linux/fs/inode.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * (C) 1997 Linus Torvalds
   4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
   5 */
   6#include <linux/export.h>
   7#include <linux/fs.h>
   8#include <linux/mm.h>
   9#include <linux/backing-dev.h>
  10#include <linux/hash.h>
  11#include <linux/swap.h>
  12#include <linux/security.h>
  13#include <linux/cdev.h>
  14#include <linux/memblock.h>
  15#include <linux/fsnotify.h>
  16#include <linux/mount.h>
  17#include <linux/posix_acl.h>
  18#include <linux/prefetch.h>
  19#include <linux/buffer_head.h> /* for inode_has_buffers */
  20#include <linux/ratelimit.h>
  21#include <linux/list_lru.h>
  22#include <linux/iversion.h>
  23#include <trace/events/writeback.h>
  24#include "internal.h"
  25
  26/*
  27 * Inode locking rules:
  28 *
  29 * inode->i_lock protects:
  30 *   inode->i_state, inode->i_hash, __iget()
  31 * Inode LRU list locks protect:
  32 *   inode->i_sb->s_inode_lru, inode->i_lru
  33 * inode->i_sb->s_inode_list_lock protects:
  34 *   inode->i_sb->s_inodes, inode->i_sb_list
  35 * bdi->wb.list_lock protects:
  36 *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
  37 * inode_hash_lock protects:
  38 *   inode_hashtable, inode->i_hash
  39 *
  40 * Lock ordering:
  41 *
  42 * inode->i_sb->s_inode_list_lock
  43 *   inode->i_lock
  44 *     Inode LRU list locks
  45 *
  46 * bdi->wb.list_lock
  47 *   inode->i_lock
  48 *
  49 * inode_hash_lock
  50 *   inode->i_sb->s_inode_list_lock
  51 *   inode->i_lock
  52 *
  53 * iunique_lock
  54 *   inode_hash_lock
  55 */
  56
  57static unsigned int i_hash_mask __read_mostly;
  58static unsigned int i_hash_shift __read_mostly;
  59static struct hlist_head *inode_hashtable __read_mostly;
  60static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
  61
  62/*
  63 * Empty aops. Can be used for the cases where the user does not
  64 * define any of the address_space operations.
  65 */
  66const struct address_space_operations empty_aops = {
  67};
  68EXPORT_SYMBOL(empty_aops);
  69
  70/*
  71 * Statistics gathering..
  72 */
  73struct inodes_stat_t inodes_stat;
  74
  75static DEFINE_PER_CPU(unsigned long, nr_inodes);
  76static DEFINE_PER_CPU(unsigned long, nr_unused);
  77
  78static struct kmem_cache *inode_cachep __read_mostly;
  79
  80static long get_nr_inodes(void)
  81{
  82        int i;
  83        long sum = 0;
  84        for_each_possible_cpu(i)
  85                sum += per_cpu(nr_inodes, i);
  86        return sum < 0 ? 0 : sum;
  87}
  88
  89static inline long get_nr_inodes_unused(void)
  90{
  91        int i;
  92        long sum = 0;
  93        for_each_possible_cpu(i)
  94                sum += per_cpu(nr_unused, i);
  95        return sum < 0 ? 0 : sum;
  96}
  97
  98long get_nr_dirty_inodes(void)
  99{
 100        /* not actually dirty inodes, but a wild approximation */
 101        long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
 102        return nr_dirty > 0 ? nr_dirty : 0;
 103}
 104
 105/*
 106 * Handle nr_inode sysctl
 107 */
 108#ifdef CONFIG_SYSCTL
 109int proc_nr_inodes(struct ctl_table *table, int write,
 110                   void *buffer, size_t *lenp, loff_t *ppos)
 111{
 112        inodes_stat.nr_inodes = get_nr_inodes();
 113        inodes_stat.nr_unused = get_nr_inodes_unused();
 114        return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 115}
 116#endif
 117
 118static int no_open(struct inode *inode, struct file *file)
 119{
 120        return -ENXIO;
 121}
 122
 123/**
 124 * inode_init_always - perform inode structure initialisation
 125 * @sb: superblock inode belongs to
 126 * @inode: inode to initialise
 127 *
 128 * These are initializations that need to be done on every inode
 129 * allocation as the fields are not initialised by slab allocation.
 130 */
 131int inode_init_always(struct super_block *sb, struct inode *inode)
 132{
 133        static const struct inode_operations empty_iops;
 134        static const struct file_operations no_open_fops = {.open = no_open};
 135        struct address_space *const mapping = &inode->i_data;
 136
 137        inode->i_sb = sb;
 138        inode->i_blkbits = sb->s_blocksize_bits;
 139        inode->i_flags = 0;
 140        atomic64_set(&inode->i_sequence, 0);
 141        atomic_set(&inode->i_count, 1);
 142        inode->i_op = &empty_iops;
 143        inode->i_fop = &no_open_fops;
 144        inode->i_ino = 0;
 145        inode->__i_nlink = 1;
 146        inode->i_opflags = 0;
 147        if (sb->s_xattr)
 148                inode->i_opflags |= IOP_XATTR;
 149        i_uid_write(inode, 0);
 150        i_gid_write(inode, 0);
 151        atomic_set(&inode->i_writecount, 0);
 152        inode->i_size = 0;
 153        inode->i_write_hint = WRITE_LIFE_NOT_SET;
 154        inode->i_blocks = 0;
 155        inode->i_bytes = 0;
 156        inode->i_generation = 0;
 157        inode->i_pipe = NULL;
 158        inode->i_cdev = NULL;
 159        inode->i_link = NULL;
 160        inode->i_dir_seq = 0;
 161        inode->i_rdev = 0;
 162        inode->dirtied_when = 0;
 163
 164#ifdef CONFIG_CGROUP_WRITEBACK
 165        inode->i_wb_frn_winner = 0;
 166        inode->i_wb_frn_avg_time = 0;
 167        inode->i_wb_frn_history = 0;
 168#endif
 169
 170        if (security_inode_alloc(inode))
 171                goto out;
 172        spin_lock_init(&inode->i_lock);
 173        lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
 174
 175        init_rwsem(&inode->i_rwsem);
 176        lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
 177
 178        atomic_set(&inode->i_dio_count, 0);
 179
 180        mapping->a_ops = &empty_aops;
 181        mapping->host = inode;
 182        mapping->flags = 0;
 183        if (sb->s_type->fs_flags & FS_THP_SUPPORT)
 184                __set_bit(AS_THP_SUPPORT, &mapping->flags);
 185        mapping->wb_err = 0;
 186        atomic_set(&mapping->i_mmap_writable, 0);
 187#ifdef CONFIG_READ_ONLY_THP_FOR_FS
 188        atomic_set(&mapping->nr_thps, 0);
 189#endif
 190        mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
 191        mapping->private_data = NULL;
 192        mapping->writeback_index = 0;
 193        inode->i_private = NULL;
 194        inode->i_mapping = mapping;
 195        INIT_HLIST_HEAD(&inode->i_dentry);      /* buggered by rcu freeing */
 196#ifdef CONFIG_FS_POSIX_ACL
 197        inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
 198#endif
 199
 200#ifdef CONFIG_FSNOTIFY
 201        inode->i_fsnotify_mask = 0;
 202#endif
 203        inode->i_flctx = NULL;
 204        this_cpu_inc(nr_inodes);
 205
 206        return 0;
 207out:
 208        return -ENOMEM;
 209}
 210EXPORT_SYMBOL(inode_init_always);
 211
 212void free_inode_nonrcu(struct inode *inode)
 213{
 214        kmem_cache_free(inode_cachep, inode);
 215}
 216EXPORT_SYMBOL(free_inode_nonrcu);
 217
 218static void i_callback(struct rcu_head *head)
 219{
 220        struct inode *inode = container_of(head, struct inode, i_rcu);
 221        if (inode->free_inode)
 222                inode->free_inode(inode);
 223        else
 224                free_inode_nonrcu(inode);
 225}
 226
 227static struct inode *alloc_inode(struct super_block *sb)
 228{
 229        const struct super_operations *ops = sb->s_op;
 230        struct inode *inode;
 231
 232        if (ops->alloc_inode)
 233                inode = ops->alloc_inode(sb);
 234        else
 235                inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
 236
 237        if (!inode)
 238                return NULL;
 239
 240        if (unlikely(inode_init_always(sb, inode))) {
 241                if (ops->destroy_inode) {
 242                        ops->destroy_inode(inode);
 243                        if (!ops->free_inode)
 244                                return NULL;
 245                }
 246                inode->free_inode = ops->free_inode;
 247                i_callback(&inode->i_rcu);
 248                return NULL;
 249        }
 250
 251        return inode;
 252}
 253
 254void __destroy_inode(struct inode *inode)
 255{
 256        BUG_ON(inode_has_buffers(inode));
 257        inode_detach_wb(inode);
 258        security_inode_free(inode);
 259        fsnotify_inode_delete(inode);
 260        locks_free_lock_context(inode);
 261        if (!inode->i_nlink) {
 262                WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
 263                atomic_long_dec(&inode->i_sb->s_remove_count);
 264        }
 265
 266#ifdef CONFIG_FS_POSIX_ACL
 267        if (inode->i_acl && !is_uncached_acl(inode->i_acl))
 268                posix_acl_release(inode->i_acl);
 269        if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
 270                posix_acl_release(inode->i_default_acl);
 271#endif
 272        this_cpu_dec(nr_inodes);
 273}
 274EXPORT_SYMBOL(__destroy_inode);
 275
 276static void destroy_inode(struct inode *inode)
 277{
 278        const struct super_operations *ops = inode->i_sb->s_op;
 279
 280        BUG_ON(!list_empty(&inode->i_lru));
 281        __destroy_inode(inode);
 282        if (ops->destroy_inode) {
 283                ops->destroy_inode(inode);
 284                if (!ops->free_inode)
 285                        return;
 286        }
 287        inode->free_inode = ops->free_inode;
 288        call_rcu(&inode->i_rcu, i_callback);
 289}
 290
 291/**
 292 * drop_nlink - directly drop an inode's link count
 293 * @inode: inode
 294 *
 295 * This is a low-level filesystem helper to replace any
 296 * direct filesystem manipulation of i_nlink.  In cases
 297 * where we are attempting to track writes to the
 298 * filesystem, a decrement to zero means an imminent
 299 * write when the file is truncated and actually unlinked
 300 * on the filesystem.
 301 */
 302void drop_nlink(struct inode *inode)
 303{
 304        WARN_ON(inode->i_nlink == 0);
 305        inode->__i_nlink--;
 306        if (!inode->i_nlink)
 307                atomic_long_inc(&inode->i_sb->s_remove_count);
 308}
 309EXPORT_SYMBOL(drop_nlink);
 310
 311/**
 312 * clear_nlink - directly zero an inode's link count
 313 * @inode: inode
 314 *
 315 * This is a low-level filesystem helper to replace any
 316 * direct filesystem manipulation of i_nlink.  See
 317 * drop_nlink() for why we care about i_nlink hitting zero.
 318 */
 319void clear_nlink(struct inode *inode)
 320{
 321        if (inode->i_nlink) {
 322                inode->__i_nlink = 0;
 323                atomic_long_inc(&inode->i_sb->s_remove_count);
 324        }
 325}
 326EXPORT_SYMBOL(clear_nlink);
 327
 328/**
 329 * set_nlink - directly set an inode's link count
 330 * @inode: inode
 331 * @nlink: new nlink (should be non-zero)
 332 *
 333 * This is a low-level filesystem helper to replace any
 334 * direct filesystem manipulation of i_nlink.
 335 */
 336void set_nlink(struct inode *inode, unsigned int nlink)
 337{
 338        if (!nlink) {
 339                clear_nlink(inode);
 340        } else {
 341                /* Yes, some filesystems do change nlink from zero to one */
 342                if (inode->i_nlink == 0)
 343                        atomic_long_dec(&inode->i_sb->s_remove_count);
 344
 345                inode->__i_nlink = nlink;
 346        }
 347}
 348EXPORT_SYMBOL(set_nlink);
 349
 350/**
 351 * inc_nlink - directly increment an inode's link count
 352 * @inode: inode
 353 *
 354 * This is a low-level filesystem helper to replace any
 355 * direct filesystem manipulation of i_nlink.  Currently,
 356 * it is only here for parity with dec_nlink().
 357 */
 358void inc_nlink(struct inode *inode)
 359{
 360        if (unlikely(inode->i_nlink == 0)) {
 361                WARN_ON(!(inode->i_state & I_LINKABLE));
 362                atomic_long_dec(&inode->i_sb->s_remove_count);
 363        }
 364
 365        inode->__i_nlink++;
 366}
 367EXPORT_SYMBOL(inc_nlink);
 368
 369static void __address_space_init_once(struct address_space *mapping)
 370{
 371        xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
 372        init_rwsem(&mapping->i_mmap_rwsem);
 373        INIT_LIST_HEAD(&mapping->private_list);
 374        spin_lock_init(&mapping->private_lock);
 375        mapping->i_mmap = RB_ROOT_CACHED;
 376}
 377
 378void address_space_init_once(struct address_space *mapping)
 379{
 380        memset(mapping, 0, sizeof(*mapping));
 381        __address_space_init_once(mapping);
 382}
 383EXPORT_SYMBOL(address_space_init_once);
 384
 385/*
 386 * These are initializations that only need to be done
 387 * once, because the fields are idempotent across use
 388 * of the inode, so let the slab aware of that.
 389 */
 390void inode_init_once(struct inode *inode)
 391{
 392        memset(inode, 0, sizeof(*inode));
 393        INIT_HLIST_NODE(&inode->i_hash);
 394        INIT_LIST_HEAD(&inode->i_devices);
 395        INIT_LIST_HEAD(&inode->i_io_list);
 396        INIT_LIST_HEAD(&inode->i_wb_list);
 397        INIT_LIST_HEAD(&inode->i_lru);
 398        __address_space_init_once(&inode->i_data);
 399        i_size_ordered_init(inode);
 400}
 401EXPORT_SYMBOL(inode_init_once);
 402
 403static void init_once(void *foo)
 404{
 405        struct inode *inode = (struct inode *) foo;
 406
 407        inode_init_once(inode);
 408}
 409
 410/*
 411 * inode->i_lock must be held
 412 */
 413void __iget(struct inode *inode)
 414{
 415        atomic_inc(&inode->i_count);
 416}
 417
 418/*
 419 * get additional reference to inode; caller must already hold one.
 420 */
 421void ihold(struct inode *inode)
 422{
 423        WARN_ON(atomic_inc_return(&inode->i_count) < 2);
 424}
 425EXPORT_SYMBOL(ihold);
 426
 427static void inode_lru_list_add(struct inode *inode)
 428{
 429        if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
 430                this_cpu_inc(nr_unused);
 431        else
 432                inode->i_state |= I_REFERENCED;
 433}
 434
 435/*
 436 * Add inode to LRU if needed (inode is unused and clean).
 437 *
 438 * Needs inode->i_lock held.
 439 */
 440void inode_add_lru(struct inode *inode)
 441{
 442        if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
 443                                I_FREEING | I_WILL_FREE)) &&
 444            !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
 445                inode_lru_list_add(inode);
 446}
 447
 448
 449static void inode_lru_list_del(struct inode *inode)
 450{
 451
 452        if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
 453                this_cpu_dec(nr_unused);
 454}
 455
 456/**
 457 * inode_sb_list_add - add inode to the superblock list of inodes
 458 * @inode: inode to add
 459 */
 460void inode_sb_list_add(struct inode *inode)
 461{
 462        spin_lock(&inode->i_sb->s_inode_list_lock);
 463        list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
 464        spin_unlock(&inode->i_sb->s_inode_list_lock);
 465}
 466EXPORT_SYMBOL_GPL(inode_sb_list_add);
 467
 468static inline void inode_sb_list_del(struct inode *inode)
 469{
 470        if (!list_empty(&inode->i_sb_list)) {
 471                spin_lock(&inode->i_sb->s_inode_list_lock);
 472                list_del_init(&inode->i_sb_list);
 473                spin_unlock(&inode->i_sb->s_inode_list_lock);
 474        }
 475}
 476
 477static unsigned long hash(struct super_block *sb, unsigned long hashval)
 478{
 479        unsigned long tmp;
 480
 481        tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
 482                        L1_CACHE_BYTES;
 483        tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
 484        return tmp & i_hash_mask;
 485}
 486
 487/**
 488 *      __insert_inode_hash - hash an inode
 489 *      @inode: unhashed inode
 490 *      @hashval: unsigned long value used to locate this object in the
 491 *              inode_hashtable.
 492 *
 493 *      Add an inode to the inode hash for this superblock.
 494 */
 495void __insert_inode_hash(struct inode *inode, unsigned long hashval)
 496{
 497        struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
 498
 499        spin_lock(&inode_hash_lock);
 500        spin_lock(&inode->i_lock);
 501        hlist_add_head_rcu(&inode->i_hash, b);
 502        spin_unlock(&inode->i_lock);
 503        spin_unlock(&inode_hash_lock);
 504}
 505EXPORT_SYMBOL(__insert_inode_hash);
 506
 507/**
 508 *      __remove_inode_hash - remove an inode from the hash
 509 *      @inode: inode to unhash
 510 *
 511 *      Remove an inode from the superblock.
 512 */
 513void __remove_inode_hash(struct inode *inode)
 514{
 515        spin_lock(&inode_hash_lock);
 516        spin_lock(&inode->i_lock);
 517        hlist_del_init_rcu(&inode->i_hash);
 518        spin_unlock(&inode->i_lock);
 519        spin_unlock(&inode_hash_lock);
 520}
 521EXPORT_SYMBOL(__remove_inode_hash);
 522
 523void clear_inode(struct inode *inode)
 524{
 525        /*
 526         * We have to cycle the i_pages lock here because reclaim can be in the
 527         * process of removing the last page (in __delete_from_page_cache())
 528         * and we must not free the mapping under it.
 529         */
 530        xa_lock_irq(&inode->i_data.i_pages);
 531        BUG_ON(inode->i_data.nrpages);
 532        /*
 533         * Almost always, mapping_empty(&inode->i_data) here; but there are
 534         * two known and long-standing ways in which nodes may get left behind
 535         * (when deep radix-tree node allocation failed partway; or when THP
 536         * collapse_file() failed). Until those two known cases are cleaned up,
 537         * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
 538         * nor even WARN_ON(!mapping_empty).
 539         */
 540        xa_unlock_irq(&inode->i_data.i_pages);
 541        BUG_ON(!list_empty(&inode->i_data.private_list));
 542        BUG_ON(!(inode->i_state & I_FREEING));
 543        BUG_ON(inode->i_state & I_CLEAR);
 544        BUG_ON(!list_empty(&inode->i_wb_list));
 545        /* don't need i_lock here, no concurrent mods to i_state */
 546        inode->i_state = I_FREEING | I_CLEAR;
 547}
 548EXPORT_SYMBOL(clear_inode);
 549
 550/*
 551 * Free the inode passed in, removing it from the lists it is still connected
 552 * to. We remove any pages still attached to the inode and wait for any IO that
 553 * is still in progress before finally destroying the inode.
 554 *
 555 * An inode must already be marked I_FREEING so that we avoid the inode being
 556 * moved back onto lists if we race with other code that manipulates the lists
 557 * (e.g. writeback_single_inode). The caller is responsible for setting this.
 558 *
 559 * An inode must already be removed from the LRU list before being evicted from
 560 * the cache. This should occur atomically with setting the I_FREEING state
 561 * flag, so no inodes here should ever be on the LRU when being evicted.
 562 */
 563static void evict(struct inode *inode)
 564{
 565        const struct super_operations *op = inode->i_sb->s_op;
 566
 567        BUG_ON(!(inode->i_state & I_FREEING));
 568        BUG_ON(!list_empty(&inode->i_lru));
 569
 570        if (!list_empty(&inode->i_io_list))
 571                inode_io_list_del(inode);
 572
 573        inode_sb_list_del(inode);
 574
 575        /*
 576         * Wait for flusher thread to be done with the inode so that filesystem
 577         * does not start destroying it while writeback is still running. Since
 578         * the inode has I_FREEING set, flusher thread won't start new work on
 579         * the inode.  We just have to wait for running writeback to finish.
 580         */
 581        inode_wait_for_writeback(inode);
 582
 583        if (op->evict_inode) {
 584                op->evict_inode(inode);
 585        } else {
 586                truncate_inode_pages_final(&inode->i_data);
 587                clear_inode(inode);
 588        }
 589        if (S_ISCHR(inode->i_mode) && inode->i_cdev)
 590                cd_forget(inode);
 591
 592        remove_inode_hash(inode);
 593
 594        spin_lock(&inode->i_lock);
 595        wake_up_bit(&inode->i_state, __I_NEW);
 596        BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
 597        spin_unlock(&inode->i_lock);
 598
 599        destroy_inode(inode);
 600}
 601
 602/*
 603 * dispose_list - dispose of the contents of a local list
 604 * @head: the head of the list to free
 605 *
 606 * Dispose-list gets a local list with local inodes in it, so it doesn't
 607 * need to worry about list corruption and SMP locks.
 608 */
 609static void dispose_list(struct list_head *head)
 610{
 611        while (!list_empty(head)) {
 612                struct inode *inode;
 613
 614                inode = list_first_entry(head, struct inode, i_lru);
 615                list_del_init(&inode->i_lru);
 616
 617                evict(inode);
 618                cond_resched();
 619        }
 620}
 621
 622/**
 623 * evict_inodes - evict all evictable inodes for a superblock
 624 * @sb:         superblock to operate on
 625 *
 626 * Make sure that no inodes with zero refcount are retained.  This is
 627 * called by superblock shutdown after having SB_ACTIVE flag removed,
 628 * so any inode reaching zero refcount during or after that call will
 629 * be immediately evicted.
 630 */
 631void evict_inodes(struct super_block *sb)
 632{
 633        struct inode *inode, *next;
 634        LIST_HEAD(dispose);
 635
 636again:
 637        spin_lock(&sb->s_inode_list_lock);
 638        list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 639                if (atomic_read(&inode->i_count))
 640                        continue;
 641
 642                spin_lock(&inode->i_lock);
 643                if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 644                        spin_unlock(&inode->i_lock);
 645                        continue;
 646                }
 647
 648                inode->i_state |= I_FREEING;
 649                inode_lru_list_del(inode);
 650                spin_unlock(&inode->i_lock);
 651                list_add(&inode->i_lru, &dispose);
 652
 653                /*
 654                 * We can have a ton of inodes to evict at unmount time given
 655                 * enough memory, check to see if we need to go to sleep for a
 656                 * bit so we don't livelock.
 657                 */
 658                if (need_resched()) {
 659                        spin_unlock(&sb->s_inode_list_lock);
 660                        cond_resched();
 661                        dispose_list(&dispose);
 662                        goto again;
 663                }
 664        }
 665        spin_unlock(&sb->s_inode_list_lock);
 666
 667        dispose_list(&dispose);
 668}
 669EXPORT_SYMBOL_GPL(evict_inodes);
 670
 671/**
 672 * invalidate_inodes    - attempt to free all inodes on a superblock
 673 * @sb:         superblock to operate on
 674 * @kill_dirty: flag to guide handling of dirty inodes
 675 *
 676 * Attempts to free all inodes for a given superblock.  If there were any
 677 * busy inodes return a non-zero value, else zero.
 678 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
 679 * them as busy.
 680 */
 681int invalidate_inodes(struct super_block *sb, bool kill_dirty)
 682{
 683        int busy = 0;
 684        struct inode *inode, *next;
 685        LIST_HEAD(dispose);
 686
 687again:
 688        spin_lock(&sb->s_inode_list_lock);
 689        list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 690                spin_lock(&inode->i_lock);
 691                if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 692                        spin_unlock(&inode->i_lock);
 693                        continue;
 694                }
 695                if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
 696                        spin_unlock(&inode->i_lock);
 697                        busy = 1;
 698                        continue;
 699                }
 700                if (atomic_read(&inode->i_count)) {
 701                        spin_unlock(&inode->i_lock);
 702                        busy = 1;
 703                        continue;
 704                }
 705
 706                inode->i_state |= I_FREEING;
 707                inode_lru_list_del(inode);
 708                spin_unlock(&inode->i_lock);
 709                list_add(&inode->i_lru, &dispose);
 710                if (need_resched()) {
 711                        spin_unlock(&sb->s_inode_list_lock);
 712                        cond_resched();
 713                        dispose_list(&dispose);
 714                        goto again;
 715                }
 716        }
 717        spin_unlock(&sb->s_inode_list_lock);
 718
 719        dispose_list(&dispose);
 720
 721        return busy;
 722}
 723
 724/*
 725 * Isolate the inode from the LRU in preparation for freeing it.
 726 *
 727 * Any inodes which are pinned purely because of attached pagecache have their
 728 * pagecache removed.  If the inode has metadata buffers attached to
 729 * mapping->private_list then try to remove them.
 730 *
 731 * If the inode has the I_REFERENCED flag set, then it means that it has been
 732 * used recently - the flag is set in iput_final(). When we encounter such an
 733 * inode, clear the flag and move it to the back of the LRU so it gets another
 734 * pass through the LRU before it gets reclaimed. This is necessary because of
 735 * the fact we are doing lazy LRU updates to minimise lock contention so the
 736 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
 737 * with this flag set because they are the inodes that are out of order.
 738 */
 739static enum lru_status inode_lru_isolate(struct list_head *item,
 740                struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
 741{
 742        struct list_head *freeable = arg;
 743        struct inode    *inode = container_of(item, struct inode, i_lru);
 744
 745        /*
 746         * we are inverting the lru lock/inode->i_lock here, so use a trylock.
 747         * If we fail to get the lock, just skip it.
 748         */
 749        if (!spin_trylock(&inode->i_lock))
 750                return LRU_SKIP;
 751
 752        /*
 753         * Referenced or dirty inodes are still in use. Give them another pass
 754         * through the LRU as we canot reclaim them now.
 755         */
 756        if (atomic_read(&inode->i_count) ||
 757            (inode->i_state & ~I_REFERENCED)) {
 758                list_lru_isolate(lru, &inode->i_lru);
 759                spin_unlock(&inode->i_lock);
 760                this_cpu_dec(nr_unused);
 761                return LRU_REMOVED;
 762        }
 763
 764        /* recently referenced inodes get one more pass */
 765        if (inode->i_state & I_REFERENCED) {
 766                inode->i_state &= ~I_REFERENCED;
 767                spin_unlock(&inode->i_lock);
 768                return LRU_ROTATE;
 769        }
 770
 771        if (inode_has_buffers(inode) || inode->i_data.nrpages) {
 772                __iget(inode);
 773                spin_unlock(&inode->i_lock);
 774                spin_unlock(lru_lock);
 775                if (remove_inode_buffers(inode)) {
 776                        unsigned long reap;
 777                        reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
 778                        if (current_is_kswapd())
 779                                __count_vm_events(KSWAPD_INODESTEAL, reap);
 780                        else
 781                                __count_vm_events(PGINODESTEAL, reap);
 782                        if (current->reclaim_state)
 783                                current->reclaim_state->reclaimed_slab += reap;
 784                }
 785                iput(inode);
 786                spin_lock(lru_lock);
 787                return LRU_RETRY;
 788        }
 789
 790        WARN_ON(inode->i_state & I_NEW);
 791        inode->i_state |= I_FREEING;
 792        list_lru_isolate_move(lru, &inode->i_lru, freeable);
 793        spin_unlock(&inode->i_lock);
 794
 795        this_cpu_dec(nr_unused);
 796        return LRU_REMOVED;
 797}
 798
 799/*
 800 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
 801 * This is called from the superblock shrinker function with a number of inodes
 802 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
 803 * then are freed outside inode_lock by dispose_list().
 804 */
 805long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
 806{
 807        LIST_HEAD(freeable);
 808        long freed;
 809
 810        freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
 811                                     inode_lru_isolate, &freeable);
 812        dispose_list(&freeable);
 813        return freed;
 814}
 815
 816static void __wait_on_freeing_inode(struct inode *inode);
 817/*
 818 * Called with the inode lock held.
 819 */
 820static struct inode *find_inode(struct super_block *sb,
 821                                struct hlist_head *head,
 822                                int (*test)(struct inode *, void *),
 823                                void *data)
 824{
 825        struct inode *inode = NULL;
 826
 827repeat:
 828        hlist_for_each_entry(inode, head, i_hash) {
 829                if (inode->i_sb != sb)
 830                        continue;
 831                if (!test(inode, data))
 832                        continue;
 833                spin_lock(&inode->i_lock);
 834                if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 835                        __wait_on_freeing_inode(inode);
 836                        goto repeat;
 837                }
 838                if (unlikely(inode->i_state & I_CREATING)) {
 839                        spin_unlock(&inode->i_lock);
 840                        return ERR_PTR(-ESTALE);
 841                }
 842                __iget(inode);
 843                spin_unlock(&inode->i_lock);
 844                return inode;
 845        }
 846        return NULL;
 847}
 848
 849/*
 850 * find_inode_fast is the fast path version of find_inode, see the comment at
 851 * iget_locked for details.
 852 */
 853static struct inode *find_inode_fast(struct super_block *sb,
 854                                struct hlist_head *head, unsigned long ino)
 855{
 856        struct inode *inode = NULL;
 857
 858repeat:
 859        hlist_for_each_entry(inode, head, i_hash) {
 860                if (inode->i_ino != ino)
 861                        continue;
 862                if (inode->i_sb != sb)
 863                        continue;
 864                spin_lock(&inode->i_lock);
 865                if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 866                        __wait_on_freeing_inode(inode);
 867                        goto repeat;
 868                }
 869                if (unlikely(inode->i_state & I_CREATING)) {
 870                        spin_unlock(&inode->i_lock);
 871                        return ERR_PTR(-ESTALE);
 872                }
 873                __iget(inode);
 874                spin_unlock(&inode->i_lock);
 875                return inode;
 876        }
 877        return NULL;
 878}
 879
 880/*
 881 * Each cpu owns a range of LAST_INO_BATCH numbers.
 882 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
 883 * to renew the exhausted range.
 884 *
 885 * This does not significantly increase overflow rate because every CPU can
 886 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
 887 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
 888 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
 889 * overflow rate by 2x, which does not seem too significant.
 890 *
 891 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
 892 * error if st_ino won't fit in target struct field. Use 32bit counter
 893 * here to attempt to avoid that.
 894 */
 895#define LAST_INO_BATCH 1024
 896static DEFINE_PER_CPU(unsigned int, last_ino);
 897
 898unsigned int get_next_ino(void)
 899{
 900        unsigned int *p = &get_cpu_var(last_ino);
 901        unsigned int res = *p;
 902
 903#ifdef CONFIG_SMP
 904        if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
 905                static atomic_t shared_last_ino;
 906                int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
 907
 908                res = next - LAST_INO_BATCH;
 909        }
 910#endif
 911
 912        res++;
 913        /* get_next_ino should not provide a 0 inode number */
 914        if (unlikely(!res))
 915                res++;
 916        *p = res;
 917        put_cpu_var(last_ino);
 918        return res;
 919}
 920EXPORT_SYMBOL(get_next_ino);
 921
 922/**
 923 *      new_inode_pseudo        - obtain an inode
 924 *      @sb: superblock
 925 *
 926 *      Allocates a new inode for given superblock.
 927 *      Inode wont be chained in superblock s_inodes list
 928 *      This means :
 929 *      - fs can't be unmount
 930 *      - quotas, fsnotify, writeback can't work
 931 */
 932struct inode *new_inode_pseudo(struct super_block *sb)
 933{
 934        struct inode *inode = alloc_inode(sb);
 935
 936        if (inode) {
 937                spin_lock(&inode->i_lock);
 938                inode->i_state = 0;
 939                spin_unlock(&inode->i_lock);
 940                INIT_LIST_HEAD(&inode->i_sb_list);
 941        }
 942        return inode;
 943}
 944
 945/**
 946 *      new_inode       - obtain an inode
 947 *      @sb: superblock
 948 *
 949 *      Allocates a new inode for given superblock. The default gfp_mask
 950 *      for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
 951 *      If HIGHMEM pages are unsuitable or it is known that pages allocated
 952 *      for the page cache are not reclaimable or migratable,
 953 *      mapping_set_gfp_mask() must be called with suitable flags on the
 954 *      newly created inode's mapping
 955 *
 956 */
 957struct inode *new_inode(struct super_block *sb)
 958{
 959        struct inode *inode;
 960
 961        spin_lock_prefetch(&sb->s_inode_list_lock);
 962
 963        inode = new_inode_pseudo(sb);
 964        if (inode)
 965                inode_sb_list_add(inode);
 966        return inode;
 967}
 968EXPORT_SYMBOL(new_inode);
 969
 970#ifdef CONFIG_DEBUG_LOCK_ALLOC
 971void lockdep_annotate_inode_mutex_key(struct inode *inode)
 972{
 973        if (S_ISDIR(inode->i_mode)) {
 974                struct file_system_type *type = inode->i_sb->s_type;
 975
 976                /* Set new key only if filesystem hasn't already changed it */
 977                if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
 978                        /*
 979                         * ensure nobody is actually holding i_mutex
 980                         */
 981                        // mutex_destroy(&inode->i_mutex);
 982                        init_rwsem(&inode->i_rwsem);
 983                        lockdep_set_class(&inode->i_rwsem,
 984                                          &type->i_mutex_dir_key);
 985                }
 986        }
 987}
 988EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
 989#endif
 990
 991/**
 992 * unlock_new_inode - clear the I_NEW state and wake up any waiters
 993 * @inode:      new inode to unlock
 994 *
 995 * Called when the inode is fully initialised to clear the new state of the
 996 * inode and wake up anyone waiting for the inode to finish initialisation.
 997 */
 998void unlock_new_inode(struct inode *inode)
 999{
1000        lockdep_annotate_inode_mutex_key(inode);
1001        spin_lock(&inode->i_lock);
1002        WARN_ON(!(inode->i_state & I_NEW));
1003        inode->i_state &= ~I_NEW & ~I_CREATING;
1004        smp_mb();
1005        wake_up_bit(&inode->i_state, __I_NEW);
1006        spin_unlock(&inode->i_lock);
1007}
1008EXPORT_SYMBOL(unlock_new_inode);
1009
1010void discard_new_inode(struct inode *inode)
1011{
1012        lockdep_annotate_inode_mutex_key(inode);
1013        spin_lock(&inode->i_lock);
1014        WARN_ON(!(inode->i_state & I_NEW));
1015        inode->i_state &= ~I_NEW;
1016        smp_mb();
1017        wake_up_bit(&inode->i_state, __I_NEW);
1018        spin_unlock(&inode->i_lock);
1019        iput(inode);
1020}
1021EXPORT_SYMBOL(discard_new_inode);
1022
1023/**
1024 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1025 *
1026 * Lock any non-NULL argument that is not a directory.
1027 * Zero, one or two objects may be locked by this function.
1028 *
1029 * @inode1: first inode to lock
1030 * @inode2: second inode to lock
1031 */
1032void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1033{
1034        if (inode1 > inode2)
1035                swap(inode1, inode2);
1036
1037        if (inode1 && !S_ISDIR(inode1->i_mode))
1038                inode_lock(inode1);
1039        if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1040                inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1041}
1042EXPORT_SYMBOL(lock_two_nondirectories);
1043
1044/**
1045 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1046 * @inode1: first inode to unlock
1047 * @inode2: second inode to unlock
1048 */
1049void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1050{
1051        if (inode1 && !S_ISDIR(inode1->i_mode))
1052                inode_unlock(inode1);
1053        if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1054                inode_unlock(inode2);
1055}
1056EXPORT_SYMBOL(unlock_two_nondirectories);
1057
1058/**
1059 * inode_insert5 - obtain an inode from a mounted file system
1060 * @inode:      pre-allocated inode to use for insert to cache
1061 * @hashval:    hash value (usually inode number) to get
1062 * @test:       callback used for comparisons between inodes
1063 * @set:        callback used to initialize a new struct inode
1064 * @data:       opaque data pointer to pass to @test and @set
1065 *
1066 * Search for the inode specified by @hashval and @data in the inode cache,
1067 * and if present it is return it with an increased reference count. This is
1068 * a variant of iget5_locked() for callers that don't want to fail on memory
1069 * allocation of inode.
1070 *
1071 * If the inode is not in cache, insert the pre-allocated inode to cache and
1072 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1073 * to fill it in before unlocking it via unlock_new_inode().
1074 *
1075 * Note both @test and @set are called with the inode_hash_lock held, so can't
1076 * sleep.
1077 */
1078struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1079                            int (*test)(struct inode *, void *),
1080                            int (*set)(struct inode *, void *), void *data)
1081{
1082        struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1083        struct inode *old;
1084        bool creating = inode->i_state & I_CREATING;
1085
1086again:
1087        spin_lock(&inode_hash_lock);
1088        old = find_inode(inode->i_sb, head, test, data);
1089        if (unlikely(old)) {
1090                /*
1091                 * Uhhuh, somebody else created the same inode under us.
1092                 * Use the old inode instead of the preallocated one.
1093                 */
1094                spin_unlock(&inode_hash_lock);
1095                if (IS_ERR(old))
1096                        return NULL;
1097                wait_on_inode(old);
1098                if (unlikely(inode_unhashed(old))) {
1099                        iput(old);
1100                        goto again;
1101                }
1102                return old;
1103        }
1104
1105        if (set && unlikely(set(inode, data))) {
1106                inode = NULL;
1107                goto unlock;
1108        }
1109
1110        /*
1111         * Return the locked inode with I_NEW set, the
1112         * caller is responsible for filling in the contents
1113         */
1114        spin_lock(&inode->i_lock);
1115        inode->i_state |= I_NEW;
1116        hlist_add_head_rcu(&inode->i_hash, head);
1117        spin_unlock(&inode->i_lock);
1118        if (!creating)
1119                inode_sb_list_add(inode);
1120unlock:
1121        spin_unlock(&inode_hash_lock);
1122
1123        return inode;
1124}
1125EXPORT_SYMBOL(inode_insert5);
1126
1127/**
1128 * iget5_locked - obtain an inode from a mounted file system
1129 * @sb:         super block of file system
1130 * @hashval:    hash value (usually inode number) to get
1131 * @test:       callback used for comparisons between inodes
1132 * @set:        callback used to initialize a new struct inode
1133 * @data:       opaque data pointer to pass to @test and @set
1134 *
1135 * Search for the inode specified by @hashval and @data in the inode cache,
1136 * and if present it is return it with an increased reference count. This is
1137 * a generalized version of iget_locked() for file systems where the inode
1138 * number is not sufficient for unique identification of an inode.
1139 *
1140 * If the inode is not in cache, allocate a new inode and return it locked,
1141 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1142 * before unlocking it via unlock_new_inode().
1143 *
1144 * Note both @test and @set are called with the inode_hash_lock held, so can't
1145 * sleep.
1146 */
1147struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1148                int (*test)(struct inode *, void *),
1149                int (*set)(struct inode *, void *), void *data)
1150{
1151        struct inode *inode = ilookup5(sb, hashval, test, data);
1152
1153        if (!inode) {
1154                struct inode *new = alloc_inode(sb);
1155
1156                if (new) {
1157                        new->i_state = 0;
1158                        inode = inode_insert5(new, hashval, test, set, data);
1159                        if (unlikely(inode != new))
1160                                destroy_inode(new);
1161                }
1162        }
1163        return inode;
1164}
1165EXPORT_SYMBOL(iget5_locked);
1166
1167/**
1168 * iget_locked - obtain an inode from a mounted file system
1169 * @sb:         super block of file system
1170 * @ino:        inode number to get
1171 *
1172 * Search for the inode specified by @ino in the inode cache and if present
1173 * return it with an increased reference count. This is for file systems
1174 * where the inode number is sufficient for unique identification of an inode.
1175 *
1176 * If the inode is not in cache, allocate a new inode and return it locked,
1177 * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1178 * before unlocking it via unlock_new_inode().
1179 */
1180struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1181{
1182        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1183        struct inode *inode;
1184again:
1185        spin_lock(&inode_hash_lock);
1186        inode = find_inode_fast(sb, head, ino);
1187        spin_unlock(&inode_hash_lock);
1188        if (inode) {
1189                if (IS_ERR(inode))
1190                        return NULL;
1191                wait_on_inode(inode);
1192                if (unlikely(inode_unhashed(inode))) {
1193                        iput(inode);
1194                        goto again;
1195                }
1196                return inode;
1197        }
1198
1199        inode = alloc_inode(sb);
1200        if (inode) {
1201                struct inode *old;
1202
1203                spin_lock(&inode_hash_lock);
1204                /* We released the lock, so.. */
1205                old = find_inode_fast(sb, head, ino);
1206                if (!old) {
1207                        inode->i_ino = ino;
1208                        spin_lock(&inode->i_lock);
1209                        inode->i_state = I_NEW;
1210                        hlist_add_head_rcu(&inode->i_hash, head);
1211                        spin_unlock(&inode->i_lock);
1212                        inode_sb_list_add(inode);
1213                        spin_unlock(&inode_hash_lock);
1214
1215                        /* Return the locked inode with I_NEW set, the
1216                         * caller is responsible for filling in the contents
1217                         */
1218                        return inode;
1219                }
1220
1221                /*
1222                 * Uhhuh, somebody else created the same inode under
1223                 * us. Use the old inode instead of the one we just
1224                 * allocated.
1225                 */
1226                spin_unlock(&inode_hash_lock);
1227                destroy_inode(inode);
1228                if (IS_ERR(old))
1229                        return NULL;
1230                inode = old;
1231                wait_on_inode(inode);
1232                if (unlikely(inode_unhashed(inode))) {
1233                        iput(inode);
1234                        goto again;
1235                }
1236        }
1237        return inode;
1238}
1239EXPORT_SYMBOL(iget_locked);
1240
1241/*
1242 * search the inode cache for a matching inode number.
1243 * If we find one, then the inode number we are trying to
1244 * allocate is not unique and so we should not use it.
1245 *
1246 * Returns 1 if the inode number is unique, 0 if it is not.
1247 */
1248static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1249{
1250        struct hlist_head *b = inode_hashtable + hash(sb, ino);
1251        struct inode *inode;
1252
1253        hlist_for_each_entry_rcu(inode, b, i_hash) {
1254                if (inode->i_ino == ino && inode->i_sb == sb)
1255                        return 0;
1256        }
1257        return 1;
1258}
1259
1260/**
1261 *      iunique - get a unique inode number
1262 *      @sb: superblock
1263 *      @max_reserved: highest reserved inode number
1264 *
1265 *      Obtain an inode number that is unique on the system for a given
1266 *      superblock. This is used by file systems that have no natural
1267 *      permanent inode numbering system. An inode number is returned that
1268 *      is higher than the reserved limit but unique.
1269 *
1270 *      BUGS:
1271 *      With a large number of inodes live on the file system this function
1272 *      currently becomes quite slow.
1273 */
1274ino_t iunique(struct super_block *sb, ino_t max_reserved)
1275{
1276        /*
1277         * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1278         * error if st_ino won't fit in target struct field. Use 32bit counter
1279         * here to attempt to avoid that.
1280         */
1281        static DEFINE_SPINLOCK(iunique_lock);
1282        static unsigned int counter;
1283        ino_t res;
1284
1285        rcu_read_lock();
1286        spin_lock(&iunique_lock);
1287        do {
1288                if (counter <= max_reserved)
1289                        counter = max_reserved + 1;
1290                res = counter++;
1291        } while (!test_inode_iunique(sb, res));
1292        spin_unlock(&iunique_lock);
1293        rcu_read_unlock();
1294
1295        return res;
1296}
1297EXPORT_SYMBOL(iunique);
1298
1299struct inode *igrab(struct inode *inode)
1300{
1301        spin_lock(&inode->i_lock);
1302        if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1303                __iget(inode);
1304                spin_unlock(&inode->i_lock);
1305        } else {
1306                spin_unlock(&inode->i_lock);
1307                /*
1308                 * Handle the case where s_op->clear_inode is not been
1309                 * called yet, and somebody is calling igrab
1310                 * while the inode is getting freed.
1311                 */
1312                inode = NULL;
1313        }
1314        return inode;
1315}
1316EXPORT_SYMBOL(igrab);
1317
1318/**
1319 * ilookup5_nowait - search for an inode in the inode cache
1320 * @sb:         super block of file system to search
1321 * @hashval:    hash value (usually inode number) to search for
1322 * @test:       callback used for comparisons between inodes
1323 * @data:       opaque data pointer to pass to @test
1324 *
1325 * Search for the inode specified by @hashval and @data in the inode cache.
1326 * If the inode is in the cache, the inode is returned with an incremented
1327 * reference count.
1328 *
1329 * Note: I_NEW is not waited upon so you have to be very careful what you do
1330 * with the returned inode.  You probably should be using ilookup5() instead.
1331 *
1332 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1333 */
1334struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1335                int (*test)(struct inode *, void *), void *data)
1336{
1337        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1338        struct inode *inode;
1339
1340        spin_lock(&inode_hash_lock);
1341        inode = find_inode(sb, head, test, data);
1342        spin_unlock(&inode_hash_lock);
1343
1344        return IS_ERR(inode) ? NULL : inode;
1345}
1346EXPORT_SYMBOL(ilookup5_nowait);
1347
1348/**
1349 * ilookup5 - search for an inode in the inode cache
1350 * @sb:         super block of file system to search
1351 * @hashval:    hash value (usually inode number) to search for
1352 * @test:       callback used for comparisons between inodes
1353 * @data:       opaque data pointer to pass to @test
1354 *
1355 * Search for the inode specified by @hashval and @data in the inode cache,
1356 * and if the inode is in the cache, return the inode with an incremented
1357 * reference count.  Waits on I_NEW before returning the inode.
1358 * returned with an incremented reference count.
1359 *
1360 * This is a generalized version of ilookup() for file systems where the
1361 * inode number is not sufficient for unique identification of an inode.
1362 *
1363 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1364 */
1365struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1366                int (*test)(struct inode *, void *), void *data)
1367{
1368        struct inode *inode;
1369again:
1370        inode = ilookup5_nowait(sb, hashval, test, data);
1371        if (inode) {
1372                wait_on_inode(inode);
1373                if (unlikely(inode_unhashed(inode))) {
1374                        iput(inode);
1375                        goto again;
1376                }
1377        }
1378        return inode;
1379}
1380EXPORT_SYMBOL(ilookup5);
1381
1382/**
1383 * ilookup - search for an inode in the inode cache
1384 * @sb:         super block of file system to search
1385 * @ino:        inode number to search for
1386 *
1387 * Search for the inode @ino in the inode cache, and if the inode is in the
1388 * cache, the inode is returned with an incremented reference count.
1389 */
1390struct inode *ilookup(struct super_block *sb, unsigned long ino)
1391{
1392        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1393        struct inode *inode;
1394again:
1395        spin_lock(&inode_hash_lock);
1396        inode = find_inode_fast(sb, head, ino);
1397        spin_unlock(&inode_hash_lock);
1398
1399        if (inode) {
1400                if (IS_ERR(inode))
1401                        return NULL;
1402                wait_on_inode(inode);
1403                if (unlikely(inode_unhashed(inode))) {
1404                        iput(inode);
1405                        goto again;
1406                }
1407        }
1408        return inode;
1409}
1410EXPORT_SYMBOL(ilookup);
1411
1412/**
1413 * find_inode_nowait - find an inode in the inode cache
1414 * @sb:         super block of file system to search
1415 * @hashval:    hash value (usually inode number) to search for
1416 * @match:      callback used for comparisons between inodes
1417 * @data:       opaque data pointer to pass to @match
1418 *
1419 * Search for the inode specified by @hashval and @data in the inode
1420 * cache, where the helper function @match will return 0 if the inode
1421 * does not match, 1 if the inode does match, and -1 if the search
1422 * should be stopped.  The @match function must be responsible for
1423 * taking the i_lock spin_lock and checking i_state for an inode being
1424 * freed or being initialized, and incrementing the reference count
1425 * before returning 1.  It also must not sleep, since it is called with
1426 * the inode_hash_lock spinlock held.
1427 *
1428 * This is a even more generalized version of ilookup5() when the
1429 * function must never block --- find_inode() can block in
1430 * __wait_on_freeing_inode() --- or when the caller can not increment
1431 * the reference count because the resulting iput() might cause an
1432 * inode eviction.  The tradeoff is that the @match funtion must be
1433 * very carefully implemented.
1434 */
1435struct inode *find_inode_nowait(struct super_block *sb,
1436                                unsigned long hashval,
1437                                int (*match)(struct inode *, unsigned long,
1438                                             void *),
1439                                void *data)
1440{
1441        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1442        struct inode *inode, *ret_inode = NULL;
1443        int mval;
1444
1445        spin_lock(&inode_hash_lock);
1446        hlist_for_each_entry(inode, head, i_hash) {
1447                if (inode->i_sb != sb)
1448                        continue;
1449                mval = match(inode, hashval, data);
1450                if (mval == 0)
1451                        continue;
1452                if (mval == 1)
1453                        ret_inode = inode;
1454                goto out;
1455        }
1456out:
1457        spin_unlock(&inode_hash_lock);
1458        return ret_inode;
1459}
1460EXPORT_SYMBOL(find_inode_nowait);
1461
1462/**
1463 * find_inode_rcu - find an inode in the inode cache
1464 * @sb:         Super block of file system to search
1465 * @hashval:    Key to hash
1466 * @test:       Function to test match on an inode
1467 * @data:       Data for test function
1468 *
1469 * Search for the inode specified by @hashval and @data in the inode cache,
1470 * where the helper function @test will return 0 if the inode does not match
1471 * and 1 if it does.  The @test function must be responsible for taking the
1472 * i_lock spin_lock and checking i_state for an inode being freed or being
1473 * initialized.
1474 *
1475 * If successful, this will return the inode for which the @test function
1476 * returned 1 and NULL otherwise.
1477 *
1478 * The @test function is not permitted to take a ref on any inode presented.
1479 * It is also not permitted to sleep.
1480 *
1481 * The caller must hold the RCU read lock.
1482 */
1483struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1484                             int (*test)(struct inode *, void *), void *data)
1485{
1486        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1487        struct inode *inode;
1488
1489        RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1490                         "suspicious find_inode_rcu() usage");
1491
1492        hlist_for_each_entry_rcu(inode, head, i_hash) {
1493                if (inode->i_sb == sb &&
1494                    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1495                    test(inode, data))
1496                        return inode;
1497        }
1498        return NULL;
1499}
1500EXPORT_SYMBOL(find_inode_rcu);
1501
1502/**
1503 * find_inode_by_ino_rcu - Find an inode in the inode cache
1504 * @sb:         Super block of file system to search
1505 * @ino:        The inode number to match
1506 *
1507 * Search for the inode specified by @hashval and @data in the inode cache,
1508 * where the helper function @test will return 0 if the inode does not match
1509 * and 1 if it does.  The @test function must be responsible for taking the
1510 * i_lock spin_lock and checking i_state for an inode being freed or being
1511 * initialized.
1512 *
1513 * If successful, this will return the inode for which the @test function
1514 * returned 1 and NULL otherwise.
1515 *
1516 * The @test function is not permitted to take a ref on any inode presented.
1517 * It is also not permitted to sleep.
1518 *
1519 * The caller must hold the RCU read lock.
1520 */
1521struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1522                                    unsigned long ino)
1523{
1524        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1525        struct inode *inode;
1526
1527        RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1528                         "suspicious find_inode_by_ino_rcu() usage");
1529
1530        hlist_for_each_entry_rcu(inode, head, i_hash) {
1531                if (inode->i_ino == ino &&
1532                    inode->i_sb == sb &&
1533                    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1534                    return inode;
1535        }
1536        return NULL;
1537}
1538EXPORT_SYMBOL(find_inode_by_ino_rcu);
1539
1540int insert_inode_locked(struct inode *inode)
1541{
1542        struct super_block *sb = inode->i_sb;
1543        ino_t ino = inode->i_ino;
1544        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1545
1546        while (1) {
1547                struct inode *old = NULL;
1548                spin_lock(&inode_hash_lock);
1549                hlist_for_each_entry(old, head, i_hash) {
1550                        if (old->i_ino != ino)
1551                                continue;
1552                        if (old->i_sb != sb)
1553                                continue;
1554                        spin_lock(&old->i_lock);
1555                        if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1556                                spin_unlock(&old->i_lock);
1557                                continue;
1558                        }
1559                        break;
1560                }
1561                if (likely(!old)) {
1562                        spin_lock(&inode->i_lock);
1563                        inode->i_state |= I_NEW | I_CREATING;
1564                        hlist_add_head_rcu(&inode->i_hash, head);
1565                        spin_unlock(&inode->i_lock);
1566                        spin_unlock(&inode_hash_lock);
1567                        return 0;
1568                }
1569                if (unlikely(old->i_state & I_CREATING)) {
1570                        spin_unlock(&old->i_lock);
1571                        spin_unlock(&inode_hash_lock);
1572                        return -EBUSY;
1573                }
1574                __iget(old);
1575                spin_unlock(&old->i_lock);
1576                spin_unlock(&inode_hash_lock);
1577                wait_on_inode(old);
1578                if (unlikely(!inode_unhashed(old))) {
1579                        iput(old);
1580                        return -EBUSY;
1581                }
1582                iput(old);
1583        }
1584}
1585EXPORT_SYMBOL(insert_inode_locked);
1586
1587int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1588                int (*test)(struct inode *, void *), void *data)
1589{
1590        struct inode *old;
1591
1592        inode->i_state |= I_CREATING;
1593        old = inode_insert5(inode, hashval, test, NULL, data);
1594
1595        if (old != inode) {
1596                iput(old);
1597                return -EBUSY;
1598        }
1599        return 0;
1600}
1601EXPORT_SYMBOL(insert_inode_locked4);
1602
1603
1604int generic_delete_inode(struct inode *inode)
1605{
1606        return 1;
1607}
1608EXPORT_SYMBOL(generic_delete_inode);
1609
1610/*
1611 * Called when we're dropping the last reference
1612 * to an inode.
1613 *
1614 * Call the FS "drop_inode()" function, defaulting to
1615 * the legacy UNIX filesystem behaviour.  If it tells
1616 * us to evict inode, do so.  Otherwise, retain inode
1617 * in cache if fs is alive, sync and evict if fs is
1618 * shutting down.
1619 */
1620static void iput_final(struct inode *inode)
1621{
1622        struct super_block *sb = inode->i_sb;
1623        const struct super_operations *op = inode->i_sb->s_op;
1624        unsigned long state;
1625        int drop;
1626
1627        WARN_ON(inode->i_state & I_NEW);
1628
1629        if (op->drop_inode)
1630                drop = op->drop_inode(inode);
1631        else
1632                drop = generic_drop_inode(inode);
1633
1634        if (!drop &&
1635            !(inode->i_state & I_DONTCACHE) &&
1636            (sb->s_flags & SB_ACTIVE)) {
1637                inode_add_lru(inode);
1638                spin_unlock(&inode->i_lock);
1639                return;
1640        }
1641
1642        state = inode->i_state;
1643        if (!drop) {
1644                WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1645                spin_unlock(&inode->i_lock);
1646
1647                write_inode_now(inode, 1);
1648
1649                spin_lock(&inode->i_lock);
1650                state = inode->i_state;
1651                WARN_ON(state & I_NEW);
1652                state &= ~I_WILL_FREE;
1653        }
1654
1655        WRITE_ONCE(inode->i_state, state | I_FREEING);
1656        if (!list_empty(&inode->i_lru))
1657                inode_lru_list_del(inode);
1658        spin_unlock(&inode->i_lock);
1659
1660        evict(inode);
1661}
1662
1663/**
1664 *      iput    - put an inode
1665 *      @inode: inode to put
1666 *
1667 *      Puts an inode, dropping its usage count. If the inode use count hits
1668 *      zero, the inode is then freed and may also be destroyed.
1669 *
1670 *      Consequently, iput() can sleep.
1671 */
1672void iput(struct inode *inode)
1673{
1674        if (!inode)
1675                return;
1676        BUG_ON(inode->i_state & I_CLEAR);
1677retry:
1678        if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1679                if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1680                        atomic_inc(&inode->i_count);
1681                        spin_unlock(&inode->i_lock);
1682                        trace_writeback_lazytime_iput(inode);
1683                        mark_inode_dirty_sync(inode);
1684                        goto retry;
1685                }
1686                iput_final(inode);
1687        }
1688}
1689EXPORT_SYMBOL(iput);
1690
1691#ifdef CONFIG_BLOCK
1692/**
1693 *      bmap    - find a block number in a file
1694 *      @inode:  inode owning the block number being requested
1695 *      @block: pointer containing the block to find
1696 *
1697 *      Replaces the value in ``*block`` with the block number on the device holding
1698 *      corresponding to the requested block number in the file.
1699 *      That is, asked for block 4 of inode 1 the function will replace the
1700 *      4 in ``*block``, with disk block relative to the disk start that holds that
1701 *      block of the file.
1702 *
1703 *      Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1704 *      hole, returns 0 and ``*block`` is also set to 0.
1705 */
1706int bmap(struct inode *inode, sector_t *block)
1707{
1708        if (!inode->i_mapping->a_ops->bmap)
1709                return -EINVAL;
1710
1711        *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1712        return 0;
1713}
1714EXPORT_SYMBOL(bmap);
1715#endif
1716
1717/*
1718 * With relative atime, only update atime if the previous atime is
1719 * earlier than either the ctime or mtime or if at least a day has
1720 * passed since the last atime update.
1721 */
1722static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1723                             struct timespec64 now)
1724{
1725
1726        if (!(mnt->mnt_flags & MNT_RELATIME))
1727                return 1;
1728        /*
1729         * Is mtime younger than atime? If yes, update atime:
1730         */
1731        if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1732                return 1;
1733        /*
1734         * Is ctime younger than atime? If yes, update atime:
1735         */
1736        if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1737                return 1;
1738
1739        /*
1740         * Is the previous atime value older than a day? If yes,
1741         * update atime:
1742         */
1743        if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1744                return 1;
1745        /*
1746         * Good, we can skip the atime update:
1747         */
1748        return 0;
1749}
1750
1751int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1752{
1753        int dirty_flags = 0;
1754
1755        if (flags & (S_ATIME | S_CTIME | S_MTIME)) {
1756                if (flags & S_ATIME)
1757                        inode->i_atime = *time;
1758                if (flags & S_CTIME)
1759                        inode->i_ctime = *time;
1760                if (flags & S_MTIME)
1761                        inode->i_mtime = *time;
1762
1763                if (inode->i_sb->s_flags & SB_LAZYTIME)
1764                        dirty_flags |= I_DIRTY_TIME;
1765                else
1766                        dirty_flags |= I_DIRTY_SYNC;
1767        }
1768
1769        if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false))
1770                dirty_flags |= I_DIRTY_SYNC;
1771
1772        __mark_inode_dirty(inode, dirty_flags);
1773        return 0;
1774}
1775EXPORT_SYMBOL(generic_update_time);
1776
1777/*
1778 * This does the actual work of updating an inodes time or version.  Must have
1779 * had called mnt_want_write() before calling this.
1780 */
1781static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1782{
1783        if (inode->i_op->update_time)
1784                return inode->i_op->update_time(inode, time, flags);
1785        return generic_update_time(inode, time, flags);
1786}
1787
1788/**
1789 *      atime_needs_update      -       update the access time
1790 *      @path: the &struct path to update
1791 *      @inode: inode to update
1792 *
1793 *      Update the accessed time on an inode and mark it for writeback.
1794 *      This function automatically handles read only file systems and media,
1795 *      as well as the "noatime" flag and inode specific "noatime" markers.
1796 */
1797bool atime_needs_update(const struct path *path, struct inode *inode)
1798{
1799        struct vfsmount *mnt = path->mnt;
1800        struct timespec64 now;
1801
1802        if (inode->i_flags & S_NOATIME)
1803                return false;
1804
1805        /* Atime updates will likely cause i_uid and i_gid to be written
1806         * back improprely if their true value is unknown to the vfs.
1807         */
1808        if (HAS_UNMAPPED_ID(mnt_user_ns(mnt), inode))
1809                return false;
1810
1811        if (IS_NOATIME(inode))
1812                return false;
1813        if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1814                return false;
1815
1816        if (mnt->mnt_flags & MNT_NOATIME)
1817                return false;
1818        if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1819                return false;
1820
1821        now = current_time(inode);
1822
1823        if (!relatime_need_update(mnt, inode, now))
1824                return false;
1825
1826        if (timespec64_equal(&inode->i_atime, &now))
1827                return false;
1828
1829        return true;
1830}
1831
1832void touch_atime(const struct path *path)
1833{
1834        struct vfsmount *mnt = path->mnt;
1835        struct inode *inode = d_inode(path->dentry);
1836        struct timespec64 now;
1837
1838        if (!atime_needs_update(path, inode))
1839                return;
1840
1841        if (!sb_start_write_trylock(inode->i_sb))
1842                return;
1843
1844        if (__mnt_want_write(mnt) != 0)
1845                goto skip_update;
1846        /*
1847         * File systems can error out when updating inodes if they need to
1848         * allocate new space to modify an inode (such is the case for
1849         * Btrfs), but since we touch atime while walking down the path we
1850         * really don't care if we failed to update the atime of the file,
1851         * so just ignore the return value.
1852         * We may also fail on filesystems that have the ability to make parts
1853         * of the fs read only, e.g. subvolumes in Btrfs.
1854         */
1855        now = current_time(inode);
1856        update_time(inode, &now, S_ATIME);
1857        __mnt_drop_write(mnt);
1858skip_update:
1859        sb_end_write(inode->i_sb);
1860}
1861EXPORT_SYMBOL(touch_atime);
1862
1863/*
1864 * The logic we want is
1865 *
1866 *      if suid or (sgid and xgrp)
1867 *              remove privs
1868 */
1869int should_remove_suid(struct dentry *dentry)
1870{
1871        umode_t mode = d_inode(dentry)->i_mode;
1872        int kill = 0;
1873
1874        /* suid always must be killed */
1875        if (unlikely(mode & S_ISUID))
1876                kill = ATTR_KILL_SUID;
1877
1878        /*
1879         * sgid without any exec bits is just a mandatory locking mark; leave
1880         * it alone.  If some exec bits are set, it's a real sgid; kill it.
1881         */
1882        if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1883                kill |= ATTR_KILL_SGID;
1884
1885        if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1886                return kill;
1887
1888        return 0;
1889}
1890EXPORT_SYMBOL(should_remove_suid);
1891
1892/*
1893 * Return mask of changes for notify_change() that need to be done as a
1894 * response to write or truncate. Return 0 if nothing has to be changed.
1895 * Negative value on error (change should be denied).
1896 */
1897int dentry_needs_remove_privs(struct dentry *dentry)
1898{
1899        struct inode *inode = d_inode(dentry);
1900        int mask = 0;
1901        int ret;
1902
1903        if (IS_NOSEC(inode))
1904                return 0;
1905
1906        mask = should_remove_suid(dentry);
1907        ret = security_inode_need_killpriv(dentry);
1908        if (ret < 0)
1909                return ret;
1910        if (ret)
1911                mask |= ATTR_KILL_PRIV;
1912        return mask;
1913}
1914
1915static int __remove_privs(struct user_namespace *mnt_userns,
1916                          struct dentry *dentry, int kill)
1917{
1918        struct iattr newattrs;
1919
1920        newattrs.ia_valid = ATTR_FORCE | kill;
1921        /*
1922         * Note we call this on write, so notify_change will not
1923         * encounter any conflicting delegations:
1924         */
1925        return notify_change(mnt_userns, dentry, &newattrs, NULL);
1926}
1927
1928/*
1929 * Remove special file priviledges (suid, capabilities) when file is written
1930 * to or truncated.
1931 */
1932int file_remove_privs(struct file *file)
1933{
1934        struct dentry *dentry = file_dentry(file);
1935        struct inode *inode = file_inode(file);
1936        int kill;
1937        int error = 0;
1938
1939        /*
1940         * Fast path for nothing security related.
1941         * As well for non-regular files, e.g. blkdev inodes.
1942         * For example, blkdev_write_iter() might get here
1943         * trying to remove privs which it is not allowed to.
1944         */
1945        if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1946                return 0;
1947
1948        kill = dentry_needs_remove_privs(dentry);
1949        if (kill < 0)
1950                return kill;
1951        if (kill)
1952                error = __remove_privs(file_mnt_user_ns(file), dentry, kill);
1953        if (!error)
1954                inode_has_no_xattr(inode);
1955
1956        return error;
1957}
1958EXPORT_SYMBOL(file_remove_privs);
1959
1960/**
1961 *      file_update_time        -       update mtime and ctime time
1962 *      @file: file accessed
1963 *
1964 *      Update the mtime and ctime members of an inode and mark the inode
1965 *      for writeback.  Note that this function is meant exclusively for
1966 *      usage in the file write path of filesystems, and filesystems may
1967 *      choose to explicitly ignore update via this function with the
1968 *      S_NOCMTIME inode flag, e.g. for network filesystem where these
1969 *      timestamps are handled by the server.  This can return an error for
1970 *      file systems who need to allocate space in order to update an inode.
1971 */
1972
1973int file_update_time(struct file *file)
1974{
1975        struct inode *inode = file_inode(file);
1976        struct timespec64 now;
1977        int sync_it = 0;
1978        int ret;
1979
1980        /* First try to exhaust all avenues to not sync */
1981        if (IS_NOCMTIME(inode))
1982                return 0;
1983
1984        now = current_time(inode);
1985        if (!timespec64_equal(&inode->i_mtime, &now))
1986                sync_it = S_MTIME;
1987
1988        if (!timespec64_equal(&inode->i_ctime, &now))
1989                sync_it |= S_CTIME;
1990
1991        if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1992                sync_it |= S_VERSION;
1993
1994        if (!sync_it)
1995                return 0;
1996
1997        /* Finally allowed to write? Takes lock. */
1998        if (__mnt_want_write_file(file))
1999                return 0;
2000
2001        ret = update_time(inode, &now, sync_it);
2002        __mnt_drop_write_file(file);
2003
2004        return ret;
2005}
2006EXPORT_SYMBOL(file_update_time);
2007
2008/* Caller must hold the file's inode lock */
2009int file_modified(struct file *file)
2010{
2011        int err;
2012
2013        /*
2014         * Clear the security bits if the process is not being run by root.
2015         * This keeps people from modifying setuid and setgid binaries.
2016         */
2017        err = file_remove_privs(file);
2018        if (err)
2019                return err;
2020
2021        if (unlikely(file->f_mode & FMODE_NOCMTIME))
2022                return 0;
2023
2024        return file_update_time(file);
2025}
2026EXPORT_SYMBOL(file_modified);
2027
2028int inode_needs_sync(struct inode *inode)
2029{
2030        if (IS_SYNC(inode))
2031                return 1;
2032        if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2033                return 1;
2034        return 0;
2035}
2036EXPORT_SYMBOL(inode_needs_sync);
2037
2038/*
2039 * If we try to find an inode in the inode hash while it is being
2040 * deleted, we have to wait until the filesystem completes its
2041 * deletion before reporting that it isn't found.  This function waits
2042 * until the deletion _might_ have completed.  Callers are responsible
2043 * to recheck inode state.
2044 *
2045 * It doesn't matter if I_NEW is not set initially, a call to
2046 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2047 * will DTRT.
2048 */
2049static void __wait_on_freeing_inode(struct inode *inode)
2050{
2051        wait_queue_head_t *wq;
2052        DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2053        wq = bit_waitqueue(&inode->i_state, __I_NEW);
2054        prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2055        spin_unlock(&inode->i_lock);
2056        spin_unlock(&inode_hash_lock);
2057        schedule();
2058        finish_wait(wq, &wait.wq_entry);
2059        spin_lock(&inode_hash_lock);
2060}
2061
2062static __initdata unsigned long ihash_entries;
2063static int __init set_ihash_entries(char *str)
2064{
2065        if (!str)
2066                return 0;
2067        ihash_entries = simple_strtoul(str, &str, 0);
2068        return 1;
2069}
2070__setup("ihash_entries=", set_ihash_entries);
2071
2072/*
2073 * Initialize the waitqueues and inode hash table.
2074 */
2075void __init inode_init_early(void)
2076{
2077        /* If hashes are distributed across NUMA nodes, defer
2078         * hash allocation until vmalloc space is available.
2079         */
2080        if (hashdist)
2081                return;
2082
2083        inode_hashtable =
2084                alloc_large_system_hash("Inode-cache",
2085                                        sizeof(struct hlist_head),
2086                                        ihash_entries,
2087                                        14,
2088                                        HASH_EARLY | HASH_ZERO,
2089                                        &i_hash_shift,
2090                                        &i_hash_mask,
2091                                        0,
2092                                        0);
2093}
2094
2095void __init inode_init(void)
2096{
2097        /* inode slab cache */
2098        inode_cachep = kmem_cache_create("inode_cache",
2099                                         sizeof(struct inode),
2100                                         0,
2101                                         (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2102                                         SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2103                                         init_once);
2104
2105        /* Hash may have been set up in inode_init_early */
2106        if (!hashdist)
2107                return;
2108
2109        inode_hashtable =
2110                alloc_large_system_hash("Inode-cache",
2111                                        sizeof(struct hlist_head),
2112                                        ihash_entries,
2113                                        14,
2114                                        HASH_ZERO,
2115                                        &i_hash_shift,
2116                                        &i_hash_mask,
2117                                        0,
2118                                        0);
2119}
2120
2121void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2122{
2123        inode->i_mode = mode;
2124        if (S_ISCHR(mode)) {
2125                inode->i_fop = &def_chr_fops;
2126                inode->i_rdev = rdev;
2127        } else if (S_ISBLK(mode)) {
2128                inode->i_fop = &def_blk_fops;
2129                inode->i_rdev = rdev;
2130        } else if (S_ISFIFO(mode))
2131                inode->i_fop = &pipefifo_fops;
2132        else if (S_ISSOCK(mode))
2133                ;       /* leave it no_open_fops */
2134        else
2135                printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2136                                  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2137                                  inode->i_ino);
2138}
2139EXPORT_SYMBOL(init_special_inode);
2140
2141/**
2142 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2143 * @mnt_userns: User namespace of the mount the inode was created from
2144 * @inode: New inode
2145 * @dir: Directory inode
2146 * @mode: mode of the new inode
2147 *
2148 * If the inode has been created through an idmapped mount the user namespace of
2149 * the vfsmount must be passed through @mnt_userns. This function will then take
2150 * care to map the inode according to @mnt_userns before checking permissions
2151 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2152 * checking is to be performed on the raw inode simply passs init_user_ns.
2153 */
2154void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode,
2155                      const struct inode *dir, umode_t mode)
2156{
2157        inode_fsuid_set(inode, mnt_userns);
2158        if (dir && dir->i_mode & S_ISGID) {
2159                inode->i_gid = dir->i_gid;
2160
2161                /* Directories are special, and always inherit S_ISGID */
2162                if (S_ISDIR(mode))
2163                        mode |= S_ISGID;
2164                else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2165                         !in_group_p(i_gid_into_mnt(mnt_userns, dir)) &&
2166                         !capable_wrt_inode_uidgid(mnt_userns, dir, CAP_FSETID))
2167                        mode &= ~S_ISGID;
2168        } else
2169                inode_fsgid_set(inode, mnt_userns);
2170        inode->i_mode = mode;
2171}
2172EXPORT_SYMBOL(inode_init_owner);
2173
2174/**
2175 * inode_owner_or_capable - check current task permissions to inode
2176 * @mnt_userns: user namespace of the mount the inode was found from
2177 * @inode: inode being checked
2178 *
2179 * Return true if current either has CAP_FOWNER in a namespace with the
2180 * inode owner uid mapped, or owns the file.
2181 *
2182 * If the inode has been found through an idmapped mount the user namespace of
2183 * the vfsmount must be passed through @mnt_userns. This function will then take
2184 * care to map the inode according to @mnt_userns before checking permissions.
2185 * On non-idmapped mounts or if permission checking is to be performed on the
2186 * raw inode simply passs init_user_ns.
2187 */
2188bool inode_owner_or_capable(struct user_namespace *mnt_userns,
2189                            const struct inode *inode)
2190{
2191        kuid_t i_uid;
2192        struct user_namespace *ns;
2193
2194        i_uid = i_uid_into_mnt(mnt_userns, inode);
2195        if (uid_eq(current_fsuid(), i_uid))
2196                return true;
2197
2198        ns = current_user_ns();
2199        if (kuid_has_mapping(ns, i_uid) && ns_capable(ns, CAP_FOWNER))
2200                return true;
2201        return false;
2202}
2203EXPORT_SYMBOL(inode_owner_or_capable);
2204
2205/*
2206 * Direct i/o helper functions
2207 */
2208static void __inode_dio_wait(struct inode *inode)
2209{
2210        wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2211        DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2212
2213        do {
2214                prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2215                if (atomic_read(&inode->i_dio_count))
2216                        schedule();
2217        } while (atomic_read(&inode->i_dio_count));
2218        finish_wait(wq, &q.wq_entry);
2219}
2220
2221/**
2222 * inode_dio_wait - wait for outstanding DIO requests to finish
2223 * @inode: inode to wait for
2224 *
2225 * Waits for all pending direct I/O requests to finish so that we can
2226 * proceed with a truncate or equivalent operation.
2227 *
2228 * Must be called under a lock that serializes taking new references
2229 * to i_dio_count, usually by inode->i_mutex.
2230 */
2231void inode_dio_wait(struct inode *inode)
2232{
2233        if (atomic_read(&inode->i_dio_count))
2234                __inode_dio_wait(inode);
2235}
2236EXPORT_SYMBOL(inode_dio_wait);
2237
2238/*
2239 * inode_set_flags - atomically set some inode flags
2240 *
2241 * Note: the caller should be holding i_mutex, or else be sure that
2242 * they have exclusive access to the inode structure (i.e., while the
2243 * inode is being instantiated).  The reason for the cmpxchg() loop
2244 * --- which wouldn't be necessary if all code paths which modify
2245 * i_flags actually followed this rule, is that there is at least one
2246 * code path which doesn't today so we use cmpxchg() out of an abundance
2247 * of caution.
2248 *
2249 * In the long run, i_mutex is overkill, and we should probably look
2250 * at using the i_lock spinlock to protect i_flags, and then make sure
2251 * it is so documented in include/linux/fs.h and that all code follows
2252 * the locking convention!!
2253 */
2254void inode_set_flags(struct inode *inode, unsigned int flags,
2255                     unsigned int mask)
2256{
2257        WARN_ON_ONCE(flags & ~mask);
2258        set_mask_bits(&inode->i_flags, mask, flags);
2259}
2260EXPORT_SYMBOL(inode_set_flags);
2261
2262void inode_nohighmem(struct inode *inode)
2263{
2264        mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2265}
2266EXPORT_SYMBOL(inode_nohighmem);
2267
2268/**
2269 * timestamp_truncate - Truncate timespec to a granularity
2270 * @t: Timespec
2271 * @inode: inode being updated
2272 *
2273 * Truncate a timespec to the granularity supported by the fs
2274 * containing the inode. Always rounds down. gran must
2275 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2276 */
2277struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2278{
2279        struct super_block *sb = inode->i_sb;
2280        unsigned int gran = sb->s_time_gran;
2281
2282        t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2283        if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2284                t.tv_nsec = 0;
2285
2286        /* Avoid division in the common cases 1 ns and 1 s. */
2287        if (gran == 1)
2288                ; /* nothing */
2289        else if (gran == NSEC_PER_SEC)
2290                t.tv_nsec = 0;
2291        else if (gran > 1 && gran < NSEC_PER_SEC)
2292                t.tv_nsec -= t.tv_nsec % gran;
2293        else
2294                WARN(1, "invalid file time granularity: %u", gran);
2295        return t;
2296}
2297EXPORT_SYMBOL(timestamp_truncate);
2298
2299/**
2300 * current_time - Return FS time
2301 * @inode: inode.
2302 *
2303 * Return the current time truncated to the time granularity supported by
2304 * the fs.
2305 *
2306 * Note that inode and inode->sb cannot be NULL.
2307 * Otherwise, the function warns and returns time without truncation.
2308 */
2309struct timespec64 current_time(struct inode *inode)
2310{
2311        struct timespec64 now;
2312
2313        ktime_get_coarse_real_ts64(&now);
2314
2315        if (unlikely(!inode->i_sb)) {
2316                WARN(1, "current_time() called with uninitialized super_block in the inode");
2317                return now;
2318        }
2319
2320        return timestamp_truncate(now, inode);
2321}
2322EXPORT_SYMBOL(current_time);
2323