enum btrfs_map_op op, u64 logical,
6307                          struct btrfs_io_geometry *io_geom)
6308{
6309        struct map_lookup *map;
6310        u64 len;
6311        u64 offset;
6312        u64 stripe_offset;
6313        u64 stripe_nr;
6314        u64 stripe_len;
6315        u64 raid56_full_stripe_start = (u64)-1;
6316        int data_stripes;
6317
6318        ASSERT(op != BTRFS_MAP_DISCARD);
6319
6320        map = em->map_lookup;
6321        /* Offset of this logical address in the chunk */
6322        offset = logical - em->start;
6323        /* Len of a stripe in a chunk */
6324        stripe_len = map->stripe_len;
6325        /* Stripe where this block falls in */
6326        stripe_nr = div64_u64(offset, stripe_len);
6327        /* Offset of stripe in the chunk */
6328        stripe_offset = stripe_nr * stripe_len;
6329        if (offset < stripe_offset) {
6330                btrfs_crit(fs_info,
6331"stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6332                        stripe_offset, offset, em->start, logical, stripe_len);
6333                return -EINVAL;
6334        }
6335
6336        /* stripe_offset is the offset of this block in its stripe */
6337        stripe_offset = offset - stripe_offset;
6338        data_stripes = nr_data_stripes(map);
6339
6340        if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6341                u64 max_len = stripe_len - stripe_offset;
6342
6343                /*
6344                 * In case of raid56, we need to know the stripe aligned start
6345                 */
6346                if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6347                        unsigned long full_stripe_len = stripe_len * data_stripes;
6348                        raid56_full_stripe_start = offset;
6349
6350                        /*
6351                         * Allow a write of a full stripe, but make sure we
6352                         * don't allow straddling of stripes
6353                         */
6354                        raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6355                                        full_stripe_len);
6356                        raid56_full_stripe_start *= full_stripe_len;
6357
6358                        /*
6359                         * For writes to RAID[56], allow a full stripeset across
6360                         * all disks. For other RAID types and for RAID[56]
6361                         * reads, just allow a single stripe (on a single disk).
6362                         */
6363                        if (op == BTRFS_MAP_WRITE) {
6364                                max_len = stripe_len * data_stripes -
6365                                          (offset - raid56_full_stripe_start);
6366                        }
6367                }
6368                len = min_t(u64, em->len - offset, max_len);
6369        } else {
6370                len = em->len - offset;
6371        }
6372
6373        io_geom->len = len;
6374        io_geom->offset = offset;
6375        io_geom->stripe_len = stripe_len;
6376        io_geom->stripe_nr = stripe_nr;
6377        io_geom->stripe_offset = stripe_offset;
6378        io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6379
6380        return 0;
6381}
6382
6383static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6384                             enum btrfs_map_op op,
6385                             u64 logical, u64 *length,
6386                             struct btrfs_bio **bbio_ret,
6387                             int mirror_num, int need_raid_map)
6388{
6389        struct extent_map *em;
6390        struct map_lookup *map;
6391        u64 stripe_offset;
6392        u64 stripe_nr;
6393        u64 stripe_len;
6394        u32 stripe_index;
6395        int data_stripes;
6396        int i;
6397        int ret = 0;
6398        int num_stripes;
6399        int max_errors = 0;
6400        int tgtdev_indexes = 0;
6401        struct btrfs_bio *bbio = NULL;
6402        struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6403        int dev_replace_is_ongoing = 0;
6404        int num_alloc_stripes;
6405        int patch_the_first_stripe_for_dev_replace = 0;
6406        u64 physical_to_patch_in_first_stripe = 0;
6407        u64 raid56_full_stripe_start = (u64)-1;
6408        struct btrfs_io_geometry geom;
6409
6410        ASSERT(bbio_ret);
6411        ASSERT(op != BTRFS_MAP_DISCARD);
6412
6413        em = btrfs_get_chunk_map(fs_info, logical, *length);
6414        ASSERT(!IS_ERR(em));
6415
6416        ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6417        if (ret < 0)
6418                return ret;
6419
6420        map = em->map_lookup;
6421
6422        *length = geom.len;
6423        stripe_len = geom.stripe_len;
6424        stripe_nr = geom.stripe_nr;
6425        stripe_offset = geom.stripe_offset;
6426        raid56_full_stripe_start = geom.raid56_stripe_offset;
6427        data_stripes = nr_data_stripes(map);
6428
6429        down_read(&dev_replace->rwsem);
6430        dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6431        /*
6432         * Hold the semaphore for read during the whole operation, write is
6433         * requested at commit time but must wait.
6434         */
6435        if (!dev_replace_is_ongoing)
6436                up_read(&dev_replace->rwsem);
6437
6438        if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6439            !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6440                ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6441                                                    dev_replace->srcdev->devid,
6442                                                    &mirror_num,
6443                                            &physical_to_patch_in_first_stripe);
6444                if (ret)
6445                        goto out;
6446                else
6447                        patch_the_first_stripe_for_dev_replace = 1;
6448        } else if (mirror_num > map->num_stripes) {
6449                mirror_num = 0;
6450        }
6451
6452        num_stripes = 1;
6453        stripe_index = 0;
6454        if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6455                stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6456                                &stripe_index);
6457                if (!need_full_stripe(op))
6458                        mirror_num = 1;
6459        } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6460                if (need_full_stripe(op))
6461                        num_stripes = map->num_stripes;
6462                else if (mirror_num)
6463                        stripe_index = mirror_num - 1;
6464                else {
6465                        stripe_index = find_live_mirror(fs_info, map, 0,
6466                                            dev_replace_is_ongoing);
6467                        mirror_num = stripe_index + 1;
6468                }
6469
6470        } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6471                if (need_full_stripe(op)) {
6472                        num_stripes = map->num_stripes;
6473                } else if (mirror_num) {
6474                        stripe_index = mirror_num - 1;
6475                } else {
6476                        mirror_num = 1;
6477                }
6478
6479        } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6480                u32 factor = map->num_stripes / map->sub_stripes;
6481
6482                stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6483                stripe_index *= map->sub_stripes;
6484
6485                if (need_full_stripe(op))
6486                        num_stripes = map->sub_stripes;
6487                else if (mirror_num)
6488                        stripe_index += mirror_num - 1;
6489                else {
6490                        int old_stripe_index = stripe_index;
6491                        stripe_index = find_live_mirror(fs_info, map,
6492                                              stripe_index,
6493                                              dev_replace_is_ongoing);
6494                        mirror_num = stripe_index - old_stripe_index + 1;
6495                }
6496
6497        } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6498                if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6499                        /* push stripe_nr back to the start of the full stripe */
6500                        stripe_nr = div64_u64(raid56_full_stripe_start,
6501                                        stripe_len * data_stripes);
6502
6503                        /* RAID[56] write or recovery. Return all stripes */
6504                        num_stripes = map->num_stripes;
6505                        max_errors = nr_parity_stripes(map);
6506
6507                        *length = map->stripe_len;
6508                        stripe_index = 0;
6509                        stripe_offset = 0;
6510                } else {
6511                        /*
6512                         * Mirror #0 or #1 means the original data block.
6513                         * Mirror #2 is RAID5 parity block.
6514                         * Mirror #3 is RAID6 Q block.
6515                         */
6516                        stripe_nr = div_u64_rem(stripe_nr,
6517                                        data_stripes, &stripe_index);
6518                        if (mirror_num > 1)
6519                                stripe_index = data_stripes + mirror_num - 2;
6520
6521                        /* We distribute the parity blocks across stripes */
6522                        div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6523                                        &stripe_index);
6524                        if (!need_full_stripe(op) && mirror_num <= 1)
6525                                mirror_num = 1;
6526                }
6527        } else {
6528                /*
6529                 * after this, stripe_nr is the number of stripes on this
6530                 * device we have to walk to find the data, and stripe_index is
6531                 * the number of our device in the stripe array
6532                 */
6533                stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6534                                &stripe_index);
6535                mirror_num = stripe_index + 1;
6536        }
6537        if (stripe_index >= map->num_stripes) {
6538                btrfs_crit(fs_info,
6539                           "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6540                           stripe_index, map->num_stripes);
6541                ret = -EINVAL;
6542                goto out;
6543        }
6544
6545        num_alloc_stripes = num_stripes;
6546        if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6547                if (op == BTRFS_MAP_WRITE)
6548                        num_alloc_stripes <<= 1;
6549                if (op == BTRFS_MAP_GET_READ_MIRRORS)
6550                        num_alloc_stripes++;
6551                tgtdev_indexes = num_stripes;
6552        }
6553
6554        bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6555        if (!bbio) {
6556                ret = -ENOMEM;
6557                goto out;
6558        }
6559
6560        for (i = 0; i < num_stripes; i++) {
6561                bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6562                        stripe_offset + stripe_nr * map->stripe_len;
6563                bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6564                stripe_index++;
6565        }
6566
6567        /* build raid_map */
6568        if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6569            (need_full_stripe(op) || mirror_num > 1)) {
6570                u64 tmp;
6571                unsigned rot;
6572
6573                /* Work out the disk rotation on this stripe-set */
6574                div_u64_rem(stripe_nr, num_stripes, &rot);
6575
6576                /* Fill in the logical address of each stripe */
6577                tmp = stripe_nr * data_stripes;
6578                for (i = 0; i < data_stripes; i++)
6579                        bbio->raid_map[(i+rot) % num_stripes] =
6580                                em->start + (tmp + i) * map->stripe_len;
6581
6582                bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6583                if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6584                        bbio->raid_map[(i+rot+1) % num_stripes] =
6585                                RAID6_Q_STRIPE;
6586
6587                sort_parity_stripes(bbio, num_stripes);
6588        }
6589
6590        if (need_full_stripe(op))
6591                max_errors = btrfs_chunk_max_errors(map);
6592
6593        if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6594            need_full_stripe(op)) {
6595                handle_ops_on_dev_replace(op, &bbio, dev_replace, logical,
6596                                          &num_stripes, &max_errors);
6597        }
6598
6599        *bbio_ret = bbio;
6600        bbio->map_type = map->type;
6601        bbio->num_stripes = num_stripes;
6602        bbio->max_errors = max_errors;
6603        bbio->mirror_num = mirror_num;
6604
6605        /*
6606         * this is the case that REQ_READ && dev_replace_is_ongoing &&
6607         * mirror_num == num_stripes + 1 && dev_replace target drive is
6608         * available as a mirror
6609         */
6610        if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6611                WARN_ON(num_stripes > 1);
6612                bbio->stripes[0].dev = dev_replace->tgtdev;
6613                bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6614                bbio->mirror_num = map->num_stripes + 1;
6615        }
6616out:
6617        if (dev_replace_is_ongoing) {
6618                lockdep_assert_held(&dev_replace->rwsem);
6619                /* Unlock and let waiting writers proceed */
6620                up_read(&dev_replace->rwsem);
6621        }
6622        free_extent_map(em);
6623        return ret;
6624}
6625
6626int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6627                      u64 logical, u64 *length,
6628                      struct btrfs_bio **bbio_ret, int mirror_num)
6629{
6630        if (op == BTRFS_MAP_DISCARD)
6631                return __btrfs_map_block_for_discard(fs_info, logical,
6632                                                     length, bbio_ret);
6633
6634        return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6635                                 mirror_num, 0);
6636}
6637
6638/* For Scrub/replace */
6639int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6640                     u64 logical, u64 *length,
6641                     struct btrfs_bio **bbio_ret)
6642{
6643        return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6644}
6645
6646static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6647{
6648        bio->bi_private = bbio->private;
6649        bio->bi_end_io = bbio->end_io;
6650        bio_endio(bio);
6651
6652        btrfs_put_bbio(bbio);
6653}
6654
6655static void btrfs_end_bio(struct bio *bio)
6656{
6657        struct btrfs_bio *bbio = bio->bi_private;
6658        int is_orig_bio = 0;
6659
6660        if (bio->bi_status) {
6661                atomic_inc(&bbio->error);
6662                if (bio->bi_status == BLK_STS_IOERR ||
6663                    bio->bi_status == BLK_STS_TARGET) {
6664                        struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6665
6666                        ASSERT(dev->bdev);
6667                        if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6668                                btrfs_dev_stat_inc_and_print(dev,
6669                                                BTRFS_DEV_STAT_WRITE_ERRS);
6670                        else if (!(bio->bi_opf & REQ_RAHEAD))
6671                                btrfs_dev_stat_inc_and_print(dev,
6672                                                BTRFS_DEV_STAT_READ_ERRS);
6673                        if (bio->bi_opf & REQ_PREFLUSH)
6674                                btrfs_dev_stat_inc_and_print(dev,
6675                                                BTRFS_DEV_STAT_FLUSH_ERRS);
6676                }
6677        }
6678
6679        if (bio == bbio->orig_bio)
6680                is_orig_bio = 1;
6681
6682        btrfs_bio_counter_dec(bbio->fs_info);
6683
6684        if (atomic_dec_and_test(&bbio->stripes_pending)) {
6685                if (!is_orig_bio) {
6686                        bio_put(bio);
6687                        bio = bbio->orig_bio;
6688                }
6689
6690                btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6691                /* only send an error to the higher layers if it is
6692                 * beyond the tolerance of the btrfs bio
6693                 */
6694                if (atomic_read(&bbio->error) > bbio->max_errors) {
6695                        bio->bi_status = BLK_STS_IOERR;
6696                } else {
6697                        /*
6698                         * this bio is actually up to date, we didn't
6699                         * go over the max number of errors
6700                         */
6701                        bio->bi_status = BLK_STS_OK;
6702                }
6703
6704                btrfs_end_bbio(bbio, bio);
6705        } else if (!is_orig_bio) {
6706                bio_put(bio);
6707        }
6708}
6709
6710static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6711                              u64 physical, struct btrfs_device *dev)
6712{
6713        struct btrfs_fs_info *fs_info = bbio->fs_info;
6714
6715        bio->bi_private = bbio;
6716        btrfs_io_bio(bio)->device = dev;
6717        bio->bi_end_io = btrfs_end_bio;
6718        bio->bi_iter.bi_sector = physical >> 9;
6719        /*
6720         * For zone append writing, bi_sector must point the beginning of the
6721         * zone
6722         */
6723        if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6724                if (btrfs_dev_is_sequential(dev, physical)) {
6725                        u64 zone_start = round_down(physical, fs_info->zone_size);
6726
6727                        bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6728                } else {
6729                        bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6730                        bio->bi_opf |= REQ_OP_WRITE;
6731                }
6732        }
6733        btrfs_debug_in_rcu(fs_info,
6734        "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6735                bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6736                (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6737                dev->devid, bio->bi_iter.bi_size);
6738        bio_set_dev(bio, dev->bdev);
6739
6740        btrfs_bio_counter_inc_noblocked(fs_info);
6741
6742        btrfsic_submit_bio(bio);
6743}
6744
6745static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6746{
6747        atomic_inc(&bbio->error);
6748        if (atomic_dec_and_test(&bbio->stripes_pending)) {
6749                /* Should be the original bio. */
6750                WARN_ON(bio != bbio->orig_bio);
6751
6752                btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6753                bio->bi_iter.bi_sector = logical >> 9;
6754                if (atomic_read(&bbio->error) > bbio->max_errors)
6755                        bio->bi_status = BLK_STS_IOERR;
6756                else
6757                        bio->bi_status = BLK_STS_OK;
6758                btrfs_end_bbio(bbio, bio);
6759        }
6760}
6761
6762blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6763                           int mirror_num)
6764{
6765        struct btrfs_device *dev;
6766        struct bio *first_bio = bio;
6767        u64 logical = bio->bi_iter.bi_sector << 9;
6768        u64 length = 0;
6769        u64 map_length;
6770        int ret;
6771        int dev_nr;
6772        int total_devs;
6773        struct btrfs_bio *bbio = NULL;
6774
6775        length = bio->bi_iter.bi_size;
6776        map_length = length;
6777
6778        btrfs_bio_counter_inc_blocked(fs_info);
6779        ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6780                                &map_length, &bbio, mirror_num, 1);
6781        if (ret) {
6782                btrfs_bio_counter_dec(fs_info);
6783                return errno_to_blk_status(ret);
6784        }
6785
6786        total_devs = bbio->num_stripes;
6787        bbio->orig_bio = first_bio;
6788        bbio->private = first_bio->bi_private;
6789        bbio->end_io = first_bio->bi_end_io;
6790        bbio->fs_info = fs_info;
6791        atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6792
6793        if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6794            ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
6795                /* In this case, map_length has been set to the length of
6796                   a single stripe; not the whole write */
6797                if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
6798                        ret = raid56_parity_write(fs_info, bio, bbio,
6799                                                  map_length);
6800                } else {
6801                        ret = raid56_parity_recover(fs_info, bio, bbio,
6802                                                    map_length, mirror_num, 1);
6803                }
6804
6805                btrfs_bio_counter_dec(fs_info);
6806                return errno_to_blk_status(ret);
6807        }
6808
6809        if (map_length < length) {
6810                btrfs_crit(fs_info,
6811                           "mapping failed logical %llu bio len %llu len %llu",
6812                           logical, length, map_length);
6813                BUG();
6814        }
6815
6816        for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6817                dev = bbio->stripes[dev_nr].dev;
6818                if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6819                                                   &dev->dev_state) ||
6820                    (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
6821                    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6822                        bbio_error(bbio, first_bio, logical);
6823                        continue;
6824                }
6825
6826                if (dev_nr < total_devs - 1)
6827                        bio = btrfs_bio_clone(first_bio);
6828                else
6829                        bio = first_bio;
6830
6831                submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6832        }
6833        btrfs_bio_counter_dec(fs_info);
6834        return BLK_STS_OK;
6835}
6836
6837/*
6838 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6839 * return NULL.
6840 *
6841 * If devid and uuid are both specified, the match must be exact, otherwise
6842 * only devid is used.
6843 */
6844struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6845                                       u64 devid, u8 *uuid, u8 *fsid)
6846{
6847        struct btrfs_device *device;
6848        struct btrfs_fs_devices *seed_devs;
6849
6850        if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6851                list_for_each_entry(device, &fs_devices->devices, dev_list) {
6852                        if (device->devid == devid &&
6853                            (!uuid || memcmp(device->uuid, uuid,
6854                                             BTRFS_UUID_SIZE) == 0))
6855                                return device;
6856                }
6857        }
6858
6859        list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6860                if (!fsid ||
6861                    !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6862                        list_for_each_entry(device, &seed_devs->devices,
6863                                            dev_list) {
6864                                if (device->devid == devid &&
6865                                    (!uuid || memcmp(device->uuid, uuid,
6866                                                     BTRFS_UUID_SIZE) == 0))
6867                                        return device;
6868                        }
6869                }
6870        }
6871
6872        return NULL;
6873}
6874
6875static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6876                                            u64 devid, u8 *dev_uuid)
6877{
6878        struct btrfs_device *device;
6879        unsigned int nofs_flag;
6880
6881        /*
6882         * We call this under the chunk_mutex, so we want to use NOFS for this
6883         * allocation, however we don't want to change btrfs_alloc_device() to
6884         * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6885         * places.
6886         */
6887        nofs_flag = memalloc_nofs_save();
6888        device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6889        memalloc_nofs_restore(nofs_flag);
6890        if (IS_ERR(device))
6891                return device;
6892
6893        list_add(&device->dev_list, &fs_devices->devices);
6894        device->fs_devices = fs_devices;
6895        fs_devices->num_devices++;
6896
6897        set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6898        fs_devices->missing_devices++;
6899
6900        return device;
6901}
6902
6903/**
6904 * btrfs_alloc_device - allocate struct btrfs_device
6905 * @fs_info:    used only for generating a new devid, can be NULL if
6906 *              devid is provided (i.e. @devid != NULL).
6907 * @devid:      a pointer to devid for this device.  If NULL a new devid
6908 *              is generated.
6909 * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6910 *              is generated.
6911 *
6912 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6913 * on error.  Returned struct is not linked onto any lists and must be
6914 * destroyed with btrfs_free_device.
6915 */
6916struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6917                                        const u64 *devid,
6918                                        const u8 *uuid)
6919{
6920        struct btrfs_device *dev;
6921        u64 tmp;
6922
6923        if (WARN_ON(!devid && !fs_info))
6924                return ERR_PTR(-EINVAL);
6925
6926        dev = __alloc_device(fs_info);
6927        if (IS_ERR(dev))
6928                return dev;
6929
6930        if (devid)
6931                tmp = *devid;
6932        else {
6933                int ret;
6934
6935                ret = find_next_devid(fs_info, &tmp);
6936                if (ret) {
6937                        btrfs_free_device(dev);
6938                        return ERR_PTR(ret);
6939                }
6940        }
6941        dev->devid = tmp;
6942
6943        if (uuid)
6944                memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6945        else
6946                generate_random_uuid(dev->uuid);
6947
6948        return dev;
6949}
6950
6951static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6952                                        u64 devid, u8 *uuid, bool error)
6953{
6954        if (error)
6955                btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6956                              devid, uuid);
6957        else
6958                btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6959                              devid, uuid);
6960}
6961
6962static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6963{
6964        int index = btrfs_bg_flags_to_raid_index(type);
6965        int ncopies = btrfs_raid_array[index].ncopies;
6966        const int nparity = btrfs_raid_array[index].nparity;
6967        int data_stripes;
6968
6969        if (nparity)
6970                data_stripes = num_stripes - nparity;
6971        else
6972                data_stripes = num_stripes / ncopies;
6973
6974        return div_u64(chunk_len, data_stripes);
6975}
6976
6977#if BITS_PER_LONG == 32
6978/*
6979 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6980 * can't be accessed on 32bit systems.
6981 *
6982 * This function do mount time check to reject the fs if it already has
6983 * metadata chunk beyond that limit.
6984 */
6985static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6986                                  u64 logical, u64 length, u64 type)
6987{
6988        if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6989                return 0;
6990
6991        if (logical + length < MAX_LFS_FILESIZE)
6992                return 0;
6993
6994        btrfs_err_32bit_limit(fs_info);
6995        return -EOVERFLOW;
6996}
6997
6998/*
6999 * This is to give early warning for any metadata chunk reaching
7000 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
7001 * Although we can still access the metadata, it's not going to be possible
7002 * once the limit is reached.
7003 */
7004static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7005                                  u64 logical, u64 length, u64 type)
7006{
7007        if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7008                return;
7009
7010        if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
7011                return;
7012
7013        btrfs_warn_32bit_limit(fs_info);
7014}
7015#endif
7016
7017static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
7018                          struct btrfs_chunk *chunk)
7019{
7020        struct btrfs_fs_info *fs_info = leaf->fs_info;
7021        struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7022        struct map_lookup *map;
7023        struct extent_map *em;
7024        u64 logical;
7025        u64 length;
7026        u64 devid;
7027        u64 type;
7028        u8 uuid[BTRFS_UUID_SIZE];
7029        int num_stripes;
7030        int ret;
7031        int i;
7032
7033        logical = key->offset;
7034        length = btrfs_chunk_length(leaf, chunk);
7035        type = btrfs_chunk_type(leaf, chunk);
7036        num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7037
7038#if BITS_PER_LONG == 32
7039        ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7040        if (ret < 0)
7041                return ret;
7042        warn_32bit_meta_chunk(fs_info, logical, length, type);
7043#endif
7044
7045        /*
7046         * Only need to verify chunk item if we're reading from sys chunk array,
7047         * as chunk item in tree block is already verified by tree-checker.
7048         */
7049        if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7050                ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7051                if (ret)
7052                        return ret;
7053        }
7054
7055        read_lock(&map_tree->lock);
7056        em = lookup_extent_mapping(map_tree, logical, 1);
7057        read_unlock(&map_tree->lock);
7058
7059        /* already mapped? */
7060        if (em && em->start <= logical && em->start + em->len > logical) {
7061                free_extent_map(em);
7062                return 0;
7063        } else if (em) {
7064                free_extent_map(em);
7065        }
7066
7067        em = alloc_extent_map();
7068        if (!em)
7069                return -ENOMEM;
7070        map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
7071        if (!map) {
7072                free_extent_map(em);
7073                return -ENOMEM;
7074        }
7075
7076        set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
7077        em->map_lookup = map;
7078        em->start = logical;
7079        em->len = length;
7080        em->orig_start = 0;
7081        em->block_start = 0;
7082        em->block_len = em->len;
7083
7084        map->num_stripes = num_stripes;
7085        map->io_width = btrfs_chunk_io_width(leaf, chunk);
7086        map->io_align = btrfs_chunk_io_align(leaf, chunk);
7087        map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
7088        map->type = type;
7089        map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
7090        map->verified_stripes = 0;
7091        em->orig_block_len = calc_stripe_length(type, em->len,
7092                                                map->num_stripes);
7093        for (i = 0; i < num_stripes; i++) {
7094                map->stripes[i].physical =
7095                        btrfs_stripe_offset_nr(leaf, chunk, i);
7096                devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7097                read_extent_buffer(leaf, uuid, (unsigned long)
7098                                   btrfs_stripe_dev_uuid_nr(chunk, i),
7099                                   BTRFS_UUID_SIZE);
7100                map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
7101                                                        devid, uuid, NULL);
7102                if (!map->stripes[i].dev &&
7103                    !btrfs_test_opt(fs_info, DEGRADED)) {
7104                        free_extent_map(em);
7105                        btrfs_report_missing_device(fs_info, devid, uuid, true);
7106                        return -ENOENT;
7107                }
7108                if (!map->stripes[i].dev) {
7109                        map->stripes[i].dev =
7110                                add_missing_dev(fs_info->fs_devices, devid,
7111                                                uuid);
7112                        if (IS_ERR(map->stripes[i].dev)) {
7113                                free_extent_map(em);
7114                                btrfs_err(fs_info,
7115                                        "failed to init missing dev %llu: %ld",
7116                                        devid, PTR_ERR(map->stripes[i].dev));
7117                                return PTR_ERR(map->stripes[i].dev);
7118                        }
7119                        btrfs_report_missing_device(fs_info, devid, uuid, false);
7120                }
7121                set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7122                                &(map->stripes[i].dev->dev_state));
7123
7124        }
7125
7126        write_lock(&map_tree->lock);
7127        ret = add_extent_mapping(map_tree, em, 0);
7128        write_unlock(&map_tree->lock);
7129        if (ret < 0) {
7130                btrfs_err(fs_info,
7131                          "failed to add chunk map, start=%llu len=%llu: %d",
7132                          em->start, em->len, ret);
7133        }
7134        free_extent_map(em);
7135
7136        return ret;
7137}
7138
7139static void fill_device_from_item(struct extent_buffer *leaf,
7140                                 struct btrfs_dev_item *dev_item,
7141                                 struct btrfs_device *device)
7142{
7143        unsigned long ptr;
7144
7145        device->devid = btrfs_device_id(leaf, dev_item);
7146        device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7147        device->total_bytes = device->disk_total_bytes;
7148        device->commit_total_bytes = device->disk_total_bytes;
7149        device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7150        device->commit_bytes_used = device->bytes_used;
7151        device->type = btrfs_device_type(leaf, dev_item);
7152        device->io_align = btrfs_device_io_align(leaf, dev_item);
7153        device->io_width = btrfs_device_io_width(leaf, dev_item);
7154        device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7155        WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7156        clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7157
7158        ptr = btrfs_device_uuid(dev_item);
7159        read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7160}
7161
7162static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7163                                                  u8 *fsid)
7164{
7165        struct btrfs_fs_devices *fs_devices;
7166        int ret;
7167
7168        lockdep_assert_held(&uuid_mutex);
7169        ASSERT(fsid);
7170
7171        /* This will match only for multi-device seed fs */
7172        list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7173                if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7174                        return fs_devices;
7175
7176
7177        fs_devices = find_fsid(fsid, NULL);
7178        if (!fs_devices) {
7179                if (!btrfs_test_opt(fs_info, DEGRADED))
7180                        return ERR_PTR(-ENOENT);
7181
7182                fs_devices = alloc_fs_devices(fsid, NULL);
7183                if (IS_ERR(fs_devices))
7184                        return fs_devices;
7185
7186                fs_devices->seeding = true;
7187                fs_devices->opened = 1;
7188                return fs_devices;
7189        }
7190
7191        /*
7192         * Upon first call for a seed fs fsid, just create a private copy of the
7193         * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7194         */
7195        fs_devices = clone_fs_devices(fs_devices);
7196        if (IS_ERR(fs_devices))
7197                return fs_devices;
7198
7199        ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7200        if (ret) {
7201                free_fs_devices(fs_devices);
7202                return ERR_PTR(ret);
7203        }
7204
7205        if (!fs_devices->seeding) {
7206                close_fs_devices(fs_devices);
7207                free_fs_devices(fs_devices);
7208                return ERR_PTR(-EINVAL);
7209        }
7210
7211        list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7212
7213        return fs_devices;
7214}
7215
7216static int read_one_dev(struct extent_buffer *leaf,
7217                        struct btrfs_dev_item *dev_item)
7218{
7219        struct btrfs_fs_info *fs_info = leaf->fs_info;
7220        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7221        struct btrfs_device *device;
7222        u64 devid;
7223        int ret;
7224        u8 fs_uuid[BTRFS_FSID_SIZE];
7225        u8 dev_uuid[BTRFS_UUID_SIZE];
7226
7227        devid = btrfs_device_id(leaf, dev_item);
7228        read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7229                           BTRFS_UUID_SIZE);
7230        read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7231                           BTRFS_FSID_SIZE);
7232
7233        if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7234                fs_devices = open_seed_devices(fs_info, fs_uuid);
7235                if (IS_ERR(fs_devices))
7236                        return PTR_ERR(fs_devices);
7237        }
7238
7239        device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
7240                                   fs_uuid);
7241        if (!device) {
7242                if (!btrfs_test_opt(fs_info, DEGRADED)) {
7243                        btrfs_report_missing_device(fs_info, devid,
7244                                                        dev_uuid, true);
7245                        return -ENOENT;
7246                }
7247
7248                device = add_missing_dev(fs_devices, devid, dev_uuid);
7249                if (IS_ERR(device)) {
7250                        btrfs_err(fs_info,
7251                                "failed to add missing dev %llu: %ld",
7252                                devid, PTR_ERR(device));
7253                        return PTR_ERR(device);
7254                }
7255                btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7256        } else {
7257                if (!device->bdev) {
7258                        if (!btrfs_test_opt(fs_info, DEGRADED)) {
7259                                btrfs_report_missing_device(fs_info,
7260                                                devid, dev_uuid, true);
7261                                return -ENOENT;
7262                        }
7263                        btrfs_report_missing_device(fs_info, devid,
7264                                                        dev_uuid, false);
7265                }
7266
7267                if (!device->bdev &&
7268                    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7269                        /*
7270                         * this happens when a device that was properly setup
7271                         * in the device info lists suddenly goes bad.
7272                         * device->bdev is NULL, and so we have to set
7273                         * device->missing to one here
7274                         */
7275                        device->fs_devices->missing_devices++;
7276                        set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7277                }
7278
7279                /* Move the device to its own fs_devices */
7280                if (device->fs_devices != fs_devices) {
7281                        ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7282                                                        &device->dev_state));
7283
7284                        list_move(&device->dev_list, &fs_devices->devices);
7285                        device->fs_devices->num_devices--;
7286                        fs_devices->num_devices++;
7287
7288                        device->fs_devices->missing_devices--;
7289                        fs_devices->missing_devices++;
7290
7291                        device->fs_devices = fs_devices;
7292                }
7293        }
7294
7295        if (device->fs_devices != fs_info->fs_devices) {
7296                BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7297                if (device->generation !=
7298                    btrfs_device_generation(leaf, dev_item))
7299                        return -EINVAL;
7300        }
7301
7302        fill_device_from_item(leaf, dev_item, device);
7303        if (device->bdev) {
7304                u64 max_total_bytes = i_size_read(device->bdev->bd_inode);
7305
7306                if (device->total_bytes > max_total_bytes) {
7307                        btrfs_err(fs_info,
7308                        "device total_bytes should be at most %llu but found %llu",
7309                                  max_total_bytes, device->total_bytes);
7310                        return -EINVAL;
7311                }
7312        }
7313        set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7314        if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7315           !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7316                device->fs_devices->total_rw_bytes += device->total_bytes;
7317                atomic64_add(device->total_bytes - device->bytes_used,
7318                                &fs_info->free_chunk_space);
7319        }
7320        ret = 0;
7321        return ret;
7322}
7323
7324int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7325{
7326        struct btrfs_root *root = fs_info->tree_root;
7327        struct btrfs_super_block *super_copy = fs_info->super_copy;
7328        struct extent_buffer *sb;
7329        struct btrfs_disk_key *disk_key;
7330        struct btrfs_chunk *chunk;
7331        u8 *array_ptr;
7332        unsigned long sb_array_offset;
7333        int ret = 0;
7334        u32 num_stripes;
7335        u32 array_size;
7336        u32 len = 0;
7337        u32 cur_offset;
7338        u64 type;
7339        struct btrfs_key key;
7340
7341        ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7342        /*
7343         * This will create extent buffer of nodesize, superblock size is
7344         * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7345         * overallocate but we can keep it as-is, only the first page is used.
7346         */
7347        sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
7348                                          root->root_key.objectid, 0);
7349        if (IS_ERR(sb))
7350                return PTR_ERR(sb);
7351        set_extent_buffer_uptodate(sb);
7352        /*
7353         * The sb extent buffer is artificial and just used to read the system array.
7354         * set_extent_buffer_uptodate() call does not properly mark all it's
7355         * pages up-to-date when the page is larger: extent does not cover the
7356         * whole page and consequently check_page_uptodate does not find all
7357         * the page's extents up-to-date (the hole beyond sb),
7358         * write_extent_buffer then triggers a WARN_ON.
7359         *
7360         * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7361         * but sb spans only this function. Add an explicit SetPageUptodate call
7362         * to silence the warning eg. on PowerPC 64.
7363         */
7364        if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7365                SetPageUptodate(sb->pages[0]);
7366
7367        write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7368        array_size = btrfs_super_sys_array_size(super_copy);
7369
7370        array_ptr = super_copy->sys_chunk_array;
7371        sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7372        cur_offset = 0;
7373
7374        while (cur_offset < array_size) {
7375                disk_key = (struct btrfs_disk_key *)array_ptr;
7376                len = sizeof(*disk_key);
7377                if (cur_offset + len > array_size)
7378                        goto out_short_read;
7379
7380                btrfs_disk_key_to_cpu(&key, disk_key);
7381
7382                array_ptr += len;
7383                sb_array_offset += len;
7384                cur_offset += len;
7385
7386                if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7387                        btrfs_err(fs_info,
7388                            "unexpected item type %u in sys_array at offset %u",
7389                                  (u32)key.type, cur_offset);
7390                        ret = -EIO;
7391                        break;
7392                }
7393
7394                chunk = (struct btrfs_chunk *)sb_array_offset;
7395                /*
7396                 * At least one btrfs_chunk with one stripe must be present,
7397                 * exact stripe count check comes afterwards
7398                 */
7399                len = btrfs_chunk_item_size(1);
7400                if (cur_offset + len > array_size)
7401                        goto out_short_read;
7402
7403                num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7404                if (!num_stripes) {
7405                        btrfs_err(fs_info,
7406                        "invalid number of stripes %u in sys_array at offset %u",
7407                                  num_stripes, cur_offset);
7408                        ret = -EIO;
7409                        break;
7410                }
7411
7412                type = btrfs_chunk_type(sb, chunk);
7413                if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7414                        btrfs_err(fs_info,
7415                        "invalid chunk type %llu in sys_array at offset %u",
7416                                  type, cur_offset);
7417                        ret = -EIO;
7418                        break;
7419                }
7420
7421                len = btrfs_chunk_item_size(num_stripes);
7422                if (cur_offset + len > array_size)
7423                        goto out_short_read;
7424
7425                ret = read_one_chunk(&key, sb, chunk);
7426                if (ret)
7427                        break;
7428
7429                array_ptr += len;
7430                sb_array_offset += len;
7431                cur_offset += len;
7432        }
7433        clear_extent_buffer_uptodate(sb);
7434        free_extent_buffer_stale(sb);
7435        return ret;
7436
7437out_short_read:
7438        btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7439                        len, cur_offset);
7440        clear_extent_buffer_uptodate(sb);
7441        free_extent_buffer_stale(sb);
7442        return -EIO;
7443}
7444
7445/*
7446 * Check if all chunks in the fs are OK for read-write degraded mount
7447 *
7448 * If the @failing_dev is specified, it's accounted as missing.
7449 *
7450 * Return true if all chunks meet the minimal RW mount requirements.
7451 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7452 */
7453bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7454                                        struct btrfs_device *failing_dev)
7455{
7456        struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7457        struct extent_map *em;
7458        u64 next_start = 0;
7459        bool ret = true;
7460
7461        read_lock(&map_tree->lock);
7462        em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7463        read_unlock(&map_tree->lock);
7464        /* No chunk at all? Return false anyway */
7465        if (!em) {
7466                ret = false;
7467                goto out;
7468        }
7469        while (em) {
7470                struct map_lookup *map;
7471                int missing = 0;
7472                int max_tolerated;
7473                int i;
7474
7475                map = em->map_lookup;
7476                max_tolerated =
7477                        btrfs_get_num_tolerated_disk_barrier_failures(
7478                                        map->type);
7479                for (i = 0; i < map->num_stripes; i++) {
7480                        struct btrfs_device *dev = map->stripes[i].dev;
7481
7482                        if (!dev || !dev->bdev ||
7483                            test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7484                            dev->last_flush_error)
7485                                missing++;
7486                        else if (failing_dev && failing_dev == dev)
7487                                missing++;
7488                }
7489                if (missing > max_tolerated) {
7490                        if (!failing_dev)
7491                                btrfs_warn(fs_info,
7492        "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7493                                   em->start, missing, max_tolerated);
7494                        free_extent_map(em);
7495                        ret = false;
7496                        goto out;
7497                }
7498                next_start = extent_map_end(em);
7499                free_extent_map(em);
7500
7501                read_lock(&map_tree->lock);
7502                em = lookup_extent_mapping(map_tree, next_start,
7503                                           (u64)(-1) - next_start);
7504                read_unlock(&map_tree->lock);
7505        }
7506out:
7507        return ret;
7508}
7509
7510static void readahead_tree_node_children(struct extent_buffer *node)
7511{
7512        int i;
7513        const int nr_items = btrfs_header_nritems(node);
7514
7515        for (i = 0; i < nr_items; i++)
7516                btrfs_readahead_node_child(node, i);
7517}
7518
7519int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7520{
7521        struct btrfs_root *root = fs_info->chunk_root;
7522        struct btrfs_path *path;
7523        struct extent_buffer *leaf;
7524        struct btrfs_key key;
7525        struct btrfs_key found_key;
7526        int ret;
7527        int slot;
7528        u64 total_dev = 0;
7529        u64 last_ra_node = 0;
7530
7531        path = btrfs_alloc_path();
7532        if (!path)
7533                return -ENOMEM;
7534
7535        /*
7536         * uuid_mutex is needed only if we are mounting a sprout FS
7537         * otherwise we don't need it.
7538         */
7539        mutex_lock(&uuid_mutex);
7540
7541        /*
7542         * It is possible for mount and umount to race in such a way that
7543         * we execute this code path, but open_fs_devices failed to clear
7544         * total_rw_bytes. We certainly want it cleared before reading the
7545         * device items, so clear it here.
7546         */
7547        fs_info->fs_devices->total_rw_bytes = 0;
7548
7549        /*
7550         * Read all device items, and then all the chunk items. All
7551         * device items are found before any chunk item (their object id
7552         * is smaller than the lowest possible object id for a chunk
7553         * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7554         */
7555        key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7556        key.offset = 0;
7557        key.type = 0;
7558        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7559        if (ret < 0)
7560                goto error;
7561        while (1) {
7562                struct extent_buffer *node;
7563
7564                leaf = path->nodes[0];
7565                slot = path->slots[0];
7566                if (slot >= btrfs_header_nritems(leaf)) {
7567                        ret = btrfs_next_leaf(root, path);
7568                        if (ret == 0)
7569                                continue;
7570                        if (ret < 0)
7571                                goto error;
7572                        break;
7573                }
7574                /*
7575                 * The nodes on level 1 are not locked but we don't need to do
7576                 * that during mount time as nothing else can access the tree
7577                 */
7578                node = path->nodes[1];
7579                if (node) {
7580                        if (last_ra_node != node->start) {
7581                                readahead_tree_node_children(node);
7582                                last_ra_node = node->start;
7583                        }
7584                }
7585                btrfs_item_key_to_cpu(leaf, &found_key, slot);
7586                if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7587                        struct btrfs_dev_item *dev_item;
7588                        dev_item = btrfs_item_ptr(leaf, slot,
7589                                                  struct btrfs_dev_item);
7590                        ret = read_one_dev(leaf, dev_item);
7591                        if (ret)
7592                                goto error;
7593                        total_dev++;
7594                } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7595                        struct btrfs_chunk *chunk;
7596
7597                        /*
7598                         * We are only called at mount time, so no need to take
7599                         * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7600                         * we always lock first fs_info->chunk_mutex before
7601                         * acquiring any locks on the chunk tree. This is a
7602                         * requirement for chunk allocation, see the comment on
7603                         * top of btrfs_chunk_alloc() for details.
7604                         */
7605                        ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7606                        chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7607                        ret = read_one_chunk(&found_key, leaf, chunk);
7608                        if (ret)
7609                                goto error;
7610                }
7611                path->slots[0]++;
7612        }
7613
7614        /*
7615         * After loading chunk tree, we've got all device information,
7616         * do another round of validation checks.
7617         */
7618        if (total_dev != fs_info->fs_devices->total_devices) {
7619                btrfs_err(fs_info,
7620           "super_num_devices %llu mismatch with num_devices %llu found here",
7621                          btrfs_super_num_devices(fs_info->super_copy),
7622                          total_dev);
7623                ret = -EINVAL;
7624                goto error;
7625        }
7626        if (btrfs_super_total_bytes(fs_info->super_copy) <
7627            fs_info->fs_devices->total_rw_bytes) {
7628                btrfs_err(fs_info,
7629        "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7630                          btrfs_super_total_bytes(fs_info->super_copy),
7631                          fs_info->fs_devices->total_rw_bytes);
7632                ret = -EINVAL;
7633                goto error;
7634        }
7635        ret = 0;
7636error:
7637        mutex_unlock(&uuid_mutex);
7638
7639        btrfs_free_path(path);
7640        return ret;
7641}
7642
7643void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7644{
7645        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7646        struct btrfs_device *device;
7647
7648        fs_devices->fs_info = fs_info;
7649
7650        mutex_lock(&fs_devices->device_list_mutex);
7651        list_for_each_entry(device, &fs_devices->devices, dev_list)
7652                device->fs_info = fs_info;
7653
7654        list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7655                list_for_each_entry(device, &seed_devs->devices, dev_list)
7656                        device->fs_info = fs_info;
7657
7658                seed_devs->fs_info = fs_info;
7659        }
7660        mutex_unlock(&fs_devices->device_list_mutex);
7661}
7662
7663static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7664                                 const struct btrfs_dev_stats_item *ptr,
7665                                 int index)
7666{
7667        u64 val;
7668
7669        read_extent_buffer(eb, &val,
7670                           offsetof(struct btrfs_dev_stats_item, values) +
7671                            ((unsigned long)ptr) + (index * sizeof(u64)),
7672                           sizeof(val));
7673        return val;
7674}
7675
7676static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7677                                      struct btrfs_dev_stats_item *ptr,
7678                                      int index, u64 val)
7679{
7680        write_extent_buffer(eb, &val,
7681                            offsetof(struct btrfs_dev_stats_item, values) +
7682                             ((unsigned long)ptr) + (index * sizeof(u64)),
7683                            sizeof(val));
7684}
7685
7686static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7687                                       struct btrfs_path *path)
7688{
7689        struct btrfs_dev_stats_item *ptr;
7690        struct extent_buffer *eb;
7691        struct btrfs_key key;
7692        int item_size;
7693        int i, ret, slot;
7694
7695        if (!device->fs_info->dev_root)
7696                return 0;
7697
7698        key.objectid = BTRFS_DEV_STATS_OBJECTID;
7699        key.type = BTRFS_PERSISTENT_ITEM_KEY;
7700        key.offset = device->devid;
7701        ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7702        if (ret) {
7703                for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7704                        btrfs_dev_stat_set(device, i, 0);
7705                device->dev_stats_valid = 1;
7706                btrfs_release_path(path);
7707                return ret < 0 ? ret : 0;
7708        }
7709        slot = path->slots[0];
7710        eb = path->nodes[0];
7711        item_size = btrfs_item_size_nr(eb, slot);
7712
7713        ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7714
7715        for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7716                if (item_size >= (1 + i) * sizeof(__le64))
7717                        btrfs_dev_stat_set(device, i,
7718                                           btrfs_dev_stats_value(eb, ptr, i));
7719                else
7720                        btrfs_dev_stat_set(device, i, 0);
7721        }
7722
7723        device->dev_stats_valid = 1;
7724        btrfs_dev_stat_print_on_load(device);
7725        btrfs_release_path(path);
7726
7727        return 0;
7728}
7729
7730int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7731{
7732        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7733        struct btrfs_device *device;
7734        struct btrfs_path *path = NULL;
7735        int ret = 0;
7736
7737        path = btrfs_alloc_path();
7738        if (!path)
7739                return -ENOMEM;
7740
7741        mutex_lock(&fs_devices->device_list_mutex);
7742        list_for_each_entry(device, &fs_devices->devices, dev_list) {
7743                ret = btrfs_device_init_dev_stats(device, path);
7744                if (ret)
7745                        goto out;
7746        }
7747        list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7748                list_for_each_entry(device, &seed_devs->devices, dev_list) {
7749                        ret = btrfs_device_init_dev_stats(device, path);
7750                        if (ret)
7751                                goto out;
7752                }
7753        }
7754out:
7755        mutex_unlock(&fs_devices->device_list_mutex);
7756
7757        btrfs_free_path(path);
7758        return ret;
7759}
7760
7761static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7762                                struct btrfs_device *device)
7763{
7764        struct btrfs_fs_info *fs_info = trans->fs_info;
7765        struct btrfs_root *dev_root = fs_info->dev_root;
7766        struct btrfs_path *path;
7767        struct btrfs_key key;
7768        struct extent_buffer *eb;
7769        struct btrfs_dev_stats_item *ptr;
7770        int ret;
7771        int i;
7772
7773        key.objectid = BTRFS_DEV_STATS_OBJECTID;
7774        key.type = BTRFS_PERSISTENT_ITEM_KEY;
7775        key.offset = device->devid;
7776
7777        path = btrfs_alloc_path();
7778        if (!path)
7779                return -ENOMEM;
7780        ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7781        if (ret < 0) {
7782                btrfs_warn_in_rcu(fs_info,
7783                        "error %d while searching for dev_stats item for device %s",
7784                              ret, rcu_str_deref(device->name));
7785                goto out;
7786        }
7787
7788        if (ret == 0 &&
7789            btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7790                /* need to delete old one and insert a new one */
7791                ret = btrfs_del_item(trans, dev_root, path);
7792                if (ret != 0) {
7793                        btrfs_warn_in_rcu(fs_info,
7794                                "delete too small dev_stats item for device %s failed %d",
7795                                      rcu_str_deref(device->name), ret);
7796                        goto out;
7797                }
7798                ret = 1;
7799        }
7800
7801        if (ret == 1) {
7802                /* need to insert a new item */
7803                btrfs_release_path(path);
7804                ret = btrfs_insert_empty_item(trans, dev_root, path,
7805                                              &key, sizeof(*ptr));
7806                if (ret < 0) {
7807                        btrfs_warn_in_rcu(fs_info,
7808                                "insert dev_stats item for device %s failed %d",
7809                                rcu_str_deref(device->name), ret);
7810                        goto out;
7811                }
7812        }
7813
7814        eb = path->nodes[0];
7815        ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7816        for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7817                btrfs_set_dev_stats_value(eb, ptr, i,
7818                                          btrfs_dev_stat_read(device, i));
7819        btrfs_mark_buffer_dirty(eb);
7820
7821out:
7822        btrfs_free_path(path);
7823        return ret;
7824}
7825
7826/*
7827 * called from commit_transaction. Writes all changed device stats to disk.
7828 */
7829int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7830{
7831        struct btrfs_fs_info *fs_info = trans->fs_info;
7832        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7833        struct btrfs_device *device;
7834        int stats_cnt;
7835        int ret = 0;
7836
7837        mutex_lock(&fs_devices->device_list_mutex);
7838        list_for_each_entry(device, &fs_devices->devices, dev_list) {
7839                stats_cnt = atomic_read(&device->dev_stats_ccnt);
7840                if (!device->dev_stats_valid || stats_cnt == 0)
7841                        continue;
7842
7843
7844                /*
7845                 * There is a LOAD-LOAD control dependency between the value of
7846                 * dev_stats_ccnt and updating the on-disk values which requires
7847                 * reading the in-memory counters. Such control dependencies
7848                 * require explicit read memory barriers.
7849                 *
7850                 * This memory barriers pairs with smp_mb__before_atomic in
7851                 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7852                 * barrier implied by atomic_xchg in
7853                 * btrfs_dev_stats_read_and_reset
7854                 */
7855                smp_rmb();
7856
7857                ret = update_dev_stat_item(trans, device);
7858                if (!ret)
7859                        atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7860        }
7861        mutex_unlock(&fs_devices->device_list_mutex);
7862
7863        return ret;
7864}
7865
7866void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7867{
7868        btrfs_dev_stat_inc(dev, index);
7869        btrfs_dev_stat_print_on_error(dev);
7870}
7871
7872static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7873{
7874        if (!dev->dev_stats_valid)
7875                return;
7876        btrfs_err_rl_in_rcu(dev->fs_info,
7877                "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7878                           rcu_str_deref(dev->name),
7879                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7880                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7881                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7882                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7883                           btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7884}
7885
7886static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7887{
7888        int i;
7889
7890        for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7891                if (btrfs_dev_stat_read(dev, i) != 0)
7892                        break;
7893        if (i == BTRFS_DEV_STAT_VALUES_MAX)
7894                return; /* all values == 0, suppress message */
7895
7896        btrfs_info_in_rcu(dev->fs_info,
7897                "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7898               rcu_str_deref(dev->name),
7899               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7900               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7901               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7902               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7903               btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7904}
7905
7906int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7907                        struct btrfs_ioctl_get_dev_stats *stats)
7908{
7909        struct btrfs_device *dev;
7910        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7911        int i;
7912
7913        mutex_lock(&fs_devices->device_list_mutex);
7914        dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL);
7915        mutex_unlock(&fs_devices->device_list_mutex);
7916
7917        if (!dev) {
7918                btrfs_warn(fs_info, "get dev_stats failed, device not found");
7919                return -ENODEV;
7920        } else if (!dev->dev_stats_valid) {
7921                btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7922                return -ENODEV;
7923        } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7924                for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7925                        if (stats->nr_items > i)
7926                                stats->values[i] =
7927                                        btrfs_dev_stat_read_and_reset(dev, i);
7928                        else
7929                                btrfs_dev_stat_set(dev, i, 0);
7930                }
7931                btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7932                           current->comm, task_pid_nr(current));
7933        } else {
7934                for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7935                        if (stats->nr_items > i)
7936                                stats->values[i] = btrfs_dev_stat_read(dev, i);
7937        }
7938        if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7939                stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7940        return 0;
7941}
7942
7943/*
7944 * Update the size and bytes used for each device where it changed.  This is
7945 * delayed since we would otherwise get errors while writing out the
7946 * superblocks.
7947 *
7948 * Must be invoked during transaction commit.
7949 */
7950void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7951{
7952        struct btrfs_device *curr, *next;
7953
7954        ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7955
7956        if (list_empty(&trans->dev_update_list))
7957                return;
7958
7959        /*
7960         * We don't need the device_list_mutex here.  This list is owned by the
7961         * transaction and the transaction must complete before the device is
7962         * released.
7963         */
7964        mutex_lock(&trans->fs_info->chunk_mutex);
7965        list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7966                                 post_commit_list) {
7967                list_del_init(&curr->post_commit_list);
7968                curr->commit_total_bytes = curr->disk_total_bytes;
7969                curr->commit_bytes_used = curr->bytes_used;
7970        }
7971        mutex_unlock(&trans->fs_info->chunk_mutex);
7972}
7973
7974/*
7975 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7976 */
7977int btrfs_bg_type_to_factor(u64 flags)
7978{
7979        const int index = btrfs_bg_flags_to_raid_index(flags);
7980
7981        return btrfs_raid_array[index].ncopies;
7982}
7983
7984
7985
7986static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7987                                 u64 chunk_offset, u64 devid,
7988                                 u64 physical_offset, u64 physical_len)
7989{
7990        struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7991        struct extent_map *em;
7992        struct map_lookup *map;
7993        struct btrfs_device *dev;
7994        u64 stripe_len;
7995        bool found = false;
7996        int ret = 0;
7997        int i;
7998
7999        read_lock(&em_tree->lock);
8000        em = lookup_extent_mapping(em_tree, chunk_offset, 1);
8001        read_unlock(&em_tree->lock);
8002
8003        if (!em) {
8004                btrfs_err(fs_info,
8005"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
8006                          physical_offset, devid);
8007                ret = -EUCLEAN;
8008                goto out;
8009        }
8010
8011        map = em->map_lookup;
8012        stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
8013        if (physical_len != stripe_len) {
8014                btrfs_err(fs_info,
8015"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
8016                          physical_offset, devid, em->start, physical_len,
8017                          stripe_len);
8018                ret = -EUCLEAN;
8019                goto out;
8020        }
8021
8022        for (i = 0; i < map->num_stripes; i++) {
8023                if (map->stripes[i].dev->devid == devid &&
8024                    map->stripes[i].physical == physical_offset) {
8025                        found = true;
8026                        if (map->verified_stripes >= map->num_stripes) {
8027                                btrfs_err(fs_info,
8028                                "too many dev extents for chunk %llu found",
8029                                          em->start);
8030                                ret = -EUCLEAN;
8031                                goto out;
8032                        }
8033                        map->verified_stripes++;
8034                        break;
8035                }
8036        }
8037        if (!found) {
8038                btrfs_err(fs_info,
8039        "dev extent physical offset %llu devid %llu has no corresponding chunk",
8040                        physical_offset, devid);
8041                ret = -EUCLEAN;
8042        }
8043
8044        /* Make sure no dev extent is beyond device boundary */
8045        dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
8046        if (!dev) {
8047                btrfs_err(fs_info, "failed to find devid %llu", devid);
8048                ret = -EUCLEAN;
8049                goto out;
8050        }
8051
8052        if (physical_offset + physical_len > dev->disk_total_bytes) {
8053                btrfs_err(fs_info,
8054"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
8055                          devid, physical_offset, physical_len,
8056                          dev->disk_total_bytes);
8057                ret = -EUCLEAN;
8058                goto out;
8059        }
8060
8061        if (dev->zone_info) {
8062                u64 zone_size = dev->zone_info->zone_size;
8063
8064                if (!IS_ALIGNED(physical_offset, zone_size) ||
8065                    !IS_ALIGNED(physical_len, zone_size)) {
8066                        btrfs_err(fs_info,
8067"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8068                                  devid, physical_offset, physical_len);
8069                        ret = -EUCLEAN;
8070                        goto out;
8071                }
8072        }
8073
8074out:
8075        free_extent_map(em);
8076        return ret;
8077}
8078
8079static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8080{
8081        struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8082        struct extent_map *em;
8083        struct rb_node *node;
8084        int ret = 0;
8085
8086        read_lock(&em_tree->lock);
8087        for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
8088                em = rb_entry(node, struct extent_map, rb_node);
8089                if (em->map_lookup->num_stripes !=
8090                    em->map_lookup->verified_stripes) {
8091                        btrfs_err(fs_info,
8092                        "chunk %llu has missing dev extent, have %d expect %d",
8093                                  em->start, em->map_lookup->verified_stripes,
8094                                  em->map_lookup->num_stripes);
8095                        ret = -EUCLEAN;
8096                        goto out;
8097                }
8098        }
8099out:
8100        read_unlock(&em_tree->lock);
8101        return ret;
8102}
8103
8104/*
8105 * Ensure that all dev extents are mapped to correct chunk, otherwise
8106 * later chunk allocation/free would cause unexpected behavior.
8107 *
8108 * NOTE: This will iterate through the whole device tree, which should be of
8109 * the same size level as the chunk tree.  This slightly increases mount time.
8110 */
8111int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8112{
8113        struct btrfs_path *path;
8114        struct btrfs_root *root = fs_info->dev_root;
8115        struct btrfs_key key;
8116        u64 prev_devid = 0;
8117        u64 prev_dev_ext_end = 0;
8118        int ret = 0;
8119
8120        /*
8121         * We don't have a dev_root because we mounted with ignorebadroots and
8122         * failed to load the root, so we want to skip the verification in this
8123         * case for sure.
8124         *
8125         * However if the dev root is fine, but the tree itself is corrupted
8126         * we'd still fail to mount.  This verification is only to make sure
8127         * writes can happen safely, so instead just bypass this check
8128         * completely in the case of IGNOREBADROOTS.
8129         */
8130        if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8131                return 0;
8132
8133        key.objectid = 1;
8134        key.type = BTRFS_DEV_EXTENT_KEY;
8135        key.offset = 0;
8136
8137        path = btrfs_alloc_path();
8138        if (!path)
8139                return -ENOMEM;
8140
8141        path->reada = READA_FORWARD;
8142        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8143        if (ret < 0)
8144                goto out;
8145
8146        if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8147                ret = btrfs_next_item(root, path);
8148                if (ret < 0)
8149                        goto out;
8150                /* No dev extents at all? Not good */
8151                if (ret > 0) {
8152                        ret = -EUCLEAN;
8153                        goto out;
8154                }
8155        }
8156        while (1) {
8157                struct extent_buffer *leaf = path->nodes[0];
8158                struct btrfs_dev_extent *dext;
8159                int slot = path->slots[0];
8160                u64 chunk_offset;
8161                u64 physical_offset;
8162                u64 physical_len;
8163                u64 devid;
8164
8165                btrfs_item_key_to_cpu(leaf, &key, slot);
8166                if (key.type != BTRFS_DEV_EXTENT_KEY)
8167                        break;
8168                devid = key.objectid;
8169                physical_offset = key.offset;
8170
8171                dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8172                chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8173                physical_len = btrfs_dev_extent_length(leaf, dext);
8174
8175                /* Check if this dev extent overlaps with the previous one */
8176                if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8177                        btrfs_err(fs_info,
8178"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8179                                  devid, physical_offset, prev_dev_ext_end);
8180                        ret = -EUCLEAN;
8181                        goto out;
8182                }
8183
8184                ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8185                                            physical_offset, physical_len);
8186                if (ret < 0)
8187                        goto out;
8188                prev_devid = devid;
8189                prev_dev_ext_end = physical_offset + physical_len;
8190
8191                ret = btrfs_next_item(root, path);
8192                if (ret < 0)
8193                        goto out;
8194                if (ret > 0) {
8195                        ret = 0;
8196                        break;
8197                }
8198        }
8199
8200        /* Ensure all chunks have corresponding dev extents */
8201        ret = verify_chunk_dev_extent_mapping(fs_info);
8202out:
8203        btrfs_free_path(path);
8204        return ret;
8205}
8206
8207/*
8208 * Check whether the given block group or device is pinned by any inode being
8209 * used as a swapfile.
8210 */
8211bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8212{
8213        struct btrfs_swapfile_pin *sp;
8214        struct rb_node *node;
8215
8216        spin_lock(&fs_info->swapfile_pins_lock);
8217        node = fs_info->swapfile_pins.rb_node;
8218        while (node) {
8219                sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8220                if (ptr < sp->ptr)
8221                        node = node->rb_left;
8222                else if (ptr > sp->ptr)
8223                        node = node->rb_right;
8224                else
8225                        break;
8226        }
8227        spin_unlock(&fs_info->swapfile_pins_lock);
8228        return node != NULL;
8229}
8230
8231static int relocating_repair_kthread(void *data)
8232{
8233        struct btrfs_block_group *cache = (struct btrfs_block_group *)data;
8234        struct btrfs_fs_info *fs_info = cache->fs_info;
8235        u64 target;
8236        int ret = 0;
8237
8238        target = cache->start;
8239        btrfs_put_block_group(cache);
8240
8241        if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8242                btrfs_info(fs_info,
8243                           "zoned: skip relocating block group %llu to repair: EBUSY",
8244                           target);
8245                return -EBUSY;
8246        }
8247
8248        mutex_lock(&fs_info->reclaim_bgs_lock);
8249
8250        /* Ensure block group still exists */
8251        cache = btrfs_lookup_block_group(fs_info, target);
8252        if (!cache)
8253                goto out;
8254
8255        if (!cache->relocating_repair)
8256                goto out;
8257
8258        ret = btrfs_may_alloc_data_chunk(fs_info, target);
8259        if (ret < 0)
8260                goto out;
8261
8262        btrfs_info(fs_info,
8263                   "zoned: relocating block group %llu to repair IO failure",
8264                   target);
8265        ret = btrfs_relocate_chunk(fs_info, target);
8266
8267out:
8268        if (cache)
8269                btrfs_put_block_group(cache);
8270        mutex_unlock(&fs_info->reclaim_bgs_lock);
8271        btrfs_exclop_finish(fs_info);
8272
8273        return ret;
8274}
8275
8276int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8277{
8278        struct btrfs_block_group *cache;
8279
8280        /* Do not attempt to repair in degraded state */
8281        if (btrfs_test_opt(fs_info, DEGRADED))
8282                return 0;
8283
8284        cache = btrfs_lookup_block_group(fs_info, logical);
8285        if (!cache)
8286                return 0;
8287
8288        spin_lock(&cache->lock);
8289        if (cache->relocating_repair) {
8290                spin_unlock(&cache->lock);
8291                btrfs_put_block_group(cache);
8292                return 0;
8293        }
8294        cache->relocating_repair = 1;
8295        spin_unlock(&cache->lock);
8296
8297        kthread_run(relocating_repair_kthread, cache,
8298                    "btrfs-relocating-repair");
8299
8300        return 0;
8301}
8302