linux/fs/f2fs/segment.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/segment.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
   7 */
   8#include <linux/fs.h>
   9#include <linux/f2fs_fs.h>
  10#include <linux/bio.h>
  11#include <linux/blkdev.h>
  12#include <linux/prefetch.h>
  13#include <linux/kthread.h>
  14#include <linux/swap.h>
  15#include <linux/timer.h>
  16#include <linux/freezer.h>
  17#include <linux/sched/signal.h>
  18
  19#include "f2fs.h"
  20#include "segment.h"
  21#include "node.h"
  22#include "gc.h"
  23#include <trace/events/f2fs.h>
  24
  25#define __reverse_ffz(x) __reverse_ffs(~(x))
  26
  27static struct kmem_cache *discard_entry_slab;
  28static struct kmem_cache *discard_cmd_slab;
  29static struct kmem_cache *sit_entry_set_slab;
  30static struct kmem_cache *inmem_entry_slab;
  31
  32static unsigned long __reverse_ulong(unsigned char *str)
  33{
  34        unsigned long tmp = 0;
  35        int shift = 24, idx = 0;
  36
  37#if BITS_PER_LONG == 64
  38        shift = 56;
  39#endif
  40        while (shift >= 0) {
  41                tmp |= (unsigned long)str[idx++] << shift;
  42                shift -= BITS_PER_BYTE;
  43        }
  44        return tmp;
  45}
  46
  47/*
  48 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  49 * MSB and LSB are reversed in a byte by f2fs_set_bit.
  50 */
  51static inline unsigned long __reverse_ffs(unsigned long word)
  52{
  53        int num = 0;
  54
  55#if BITS_PER_LONG == 64
  56        if ((word & 0xffffffff00000000UL) == 0)
  57                num += 32;
  58        else
  59                word >>= 32;
  60#endif
  61        if ((word & 0xffff0000) == 0)
  62                num += 16;
  63        else
  64                word >>= 16;
  65
  66        if ((word & 0xff00) == 0)
  67                num += 8;
  68        else
  69                word >>= 8;
  70
  71        if ((word & 0xf0) == 0)
  72                num += 4;
  73        else
  74                word >>= 4;
  75
  76        if ((word & 0xc) == 0)
  77                num += 2;
  78        else
  79                word >>= 2;
  80
  81        if ((word & 0x2) == 0)
  82                num += 1;
  83        return num;
  84}
  85
  86/*
  87 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  88 * f2fs_set_bit makes MSB and LSB reversed in a byte.
  89 * @size must be integral times of unsigned long.
  90 * Example:
  91 *                             MSB <--> LSB
  92 *   f2fs_set_bit(0, bitmap) => 1000 0000
  93 *   f2fs_set_bit(7, bitmap) => 0000 0001
  94 */
  95static unsigned long __find_rev_next_bit(const unsigned long *addr,
  96                        unsigned long size, unsigned long offset)
  97{
  98        const unsigned long *p = addr + BIT_WORD(offset);
  99        unsigned long result = size;
 100        unsigned long tmp;
 101
 102        if (offset >= size)
 103                return size;
 104
 105        size -= (offset & ~(BITS_PER_LONG - 1));
 106        offset %= BITS_PER_LONG;
 107
 108        while (1) {
 109                if (*p == 0)
 110                        goto pass;
 111
 112                tmp = __reverse_ulong((unsigned char *)p);
 113
 114                tmp &= ~0UL >> offset;
 115                if (size < BITS_PER_LONG)
 116                        tmp &= (~0UL << (BITS_PER_LONG - size));
 117                if (tmp)
 118                        goto found;
 119pass:
 120                if (size <= BITS_PER_LONG)
 121                        break;
 122                size -= BITS_PER_LONG;
 123                offset = 0;
 124                p++;
 125        }
 126        return result;
 127found:
 128        return result - size + __reverse_ffs(tmp);
 129}
 130
 131static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
 132                        unsigned long size, unsigned long offset)
 133{
 134        const unsigned long *p = addr + BIT_WORD(offset);
 135        unsigned long result = size;
 136        unsigned long tmp;
 137
 138        if (offset >= size)
 139                return size;
 140
 141        size -= (offset & ~(BITS_PER_LONG - 1));
 142        offset %= BITS_PER_LONG;
 143
 144        while (1) {
 145                if (*p == ~0UL)
 146                        goto pass;
 147
 148                tmp = __reverse_ulong((unsigned char *)p);
 149
 150                if (offset)
 151                        tmp |= ~0UL << (BITS_PER_LONG - offset);
 152                if (size < BITS_PER_LONG)
 153                        tmp |= ~0UL >> size;
 154                if (tmp != ~0UL)
 155                        goto found;
 156pass:
 157                if (size <= BITS_PER_LONG)
 158                        break;
 159                size -= BITS_PER_LONG;
 160                offset = 0;
 161                p++;
 162        }
 163        return result;
 164found:
 165        return result - size + __reverse_ffz(tmp);
 166}
 167
 168bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
 169{
 170        int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
 171        int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
 172        int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
 173
 174        if (f2fs_lfs_mode(sbi))
 175                return false;
 176        if (sbi->gc_mode == GC_URGENT_HIGH)
 177                return true;
 178        if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
 179                return true;
 180
 181        return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
 182                        SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
 183}
 184
 185void f2fs_register_inmem_page(struct inode *inode, struct page *page)
 186{
 187        struct inmem_pages *new;
 188
 189        set_page_private_atomic(page);
 190
 191        new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
 192
 193        /* add atomic page indices to the list */
 194        new->page = page;
 195        INIT_LIST_HEAD(&new->list);
 196
 197        /* increase reference count with clean state */
 198        get_page(page);
 199        mutex_lock(&F2FS_I(inode)->inmem_lock);
 200        list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
 201        inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 202        mutex_unlock(&F2FS_I(inode)->inmem_lock);
 203
 204        trace_f2fs_register_inmem_page(page, INMEM);
 205}
 206
 207static int __revoke_inmem_pages(struct inode *inode,
 208                                struct list_head *head, bool drop, bool recover,
 209                                bool trylock)
 210{
 211        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 212        struct inmem_pages *cur, *tmp;
 213        int err = 0;
 214
 215        list_for_each_entry_safe(cur, tmp, head, list) {
 216                struct page *page = cur->page;
 217
 218                if (drop)
 219                        trace_f2fs_commit_inmem_page(page, INMEM_DROP);
 220
 221                if (trylock) {
 222                        /*
 223                         * to avoid deadlock in between page lock and
 224                         * inmem_lock.
 225                         */
 226                        if (!trylock_page(page))
 227                                continue;
 228                } else {
 229                        lock_page(page);
 230                }
 231
 232                f2fs_wait_on_page_writeback(page, DATA, true, true);
 233
 234                if (recover) {
 235                        struct dnode_of_data dn;
 236                        struct node_info ni;
 237
 238                        trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
 239retry:
 240                        set_new_dnode(&dn, inode, NULL, NULL, 0);
 241                        err = f2fs_get_dnode_of_data(&dn, page->index,
 242                                                                LOOKUP_NODE);
 243                        if (err) {
 244                                if (err == -ENOMEM) {
 245                                        congestion_wait(BLK_RW_ASYNC,
 246                                                        DEFAULT_IO_TIMEOUT);
 247                                        cond_resched();
 248                                        goto retry;
 249                                }
 250                                err = -EAGAIN;
 251                                goto next;
 252                        }
 253
 254                        err = f2fs_get_node_info(sbi, dn.nid, &ni);
 255                        if (err) {
 256                                f2fs_put_dnode(&dn);
 257                                return err;
 258                        }
 259
 260                        if (cur->old_addr == NEW_ADDR) {
 261                                f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
 262                                f2fs_update_data_blkaddr(&dn, NEW_ADDR);
 263                        } else
 264                                f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
 265                                        cur->old_addr, ni.version, true, true);
 266                        f2fs_put_dnode(&dn);
 267                }
 268next:
 269                /* we don't need to invalidate this in the sccessful status */
 270                if (drop || recover) {
 271                        ClearPageUptodate(page);
 272                        clear_page_private_gcing(page);
 273                }
 274                detach_page_private(page);
 275                set_page_private(page, 0);
 276                f2fs_put_page(page, 1);
 277
 278                list_del(&cur->list);
 279                kmem_cache_free(inmem_entry_slab, cur);
 280                dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 281        }
 282        return err;
 283}
 284
 285void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
 286{
 287        struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
 288        struct inode *inode;
 289        struct f2fs_inode_info *fi;
 290        unsigned int count = sbi->atomic_files;
 291        unsigned int looped = 0;
 292next:
 293        spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
 294        if (list_empty(head)) {
 295                spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 296                return;
 297        }
 298        fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
 299        inode = igrab(&fi->vfs_inode);
 300        if (inode)
 301                list_move_tail(&fi->inmem_ilist, head);
 302        spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 303
 304        if (inode) {
 305                if (gc_failure) {
 306                        if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
 307                                goto skip;
 308                }
 309                set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
 310                f2fs_drop_inmem_pages(inode);
 311skip:
 312                iput(inode);
 313        }
 314        congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
 315        cond_resched();
 316        if (gc_failure) {
 317                if (++looped >= count)
 318                        return;
 319        }
 320        goto next;
 321}
 322
 323void f2fs_drop_inmem_pages(struct inode *inode)
 324{
 325        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 326        struct f2fs_inode_info *fi = F2FS_I(inode);
 327
 328        do {
 329                mutex_lock(&fi->inmem_lock);
 330                if (list_empty(&fi->inmem_pages)) {
 331                        fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
 332
 333                        spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
 334                        if (!list_empty(&fi->inmem_ilist))
 335                                list_del_init(&fi->inmem_ilist);
 336                        if (f2fs_is_atomic_file(inode)) {
 337                                clear_inode_flag(inode, FI_ATOMIC_FILE);
 338                                sbi->atomic_files--;
 339                        }
 340                        spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 341
 342                        mutex_unlock(&fi->inmem_lock);
 343                        break;
 344                }
 345                __revoke_inmem_pages(inode, &fi->inmem_pages,
 346                                                true, false, true);
 347                mutex_unlock(&fi->inmem_lock);
 348        } while (1);
 349}
 350
 351void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
 352{
 353        struct f2fs_inode_info *fi = F2FS_I(inode);
 354        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 355        struct list_head *head = &fi->inmem_pages;
 356        struct inmem_pages *cur = NULL;
 357
 358        f2fs_bug_on(sbi, !page_private_atomic(page));
 359
 360        mutex_lock(&fi->inmem_lock);
 361        list_for_each_entry(cur, head, list) {
 362                if (cur->page == page)
 363                        break;
 364        }
 365
 366        f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
 367        list_del(&cur->list);
 368        mutex_unlock(&fi->inmem_lock);
 369
 370        dec_page_count(sbi, F2FS_INMEM_PAGES);
 371        kmem_cache_free(inmem_entry_slab, cur);
 372
 373        ClearPageUptodate(page);
 374        clear_page_private_atomic(page);
 375        f2fs_put_page(page, 0);
 376
 377        detach_page_private(page);
 378        set_page_private(page, 0);
 379
 380        trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
 381}
 382
 383static int __f2fs_commit_inmem_pages(struct inode *inode)
 384{
 385        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 386        struct f2fs_inode_info *fi = F2FS_I(inode);
 387        struct inmem_pages *cur, *tmp;
 388        struct f2fs_io_info fio = {
 389                .sbi = sbi,
 390                .ino = inode->i_ino,
 391                .type = DATA,
 392                .op = REQ_OP_WRITE,
 393                .op_flags = REQ_SYNC | REQ_PRIO,
 394                .io_type = FS_DATA_IO,
 395        };
 396        struct list_head revoke_list;
 397        bool submit_bio = false;
 398        int err = 0;
 399
 400        INIT_LIST_HEAD(&revoke_list);
 401
 402        list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
 403                struct page *page = cur->page;
 404
 405                lock_page(page);
 406                if (page->mapping == inode->i_mapping) {
 407                        trace_f2fs_commit_inmem_page(page, INMEM);
 408
 409                        f2fs_wait_on_page_writeback(page, DATA, true, true);
 410
 411                        set_page_dirty(page);
 412                        if (clear_page_dirty_for_io(page)) {
 413                                inode_dec_dirty_pages(inode);
 414                                f2fs_remove_dirty_inode(inode);
 415                        }
 416retry:
 417                        fio.page = page;
 418                        fio.old_blkaddr = NULL_ADDR;
 419                        fio.encrypted_page = NULL;
 420                        fio.need_lock = LOCK_DONE;
 421                        err = f2fs_do_write_data_page(&fio);
 422                        if (err) {
 423                                if (err == -ENOMEM) {
 424                                        congestion_wait(BLK_RW_ASYNC,
 425                                                        DEFAULT_IO_TIMEOUT);
 426                                        cond_resched();
 427                                        goto retry;
 428                                }
 429                                unlock_page(page);
 430                                break;
 431                        }
 432                        /* record old blkaddr for revoking */
 433                        cur->old_addr = fio.old_blkaddr;
 434                        submit_bio = true;
 435                }
 436                unlock_page(page);
 437                list_move_tail(&cur->list, &revoke_list);
 438        }
 439
 440        if (submit_bio)
 441                f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
 442
 443        if (err) {
 444                /*
 445                 * try to revoke all committed pages, but still we could fail
 446                 * due to no memory or other reason, if that happened, EAGAIN
 447                 * will be returned, which means in such case, transaction is
 448                 * already not integrity, caller should use journal to do the
 449                 * recovery or rewrite & commit last transaction. For other
 450                 * error number, revoking was done by filesystem itself.
 451                 */
 452                err = __revoke_inmem_pages(inode, &revoke_list,
 453                                                false, true, false);
 454
 455                /* drop all uncommitted pages */
 456                __revoke_inmem_pages(inode, &fi->inmem_pages,
 457                                                true, false, false);
 458        } else {
 459                __revoke_inmem_pages(inode, &revoke_list,
 460                                                false, false, false);
 461        }
 462
 463        return err;
 464}
 465
 466int f2fs_commit_inmem_pages(struct inode *inode)
 467{
 468        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 469        struct f2fs_inode_info *fi = F2FS_I(inode);
 470        int err;
 471
 472        f2fs_balance_fs(sbi, true);
 473
 474        down_write(&fi->i_gc_rwsem[WRITE]);
 475
 476        f2fs_lock_op(sbi);
 477        set_inode_flag(inode, FI_ATOMIC_COMMIT);
 478
 479        mutex_lock(&fi->inmem_lock);
 480        err = __f2fs_commit_inmem_pages(inode);
 481        mutex_unlock(&fi->inmem_lock);
 482
 483        clear_inode_flag(inode, FI_ATOMIC_COMMIT);
 484
 485        f2fs_unlock_op(sbi);
 486        up_write(&fi->i_gc_rwsem[WRITE]);
 487
 488        return err;
 489}
 490
 491/*
 492 * This function balances dirty node and dentry pages.
 493 * In addition, it controls garbage collection.
 494 */
 495void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
 496{
 497        if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
 498                f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
 499                f2fs_stop_checkpoint(sbi, false);
 500        }
 501
 502        /* balance_fs_bg is able to be pending */
 503        if (need && excess_cached_nats(sbi))
 504                f2fs_balance_fs_bg(sbi, false);
 505
 506        if (!f2fs_is_checkpoint_ready(sbi))
 507                return;
 508
 509        /*
 510         * We should do GC or end up with checkpoint, if there are so many dirty
 511         * dir/node pages without enough free segments.
 512         */
 513        if (has_not_enough_free_secs(sbi, 0, 0)) {
 514                if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
 515                                        sbi->gc_thread->f2fs_gc_task) {
 516                        DEFINE_WAIT(wait);
 517
 518                        prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
 519                                                TASK_UNINTERRUPTIBLE);
 520                        wake_up(&sbi->gc_thread->gc_wait_queue_head);
 521                        io_schedule();
 522                        finish_wait(&sbi->gc_thread->fggc_wq, &wait);
 523                } else {
 524                        down_write(&sbi->gc_lock);
 525                        f2fs_gc(sbi, false, false, false, NULL_SEGNO);
 526                }
 527        }
 528}
 529
 530void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
 531{
 532        if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 533                return;
 534
 535        /* try to shrink extent cache when there is no enough memory */
 536        if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
 537                f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
 538
 539        /* check the # of cached NAT entries */
 540        if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
 541                f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
 542
 543        if (!f2fs_available_free_memory(sbi, FREE_NIDS))
 544                f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
 545        else
 546                f2fs_build_free_nids(sbi, false, false);
 547
 548        if (excess_dirty_nats(sbi) || excess_dirty_nodes(sbi) ||
 549                excess_prefree_segs(sbi))
 550                goto do_sync;
 551
 552        /* there is background inflight IO or foreground operation recently */
 553        if (is_inflight_io(sbi, REQ_TIME) ||
 554                (!f2fs_time_over(sbi, REQ_TIME) && rwsem_is_locked(&sbi->cp_rwsem)))
 555                return;
 556
 557        /* exceed periodical checkpoint timeout threshold */
 558        if (f2fs_time_over(sbi, CP_TIME))
 559                goto do_sync;
 560
 561        /* checkpoint is the only way to shrink partial cached entries */
 562        if (f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
 563                f2fs_available_free_memory(sbi, INO_ENTRIES))
 564                return;
 565
 566do_sync:
 567        if (test_opt(sbi, DATA_FLUSH) && from_bg) {
 568                struct blk_plug plug;
 569
 570                mutex_lock(&sbi->flush_lock);
 571
 572                blk_start_plug(&plug);
 573                f2fs_sync_dirty_inodes(sbi, FILE_INODE);
 574                blk_finish_plug(&plug);
 575
 576                mutex_unlock(&sbi->flush_lock);
 577        }
 578        f2fs_sync_fs(sbi->sb, true);
 579        stat_inc_bg_cp_count(sbi->stat_info);
 580}
 581
 582static int __submit_flush_wait(struct f2fs_sb_info *sbi,
 583                                struct block_device *bdev)
 584{
 585        int ret = blkdev_issue_flush(bdev);
 586
 587        trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
 588                                test_opt(sbi, FLUSH_MERGE), ret);
 589        return ret;
 590}
 591
 592static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
 593{
 594        int ret = 0;
 595        int i;
 596
 597        if (!f2fs_is_multi_device(sbi))
 598                return __submit_flush_wait(sbi, sbi->sb->s_bdev);
 599
 600        for (i = 0; i < sbi->s_ndevs; i++) {
 601                if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
 602                        continue;
 603                ret = __submit_flush_wait(sbi, FDEV(i).bdev);
 604                if (ret)
 605                        break;
 606        }
 607        return ret;
 608}
 609
 610static int issue_flush_thread(void *data)
 611{
 612        struct f2fs_sb_info *sbi = data;
 613        struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 614        wait_queue_head_t *q = &fcc->flush_wait_queue;
 615repeat:
 616        if (kthread_should_stop())
 617                return 0;
 618
 619        if (!llist_empty(&fcc->issue_list)) {
 620                struct flush_cmd *cmd, *next;
 621                int ret;
 622
 623                fcc->dispatch_list = llist_del_all(&fcc->issue_list);
 624                fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
 625
 626                cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
 627
 628                ret = submit_flush_wait(sbi, cmd->ino);
 629                atomic_inc(&fcc->issued_flush);
 630
 631                llist_for_each_entry_safe(cmd, next,
 632                                          fcc->dispatch_list, llnode) {
 633                        cmd->ret = ret;
 634                        complete(&cmd->wait);
 635                }
 636                fcc->dispatch_list = NULL;
 637        }
 638
 639        wait_event_interruptible(*q,
 640                kthread_should_stop() || !llist_empty(&fcc->issue_list));
 641        goto repeat;
 642}
 643
 644int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
 645{
 646        struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 647        struct flush_cmd cmd;
 648        int ret;
 649
 650        if (test_opt(sbi, NOBARRIER))
 651                return 0;
 652
 653        if (!test_opt(sbi, FLUSH_MERGE)) {
 654                atomic_inc(&fcc->queued_flush);
 655                ret = submit_flush_wait(sbi, ino);
 656                atomic_dec(&fcc->queued_flush);
 657                atomic_inc(&fcc->issued_flush);
 658                return ret;
 659        }
 660
 661        if (atomic_inc_return(&fcc->queued_flush) == 1 ||
 662            f2fs_is_multi_device(sbi)) {
 663                ret = submit_flush_wait(sbi, ino);
 664                atomic_dec(&fcc->queued_flush);
 665
 666                atomic_inc(&fcc->issued_flush);
 667                return ret;
 668        }
 669
 670        cmd.ino = ino;
 671        init_completion(&cmd.wait);
 672
 673        llist_add(&cmd.llnode, &fcc->issue_list);
 674
 675        /*
 676         * update issue_list before we wake up issue_flush thread, this
 677         * smp_mb() pairs with another barrier in ___wait_event(), see
 678         * more details in comments of waitqueue_active().
 679         */
 680        smp_mb();
 681
 682        if (waitqueue_active(&fcc->flush_wait_queue))
 683                wake_up(&fcc->flush_wait_queue);
 684
 685        if (fcc->f2fs_issue_flush) {
 686                wait_for_completion(&cmd.wait);
 687                atomic_dec(&fcc->queued_flush);
 688        } else {
 689                struct llist_node *list;
 690
 691                list = llist_del_all(&fcc->issue_list);
 692                if (!list) {
 693                        wait_for_completion(&cmd.wait);
 694                        atomic_dec(&fcc->queued_flush);
 695                } else {
 696                        struct flush_cmd *tmp, *next;
 697
 698                        ret = submit_flush_wait(sbi, ino);
 699
 700                        llist_for_each_entry_safe(tmp, next, list, llnode) {
 701                                if (tmp == &cmd) {
 702                                        cmd.ret = ret;
 703                                        atomic_dec(&fcc->queued_flush);
 704                                        continue;
 705                                }
 706                                tmp->ret = ret;
 707                                complete(&tmp->wait);
 708                        }
 709                }
 710        }
 711
 712        return cmd.ret;
 713}
 714
 715int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
 716{
 717        dev_t dev = sbi->sb->s_bdev->bd_dev;
 718        struct flush_cmd_control *fcc;
 719        int err = 0;
 720
 721        if (SM_I(sbi)->fcc_info) {
 722                fcc = SM_I(sbi)->fcc_info;
 723                if (fcc->f2fs_issue_flush)
 724                        return err;
 725                goto init_thread;
 726        }
 727
 728        fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
 729        if (!fcc)
 730                return -ENOMEM;
 731        atomic_set(&fcc->issued_flush, 0);
 732        atomic_set(&fcc->queued_flush, 0);
 733        init_waitqueue_head(&fcc->flush_wait_queue);
 734        init_llist_head(&fcc->issue_list);
 735        SM_I(sbi)->fcc_info = fcc;
 736        if (!test_opt(sbi, FLUSH_MERGE))
 737                return err;
 738
 739init_thread:
 740        fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
 741                                "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
 742        if (IS_ERR(fcc->f2fs_issue_flush)) {
 743                err = PTR_ERR(fcc->f2fs_issue_flush);
 744                kfree(fcc);
 745                SM_I(sbi)->fcc_info = NULL;
 746                return err;
 747        }
 748
 749        return err;
 750}
 751
 752void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
 753{
 754        struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 755
 756        if (fcc && fcc->f2fs_issue_flush) {
 757                struct task_struct *flush_thread = fcc->f2fs_issue_flush;
 758
 759                fcc->f2fs_issue_flush = NULL;
 760                kthread_stop(flush_thread);
 761        }
 762        if (free) {
 763                kfree(fcc);
 764                SM_I(sbi)->fcc_info = NULL;
 765        }
 766}
 767
 768int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
 769{
 770        int ret = 0, i;
 771
 772        if (!f2fs_is_multi_device(sbi))
 773                return 0;
 774
 775        if (test_opt(sbi, NOBARRIER))
 776                return 0;
 777
 778        for (i = 1; i < sbi->s_ndevs; i++) {
 779                if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
 780                        continue;
 781                ret = __submit_flush_wait(sbi, FDEV(i).bdev);
 782                if (ret)
 783                        break;
 784
 785                spin_lock(&sbi->dev_lock);
 786                f2fs_clear_bit(i, (char *)&sbi->dirty_device);
 787                spin_unlock(&sbi->dev_lock);
 788        }
 789
 790        return ret;
 791}
 792
 793static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 794                enum dirty_type dirty_type)
 795{
 796        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 797
 798        /* need not be added */
 799        if (IS_CURSEG(sbi, segno))
 800                return;
 801
 802        if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 803                dirty_i->nr_dirty[dirty_type]++;
 804
 805        if (dirty_type == DIRTY) {
 806                struct seg_entry *sentry = get_seg_entry(sbi, segno);
 807                enum dirty_type t = sentry->type;
 808
 809                if (unlikely(t >= DIRTY)) {
 810                        f2fs_bug_on(sbi, 1);
 811                        return;
 812                }
 813                if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
 814                        dirty_i->nr_dirty[t]++;
 815
 816                if (__is_large_section(sbi)) {
 817                        unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 818                        block_t valid_blocks =
 819                                get_valid_blocks(sbi, segno, true);
 820
 821                        f2fs_bug_on(sbi, unlikely(!valid_blocks ||
 822                                        valid_blocks == BLKS_PER_SEC(sbi)));
 823
 824                        if (!IS_CURSEC(sbi, secno))
 825                                set_bit(secno, dirty_i->dirty_secmap);
 826                }
 827        }
 828}
 829
 830static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 831                enum dirty_type dirty_type)
 832{
 833        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 834        block_t valid_blocks;
 835
 836        if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 837                dirty_i->nr_dirty[dirty_type]--;
 838
 839        if (dirty_type == DIRTY) {
 840                struct seg_entry *sentry = get_seg_entry(sbi, segno);
 841                enum dirty_type t = sentry->type;
 842
 843                if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
 844                        dirty_i->nr_dirty[t]--;
 845
 846                valid_blocks = get_valid_blocks(sbi, segno, true);
 847                if (valid_blocks == 0) {
 848                        clear_bit(GET_SEC_FROM_SEG(sbi, segno),
 849                                                dirty_i->victim_secmap);
 850#ifdef CONFIG_F2FS_CHECK_FS
 851                        clear_bit(segno, SIT_I(sbi)->invalid_segmap);
 852#endif
 853                }
 854                if (__is_large_section(sbi)) {
 855                        unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 856
 857                        if (!valid_blocks ||
 858                                        valid_blocks == BLKS_PER_SEC(sbi)) {
 859                                clear_bit(secno, dirty_i->dirty_secmap);
 860                                return;
 861                        }
 862
 863                        if (!IS_CURSEC(sbi, secno))
 864                                set_bit(secno, dirty_i->dirty_secmap);
 865                }
 866        }
 867}
 868
 869/*
 870 * Should not occur error such as -ENOMEM.
 871 * Adding dirty entry into seglist is not critical operation.
 872 * If a given segment is one of current working segments, it won't be added.
 873 */
 874static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
 875{
 876        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 877        unsigned short valid_blocks, ckpt_valid_blocks;
 878        unsigned int usable_blocks;
 879
 880        if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
 881                return;
 882
 883        usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
 884        mutex_lock(&dirty_i->seglist_lock);
 885
 886        valid_blocks = get_valid_blocks(sbi, segno, false);
 887        ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
 888
 889        if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
 890                ckpt_valid_blocks == usable_blocks)) {
 891                __locate_dirty_segment(sbi, segno, PRE);
 892                __remove_dirty_segment(sbi, segno, DIRTY);
 893        } else if (valid_blocks < usable_blocks) {
 894                __locate_dirty_segment(sbi, segno, DIRTY);
 895        } else {
 896                /* Recovery routine with SSR needs this */
 897                __remove_dirty_segment(sbi, segno, DIRTY);
 898        }
 899
 900        mutex_unlock(&dirty_i->seglist_lock);
 901}
 902
 903/* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
 904void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
 905{
 906        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 907        unsigned int segno;
 908
 909        mutex_lock(&dirty_i->seglist_lock);
 910        for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 911                if (get_valid_blocks(sbi, segno, false))
 912                        continue;
 913                if (IS_CURSEG(sbi, segno))
 914                        continue;
 915                __locate_dirty_segment(sbi, segno, PRE);
 916                __remove_dirty_segment(sbi, segno, DIRTY);
 917        }
 918        mutex_unlock(&dirty_i->seglist_lock);
 919}
 920
 921block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
 922{
 923        int ovp_hole_segs =
 924                (overprovision_segments(sbi) - reserved_segments(sbi));
 925        block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
 926        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 927        block_t holes[2] = {0, 0};      /* DATA and NODE */
 928        block_t unusable;
 929        struct seg_entry *se;
 930        unsigned int segno;
 931
 932        mutex_lock(&dirty_i->seglist_lock);
 933        for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 934                se = get_seg_entry(sbi, segno);
 935                if (IS_NODESEG(se->type))
 936                        holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
 937                                                        se->valid_blocks;
 938                else
 939                        holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
 940                                                        se->valid_blocks;
 941        }
 942        mutex_unlock(&dirty_i->seglist_lock);
 943
 944        unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
 945        if (unusable > ovp_holes)
 946                return unusable - ovp_holes;
 947        return 0;
 948}
 949
 950int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
 951{
 952        int ovp_hole_segs =
 953                (overprovision_segments(sbi) - reserved_segments(sbi));
 954        if (unusable > F2FS_OPTION(sbi).unusable_cap)
 955                return -EAGAIN;
 956        if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
 957                dirty_segments(sbi) > ovp_hole_segs)
 958                return -EAGAIN;
 959        return 0;
 960}
 961
 962/* This is only used by SBI_CP_DISABLED */
 963static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
 964{
 965        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 966        unsigned int segno = 0;
 967
 968        mutex_lock(&dirty_i->seglist_lock);
 969        for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 970                if (get_valid_blocks(sbi, segno, false))
 971                        continue;
 972                if (get_ckpt_valid_blocks(sbi, segno, false))
 973                        continue;
 974                mutex_unlock(&dirty_i->seglist_lock);
 975                return segno;
 976        }
 977        mutex_unlock(&dirty_i->seglist_lock);
 978        return NULL_SEGNO;
 979}
 980
 981static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
 982                struct block_device *bdev, block_t lstart,
 983                block_t start, block_t len)
 984{
 985        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 986        struct list_head *pend_list;
 987        struct discard_cmd *dc;
 988
 989        f2fs_bug_on(sbi, !len);
 990
 991        pend_list = &dcc->pend_list[plist_idx(len)];
 992
 993        dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
 994        INIT_LIST_HEAD(&dc->list);
 995        dc->bdev = bdev;
 996        dc->lstart = lstart;
 997        dc->start = start;
 998        dc->len = len;
 999        dc->ref = 0;
1000        dc->state = D_PREP;
1001        dc->queued = 0;
1002        dc->error = 0;
1003        init_completion(&dc->wait);
1004        list_add_tail(&dc->list, pend_list);
1005        spin_lock_init(&dc->lock);
1006        dc->bio_ref = 0;
1007        atomic_inc(&dcc->discard_cmd_cnt);
1008        dcc->undiscard_blks += len;
1009
1010        return dc;
1011}
1012
1013static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
1014                                struct block_device *bdev, block_t lstart,
1015                                block_t start, block_t len,
1016                                struct rb_node *parent, struct rb_node **p,
1017                                bool leftmost)
1018{
1019        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1020        struct discard_cmd *dc;
1021
1022        dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1023
1024        rb_link_node(&dc->rb_node, parent, p);
1025        rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1026
1027        return dc;
1028}
1029
1030static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1031                                                        struct discard_cmd *dc)
1032{
1033        if (dc->state == D_DONE)
1034                atomic_sub(dc->queued, &dcc->queued_discard);
1035
1036        list_del(&dc->list);
1037        rb_erase_cached(&dc->rb_node, &dcc->root);
1038        dcc->undiscard_blks -= dc->len;
1039
1040        kmem_cache_free(discard_cmd_slab, dc);
1041
1042        atomic_dec(&dcc->discard_cmd_cnt);
1043}
1044
1045static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1046                                                        struct discard_cmd *dc)
1047{
1048        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1049        unsigned long flags;
1050
1051        trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1052
1053        spin_lock_irqsave(&dc->lock, flags);
1054        if (dc->bio_ref) {
1055                spin_unlock_irqrestore(&dc->lock, flags);
1056                return;
1057        }
1058        spin_unlock_irqrestore(&dc->lock, flags);
1059
1060        f2fs_bug_on(sbi, dc->ref);
1061
1062        if (dc->error == -EOPNOTSUPP)
1063                dc->error = 0;
1064
1065        if (dc->error)
1066                printk_ratelimited(
1067                        "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1068                        KERN_INFO, sbi->sb->s_id,
1069                        dc->lstart, dc->start, dc->len, dc->error);
1070        __detach_discard_cmd(dcc, dc);
1071}
1072
1073static void f2fs_submit_discard_endio(struct bio *bio)
1074{
1075        struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1076        unsigned long flags;
1077
1078        spin_lock_irqsave(&dc->lock, flags);
1079        if (!dc->error)
1080                dc->error = blk_status_to_errno(bio->bi_status);
1081        dc->bio_ref--;
1082        if (!dc->bio_ref && dc->state == D_SUBMIT) {
1083                dc->state = D_DONE;
1084                complete_all(&dc->wait);
1085        }
1086        spin_unlock_irqrestore(&dc->lock, flags);
1087        bio_put(bio);
1088}
1089
1090static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1091                                block_t start, block_t end)
1092{
1093#ifdef CONFIG_F2FS_CHECK_FS
1094        struct seg_entry *sentry;
1095        unsigned int segno;
1096        block_t blk = start;
1097        unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1098        unsigned long *map;
1099
1100        while (blk < end) {
1101                segno = GET_SEGNO(sbi, blk);
1102                sentry = get_seg_entry(sbi, segno);
1103                offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1104
1105                if (end < START_BLOCK(sbi, segno + 1))
1106                        size = GET_BLKOFF_FROM_SEG0(sbi, end);
1107                else
1108                        size = max_blocks;
1109                map = (unsigned long *)(sentry->cur_valid_map);
1110                offset = __find_rev_next_bit(map, size, offset);
1111                f2fs_bug_on(sbi, offset != size);
1112                blk = START_BLOCK(sbi, segno + 1);
1113        }
1114#endif
1115}
1116
1117static void __init_discard_policy(struct f2fs_sb_info *sbi,
1118                                struct discard_policy *dpolicy,
1119                                int discard_type, unsigned int granularity)
1120{
1121        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1122
1123        /* common policy */
1124        dpolicy->type = discard_type;
1125        dpolicy->sync = true;
1126        dpolicy->ordered = false;
1127        dpolicy->granularity = granularity;
1128
1129        dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1130        dpolicy->io_aware_gran = MAX_PLIST_NUM;
1131        dpolicy->timeout = false;
1132
1133        if (discard_type == DPOLICY_BG) {
1134                dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1135                dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1136                dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1137                dpolicy->io_aware = true;
1138                dpolicy->sync = false;
1139                dpolicy->ordered = true;
1140                if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1141                        dpolicy->granularity = 1;
1142                        if (atomic_read(&dcc->discard_cmd_cnt))
1143                                dpolicy->max_interval =
1144                                        DEF_MIN_DISCARD_ISSUE_TIME;
1145                }
1146        } else if (discard_type == DPOLICY_FORCE) {
1147                dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1148                dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1149                dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1150                dpolicy->io_aware = false;
1151        } else if (discard_type == DPOLICY_FSTRIM) {
1152                dpolicy->io_aware = false;
1153        } else if (discard_type == DPOLICY_UMOUNT) {
1154                dpolicy->io_aware = false;
1155                /* we need to issue all to keep CP_TRIMMED_FLAG */
1156                dpolicy->granularity = 1;
1157                dpolicy->timeout = true;
1158        }
1159}
1160
1161static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1162                                struct block_device *bdev, block_t lstart,
1163                                block_t start, block_t len);
1164/* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1165static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1166                                                struct discard_policy *dpolicy,
1167                                                struct discard_cmd *dc,
1168                                                unsigned int *issued)
1169{
1170        struct block_device *bdev = dc->bdev;
1171        struct request_queue *q = bdev_get_queue(bdev);
1172        unsigned int max_discard_blocks =
1173                        SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1174        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1175        struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1176                                        &(dcc->fstrim_list) : &(dcc->wait_list);
1177        int flag = dpolicy->sync ? REQ_SYNC : 0;
1178        block_t lstart, start, len, total_len;
1179        int err = 0;
1180
1181        if (dc->state != D_PREP)
1182                return 0;
1183
1184        if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1185                return 0;
1186
1187        trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1188
1189        lstart = dc->lstart;
1190        start = dc->start;
1191        len = dc->len;
1192        total_len = len;
1193
1194        dc->len = 0;
1195
1196        while (total_len && *issued < dpolicy->max_requests && !err) {
1197                struct bio *bio = NULL;
1198                unsigned long flags;
1199                bool last = true;
1200
1201                if (len > max_discard_blocks) {
1202                        len = max_discard_blocks;
1203                        last = false;
1204                }
1205
1206                (*issued)++;
1207                if (*issued == dpolicy->max_requests)
1208                        last = true;
1209
1210                dc->len += len;
1211
1212                if (time_to_inject(sbi, FAULT_DISCARD)) {
1213                        f2fs_show_injection_info(sbi, FAULT_DISCARD);
1214                        err = -EIO;
1215                        goto submit;
1216                }
1217                err = __blkdev_issue_discard(bdev,
1218                                        SECTOR_FROM_BLOCK(start),
1219                                        SECTOR_FROM_BLOCK(len),
1220                                        GFP_NOFS, 0, &bio);
1221submit:
1222                if (err) {
1223                        spin_lock_irqsave(&dc->lock, flags);
1224                        if (dc->state == D_PARTIAL)
1225                                dc->state = D_SUBMIT;
1226                        spin_unlock_irqrestore(&dc->lock, flags);
1227
1228                        break;
1229                }
1230
1231                f2fs_bug_on(sbi, !bio);
1232
1233                /*
1234                 * should keep before submission to avoid D_DONE
1235                 * right away
1236                 */
1237                spin_lock_irqsave(&dc->lock, flags);
1238                if (last)
1239                        dc->state = D_SUBMIT;
1240                else
1241                        dc->state = D_PARTIAL;
1242                dc->bio_ref++;
1243                spin_unlock_irqrestore(&dc->lock, flags);
1244
1245                atomic_inc(&dcc->queued_discard);
1246                dc->queued++;
1247                list_move_tail(&dc->list, wait_list);
1248
1249                /* sanity check on discard range */
1250                __check_sit_bitmap(sbi, lstart, lstart + len);
1251
1252                bio->bi_private = dc;
1253                bio->bi_end_io = f2fs_submit_discard_endio;
1254                bio->bi_opf |= flag;
1255                submit_bio(bio);
1256
1257                atomic_inc(&dcc->issued_discard);
1258
1259                f2fs_update_iostat(sbi, FS_DISCARD, 1);
1260
1261                lstart += len;
1262                start += len;
1263                total_len -= len;
1264                len = total_len;
1265        }
1266
1267        if (!err && len) {
1268                dcc->undiscard_blks -= len;
1269                __update_discard_tree_range(sbi, bdev, lstart, start, len);
1270        }
1271        return err;
1272}
1273
1274static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1275                                struct block_device *bdev, block_t lstart,
1276                                block_t start, block_t len,
1277                                struct rb_node **insert_p,
1278                                struct rb_node *insert_parent)
1279{
1280        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1281        struct rb_node **p;
1282        struct rb_node *parent = NULL;
1283        bool leftmost = true;
1284
1285        if (insert_p && insert_parent) {
1286                parent = insert_parent;
1287                p = insert_p;
1288                goto do_insert;
1289        }
1290
1291        p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1292                                                        lstart, &leftmost);
1293do_insert:
1294        __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1295                                                                p, leftmost);
1296}
1297
1298static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1299                                                struct discard_cmd *dc)
1300{
1301        list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1302}
1303
1304static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1305                                struct discard_cmd *dc, block_t blkaddr)
1306{
1307        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1308        struct discard_info di = dc->di;
1309        bool modified = false;
1310
1311        if (dc->state == D_DONE || dc->len == 1) {
1312                __remove_discard_cmd(sbi, dc);
1313                return;
1314        }
1315
1316        dcc->undiscard_blks -= di.len;
1317
1318        if (blkaddr > di.lstart) {
1319                dc->len = blkaddr - dc->lstart;
1320                dcc->undiscard_blks += dc->len;
1321                __relocate_discard_cmd(dcc, dc);
1322                modified = true;
1323        }
1324
1325        if (blkaddr < di.lstart + di.len - 1) {
1326                if (modified) {
1327                        __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1328                                        di.start + blkaddr + 1 - di.lstart,
1329                                        di.lstart + di.len - 1 - blkaddr,
1330                                        NULL, NULL);
1331                } else {
1332                        dc->lstart++;
1333                        dc->len--;
1334                        dc->start++;
1335                        dcc->undiscard_blks += dc->len;
1336                        __relocate_discard_cmd(dcc, dc);
1337                }
1338        }
1339}
1340
1341static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1342                                struct block_device *bdev, block_t lstart,
1343                                block_t start, block_t len)
1344{
1345        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1346        struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1347        struct discard_cmd *dc;
1348        struct discard_info di = {0};
1349        struct rb_node **insert_p = NULL, *insert_parent = NULL;
1350        struct request_queue *q = bdev_get_queue(bdev);
1351        unsigned int max_discard_blocks =
1352                        SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1353        block_t end = lstart + len;
1354
1355        dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1356                                        NULL, lstart,
1357                                        (struct rb_entry **)&prev_dc,
1358                                        (struct rb_entry **)&next_dc,
1359                                        &insert_p, &insert_parent, true, NULL);
1360        if (dc)
1361                prev_dc = dc;
1362
1363        if (!prev_dc) {
1364                di.lstart = lstart;
1365                di.len = next_dc ? next_dc->lstart - lstart : len;
1366                di.len = min(di.len, len);
1367                di.start = start;
1368        }
1369
1370        while (1) {
1371                struct rb_node *node;
1372                bool merged = false;
1373                struct discard_cmd *tdc = NULL;
1374
1375                if (prev_dc) {
1376                        di.lstart = prev_dc->lstart + prev_dc->len;
1377                        if (di.lstart < lstart)
1378                                di.lstart = lstart;
1379                        if (di.lstart >= end)
1380                                break;
1381
1382                        if (!next_dc || next_dc->lstart > end)
1383                                di.len = end - di.lstart;
1384                        else
1385                                di.len = next_dc->lstart - di.lstart;
1386                        di.start = start + di.lstart - lstart;
1387                }
1388
1389                if (!di.len)
1390                        goto next;
1391
1392                if (prev_dc && prev_dc->state == D_PREP &&
1393                        prev_dc->bdev == bdev &&
1394                        __is_discard_back_mergeable(&di, &prev_dc->di,
1395                                                        max_discard_blocks)) {
1396                        prev_dc->di.len += di.len;
1397                        dcc->undiscard_blks += di.len;
1398                        __relocate_discard_cmd(dcc, prev_dc);
1399                        di = prev_dc->di;
1400                        tdc = prev_dc;
1401                        merged = true;
1402                }
1403
1404                if (next_dc && next_dc->state == D_PREP &&
1405                        next_dc->bdev == bdev &&
1406                        __is_discard_front_mergeable(&di, &next_dc->di,
1407                                                        max_discard_blocks)) {
1408                        next_dc->di.lstart = di.lstart;
1409                        next_dc->di.len += di.len;
1410                        next_dc->di.start = di.start;
1411                        dcc->undiscard_blks += di.len;
1412                        __relocate_discard_cmd(dcc, next_dc);
1413                        if (tdc)
1414                                __remove_discard_cmd(sbi, tdc);
1415                        merged = true;
1416                }
1417
1418                if (!merged) {
1419                        __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1420                                                        di.len, NULL, NULL);
1421                }
1422 next:
1423                prev_dc = next_dc;
1424                if (!prev_dc)
1425                        break;
1426
1427                node = rb_next(&prev_dc->rb_node);
1428                next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1429        }
1430}
1431
1432static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1433                struct block_device *bdev, block_t blkstart, block_t blklen)
1434{
1435        block_t lblkstart = blkstart;
1436
1437        if (!f2fs_bdev_support_discard(bdev))
1438                return 0;
1439
1440        trace_f2fs_queue_discard(bdev, blkstart, blklen);
1441
1442        if (f2fs_is_multi_device(sbi)) {
1443                int devi = f2fs_target_device_index(sbi, blkstart);
1444
1445                blkstart -= FDEV(devi).start_blk;
1446        }
1447        mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1448        __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1449        mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1450        return 0;
1451}
1452
1453static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1454                                        struct discard_policy *dpolicy)
1455{
1456        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1457        struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1458        struct rb_node **insert_p = NULL, *insert_parent = NULL;
1459        struct discard_cmd *dc;
1460        struct blk_plug plug;
1461        unsigned int pos = dcc->next_pos;
1462        unsigned int issued = 0;
1463        bool io_interrupted = false;
1464
1465        mutex_lock(&dcc->cmd_lock);
1466        dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1467                                        NULL, pos,
1468                                        (struct rb_entry **)&prev_dc,
1469                                        (struct rb_entry **)&next_dc,
1470                                        &insert_p, &insert_parent, true, NULL);
1471        if (!dc)
1472                dc = next_dc;
1473
1474        blk_start_plug(&plug);
1475
1476        while (dc) {
1477                struct rb_node *node;
1478                int err = 0;
1479
1480                if (dc->state != D_PREP)
1481                        goto next;
1482
1483                if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1484                        io_interrupted = true;
1485                        break;
1486                }
1487
1488                dcc->next_pos = dc->lstart + dc->len;
1489                err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1490
1491                if (issued >= dpolicy->max_requests)
1492                        break;
1493next:
1494                node = rb_next(&dc->rb_node);
1495                if (err)
1496                        __remove_discard_cmd(sbi, dc);
1497                dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1498        }
1499
1500        blk_finish_plug(&plug);
1501
1502        if (!dc)
1503                dcc->next_pos = 0;
1504
1505        mutex_unlock(&dcc->cmd_lock);
1506
1507        if (!issued && io_interrupted)
1508                issued = -1;
1509
1510        return issued;
1511}
1512static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1513                                        struct discard_policy *dpolicy);
1514
1515static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1516                                        struct discard_policy *dpolicy)
1517{
1518        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1519        struct list_head *pend_list;
1520        struct discard_cmd *dc, *tmp;
1521        struct blk_plug plug;
1522        int i, issued;
1523        bool io_interrupted = false;
1524
1525        if (dpolicy->timeout)
1526                f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1527
1528retry:
1529        issued = 0;
1530        for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1531                if (dpolicy->timeout &&
1532                                f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1533                        break;
1534
1535                if (i + 1 < dpolicy->granularity)
1536                        break;
1537
1538                if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1539                        return __issue_discard_cmd_orderly(sbi, dpolicy);
1540
1541                pend_list = &dcc->pend_list[i];
1542
1543                mutex_lock(&dcc->cmd_lock);
1544                if (list_empty(pend_list))
1545                        goto next;
1546                if (unlikely(dcc->rbtree_check))
1547                        f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1548                                                        &dcc->root, false));
1549                blk_start_plug(&plug);
1550                list_for_each_entry_safe(dc, tmp, pend_list, list) {
1551                        f2fs_bug_on(sbi, dc->state != D_PREP);
1552
1553                        if (dpolicy->timeout &&
1554                                f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1555                                break;
1556
1557                        if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1558                                                !is_idle(sbi, DISCARD_TIME)) {
1559                                io_interrupted = true;
1560                                break;
1561                        }
1562
1563                        __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1564
1565                        if (issued >= dpolicy->max_requests)
1566                                break;
1567                }
1568                blk_finish_plug(&plug);
1569next:
1570                mutex_unlock(&dcc->cmd_lock);
1571
1572                if (issued >= dpolicy->max_requests || io_interrupted)
1573                        break;
1574        }
1575
1576        if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1577                __wait_all_discard_cmd(sbi, dpolicy);
1578                goto retry;
1579        }
1580
1581        if (!issued && io_interrupted)
1582                issued = -1;
1583
1584        return issued;
1585}
1586
1587static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1588{
1589        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1590        struct list_head *pend_list;
1591        struct discard_cmd *dc, *tmp;
1592        int i;
1593        bool dropped = false;
1594
1595        mutex_lock(&dcc->cmd_lock);
1596        for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1597                pend_list = &dcc->pend_list[i];
1598                list_for_each_entry_safe(dc, tmp, pend_list, list) {
1599                        f2fs_bug_on(sbi, dc->state != D_PREP);
1600                        __remove_discard_cmd(sbi, dc);
1601                        dropped = true;
1602                }
1603        }
1604        mutex_unlock(&dcc->cmd_lock);
1605
1606        return dropped;
1607}
1608
1609void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1610{
1611        __drop_discard_cmd(sbi);
1612}
1613
1614static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1615                                                        struct discard_cmd *dc)
1616{
1617        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1618        unsigned int len = 0;
1619
1620        wait_for_completion_io(&dc->wait);
1621        mutex_lock(&dcc->cmd_lock);
1622        f2fs_bug_on(sbi, dc->state != D_DONE);
1623        dc->ref--;
1624        if (!dc->ref) {
1625                if (!dc->error)
1626                        len = dc->len;
1627                __remove_discard_cmd(sbi, dc);
1628        }
1629        mutex_unlock(&dcc->cmd_lock);
1630
1631        return len;
1632}
1633
1634static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1635                                                struct discard_policy *dpolicy,
1636                                                block_t start, block_t end)
1637{
1638        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1639        struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1640                                        &(dcc->fstrim_list) : &(dcc->wait_list);
1641        struct discard_cmd *dc, *tmp;
1642        bool need_wait;
1643        unsigned int trimmed = 0;
1644
1645next:
1646        need_wait = false;
1647
1648        mutex_lock(&dcc->cmd_lock);
1649        list_for_each_entry_safe(dc, tmp, wait_list, list) {
1650                if (dc->lstart + dc->len <= start || end <= dc->lstart)
1651                        continue;
1652                if (dc->len < dpolicy->granularity)
1653                        continue;
1654                if (dc->state == D_DONE && !dc->ref) {
1655                        wait_for_completion_io(&dc->wait);
1656                        if (!dc->error)
1657                                trimmed += dc->len;
1658                        __remove_discard_cmd(sbi, dc);
1659                } else {
1660                        dc->ref++;
1661                        need_wait = true;
1662                        break;
1663                }
1664        }
1665        mutex_unlock(&dcc->cmd_lock);
1666
1667        if (need_wait) {
1668                trimmed += __wait_one_discard_bio(sbi, dc);
1669                goto next;
1670        }
1671
1672        return trimmed;
1673}
1674
1675static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1676                                                struct discard_policy *dpolicy)
1677{
1678        struct discard_policy dp;
1679        unsigned int discard_blks;
1680
1681        if (dpolicy)
1682                return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1683
1684        /* wait all */
1685        __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1686        discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1687        __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1688        discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1689
1690        return discard_blks;
1691}
1692
1693/* This should be covered by global mutex, &sit_i->sentry_lock */
1694static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1695{
1696        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1697        struct discard_cmd *dc;
1698        bool need_wait = false;
1699
1700        mutex_lock(&dcc->cmd_lock);
1701        dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1702                                                        NULL, blkaddr);
1703        if (dc) {
1704                if (dc->state == D_PREP) {
1705                        __punch_discard_cmd(sbi, dc, blkaddr);
1706                } else {
1707                        dc->ref++;
1708                        need_wait = true;
1709                }
1710        }
1711        mutex_unlock(&dcc->cmd_lock);
1712
1713        if (need_wait)
1714                __wait_one_discard_bio(sbi, dc);
1715}
1716
1717void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1718{
1719        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1720
1721        if (dcc && dcc->f2fs_issue_discard) {
1722                struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1723
1724                dcc->f2fs_issue_discard = NULL;
1725                kthread_stop(discard_thread);
1726        }
1727}
1728
1729/* This comes from f2fs_put_super */
1730bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1731{
1732        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1733        struct discard_policy dpolicy;
1734        bool dropped;
1735
1736        __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1737                                        dcc->discard_granularity);
1738        __issue_discard_cmd(sbi, &dpolicy);
1739        dropped = __drop_discard_cmd(sbi);
1740
1741        /* just to make sure there is no pending discard commands */
1742        __wait_all_discard_cmd(sbi, NULL);
1743
1744        f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1745        return dropped;
1746}
1747
1748static int issue_discard_thread(void *data)
1749{
1750        struct f2fs_sb_info *sbi = data;
1751        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1752        wait_queue_head_t *q = &dcc->discard_wait_queue;
1753        struct discard_policy dpolicy;
1754        unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1755        int issued;
1756
1757        set_freezable();
1758
1759        do {
1760                if (sbi->gc_mode == GC_URGENT_HIGH ||
1761                        !f2fs_available_free_memory(sbi, DISCARD_CACHE))
1762                        __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1763                else
1764                        __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1765                                                dcc->discard_granularity);
1766
1767                if (!atomic_read(&dcc->discard_cmd_cnt))
1768                       wait_ms = dpolicy.max_interval;
1769
1770                wait_event_interruptible_timeout(*q,
1771                                kthread_should_stop() || freezing(current) ||
1772                                dcc->discard_wake,
1773                                msecs_to_jiffies(wait_ms));
1774
1775                if (dcc->discard_wake)
1776                        dcc->discard_wake = 0;
1777
1778                /* clean up pending candidates before going to sleep */
1779                if (atomic_read(&dcc->queued_discard))
1780                        __wait_all_discard_cmd(sbi, NULL);
1781
1782                if (try_to_freeze())
1783                        continue;
1784                if (f2fs_readonly(sbi->sb))
1785                        continue;
1786                if (kthread_should_stop())
1787                        return 0;
1788                if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1789                        wait_ms = dpolicy.max_interval;
1790                        continue;
1791                }
1792                if (!atomic_read(&dcc->discard_cmd_cnt))
1793                        continue;
1794
1795                sb_start_intwrite(sbi->sb);
1796
1797                issued = __issue_discard_cmd(sbi, &dpolicy);
1798                if (issued > 0) {
1799                        __wait_all_discard_cmd(sbi, &dpolicy);
1800                        wait_ms = dpolicy.min_interval;
1801                } else if (issued == -1) {
1802                        wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1803                        if (!wait_ms)
1804                                wait_ms = dpolicy.mid_interval;
1805                } else {
1806                        wait_ms = dpolicy.max_interval;
1807                }
1808
1809                sb_end_intwrite(sbi->sb);
1810
1811        } while (!kthread_should_stop());
1812        return 0;
1813}
1814
1815#ifdef CONFIG_BLK_DEV_ZONED
1816static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1817                struct block_device *bdev, block_t blkstart, block_t blklen)
1818{
1819        sector_t sector, nr_sects;
1820        block_t lblkstart = blkstart;
1821        int devi = 0;
1822
1823        if (f2fs_is_multi_device(sbi)) {
1824                devi = f2fs_target_device_index(sbi, blkstart);
1825                if (blkstart < FDEV(devi).start_blk ||
1826                    blkstart > FDEV(devi).end_blk) {
1827                        f2fs_err(sbi, "Invalid block %x", blkstart);
1828                        return -EIO;
1829                }
1830                blkstart -= FDEV(devi).start_blk;
1831        }
1832
1833        /* For sequential zones, reset the zone write pointer */
1834        if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1835                sector = SECTOR_FROM_BLOCK(blkstart);
1836                nr_sects = SECTOR_FROM_BLOCK(blklen);
1837
1838                if (sector & (bdev_zone_sectors(bdev) - 1) ||
1839                                nr_sects != bdev_zone_sectors(bdev)) {
1840                        f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1841                                 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1842                                 blkstart, blklen);
1843                        return -EIO;
1844                }
1845                trace_f2fs_issue_reset_zone(bdev, blkstart);
1846                return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1847                                        sector, nr_sects, GFP_NOFS);
1848        }
1849
1850        /* For conventional zones, use regular discard if supported */
1851        return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1852}
1853#endif
1854
1855static int __issue_discard_async(struct f2fs_sb_info *sbi,
1856                struct block_device *bdev, block_t blkstart, block_t blklen)
1857{
1858#ifdef CONFIG_BLK_DEV_ZONED
1859        if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1860                return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1861#endif
1862        return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1863}
1864
1865static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1866                                block_t blkstart, block_t blklen)
1867{
1868        sector_t start = blkstart, len = 0;
1869        struct block_device *bdev;
1870        struct seg_entry *se;
1871        unsigned int offset;
1872        block_t i;
1873        int err = 0;
1874
1875        bdev = f2fs_target_device(sbi, blkstart, NULL);
1876
1877        for (i = blkstart; i < blkstart + blklen; i++, len++) {
1878                if (i != start) {
1879                        struct block_device *bdev2 =
1880                                f2fs_target_device(sbi, i, NULL);
1881
1882                        if (bdev2 != bdev) {
1883                                err = __issue_discard_async(sbi, bdev,
1884                                                start, len);
1885                                if (err)
1886                                        return err;
1887                                bdev = bdev2;
1888                                start = i;
1889                                len = 0;
1890                        }
1891                }
1892
1893                se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1894                offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1895
1896                if (!f2fs_test_and_set_bit(offset, se->discard_map))
1897                        sbi->discard_blks--;
1898        }
1899
1900        if (len)
1901                err = __issue_discard_async(sbi, bdev, start, len);
1902        return err;
1903}
1904
1905static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1906                                                        bool check_only)
1907{
1908        int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1909        int max_blocks = sbi->blocks_per_seg;
1910        struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1911        unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1912        unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1913        unsigned long *discard_map = (unsigned long *)se->discard_map;
1914        unsigned long *dmap = SIT_I(sbi)->tmp_map;
1915        unsigned int start = 0, end = -1;
1916        bool force = (cpc->reason & CP_DISCARD);
1917        struct discard_entry *de = NULL;
1918        struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1919        int i;
1920
1921        if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1922                return false;
1923
1924        if (!force) {
1925                if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1926                        SM_I(sbi)->dcc_info->nr_discards >=
1927                                SM_I(sbi)->dcc_info->max_discards)
1928                        return false;
1929        }
1930
1931        /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1932        for (i = 0; i < entries; i++)
1933                dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1934                                (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1935
1936        while (force || SM_I(sbi)->dcc_info->nr_discards <=
1937                                SM_I(sbi)->dcc_info->max_discards) {
1938                start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1939                if (start >= max_blocks)
1940                        break;
1941
1942                end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1943                if (force && start && end != max_blocks
1944                                        && (end - start) < cpc->trim_minlen)
1945                        continue;
1946
1947                if (check_only)
1948                        return true;
1949
1950                if (!de) {
1951                        de = f2fs_kmem_cache_alloc(discard_entry_slab,
1952                                                                GFP_F2FS_ZERO);
1953                        de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1954                        list_add_tail(&de->list, head);
1955                }
1956
1957                for (i = start; i < end; i++)
1958                        __set_bit_le(i, (void *)de->discard_map);
1959
1960                SM_I(sbi)->dcc_info->nr_discards += end - start;
1961        }
1962        return false;
1963}
1964
1965static void release_discard_addr(struct discard_entry *entry)
1966{
1967        list_del(&entry->list);
1968        kmem_cache_free(discard_entry_slab, entry);
1969}
1970
1971void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1972{
1973        struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1974        struct discard_entry *entry, *this;
1975
1976        /* drop caches */
1977        list_for_each_entry_safe(entry, this, head, list)
1978                release_discard_addr(entry);
1979}
1980
1981/*
1982 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1983 */
1984static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1985{
1986        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1987        unsigned int segno;
1988
1989        mutex_lock(&dirty_i->seglist_lock);
1990        for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1991                __set_test_and_free(sbi, segno, false);
1992        mutex_unlock(&dirty_i->seglist_lock);
1993}
1994
1995void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1996                                                struct cp_control *cpc)
1997{
1998        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1999        struct list_head *head = &dcc->entry_list;
2000        struct discard_entry *entry, *this;
2001        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2002        unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2003        unsigned int start = 0, end = -1;
2004        unsigned int secno, start_segno;
2005        bool force = (cpc->reason & CP_DISCARD);
2006        bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
2007
2008        mutex_lock(&dirty_i->seglist_lock);
2009
2010        while (1) {
2011                int i;
2012
2013                if (need_align && end != -1)
2014                        end--;
2015                start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2016                if (start >= MAIN_SEGS(sbi))
2017                        break;
2018                end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2019                                                                start + 1);
2020
2021                if (need_align) {
2022                        start = rounddown(start, sbi->segs_per_sec);
2023                        end = roundup(end, sbi->segs_per_sec);
2024                }
2025
2026                for (i = start; i < end; i++) {
2027                        if (test_and_clear_bit(i, prefree_map))
2028                                dirty_i->nr_dirty[PRE]--;
2029                }
2030
2031                if (!f2fs_realtime_discard_enable(sbi))
2032                        continue;
2033
2034                if (force && start >= cpc->trim_start &&
2035                                        (end - 1) <= cpc->trim_end)
2036                                continue;
2037
2038                if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
2039                        f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2040                                (end - start) << sbi->log_blocks_per_seg);
2041                        continue;
2042                }
2043next:
2044                secno = GET_SEC_FROM_SEG(sbi, start);
2045                start_segno = GET_SEG_FROM_SEC(sbi, secno);
2046                if (!IS_CURSEC(sbi, secno) &&
2047                        !get_valid_blocks(sbi, start, true))
2048                        f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2049                                sbi->segs_per_sec << sbi->log_blocks_per_seg);
2050
2051                start = start_segno + sbi->segs_per_sec;
2052                if (start < end)
2053                        goto next;
2054                else
2055                        end = start - 1;
2056        }
2057        mutex_unlock(&dirty_i->seglist_lock);
2058
2059        /* send small discards */
2060        list_for_each_entry_safe(entry, this, head, list) {
2061                unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2062                bool is_valid = test_bit_le(0, entry->discard_map);
2063
2064find_next:
2065                if (is_valid) {
2066                        next_pos = find_next_zero_bit_le(entry->discard_map,
2067                                        sbi->blocks_per_seg, cur_pos);
2068                        len = next_pos - cur_pos;
2069
2070                        if (f2fs_sb_has_blkzoned(sbi) ||
2071                            (force && len < cpc->trim_minlen))
2072                                goto skip;
2073
2074                        f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2075                                                                        len);
2076                        total_len += len;
2077                } else {
2078                        next_pos = find_next_bit_le(entry->discard_map,
2079                                        sbi->blocks_per_seg, cur_pos);
2080                }
2081skip:
2082                cur_pos = next_pos;
2083                is_valid = !is_valid;
2084
2085                if (cur_pos < sbi->blocks_per_seg)
2086                        goto find_next;
2087
2088                release_discard_addr(entry);
2089                dcc->nr_discards -= total_len;
2090        }
2091
2092        wake_up_discard_thread(sbi, false);
2093}
2094
2095static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2096{
2097        dev_t dev = sbi->sb->s_bdev->bd_dev;
2098        struct discard_cmd_control *dcc;
2099        int err = 0, i;
2100
2101        if (SM_I(sbi)->dcc_info) {
2102                dcc = SM_I(sbi)->dcc_info;
2103                goto init_thread;
2104        }
2105
2106        dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2107        if (!dcc)
2108                return -ENOMEM;
2109
2110        dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2111        INIT_LIST_HEAD(&dcc->entry_list);
2112        for (i = 0; i < MAX_PLIST_NUM; i++)
2113                INIT_LIST_HEAD(&dcc->pend_list[i]);
2114        INIT_LIST_HEAD(&dcc->wait_list);
2115        INIT_LIST_HEAD(&dcc->fstrim_list);
2116        mutex_init(&dcc->cmd_lock);
2117        atomic_set(&dcc->issued_discard, 0);
2118        atomic_set(&dcc->queued_discard, 0);
2119        atomic_set(&dcc->discard_cmd_cnt, 0);
2120        dcc->nr_discards = 0;
2121        dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2122        dcc->undiscard_blks = 0;
2123        dcc->next_pos = 0;
2124        dcc->root = RB_ROOT_CACHED;
2125        dcc->rbtree_check = false;
2126
2127        init_waitqueue_head(&dcc->discard_wait_queue);
2128        SM_I(sbi)->dcc_info = dcc;
2129init_thread:
2130        dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2131                                "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2132        if (IS_ERR(dcc->f2fs_issue_discard)) {
2133                err = PTR_ERR(dcc->f2fs_issue_discard);
2134                kfree(dcc);
2135                SM_I(sbi)->dcc_info = NULL;
2136                return err;
2137        }
2138
2139        return err;
2140}
2141
2142static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2143{
2144        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2145
2146        if (!dcc)
2147                return;
2148
2149        f2fs_stop_discard_thread(sbi);
2150
2151        /*
2152         * Recovery can cache discard commands, so in error path of
2153         * fill_super(), it needs to give a chance to handle them.
2154         */
2155        if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2156                f2fs_issue_discard_timeout(sbi);
2157
2158        kfree(dcc);
2159        SM_I(sbi)->dcc_info = NULL;
2160}
2161
2162static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2163{
2164        struct sit_info *sit_i = SIT_I(sbi);
2165
2166        if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2167                sit_i->dirty_sentries++;
2168                return false;
2169        }
2170
2171        return true;
2172}
2173
2174static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2175                                        unsigned int segno, int modified)
2176{
2177        struct seg_entry *se = get_seg_entry(sbi, segno);
2178
2179        se->type = type;
2180        if (modified)
2181                __mark_sit_entry_dirty(sbi, segno);
2182}
2183
2184static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2185                                                                block_t blkaddr)
2186{
2187        unsigned int segno = GET_SEGNO(sbi, blkaddr);
2188
2189        if (segno == NULL_SEGNO)
2190                return 0;
2191        return get_seg_entry(sbi, segno)->mtime;
2192}
2193
2194static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2195                                                unsigned long long old_mtime)
2196{
2197        struct seg_entry *se;
2198        unsigned int segno = GET_SEGNO(sbi, blkaddr);
2199        unsigned long long ctime = get_mtime(sbi, false);
2200        unsigned long long mtime = old_mtime ? old_mtime : ctime;
2201
2202        if (segno == NULL_SEGNO)
2203                return;
2204
2205        se = get_seg_entry(sbi, segno);
2206
2207        if (!se->mtime)
2208                se->mtime = mtime;
2209        else
2210                se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2211                                                se->valid_blocks + 1);
2212
2213        if (ctime > SIT_I(sbi)->max_mtime)
2214                SIT_I(sbi)->max_mtime = ctime;
2215}
2216
2217static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2218{
2219        struct seg_entry *se;
2220        unsigned int segno, offset;
2221        long int new_vblocks;
2222        bool exist;
2223#ifdef CONFIG_F2FS_CHECK_FS
2224        bool mir_exist;
2225#endif
2226
2227        segno = GET_SEGNO(sbi, blkaddr);
2228
2229        se = get_seg_entry(sbi, segno);
2230        new_vblocks = se->valid_blocks + del;
2231        offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2232
2233        f2fs_bug_on(sbi, (new_vblocks < 0 ||
2234                        (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2235
2236        se->valid_blocks = new_vblocks;
2237
2238        /* Update valid block bitmap */
2239        if (del > 0) {
2240                exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2241#ifdef CONFIG_F2FS_CHECK_FS
2242                mir_exist = f2fs_test_and_set_bit(offset,
2243                                                se->cur_valid_map_mir);
2244                if (unlikely(exist != mir_exist)) {
2245                        f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2246                                 blkaddr, exist);
2247                        f2fs_bug_on(sbi, 1);
2248                }
2249#endif
2250                if (unlikely(exist)) {
2251                        f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2252                                 blkaddr);
2253                        f2fs_bug_on(sbi, 1);
2254                        se->valid_blocks--;
2255                        del = 0;
2256                }
2257
2258                if (!f2fs_test_and_set_bit(offset, se->discard_map))
2259                        sbi->discard_blks--;
2260
2261                /*
2262                 * SSR should never reuse block which is checkpointed
2263                 * or newly invalidated.
2264                 */
2265                if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2266                        if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2267                                se->ckpt_valid_blocks++;
2268                }
2269        } else {
2270                exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2271#ifdef CONFIG_F2FS_CHECK_FS
2272                mir_exist = f2fs_test_and_clear_bit(offset,
2273                                                se->cur_valid_map_mir);
2274                if (unlikely(exist != mir_exist)) {
2275                        f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2276                                 blkaddr, exist);
2277                        f2fs_bug_on(sbi, 1);
2278                }
2279#endif
2280                if (unlikely(!exist)) {
2281                        f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2282                                 blkaddr);
2283                        f2fs_bug_on(sbi, 1);
2284                        se->valid_blocks++;
2285                        del = 0;
2286                } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2287                        /*
2288                         * If checkpoints are off, we must not reuse data that
2289                         * was used in the previous checkpoint. If it was used
2290                         * before, we must track that to know how much space we
2291                         * really have.
2292                         */
2293                        if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2294                                spin_lock(&sbi->stat_lock);
2295                                sbi->unusable_block_count++;
2296                                spin_unlock(&sbi->stat_lock);
2297                        }
2298                }
2299
2300                if (f2fs_test_and_clear_bit(offset, se->discard_map))
2301                        sbi->discard_blks++;
2302        }
2303        if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2304                se->ckpt_valid_blocks += del;
2305
2306        __mark_sit_entry_dirty(sbi, segno);
2307
2308        /* update total number of valid blocks to be written in ckpt area */
2309        SIT_I(sbi)->written_valid_blocks += del;
2310
2311        if (__is_large_section(sbi))
2312                get_sec_entry(sbi, segno)->valid_blocks += del;
2313}
2314
2315void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2316{
2317        unsigned int segno = GET_SEGNO(sbi, addr);
2318        struct sit_info *sit_i = SIT_I(sbi);
2319
2320        f2fs_bug_on(sbi, addr == NULL_ADDR);
2321        if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2322                return;
2323
2324        invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2325        f2fs_invalidate_compress_page(sbi, addr);
2326
2327        /* add it into sit main buffer */
2328        down_write(&sit_i->sentry_lock);
2329
2330        update_segment_mtime(sbi, addr, 0);
2331        update_sit_entry(sbi, addr, -1);
2332
2333        /* add it into dirty seglist */
2334        locate_dirty_segment(sbi, segno);
2335
2336        up_write(&sit_i->sentry_lock);
2337}
2338
2339bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2340{
2341        struct sit_info *sit_i = SIT_I(sbi);
2342        unsigned int segno, offset;
2343        struct seg_entry *se;
2344        bool is_cp = false;
2345
2346        if (!__is_valid_data_blkaddr(blkaddr))
2347                return true;
2348
2349        down_read(&sit_i->sentry_lock);
2350
2351        segno = GET_SEGNO(sbi, blkaddr);
2352        se = get_seg_entry(sbi, segno);
2353        offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2354
2355        if (f2fs_test_bit(offset, se->ckpt_valid_map))
2356                is_cp = true;
2357
2358        up_read(&sit_i->sentry_lock);
2359
2360        return is_cp;
2361}
2362
2363/*
2364 * This function should be resided under the curseg_mutex lock
2365 */
2366static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2367                                        struct f2fs_summary *sum)
2368{
2369        struct curseg_info *curseg = CURSEG_I(sbi, type);
2370        void *addr = curseg->sum_blk;
2371
2372        addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2373        memcpy(addr, sum, sizeof(struct f2fs_summary));
2374}
2375
2376/*
2377 * Calculate the number of current summary pages for writing
2378 */
2379int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2380{
2381        int valid_sum_count = 0;
2382        int i, sum_in_page;
2383
2384        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2385                if (sbi->ckpt->alloc_type[i] == SSR)
2386                        valid_sum_count += sbi->blocks_per_seg;
2387                else {
2388                        if (for_ra)
2389                                valid_sum_count += le16_to_cpu(
2390                                        F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2391                        else
2392                                valid_sum_count += curseg_blkoff(sbi, i);
2393                }
2394        }
2395
2396        sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2397                        SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2398        if (valid_sum_count <= sum_in_page)
2399                return 1;
2400        else if ((valid_sum_count - sum_in_page) <=
2401                (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2402                return 2;
2403        return 3;
2404}
2405
2406/*
2407 * Caller should put this summary page
2408 */
2409struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2410{
2411        if (unlikely(f2fs_cp_error(sbi)))
2412                return ERR_PTR(-EIO);
2413        return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2414}
2415
2416void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2417                                        void *src, block_t blk_addr)
2418{
2419        struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2420
2421        memcpy(page_address(page), src, PAGE_SIZE);
2422        set_page_dirty(page);
2423        f2fs_put_page(page, 1);
2424}
2425
2426static void write_sum_page(struct f2fs_sb_info *sbi,
2427                        struct f2fs_summary_block *sum_blk, block_t blk_addr)
2428{
2429        f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2430}
2431
2432static void write_current_sum_page(struct f2fs_sb_info *sbi,
2433                                                int type, block_t blk_addr)
2434{
2435        struct curseg_info *curseg = CURSEG_I(sbi, type);
2436        struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2437        struct f2fs_summary_block *src = curseg->sum_blk;
2438        struct f2fs_summary_block *dst;
2439
2440        dst = (struct f2fs_summary_block *)page_address(page);
2441        memset(dst, 0, PAGE_SIZE);
2442
2443        mutex_lock(&curseg->curseg_mutex);
2444
2445        down_read(&curseg->journal_rwsem);
2446        memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2447        up_read(&curseg->journal_rwsem);
2448
2449        memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2450        memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2451
2452        mutex_unlock(&curseg->curseg_mutex);
2453
2454        set_page_dirty(page);
2455        f2fs_put_page(page, 1);
2456}
2457
2458static int is_next_segment_free(struct f2fs_sb_info *sbi,
2459                                struct curseg_info *curseg, int type)
2460{
2461        unsigned int segno = curseg->segno + 1;
2462        struct free_segmap_info *free_i = FREE_I(sbi);
2463
2464        if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2465                return !test_bit(segno, free_i->free_segmap);
2466        return 0;
2467}
2468
2469/*
2470 * Find a new segment from the free segments bitmap to right order
2471 * This function should be returned with success, otherwise BUG
2472 */
2473static void get_new_segment(struct f2fs_sb_info *sbi,
2474                        unsigned int *newseg, bool new_sec, int dir)
2475{
2476        struct free_segmap_info *free_i = FREE_I(sbi);
2477        unsigned int segno, secno, zoneno;
2478        unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2479        unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2480        unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2481        unsigned int left_start = hint;
2482        bool init = true;
2483        int go_left = 0;
2484        int i;
2485
2486        spin_lock(&free_i->segmap_lock);
2487
2488        if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2489                segno = find_next_zero_bit(free_i->free_segmap,
2490                        GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2491                if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2492                        goto got_it;
2493        }
2494find_other_zone:
2495        secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2496        if (secno >= MAIN_SECS(sbi)) {
2497                if (dir == ALLOC_RIGHT) {
2498                        secno = find_next_zero_bit(free_i->free_secmap,
2499                                                        MAIN_SECS(sbi), 0);
2500                        f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2501                } else {
2502                        go_left = 1;
2503                        left_start = hint - 1;
2504                }
2505        }
2506        if (go_left == 0)
2507                goto skip_left;
2508
2509        while (test_bit(left_start, free_i->free_secmap)) {
2510                if (left_start > 0) {
2511                        left_start--;
2512                        continue;
2513                }
2514                left_start = find_next_zero_bit(free_i->free_secmap,
2515                                                        MAIN_SECS(sbi), 0);
2516                f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2517                break;
2518        }
2519        secno = left_start;
2520skip_left:
2521        segno = GET_SEG_FROM_SEC(sbi, secno);
2522        zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2523
2524        /* give up on finding another zone */
2525        if (!init)
2526                goto got_it;
2527        if (sbi->secs_per_zone == 1)
2528                goto got_it;
2529        if (zoneno == old_zoneno)
2530                goto got_it;
2531        if (dir == ALLOC_LEFT) {
2532                if (!go_left && zoneno + 1 >= total_zones)
2533                        goto got_it;
2534                if (go_left && zoneno == 0)
2535                        goto got_it;
2536        }
2537        for (i = 0; i < NR_CURSEG_TYPE; i++)
2538                if (CURSEG_I(sbi, i)->zone == zoneno)
2539                        break;
2540
2541        if (i < NR_CURSEG_TYPE) {
2542                /* zone is in user, try another */
2543                if (go_left)
2544                        hint = zoneno * sbi->secs_per_zone - 1;
2545                else if (zoneno + 1 >= total_zones)
2546                        hint = 0;
2547                else
2548                        hint = (zoneno + 1) * sbi->secs_per_zone;
2549                init = false;
2550                goto find_other_zone;
2551        }
2552got_it:
2553        /* set it as dirty segment in free segmap */
2554        f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2555        __set_inuse(sbi, segno);
2556        *newseg = segno;
2557        spin_unlock(&free_i->segmap_lock);
2558}
2559
2560static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2561{
2562        struct curseg_info *curseg = CURSEG_I(sbi, type);
2563        struct summary_footer *sum_footer;
2564        unsigned short seg_type = curseg->seg_type;
2565
2566        curseg->inited = true;
2567        curseg->segno = curseg->next_segno;
2568        curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2569        curseg->next_blkoff = 0;
2570        curseg->next_segno = NULL_SEGNO;
2571
2572        sum_footer = &(curseg->sum_blk->footer);
2573        memset(sum_footer, 0, sizeof(struct summary_footer));
2574
2575        sanity_check_seg_type(sbi, seg_type);
2576
2577        if (IS_DATASEG(seg_type))
2578                SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2579        if (IS_NODESEG(seg_type))
2580                SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2581        __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2582}
2583
2584static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2585{
2586        struct curseg_info *curseg = CURSEG_I(sbi, type);
2587        unsigned short seg_type = curseg->seg_type;
2588
2589        sanity_check_seg_type(sbi, seg_type);
2590
2591        /* if segs_per_sec is large than 1, we need to keep original policy. */
2592        if (__is_large_section(sbi))
2593                return curseg->segno;
2594
2595        /* inmem log may not locate on any segment after mount */
2596        if (!curseg->inited)
2597                return 0;
2598
2599        if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2600                return 0;
2601
2602        if (test_opt(sbi, NOHEAP) &&
2603                (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2604                return 0;
2605
2606        if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2607                return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2608
2609        /* find segments from 0 to reuse freed segments */
2610        if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2611                return 0;
2612
2613        return curseg->segno;
2614}
2615
2616/*
2617 * Allocate a current working segment.
2618 * This function always allocates a free segment in LFS manner.
2619 */
2620static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2621{
2622        struct curseg_info *curseg = CURSEG_I(sbi, type);
2623        unsigned short seg_type = curseg->seg_type;
2624        unsigned int segno = curseg->segno;
2625        int dir = ALLOC_LEFT;
2626
2627        if (curseg->inited)
2628                write_sum_page(sbi, curseg->sum_blk,
2629                                GET_SUM_BLOCK(sbi, segno));
2630        if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2631                dir = ALLOC_RIGHT;
2632
2633        if (test_opt(sbi, NOHEAP))
2634                dir = ALLOC_RIGHT;
2635
2636        segno = __get_next_segno(sbi, type);
2637        get_new_segment(sbi, &segno, new_sec, dir);
2638        curseg->next_segno = segno;
2639        reset_curseg(sbi, type, 1);
2640        curseg->alloc_type = LFS;
2641}
2642
2643static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2644                                        int segno, block_t start)
2645{
2646        struct seg_entry *se = get_seg_entry(sbi, segno);
2647        int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2648        unsigned long *target_map = SIT_I(sbi)->tmp_map;
2649        unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2650        unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2651        int i;
2652
2653        for (i = 0; i < entries; i++)
2654                target_map[i] = ckpt_map[i] | cur_map[i];
2655
2656        return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2657}
2658
2659/*
2660 * If a segment is written by LFS manner, next block offset is just obtained
2661 * by increasing the current block offset. However, if a segment is written by
2662 * SSR manner, next block offset obtained by calling __next_free_blkoff
2663 */
2664static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2665                                struct curseg_info *seg)
2666{
2667        if (seg->alloc_type == SSR)
2668                seg->next_blkoff =
2669                        __next_free_blkoff(sbi, seg->segno,
2670                                                seg->next_blkoff + 1);
2671        else
2672                seg->next_blkoff++;
2673}
2674
2675bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2676{
2677        return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2678}
2679
2680/*
2681 * This function always allocates a used segment(from dirty seglist) by SSR
2682 * manner, so it should recover the existing segment information of valid blocks
2683 */
2684static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2685{
2686        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2687        struct curseg_info *curseg = CURSEG_I(sbi, type);
2688        unsigned int new_segno = curseg->next_segno;
2689        struct f2fs_summary_block *sum_node;
2690        struct page *sum_page;
2691
2692        if (flush)
2693                write_sum_page(sbi, curseg->sum_blk,
2694                                        GET_SUM_BLOCK(sbi, curseg->segno));
2695
2696        __set_test_and_inuse(sbi, new_segno);
2697
2698        mutex_lock(&dirty_i->seglist_lock);
2699        __remove_dirty_segment(sbi, new_segno, PRE);
2700        __remove_dirty_segment(sbi, new_segno, DIRTY);
2701        mutex_unlock(&dirty_i->seglist_lock);
2702
2703        reset_curseg(sbi, type, 1);
2704        curseg->alloc_type = SSR;
2705        curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2706
2707        sum_page = f2fs_get_sum_page(sbi, new_segno);
2708        if (IS_ERR(sum_page)) {
2709                /* GC won't be able to use stale summary pages by cp_error */
2710                memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2711                return;
2712        }
2713        sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2714        memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2715        f2fs_put_page(sum_page, 1);
2716}
2717
2718static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2719                                int alloc_mode, unsigned long long age);
2720
2721static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2722                                        int target_type, int alloc_mode,
2723                                        unsigned long long age)
2724{
2725        struct curseg_info *curseg = CURSEG_I(sbi, type);
2726
2727        curseg->seg_type = target_type;
2728
2729        if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2730                struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2731
2732                curseg->seg_type = se->type;
2733                change_curseg(sbi, type, true);
2734        } else {
2735                /* allocate cold segment by default */
2736                curseg->seg_type = CURSEG_COLD_DATA;
2737                new_curseg(sbi, type, true);
2738        }
2739        stat_inc_seg_type(sbi, curseg);
2740}
2741
2742static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2743{
2744        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2745
2746        if (!sbi->am.atgc_enabled)
2747                return;
2748
2749        down_read(&SM_I(sbi)->curseg_lock);
2750
2751        mutex_lock(&curseg->curseg_mutex);
2752        down_write(&SIT_I(sbi)->sentry_lock);
2753
2754        get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2755
2756        up_write(&SIT_I(sbi)->sentry_lock);
2757        mutex_unlock(&curseg->curseg_mutex);
2758
2759        up_read(&SM_I(sbi)->curseg_lock);
2760
2761}
2762void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2763{
2764        __f2fs_init_atgc_curseg(sbi);
2765}
2766
2767static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2768{
2769        struct curseg_info *curseg = CURSEG_I(sbi, type);
2770
2771        mutex_lock(&curseg->curseg_mutex);
2772        if (!curseg->inited)
2773                goto out;
2774
2775        if (get_valid_blocks(sbi, curseg->segno, false)) {
2776                write_sum_page(sbi, curseg->sum_blk,
2777                                GET_SUM_BLOCK(sbi, curseg->segno));
2778        } else {
2779                mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2780                __set_test_and_free(sbi, curseg->segno, true);
2781                mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2782        }
2783out:
2784        mutex_unlock(&curseg->curseg_mutex);
2785}
2786
2787void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2788{
2789        __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2790
2791        if (sbi->am.atgc_enabled)
2792                __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2793}
2794
2795static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2796{
2797        struct curseg_info *curseg = CURSEG_I(sbi, type);
2798
2799        mutex_lock(&curseg->curseg_mutex);
2800        if (!curseg->inited)
2801                goto out;
2802        if (get_valid_blocks(sbi, curseg->segno, false))
2803                goto out;
2804
2805        mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2806        __set_test_and_inuse(sbi, curseg->segno);
2807        mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2808out:
2809        mutex_unlock(&curseg->curseg_mutex);
2810}
2811
2812void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2813{
2814        __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2815
2816        if (sbi->am.atgc_enabled)
2817                __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2818}
2819
2820static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2821                                int alloc_mode, unsigned long long age)
2822{
2823        struct curseg_info *curseg = CURSEG_I(sbi, type);
2824        const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2825        unsigned segno = NULL_SEGNO;
2826        unsigned short seg_type = curseg->seg_type;
2827        int i, cnt;
2828        bool reversed = false;
2829
2830        sanity_check_seg_type(sbi, seg_type);
2831
2832        /* f2fs_need_SSR() already forces to do this */
2833        if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2834                curseg->next_segno = segno;
2835                return 1;
2836        }
2837
2838        /* For node segments, let's do SSR more intensively */
2839        if (IS_NODESEG(seg_type)) {
2840                if (seg_type >= CURSEG_WARM_NODE) {
2841                        reversed = true;
2842                        i = CURSEG_COLD_NODE;
2843                } else {
2844                        i = CURSEG_HOT_NODE;
2845                }
2846                cnt = NR_CURSEG_NODE_TYPE;
2847        } else {
2848                if (seg_type >= CURSEG_WARM_DATA) {
2849                        reversed = true;
2850                        i = CURSEG_COLD_DATA;
2851                } else {
2852                        i = CURSEG_HOT_DATA;
2853                }
2854                cnt = NR_CURSEG_DATA_TYPE;
2855        }
2856
2857        for (; cnt-- > 0; reversed ? i-- : i++) {
2858                if (i == seg_type)
2859                        continue;
2860                if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2861                        curseg->next_segno = segno;
2862                        return 1;
2863                }
2864        }
2865
2866        /* find valid_blocks=0 in dirty list */
2867        if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2868                segno = get_free_segment(sbi);
2869                if (segno != NULL_SEGNO) {
2870                        curseg->next_segno = segno;
2871                        return 1;
2872                }
2873        }
2874        return 0;
2875}
2876
2877/*
2878 * flush out current segment and replace it with new segment
2879 * This function should be returned with success, otherwise BUG
2880 */
2881static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2882                                                int type, bool force)
2883{
2884        struct curseg_info *curseg = CURSEG_I(sbi, type);
2885
2886        if (force)
2887                new_curseg(sbi, type, true);
2888        else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2889                                        curseg->seg_type == CURSEG_WARM_NODE)
2890                new_curseg(sbi, type, false);
2891        else if (curseg->alloc_type == LFS &&
2892                        is_next_segment_free(sbi, curseg, type) &&
2893                        likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2894                new_curseg(sbi, type, false);
2895        else if (f2fs_need_SSR(sbi) &&
2896                        get_ssr_segment(sbi, type, SSR, 0))
2897                change_curseg(sbi, type, true);
2898        else
2899                new_curseg(sbi, type, false);
2900
2901        stat_inc_seg_type(sbi, curseg);
2902}
2903
2904void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2905                                        unsigned int start, unsigned int end)
2906{
2907        struct curseg_info *curseg = CURSEG_I(sbi, type);
2908        unsigned int segno;
2909
2910        down_read(&SM_I(sbi)->curseg_lock);
2911        mutex_lock(&curseg->curseg_mutex);
2912        down_write(&SIT_I(sbi)->sentry_lock);
2913
2914        segno = CURSEG_I(sbi, type)->segno;
2915        if (segno < start || segno > end)
2916                goto unlock;
2917
2918        if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2919                change_curseg(sbi, type, true);
2920        else
2921                new_curseg(sbi, type, true);
2922
2923        stat_inc_seg_type(sbi, curseg);
2924
2925        locate_dirty_segment(sbi, segno);
2926unlock:
2927        up_write(&SIT_I(sbi)->sentry_lock);
2928
2929        if (segno != curseg->segno)
2930                f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2931                            type, segno, curseg->segno);
2932
2933        mutex_unlock(&curseg->curseg_mutex);
2934        up_read(&SM_I(sbi)->curseg_lock);
2935}
2936
2937static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
2938                                                bool new_sec, bool force)
2939{
2940        struct curseg_info *curseg = CURSEG_I(sbi, type);
2941        unsigned int old_segno;
2942
2943        if (!curseg->inited)
2944                goto alloc;
2945
2946        if (force || curseg->next_blkoff ||
2947                get_valid_blocks(sbi, curseg->segno, new_sec))
2948                goto alloc;
2949
2950        if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
2951                return;
2952alloc:
2953        old_segno = curseg->segno;
2954        SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
2955        locate_dirty_segment(sbi, old_segno);
2956}
2957
2958static void __allocate_new_section(struct f2fs_sb_info *sbi,
2959                                                int type, bool force)
2960{
2961        __allocate_new_segment(sbi, type, true, force);
2962}
2963
2964void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
2965{
2966        down_read(&SM_I(sbi)->curseg_lock);
2967        down_write(&SIT_I(sbi)->sentry_lock);
2968        __allocate_new_section(sbi, type, force);
2969        up_write(&SIT_I(sbi)->sentry_lock);
2970        up_read(&SM_I(sbi)->curseg_lock);
2971}
2972
2973void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2974{
2975        int i;
2976
2977        down_read(&SM_I(sbi)->curseg_lock);
2978        down_write(&SIT_I(sbi)->sentry_lock);
2979        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2980                __allocate_new_segment(sbi, i, false, false);
2981        up_write(&SIT_I(sbi)->sentry_lock);
2982        up_read(&SM_I(sbi)->curseg_lock);
2983}
2984
2985static const struct segment_allocation default_salloc_ops = {
2986        .allocate_segment = allocate_segment_by_default,
2987};
2988
2989bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2990                                                struct cp_control *cpc)
2991{
2992        __u64 trim_start = cpc->trim_start;
2993        bool has_candidate = false;
2994
2995        down_write(&SIT_I(sbi)->sentry_lock);
2996        for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2997                if (add_discard_addrs(sbi, cpc, true)) {
2998                        has_candidate = true;
2999                        break;
3000                }
3001        }
3002        up_write(&SIT_I(sbi)->sentry_lock);
3003
3004        cpc->trim_start = trim_start;
3005        return has_candidate;
3006}
3007
3008static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3009                                        struct discard_policy *dpolicy,
3010                                        unsigned int start, unsigned int end)
3011{
3012        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3013        struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3014        struct rb_node **insert_p = NULL, *insert_parent = NULL;
3015        struct discard_cmd *dc;
3016        struct blk_plug plug;
3017        int issued;
3018        unsigned int trimmed = 0;
3019
3020next:
3021        issued = 0;
3022
3023        mutex_lock(&dcc->cmd_lock);
3024        if (unlikely(dcc->rbtree_check))
3025                f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
3026                                                        &dcc->root, false));
3027
3028        dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
3029                                        NULL, start,
3030                                        (struct rb_entry **)&prev_dc,
3031                                        (struct rb_entry **)&next_dc,
3032                                        &insert_p, &insert_parent, true, NULL);
3033        if (!dc)
3034                dc = next_dc;
3035
3036        blk_start_plug(&plug);
3037
3038        while (dc && dc->lstart <= end) {
3039                struct rb_node *node;
3040                int err = 0;
3041
3042                if (dc->len < dpolicy->granularity)
3043                        goto skip;
3044
3045                if (dc->state != D_PREP) {
3046                        list_move_tail(&dc->list, &dcc->fstrim_list);
3047                        goto skip;
3048                }
3049
3050                err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3051
3052                if (issued >= dpolicy->max_requests) {
3053                        start = dc->lstart + dc->len;
3054
3055                        if (err)
3056                                __remove_discard_cmd(sbi, dc);
3057
3058                        blk_finish_plug(&plug);
3059                        mutex_unlock(&dcc->cmd_lock);
3060                        trimmed += __wait_all_discard_cmd(sbi, NULL);
3061                        congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
3062                        goto next;
3063                }
3064skip:
3065                node = rb_next(&dc->rb_node);
3066                if (err)
3067                        __remove_discard_cmd(sbi, dc);
3068                dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3069
3070                if (fatal_signal_pending(current))
3071                        break;
3072        }
3073
3074        blk_finish_plug(&plug);
3075        mutex_unlock(&dcc->cmd_lock);
3076
3077        return trimmed;
3078}
3079
3080int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3081{
3082        __u64 start = F2FS_BYTES_TO_BLK(range->start);
3083        __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3084        unsigned int start_segno, end_segno;
3085        block_t start_block, end_block;
3086        struct cp_control cpc;
3087        struct discard_policy dpolicy;
3088        unsigned long long trimmed = 0;
3089        int err = 0;
3090        bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3091
3092        if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3093                return -EINVAL;
3094
3095        if (end < MAIN_BLKADDR(sbi))
3096                goto out;
3097
3098        if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3099                f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3100                return -EFSCORRUPTED;
3101        }
3102
3103        /* start/end segment number in main_area */
3104        start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3105        end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3106                                                GET_SEGNO(sbi, end);
3107        if (need_align) {
3108                start_segno = rounddown(start_segno, sbi->segs_per_sec);
3109                end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3110        }
3111
3112        cpc.reason = CP_DISCARD;
3113        cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3114        cpc.trim_start = start_segno;
3115        cpc.trim_end = end_segno;
3116
3117        if (sbi->discard_blks == 0)
3118                goto out;
3119
3120        down_write(&sbi->gc_lock);
3121        err = f2fs_write_checkpoint(sbi, &cpc);
3122        up_write(&sbi->gc_lock);
3123        if (err)
3124                goto out;
3125
3126        /*
3127         * We filed discard candidates, but actually we don't need to wait for
3128         * all of them, since they'll be issued in idle time along with runtime
3129         * discard option. User configuration looks like using runtime discard
3130         * or periodic fstrim instead of it.
3131         */
3132        if (f2fs_realtime_discard_enable(sbi))
3133                goto out;
3134
3135        start_block = START_BLOCK(sbi, start_segno);
3136        end_block = START_BLOCK(sbi, end_segno + 1);
3137
3138        __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3139        trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3140                                        start_block, end_block);
3141
3142        trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3143                                        start_block, end_block);
3144out:
3145        if (!err)
3146                range->len = F2FS_BLK_TO_BYTES(trimmed);
3147        return err;
3148}
3149
3150static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3151                                        struct curseg_info *curseg)
3152{
3153        return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3154                                                        curseg->segno);
3155}
3156
3157int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3158{
3159        switch (hint) {
3160        case WRITE_LIFE_SHORT:
3161                return CURSEG_HOT_DATA;
3162        case WRITE_LIFE_EXTREME:
3163                return CURSEG_COLD_DATA;
3164        default:
3165                return CURSEG_WARM_DATA;
3166        }
3167}
3168
3169/* This returns write hints for each segment type. This hints will be
3170 * passed down to block layer. There are mapping tables which depend on
3171 * the mount option 'whint_mode'.
3172 *
3173 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
3174 *
3175 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
3176 *
3177 * User                  F2FS                     Block
3178 * ----                  ----                     -----
3179 *                       META                     WRITE_LIFE_NOT_SET
3180 *                       HOT_NODE                 "
3181 *                       WARM_NODE                "
3182 *                       COLD_NODE                "
3183 * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3184 * extension list        "                        "
3185 *
3186 * -- buffered io
3187 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3188 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3189 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3190 * WRITE_LIFE_NONE       "                        "
3191 * WRITE_LIFE_MEDIUM     "                        "
3192 * WRITE_LIFE_LONG       "                        "
3193 *
3194 * -- direct io
3195 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3196 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3197 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3198 * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3199 * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3200 * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3201 *
3202 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
3203 *
3204 * User                  F2FS                     Block
3205 * ----                  ----                     -----
3206 *                       META                     WRITE_LIFE_MEDIUM;
3207 *                       HOT_NODE                 WRITE_LIFE_NOT_SET
3208 *                       WARM_NODE                "
3209 *                       COLD_NODE                WRITE_LIFE_NONE
3210 * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3211 * extension list        "                        "
3212 *
3213 * -- buffered io
3214 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3215 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3216 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
3217 * WRITE_LIFE_NONE       "                        "
3218 * WRITE_LIFE_MEDIUM     "                        "
3219 * WRITE_LIFE_LONG       "                        "
3220 *
3221 * -- direct io
3222 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3223 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3224 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3225 * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3226 * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3227 * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3228 */
3229
3230enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3231                                enum page_type type, enum temp_type temp)
3232{
3233        if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
3234                if (type == DATA) {
3235                        if (temp == WARM)
3236                                return WRITE_LIFE_NOT_SET;
3237                        else if (temp == HOT)
3238                                return WRITE_LIFE_SHORT;
3239                        else if (temp == COLD)
3240                                return WRITE_LIFE_EXTREME;
3241                } else {
3242                        return WRITE_LIFE_NOT_SET;
3243                }
3244        } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
3245                if (type == DATA) {
3246                        if (temp == WARM)
3247                                return WRITE_LIFE_LONG;
3248                        else if (temp == HOT)
3249                                return WRITE_LIFE_SHORT;
3250                        else if (temp == COLD)
3251                                return WRITE_LIFE_EXTREME;
3252                } else if (type == NODE) {
3253                        if (temp == WARM || temp == HOT)
3254                                return WRITE_LIFE_NOT_SET;
3255                        else if (temp == COLD)
3256                                return WRITE_LIFE_NONE;
3257                } else if (type == META) {
3258                        return WRITE_LIFE_MEDIUM;
3259                }
3260        }
3261        return WRITE_LIFE_NOT_SET;
3262}
3263
3264static int __get_segment_type_2(struct f2fs_io_info *fio)
3265{
3266        if (fio->type == DATA)
3267                return CURSEG_HOT_DATA;
3268        else
3269                return CURSEG_HOT_NODE;
3270}
3271
3272static int __get_segment_type_4(struct f2fs_io_info *fio)
3273{
3274        if (fio->type == DATA) {
3275                struct inode *inode = fio->page->mapping->host;
3276
3277                if (S_ISDIR(inode->i_mode))
3278                        return CURSEG_HOT_DATA;
3279                else
3280                        return CURSEG_COLD_DATA;
3281        } else {
3282                if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3283                        return CURSEG_WARM_NODE;
3284                else
3285                        return CURSEG_COLD_NODE;
3286        }
3287}
3288
3289static int __get_segment_type_6(struct f2fs_io_info *fio)
3290{
3291        if (fio->type == DATA) {
3292                struct inode *inode = fio->page->mapping->host;
3293
3294                if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3295                        return CURSEG_COLD_DATA_PINNED;
3296
3297                if (page_private_gcing(fio->page)) {
3298                        if (fio->sbi->am.atgc_enabled &&
3299                                (fio->io_type == FS_DATA_IO) &&
3300                                (fio->sbi->gc_mode != GC_URGENT_HIGH))
3301                                return CURSEG_ALL_DATA_ATGC;
3302                        else
3303                                return CURSEG_COLD_DATA;
3304                }
3305                if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3306                        return CURSEG_COLD_DATA;
3307                if (file_is_hot(inode) ||
3308                                is_inode_flag_set(inode, FI_HOT_DATA) ||
3309                                f2fs_is_atomic_file(inode) ||
3310                                f2fs_is_volatile_file(inode))
3311                        return CURSEG_HOT_DATA;
3312                return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3313        } else {
3314                if (IS_DNODE(fio->page))
3315                        return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3316                                                CURSEG_HOT_NODE;
3317                return CURSEG_COLD_NODE;
3318        }
3319}
3320
3321static int __get_segment_type(struct f2fs_io_info *fio)
3322{
3323        int type = 0;
3324
3325        switch (F2FS_OPTION(fio->sbi).active_logs) {
3326        case 2:
3327                type = __get_segment_type_2(fio);
3328                break;
3329        case 4:
3330                type = __get_segment_type_4(fio);
3331                break;
3332        case 6:
3333                type = __get_segment_type_6(fio);
3334                break;
3335        default:
3336                f2fs_bug_on(fio->sbi, true);
3337        }
3338
3339        if (IS_HOT(type))
3340                fio->temp = HOT;
3341        else if (IS_WARM(type))
3342                fio->temp = WARM;
3343        else
3344                fio->temp = COLD;
3345        return type;
3346}
3347
3348void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3349                block_t old_blkaddr, block_t *new_blkaddr,
3350                struct f2fs_summary *sum, int type,
3351                struct f2fs_io_info *fio)
3352{
3353        struct sit_info *sit_i = SIT_I(sbi);
3354        struct curseg_info *curseg = CURSEG_I(sbi, type);
3355        unsigned long long old_mtime;
3356        bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3357        struct seg_entry *se = NULL;
3358
3359        down_read(&SM_I(sbi)->curseg_lock);
3360
3361        mutex_lock(&curseg->curseg_mutex);
3362        down_write(&sit_i->sentry_lock);
3363
3364        if (from_gc) {
3365                f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3366                se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3367                sanity_check_seg_type(sbi, se->type);
3368                f2fs_bug_on(sbi, IS_NODESEG(se->type));
3369        }
3370        *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3371
3372        f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3373
3374        f2fs_wait_discard_bio(sbi, *new_blkaddr);
3375
3376        /*
3377         * __add_sum_entry should be resided under the curseg_mutex
3378         * because, this function updates a summary entry in the
3379         * current summary block.
3380         */
3381        __add_sum_entry(sbi, type, sum);
3382
3383        __refresh_next_blkoff(sbi, curseg);
3384
3385        stat_inc_block_count(sbi, curseg);
3386
3387        if (from_gc) {
3388                old_mtime = get_segment_mtime(sbi, old_blkaddr);
3389        } else {
3390                update_segment_mtime(sbi, old_blkaddr, 0);
3391                old_mtime = 0;
3392        }
3393        update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3394
3395        /*
3396         * SIT information should be updated before segment allocation,
3397         * since SSR needs latest valid block information.
3398         */
3399        update_sit_entry(sbi, *new_blkaddr, 1);
3400        if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3401                update_sit_entry(sbi, old_blkaddr, -1);
3402
3403        if (!__has_curseg_space(sbi, curseg)) {
3404                if (from_gc)
3405                        get_atssr_segment(sbi, type, se->type,
3406                                                AT_SSR, se->mtime);
3407                else
3408                        sit_i->s_ops->allocate_segment(sbi, type, false);
3409        }
3410        /*
3411         * segment dirty status should be updated after segment allocation,
3412         * so we just need to update status only one time after previous
3413         * segment being closed.
3414         */
3415        locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3416        locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3417
3418        up_write(&sit_i->sentry_lock);
3419
3420        if (page && IS_NODESEG(type)) {
3421                fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3422
3423                f2fs_inode_chksum_set(sbi, page);
3424        }
3425
3426        if (fio) {
3427                struct f2fs_bio_info *io;
3428
3429                if (F2FS_IO_ALIGNED(sbi))
3430                        fio->retry = false;
3431
3432                INIT_LIST_HEAD(&fio->list);
3433                fio->in_list = true;
3434                io = sbi->write_io[fio->type] + fio->temp;
3435                spin_lock(&io->io_lock);
3436                list_add_tail(&fio->list, &io->io_list);
3437                spin_unlock(&io->io_lock);
3438        }
3439
3440        mutex_unlock(&curseg->curseg_mutex);
3441
3442        up_read(&SM_I(sbi)->curseg_lock);
3443}
3444
3445static void update_device_state(struct f2fs_io_info *fio)
3446{
3447        struct f2fs_sb_info *sbi = fio->sbi;
3448        unsigned int devidx;
3449
3450        if (!f2fs_is_multi_device(sbi))
3451                return;
3452
3453        devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3454
3455        /* update device state for fsync */
3456        f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3457
3458        /* update device state for checkpoint */
3459        if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3460                spin_lock(&sbi->dev_lock);
3461                f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3462                spin_unlock(&sbi->dev_lock);
3463        }
3464}
3465
3466static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3467{
3468        int type = __get_segment_type(fio);
3469        bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3470
3471        if (keep_order)
3472                down_read(&fio->sbi->io_order_lock);
3473reallocate:
3474        f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3475                        &fio->new_blkaddr, sum, type, fio);
3476        if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3477                invalidate_mapping_pages(META_MAPPING(fio->sbi),
3478                                        fio->old_blkaddr, fio->old_blkaddr);
3479                f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3480        }
3481
3482        /* writeout dirty page into bdev */
3483        f2fs_submit_page_write(fio);
3484        if (fio->retry) {
3485                fio->old_blkaddr = fio->new_blkaddr;
3486                goto reallocate;
3487        }
3488
3489        update_device_state(fio);
3490
3491        if (keep_order)
3492                up_read(&fio->sbi->io_order_lock);
3493}
3494
3495void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3496                                        enum iostat_type io_type)
3497{
3498        struct f2fs_io_info fio = {
3499                .sbi = sbi,
3500                .type = META,
3501                .temp = HOT,
3502                .op = REQ_OP_WRITE,
3503                .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3504                .old_blkaddr = page->index,
3505                .new_blkaddr = page->index,
3506                .page = page,
3507                .encrypted_page = NULL,
3508                .in_list = false,
3509        };
3510
3511        if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3512                fio.op_flags &= ~REQ_META;
3513
3514        set_page_writeback(page);
3515        ClearPageError(page);
3516        f2fs_submit_page_write(&fio);
3517
3518        stat_inc_meta_count(sbi, page->index);
3519        f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3520}
3521
3522void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3523{
3524        struct f2fs_summary sum;
3525
3526        set_summary(&sum, nid, 0, 0);
3527        do_write_page(&sum, fio);
3528
3529        f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3530}
3531
3532void f2fs_outplace_write_data(struct dnode_of_data *dn,
3533                                        struct f2fs_io_info *fio)
3534{
3535        struct f2fs_sb_info *sbi = fio->sbi;
3536        struct f2fs_summary sum;
3537
3538        f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3539        set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3540        do_write_page(&sum, fio);
3541        f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3542
3543        f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3544}
3545
3546int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3547{
3548        int err;
3549        struct f2fs_sb_info *sbi = fio->sbi;
3550        unsigned int segno;
3551
3552        fio->new_blkaddr = fio->old_blkaddr;
3553        /* i/o temperature is needed for passing down write hints */
3554        __get_segment_type(fio);
3555
3556        segno = GET_SEGNO(sbi, fio->new_blkaddr);
3557
3558        if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3559                set_sbi_flag(sbi, SBI_NEED_FSCK);
3560                f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3561                          __func__, segno);
3562                err = -EFSCORRUPTED;
3563                goto drop_bio;
3564        }
3565
3566        if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) || f2fs_cp_error(sbi)) {
3567                err = -EIO;
3568                goto drop_bio;
3569        }
3570
3571        stat_inc_inplace_blocks(fio->sbi);
3572
3573        if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3574                err = f2fs_merge_page_bio(fio);
3575        else
3576                err = f2fs_submit_page_bio(fio);
3577        if (!err) {
3578                update_device_state(fio);
3579                f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3580        }
3581
3582        return err;
3583drop_bio:
3584        if (fio->bio && *(fio->bio)) {
3585                struct bio *bio = *(fio->bio);
3586
3587                bio->bi_status = BLK_STS_IOERR;
3588                bio_endio(bio);
3589                *(fio->bio) = NULL;
3590        }
3591        return err;
3592}
3593
3594static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3595                                                unsigned int segno)
3596{
3597        int i;
3598
3599        for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3600                if (CURSEG_I(sbi, i)->segno == segno)
3601                        break;
3602        }
3603        return i;
3604}
3605
3606void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3607                                block_t old_blkaddr, block_t new_blkaddr,
3608                                bool recover_curseg, bool recover_newaddr,
3609                                bool from_gc)
3610{
3611        struct sit_info *sit_i = SIT_I(sbi);
3612        struct curseg_info *curseg;
3613        unsigned int segno, old_cursegno;
3614        struct seg_entry *se;
3615        int type;
3616        unsigned short old_blkoff;
3617        unsigned char old_alloc_type;
3618
3619        segno = GET_SEGNO(sbi, new_blkaddr);
3620        se = get_seg_entry(sbi, segno);
3621        type = se->type;
3622
3623        down_write(&SM_I(sbi)->curseg_lock);
3624
3625        if (!recover_curseg) {
3626                /* for recovery flow */
3627                if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3628                        if (old_blkaddr == NULL_ADDR)
3629                                type = CURSEG_COLD_DATA;
3630                        else
3631                                type = CURSEG_WARM_DATA;
3632                }
3633        } else {
3634                if (IS_CURSEG(sbi, segno)) {
3635                        /* se->type is volatile as SSR allocation */
3636                        type = __f2fs_get_curseg(sbi, segno);
3637                        f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3638                } else {
3639                        type = CURSEG_WARM_DATA;
3640                }
3641        }
3642
3643        f2fs_bug_on(sbi, !IS_DATASEG(type));
3644        curseg = CURSEG_I(sbi, type);
3645
3646        mutex_lock(&curseg->curseg_mutex);
3647        down_write(&sit_i->sentry_lock);
3648
3649        old_cursegno = curseg->segno;
3650        old_blkoff = curseg->next_blkoff;
3651        old_alloc_type = curseg->alloc_type;
3652
3653        /* change the current segment */
3654        if (segno != curseg->segno) {
3655                curseg->next_segno = segno;
3656                change_curseg(sbi, type, true);
3657        }
3658
3659        curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3660        __add_sum_entry(sbi, type, sum);
3661
3662        if (!recover_curseg || recover_newaddr) {
3663                if (!from_gc)
3664                        update_segment_mtime(sbi, new_blkaddr, 0);
3665                update_sit_entry(sbi, new_blkaddr, 1);
3666        }
3667        if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3668                invalidate_mapping_pages(META_MAPPING(sbi),
3669                                        old_blkaddr, old_blkaddr);
3670                f2fs_invalidate_compress_page(sbi, old_blkaddr);
3671                if (!from_gc)
3672                        update_segment_mtime(sbi, old_blkaddr, 0);
3673                update_sit_entry(sbi, old_blkaddr, -1);
3674        }
3675
3676        locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3677        locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3678
3679        locate_dirty_segment(sbi, old_cursegno);
3680
3681        if (recover_curseg) {
3682                if (old_cursegno != curseg->segno) {
3683                        curseg->next_segno = old_cursegno;
3684                        change_curseg(sbi, type, true);
3685                }
3686                curseg->next_blkoff = old_blkoff;
3687                curseg->alloc_type = old_alloc_type;
3688        }
3689
3690        up_write(&sit_i->sentry_lock);
3691        mutex_unlock(&curseg->curseg_mutex);
3692        up_write(&SM_I(sbi)->curseg_lock);
3693}
3694
3695void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3696                                block_t old_addr, block_t new_addr,
3697                                unsigned char version, bool recover_curseg,
3698                                bool recover_newaddr)
3699{
3700        struct f2fs_summary sum;
3701
3702        set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3703
3704        f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3705                                        recover_curseg, recover_newaddr, false);
3706
3707        f2fs_update_data_blkaddr(dn, new_addr);
3708}
3709
3710void f2fs_wait_on_page_writeback(struct page *page,
3711                                enum page_type type, bool ordered, bool locked)
3712{
3713        if (PageWriteback(page)) {
3714                struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3715
3716                /* submit cached LFS IO */
3717                f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3718                /* sbumit cached IPU IO */
3719                f2fs_submit_merged_ipu_write(sbi, NULL, page);
3720                if (ordered) {
3721                        wait_on_page_writeback(page);
3722                        f2fs_bug_on(sbi, locked && PageWriteback(page));
3723                } else {
3724                        wait_for_stable_page(page);
3725                }
3726        }
3727}
3728
3729void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3730{
3731        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3732        struct page *cpage;
3733
3734        if (!f2fs_post_read_required(inode))
3735                return;
3736
3737        if (!__is_valid_data_blkaddr(blkaddr))
3738                return;
3739
3740        cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3741        if (cpage) {
3742                f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3743                f2fs_put_page(cpage, 1);
3744        }
3745}
3746
3747void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3748                                                                block_t len)
3749{
3750        block_t i;
3751
3752        for (i = 0; i < len; i++)
3753                f2fs_wait_on_block_writeback(inode, blkaddr + i);
3754}
3755
3756static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3757{
3758        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3759        struct curseg_info *seg_i;
3760        unsigned char *kaddr;
3761        struct page *page;
3762        block_t start;
3763        int i, j, offset;
3764
3765        start = start_sum_block(sbi);
3766
3767        page = f2fs_get_meta_page(sbi, start++);
3768        if (IS_ERR(page))
3769                return PTR_ERR(page);
3770        kaddr = (unsigned char *)page_address(page);
3771
3772        /* Step 1: restore nat cache */
3773        seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3774        memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3775
3776        /* Step 2: restore sit cache */
3777        seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3778        memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3779        offset = 2 * SUM_JOURNAL_SIZE;
3780
3781        /* Step 3: restore summary entries */
3782        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3783                unsigned short blk_off;
3784                unsigned int segno;
3785
3786                seg_i = CURSEG_I(sbi, i);
3787                segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3788                blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3789                seg_i->next_segno = segno;
3790                reset_curseg(sbi, i, 0);
3791                seg_i->alloc_type = ckpt->alloc_type[i];
3792                seg_i->next_blkoff = blk_off;
3793
3794                if (seg_i->alloc_type == SSR)
3795                        blk_off = sbi->blocks_per_seg;
3796
3797                for (j = 0; j < blk_off; j++) {
3798                        struct f2fs_summary *s;
3799
3800                        s = (struct f2fs_summary *)(kaddr + offset);
3801                        seg_i->sum_blk->entries[j] = *s;
3802                        offset += SUMMARY_SIZE;
3803                        if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3804                                                SUM_FOOTER_SIZE)
3805                                continue;
3806
3807                        f2fs_put_page(page, 1);
3808                        page = NULL;
3809
3810                        page = f2fs_get_meta_page(sbi, start++);
3811                        if (IS_ERR(page))
3812                                return PTR_ERR(page);
3813                        kaddr = (unsigned char *)page_address(page);
3814                        offset = 0;
3815                }
3816        }
3817        f2fs_put_page(page, 1);
3818        return 0;
3819}
3820
3821static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3822{
3823        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3824        struct f2fs_summary_block *sum;
3825        struct curseg_info *curseg;
3826        struct page *new;
3827        unsigned short blk_off;
3828        unsigned int segno = 0;
3829        block_t blk_addr = 0;
3830        int err = 0;
3831
3832        /* get segment number and block addr */
3833        if (IS_DATASEG(type)) {
3834                segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3835                blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3836                                                        CURSEG_HOT_DATA]);
3837                if (__exist_node_summaries(sbi))
3838                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3839                else
3840                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3841        } else {
3842                segno = le32_to_cpu(ckpt->cur_node_segno[type -
3843                                                        CURSEG_HOT_NODE]);
3844                blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3845                                                        CURSEG_HOT_NODE]);
3846                if (__exist_node_summaries(sbi))
3847                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3848                                                        type - CURSEG_HOT_NODE);
3849                else
3850                        blk_addr = GET_SUM_BLOCK(sbi, segno);
3851        }
3852
3853        new = f2fs_get_meta_page(sbi, blk_addr);
3854        if (IS_ERR(new))
3855                return PTR_ERR(new);
3856        sum = (struct f2fs_summary_block *)page_address(new);
3857
3858        if (IS_NODESEG(type)) {
3859                if (__exist_node_summaries(sbi)) {
3860                        struct f2fs_summary *ns = &sum->entries[0];
3861                        int i;
3862
3863                        for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3864                                ns->version = 0;
3865                                ns->ofs_in_node = 0;
3866                        }
3867                } else {
3868                        err = f2fs_restore_node_summary(sbi, segno, sum);
3869                        if (err)
3870                                goto out;
3871                }
3872        }
3873
3874        /* set uncompleted segment to curseg */
3875        curseg = CURSEG_I(sbi, type);
3876        mutex_lock(&curseg->curseg_mutex);
3877
3878        /* update journal info */
3879        down_write(&curseg->journal_rwsem);
3880        memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3881        up_write(&curseg->journal_rwsem);
3882
3883        memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3884        memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3885        curseg->next_segno = segno;
3886        reset_curseg(sbi, type, 0);
3887        curseg->alloc_type = ckpt->alloc_type[type];
3888        curseg->next_blkoff = blk_off;
3889        mutex_unlock(&curseg->curseg_mutex);
3890out:
3891        f2fs_put_page(new, 1);
3892        return err;
3893}
3894
3895static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3896{
3897        struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3898        struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3899        int type = CURSEG_HOT_DATA;
3900        int err;
3901
3902        if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3903                int npages = f2fs_npages_for_summary_flush(sbi, true);
3904
3905                if (npages >= 2)
3906                        f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3907                                                        META_CP, true);
3908
3909                /* restore for compacted data summary */
3910                err = read_compacted_summaries(sbi);
3911                if (err)
3912                        return err;
3913                type = CURSEG_HOT_NODE;
3914        }
3915
3916        if (__exist_node_summaries(sbi))
3917                f2fs_ra_meta_pages(sbi,
3918                                sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3919                                NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3920
3921        for (; type <= CURSEG_COLD_NODE; type++) {
3922                err = read_normal_summaries(sbi, type);
3923                if (err)
3924                        return err;
3925        }
3926
3927        /* sanity check for summary blocks */
3928        if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3929                        sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3930                f2fs_err(sbi, "invalid journal entries nats %u sits %u",
3931                         nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3932                return -EINVAL;
3933        }
3934
3935        return 0;
3936}
3937
3938static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3939{
3940        struct page *page;
3941        unsigned char *kaddr;
3942        struct f2fs_summary *summary;
3943        struct curseg_info *seg_i;
3944        int written_size = 0;
3945        int i, j;
3946
3947        page = f2fs_grab_meta_page(sbi, blkaddr++);
3948        kaddr = (unsigned char *)page_address(page);
3949        memset(kaddr, 0, PAGE_SIZE);
3950
3951        /* Step 1: write nat cache */
3952        seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3953        memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3954        written_size += SUM_JOURNAL_SIZE;
3955
3956        /* Step 2: write sit cache */
3957        seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3958        memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3959        written_size += SUM_JOURNAL_SIZE;
3960
3961        /* Step 3: write summary entries */
3962        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3963                unsigned short blkoff;
3964
3965                seg_i = CURSEG_I(sbi, i);
3966                if (sbi->ckpt->alloc_type[i] == SSR)
3967                        blkoff = sbi->blocks_per_seg;
3968                else
3969                        blkoff = curseg_blkoff(sbi, i);
3970
3971                for (j = 0; j < blkoff; j++) {
3972                        if (!page) {
3973                                page = f2fs_grab_meta_page(sbi, blkaddr++);
3974                                kaddr = (unsigned char *)page_address(page);
3975                                memset(kaddr, 0, PAGE_SIZE);
3976                                written_size = 0;
3977                        }
3978                        summary = (struct f2fs_summary *)(kaddr + written_size);
3979                        *summary = seg_i->sum_blk->entries[j];
3980                        written_size += SUMMARY_SIZE;
3981
3982                        if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3983                                                        SUM_FOOTER_SIZE)
3984                                continue;
3985
3986                        set_page_dirty(page);
3987                        f2fs_put_page(page, 1);
3988                        page = NULL;
3989                }
3990        }
3991        if (page) {
3992                set_page_dirty(page);
3993                f2fs_put_page(page, 1);
3994        }
3995}
3996
3997static void write_normal_summaries(struct f2fs_sb_info *sbi,
3998                                        block_t blkaddr, int type)
3999{
4000        int i, end;
4001
4002        if (IS_DATASEG(type))
4003                end = type + NR_CURSEG_DATA_TYPE;
4004        else
4005                end = type + NR_CURSEG_NODE_TYPE;
4006
4007        for (i = type; i < end; i++)
4008                write_current_sum_page(sbi, i, blkaddr + (i - type));
4009}
4010
4011void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4012{
4013        if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4014                write_compacted_summaries(sbi, start_blk);
4015        else
4016                write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4017}
4018
4019void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4020{
4021        write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4022}
4023
4024int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4025                                        unsigned int val, int alloc)
4026{
4027        int i;
4028
4029        if (type == NAT_JOURNAL) {
4030                for (i = 0; i < nats_in_cursum(journal); i++) {
4031                        if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4032                                return i;
4033                }
4034                if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4035                        return update_nats_in_cursum(journal, 1);
4036        } else if (type == SIT_JOURNAL) {
4037                for (i = 0; i < sits_in_cursum(journal); i++)
4038                        if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4039                                return i;
4040                if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4041                        return update_sits_in_cursum(journal, 1);
4042        }
4043        return -1;
4044}
4045
4046static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4047                                        unsigned int segno)
4048{
4049        return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4050}
4051
4052static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4053                                        unsigned int start)
4054{
4055        struct sit_info *sit_i = SIT_I(sbi);
4056        struct page *page;
4057        pgoff_t src_off, dst_off;
4058
4059        src_off = current_sit_addr(sbi, start);
4060        dst_off = next_sit_addr(sbi, src_off);
4061
4062        page = f2fs_grab_meta_page(sbi, dst_off);
4063        seg_info_to_sit_page(sbi, page, start);
4064
4065        set_page_dirty(page);
4066        set_to_next_sit(sit_i, start);
4067
4068        return page;
4069}
4070
4071static struct sit_entry_set *grab_sit_entry_set(void)
4072{
4073        struct sit_entry_set *ses =
4074                        f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
4075
4076        ses->entry_cnt = 0;
4077        INIT_LIST_HEAD(&ses->set_list);
4078        return ses;
4079}
4080
4081static void release_sit_entry_set(struct sit_entry_set *ses)
4082{
4083        list_del(&ses->set_list);
4084        kmem_cache_free(sit_entry_set_slab, ses);
4085}
4086
4087static void adjust_sit_entry_set(struct sit_entry_set *ses,
4088                                                struct list_head *head)
4089{
4090        struct sit_entry_set *next = ses;
4091
4092        if (list_is_last(&ses->set_list, head))
4093                return;
4094
4095        list_for_each_entry_continue(next, head, set_list)
4096                if (ses->entry_cnt <= next->entry_cnt)
4097                        break;
4098
4099        list_move_tail(&ses->set_list, &next->set_list);
4100}
4101
4102static void add_sit_entry(unsigned int segno, struct list_head *head)
4103{
4104        struct sit_entry_set *ses;
4105        unsigned int start_segno = START_SEGNO(segno);
4106
4107        list_for_each_entry(ses, head, set_list) {
4108                if (ses->start_segno == start_segno) {
4109                        ses->entry_cnt++;
4110                        adjust_sit_entry_set(ses, head);
4111                        return;
4112                }
4113        }
4114
4115        ses = grab_sit_entry_set();
4116
4117        ses->start_segno = start_segno;
4118        ses->entry_cnt++;
4119        list_add(&ses->set_list, head);
4120}
4121
4122static void add_sits_in_set(struct f2fs_sb_info *sbi)
4123{
4124        struct f2fs_sm_info *sm_info = SM_I(sbi);
4125        struct list_head *set_list = &sm_info->sit_entry_set;
4126        unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4127        unsigned int segno;
4128
4129        for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4130                add_sit_entry(segno, set_list);
4131}
4132
4133static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4134{
4135        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4136        struct f2fs_journal *journal = curseg->journal;
4137        int i;
4138
4139        down_write(&curseg->journal_rwsem);
4140        for (i = 0; i < sits_in_cursum(journal); i++) {
4141                unsigned int segno;
4142                bool dirtied;
4143
4144                segno = le32_to_cpu(segno_in_journal(journal, i));
4145                dirtied = __mark_sit_entry_dirty(sbi, segno);
4146
4147                if (!dirtied)
4148                        add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4149        }
4150        update_sits_in_cursum(journal, -i);
4151        up_write(&curseg->journal_rwsem);
4152}
4153
4154/*
4155 * CP calls this function, which flushes SIT entries including sit_journal,
4156 * and moves prefree segs to free segs.
4157 */
4158void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4159{
4160        struct sit_info *sit_i = SIT_I(sbi);
4161        unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4162        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4163        struct f2fs_journal *journal = curseg->journal;
4164        struct sit_entry_set *ses, *tmp;
4165        struct list_head *head = &SM_I(sbi)->sit_entry_set;
4166        bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4167        struct seg_entry *se;
4168
4169        down_write(&sit_i->sentry_lock);
4170
4171        if (!sit_i->dirty_sentries)
4172                goto out;
4173
4174        /*
4175         * add and account sit entries of dirty bitmap in sit entry
4176         * set temporarily
4177         */
4178        add_sits_in_set(sbi);
4179
4180        /*
4181         * if there are no enough space in journal to store dirty sit
4182         * entries, remove all entries from journal and add and account
4183         * them in sit entry set.
4184         */
4185        if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4186                                                                !to_journal)
4187                remove_sits_in_journal(sbi);
4188
4189        /*
4190         * there are two steps to flush sit entries:
4191         * #1, flush sit entries to journal in current cold data summary block.
4192         * #2, flush sit entries to sit page.
4193         */
4194        list_for_each_entry_safe(ses, tmp, head, set_list) {
4195                struct page *page = NULL;
4196                struct f2fs_sit_block *raw_sit = NULL;
4197                unsigned int start_segno = ses->start_segno;
4198                unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4199                                                (unsigned long)MAIN_SEGS(sbi));
4200                unsigned int segno = start_segno;
4201
4202                if (to_journal &&
4203                        !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4204                        to_journal = false;
4205
4206                if (to_journal) {
4207                        down_write(&curseg->journal_rwsem);
4208                } else {
4209                        page = get_next_sit_page(sbi, start_segno);
4210                        raw_sit = page_address(page);
4211                }
4212
4213                /* flush dirty sit entries in region of current sit set */
4214                for_each_set_bit_from(segno, bitmap, end) {
4215                        int offset, sit_offset;
4216
4217                        se = get_seg_entry(sbi, segno);
4218#ifdef CONFIG_F2FS_CHECK_FS
4219                        if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4220                                                SIT_VBLOCK_MAP_SIZE))
4221                                f2fs_bug_on(sbi, 1);
4222#endif
4223
4224                        /* add discard candidates */
4225                        if (!(cpc->reason & CP_DISCARD)) {
4226                                cpc->trim_start = segno;
4227                                add_discard_addrs(sbi, cpc, false);
4228                        }
4229
4230                        if (to_journal) {
4231                                offset = f2fs_lookup_journal_in_cursum(journal,
4232                                                        SIT_JOURNAL, segno, 1);
4233                                f2fs_bug_on(sbi, offset < 0);
4234                                segno_in_journal(journal, offset) =
4235                                                        cpu_to_le32(segno);
4236                                seg_info_to_raw_sit(se,
4237                                        &sit_in_journal(journal, offset));
4238                                check_block_count(sbi, segno,
4239                                        &sit_in_journal(journal, offset));
4240                        } else {
4241                                sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4242                                seg_info_to_raw_sit(se,
4243                                                &raw_sit->entries[sit_offset]);
4244                                check_block_count(sbi, segno,
4245                                                &raw_sit->entries[sit_offset]);
4246                        }
4247
4248                        __clear_bit(segno, bitmap);
4249                        sit_i->dirty_sentries--;
4250                        ses->entry_cnt--;
4251                }
4252
4253                if (to_journal)
4254                        up_write(&curseg->journal_rwsem);
4255                else
4256                        f2fs_put_page(page, 1);
4257
4258                f2fs_bug_on(sbi, ses->entry_cnt);
4259                release_sit_entry_set(ses);
4260        }
4261
4262        f2fs_bug_on(sbi, !list_empty(head));
4263        f2fs_bug_on(sbi, sit_i->dirty_sentries);
4264out:
4265        if (cpc->reason & CP_DISCARD) {
4266                __u64 trim_start = cpc->trim_start;
4267
4268                for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4269                        add_discard_addrs(sbi, cpc, false);
4270
4271                cpc->trim_start = trim_start;
4272        }
4273        up_write(&sit_i->sentry_lock);
4274
4275        set_prefree_as_free_segments(sbi);
4276}
4277
4278static int build_sit_info(struct f2fs_sb_info *sbi)
4279{
4280        struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4281        struct sit_info *sit_i;
4282        unsigned int sit_segs, start;
4283        char *src_bitmap, *bitmap;
4284        unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4285
4286        /* allocate memory for SIT information */
4287        sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4288        if (!sit_i)
4289                return -ENOMEM;
4290
4291        SM_I(sbi)->sit_info = sit_i;
4292
4293        sit_i->sentries =
4294                f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4295                                              MAIN_SEGS(sbi)),
4296                              GFP_KERNEL);
4297        if (!sit_i->sentries)
4298                return -ENOMEM;
4299
4300        main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4301        sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4302                                                                GFP_KERNEL);
4303        if (!sit_i->dirty_sentries_bitmap)
4304                return -ENOMEM;
4305
4306#ifdef CONFIG_F2FS_CHECK_FS
4307        bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
4308#else
4309        bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
4310#endif
4311        sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4312        if (!sit_i->bitmap)
4313                return -ENOMEM;
4314
4315        bitmap = sit_i->bitmap;
4316
4317        for (start = 0; start < MAIN_SEGS(sbi); start++) {
4318                sit_i->sentries[start].cur_valid_map = bitmap;
4319                bitmap += SIT_VBLOCK_MAP_SIZE;
4320
4321                sit_i->sentries[start].ckpt_valid_map = bitmap;
4322                bitmap += SIT_VBLOCK_MAP_SIZE;
4323
4324#ifdef CONFIG_F2FS_CHECK_FS
4325                sit_i->sentries[start].cur_valid_map_mir = bitmap;
4326                bitmap += SIT_VBLOCK_MAP_SIZE;
4327#endif
4328
4329                sit_i->sentries[start].discard_map = bitmap;
4330                bitmap += SIT_VBLOCK_MAP_SIZE;
4331        }
4332
4333        sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4334        if (!sit_i->tmp_map)
4335                return -ENOMEM;
4336
4337        if (__is_large_section(sbi)) {
4338                sit_i->sec_entries =
4339                        f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4340                                                      MAIN_SECS(sbi)),
4341                                      GFP_KERNEL);
4342                if (!sit_i->sec_entries)
4343                        return -ENOMEM;
4344        }
4345
4346        /* get information related with SIT */
4347        sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4348
4349        /* setup SIT bitmap from ckeckpoint pack */
4350        sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4351        src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4352
4353        sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4354        if (!sit_i->sit_bitmap)
4355                return -ENOMEM;
4356
4357#ifdef CONFIG_F2FS_CHECK_FS
4358        sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4359                                        sit_bitmap_size, GFP_KERNEL);
4360        if (!sit_i->sit_bitmap_mir)
4361                return -ENOMEM;
4362
4363        sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4364                                        main_bitmap_size, GFP_KERNEL);
4365        if (!sit_i->invalid_segmap)
4366                return -ENOMEM;
4367#endif
4368
4369        /* init SIT information */
4370        sit_i->s_ops = &default_salloc_ops;
4371
4372        sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4373        sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4374        sit_i->written_valid_blocks = 0;
4375        sit_i->bitmap_size = sit_bitmap_size;
4376        sit_i->dirty_sentries = 0;
4377        sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4378        sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4379        sit_i->mounted_time = ktime_get_boottime_seconds();
4380        init_rwsem(&sit_i->sentry_lock);
4381        return 0;
4382}
4383
4384static int build_free_segmap(struct f2fs_sb_info *sbi)
4385{
4386        struct free_segmap_info *free_i;
4387        unsigned int bitmap_size, sec_bitmap_size;
4388
4389        /* allocate memory for free segmap information */
4390        free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4391        if (!free_i)
4392                return -ENOMEM;
4393
4394        SM_I(sbi)->free_info = free_i;
4395
4396        bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4397        free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4398        if (!free_i->free_segmap)
4399                return -ENOMEM;
4400
4401        sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4402        free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4403        if (!free_i->free_secmap)
4404                return -ENOMEM;
4405
4406        /* set all segments as dirty temporarily */
4407        memset(free_i->free_segmap, 0xff, bitmap_size);
4408        memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4409
4410        /* init free segmap information */
4411        free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4412        free_i->free_segments = 0;
4413        free_i->free_sections = 0;
4414        spin_lock_init(&free_i->segmap_lock);
4415        return 0;
4416}
4417
4418static int build_curseg(struct f2fs_sb_info *sbi)
4419{
4420        struct curseg_info *array;
4421        int i;
4422
4423        array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4424                                        sizeof(*array)), GFP_KERNEL);
4425        if (!array)
4426                return -ENOMEM;
4427
4428        SM_I(sbi)->curseg_array = array;
4429
4430        for (i = 0; i < NO_CHECK_TYPE; i++) {
4431                mutex_init(&array[i].curseg_mutex);
4432                array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4433                if (!array[i].sum_blk)
4434                        return -ENOMEM;
4435                init_rwsem(&array[i].journal_rwsem);
4436                array[i].journal = f2fs_kzalloc(sbi,
4437                                sizeof(struct f2fs_journal), GFP_KERNEL);
4438                if (!array[i].journal)
4439                        return -ENOMEM;
4440                if (i < NR_PERSISTENT_LOG)
4441                        array[i].seg_type = CURSEG_HOT_DATA + i;
4442                else if (i == CURSEG_COLD_DATA_PINNED)
4443                        array[i].seg_type = CURSEG_COLD_DATA;
4444                else if (i == CURSEG_ALL_DATA_ATGC)
4445                        array[i].seg_type = CURSEG_COLD_DATA;
4446                array[i].segno = NULL_SEGNO;
4447                array[i].next_blkoff = 0;
4448                array[i].inited = false;
4449        }
4450        return restore_curseg_summaries(sbi);
4451}
4452
4453static int build_sit_entries(struct f2fs_sb_info *sbi)
4454{
4455        struct sit_info *sit_i = SIT_I(sbi);
4456        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4457        struct f2fs_journal *journal = curseg->journal;
4458        struct seg_entry *se;
4459        struct f2fs_sit_entry sit;
4460        int sit_blk_cnt = SIT_BLK_CNT(sbi);
4461        unsigned int i, start, end;
4462        unsigned int readed, start_blk = 0;
4463        int err = 0;
4464        block_t total_node_blocks = 0;
4465
4466        do {
4467                readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4468                                                        META_SIT, true);
4469
4470                start = start_blk * sit_i->sents_per_block;
4471                end = (start_blk + readed) * sit_i->sents_per_block;
4472
4473                for (; start < end && start < MAIN_SEGS(sbi); start++) {
4474                        struct f2fs_sit_block *sit_blk;
4475                        struct page *page;
4476
4477                        se = &sit_i->sentries[start];
4478                        page = get_current_sit_page(sbi, start);
4479                        if (IS_ERR(page))
4480                                return PTR_ERR(page);
4481                        sit_blk = (struct f2fs_sit_block *)page_address(page);
4482                        sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4483                        f2fs_put_page(page, 1);
4484
4485                        err = check_block_count(sbi, start, &sit);
4486                        if (err)
4487                                return err;
4488                        seg_info_from_raw_sit(se, &sit);
4489                        if (IS_NODESEG(se->type))
4490                                total_node_blocks += se->valid_blocks;
4491
4492                        /* build discard map only one time */
4493                        if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4494                                memset(se->discard_map, 0xff,
4495                                        SIT_VBLOCK_MAP_SIZE);
4496                        } else {
4497                                memcpy(se->discard_map,
4498                                        se->cur_valid_map,
4499                                        SIT_VBLOCK_MAP_SIZE);
4500                                sbi->discard_blks +=
4501                                        sbi->blocks_per_seg -
4502                                        se->valid_blocks;
4503                        }
4504
4505                        if (__is_large_section(sbi))
4506                                get_sec_entry(sbi, start)->valid_blocks +=
4507                                                        se->valid_blocks;
4508                }
4509                start_blk += readed;
4510        } while (start_blk < sit_blk_cnt);
4511
4512        down_read(&curseg->journal_rwsem);
4513        for (i = 0; i < sits_in_cursum(journal); i++) {
4514                unsigned int old_valid_blocks;
4515
4516                start = le32_to_cpu(segno_in_journal(journal, i));
4517                if (start >= MAIN_SEGS(sbi)) {
4518                        f2fs_err(sbi, "Wrong journal entry on segno %u",
4519                                 start);
4520                        err = -EFSCORRUPTED;
4521                        break;
4522                }
4523
4524                se = &sit_i->sentries[start];
4525                sit = sit_in_journal(journal, i);
4526
4527                old_valid_blocks = se->valid_blocks;
4528                if (IS_NODESEG(se->type))
4529                        total_node_blocks -= old_valid_blocks;
4530
4531                err = check_block_count(sbi, start, &sit);
4532                if (err)
4533                        break;
4534                seg_info_from_raw_sit(se, &sit);
4535                if (IS_NODESEG(se->type))
4536                        total_node_blocks += se->valid_blocks;
4537
4538                if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4539                        memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4540                } else {
4541                        memcpy(se->discard_map, se->cur_valid_map,
4542                                                SIT_VBLOCK_MAP_SIZE);
4543                        sbi->discard_blks += old_valid_blocks;
4544                        sbi->discard_blks -= se->valid_blocks;
4545                }
4546
4547                if (__is_large_section(sbi)) {
4548                        get_sec_entry(sbi, start)->valid_blocks +=
4549                                                        se->valid_blocks;
4550                        get_sec_entry(sbi, start)->valid_blocks -=
4551                                                        old_valid_blocks;
4552                }
4553        }
4554        up_read(&curseg->journal_rwsem);
4555
4556        if (!err && total_node_blocks != valid_node_count(sbi)) {
4557                f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4558                         total_node_blocks, valid_node_count(sbi));
4559                err = -EFSCORRUPTED;
4560        }
4561
4562        return err;
4563}
4564
4565static void init_free_segmap(struct f2fs_sb_info *sbi)
4566{
4567        unsigned int start;
4568        int type;
4569        struct seg_entry *sentry;
4570
4571        for (start = 0; start < MAIN_SEGS(sbi); start++) {
4572                if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4573                        continue;
4574                sentry = get_seg_entry(sbi, start);
4575                if (!sentry->valid_blocks)
4576                        __set_free(sbi, start);
4577                else
4578                        SIT_I(sbi)->written_valid_blocks +=
4579                                                sentry->valid_blocks;
4580        }
4581
4582        /* set use the current segments */
4583        for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4584                struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4585
4586                __set_test_and_inuse(sbi, curseg_t->segno);
4587        }
4588}
4589
4590static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4591{
4592        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4593        struct free_segmap_info *free_i = FREE_I(sbi);
4594        unsigned int segno = 0, offset = 0, secno;
4595        block_t valid_blocks, usable_blks_in_seg;
4596        block_t blks_per_sec = BLKS_PER_SEC(sbi);
4597
4598        while (1) {
4599                /* find dirty segment based on free segmap */
4600                segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4601                if (segno >= MAIN_SEGS(sbi))
4602                        break;
4603                offset = segno + 1;
4604                valid_blocks = get_valid_blocks(sbi, segno, false);
4605                usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4606                if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4607                        continue;
4608                if (valid_blocks > usable_blks_in_seg) {
4609                        f2fs_bug_on(sbi, 1);
4610                        continue;
4611                }
4612                mutex_lock(&dirty_i->seglist_lock);
4613                __locate_dirty_segment(sbi, segno, DIRTY);
4614                mutex_unlock(&dirty_i->seglist_lock);
4615        }
4616
4617        if (!__is_large_section(sbi))
4618                return;
4619
4620        mutex_lock(&dirty_i->seglist_lock);
4621        for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4622                valid_blocks = get_valid_blocks(sbi, segno, true);
4623                secno = GET_SEC_FROM_SEG(sbi, segno);
4624
4625                if (!valid_blocks || valid_blocks == blks_per_sec)
4626                        continue;
4627                if (IS_CURSEC(sbi, secno))
4628                        continue;
4629                set_bit(secno, dirty_i->dirty_secmap);
4630        }
4631        mutex_unlock(&dirty_i->seglist_lock);
4632}
4633
4634static int init_victim_secmap(struct f2fs_sb_info *sbi)
4635{
4636        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4637        unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4638
4639        dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4640        if (!dirty_i->victim_secmap)
4641                return -ENOMEM;
4642        return 0;
4643}
4644
4645static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4646{
4647        struct dirty_seglist_info *dirty_i;
4648        unsigned int bitmap_size, i;
4649
4650        /* allocate memory for dirty segments list information */
4651        dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4652                                                                GFP_KERNEL);
4653        if (!dirty_i)
4654                return -ENOMEM;
4655
4656        SM_I(sbi)->dirty_info = dirty_i;
4657        mutex_init(&dirty_i->seglist_lock);
4658
4659        bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4660
4661        for (i = 0; i < NR_DIRTY_TYPE; i++) {
4662                dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4663                                                                GFP_KERNEL);
4664                if (!dirty_i->dirty_segmap[i])
4665                        return -ENOMEM;
4666        }
4667
4668        if (__is_large_section(sbi)) {
4669                bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4670                dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4671                                                bitmap_size, GFP_KERNEL);
4672                if (!dirty_i->dirty_secmap)
4673                        return -ENOMEM;
4674        }
4675
4676        init_dirty_segmap(sbi);
4677        return init_victim_secmap(sbi);
4678}
4679
4680static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4681{
4682        int i;
4683
4684        /*
4685         * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4686         * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4687         */
4688        for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4689                struct curseg_info *curseg = CURSEG_I(sbi, i);
4690                struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4691                unsigned int blkofs = curseg->next_blkoff;
4692
4693                if (f2fs_sb_has_readonly(sbi) &&
4694                        i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4695                        continue;
4696
4697                sanity_check_seg_type(sbi, curseg->seg_type);
4698
4699                if (f2fs_test_bit(blkofs, se->cur_valid_map))
4700                        goto out;
4701
4702                if (curseg->alloc_type == SSR)
4703                        continue;
4704
4705                for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4706                        if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4707                                continue;
4708out:
4709                        f2fs_err(sbi,
4710                                 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4711                                 i, curseg->segno, curseg->alloc_type,
4712                                 curseg->next_blkoff, blkofs);
4713                        return -EFSCORRUPTED;
4714                }
4715        }
4716        return 0;
4717}
4718
4719#ifdef CONFIG_BLK_DEV_ZONED
4720
4721static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4722                                    struct f2fs_dev_info *fdev,
4723                                    struct blk_zone *zone)
4724{
4725        unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4726        block_t zone_block, wp_block, last_valid_block;
4727        unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4728        int i, s, b, ret;
4729        struct seg_entry *se;
4730
4731        if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4732                return 0;
4733
4734        wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4735        wp_segno = GET_SEGNO(sbi, wp_block);
4736        wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4737        zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4738        zone_segno = GET_SEGNO(sbi, zone_block);
4739        zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4740
4741        if (zone_segno >= MAIN_SEGS(sbi))
4742                return 0;
4743
4744        /*
4745         * Skip check of zones cursegs point to, since
4746         * fix_curseg_write_pointer() checks them.
4747         */
4748        for (i = 0; i < NO_CHECK_TYPE; i++)
4749                if (zone_secno == GET_SEC_FROM_SEG(sbi,
4750                                                   CURSEG_I(sbi, i)->segno))
4751                        return 0;
4752
4753        /*
4754         * Get last valid block of the zone.
4755         */
4756        last_valid_block = zone_block - 1;
4757        for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4758                segno = zone_segno + s;
4759                se = get_seg_entry(sbi, segno);
4760                for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4761                        if (f2fs_test_bit(b, se->cur_valid_map)) {
4762                                last_valid_block = START_BLOCK(sbi, segno) + b;
4763                                break;
4764                        }
4765                if (last_valid_block >= zone_block)
4766                        break;
4767        }
4768
4769        /*
4770         * If last valid block is beyond the write pointer, report the
4771         * inconsistency. This inconsistency does not cause write error
4772         * because the zone will not be selected for write operation until
4773         * it get discarded. Just report it.
4774         */
4775        if (last_valid_block >= wp_block) {
4776                f2fs_notice(sbi, "Valid block beyond write pointer: "
4777                            "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4778                            GET_SEGNO(sbi, last_valid_block),
4779                            GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4780                            wp_segno, wp_blkoff);
4781                return 0;
4782        }
4783
4784        /*
4785         * If there is no valid block in the zone and if write pointer is
4786         * not at zone start, reset the write pointer.
4787         */
4788        if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4789                f2fs_notice(sbi,
4790                            "Zone without valid block has non-zero write "
4791                            "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4792                            wp_segno, wp_blkoff);
4793                ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4794                                        zone->len >> log_sectors_per_block);
4795                if (ret) {
4796                        f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4797                                 fdev->path, ret);
4798                        return ret;
4799                }
4800        }
4801
4802        return 0;
4803}
4804
4805static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4806                                                  block_t zone_blkaddr)
4807{
4808        int i;
4809
4810        for (i = 0; i < sbi->s_ndevs; i++) {
4811                if (!bdev_is_zoned(FDEV(i).bdev))
4812                        continue;
4813                if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4814                                zone_blkaddr <= FDEV(i).end_blk))
4815                        return &FDEV(i);
4816        }
4817
4818        return NULL;
4819}
4820
4821static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4822                              void *data)
4823{
4824        memcpy(data, zone, sizeof(struct blk_zone));
4825        return 0;
4826}
4827
4828static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4829{
4830        struct curseg_info *cs = CURSEG_I(sbi, type);
4831        struct f2fs_dev_info *zbd;
4832        struct blk_zone zone;
4833        unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4834        block_t cs_zone_block, wp_block;
4835        unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4836        sector_t zone_sector;
4837        int err;
4838
4839        cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4840        cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4841
4842        zbd = get_target_zoned_dev(sbi, cs_zone_block);
4843        if (!zbd)
4844                return 0;
4845
4846        /* report zone for the sector the curseg points to */
4847        zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4848                << log_sectors_per_block;
4849        err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4850                                  report_one_zone_cb, &zone);
4851        if (err != 1) {
4852                f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4853                         zbd->path, err);
4854                return err;
4855        }
4856
4857        if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4858                return 0;
4859
4860        wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4861        wp_segno = GET_SEGNO(sbi, wp_block);
4862        wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4863        wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4864
4865        if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4866                wp_sector_off == 0)
4867                return 0;
4868
4869        f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4870                    "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4871                    type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4872
4873        f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4874                    "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4875
4876        f2fs_allocate_new_section(sbi, type, true);
4877
4878        /* check consistency of the zone curseg pointed to */
4879        if (check_zone_write_pointer(sbi, zbd, &zone))
4880                return -EIO;
4881
4882        /* check newly assigned zone */
4883        cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4884        cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4885
4886        zbd = get_target_zoned_dev(sbi, cs_zone_block);
4887        if (!zbd)
4888                return 0;
4889
4890        zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4891                << log_sectors_per_block;
4892        err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4893                                  report_one_zone_cb, &zone);
4894        if (err != 1) {
4895                f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4896                         zbd->path, err);
4897                return err;
4898        }
4899
4900        if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4901                return 0;
4902
4903        if (zone.wp != zone.start) {
4904                f2fs_notice(sbi,
4905                            "New zone for curseg[%d] is not yet discarded. "
4906                            "Reset the zone: curseg[0x%x,0x%x]",
4907                            type, cs->segno, cs->next_blkoff);
4908                err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4909                                zone_sector >> log_sectors_per_block,
4910                                zone.len >> log_sectors_per_block);
4911                if (err) {
4912                        f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4913                                 zbd->path, err);
4914                        return err;
4915                }
4916        }
4917
4918        return 0;
4919}
4920
4921int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4922{
4923        int i, ret;
4924
4925        for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4926                ret = fix_curseg_write_pointer(sbi, i);
4927                if (ret)
4928                        return ret;
4929        }
4930
4931        return 0;
4932}
4933
4934struct check_zone_write_pointer_args {
4935        struct f2fs_sb_info *sbi;
4936        struct f2fs_dev_info *fdev;
4937};
4938
4939static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4940                                      void *data)
4941{
4942        struct check_zone_write_pointer_args *args;
4943
4944        args = (struct check_zone_write_pointer_args *)data;
4945
4946        return check_zone_write_pointer(args->sbi, args->fdev, zone);
4947}
4948
4949int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4950{
4951        int i, ret;
4952        struct check_zone_write_pointer_args args;
4953
4954        for (i = 0; i < sbi->s_ndevs; i++) {
4955                if (!bdev_is_zoned(FDEV(i).bdev))
4956                        continue;
4957
4958                args.sbi = sbi;
4959                args.fdev = &FDEV(i);
4960                ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4961                                          check_zone_write_pointer_cb, &args);
4962                if (ret < 0)
4963                        return ret;
4964        }
4965
4966        return 0;
4967}
4968
4969static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
4970                                                unsigned int dev_idx)
4971{
4972        if (!bdev_is_zoned(FDEV(dev_idx).bdev))
4973                return true;
4974        return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
4975}
4976
4977/* Return the zone index in the given device */
4978static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
4979                                        int dev_idx)
4980{
4981        block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4982
4983        return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
4984                                                sbi->log_blocks_per_blkz;
4985}
4986
4987/*
4988 * Return the usable segments in a section based on the zone's
4989 * corresponding zone capacity. Zone is equal to a section.
4990 */
4991static inline unsigned int f2fs_usable_zone_segs_in_sec(
4992                struct f2fs_sb_info *sbi, unsigned int segno)
4993{
4994        unsigned int dev_idx, zone_idx, unusable_segs_in_sec;
4995
4996        dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
4997        zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
4998
4999        /* Conventional zone's capacity is always equal to zone size */
5000        if (is_conv_zone(sbi, zone_idx, dev_idx))
5001                return sbi->segs_per_sec;
5002
5003        /*
5004         * If the zone_capacity_blocks array is NULL, then zone capacity
5005         * is equal to the zone size for all zones
5006         */
5007        if (!FDEV(dev_idx).zone_capacity_blocks)
5008                return sbi->segs_per_sec;
5009
5010        /* Get the segment count beyond zone capacity block */
5011        unusable_segs_in_sec = (sbi->blocks_per_blkz -
5012                                FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >>
5013                                sbi->log_blocks_per_seg;
5014        return sbi->segs_per_sec - unusable_segs_in_sec;
5015}
5016
5017/*
5018 * Return the number of usable blocks in a segment. The number of blocks
5019 * returned is always equal to the number of blocks in a segment for
5020 * segments fully contained within a sequential zone capacity or a
5021 * conventional zone. For segments partially contained in a sequential
5022 * zone capacity, the number of usable blocks up to the zone capacity
5023 * is returned. 0 is returned in all other cases.
5024 */
5025static inline unsigned int f2fs_usable_zone_blks_in_seg(
5026                        struct f2fs_sb_info *sbi, unsigned int segno)
5027{
5028        block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5029        unsigned int zone_idx, dev_idx, secno;
5030
5031        secno = GET_SEC_FROM_SEG(sbi, segno);
5032        seg_start = START_BLOCK(sbi, segno);
5033        dev_idx = f2fs_target_device_index(sbi, seg_start);
5034        zone_idx = get_zone_idx(sbi, secno, dev_idx);
5035
5036        /*
5037         * Conventional zone's capacity is always equal to zone size,
5038         * so, blocks per segment is unchanged.
5039         */
5040        if (is_conv_zone(sbi, zone_idx, dev_idx))
5041                return sbi->blocks_per_seg;
5042
5043        if (!FDEV(dev_idx).zone_capacity_blocks)
5044                return sbi->blocks_per_seg;
5045
5046        sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5047        sec_cap_blkaddr = sec_start_blkaddr +
5048                                FDEV(dev_idx).zone_capacity_blocks[zone_idx];
5049
5050        /*
5051         * If segment starts before zone capacity and spans beyond
5052         * zone capacity, then usable blocks are from seg start to
5053         * zone capacity. If the segment starts after the zone capacity,
5054         * then there are no usable blocks.
5055         */
5056        if (seg_start >= sec_cap_blkaddr)
5057                return 0;
5058        if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5059                return sec_cap_blkaddr - seg_start;
5060
5061        return sbi->blocks_per_seg;
5062}
5063#else
5064int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5065{
5066        return 0;
5067}
5068
5069int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5070{
5071        return 0;
5072}
5073
5074static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5075                                                        unsigned int segno)
5076{
5077        return 0;
5078}
5079
5080static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5081                                                        unsigned int segno)
5082{
5083        return 0;
5084}
5085#endif
5086unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5087                                        unsigned int segno)
5088{
5089        if (f2fs_sb_has_blkzoned(sbi))
5090                return f2fs_usable_zone_blks_in_seg(sbi, segno);
5091
5092        return sbi->blocks_per_seg;
5093}
5094
5095unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5096                                        unsigned int segno)
5097{
5098        if (f2fs_sb_has_blkzoned(sbi))
5099                return f2fs_usable_zone_segs_in_sec(sbi, segno);
5100
5101        return sbi->segs_per_sec;
5102}
5103
5104/*
5105 * Update min, max modified time for cost-benefit GC algorithm
5106 */
5107static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5108{
5109        struct sit_info *sit_i = SIT_I(sbi);
5110        unsigned int segno;
5111
5112        down_write(&sit_i->sentry_lock);
5113
5114        sit_i->min_mtime = ULLONG_MAX;
5115
5116        for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5117                unsigned int i;
5118                unsigned long long mtime = 0;
5119
5120                for (i = 0; i < sbi->segs_per_sec; i++)
5121                        mtime += get_seg_entry(sbi, segno + i)->mtime;
5122
5123                mtime = div_u64(mtime, sbi->segs_per_sec);
5124
5125                if (sit_i->min_mtime > mtime)
5126                        sit_i->min_mtime = mtime;
5127        }
5128        sit_i->max_mtime = get_mtime(sbi, false);
5129        sit_i->dirty_max_mtime = 0;
5130        up_write(&sit_i->sentry_lock);
5131}
5132
5133int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5134{
5135        struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5136        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5137        struct f2fs_sm_info *sm_info;
5138        int err;
5139
5140        sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5141        if (!sm_info)
5142                return -ENOMEM;
5143
5144        /* init sm info */
5145        sbi->sm_info = sm_info;
5146        sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5147        sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5148        sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5149        sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5150        sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5151        sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5152        sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5153        sm_info->rec_prefree_segments = sm_info->main_segments *
5154                                        DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5155        if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5156                sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5157
5158        if (!f2fs_lfs_mode(sbi))
5159                sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5160        sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5161        sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5162        sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
5163        sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5164        sm_info->min_ssr_sections = reserved_sections(sbi);
5165
5166        INIT_LIST_HEAD(&sm_info->sit_entry_set);
5167
5168        init_rwsem(&sm_info->curseg_lock);
5169
5170        if (!f2fs_readonly(sbi->sb)) {
5171                err = f2fs_create_flush_cmd_control(sbi);
5172                if (err)
5173                        return err;
5174        }
5175
5176        err = create_discard_cmd_control(sbi);
5177        if (err)
5178                return err;
5179
5180        err = build_sit_info(sbi);
5181        if (err)
5182                return err;
5183        err = build_free_segmap(sbi);
5184        if (err)
5185                return err;
5186        err = build_curseg(sbi);
5187        if (err)
5188                return err;
5189
5190        /* reinit free segmap based on SIT */
5191        err = build_sit_entries(sbi);
5192        if (err)
5193                return err;
5194
5195        init_free_segmap(sbi);
5196        err = build_dirty_segmap(sbi);
5197        if (err)
5198                return err;
5199
5200        err = sanity_check_curseg(sbi);
5201        if (err)
5202                return err;
5203
5204        init_min_max_mtime(sbi);
5205        return 0;
5206}
5207
5208static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5209                enum dirty_type dirty_type)
5210{
5211        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5212
5213        mutex_lock(&dirty_i->seglist_lock);
5214        kvfree(dirty_i->dirty_segmap[dirty_type]);
5215        dirty_i->nr_dirty[dirty_type] = 0;
5216        mutex_unlock(&dirty_i->seglist_lock);
5217}
5218
5219static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5220{
5221        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5222
5223        kvfree(dirty_i->victim_secmap);
5224}
5225
5226static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5227{
5228        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5229        int i;
5230
5231        if (!dirty_i)
5232                return;
5233
5234        /* discard pre-free/dirty segments list */
5235        for (i = 0; i < NR_DIRTY_TYPE; i++)
5236                discard_dirty_segmap(sbi, i);
5237
5238        if (__is_large_section(sbi)) {
5239                mutex_lock(&dirty_i->seglist_lock);
5240                kvfree(dirty_i->dirty_secmap);
5241                mutex_unlock(&dirty_i->seglist_lock);
5242        }
5243
5244        destroy_victim_secmap(sbi);
5245        SM_I(sbi)->dirty_info = NULL;
5246        kfree(dirty_i);
5247}
5248
5249static void destroy_curseg(struct f2fs_sb_info *sbi)
5250{
5251        struct curseg_info *array = SM_I(sbi)->curseg_array;
5252        int i;
5253
5254        if (!array)
5255                return;
5256        SM_I(sbi)->curseg_array = NULL;
5257        for (i = 0; i < NR_CURSEG_TYPE; i++) {
5258                kfree(array[i].sum_blk);
5259                kfree(array[i].journal);
5260        }
5261        kfree(array);
5262}
5263
5264static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5265{
5266        struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5267
5268        if (!free_i)
5269                return;
5270        SM_I(sbi)->free_info = NULL;
5271        kvfree(free_i->free_segmap);
5272        kvfree(free_i->free_secmap);
5273        kfree(free_i);
5274}
5275
5276static void destroy_sit_info(struct f2fs_sb_info *sbi)
5277{
5278        struct sit_info *sit_i = SIT_I(sbi);
5279
5280        if (!sit_i)
5281                return;
5282
5283        if (sit_i->sentries)
5284                kvfree(sit_i->bitmap);
5285        kfree(sit_i->tmp_map);
5286
5287        kvfree(sit_i->sentries);
5288        kvfree(sit_i->sec_entries);
5289        kvfree(sit_i->dirty_sentries_bitmap);
5290
5291        SM_I(sbi)->sit_info = NULL;
5292        kvfree(sit_i->sit_bitmap);
5293#ifdef CONFIG_F2FS_CHECK_FS
5294        kvfree(sit_i->sit_bitmap_mir);
5295        kvfree(sit_i->invalid_segmap);
5296#endif
5297        kfree(sit_i);
5298}
5299
5300void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5301{
5302        struct f2fs_sm_info *sm_info = SM_I(sbi);
5303
5304        if (!sm_info)
5305                return;
5306        f2fs_destroy_flush_cmd_control(sbi, true);
5307        destroy_discard_cmd_control(sbi);
5308        destroy_dirty_segmap(sbi);
5309        destroy_curseg(sbi);
5310        destroy_free_segmap(sbi);
5311        destroy_sit_info(sbi);
5312        sbi->sm_info = NULL;
5313        kfree(sm_info);
5314}
5315
5316int __init f2fs_create_segment_manager_caches(void)
5317{
5318        discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5319                        sizeof(struct discard_entry));
5320        if (!discard_entry_slab)
5321                goto fail;
5322
5323        discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5324                        sizeof(struct discard_cmd));
5325        if (!discard_cmd_slab)
5326                goto destroy_discard_entry;
5327
5328        sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5329                        sizeof(struct sit_entry_set));
5330        if (!sit_entry_set_slab)
5331                goto destroy_discard_cmd;
5332
5333        inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
5334                        sizeof(struct inmem_pages));
5335        if (!inmem_entry_slab)
5336                goto destroy_sit_entry_set;
5337        return 0;
5338
5339destroy_sit_entry_set:
5340        kmem_cache_destroy(sit_entry_set_slab);
5341destroy_discard_cmd:
5342        kmem_cache_destroy(discard_cmd_slab);
5343destroy_discard_entry:
5344        kmem_cache_destroy(discard_entry_slab);
5345fail:
5346        return -ENOMEM;
5347}
5348
5349void f2fs_destroy_segment_manager_caches(void)
5350{
5351        kmem_cache_destroy(sit_entry_set_slab);
5352        kmem_cache_destroy(discard_cmd_slab);
5353        kmem_cache_destroy(discard_entry_slab);
5354        kmem_cache_destroy(inmem_entry_slab);
5355}
5356