linux/fs/eventpoll.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  fs/eventpoll.c (Efficient event retrieval implementation)
   4 *  Copyright (C) 2001,...,2009  Davide Libenzi
   5 *
   6 *  Davide Libenzi <davidel@xmailserver.org>
   7 */
   8
   9#include <linux/init.h>
  10#include <linux/kernel.h>
  11#include <linux/sched/signal.h>
  12#include <linux/fs.h>
  13#include <linux/file.h>
  14#include <linux/signal.h>
  15#include <linux/errno.h>
  16#include <linux/mm.h>
  17#include <linux/slab.h>
  18#include <linux/poll.h>
  19#include <linux/string.h>
  20#include <linux/list.h>
  21#include <linux/hash.h>
  22#include <linux/spinlock.h>
  23#include <linux/syscalls.h>
  24#include <linux/rbtree.h>
  25#include <linux/wait.h>
  26#include <linux/eventpoll.h>
  27#include <linux/mount.h>
  28#include <linux/bitops.h>
  29#include <linux/mutex.h>
  30#include <linux/anon_inodes.h>
  31#include <linux/device.h>
  32#include <linux/uaccess.h>
  33#include <asm/io.h>
  34#include <asm/mman.h>
  35#include <linux/atomic.h>
  36#include <linux/proc_fs.h>
  37#include <linux/seq_file.h>
  38#include <linux/compat.h>
  39#include <linux/rculist.h>
  40#include <net/busy_poll.h>
  41
  42/*
  43 * LOCKING:
  44 * There are three level of locking required by epoll :
  45 *
  46 * 1) epmutex (mutex)
  47 * 2) ep->mtx (mutex)
  48 * 3) ep->lock (rwlock)
  49 *
  50 * The acquire order is the one listed above, from 1 to 3.
  51 * We need a rwlock (ep->lock) because we manipulate objects
  52 * from inside the poll callback, that might be triggered from
  53 * a wake_up() that in turn might be called from IRQ context.
  54 * So we can't sleep inside the poll callback and hence we need
  55 * a spinlock. During the event transfer loop (from kernel to
  56 * user space) we could end up sleeping due a copy_to_user(), so
  57 * we need a lock that will allow us to sleep. This lock is a
  58 * mutex (ep->mtx). It is acquired during the event transfer loop,
  59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
  60 * Then we also need a global mutex to serialize eventpoll_release_file()
  61 * and ep_free().
  62 * This mutex is acquired by ep_free() during the epoll file
  63 * cleanup path and it is also acquired by eventpoll_release_file()
  64 * if a file has been pushed inside an epoll set and it is then
  65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
  66 * It is also acquired when inserting an epoll fd onto another epoll
  67 * fd. We do this so that we walk the epoll tree and ensure that this
  68 * insertion does not create a cycle of epoll file descriptors, which
  69 * could lead to deadlock. We need a global mutex to prevent two
  70 * simultaneous inserts (A into B and B into A) from racing and
  71 * constructing a cycle without either insert observing that it is
  72 * going to.
  73 * It is necessary to acquire multiple "ep->mtx"es at once in the
  74 * case when one epoll fd is added to another. In this case, we
  75 * always acquire the locks in the order of nesting (i.e. after
  76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
  77 * before e2->mtx). Since we disallow cycles of epoll file
  78 * descriptors, this ensures that the mutexes are well-ordered. In
  79 * order to communicate this nesting to lockdep, when walking a tree
  80 * of epoll file descriptors, we use the current recursion depth as
  81 * the lockdep subkey.
  82 * It is possible to drop the "ep->mtx" and to use the global
  83 * mutex "epmutex" (together with "ep->lock") to have it working,
  84 * but having "ep->mtx" will make the interface more scalable.
  85 * Events that require holding "epmutex" are very rare, while for
  86 * normal operations the epoll private "ep->mtx" will guarantee
  87 * a better scalability.
  88 */
  89
  90/* Epoll private bits inside the event mask */
  91#define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
  92
  93#define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
  94
  95#define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
  96                                EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
  97
  98/* Maximum number of nesting allowed inside epoll sets */
  99#define EP_MAX_NESTS 4
 100
 101#define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
 102
 103#define EP_UNACTIVE_PTR ((void *) -1L)
 104
 105#define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
 106
 107struct epoll_filefd {
 108        struct file *file;
 109        int fd;
 110} __packed;
 111
 112/* Wait structure used by the poll hooks */
 113struct eppoll_entry {
 114        /* List header used to link this structure to the "struct epitem" */
 115        struct eppoll_entry *next;
 116
 117        /* The "base" pointer is set to the container "struct epitem" */
 118        struct epitem *base;
 119
 120        /*
 121         * Wait queue item that will be linked to the target file wait
 122         * queue head.
 123         */
 124        wait_queue_entry_t wait;
 125
 126        /* The wait queue head that linked the "wait" wait queue item */
 127        wait_queue_head_t *whead;
 128};
 129
 130/*
 131 * Each file descriptor added to the eventpoll interface will
 132 * have an entry of this type linked to the "rbr" RB tree.
 133 * Avoid increasing the size of this struct, there can be many thousands
 134 * of these on a server and we do not want this to take another cache line.
 135 */
 136struct epitem {
 137        union {
 138                /* RB tree node links this structure to the eventpoll RB tree */
 139                struct rb_node rbn;
 140                /* Used to free the struct epitem */
 141                struct rcu_head rcu;
 142        };
 143
 144        /* List header used to link this structure to the eventpoll ready list */
 145        struct list_head rdllink;
 146
 147        /*
 148         * Works together "struct eventpoll"->ovflist in keeping the
 149         * single linked chain of items.
 150         */
 151        struct epitem *next;
 152
 153        /* The file descriptor information this item refers to */
 154        struct epoll_filefd ffd;
 155
 156        /* List containing poll wait queues */
 157        struct eppoll_entry *pwqlist;
 158
 159        /* The "container" of this item */
 160        struct eventpoll *ep;
 161
 162        /* List header used to link this item to the "struct file" items list */
 163        struct hlist_node fllink;
 164
 165        /* wakeup_source used when EPOLLWAKEUP is set */
 166        struct wakeup_source __rcu *ws;
 167
 168        /* The structure that describe the interested events and the source fd */
 169        struct epoll_event event;
 170};
 171
 172/*
 173 * This structure is stored inside the "private_data" member of the file
 174 * structure and represents the main data structure for the eventpoll
 175 * interface.
 176 */
 177struct eventpoll {
 178        /*
 179         * This mutex is used to ensure that files are not removed
 180         * while epoll is using them. This is held during the event
 181         * collection loop, the file cleanup path, the epoll file exit
 182         * code and the ctl operations.
 183         */
 184        struct mutex mtx;
 185
 186        /* Wait queue used by sys_epoll_wait() */
 187        wait_queue_head_t wq;
 188
 189        /* Wait queue used by file->poll() */
 190        wait_queue_head_t poll_wait;
 191
 192        /* List of ready file descriptors */
 193        struct list_head rdllist;
 194
 195        /* Lock which protects rdllist and ovflist */
 196        rwlock_t lock;
 197
 198        /* RB tree root used to store monitored fd structs */
 199        struct rb_root_cached rbr;
 200
 201        /*
 202         * This is a single linked list that chains all the "struct epitem" that
 203         * happened while transferring ready events to userspace w/out
 204         * holding ->lock.
 205         */
 206        struct epitem *ovflist;
 207
 208        /* wakeup_source used when ep_scan_ready_list is running */
 209        struct wakeup_source *ws;
 210
 211        /* The user that created the eventpoll descriptor */
 212        struct user_struct *user;
 213
 214        struct file *file;
 215
 216        /* used to optimize loop detection check */
 217        u64 gen;
 218        struct hlist_head refs;
 219
 220#ifdef CONFIG_NET_RX_BUSY_POLL
 221        /* used to track busy poll napi_id */
 222        unsigned int napi_id;
 223#endif
 224
 225#ifdef CONFIG_DEBUG_LOCK_ALLOC
 226        /* tracks wakeup nests for lockdep validation */
 227        u8 nests;
 228#endif
 229};
 230
 231/* Wrapper struct used by poll queueing */
 232struct ep_pqueue {
 233        poll_table pt;
 234        struct epitem *epi;
 235};
 236
 237/*
 238 * Configuration options available inside /proc/sys/fs/epoll/
 239 */
 240/* Maximum number of epoll watched descriptors, per user */
 241static long max_user_watches __read_mostly;
 242
 243/*
 244 * This mutex is used to serialize ep_free() and eventpoll_release_file().
 245 */
 246static DEFINE_MUTEX(epmutex);
 247
 248static u64 loop_check_gen = 0;
 249
 250/* Used to check for epoll file descriptor inclusion loops */
 251static struct eventpoll *inserting_into;
 252
 253/* Slab cache used to allocate "struct epitem" */
 254static struct kmem_cache *epi_cache __read_mostly;
 255
 256/* Slab cache used to allocate "struct eppoll_entry" */
 257static struct kmem_cache *pwq_cache __read_mostly;
 258
 259/*
 260 * List of files with newly added links, where we may need to limit the number
 261 * of emanating paths. Protected by the epmutex.
 262 */
 263struct epitems_head {
 264        struct hlist_head epitems;
 265        struct epitems_head *next;
 266};
 267static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
 268
 269static struct kmem_cache *ephead_cache __read_mostly;
 270
 271static inline void free_ephead(struct epitems_head *head)
 272{
 273        if (head)
 274                kmem_cache_free(ephead_cache, head);
 275}
 276
 277static void list_file(struct file *file)
 278{
 279        struct epitems_head *head;
 280
 281        head = container_of(file->f_ep, struct epitems_head, epitems);
 282        if (!head->next) {
 283                head->next = tfile_check_list;
 284                tfile_check_list = head;
 285        }
 286}
 287
 288static void unlist_file(struct epitems_head *head)
 289{
 290        struct epitems_head *to_free = head;
 291        struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
 292        if (p) {
 293                struct epitem *epi= container_of(p, struct epitem, fllink);
 294                spin_lock(&epi->ffd.file->f_lock);
 295                if (!hlist_empty(&head->epitems))
 296                        to_free = NULL;
 297                head->next = NULL;
 298                spin_unlock(&epi->ffd.file->f_lock);
 299        }
 300        free_ephead(to_free);
 301}
 302
 303#ifdef CONFIG_SYSCTL
 304
 305#include <linux/sysctl.h>
 306
 307static long long_zero;
 308static long long_max = LONG_MAX;
 309
 310struct ctl_table epoll_table[] = {
 311        {
 312                .procname       = "max_user_watches",
 313                .data           = &max_user_watches,
 314                .maxlen         = sizeof(max_user_watches),
 315                .mode           = 0644,
 316                .proc_handler   = proc_doulongvec_minmax,
 317                .extra1         = &long_zero,
 318                .extra2         = &long_max,
 319        },
 320        { }
 321};
 322#endif /* CONFIG_SYSCTL */
 323
 324static const struct file_operations eventpoll_fops;
 325
 326static inline int is_file_epoll(struct file *f)
 327{
 328        return f->f_op == &eventpoll_fops;
 329}
 330
 331/* Setup the structure that is used as key for the RB tree */
 332static inline void ep_set_ffd(struct epoll_filefd *ffd,
 333                              struct file *file, int fd)
 334{
 335        ffd->file = file;
 336        ffd->fd = fd;
 337}
 338
 339/* Compare RB tree keys */
 340static inline int ep_cmp_ffd(struct epoll_filefd *p1,
 341                             struct epoll_filefd *p2)
 342{
 343        return (p1->file > p2->file ? +1:
 344                (p1->file < p2->file ? -1 : p1->fd - p2->fd));
 345}
 346
 347/* Tells us if the item is currently linked */
 348static inline int ep_is_linked(struct epitem *epi)
 349{
 350        return !list_empty(&epi->rdllink);
 351}
 352
 353static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
 354{
 355        return container_of(p, struct eppoll_entry, wait);
 356}
 357
 358/* Get the "struct epitem" from a wait queue pointer */
 359static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
 360{
 361        return container_of(p, struct eppoll_entry, wait)->base;
 362}
 363
 364/**
 365 * ep_events_available - Checks if ready events might be available.
 366 *
 367 * @ep: Pointer to the eventpoll context.
 368 *
 369 * Return: a value different than %zero if ready events are available,
 370 *          or %zero otherwise.
 371 */
 372static inline int ep_events_available(struct eventpoll *ep)
 373{
 374        return !list_empty_careful(&ep->rdllist) ||
 375                READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
 376}
 377
 378#ifdef CONFIG_NET_RX_BUSY_POLL
 379static bool ep_busy_loop_end(void *p, unsigned long start_time)
 380{
 381        struct eventpoll *ep = p;
 382
 383        return ep_events_available(ep) || busy_loop_timeout(start_time);
 384}
 385
 386/*
 387 * Busy poll if globally on and supporting sockets found && no events,
 388 * busy loop will return if need_resched or ep_events_available.
 389 *
 390 * we must do our busy polling with irqs enabled
 391 */
 392static bool ep_busy_loop(struct eventpoll *ep, int nonblock)
 393{
 394        unsigned int napi_id = READ_ONCE(ep->napi_id);
 395
 396        if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) {
 397                napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false,
 398                               BUSY_POLL_BUDGET);
 399                if (ep_events_available(ep))
 400                        return true;
 401                /*
 402                 * Busy poll timed out.  Drop NAPI ID for now, we can add
 403                 * it back in when we have moved a socket with a valid NAPI
 404                 * ID onto the ready list.
 405                 */
 406                ep->napi_id = 0;
 407                return false;
 408        }
 409        return false;
 410}
 411
 412/*
 413 * Set epoll busy poll NAPI ID from sk.
 414 */
 415static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
 416{
 417        struct eventpoll *ep;
 418        unsigned int napi_id;
 419        struct socket *sock;
 420        struct sock *sk;
 421
 422        if (!net_busy_loop_on())
 423                return;
 424
 425        sock = sock_from_file(epi->ffd.file);
 426        if (!sock)
 427                return;
 428
 429        sk = sock->sk;
 430        if (!sk)
 431                return;
 432
 433        napi_id = READ_ONCE(sk->sk_napi_id);
 434        ep = epi->ep;
 435
 436        /* Non-NAPI IDs can be rejected
 437         *      or
 438         * Nothing to do if we already have this ID
 439         */
 440        if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
 441                return;
 442
 443        /* record NAPI ID for use in next busy poll */
 444        ep->napi_id = napi_id;
 445}
 446
 447#else
 448
 449static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock)
 450{
 451        return false;
 452}
 453
 454static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
 455{
 456}
 457
 458#endif /* CONFIG_NET_RX_BUSY_POLL */
 459
 460/*
 461 * As described in commit 0ccf831cb lockdep: annotate epoll
 462 * the use of wait queues used by epoll is done in a very controlled
 463 * manner. Wake ups can nest inside each other, but are never done
 464 * with the same locking. For example:
 465 *
 466 *   dfd = socket(...);
 467 *   efd1 = epoll_create();
 468 *   efd2 = epoll_create();
 469 *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
 470 *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
 471 *
 472 * When a packet arrives to the device underneath "dfd", the net code will
 473 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
 474 * callback wakeup entry on that queue, and the wake_up() performed by the
 475 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
 476 * (efd1) notices that it may have some event ready, so it needs to wake up
 477 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
 478 * that ends up in another wake_up(), after having checked about the
 479 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
 480 * avoid stack blasting.
 481 *
 482 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
 483 * this special case of epoll.
 484 */
 485#ifdef CONFIG_DEBUG_LOCK_ALLOC
 486
 487static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
 488{
 489        struct eventpoll *ep_src;
 490        unsigned long flags;
 491        u8 nests = 0;
 492
 493        /*
 494         * To set the subclass or nesting level for spin_lock_irqsave_nested()
 495         * it might be natural to create a per-cpu nest count. However, since
 496         * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
 497         * schedule() in the -rt kernel, the per-cpu variable are no longer
 498         * protected. Thus, we are introducing a per eventpoll nest field.
 499         * If we are not being call from ep_poll_callback(), epi is NULL and
 500         * we are at the first level of nesting, 0. Otherwise, we are being
 501         * called from ep_poll_callback() and if a previous wakeup source is
 502         * not an epoll file itself, we are at depth 1 since the wakeup source
 503         * is depth 0. If the wakeup source is a previous epoll file in the
 504         * wakeup chain then we use its nests value and record ours as
 505         * nests + 1. The previous epoll file nests value is stable since its
 506         * already holding its own poll_wait.lock.
 507         */
 508        if (epi) {
 509                if ((is_file_epoll(epi->ffd.file))) {
 510                        ep_src = epi->ffd.file->private_data;
 511                        nests = ep_src->nests;
 512                } else {
 513                        nests = 1;
 514                }
 515        }
 516        spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
 517        ep->nests = nests + 1;
 518        wake_up_locked_poll(&ep->poll_wait, EPOLLIN);
 519        ep->nests = 0;
 520        spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
 521}
 522
 523#else
 524
 525static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
 526{
 527        wake_up_poll(&ep->poll_wait, EPOLLIN);
 528}
 529
 530#endif
 531
 532static void ep_remove_wait_queue(struct eppoll_entry *pwq)
 533{
 534        wait_queue_head_t *whead;
 535
 536        rcu_read_lock();
 537        /*
 538         * If it is cleared by POLLFREE, it should be rcu-safe.
 539         * If we read NULL we need a barrier paired with
 540         * smp_store_release() in ep_poll_callback(), otherwise
 541         * we rely on whead->lock.
 542         */
 543        whead = smp_load_acquire(&pwq->whead);
 544        if (whead)
 545                remove_wait_queue(whead, &pwq->wait);
 546        rcu_read_unlock();
 547}
 548
 549/*
 550 * This function unregisters poll callbacks from the associated file
 551 * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
 552 * ep_free).
 553 */
 554static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
 555{
 556        struct eppoll_entry **p = &epi->pwqlist;
 557        struct eppoll_entry *pwq;
 558
 559        while ((pwq = *p) != NULL) {
 560                *p = pwq->next;
 561                ep_remove_wait_queue(pwq);
 562                kmem_cache_free(pwq_cache, pwq);
 563        }
 564}
 565
 566/* call only when ep->mtx is held */
 567static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
 568{
 569        return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
 570}
 571
 572/* call only when ep->mtx is held */
 573static inline void ep_pm_stay_awake(struct epitem *epi)
 574{
 575        struct wakeup_source *ws = ep_wakeup_source(epi);
 576
 577        if (ws)
 578                __pm_stay_awake(ws);
 579}
 580
 581static inline bool ep_has_wakeup_source(struct epitem *epi)
 582{
 583        return rcu_access_pointer(epi->ws) ? true : false;
 584}
 585
 586/* call when ep->mtx cannot be held (ep_poll_callback) */
 587static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
 588{
 589        struct wakeup_source *ws;
 590
 591        rcu_read_lock();
 592        ws = rcu_dereference(epi->ws);
 593        if (ws)
 594                __pm_stay_awake(ws);
 595        rcu_read_unlock();
 596}
 597
 598
 599/*
 600 * ep->mutex needs to be held because we could be hit by
 601 * eventpoll_release_file() and epoll_ctl().
 602 */
 603static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
 604{
 605        /*
 606         * Steal the ready list, and re-init the original one to the
 607         * empty list. Also, set ep->ovflist to NULL so that events
 608         * happening while looping w/out locks, are not lost. We cannot
 609         * have the poll callback to queue directly on ep->rdllist,
 610         * because we want the "sproc" callback to be able to do it
 611         * in a lockless way.
 612         */
 613        lockdep_assert_irqs_enabled();
 614        write_lock_irq(&ep->lock);
 615        list_splice_init(&ep->rdllist, txlist);
 616        WRITE_ONCE(ep->ovflist, NULL);
 617        write_unlock_irq(&ep->lock);
 618}
 619
 620static void ep_done_scan(struct eventpoll *ep,
 621                         struct list_head *txlist)
 622{
 623        struct epitem *epi, *nepi;
 624
 625        write_lock_irq(&ep->lock);
 626        /*
 627         * During the time we spent inside the "sproc" callback, some
 628         * other events might have been queued by the poll callback.
 629         * We re-insert them inside the main ready-list here.
 630         */
 631        for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
 632             nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
 633                /*
 634                 * We need to check if the item is already in the list.
 635                 * During the "sproc" callback execution time, items are
 636                 * queued into ->ovflist but the "txlist" might already
 637                 * contain them, and the list_splice() below takes care of them.
 638                 */
 639                if (!ep_is_linked(epi)) {
 640                        /*
 641                         * ->ovflist is LIFO, so we have to reverse it in order
 642                         * to keep in FIFO.
 643                         */
 644                        list_add(&epi->rdllink, &ep->rdllist);
 645                        ep_pm_stay_awake(epi);
 646                }
 647        }
 648        /*
 649         * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
 650         * releasing the lock, events will be queued in the normal way inside
 651         * ep->rdllist.
 652         */
 653        WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
 654
 655        /*
 656         * Quickly re-inject items left on "txlist".
 657         */
 658        list_splice(txlist, &ep->rdllist);
 659        __pm_relax(ep->ws);
 660
 661        if (!list_empty(&ep->rdllist)) {
 662                if (waitqueue_active(&ep->wq))
 663                        wake_up(&ep->wq);
 664        }
 665
 666        write_unlock_irq(&ep->lock);
 667}
 668
 669static void epi_rcu_free(struct rcu_head *head)
 670{
 671        struct epitem *epi = container_of(head, struct epitem, rcu);
 672        kmem_cache_free(epi_cache, epi);
 673}
 674
 675/*
 676 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
 677 * all the associated resources. Must be called with "mtx" held.
 678 */
 679static int ep_remove(struct eventpoll *ep, struct epitem *epi)
 680{
 681        struct file *file = epi->ffd.file;
 682        struct epitems_head *to_free;
 683        struct hlist_head *head;
 684
 685        lockdep_assert_irqs_enabled();
 686
 687        /*
 688         * Removes poll wait queue hooks.
 689         */
 690        ep_unregister_pollwait(ep, epi);
 691
 692        /* Remove the current item from the list of epoll hooks */
 693        spin_lock(&file->f_lock);
 694        to_free = NULL;
 695        head = file->f_ep;
 696        if (head->first == &epi->fllink && !epi->fllink.next) {
 697                file->f_ep = NULL;
 698                if (!is_file_epoll(file)) {
 699                        struct epitems_head *v;
 700                        v = container_of(head, struct epitems_head, epitems);
 701                        if (!smp_load_acquire(&v->next))
 702                                to_free = v;
 703                }
 704        }
 705        hlist_del_rcu(&epi->fllink);
 706        spin_unlock(&file->f_lock);
 707        free_ephead(to_free);
 708
 709        rb_erase_cached(&epi->rbn, &ep->rbr);
 710
 711        write_lock_irq(&ep->lock);
 712        if (ep_is_linked(epi))
 713                list_del_init(&epi->rdllink);
 714        write_unlock_irq(&ep->lock);
 715
 716        wakeup_source_unregister(ep_wakeup_source(epi));
 717        /*
 718         * At this point it is safe to free the eventpoll item. Use the union
 719         * field epi->rcu, since we are trying to minimize the size of
 720         * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
 721         * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
 722         * use of the rbn field.
 723         */
 724        call_rcu(&epi->rcu, epi_rcu_free);
 725
 726        atomic_long_dec(&ep->user->epoll_watches);
 727
 728        return 0;
 729}
 730
 731static void ep_free(struct eventpoll *ep)
 732{
 733        struct rb_node *rbp;
 734        struct epitem *epi;
 735
 736        /* We need to release all tasks waiting for these file */
 737        if (waitqueue_active(&ep->poll_wait))
 738                ep_poll_safewake(ep, NULL);
 739
 740        /*
 741         * We need to lock this because we could be hit by
 742         * eventpoll_release_file() while we're freeing the "struct eventpoll".
 743         * We do not need to hold "ep->mtx" here because the epoll file
 744         * is on the way to be removed and no one has references to it
 745         * anymore. The only hit might come from eventpoll_release_file() but
 746         * holding "epmutex" is sufficient here.
 747         */
 748        mutex_lock(&epmutex);
 749
 750        /*
 751         * Walks through the whole tree by unregistering poll callbacks.
 752         */
 753        for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
 754                epi = rb_entry(rbp, struct epitem, rbn);
 755
 756                ep_unregister_pollwait(ep, epi);
 757                cond_resched();
 758        }
 759
 760        /*
 761         * Walks through the whole tree by freeing each "struct epitem". At this
 762         * point we are sure no poll callbacks will be lingering around, and also by
 763         * holding "epmutex" we can be sure that no file cleanup code will hit
 764         * us during this operation. So we can avoid the lock on "ep->lock".
 765         * We do not need to lock ep->mtx, either, we only do it to prevent
 766         * a lockdep warning.
 767         */
 768        mutex_lock(&ep->mtx);
 769        while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
 770                epi = rb_entry(rbp, struct epitem, rbn);
 771                ep_remove(ep, epi);
 772                cond_resched();
 773        }
 774        mutex_unlock(&ep->mtx);
 775
 776        mutex_unlock(&epmutex);
 777        mutex_destroy(&ep->mtx);
 778        free_uid(ep->user);
 779        wakeup_source_unregister(ep->ws);
 780        kfree(ep);
 781}
 782
 783static int ep_eventpoll_release(struct inode *inode, struct file *file)
 784{
 785        struct eventpoll *ep = file->private_data;
 786
 787        if (ep)
 788                ep_free(ep);
 789
 790        return 0;
 791}
 792
 793static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
 794
 795static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
 796{
 797        struct eventpoll *ep = file->private_data;
 798        LIST_HEAD(txlist);
 799        struct epitem *epi, *tmp;
 800        poll_table pt;
 801        __poll_t res = 0;
 802
 803        init_poll_funcptr(&pt, NULL);
 804
 805        /* Insert inside our poll wait queue */
 806        poll_wait(file, &ep->poll_wait, wait);
 807
 808        /*
 809         * Proceed to find out if wanted events are really available inside
 810         * the ready list.
 811         */
 812        mutex_lock_nested(&ep->mtx, depth);
 813        ep_start_scan(ep, &txlist);
 814        list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
 815                if (ep_item_poll(epi, &pt, depth + 1)) {
 816                        res = EPOLLIN | EPOLLRDNORM;
 817                        break;
 818                } else {
 819                        /*
 820                         * Item has been dropped into the ready list by the poll
 821                         * callback, but it's not actually ready, as far as
 822                         * caller requested events goes. We can remove it here.
 823                         */
 824                        __pm_relax(ep_wakeup_source(epi));
 825                        list_del_init(&epi->rdllink);
 826                }
 827        }
 828        ep_done_scan(ep, &txlist);
 829        mutex_unlock(&ep->mtx);
 830        return res;
 831}
 832
 833/*
 834 * Differs from ep_eventpoll_poll() in that internal callers already have
 835 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
 836 * is correctly annotated.
 837 */
 838static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
 839                                 int depth)
 840{
 841        struct file *file = epi->ffd.file;
 842        __poll_t res;
 843
 844        pt->_key = epi->event.events;
 845        if (!is_file_epoll(file))
 846                res = vfs_poll(file, pt);
 847        else
 848                res = __ep_eventpoll_poll(file, pt, depth);
 849        return res & epi->event.events;
 850}
 851
 852static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
 853{
 854        return __ep_eventpoll_poll(file, wait, 0);
 855}
 856
 857#ifdef CONFIG_PROC_FS
 858static void ep_show_fdinfo(struct seq_file *m, struct file *f)
 859{
 860        struct eventpoll *ep = f->private_data;
 861        struct rb_node *rbp;
 862
 863        mutex_lock(&ep->mtx);
 864        for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
 865                struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
 866                struct inode *inode = file_inode(epi->ffd.file);
 867
 868                seq_printf(m, "tfd: %8d events: %8x data: %16llx "
 869                           " pos:%lli ino:%lx sdev:%x\n",
 870                           epi->ffd.fd, epi->event.events,
 871                           (long long)epi->event.data,
 872                           (long long)epi->ffd.file->f_pos,
 873                           inode->i_ino, inode->i_sb->s_dev);
 874                if (seq_has_overflowed(m))
 875                        break;
 876        }
 877        mutex_unlock(&ep->mtx);
 878}
 879#endif
 880
 881/* File callbacks that implement the eventpoll file behaviour */
 882static const struct file_operations eventpoll_fops = {
 883#ifdef CONFIG_PROC_FS
 884        .show_fdinfo    = ep_show_fdinfo,
 885#endif
 886        .release        = ep_eventpoll_release,
 887        .poll           = ep_eventpoll_poll,
 888        .llseek         = noop_llseek,
 889};
 890
 891/*
 892 * This is called from eventpoll_release() to unlink files from the eventpoll
 893 * interface. We need to have this facility to cleanup correctly files that are
 894 * closed without being removed from the eventpoll interface.
 895 */
 896void eventpoll_release_file(struct file *file)
 897{
 898        struct eventpoll *ep;
 899        struct epitem *epi;
 900        struct hlist_node *next;
 901
 902        /*
 903         * We don't want to get "file->f_lock" because it is not
 904         * necessary. It is not necessary because we're in the "struct file"
 905         * cleanup path, and this means that no one is using this file anymore.
 906         * So, for example, epoll_ctl() cannot hit here since if we reach this
 907         * point, the file counter already went to zero and fget() would fail.
 908         * The only hit might come from ep_free() but by holding the mutex
 909         * will correctly serialize the operation. We do need to acquire
 910         * "ep->mtx" after "epmutex" because ep_remove() requires it when called
 911         * from anywhere but ep_free().
 912         *
 913         * Besides, ep_remove() acquires the lock, so we can't hold it here.
 914         */
 915        mutex_lock(&epmutex);
 916        if (unlikely(!file->f_ep)) {
 917                mutex_unlock(&epmutex);
 918                return;
 919        }
 920        hlist_for_each_entry_safe(epi, next, file->f_ep, fllink) {
 921                ep = epi->ep;
 922                mutex_lock_nested(&ep->mtx, 0);
 923                ep_remove(ep, epi);
 924                mutex_unlock(&ep->mtx);
 925        }
 926        mutex_unlock(&epmutex);
 927}
 928
 929static int ep_alloc(struct eventpoll **pep)
 930{
 931        int error;
 932        struct user_struct *user;
 933        struct eventpoll *ep;
 934
 935        user = get_current_user();
 936        error = -ENOMEM;
 937        ep = kzalloc(sizeof(*ep), GFP_KERNEL);
 938        if (unlikely(!ep))
 939                goto free_uid;
 940
 941        mutex_init(&ep->mtx);
 942        rwlock_init(&ep->lock);
 943        init_waitqueue_head(&ep->wq);
 944        init_waitqueue_head(&ep->poll_wait);
 945        INIT_LIST_HEAD(&ep->rdllist);
 946        ep->rbr = RB_ROOT_CACHED;
 947        ep->ovflist = EP_UNACTIVE_PTR;
 948        ep->user = user;
 949
 950        *pep = ep;
 951
 952        return 0;
 953
 954free_uid:
 955        free_uid(user);
 956        return error;
 957}
 958
 959/*
 960 * Search the file inside the eventpoll tree. The RB tree operations
 961 * are protected by the "mtx" mutex, and ep_find() must be called with
 962 * "mtx" held.
 963 */
 964static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
 965{
 966        int kcmp;
 967        struct rb_node *rbp;
 968        struct epitem *epi, *epir = NULL;
 969        struct epoll_filefd ffd;
 970
 971        ep_set_ffd(&ffd, file, fd);
 972        for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
 973                epi = rb_entry(rbp, struct epitem, rbn);
 974                kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
 975                if (kcmp > 0)
 976                        rbp = rbp->rb_right;
 977                else if (kcmp < 0)
 978                        rbp = rbp->rb_left;
 979                else {
 980                        epir = epi;
 981                        break;
 982                }
 983        }
 984
 985        return epir;
 986}
 987
 988#ifdef CONFIG_KCMP
 989static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
 990{
 991        struct rb_node *rbp;
 992        struct epitem *epi;
 993
 994        for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
 995                epi = rb_entry(rbp, struct epitem, rbn);
 996                if (epi->ffd.fd == tfd) {
 997                        if (toff == 0)
 998                                return epi;
 999                        else
1000                                toff--;
1001                }
1002                cond_resched();
1003        }
1004
1005        return NULL;
1006}
1007
1008struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1009                                     unsigned long toff)
1010{
1011        struct file *file_raw;
1012        struct eventpoll *ep;
1013        struct epitem *epi;
1014
1015        if (!is_file_epoll(file))
1016                return ERR_PTR(-EINVAL);
1017
1018        ep = file->private_data;
1019
1020        mutex_lock(&ep->mtx);
1021        epi = ep_find_tfd(ep, tfd, toff);
1022        if (epi)
1023                file_raw = epi->ffd.file;
1024        else
1025                file_raw = ERR_PTR(-ENOENT);
1026        mutex_unlock(&ep->mtx);
1027
1028        return file_raw;
1029}
1030#endif /* CONFIG_KCMP */
1031
1032/*
1033 * Adds a new entry to the tail of the list in a lockless way, i.e.
1034 * multiple CPUs are allowed to call this function concurrently.
1035 *
1036 * Beware: it is necessary to prevent any other modifications of the
1037 *         existing list until all changes are completed, in other words
1038 *         concurrent list_add_tail_lockless() calls should be protected
1039 *         with a read lock, where write lock acts as a barrier which
1040 *         makes sure all list_add_tail_lockless() calls are fully
1041 *         completed.
1042 *
1043 *        Also an element can be locklessly added to the list only in one
1044 *        direction i.e. either to the tail or to the head, otherwise
1045 *        concurrent access will corrupt the list.
1046 *
1047 * Return: %false if element has been already added to the list, %true
1048 * otherwise.
1049 */
1050static inline bool list_add_tail_lockless(struct list_head *new,
1051                                          struct list_head *head)
1052{
1053        struct list_head *prev;
1054
1055        /*
1056         * This is simple 'new->next = head' operation, but cmpxchg()
1057         * is used in order to detect that same element has been just
1058         * added to the list from another CPU: the winner observes
1059         * new->next == new.
1060         */
1061        if (cmpxchg(&new->next, new, head) != new)
1062                return false;
1063
1064        /*
1065         * Initially ->next of a new element must be updated with the head
1066         * (we are inserting to the tail) and only then pointers are atomically
1067         * exchanged.  XCHG guarantees memory ordering, thus ->next should be
1068         * updated before pointers are actually swapped and pointers are
1069         * swapped before prev->next is updated.
1070         */
1071
1072        prev = xchg(&head->prev, new);
1073
1074        /*
1075         * It is safe to modify prev->next and new->prev, because a new element
1076         * is added only to the tail and new->next is updated before XCHG.
1077         */
1078
1079        prev->next = new;
1080        new->prev = prev;
1081
1082        return true;
1083}
1084
1085/*
1086 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1087 * i.e. multiple CPUs are allowed to call this function concurrently.
1088 *
1089 * Return: %false if epi element has been already chained, %true otherwise.
1090 */
1091static inline bool chain_epi_lockless(struct epitem *epi)
1092{
1093        struct eventpoll *ep = epi->ep;
1094
1095        /* Fast preliminary check */
1096        if (epi->next != EP_UNACTIVE_PTR)
1097                return false;
1098
1099        /* Check that the same epi has not been just chained from another CPU */
1100        if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1101                return false;
1102
1103        /* Atomically exchange tail */
1104        epi->next = xchg(&ep->ovflist, epi);
1105
1106        return true;
1107}
1108
1109/*
1110 * This is the callback that is passed to the wait queue wakeup
1111 * mechanism. It is called by the stored file descriptors when they
1112 * have events to report.
1113 *
1114 * This callback takes a read lock in order not to contend with concurrent
1115 * events from another file descriptor, thus all modifications to ->rdllist
1116 * or ->ovflist are lockless.  Read lock is paired with the write lock from
1117 * ep_scan_ready_list(), which stops all list modifications and guarantees
1118 * that lists state is seen correctly.
1119 *
1120 * Another thing worth to mention is that ep_poll_callback() can be called
1121 * concurrently for the same @epi from different CPUs if poll table was inited
1122 * with several wait queues entries.  Plural wakeup from different CPUs of a
1123 * single wait queue is serialized by wq.lock, but the case when multiple wait
1124 * queues are used should be detected accordingly.  This is detected using
1125 * cmpxchg() operation.
1126 */
1127static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1128{
1129        int pwake = 0;
1130        struct epitem *epi = ep_item_from_wait(wait);
1131        struct eventpoll *ep = epi->ep;
1132        __poll_t pollflags = key_to_poll(key);
1133        unsigned long flags;
1134        int ewake = 0;
1135
1136        read_lock_irqsave(&ep->lock, flags);
1137
1138        ep_set_busy_poll_napi_id(epi);
1139
1140        /*
1141         * If the event mask does not contain any poll(2) event, we consider the
1142         * descriptor to be disabled. This condition is likely the effect of the
1143         * EPOLLONESHOT bit that disables the descriptor when an event is received,
1144         * until the next EPOLL_CTL_MOD will be issued.
1145         */
1146        if (!(epi->event.events & ~EP_PRIVATE_BITS))
1147                goto out_unlock;
1148
1149        /*
1150         * Check the events coming with the callback. At this stage, not
1151         * every device reports the events in the "key" parameter of the
1152         * callback. We need to be able to handle both cases here, hence the
1153         * test for "key" != NULL before the event match test.
1154         */
1155        if (pollflags && !(pollflags & epi->event.events))
1156                goto out_unlock;
1157
1158        /*
1159         * If we are transferring events to userspace, we can hold no locks
1160         * (because we're accessing user memory, and because of linux f_op->poll()
1161         * semantics). All the events that happen during that period of time are
1162         * chained in ep->ovflist and requeued later on.
1163         */
1164        if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1165                if (chain_epi_lockless(epi))
1166                        ep_pm_stay_awake_rcu(epi);
1167        } else if (!ep_is_linked(epi)) {
1168                /* In the usual case, add event to ready list. */
1169                if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1170                        ep_pm_stay_awake_rcu(epi);
1171        }
1172
1173        /*
1174         * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1175         * wait list.
1176         */
1177        if (waitqueue_active(&ep->wq)) {
1178                if ((epi->event.events & EPOLLEXCLUSIVE) &&
1179                                        !(pollflags & POLLFREE)) {
1180                        switch (pollflags & EPOLLINOUT_BITS) {
1181                        case EPOLLIN:
1182                                if (epi->event.events & EPOLLIN)
1183                                        ewake = 1;
1184                                break;
1185                        case EPOLLOUT:
1186                                if (epi->event.events & EPOLLOUT)
1187                                        ewake = 1;
1188                                break;
1189                        case 0:
1190                                ewake = 1;
1191                                break;
1192                        }
1193                }
1194                wake_up(&ep->wq);
1195        }
1196        if (waitqueue_active(&ep->poll_wait))
1197                pwake++;
1198
1199out_unlock:
1200        read_unlock_irqrestore(&ep->lock, flags);
1201
1202        /* We have to call this outside the lock */
1203        if (pwake)
1204                ep_poll_safewake(ep, epi);
1205
1206        if (!(epi->event.events & EPOLLEXCLUSIVE))
1207                ewake = 1;
1208
1209        if (pollflags & POLLFREE) {
1210                /*
1211                 * If we race with ep_remove_wait_queue() it can miss
1212                 * ->whead = NULL and do another remove_wait_queue() after
1213                 * us, so we can't use __remove_wait_queue().
1214                 */
1215                list_del_init(&wait->entry);
1216                /*
1217                 * ->whead != NULL protects us from the race with ep_free()
1218                 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1219                 * held by the caller. Once we nullify it, nothing protects
1220                 * ep/epi or even wait.
1221                 */
1222                smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1223        }
1224
1225        return ewake;
1226}
1227
1228/*
1229 * This is the callback that is used to add our wait queue to the
1230 * target file wakeup lists.
1231 */
1232static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1233                                 poll_table *pt)
1234{
1235        struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1236        struct epitem *epi = epq->epi;
1237        struct eppoll_entry *pwq;
1238
1239        if (unlikely(!epi))     // an earlier allocation has failed
1240                return;
1241
1242        pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1243        if (unlikely(!pwq)) {
1244                epq->epi = NULL;
1245                return;
1246        }
1247
1248        init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1249        pwq->whead = whead;
1250        pwq->base = epi;
1251        if (epi->event.events & EPOLLEXCLUSIVE)
1252                add_wait_queue_exclusive(whead, &pwq->wait);
1253        else
1254                add_wait_queue(whead, &pwq->wait);
1255        pwq->next = epi->pwqlist;
1256        epi->pwqlist = pwq;
1257}
1258
1259static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1260{
1261        int kcmp;
1262        struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1263        struct epitem *epic;
1264        bool leftmost = true;
1265
1266        while (*p) {
1267                parent = *p;
1268                epic = rb_entry(parent, struct epitem, rbn);
1269                kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1270                if (kcmp > 0) {
1271                        p = &parent->rb_right;
1272                        leftmost = false;
1273                } else
1274                        p = &parent->rb_left;
1275        }
1276        rb_link_node(&epi->rbn, parent, p);
1277        rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1278}
1279
1280
1281
1282#define PATH_ARR_SIZE 5
1283/*
1284 * These are the number paths of length 1 to 5, that we are allowing to emanate
1285 * from a single file of interest. For example, we allow 1000 paths of length
1286 * 1, to emanate from each file of interest. This essentially represents the
1287 * potential wakeup paths, which need to be limited in order to avoid massive
1288 * uncontrolled wakeup storms. The common use case should be a single ep which
1289 * is connected to n file sources. In this case each file source has 1 path
1290 * of length 1. Thus, the numbers below should be more than sufficient. These
1291 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1292 * and delete can't add additional paths. Protected by the epmutex.
1293 */
1294static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1295static int path_count[PATH_ARR_SIZE];
1296
1297static int path_count_inc(int nests)
1298{
1299        /* Allow an arbitrary number of depth 1 paths */
1300        if (nests == 0)
1301                return 0;
1302
1303        if (++path_count[nests] > path_limits[nests])
1304                return -1;
1305        return 0;
1306}
1307
1308static void path_count_init(void)
1309{
1310        int i;
1311
1312        for (i = 0; i < PATH_ARR_SIZE; i++)
1313                path_count[i] = 0;
1314}
1315
1316static int reverse_path_check_proc(struct hlist_head *refs, int depth)
1317{
1318        int error = 0;
1319        struct epitem *epi;
1320
1321        if (depth > EP_MAX_NESTS) /* too deep nesting */
1322                return -1;
1323
1324        /* CTL_DEL can remove links here, but that can't increase our count */
1325        hlist_for_each_entry_rcu(epi, refs, fllink) {
1326                struct hlist_head *refs = &epi->ep->refs;
1327                if (hlist_empty(refs))
1328                        error = path_count_inc(depth);
1329                else
1330                        error = reverse_path_check_proc(refs, depth + 1);
1331                if (error != 0)
1332                        break;
1333        }
1334        return error;
1335}
1336
1337/**
1338 * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1339 *                      links that are proposed to be newly added. We need to
1340 *                      make sure that those added links don't add too many
1341 *                      paths such that we will spend all our time waking up
1342 *                      eventpoll objects.
1343 *
1344 * Return: %zero if the proposed links don't create too many paths,
1345 *          %-1 otherwise.
1346 */
1347static int reverse_path_check(void)
1348{
1349        struct epitems_head *p;
1350
1351        for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1352                int error;
1353                path_count_init();
1354                rcu_read_lock();
1355                error = reverse_path_check_proc(&p->epitems, 0);
1356                rcu_read_unlock();
1357                if (error)
1358                        return error;
1359        }
1360        return 0;
1361}
1362
1363static int ep_create_wakeup_source(struct epitem *epi)
1364{
1365        struct name_snapshot n;
1366        struct wakeup_source *ws;
1367
1368        if (!epi->ep->ws) {
1369                epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1370                if (!epi->ep->ws)
1371                        return -ENOMEM;
1372        }
1373
1374        take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1375        ws = wakeup_source_register(NULL, n.name.name);
1376        release_dentry_name_snapshot(&n);
1377
1378        if (!ws)
1379                return -ENOMEM;
1380        rcu_assign_pointer(epi->ws, ws);
1381
1382        return 0;
1383}
1384
1385/* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1386static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1387{
1388        struct wakeup_source *ws = ep_wakeup_source(epi);
1389
1390        RCU_INIT_POINTER(epi->ws, NULL);
1391
1392        /*
1393         * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1394         * used internally by wakeup_source_remove, too (called by
1395         * wakeup_source_unregister), so we cannot use call_rcu
1396         */
1397        synchronize_rcu();
1398        wakeup_source_unregister(ws);
1399}
1400
1401static int attach_epitem(struct file *file, struct epitem *epi)
1402{
1403        struct epitems_head *to_free = NULL;
1404        struct hlist_head *head = NULL;
1405        struct eventpoll *ep = NULL;
1406
1407        if (is_file_epoll(file))
1408                ep = file->private_data;
1409
1410        if (ep) {
1411                head = &ep->refs;
1412        } else if (!READ_ONCE(file->f_ep)) {
1413allocate:
1414                to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1415                if (!to_free)
1416                        return -ENOMEM;
1417                head = &to_free->epitems;
1418        }
1419        spin_lock(&file->f_lock);
1420        if (!file->f_ep) {
1421                if (unlikely(!head)) {
1422                        spin_unlock(&file->f_lock);
1423                        goto allocate;
1424                }
1425                file->f_ep = head;
1426                to_free = NULL;
1427        }
1428        hlist_add_head_rcu(&epi->fllink, file->f_ep);
1429        spin_unlock(&file->f_lock);
1430        free_ephead(to_free);
1431        return 0;
1432}
1433
1434/*
1435 * Must be called with "mtx" held.
1436 */
1437static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1438                     struct file *tfile, int fd, int full_check)
1439{
1440        int error, pwake = 0;
1441        __poll_t revents;
1442        long user_watches;
1443        struct epitem *epi;
1444        struct ep_pqueue epq;
1445        struct eventpoll *tep = NULL;
1446
1447        if (is_file_epoll(tfile))
1448                tep = tfile->private_data;
1449
1450        lockdep_assert_irqs_enabled();
1451
1452        user_watches = atomic_long_read(&ep->user->epoll_watches);
1453        if (unlikely(user_watches >= max_user_watches))
1454                return -ENOSPC;
1455        if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL)))
1456                return -ENOMEM;
1457
1458        /* Item initialization follow here ... */
1459        INIT_LIST_HEAD(&epi->rdllink);
1460        epi->ep = ep;
1461        ep_set_ffd(&epi->ffd, tfile, fd);
1462        epi->event = *event;
1463        epi->next = EP_UNACTIVE_PTR;
1464
1465        if (tep)
1466                mutex_lock_nested(&tep->mtx, 1);
1467        /* Add the current item to the list of active epoll hook for this file */
1468        if (unlikely(attach_epitem(tfile, epi) < 0)) {
1469                kmem_cache_free(epi_cache, epi);
1470                if (tep)
1471                        mutex_unlock(&tep->mtx);
1472                return -ENOMEM;
1473        }
1474
1475        if (full_check && !tep)
1476                list_file(tfile);
1477
1478        atomic_long_inc(&ep->user->epoll_watches);
1479
1480        /*
1481         * Add the current item to the RB tree. All RB tree operations are
1482         * protected by "mtx", and ep_insert() is called with "mtx" held.
1483         */
1484        ep_rbtree_insert(ep, epi);
1485        if (tep)
1486                mutex_unlock(&tep->mtx);
1487
1488        /* now check if we've created too many backpaths */
1489        if (unlikely(full_check && reverse_path_check())) {
1490                ep_remove(ep, epi);
1491                return -EINVAL;
1492        }
1493
1494        if (epi->event.events & EPOLLWAKEUP) {
1495                error = ep_create_wakeup_source(epi);
1496                if (error) {
1497                        ep_remove(ep, epi);
1498                        return error;
1499                }
1500        }
1501
1502        /* Initialize the poll table using the queue callback */
1503        epq.epi = epi;
1504        init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1505
1506        /*
1507         * Attach the item to the poll hooks and get current event bits.
1508         * We can safely use the file* here because its usage count has
1509         * been increased by the caller of this function. Note that after
1510         * this operation completes, the poll callback can start hitting
1511         * the new item.
1512         */
1513        revents = ep_item_poll(epi, &epq.pt, 1);
1514
1515        /*
1516         * We have to check if something went wrong during the poll wait queue
1517         * install process. Namely an allocation for a wait queue failed due
1518         * high memory pressure.
1519         */
1520        if (unlikely(!epq.epi)) {
1521                ep_remove(ep, epi);
1522                return -ENOMEM;
1523        }
1524
1525        /* We have to drop the new item inside our item list to keep track of it */
1526        write_lock_irq(&ep->lock);
1527
1528        /* record NAPI ID of new item if present */
1529        ep_set_busy_poll_napi_id(epi);
1530
1531        /* If the file is already "ready" we drop it inside the ready list */
1532        if (revents && !ep_is_linked(epi)) {
1533                list_add_tail(&epi->rdllink, &ep->rdllist);
1534                ep_pm_stay_awake(epi);
1535
1536                /* Notify waiting tasks that events are available */
1537                if (waitqueue_active(&ep->wq))
1538                        wake_up(&ep->wq);
1539                if (waitqueue_active(&ep->poll_wait))
1540                        pwake++;
1541        }
1542
1543        write_unlock_irq(&ep->lock);
1544
1545        /* We have to call this outside the lock */
1546        if (pwake)
1547                ep_poll_safewake(ep, NULL);
1548
1549        return 0;
1550}
1551
1552/*
1553 * Modify the interest event mask by dropping an event if the new mask
1554 * has a match in the current file status. Must be called with "mtx" held.
1555 */
1556static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1557                     const struct epoll_event *event)
1558{
1559        int pwake = 0;
1560        poll_table pt;
1561
1562        lockdep_assert_irqs_enabled();
1563
1564        init_poll_funcptr(&pt, NULL);
1565
1566        /*
1567         * Set the new event interest mask before calling f_op->poll();
1568         * otherwise we might miss an event that happens between the
1569         * f_op->poll() call and the new event set registering.
1570         */
1571        epi->event.events = event->events; /* need barrier below */
1572        epi->event.data = event->data; /* protected by mtx */
1573        if (epi->event.events & EPOLLWAKEUP) {
1574                if (!ep_has_wakeup_source(epi))
1575                        ep_create_wakeup_source(epi);
1576        } else if (ep_has_wakeup_source(epi)) {
1577                ep_destroy_wakeup_source(epi);
1578        }
1579
1580        /*
1581         * The following barrier has two effects:
1582         *
1583         * 1) Flush epi changes above to other CPUs.  This ensures
1584         *    we do not miss events from ep_poll_callback if an
1585         *    event occurs immediately after we call f_op->poll().
1586         *    We need this because we did not take ep->lock while
1587         *    changing epi above (but ep_poll_callback does take
1588         *    ep->lock).
1589         *
1590         * 2) We also need to ensure we do not miss _past_ events
1591         *    when calling f_op->poll().  This barrier also
1592         *    pairs with the barrier in wq_has_sleeper (see
1593         *    comments for wq_has_sleeper).
1594         *
1595         * This barrier will now guarantee ep_poll_callback or f_op->poll
1596         * (or both) will notice the readiness of an item.
1597         */
1598        smp_mb();
1599
1600        /*
1601         * Get current event bits. We can safely use the file* here because
1602         * its usage count has been increased by the caller of this function.
1603         * If the item is "hot" and it is not registered inside the ready
1604         * list, push it inside.
1605         */
1606        if (ep_item_poll(epi, &pt, 1)) {
1607                write_lock_irq(&ep->lock);
1608                if (!ep_is_linked(epi)) {
1609                        list_add_tail(&epi->rdllink, &ep->rdllist);
1610                        ep_pm_stay_awake(epi);
1611
1612                        /* Notify waiting tasks that events are available */
1613                        if (waitqueue_active(&ep->wq))
1614                                wake_up(&ep->wq);
1615                        if (waitqueue_active(&ep->poll_wait))
1616                                pwake++;
1617                }
1618                write_unlock_irq(&ep->lock);
1619        }
1620
1621        /* We have to call this outside the lock */
1622        if (pwake)
1623                ep_poll_safewake(ep, NULL);
1624
1625        return 0;
1626}
1627
1628static int ep_send_events(struct eventpoll *ep,
1629                          struct epoll_event __user *events, int maxevents)
1630{
1631        struct epitem *epi, *tmp;
1632        LIST_HEAD(txlist);
1633        poll_table pt;
1634        int res = 0;
1635
1636        /*
1637         * Always short-circuit for fatal signals to allow threads to make a
1638         * timely exit without the chance of finding more events available and
1639         * fetching repeatedly.
1640         */
1641        if (fatal_signal_pending(current))
1642                return -EINTR;
1643
1644        init_poll_funcptr(&pt, NULL);
1645
1646        mutex_lock(&ep->mtx);
1647        ep_start_scan(ep, &txlist);
1648
1649        /*
1650         * We can loop without lock because we are passed a task private list.
1651         * Items cannot vanish during the loop we are holding ep->mtx.
1652         */
1653        list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1654                struct wakeup_source *ws;
1655                __poll_t revents;
1656
1657                if (res >= maxevents)
1658                        break;
1659
1660                /*
1661                 * Activate ep->ws before deactivating epi->ws to prevent
1662                 * triggering auto-suspend here (in case we reactive epi->ws
1663                 * below).
1664                 *
1665                 * This could be rearranged to delay the deactivation of epi->ws
1666                 * instead, but then epi->ws would temporarily be out of sync
1667                 * with ep_is_linked().
1668                 */
1669                ws = ep_wakeup_source(epi);
1670                if (ws) {
1671                        if (ws->active)
1672                                __pm_stay_awake(ep->ws);
1673                        __pm_relax(ws);
1674                }
1675
1676                list_del_init(&epi->rdllink);
1677
1678                /*
1679                 * If the event mask intersect the caller-requested one,
1680                 * deliver the event to userspace. Again, we are holding ep->mtx,
1681                 * so no operations coming from userspace can change the item.
1682                 */
1683                revents = ep_item_poll(epi, &pt, 1);
1684                if (!revents)
1685                        continue;
1686
1687                if (__put_user(revents, &events->events) ||
1688                    __put_user(epi->event.data, &events->data)) {
1689                        list_add(&epi->rdllink, &txlist);
1690                        ep_pm_stay_awake(epi);
1691                        if (!res)
1692                                res = -EFAULT;
1693                        break;
1694                }
1695                res++;
1696                events++;
1697                if (epi->event.events & EPOLLONESHOT)
1698                        epi->event.events &= EP_PRIVATE_BITS;
1699                else if (!(epi->event.events & EPOLLET)) {
1700                        /*
1701                         * If this file has been added with Level
1702                         * Trigger mode, we need to insert back inside
1703                         * the ready list, so that the next call to
1704                         * epoll_wait() will check again the events
1705                         * availability. At this point, no one can insert
1706                         * into ep->rdllist besides us. The epoll_ctl()
1707                         * callers are locked out by
1708                         * ep_scan_ready_list() holding "mtx" and the
1709                         * poll callback will queue them in ep->ovflist.
1710                         */
1711                        list_add_tail(&epi->rdllink, &ep->rdllist);
1712                        ep_pm_stay_awake(epi);
1713                }
1714        }
1715        ep_done_scan(ep, &txlist);
1716        mutex_unlock(&ep->mtx);
1717
1718        return res;
1719}
1720
1721static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
1722{
1723        struct timespec64 now;
1724
1725        if (ms < 0)
1726                return NULL;
1727
1728        if (!ms) {
1729                to->tv_sec = 0;
1730                to->tv_nsec = 0;
1731                return to;
1732        }
1733
1734        to->tv_sec = ms / MSEC_PER_SEC;
1735        to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
1736
1737        ktime_get_ts64(&now);
1738        *to = timespec64_add_safe(now, *to);
1739        return to;
1740}
1741
1742/**
1743 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied
1744 *           event buffer.
1745 *
1746 * @ep: Pointer to the eventpoll context.
1747 * @events: Pointer to the userspace buffer where the ready events should be
1748 *          stored.
1749 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1750 * @timeout: Maximum timeout for the ready events fetch operation, in
1751 *           timespec. If the timeout is zero, the function will not block,
1752 *           while if the @timeout ptr is NULL, the function will block
1753 *           until at least one event has been retrieved (or an error
1754 *           occurred).
1755 *
1756 * Return: the number of ready events which have been fetched, or an
1757 *          error code, in case of error.
1758 */
1759static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1760                   int maxevents, struct timespec64 *timeout)
1761{
1762        int res, eavail, timed_out = 0;
1763        u64 slack = 0;
1764        wait_queue_entry_t wait;
1765        ktime_t expires, *to = NULL;
1766
1767        lockdep_assert_irqs_enabled();
1768
1769        if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
1770                slack = select_estimate_accuracy(timeout);
1771                to = &expires;
1772                *to = timespec64_to_ktime(*timeout);
1773        } else if (timeout) {
1774                /*
1775                 * Avoid the unnecessary trip to the wait queue loop, if the
1776                 * caller specified a non blocking operation.
1777                 */
1778                timed_out = 1;
1779        }
1780
1781        /*
1782         * This call is racy: We may or may not see events that are being added
1783         * to the ready list under the lock (e.g., in IRQ callbacks). For cases
1784         * with a non-zero timeout, this thread will check the ready list under
1785         * lock and will add to the wait queue.  For cases with a zero
1786         * timeout, the user by definition should not care and will have to
1787         * recheck again.
1788         */
1789        eavail = ep_events_available(ep);
1790
1791        while (1) {
1792                if (eavail) {
1793                        /*
1794                         * Try to transfer events to user space. In case we get
1795                         * 0 events and there's still timeout left over, we go
1796                         * trying again in search of more luck.
1797                         */
1798                        res = ep_send_events(ep, events, maxevents);
1799                        if (res)
1800                                return res;
1801                }
1802
1803                if (timed_out)
1804                        return 0;
1805
1806                eavail = ep_busy_loop(ep, timed_out);
1807                if (eavail)
1808                        continue;
1809
1810                if (signal_pending(current))
1811                        return -EINTR;
1812
1813                /*
1814                 * Internally init_wait() uses autoremove_wake_function(),
1815                 * thus wait entry is removed from the wait queue on each
1816                 * wakeup. Why it is important? In case of several waiters
1817                 * each new wakeup will hit the next waiter, giving it the
1818                 * chance to harvest new event. Otherwise wakeup can be
1819                 * lost. This is also good performance-wise, because on
1820                 * normal wakeup path no need to call __remove_wait_queue()
1821                 * explicitly, thus ep->lock is not taken, which halts the
1822                 * event delivery.
1823                 */
1824                init_wait(&wait);
1825
1826                write_lock_irq(&ep->lock);
1827                /*
1828                 * Barrierless variant, waitqueue_active() is called under
1829                 * the same lock on wakeup ep_poll_callback() side, so it
1830                 * is safe to avoid an explicit barrier.
1831                 */
1832                __set_current_state(TASK_INTERRUPTIBLE);
1833
1834                /*
1835                 * Do the final check under the lock. ep_scan_ready_list()
1836                 * plays with two lists (->rdllist and ->ovflist) and there
1837                 * is always a race when both lists are empty for short
1838                 * period of time although events are pending, so lock is
1839                 * important.
1840                 */
1841                eavail = ep_events_available(ep);
1842                if (!eavail)
1843                        __add_wait_queue_exclusive(&ep->wq, &wait);
1844
1845                write_unlock_irq(&ep->lock);
1846
1847                if (!eavail)
1848                        timed_out = !schedule_hrtimeout_range(to, slack,
1849                                                              HRTIMER_MODE_ABS);
1850                __set_current_state(TASK_RUNNING);
1851
1852                /*
1853                 * We were woken up, thus go and try to harvest some events.
1854                 * If timed out and still on the wait queue, recheck eavail
1855                 * carefully under lock, below.
1856                 */
1857                eavail = 1;
1858
1859                if (!list_empty_careful(&wait.entry)) {
1860                        write_lock_irq(&ep->lock);
1861                        /*
1862                         * If the thread timed out and is not on the wait queue,
1863                         * it means that the thread was woken up after its
1864                         * timeout expired before it could reacquire the lock.
1865                         * Thus, when wait.entry is empty, it needs to harvest
1866                         * events.
1867                         */
1868                        if (timed_out)
1869                                eavail = list_empty(&wait.entry);
1870                        __remove_wait_queue(&ep->wq, &wait);
1871                        write_unlock_irq(&ep->lock);
1872                }
1873        }
1874}
1875
1876/**
1877 * ep_loop_check_proc - verify that adding an epoll file inside another
1878 *                      epoll structure does not violate the constraints, in
1879 *                      terms of closed loops, or too deep chains (which can
1880 *                      result in excessive stack usage).
1881 *
1882 * @ep: the &struct eventpoll to be currently checked.
1883 * @depth: Current depth of the path being checked.
1884 *
1885 * Return: %zero if adding the epoll @file inside current epoll
1886 *          structure @ep does not violate the constraints, or %-1 otherwise.
1887 */
1888static int ep_loop_check_proc(struct eventpoll *ep, int depth)
1889{
1890        int error = 0;
1891        struct rb_node *rbp;
1892        struct epitem *epi;
1893
1894        mutex_lock_nested(&ep->mtx, depth + 1);
1895        ep->gen = loop_check_gen;
1896        for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1897                epi = rb_entry(rbp, struct epitem, rbn);
1898                if (unlikely(is_file_epoll(epi->ffd.file))) {
1899                        struct eventpoll *ep_tovisit;
1900                        ep_tovisit = epi->ffd.file->private_data;
1901                        if (ep_tovisit->gen == loop_check_gen)
1902                                continue;
1903                        if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
1904                                error = -1;
1905                        else
1906                                error = ep_loop_check_proc(ep_tovisit, depth + 1);
1907                        if (error != 0)
1908                                break;
1909                } else {
1910                        /*
1911                         * If we've reached a file that is not associated with
1912                         * an ep, then we need to check if the newly added
1913                         * links are going to add too many wakeup paths. We do
1914                         * this by adding it to the tfile_check_list, if it's
1915                         * not already there, and calling reverse_path_check()
1916                         * during ep_insert().
1917                         */
1918                        list_file(epi->ffd.file);
1919                }
1920        }
1921        mutex_unlock(&ep->mtx);
1922
1923        return error;
1924}
1925
1926/**
1927 * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
1928 *                 into another epoll file (represented by @ep) does not create
1929 *                 closed loops or too deep chains.
1930 *
1931 * @ep: Pointer to the epoll we are inserting into.
1932 * @to: Pointer to the epoll to be inserted.
1933 *
1934 * Return: %zero if adding the epoll @to inside the epoll @from
1935 * does not violate the constraints, or %-1 otherwise.
1936 */
1937static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
1938{
1939        inserting_into = ep;
1940        return ep_loop_check_proc(to, 0);
1941}
1942
1943static void clear_tfile_check_list(void)
1944{
1945        rcu_read_lock();
1946        while (tfile_check_list != EP_UNACTIVE_PTR) {
1947                struct epitems_head *head = tfile_check_list;
1948                tfile_check_list = head->next;
1949                unlist_file(head);
1950        }
1951        rcu_read_unlock();
1952}
1953
1954/*
1955 * Open an eventpoll file descriptor.
1956 */
1957static int do_epoll_create(int flags)
1958{
1959        int error, fd;
1960        struct eventpoll *ep = NULL;
1961        struct file *file;
1962
1963        /* Check the EPOLL_* constant for consistency.  */
1964        BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1965
1966        if (flags & ~EPOLL_CLOEXEC)
1967                return -EINVAL;
1968        /*
1969         * Create the internal data structure ("struct eventpoll").
1970         */
1971        error = ep_alloc(&ep);
1972        if (error < 0)
1973                return error;
1974        /*
1975         * Creates all the items needed to setup an eventpoll file. That is,
1976         * a file structure and a free file descriptor.
1977         */
1978        fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1979        if (fd < 0) {
1980                error = fd;
1981                goto out_free_ep;
1982        }
1983        file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1984                                 O_RDWR | (flags & O_CLOEXEC));
1985        if (IS_ERR(file)) {
1986                error = PTR_ERR(file);
1987                goto out_free_fd;
1988        }
1989        ep->file = file;
1990        fd_install(fd, file);
1991        return fd;
1992
1993out_free_fd:
1994        put_unused_fd(fd);
1995out_free_ep:
1996        ep_free(ep);
1997        return error;
1998}
1999
2000SYSCALL_DEFINE1(epoll_create1, int, flags)
2001{
2002        return do_epoll_create(flags);
2003}
2004
2005SYSCALL_DEFINE1(epoll_create, int, size)
2006{
2007        if (size <= 0)
2008                return -EINVAL;
2009
2010        return do_epoll_create(0);
2011}
2012
2013static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2014                                   bool nonblock)
2015{
2016        if (!nonblock) {
2017                mutex_lock_nested(mutex, depth);
2018                return 0;
2019        }
2020        if (mutex_trylock(mutex))
2021                return 0;
2022        return -EAGAIN;
2023}
2024
2025int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2026                 bool nonblock)
2027{
2028        int error;
2029        int full_check = 0;
2030        struct fd f, tf;
2031        struct eventpoll *ep;
2032        struct epitem *epi;
2033        struct eventpoll *tep = NULL;
2034
2035        error = -EBADF;
2036        f = fdget(epfd);
2037        if (!f.file)
2038                goto error_return;
2039
2040        /* Get the "struct file *" for the target file */
2041        tf = fdget(fd);
2042        if (!tf.file)
2043                goto error_fput;
2044
2045        /* The target file descriptor must support poll */
2046        error = -EPERM;
2047        if (!file_can_poll(tf.file))
2048                goto error_tgt_fput;
2049
2050        /* Check if EPOLLWAKEUP is allowed */
2051        if (ep_op_has_event(op))
2052                ep_take_care_of_epollwakeup(epds);
2053
2054        /*
2055         * We have to check that the file structure underneath the file descriptor
2056         * the user passed to us _is_ an eventpoll file. And also we do not permit
2057         * adding an epoll file descriptor inside itself.
2058         */
2059        error = -EINVAL;
2060        if (f.file == tf.file || !is_file_epoll(f.file))
2061                goto error_tgt_fput;
2062
2063        /*
2064         * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2065         * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2066         * Also, we do not currently supported nested exclusive wakeups.
2067         */
2068        if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2069                if (op == EPOLL_CTL_MOD)
2070                        goto error_tgt_fput;
2071                if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2072                                (epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2073                        goto error_tgt_fput;
2074        }
2075
2076        /*
2077         * At this point it is safe to assume that the "private_data" contains
2078         * our own data structure.
2079         */
2080        ep = f.file->private_data;
2081
2082        /*
2083         * When we insert an epoll file descriptor inside another epoll file
2084         * descriptor, there is the chance of creating closed loops, which are
2085         * better be handled here, than in more critical paths. While we are
2086         * checking for loops we also determine the list of files reachable
2087         * and hang them on the tfile_check_list, so we can check that we
2088         * haven't created too many possible wakeup paths.
2089         *
2090         * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2091         * the epoll file descriptor is attaching directly to a wakeup source,
2092         * unless the epoll file descriptor is nested. The purpose of taking the
2093         * 'epmutex' on add is to prevent complex toplogies such as loops and
2094         * deep wakeup paths from forming in parallel through multiple
2095         * EPOLL_CTL_ADD operations.
2096         */
2097        error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2098        if (error)
2099                goto error_tgt_fput;
2100        if (op == EPOLL_CTL_ADD) {
2101                if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen ||
2102                    is_file_epoll(tf.file)) {
2103                        mutex_unlock(&ep->mtx);
2104                        error = epoll_mutex_lock(&epmutex, 0, nonblock);
2105                        if (error)
2106                                goto error_tgt_fput;
2107                        loop_check_gen++;
2108                        full_check = 1;
2109                        if (is_file_epoll(tf.file)) {
2110                                tep = tf.file->private_data;
2111                                error = -ELOOP;
2112                                if (ep_loop_check(ep, tep) != 0)
2113                                        goto error_tgt_fput;
2114                        }
2115                        error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2116                        if (error)
2117                                goto error_tgt_fput;
2118                }
2119        }
2120
2121        /*
2122         * Try to lookup the file inside our RB tree. Since we grabbed "mtx"
2123         * above, we can be sure to be able to use the item looked up by
2124         * ep_find() till we release the mutex.
2125         */
2126        epi = ep_find(ep, tf.file, fd);
2127
2128        error = -EINVAL;
2129        switch (op) {
2130        case EPOLL_CTL_ADD:
2131                if (!epi) {
2132                        epds->events |= EPOLLERR | EPOLLHUP;
2133                        error = ep_insert(ep, epds, tf.file, fd, full_check);
2134                } else
2135                        error = -EEXIST;
2136                break;
2137        case EPOLL_CTL_DEL:
2138                if (epi)
2139                        error = ep_remove(ep, epi);
2140                else
2141                        error = -ENOENT;
2142                break;
2143        case EPOLL_CTL_MOD:
2144                if (epi) {
2145                        if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2146                                epds->events |= EPOLLERR | EPOLLHUP;
2147                                error = ep_modify(ep, epi, epds);
2148                        }
2149                } else
2150                        error = -ENOENT;
2151                break;
2152        }
2153        mutex_unlock(&ep->mtx);
2154
2155error_tgt_fput:
2156        if (full_check) {
2157                clear_tfile_check_list();
2158                loop_check_gen++;
2159                mutex_unlock(&epmutex);
2160        }
2161
2162        fdput(tf);
2163error_fput:
2164        fdput(f);
2165error_return:
2166
2167        return error;
2168}
2169
2170/*
2171 * The following function implements the controller interface for
2172 * the eventpoll file that enables the insertion/removal/change of
2173 * file descriptors inside the interest set.
2174 */
2175SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2176                struct epoll_event __user *, event)
2177{
2178        struct epoll_event epds;
2179
2180        if (ep_op_has_event(op) &&
2181            copy_from_user(&epds, event, sizeof(struct epoll_event)))
2182                return -EFAULT;
2183
2184        return do_epoll_ctl(epfd, op, fd, &epds, false);
2185}
2186
2187/*
2188 * Implement the event wait interface for the eventpoll file. It is the kernel
2189 * part of the user space epoll_wait(2).
2190 */
2191static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2192                         int maxevents, struct timespec64 *to)
2193{
2194        int error;
2195        struct fd f;
2196        struct eventpoll *ep;
2197
2198        /* The maximum number of event must be greater than zero */
2199        if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2200                return -EINVAL;
2201
2202        /* Verify that the area passed by the user is writeable */
2203        if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2204                return -EFAULT;
2205
2206        /* Get the "struct file *" for the eventpoll file */
2207        f = fdget(epfd);
2208        if (!f.file)
2209                return -EBADF;
2210
2211        /*
2212         * We have to check that the file structure underneath the fd
2213         * the user passed to us _is_ an eventpoll file.
2214         */
2215        error = -EINVAL;
2216        if (!is_file_epoll(f.file))
2217                goto error_fput;
2218
2219        /*
2220         * At this point it is safe to assume that the "private_data" contains
2221         * our own data structure.
2222         */
2223        ep = f.file->private_data;
2224
2225        /* Time to fish for events ... */
2226        error = ep_poll(ep, events, maxevents, to);
2227
2228error_fput:
2229        fdput(f);
2230        return error;
2231}
2232
2233SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2234                int, maxevents, int, timeout)
2235{
2236        struct timespec64 to;
2237
2238        return do_epoll_wait(epfd, events, maxevents,
2239                             ep_timeout_to_timespec(&to, timeout));
2240}
2241
2242/*
2243 * Implement the event wait interface for the eventpoll file. It is the kernel
2244 * part of the user space epoll_pwait(2).
2245 */
2246static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2247                          int maxevents, struct timespec64 *to,
2248                          const sigset_t __user *sigmask, size_t sigsetsize)
2249{
2250        int error;
2251
2252        /*
2253         * If the caller wants a certain signal mask to be set during the wait,
2254         * we apply it here.
2255         */
2256        error = set_user_sigmask(sigmask, sigsetsize);
2257        if (error)
2258                return error;
2259
2260        error = do_epoll_wait(epfd, events, maxevents, to);
2261
2262        restore_saved_sigmask_unless(error == -EINTR);
2263
2264        return error;
2265}
2266
2267SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2268                int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2269                size_t, sigsetsize)
2270{
2271        struct timespec64 to;
2272
2273        return do_epoll_pwait(epfd, events, maxevents,
2274                              ep_timeout_to_timespec(&to, timeout),
2275                              sigmask, sigsetsize);
2276}
2277
2278SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2279                int, maxevents, const struct __kernel_timespec __user *, timeout,
2280                const sigset_t __user *, sigmask, size_t, sigsetsize)
2281{
2282        struct timespec64 ts, *to = NULL;
2283
2284        if (timeout) {
2285                if (get_timespec64(&ts, timeout))
2286                        return -EFAULT;
2287                to = &ts;
2288                if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2289                        return -EINVAL;
2290        }
2291
2292        return do_epoll_pwait(epfd, events, maxevents, to,
2293                              sigmask, sigsetsize);
2294}
2295
2296#ifdef CONFIG_COMPAT
2297static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2298                                 int maxevents, struct timespec64 *timeout,
2299                                 const compat_sigset_t __user *sigmask,
2300                                 compat_size_t sigsetsize)
2301{
2302        long err;
2303
2304        /*
2305         * If the caller wants a certain signal mask to be set during the wait,
2306         * we apply it here.
2307         */
2308        err = set_compat_user_sigmask(sigmask, sigsetsize);
2309        if (err)
2310                return err;
2311
2312        err = do_epoll_wait(epfd, events, maxevents, timeout);
2313
2314        restore_saved_sigmask_unless(err == -EINTR);
2315
2316        return err;
2317}
2318
2319COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2320                       struct epoll_event __user *, events,
2321                       int, maxevents, int, timeout,
2322                       const compat_sigset_t __user *, sigmask,
2323                       compat_size_t, sigsetsize)
2324{
2325        struct timespec64 to;
2326
2327        return do_compat_epoll_pwait(epfd, events, maxevents,
2328                                     ep_timeout_to_timespec(&to, timeout),
2329                                     sigmask, sigsetsize);
2330}
2331
2332COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2333                       struct epoll_event __user *, events,
2334                       int, maxevents,
2335                       const struct __kernel_timespec __user *, timeout,
2336                       const compat_sigset_t __user *, sigmask,
2337                       compat_size_t, sigsetsize)
2338{
2339        struct timespec64 ts, *to = NULL;
2340
2341        if (timeout) {
2342                if (get_timespec64(&ts, timeout))
2343                        return -EFAULT;
2344                to = &ts;
2345                if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2346                        return -EINVAL;
2347        }
2348
2349        return do_compat_epoll_pwait(epfd, events, maxevents, to,
2350                                     sigmask, sigsetsize);
2351}
2352
2353#endif
2354
2355static int __init eventpoll_init(void)
2356{
2357        struct sysinfo si;
2358
2359        si_meminfo(&si);
2360        /*
2361         * Allows top 4% of lomem to be allocated for epoll watches (per user).
2362         */
2363        max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2364                EP_ITEM_COST;
2365        BUG_ON(max_user_watches < 0);
2366
2367        /*
2368         * We can have many thousands of epitems, so prevent this from
2369         * using an extra cache line on 64-bit (and smaller) CPUs
2370         */
2371        BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2372
2373        /* Allocates slab cache used to allocate "struct epitem" items */
2374        epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2375                        0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2376
2377        /* Allocates slab cache used to allocate "struct eppoll_entry" */
2378        pwq_cache = kmem_cache_create("eventpoll_pwq",
2379                sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2380
2381        ephead_cache = kmem_cache_create("ep_head",
2382                sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2383
2384        return 0;
2385}
2386fs_initcall(eventpoll_init);
2387