linux/fs/dax.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * fs/dax.c - Direct Access filesystem code
   4 * Copyright (c) 2013-2014 Intel Corporation
   5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
   6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
   7 */
   8
   9#include <linux/atomic.h>
  10#include <linux/blkdev.h>
  11#include <linux/buffer_head.h>
  12#include <linux/dax.h>
  13#include <linux/fs.h>
  14#include <linux/genhd.h>
  15#include <linux/highmem.h>
  16#include <linux/memcontrol.h>
  17#include <linux/mm.h>
  18#include <linux/mutex.h>
  19#include <linux/pagevec.h>
  20#include <linux/sched.h>
  21#include <linux/sched/signal.h>
  22#include <linux/uio.h>
  23#include <linux/vmstat.h>
  24#include <linux/pfn_t.h>
  25#include <linux/sizes.h>
  26#include <linux/mmu_notifier.h>
  27#include <linux/iomap.h>
  28#include <asm/pgalloc.h>
  29
  30#define CREATE_TRACE_POINTS
  31#include <trace/events/fs_dax.h>
  32
  33static inline unsigned int pe_order(enum page_entry_size pe_size)
  34{
  35        if (pe_size == PE_SIZE_PTE)
  36                return PAGE_SHIFT - PAGE_SHIFT;
  37        if (pe_size == PE_SIZE_PMD)
  38                return PMD_SHIFT - PAGE_SHIFT;
  39        if (pe_size == PE_SIZE_PUD)
  40                return PUD_SHIFT - PAGE_SHIFT;
  41        return ~0;
  42}
  43
  44/* We choose 4096 entries - same as per-zone page wait tables */
  45#define DAX_WAIT_TABLE_BITS 12
  46#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
  47
  48/* The 'colour' (ie low bits) within a PMD of a page offset.  */
  49#define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
  50#define PG_PMD_NR       (PMD_SIZE >> PAGE_SHIFT)
  51
  52/* The order of a PMD entry */
  53#define PMD_ORDER       (PMD_SHIFT - PAGE_SHIFT)
  54
  55static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
  56
  57static int __init init_dax_wait_table(void)
  58{
  59        int i;
  60
  61        for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
  62                init_waitqueue_head(wait_table + i);
  63        return 0;
  64}
  65fs_initcall(init_dax_wait_table);
  66
  67/*
  68 * DAX pagecache entries use XArray value entries so they can't be mistaken
  69 * for pages.  We use one bit for locking, one bit for the entry size (PMD)
  70 * and two more to tell us if the entry is a zero page or an empty entry that
  71 * is just used for locking.  In total four special bits.
  72 *
  73 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
  74 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
  75 * block allocation.
  76 */
  77#define DAX_SHIFT       (4)
  78#define DAX_LOCKED      (1UL << 0)
  79#define DAX_PMD         (1UL << 1)
  80#define DAX_ZERO_PAGE   (1UL << 2)
  81#define DAX_EMPTY       (1UL << 3)
  82
  83static unsigned long dax_to_pfn(void *entry)
  84{
  85        return xa_to_value(entry) >> DAX_SHIFT;
  86}
  87
  88static void *dax_make_entry(pfn_t pfn, unsigned long flags)
  89{
  90        return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
  91}
  92
  93static bool dax_is_locked(void *entry)
  94{
  95        return xa_to_value(entry) & DAX_LOCKED;
  96}
  97
  98static unsigned int dax_entry_order(void *entry)
  99{
 100        if (xa_to_value(entry) & DAX_PMD)
 101                return PMD_ORDER;
 102        return 0;
 103}
 104
 105static unsigned long dax_is_pmd_entry(void *entry)
 106{
 107        return xa_to_value(entry) & DAX_PMD;
 108}
 109
 110static bool dax_is_pte_entry(void *entry)
 111{
 112        return !(xa_to_value(entry) & DAX_PMD);
 113}
 114
 115static int dax_is_zero_entry(void *entry)
 116{
 117        return xa_to_value(entry) & DAX_ZERO_PAGE;
 118}
 119
 120static int dax_is_empty_entry(void *entry)
 121{
 122        return xa_to_value(entry) & DAX_EMPTY;
 123}
 124
 125/*
 126 * true if the entry that was found is of a smaller order than the entry
 127 * we were looking for
 128 */
 129static bool dax_is_conflict(void *entry)
 130{
 131        return entry == XA_RETRY_ENTRY;
 132}
 133
 134/*
 135 * DAX page cache entry locking
 136 */
 137struct exceptional_entry_key {
 138        struct xarray *xa;
 139        pgoff_t entry_start;
 140};
 141
 142struct wait_exceptional_entry_queue {
 143        wait_queue_entry_t wait;
 144        struct exceptional_entry_key key;
 145};
 146
 147/**
 148 * enum dax_wake_mode: waitqueue wakeup behaviour
 149 * @WAKE_ALL: wake all waiters in the waitqueue
 150 * @WAKE_NEXT: wake only the first waiter in the waitqueue
 151 */
 152enum dax_wake_mode {
 153        WAKE_ALL,
 154        WAKE_NEXT,
 155};
 156
 157static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
 158                void *entry, struct exceptional_entry_key *key)
 159{
 160        unsigned long hash;
 161        unsigned long index = xas->xa_index;
 162
 163        /*
 164         * If 'entry' is a PMD, align the 'index' that we use for the wait
 165         * queue to the start of that PMD.  This ensures that all offsets in
 166         * the range covered by the PMD map to the same bit lock.
 167         */
 168        if (dax_is_pmd_entry(entry))
 169                index &= ~PG_PMD_COLOUR;
 170        key->xa = xas->xa;
 171        key->entry_start = index;
 172
 173        hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
 174        return wait_table + hash;
 175}
 176
 177static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
 178                unsigned int mode, int sync, void *keyp)
 179{
 180        struct exceptional_entry_key *key = keyp;
 181        struct wait_exceptional_entry_queue *ewait =
 182                container_of(wait, struct wait_exceptional_entry_queue, wait);
 183
 184        if (key->xa != ewait->key.xa ||
 185            key->entry_start != ewait->key.entry_start)
 186                return 0;
 187        return autoremove_wake_function(wait, mode, sync, NULL);
 188}
 189
 190/*
 191 * @entry may no longer be the entry at the index in the mapping.
 192 * The important information it's conveying is whether the entry at
 193 * this index used to be a PMD entry.
 194 */
 195static void dax_wake_entry(struct xa_state *xas, void *entry,
 196                           enum dax_wake_mode mode)
 197{
 198        struct exceptional_entry_key key;
 199        wait_queue_head_t *wq;
 200
 201        wq = dax_entry_waitqueue(xas, entry, &key);
 202
 203        /*
 204         * Checking for locked entry and prepare_to_wait_exclusive() happens
 205         * under the i_pages lock, ditto for entry handling in our callers.
 206         * So at this point all tasks that could have seen our entry locked
 207         * must be in the waitqueue and the following check will see them.
 208         */
 209        if (waitqueue_active(wq))
 210                __wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
 211}
 212
 213/*
 214 * Look up entry in page cache, wait for it to become unlocked if it
 215 * is a DAX entry and return it.  The caller must subsequently call
 216 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
 217 * if it did.  The entry returned may have a larger order than @order.
 218 * If @order is larger than the order of the entry found in i_pages, this
 219 * function returns a dax_is_conflict entry.
 220 *
 221 * Must be called with the i_pages lock held.
 222 */
 223static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
 224{
 225        void *entry;
 226        struct wait_exceptional_entry_queue ewait;
 227        wait_queue_head_t *wq;
 228
 229        init_wait(&ewait.wait);
 230        ewait.wait.func = wake_exceptional_entry_func;
 231
 232        for (;;) {
 233                entry = xas_find_conflict(xas);
 234                if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
 235                        return entry;
 236                if (dax_entry_order(entry) < order)
 237                        return XA_RETRY_ENTRY;
 238                if (!dax_is_locked(entry))
 239                        return entry;
 240
 241                wq = dax_entry_waitqueue(xas, entry, &ewait.key);
 242                prepare_to_wait_exclusive(wq, &ewait.wait,
 243                                          TASK_UNINTERRUPTIBLE);
 244                xas_unlock_irq(xas);
 245                xas_reset(xas);
 246                schedule();
 247                finish_wait(wq, &ewait.wait);
 248                xas_lock_irq(xas);
 249        }
 250}
 251
 252/*
 253 * The only thing keeping the address space around is the i_pages lock
 254 * (it's cycled in clear_inode() after removing the entries from i_pages)
 255 * After we call xas_unlock_irq(), we cannot touch xas->xa.
 256 */
 257static void wait_entry_unlocked(struct xa_state *xas, void *entry)
 258{
 259        struct wait_exceptional_entry_queue ewait;
 260        wait_queue_head_t *wq;
 261
 262        init_wait(&ewait.wait);
 263        ewait.wait.func = wake_exceptional_entry_func;
 264
 265        wq = dax_entry_waitqueue(xas, entry, &ewait.key);
 266        /*
 267         * Unlike get_unlocked_entry() there is no guarantee that this
 268         * path ever successfully retrieves an unlocked entry before an
 269         * inode dies. Perform a non-exclusive wait in case this path
 270         * never successfully performs its own wake up.
 271         */
 272        prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
 273        xas_unlock_irq(xas);
 274        schedule();
 275        finish_wait(wq, &ewait.wait);
 276}
 277
 278static void put_unlocked_entry(struct xa_state *xas, void *entry,
 279                               enum dax_wake_mode mode)
 280{
 281        if (entry && !dax_is_conflict(entry))
 282                dax_wake_entry(xas, entry, mode);
 283}
 284
 285/*
 286 * We used the xa_state to get the entry, but then we locked the entry and
 287 * dropped the xa_lock, so we know the xa_state is stale and must be reset
 288 * before use.
 289 */
 290static void dax_unlock_entry(struct xa_state *xas, void *entry)
 291{
 292        void *old;
 293
 294        BUG_ON(dax_is_locked(entry));
 295        xas_reset(xas);
 296        xas_lock_irq(xas);
 297        old = xas_store(xas, entry);
 298        xas_unlock_irq(xas);
 299        BUG_ON(!dax_is_locked(old));
 300        dax_wake_entry(xas, entry, WAKE_NEXT);
 301}
 302
 303/*
 304 * Return: The entry stored at this location before it was locked.
 305 */
 306static void *dax_lock_entry(struct xa_state *xas, void *entry)
 307{
 308        unsigned long v = xa_to_value(entry);
 309        return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
 310}
 311
 312static unsigned long dax_entry_size(void *entry)
 313{
 314        if (dax_is_zero_entry(entry))
 315                return 0;
 316        else if (dax_is_empty_entry(entry))
 317                return 0;
 318        else if (dax_is_pmd_entry(entry))
 319                return PMD_SIZE;
 320        else
 321                return PAGE_SIZE;
 322}
 323
 324static unsigned long dax_end_pfn(void *entry)
 325{
 326        return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
 327}
 328
 329/*
 330 * Iterate through all mapped pfns represented by an entry, i.e. skip
 331 * 'empty' and 'zero' entries.
 332 */
 333#define for_each_mapped_pfn(entry, pfn) \
 334        for (pfn = dax_to_pfn(entry); \
 335                        pfn < dax_end_pfn(entry); pfn++)
 336
 337/*
 338 * TODO: for reflink+dax we need a way to associate a single page with
 339 * multiple address_space instances at different linear_page_index()
 340 * offsets.
 341 */
 342static void dax_associate_entry(void *entry, struct address_space *mapping,
 343                struct vm_area_struct *vma, unsigned long address)
 344{
 345        unsigned long size = dax_entry_size(entry), pfn, index;
 346        int i = 0;
 347
 348        if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
 349                return;
 350
 351        index = linear_page_index(vma, address & ~(size - 1));
 352        for_each_mapped_pfn(entry, pfn) {
 353                struct page *page = pfn_to_page(pfn);
 354
 355                WARN_ON_ONCE(page->mapping);
 356                page->mapping = mapping;
 357                page->index = index + i++;
 358        }
 359}
 360
 361static void dax_disassociate_entry(void *entry, struct address_space *mapping,
 362                bool trunc)
 363{
 364        unsigned long pfn;
 365
 366        if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
 367                return;
 368
 369        for_each_mapped_pfn(entry, pfn) {
 370                struct page *page = pfn_to_page(pfn);
 371
 372                WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
 373                WARN_ON_ONCE(page->mapping && page->mapping != mapping);
 374                page->mapping = NULL;
 375                page->index = 0;
 376        }
 377}
 378
 379static struct page *dax_busy_page(void *entry)
 380{
 381        unsigned long pfn;
 382
 383        for_each_mapped_pfn(entry, pfn) {
 384                struct page *page = pfn_to_page(pfn);
 385
 386                if (page_ref_count(page) > 1)
 387                        return page;
 388        }
 389        return NULL;
 390}
 391
 392/*
 393 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
 394 * @page: The page whose entry we want to lock
 395 *
 396 * Context: Process context.
 397 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
 398 * not be locked.
 399 */
 400dax_entry_t dax_lock_page(struct page *page)
 401{
 402        XA_STATE(xas, NULL, 0);
 403        void *entry;
 404
 405        /* Ensure page->mapping isn't freed while we look at it */
 406        rcu_read_lock();
 407        for (;;) {
 408                struct address_space *mapping = READ_ONCE(page->mapping);
 409
 410                entry = NULL;
 411                if (!mapping || !dax_mapping(mapping))
 412                        break;
 413
 414                /*
 415                 * In the device-dax case there's no need to lock, a
 416                 * struct dev_pagemap pin is sufficient to keep the
 417                 * inode alive, and we assume we have dev_pagemap pin
 418                 * otherwise we would not have a valid pfn_to_page()
 419                 * translation.
 420                 */
 421                entry = (void *)~0UL;
 422                if (S_ISCHR(mapping->host->i_mode))
 423                        break;
 424
 425                xas.xa = &mapping->i_pages;
 426                xas_lock_irq(&xas);
 427                if (mapping != page->mapping) {
 428                        xas_unlock_irq(&xas);
 429                        continue;
 430                }
 431                xas_set(&xas, page->index);
 432                entry = xas_load(&xas);
 433                if (dax_is_locked(entry)) {
 434                        rcu_read_unlock();
 435                        wait_entry_unlocked(&xas, entry);
 436                        rcu_read_lock();
 437                        continue;
 438                }
 439                dax_lock_entry(&xas, entry);
 440                xas_unlock_irq(&xas);
 441                break;
 442        }
 443        rcu_read_unlock();
 444        return (dax_entry_t)entry;
 445}
 446
 447void dax_unlock_page(struct page *page, dax_entry_t cookie)
 448{
 449        struct address_space *mapping = page->mapping;
 450        XA_STATE(xas, &mapping->i_pages, page->index);
 451
 452        if (S_ISCHR(mapping->host->i_mode))
 453                return;
 454
 455        dax_unlock_entry(&xas, (void *)cookie);
 456}
 457
 458/*
 459 * Find page cache entry at given index. If it is a DAX entry, return it
 460 * with the entry locked. If the page cache doesn't contain an entry at
 461 * that index, add a locked empty entry.
 462 *
 463 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
 464 * either return that locked entry or will return VM_FAULT_FALLBACK.
 465 * This will happen if there are any PTE entries within the PMD range
 466 * that we are requesting.
 467 *
 468 * We always favor PTE entries over PMD entries. There isn't a flow where we
 469 * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
 470 * insertion will fail if it finds any PTE entries already in the tree, and a
 471 * PTE insertion will cause an existing PMD entry to be unmapped and
 472 * downgraded to PTE entries.  This happens for both PMD zero pages as
 473 * well as PMD empty entries.
 474 *
 475 * The exception to this downgrade path is for PMD entries that have
 476 * real storage backing them.  We will leave these real PMD entries in
 477 * the tree, and PTE writes will simply dirty the entire PMD entry.
 478 *
 479 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
 480 * persistent memory the benefit is doubtful. We can add that later if we can
 481 * show it helps.
 482 *
 483 * On error, this function does not return an ERR_PTR.  Instead it returns
 484 * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
 485 * overlap with xarray value entries.
 486 */
 487static void *grab_mapping_entry(struct xa_state *xas,
 488                struct address_space *mapping, unsigned int order)
 489{
 490        unsigned long index = xas->xa_index;
 491        bool pmd_downgrade;     /* splitting PMD entry into PTE entries? */
 492        void *entry;
 493
 494retry:
 495        pmd_downgrade = false;
 496        xas_lock_irq(xas);
 497        entry = get_unlocked_entry(xas, order);
 498
 499        if (entry) {
 500                if (dax_is_conflict(entry))
 501                        goto fallback;
 502                if (!xa_is_value(entry)) {
 503                        xas_set_err(xas, -EIO);
 504                        goto out_unlock;
 505                }
 506
 507                if (order == 0) {
 508                        if (dax_is_pmd_entry(entry) &&
 509                            (dax_is_zero_entry(entry) ||
 510                             dax_is_empty_entry(entry))) {
 511                                pmd_downgrade = true;
 512                        }
 513                }
 514        }
 515
 516        if (pmd_downgrade) {
 517                /*
 518                 * Make sure 'entry' remains valid while we drop
 519                 * the i_pages lock.
 520                 */
 521                dax_lock_entry(xas, entry);
 522
 523                /*
 524                 * Besides huge zero pages the only other thing that gets
 525                 * downgraded are empty entries which don't need to be
 526                 * unmapped.
 527                 */
 528                if (dax_is_zero_entry(entry)) {
 529                        xas_unlock_irq(xas);
 530                        unmap_mapping_pages(mapping,
 531                                        xas->xa_index & ~PG_PMD_COLOUR,
 532                                        PG_PMD_NR, false);
 533                        xas_reset(xas);
 534                        xas_lock_irq(xas);
 535                }
 536
 537                dax_disassociate_entry(entry, mapping, false);
 538                xas_store(xas, NULL);   /* undo the PMD join */
 539                dax_wake_entry(xas, entry, WAKE_ALL);
 540                mapping->nrpages -= PG_PMD_NR;
 541                entry = NULL;
 542                xas_set(xas, index);
 543        }
 544
 545        if (entry) {
 546                dax_lock_entry(xas, entry);
 547        } else {
 548                unsigned long flags = DAX_EMPTY;
 549
 550                if (order > 0)
 551                        flags |= DAX_PMD;
 552                entry = dax_make_entry(pfn_to_pfn_t(0), flags);
 553                dax_lock_entry(xas, entry);
 554                if (xas_error(xas))
 555                        goto out_unlock;
 556                mapping->nrpages += 1UL << order;
 557        }
 558
 559out_unlock:
 560        xas_unlock_irq(xas);
 561        if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
 562                goto retry;
 563        if (xas->xa_node == XA_ERROR(-ENOMEM))
 564                return xa_mk_internal(VM_FAULT_OOM);
 565        if (xas_error(xas))
 566                return xa_mk_internal(VM_FAULT_SIGBUS);
 567        return entry;
 568fallback:
 569        xas_unlock_irq(xas);
 570        return xa_mk_internal(VM_FAULT_FALLBACK);
 571}
 572
 573/**
 574 * dax_layout_busy_page_range - find first pinned page in @mapping
 575 * @mapping: address space to scan for a page with ref count > 1
 576 * @start: Starting offset. Page containing 'start' is included.
 577 * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
 578 *       pages from 'start' till the end of file are included.
 579 *
 580 * DAX requires ZONE_DEVICE mapped pages. These pages are never
 581 * 'onlined' to the page allocator so they are considered idle when
 582 * page->count == 1. A filesystem uses this interface to determine if
 583 * any page in the mapping is busy, i.e. for DMA, or other
 584 * get_user_pages() usages.
 585 *
 586 * It is expected that the filesystem is holding locks to block the
 587 * establishment of new mappings in this address_space. I.e. it expects
 588 * to be able to run unmap_mapping_range() and subsequently not race
 589 * mapping_mapped() becoming true.
 590 */
 591struct page *dax_layout_busy_page_range(struct address_space *mapping,
 592                                        loff_t start, loff_t end)
 593{
 594        void *entry;
 595        unsigned int scanned = 0;
 596        struct page *page = NULL;
 597        pgoff_t start_idx = start >> PAGE_SHIFT;
 598        pgoff_t end_idx;
 599        XA_STATE(xas, &mapping->i_pages, start_idx);
 600
 601        /*
 602         * In the 'limited' case get_user_pages() for dax is disabled.
 603         */
 604        if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
 605                return NULL;
 606
 607        if (!dax_mapping(mapping) || !mapping_mapped(mapping))
 608                return NULL;
 609
 610        /* If end == LLONG_MAX, all pages from start to till end of file */
 611        if (end == LLONG_MAX)
 612                end_idx = ULONG_MAX;
 613        else
 614                end_idx = end >> PAGE_SHIFT;
 615        /*
 616         * If we race get_user_pages_fast() here either we'll see the
 617         * elevated page count in the iteration and wait, or
 618         * get_user_pages_fast() will see that the page it took a reference
 619         * against is no longer mapped in the page tables and bail to the
 620         * get_user_pages() slow path.  The slow path is protected by
 621         * pte_lock() and pmd_lock(). New references are not taken without
 622         * holding those locks, and unmap_mapping_pages() will not zero the
 623         * pte or pmd without holding the respective lock, so we are
 624         * guaranteed to either see new references or prevent new
 625         * references from being established.
 626         */
 627        unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
 628
 629        xas_lock_irq(&xas);
 630        xas_for_each(&xas, entry, end_idx) {
 631                if (WARN_ON_ONCE(!xa_is_value(entry)))
 632                        continue;
 633                if (unlikely(dax_is_locked(entry)))
 634                        entry = get_unlocked_entry(&xas, 0);
 635                if (entry)
 636                        page = dax_busy_page(entry);
 637                put_unlocked_entry(&xas, entry, WAKE_NEXT);
 638                if (page)
 639                        break;
 640                if (++scanned % XA_CHECK_SCHED)
 641                        continue;
 642
 643                xas_pause(&xas);
 644                xas_unlock_irq(&xas);
 645                cond_resched();
 646                xas_lock_irq(&xas);
 647        }
 648        xas_unlock_irq(&xas);
 649        return page;
 650}
 651EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
 652
 653struct page *dax_layout_busy_page(struct address_space *mapping)
 654{
 655        return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
 656}
 657EXPORT_SYMBOL_GPL(dax_layout_busy_page);
 658
 659static int __dax_invalidate_entry(struct address_space *mapping,
 660                                          pgoff_t index, bool trunc)
 661{
 662        XA_STATE(xas, &mapping->i_pages, index);
 663        int ret = 0;
 664        void *entry;
 665
 666        xas_lock_irq(&xas);
 667        entry = get_unlocked_entry(&xas, 0);
 668        if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
 669                goto out;
 670        if (!trunc &&
 671            (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
 672             xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
 673                goto out;
 674        dax_disassociate_entry(entry, mapping, trunc);
 675        xas_store(&xas, NULL);
 676        mapping->nrpages -= 1UL << dax_entry_order(entry);
 677        ret = 1;
 678out:
 679        put_unlocked_entry(&xas, entry, WAKE_ALL);
 680        xas_unlock_irq(&xas);
 681        return ret;
 682}
 683
 684/*
 685 * Delete DAX entry at @index from @mapping.  Wait for it
 686 * to be unlocked before deleting it.
 687 */
 688int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
 689{
 690        int ret = __dax_invalidate_entry(mapping, index, true);
 691
 692        /*
 693         * This gets called from truncate / punch_hole path. As such, the caller
 694         * must hold locks protecting against concurrent modifications of the
 695         * page cache (usually fs-private i_mmap_sem for writing). Since the
 696         * caller has seen a DAX entry for this index, we better find it
 697         * at that index as well...
 698         */
 699        WARN_ON_ONCE(!ret);
 700        return ret;
 701}
 702
 703/*
 704 * Invalidate DAX entry if it is clean.
 705 */
 706int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
 707                                      pgoff_t index)
 708{
 709        return __dax_invalidate_entry(mapping, index, false);
 710}
 711
 712static int copy_cow_page_dax(struct block_device *bdev, struct dax_device *dax_dev,
 713                             sector_t sector, struct page *to, unsigned long vaddr)
 714{
 715        void *vto, *kaddr;
 716        pgoff_t pgoff;
 717        long rc;
 718        int id;
 719
 720        rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
 721        if (rc)
 722                return rc;
 723
 724        id = dax_read_lock();
 725        rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
 726        if (rc < 0) {
 727                dax_read_unlock(id);
 728                return rc;
 729        }
 730        vto = kmap_atomic(to);
 731        copy_user_page(vto, (void __force *)kaddr, vaddr, to);
 732        kunmap_atomic(vto);
 733        dax_read_unlock(id);
 734        return 0;
 735}
 736
 737/*
 738 * By this point grab_mapping_entry() has ensured that we have a locked entry
 739 * of the appropriate size so we don't have to worry about downgrading PMDs to
 740 * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
 741 * already in the tree, we will skip the insertion and just dirty the PMD as
 742 * appropriate.
 743 */
 744static void *dax_insert_entry(struct xa_state *xas,
 745                struct address_space *mapping, struct vm_fault *vmf,
 746                void *entry, pfn_t pfn, unsigned long flags, bool dirty)
 747{
 748        void *new_entry = dax_make_entry(pfn, flags);
 749
 750        if (dirty)
 751                __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 752
 753        if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
 754                unsigned long index = xas->xa_index;
 755                /* we are replacing a zero page with block mapping */
 756                if (dax_is_pmd_entry(entry))
 757                        unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
 758                                        PG_PMD_NR, false);
 759                else /* pte entry */
 760                        unmap_mapping_pages(mapping, index, 1, false);
 761        }
 762
 763        xas_reset(xas);
 764        xas_lock_irq(xas);
 765        if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
 766                void *old;
 767
 768                dax_disassociate_entry(entry, mapping, false);
 769                dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
 770                /*
 771                 * Only swap our new entry into the page cache if the current
 772                 * entry is a zero page or an empty entry.  If a normal PTE or
 773                 * PMD entry is already in the cache, we leave it alone.  This
 774                 * means that if we are trying to insert a PTE and the
 775                 * existing entry is a PMD, we will just leave the PMD in the
 776                 * tree and dirty it if necessary.
 777                 */
 778                old = dax_lock_entry(xas, new_entry);
 779                WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
 780                                        DAX_LOCKED));
 781                entry = new_entry;
 782        } else {
 783                xas_load(xas);  /* Walk the xa_state */
 784        }
 785
 786        if (dirty)
 787                xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
 788
 789        xas_unlock_irq(xas);
 790        return entry;
 791}
 792
 793static inline
 794unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
 795{
 796        unsigned long address;
 797
 798        address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 799        VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
 800        return address;
 801}
 802
 803/* Walk all mappings of a given index of a file and writeprotect them */
 804static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
 805                unsigned long pfn)
 806{
 807        struct vm_area_struct *vma;
 808        pte_t pte, *ptep = NULL;
 809        pmd_t *pmdp = NULL;
 810        spinlock_t *ptl;
 811
 812        i_mmap_lock_read(mapping);
 813        vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
 814                struct mmu_notifier_range range;
 815                unsigned long address;
 816
 817                cond_resched();
 818
 819                if (!(vma->vm_flags & VM_SHARED))
 820                        continue;
 821
 822                address = pgoff_address(index, vma);
 823
 824                /*
 825                 * follow_invalidate_pte() will use the range to call
 826                 * mmu_notifier_invalidate_range_start() on our behalf before
 827                 * taking any lock.
 828                 */
 829                if (follow_invalidate_pte(vma->vm_mm, address, &range, &ptep,
 830                                          &pmdp, &ptl))
 831                        continue;
 832
 833                /*
 834                 * No need to call mmu_notifier_invalidate_range() as we are
 835                 * downgrading page table protection not changing it to point
 836                 * to a new page.
 837                 *
 838                 * See Documentation/vm/mmu_notifier.rst
 839                 */
 840                if (pmdp) {
 841#ifdef CONFIG_FS_DAX_PMD
 842                        pmd_t pmd;
 843
 844                        if (pfn != pmd_pfn(*pmdp))
 845                                goto unlock_pmd;
 846                        if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
 847                                goto unlock_pmd;
 848
 849                        flush_cache_page(vma, address, pfn);
 850                        pmd = pmdp_invalidate(vma, address, pmdp);
 851                        pmd = pmd_wrprotect(pmd);
 852                        pmd = pmd_mkclean(pmd);
 853                        set_pmd_at(vma->vm_mm, address, pmdp, pmd);
 854unlock_pmd:
 855#endif
 856                        spin_unlock(ptl);
 857                } else {
 858                        if (pfn != pte_pfn(*ptep))
 859                                goto unlock_pte;
 860                        if (!pte_dirty(*ptep) && !pte_write(*ptep))
 861                                goto unlock_pte;
 862
 863                        flush_cache_page(vma, address, pfn);
 864                        pte = ptep_clear_flush(vma, address, ptep);
 865                        pte = pte_wrprotect(pte);
 866                        pte = pte_mkclean(pte);
 867                        set_pte_at(vma->vm_mm, address, ptep, pte);
 868unlock_pte:
 869                        pte_unmap_unlock(ptep, ptl);
 870                }
 871
 872                mmu_notifier_invalidate_range_end(&range);
 873        }
 874        i_mmap_unlock_read(mapping);
 875}
 876
 877static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
 878                struct address_space *mapping, void *entry)
 879{
 880        unsigned long pfn, index, count;
 881        long ret = 0;
 882
 883        /*
 884         * A page got tagged dirty in DAX mapping? Something is seriously
 885         * wrong.
 886         */
 887        if (WARN_ON(!xa_is_value(entry)))
 888                return -EIO;
 889
 890        if (unlikely(dax_is_locked(entry))) {
 891                void *old_entry = entry;
 892
 893                entry = get_unlocked_entry(xas, 0);
 894
 895                /* Entry got punched out / reallocated? */
 896                if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
 897                        goto put_unlocked;
 898                /*
 899                 * Entry got reallocated elsewhere? No need to writeback.
 900                 * We have to compare pfns as we must not bail out due to
 901                 * difference in lockbit or entry type.
 902                 */
 903                if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
 904                        goto put_unlocked;
 905                if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
 906                                        dax_is_zero_entry(entry))) {
 907                        ret = -EIO;
 908                        goto put_unlocked;
 909                }
 910
 911                /* Another fsync thread may have already done this entry */
 912                if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
 913                        goto put_unlocked;
 914        }
 915
 916        /* Lock the entry to serialize with page faults */
 917        dax_lock_entry(xas, entry);
 918
 919        /*
 920         * We can clear the tag now but we have to be careful so that concurrent
 921         * dax_writeback_one() calls for the same index cannot finish before we
 922         * actually flush the caches. This is achieved as the calls will look
 923         * at the entry only under the i_pages lock and once they do that
 924         * they will see the entry locked and wait for it to unlock.
 925         */
 926        xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
 927        xas_unlock_irq(xas);
 928
 929        /*
 930         * If dax_writeback_mapping_range() was given a wbc->range_start
 931         * in the middle of a PMD, the 'index' we use needs to be
 932         * aligned to the start of the PMD.
 933         * This allows us to flush for PMD_SIZE and not have to worry about
 934         * partial PMD writebacks.
 935         */
 936        pfn = dax_to_pfn(entry);
 937        count = 1UL << dax_entry_order(entry);
 938        index = xas->xa_index & ~(count - 1);
 939
 940        dax_entry_mkclean(mapping, index, pfn);
 941        dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
 942        /*
 943         * After we have flushed the cache, we can clear the dirty tag. There
 944         * cannot be new dirty data in the pfn after the flush has completed as
 945         * the pfn mappings are writeprotected and fault waits for mapping
 946         * entry lock.
 947         */
 948        xas_reset(xas);
 949        xas_lock_irq(xas);
 950        xas_store(xas, entry);
 951        xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
 952        dax_wake_entry(xas, entry, WAKE_NEXT);
 953
 954        trace_dax_writeback_one(mapping->host, index, count);
 955        return ret;
 956
 957 put_unlocked:
 958        put_unlocked_entry(xas, entry, WAKE_NEXT);
 959        return ret;
 960}
 961
 962/*
 963 * Flush the mapping to the persistent domain within the byte range of [start,
 964 * end]. This is required by data integrity operations to ensure file data is
 965 * on persistent storage prior to completion of the operation.
 966 */
 967int dax_writeback_mapping_range(struct address_space *mapping,
 968                struct dax_device *dax_dev, struct writeback_control *wbc)
 969{
 970        XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
 971        struct inode *inode = mapping->host;
 972        pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
 973        void *entry;
 974        int ret = 0;
 975        unsigned int scanned = 0;
 976
 977        if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
 978                return -EIO;
 979
 980        if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL)
 981                return 0;
 982
 983        trace_dax_writeback_range(inode, xas.xa_index, end_index);
 984
 985        tag_pages_for_writeback(mapping, xas.xa_index, end_index);
 986
 987        xas_lock_irq(&xas);
 988        xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
 989                ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
 990                if (ret < 0) {
 991                        mapping_set_error(mapping, ret);
 992                        break;
 993                }
 994                if (++scanned % XA_CHECK_SCHED)
 995                        continue;
 996
 997                xas_pause(&xas);
 998                xas_unlock_irq(&xas);
 999                cond_resched();
1000                xas_lock_irq(&xas);
1001        }
1002        xas_unlock_irq(&xas);
1003        trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
1004        return ret;
1005}
1006EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1007
1008static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
1009{
1010        return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
1011}
1012
1013static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
1014                         pfn_t *pfnp)
1015{
1016        const sector_t sector = dax_iomap_sector(iomap, pos);
1017        pgoff_t pgoff;
1018        int id, rc;
1019        long length;
1020
1021        rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
1022        if (rc)
1023                return rc;
1024        id = dax_read_lock();
1025        length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1026                                   NULL, pfnp);
1027        if (length < 0) {
1028                rc = length;
1029                goto out;
1030        }
1031        rc = -EINVAL;
1032        if (PFN_PHYS(length) < size)
1033                goto out;
1034        if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1035                goto out;
1036        /* For larger pages we need devmap */
1037        if (length > 1 && !pfn_t_devmap(*pfnp))
1038                goto out;
1039        rc = 0;
1040out:
1041        dax_read_unlock(id);
1042        return rc;
1043}
1044
1045/*
1046 * The user has performed a load from a hole in the file.  Allocating a new
1047 * page in the file would cause excessive storage usage for workloads with
1048 * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1049 * If this page is ever written to we will re-fault and change the mapping to
1050 * point to real DAX storage instead.
1051 */
1052static vm_fault_t dax_load_hole(struct xa_state *xas,
1053                struct address_space *mapping, void **entry,
1054                struct vm_fault *vmf)
1055{
1056        struct inode *inode = mapping->host;
1057        unsigned long vaddr = vmf->address;
1058        pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1059        vm_fault_t ret;
1060
1061        *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1062                        DAX_ZERO_PAGE, false);
1063
1064        ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1065        trace_dax_load_hole(inode, vmf, ret);
1066        return ret;
1067}
1068
1069s64 dax_iomap_zero(loff_t pos, u64 length, struct iomap *iomap)
1070{
1071        sector_t sector = iomap_sector(iomap, pos & PAGE_MASK);
1072        pgoff_t pgoff;
1073        long rc, id;
1074        void *kaddr;
1075        bool page_aligned = false;
1076        unsigned offset = offset_in_page(pos);
1077        unsigned size = min_t(u64, PAGE_SIZE - offset, length);
1078
1079        if (IS_ALIGNED(sector << SECTOR_SHIFT, PAGE_SIZE) &&
1080            (size == PAGE_SIZE))
1081                page_aligned = true;
1082
1083        rc = bdev_dax_pgoff(iomap->bdev, sector, PAGE_SIZE, &pgoff);
1084        if (rc)
1085                return rc;
1086
1087        id = dax_read_lock();
1088
1089        if (page_aligned)
1090                rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
1091        else
1092                rc = dax_direct_access(iomap->dax_dev, pgoff, 1, &kaddr, NULL);
1093        if (rc < 0) {
1094                dax_read_unlock(id);
1095                return rc;
1096        }
1097
1098        if (!page_aligned) {
1099                memset(kaddr + offset, 0, size);
1100                dax_flush(iomap->dax_dev, kaddr + offset, size);
1101        }
1102        dax_read_unlock(id);
1103        return size;
1104}
1105
1106static loff_t
1107dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1108                struct iomap *iomap, struct iomap *srcmap)
1109{
1110        struct block_device *bdev = iomap->bdev;
1111        struct dax_device *dax_dev = iomap->dax_dev;
1112        struct iov_iter *iter = data;
1113        loff_t end = pos + length, done = 0;
1114        ssize_t ret = 0;
1115        size_t xfer;
1116        int id;
1117
1118        if (iov_iter_rw(iter) == READ) {
1119                end = min(end, i_size_read(inode));
1120                if (pos >= end)
1121                        return 0;
1122
1123                if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1124                        return iov_iter_zero(min(length, end - pos), iter);
1125        }
1126
1127        if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1128                return -EIO;
1129
1130        /*
1131         * Write can allocate block for an area which has a hole page mapped
1132         * into page tables. We have to tear down these mappings so that data
1133         * written by write(2) is visible in mmap.
1134         */
1135        if (iomap->flags & IOMAP_F_NEW) {
1136                invalidate_inode_pages2_range(inode->i_mapping,
1137                                              pos >> PAGE_SHIFT,
1138                                              (end - 1) >> PAGE_SHIFT);
1139        }
1140
1141        id = dax_read_lock();
1142        while (pos < end) {
1143                unsigned offset = pos & (PAGE_SIZE - 1);
1144                const size_t size = ALIGN(length + offset, PAGE_SIZE);
1145                const sector_t sector = dax_iomap_sector(iomap, pos);
1146                ssize_t map_len;
1147                pgoff_t pgoff;
1148                void *kaddr;
1149
1150                if (fatal_signal_pending(current)) {
1151                        ret = -EINTR;
1152                        break;
1153                }
1154
1155                ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1156                if (ret)
1157                        break;
1158
1159                map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1160                                &kaddr, NULL);
1161                if (map_len < 0) {
1162                        ret = map_len;
1163                        break;
1164                }
1165
1166                map_len = PFN_PHYS(map_len);
1167                kaddr += offset;
1168                map_len -= offset;
1169                if (map_len > end - pos)
1170                        map_len = end - pos;
1171
1172                /*
1173                 * The userspace address for the memory copy has already been
1174                 * validated via access_ok() in either vfs_read() or
1175                 * vfs_write(), depending on which operation we are doing.
1176                 */
1177                if (iov_iter_rw(iter) == WRITE)
1178                        xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1179                                        map_len, iter);
1180                else
1181                        xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1182                                        map_len, iter);
1183
1184                pos += xfer;
1185                length -= xfer;
1186                done += xfer;
1187
1188                if (xfer == 0)
1189                        ret = -EFAULT;
1190                if (xfer < map_len)
1191                        break;
1192        }
1193        dax_read_unlock(id);
1194
1195        return done ? done : ret;
1196}
1197
1198/**
1199 * dax_iomap_rw - Perform I/O to a DAX file
1200 * @iocb:       The control block for this I/O
1201 * @iter:       The addresses to do I/O from or to
1202 * @ops:        iomap ops passed from the file system
1203 *
1204 * This function performs read and write operations to directly mapped
1205 * persistent memory.  The callers needs to take care of read/write exclusion
1206 * and evicting any page cache pages in the region under I/O.
1207 */
1208ssize_t
1209dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1210                const struct iomap_ops *ops)
1211{
1212        struct address_space *mapping = iocb->ki_filp->f_mapping;
1213        struct inode *inode = mapping->host;
1214        loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1215        unsigned flags = 0;
1216
1217        if (iov_iter_rw(iter) == WRITE) {
1218                lockdep_assert_held_write(&inode->i_rwsem);
1219                flags |= IOMAP_WRITE;
1220        } else {
1221                lockdep_assert_held(&inode->i_rwsem);
1222        }
1223
1224        if (iocb->ki_flags & IOCB_NOWAIT)
1225                flags |= IOMAP_NOWAIT;
1226
1227        while (iov_iter_count(iter)) {
1228                ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1229                                iter, dax_iomap_actor);
1230                if (ret <= 0)
1231                        break;
1232                pos += ret;
1233                done += ret;
1234        }
1235
1236        iocb->ki_pos += done;
1237        return done ? done : ret;
1238}
1239EXPORT_SYMBOL_GPL(dax_iomap_rw);
1240
1241static vm_fault_t dax_fault_return(int error)
1242{
1243        if (error == 0)
1244                return VM_FAULT_NOPAGE;
1245        return vmf_error(error);
1246}
1247
1248/*
1249 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1250 * flushed on write-faults (non-cow), but not read-faults.
1251 */
1252static bool dax_fault_is_synchronous(unsigned long flags,
1253                struct vm_area_struct *vma, struct iomap *iomap)
1254{
1255        return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1256                && (iomap->flags & IOMAP_F_DIRTY);
1257}
1258
1259static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1260                               int *iomap_errp, const struct iomap_ops *ops)
1261{
1262        struct vm_area_struct *vma = vmf->vma;
1263        struct address_space *mapping = vma->vm_file->f_mapping;
1264        XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1265        struct inode *inode = mapping->host;
1266        unsigned long vaddr = vmf->address;
1267        loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1268        struct iomap iomap = { .type = IOMAP_HOLE };
1269        struct iomap srcmap = { .type = IOMAP_HOLE };
1270        unsigned flags = IOMAP_FAULT;
1271        int error, major = 0;
1272        bool write = vmf->flags & FAULT_FLAG_WRITE;
1273        bool sync;
1274        vm_fault_t ret = 0;
1275        void *entry;
1276        pfn_t pfn;
1277
1278        trace_dax_pte_fault(inode, vmf, ret);
1279        /*
1280         * Check whether offset isn't beyond end of file now. Caller is supposed
1281         * to hold locks serializing us with truncate / punch hole so this is
1282         * a reliable test.
1283         */
1284        if (pos >= i_size_read(inode)) {
1285                ret = VM_FAULT_SIGBUS;
1286                goto out;
1287        }
1288
1289        if (write && !vmf->cow_page)
1290                flags |= IOMAP_WRITE;
1291
1292        entry = grab_mapping_entry(&xas, mapping, 0);
1293        if (xa_is_internal(entry)) {
1294                ret = xa_to_internal(entry);
1295                goto out;
1296        }
1297
1298        /*
1299         * It is possible, particularly with mixed reads & writes to private
1300         * mappings, that we have raced with a PMD fault that overlaps with
1301         * the PTE we need to set up.  If so just return and the fault will be
1302         * retried.
1303         */
1304        if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1305                ret = VM_FAULT_NOPAGE;
1306                goto unlock_entry;
1307        }
1308
1309        /*
1310         * Note that we don't bother to use iomap_apply here: DAX required
1311         * the file system block size to be equal the page size, which means
1312         * that we never have to deal with more than a single extent here.
1313         */
1314        error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap, &srcmap);
1315        if (iomap_errp)
1316                *iomap_errp = error;
1317        if (error) {
1318                ret = dax_fault_return(error);
1319                goto unlock_entry;
1320        }
1321        if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1322                error = -EIO;   /* fs corruption? */
1323                goto error_finish_iomap;
1324        }
1325
1326        if (vmf->cow_page) {
1327                sector_t sector = dax_iomap_sector(&iomap, pos);
1328
1329                switch (iomap.type) {
1330                case IOMAP_HOLE:
1331                case IOMAP_UNWRITTEN:
1332                        clear_user_highpage(vmf->cow_page, vaddr);
1333                        break;
1334                case IOMAP_MAPPED:
1335                        error = copy_cow_page_dax(iomap.bdev, iomap.dax_dev,
1336                                                  sector, vmf->cow_page, vaddr);
1337                        break;
1338                default:
1339                        WARN_ON_ONCE(1);
1340                        error = -EIO;
1341                        break;
1342                }
1343
1344                if (error)
1345                        goto error_finish_iomap;
1346
1347                __SetPageUptodate(vmf->cow_page);
1348                ret = finish_fault(vmf);
1349                if (!ret)
1350                        ret = VM_FAULT_DONE_COW;
1351                goto finish_iomap;
1352        }
1353
1354        sync = dax_fault_is_synchronous(flags, vma, &iomap);
1355
1356        switch (iomap.type) {
1357        case IOMAP_MAPPED:
1358                if (iomap.flags & IOMAP_F_NEW) {
1359                        count_vm_event(PGMAJFAULT);
1360                        count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1361                        major = VM_FAULT_MAJOR;
1362                }
1363                error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1364                if (error < 0)
1365                        goto error_finish_iomap;
1366
1367                entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1368                                                 0, write && !sync);
1369
1370                /*
1371                 * If we are doing synchronous page fault and inode needs fsync,
1372                 * we can insert PTE into page tables only after that happens.
1373                 * Skip insertion for now and return the pfn so that caller can
1374                 * insert it after fsync is done.
1375                 */
1376                if (sync) {
1377                        if (WARN_ON_ONCE(!pfnp)) {
1378                                error = -EIO;
1379                                goto error_finish_iomap;
1380                        }
1381                        *pfnp = pfn;
1382                        ret = VM_FAULT_NEEDDSYNC | major;
1383                        goto finish_iomap;
1384                }
1385                trace_dax_insert_mapping(inode, vmf, entry);
1386                if (write)
1387                        ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1388                else
1389                        ret = vmf_insert_mixed(vma, vaddr, pfn);
1390
1391                goto finish_iomap;
1392        case IOMAP_UNWRITTEN:
1393        case IOMAP_HOLE:
1394                if (!write) {
1395                        ret = dax_load_hole(&xas, mapping, &entry, vmf);
1396                        goto finish_iomap;
1397                }
1398                fallthrough;
1399        default:
1400                WARN_ON_ONCE(1);
1401                error = -EIO;
1402                break;
1403        }
1404
1405 error_finish_iomap:
1406        ret = dax_fault_return(error);
1407 finish_iomap:
1408        if (ops->iomap_end) {
1409                int copied = PAGE_SIZE;
1410
1411                if (ret & VM_FAULT_ERROR)
1412                        copied = 0;
1413                /*
1414                 * The fault is done by now and there's no way back (other
1415                 * thread may be already happily using PTE we have installed).
1416                 * Just ignore error from ->iomap_end since we cannot do much
1417                 * with it.
1418                 */
1419                ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1420        }
1421 unlock_entry:
1422        dax_unlock_entry(&xas, entry);
1423 out:
1424        trace_dax_pte_fault_done(inode, vmf, ret);
1425        return ret | major;
1426}
1427
1428#ifdef CONFIG_FS_DAX_PMD
1429static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1430                struct iomap *iomap, void **entry)
1431{
1432        struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1433        unsigned long pmd_addr = vmf->address & PMD_MASK;
1434        struct vm_area_struct *vma = vmf->vma;
1435        struct inode *inode = mapping->host;
1436        pgtable_t pgtable = NULL;
1437        struct page *zero_page;
1438        spinlock_t *ptl;
1439        pmd_t pmd_entry;
1440        pfn_t pfn;
1441
1442        zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1443
1444        if (unlikely(!zero_page))
1445                goto fallback;
1446
1447        pfn = page_to_pfn_t(zero_page);
1448        *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1449                        DAX_PMD | DAX_ZERO_PAGE, false);
1450
1451        if (arch_needs_pgtable_deposit()) {
1452                pgtable = pte_alloc_one(vma->vm_mm);
1453                if (!pgtable)
1454                        return VM_FAULT_OOM;
1455        }
1456
1457        ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1458        if (!pmd_none(*(vmf->pmd))) {
1459                spin_unlock(ptl);
1460                goto fallback;
1461        }
1462
1463        if (pgtable) {
1464                pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1465                mm_inc_nr_ptes(vma->vm_mm);
1466        }
1467        pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1468        pmd_entry = pmd_mkhuge(pmd_entry);
1469        set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1470        spin_unlock(ptl);
1471        trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1472        return VM_FAULT_NOPAGE;
1473
1474fallback:
1475        if (pgtable)
1476                pte_free(vma->vm_mm, pgtable);
1477        trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1478        return VM_FAULT_FALLBACK;
1479}
1480
1481static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1482                               const struct iomap_ops *ops)
1483{
1484        struct vm_area_struct *vma = vmf->vma;
1485        struct address_space *mapping = vma->vm_file->f_mapping;
1486        XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1487        unsigned long pmd_addr = vmf->address & PMD_MASK;
1488        bool write = vmf->flags & FAULT_FLAG_WRITE;
1489        bool sync;
1490        unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1491        struct inode *inode = mapping->host;
1492        vm_fault_t result = VM_FAULT_FALLBACK;
1493        struct iomap iomap = { .type = IOMAP_HOLE };
1494        struct iomap srcmap = { .type = IOMAP_HOLE };
1495        pgoff_t max_pgoff;
1496        void *entry;
1497        loff_t pos;
1498        int error;
1499        pfn_t pfn;
1500
1501        /*
1502         * Check whether offset isn't beyond end of file now. Caller is
1503         * supposed to hold locks serializing us with truncate / punch hole so
1504         * this is a reliable test.
1505         */
1506        max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1507
1508        trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1509
1510        /*
1511         * Make sure that the faulting address's PMD offset (color) matches
1512         * the PMD offset from the start of the file.  This is necessary so
1513         * that a PMD range in the page table overlaps exactly with a PMD
1514         * range in the page cache.
1515         */
1516        if ((vmf->pgoff & PG_PMD_COLOUR) !=
1517            ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1518                goto fallback;
1519
1520        /* Fall back to PTEs if we're going to COW */
1521        if (write && !(vma->vm_flags & VM_SHARED))
1522                goto fallback;
1523
1524        /* If the PMD would extend outside the VMA */
1525        if (pmd_addr < vma->vm_start)
1526                goto fallback;
1527        if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1528                goto fallback;
1529
1530        if (xas.xa_index >= max_pgoff) {
1531                result = VM_FAULT_SIGBUS;
1532                goto out;
1533        }
1534
1535        /* If the PMD would extend beyond the file size */
1536        if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
1537                goto fallback;
1538
1539        /*
1540         * grab_mapping_entry() will make sure we get an empty PMD entry,
1541         * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1542         * entry is already in the array, for instance), it will return
1543         * VM_FAULT_FALLBACK.
1544         */
1545        entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1546        if (xa_is_internal(entry)) {
1547                result = xa_to_internal(entry);
1548                goto fallback;
1549        }
1550
1551        /*
1552         * It is possible, particularly with mixed reads & writes to private
1553         * mappings, that we have raced with a PTE fault that overlaps with
1554         * the PMD we need to set up.  If so just return and the fault will be
1555         * retried.
1556         */
1557        if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1558                        !pmd_devmap(*vmf->pmd)) {
1559                result = 0;
1560                goto unlock_entry;
1561        }
1562
1563        /*
1564         * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1565         * setting up a mapping, so really we're using iomap_begin() as a way
1566         * to look up our filesystem block.
1567         */
1568        pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1569        error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap,
1570                        &srcmap);
1571        if (error)
1572                goto unlock_entry;
1573
1574        if (iomap.offset + iomap.length < pos + PMD_SIZE)
1575                goto finish_iomap;
1576
1577        sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1578
1579        switch (iomap.type) {
1580        case IOMAP_MAPPED:
1581                error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1582                if (error < 0)
1583                        goto finish_iomap;
1584
1585                entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1586                                                DAX_PMD, write && !sync);
1587
1588                /*
1589                 * If we are doing synchronous page fault and inode needs fsync,
1590                 * we can insert PMD into page tables only after that happens.
1591                 * Skip insertion for now and return the pfn so that caller can
1592                 * insert it after fsync is done.
1593                 */
1594                if (sync) {
1595                        if (WARN_ON_ONCE(!pfnp))
1596                                goto finish_iomap;
1597                        *pfnp = pfn;
1598                        result = VM_FAULT_NEEDDSYNC;
1599                        goto finish_iomap;
1600                }
1601
1602                trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1603                result = vmf_insert_pfn_pmd(vmf, pfn, write);
1604                break;
1605        case IOMAP_UNWRITTEN:
1606        case IOMAP_HOLE:
1607                if (WARN_ON_ONCE(write))
1608                        break;
1609                result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
1610                break;
1611        default:
1612                WARN_ON_ONCE(1);
1613                break;
1614        }
1615
1616 finish_iomap:
1617        if (ops->iomap_end) {
1618                int copied = PMD_SIZE;
1619
1620                if (result == VM_FAULT_FALLBACK)
1621                        copied = 0;
1622                /*
1623                 * The fault is done by now and there's no way back (other
1624                 * thread may be already happily using PMD we have installed).
1625                 * Just ignore error from ->iomap_end since we cannot do much
1626                 * with it.
1627                 */
1628                ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1629                                &iomap);
1630        }
1631 unlock_entry:
1632        dax_unlock_entry(&xas, entry);
1633 fallback:
1634        if (result == VM_FAULT_FALLBACK) {
1635                split_huge_pmd(vma, vmf->pmd, vmf->address);
1636                count_vm_event(THP_FAULT_FALLBACK);
1637        }
1638out:
1639        trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1640        return result;
1641}
1642#else
1643static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1644                               const struct iomap_ops *ops)
1645{
1646        return VM_FAULT_FALLBACK;
1647}
1648#endif /* CONFIG_FS_DAX_PMD */
1649
1650/**
1651 * dax_iomap_fault - handle a page fault on a DAX file
1652 * @vmf: The description of the fault
1653 * @pe_size: Size of the page to fault in
1654 * @pfnp: PFN to insert for synchronous faults if fsync is required
1655 * @iomap_errp: Storage for detailed error code in case of error
1656 * @ops: Iomap ops passed from the file system
1657 *
1658 * When a page fault occurs, filesystems may call this helper in
1659 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1660 * has done all the necessary locking for page fault to proceed
1661 * successfully.
1662 */
1663vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1664                    pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1665{
1666        switch (pe_size) {
1667        case PE_SIZE_PTE:
1668                return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1669        case PE_SIZE_PMD:
1670                return dax_iomap_pmd_fault(vmf, pfnp, ops);
1671        default:
1672                return VM_FAULT_FALLBACK;
1673        }
1674}
1675EXPORT_SYMBOL_GPL(dax_iomap_fault);
1676
1677/*
1678 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1679 * @vmf: The description of the fault
1680 * @pfn: PFN to insert
1681 * @order: Order of entry to insert.
1682 *
1683 * This function inserts a writeable PTE or PMD entry into the page tables
1684 * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1685 */
1686static vm_fault_t
1687dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1688{
1689        struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1690        XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1691        void *entry;
1692        vm_fault_t ret;
1693
1694        xas_lock_irq(&xas);
1695        entry = get_unlocked_entry(&xas, order);
1696        /* Did we race with someone splitting entry or so? */
1697        if (!entry || dax_is_conflict(entry) ||
1698            (order == 0 && !dax_is_pte_entry(entry))) {
1699                put_unlocked_entry(&xas, entry, WAKE_NEXT);
1700                xas_unlock_irq(&xas);
1701                trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1702                                                      VM_FAULT_NOPAGE);
1703                return VM_FAULT_NOPAGE;
1704        }
1705        xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1706        dax_lock_entry(&xas, entry);
1707        xas_unlock_irq(&xas);
1708        if (order == 0)
1709                ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1710#ifdef CONFIG_FS_DAX_PMD
1711        else if (order == PMD_ORDER)
1712                ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1713#endif
1714        else
1715                ret = VM_FAULT_FALLBACK;
1716        dax_unlock_entry(&xas, entry);
1717        trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1718        return ret;
1719}
1720
1721/**
1722 * dax_finish_sync_fault - finish synchronous page fault
1723 * @vmf: The description of the fault
1724 * @pe_size: Size of entry to be inserted
1725 * @pfn: PFN to insert
1726 *
1727 * This function ensures that the file range touched by the page fault is
1728 * stored persistently on the media and handles inserting of appropriate page
1729 * table entry.
1730 */
1731vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1732                enum page_entry_size pe_size, pfn_t pfn)
1733{
1734        int err;
1735        loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1736        unsigned int order = pe_order(pe_size);
1737        size_t len = PAGE_SIZE << order;
1738
1739        err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1740        if (err)
1741                return VM_FAULT_SIGBUS;
1742        return dax_insert_pfn_mkwrite(vmf, pfn, order);
1743}
1744EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
1745