linux/fs/io_uring.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Shared application/kernel submission and completion ring pairs, for
   4 * supporting fast/efficient IO.
   5 *
   6 * A note on the read/write ordering memory barriers that are matched between
   7 * the application and kernel side.
   8 *
   9 * After the application reads the CQ ring tail, it must use an
  10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
  11 * before writing the tail (using smp_load_acquire to read the tail will
  12 * do). It also needs a smp_mb() before updating CQ head (ordering the
  13 * entry load(s) with the head store), pairing with an implicit barrier
  14 * through a control-dependency in io_get_cqe (smp_store_release to
  15 * store head will do). Failure to do so could lead to reading invalid
  16 * CQ entries.
  17 *
  18 * Likewise, the application must use an appropriate smp_wmb() before
  19 * writing the SQ tail (ordering SQ entry stores with the tail store),
  20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
  21 * to store the tail will do). And it needs a barrier ordering the SQ
  22 * head load before writing new SQ entries (smp_load_acquire to read
  23 * head will do).
  24 *
  25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
  26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
  27 * updating the SQ tail; a full memory barrier smp_mb() is needed
  28 * between.
  29 *
  30 * Also see the examples in the liburing library:
  31 *
  32 *      git://git.kernel.dk/liburing
  33 *
  34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
  35 * from data shared between the kernel and application. This is done both
  36 * for ordering purposes, but also to ensure that once a value is loaded from
  37 * data that the application could potentially modify, it remains stable.
  38 *
  39 * Copyright (C) 2018-2019 Jens Axboe
  40 * Copyright (c) 2018-2019 Christoph Hellwig
  41 */
  42#include <linux/kernel.h>
  43#include <linux/init.h>
  44#include <linux/errno.h>
  45#include <linux/syscalls.h>
  46#include <linux/compat.h>
  47#include <net/compat.h>
  48#include <linux/refcount.h>
  49#include <linux/uio.h>
  50#include <linux/bits.h>
  51
  52#include <linux/sched/signal.h>
  53#include <linux/fs.h>
  54#include <linux/file.h>
  55#include <linux/fdtable.h>
  56#include <linux/mm.h>
  57#include <linux/mman.h>
  58#include <linux/percpu.h>
  59#include <linux/slab.h>
  60#include <linux/blkdev.h>
  61#include <linux/bvec.h>
  62#include <linux/net.h>
  63#include <net/sock.h>
  64#include <net/af_unix.h>
  65#include <net/scm.h>
  66#include <linux/anon_inodes.h>
  67#include <linux/sched/mm.h>
  68#include <linux/uaccess.h>
  69#include <linux/nospec.h>
  70#include <linux/sizes.h>
  71#include <linux/hugetlb.h>
  72#include <linux/highmem.h>
  73#include <linux/namei.h>
  74#include <linux/fsnotify.h>
  75#include <linux/fadvise.h>
  76#include <linux/eventpoll.h>
  77#include <linux/splice.h>
  78#include <linux/task_work.h>
  79#include <linux/pagemap.h>
  80#include <linux/io_uring.h>
  81#include <linux/tracehook.h>
  82
  83#define CREATE_TRACE_POINTS
  84#include <trace/events/io_uring.h>
  85
  86#include <uapi/linux/io_uring.h>
  87
  88#include "internal.h"
  89#include "io-wq.h"
  90
  91#define IORING_MAX_ENTRIES      32768
  92#define IORING_MAX_CQ_ENTRIES   (2 * IORING_MAX_ENTRIES)
  93#define IORING_SQPOLL_CAP_ENTRIES_VALUE 8
  94
  95/*
  96 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
  97 */
  98#define IORING_FILE_TABLE_SHIFT 9
  99#define IORING_MAX_FILES_TABLE  (1U << IORING_FILE_TABLE_SHIFT)
 100#define IORING_FILE_TABLE_MASK  (IORING_MAX_FILES_TABLE - 1)
 101#define IORING_MAX_FIXED_FILES  (64 * IORING_MAX_FILES_TABLE)
 102#define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
 103                                 IORING_REGISTER_LAST + IORING_OP_LAST)
 104
 105#define IO_RSRC_TAG_TABLE_SHIFT 9
 106#define IO_RSRC_TAG_TABLE_MAX   (1U << IO_RSRC_TAG_TABLE_SHIFT)
 107#define IO_RSRC_TAG_TABLE_MASK  (IO_RSRC_TAG_TABLE_MAX - 1)
 108
 109#define IORING_MAX_REG_BUFFERS  (1U << 14)
 110
 111#define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
 112                                IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
 113                                IOSQE_BUFFER_SELECT)
 114#define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
 115                                REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS)
 116
 117#define IO_TCTX_REFS_CACHE_NR   (1U << 10)
 118
 119struct io_uring {
 120        u32 head ____cacheline_aligned_in_smp;
 121        u32 tail ____cacheline_aligned_in_smp;
 122};
 123
 124/*
 125 * This data is shared with the application through the mmap at offsets
 126 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
 127 *
 128 * The offsets to the member fields are published through struct
 129 * io_sqring_offsets when calling io_uring_setup.
 130 */
 131struct io_rings {
 132        /*
 133         * Head and tail offsets into the ring; the offsets need to be
 134         * masked to get valid indices.
 135         *
 136         * The kernel controls head of the sq ring and the tail of the cq ring,
 137         * and the application controls tail of the sq ring and the head of the
 138         * cq ring.
 139         */
 140        struct io_uring         sq, cq;
 141        /*
 142         * Bitmasks to apply to head and tail offsets (constant, equals
 143         * ring_entries - 1)
 144         */
 145        u32                     sq_ring_mask, cq_ring_mask;
 146        /* Ring sizes (constant, power of 2) */
 147        u32                     sq_ring_entries, cq_ring_entries;
 148        /*
 149         * Number of invalid entries dropped by the kernel due to
 150         * invalid index stored in array
 151         *
 152         * Written by the kernel, shouldn't be modified by the
 153         * application (i.e. get number of "new events" by comparing to
 154         * cached value).
 155         *
 156         * After a new SQ head value was read by the application this
 157         * counter includes all submissions that were dropped reaching
 158         * the new SQ head (and possibly more).
 159         */
 160        u32                     sq_dropped;
 161        /*
 162         * Runtime SQ flags
 163         *
 164         * Written by the kernel, shouldn't be modified by the
 165         * application.
 166         *
 167         * The application needs a full memory barrier before checking
 168         * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
 169         */
 170        u32                     sq_flags;
 171        /*
 172         * Runtime CQ flags
 173         *
 174         * Written by the application, shouldn't be modified by the
 175         * kernel.
 176         */
 177        u32                     cq_flags;
 178        /*
 179         * Number of completion events lost because the queue was full;
 180         * this should be avoided by the application by making sure
 181         * there are not more requests pending than there is space in
 182         * the completion queue.
 183         *
 184         * Written by the kernel, shouldn't be modified by the
 185         * application (i.e. get number of "new events" by comparing to
 186         * cached value).
 187         *
 188         * As completion events come in out of order this counter is not
 189         * ordered with any other data.
 190         */
 191        u32                     cq_overflow;
 192        /*
 193         * Ring buffer of completion events.
 194         *
 195         * The kernel writes completion events fresh every time they are
 196         * produced, so the application is allowed to modify pending
 197         * entries.
 198         */
 199        struct io_uring_cqe     cqes[] ____cacheline_aligned_in_smp;
 200};
 201
 202enum io_uring_cmd_flags {
 203        IO_URING_F_NONBLOCK             = 1,
 204        IO_URING_F_COMPLETE_DEFER       = 2,
 205};
 206
 207struct io_mapped_ubuf {
 208        u64             ubuf;
 209        u64             ubuf_end;
 210        unsigned int    nr_bvecs;
 211        unsigned long   acct_pages;
 212        struct bio_vec  bvec[];
 213};
 214
 215struct io_ring_ctx;
 216
 217struct io_overflow_cqe {
 218        struct io_uring_cqe cqe;
 219        struct list_head list;
 220};
 221
 222struct io_fixed_file {
 223        /* file * with additional FFS_* flags */
 224        unsigned long file_ptr;
 225};
 226
 227struct io_rsrc_put {
 228        struct list_head list;
 229        u64 tag;
 230        union {
 231                void *rsrc;
 232                struct file *file;
 233                struct io_mapped_ubuf *buf;
 234        };
 235};
 236
 237struct io_file_table {
 238        /* two level table */
 239        struct io_fixed_file **files;
 240};
 241
 242struct io_rsrc_node {
 243        struct percpu_ref               refs;
 244        struct list_head                node;
 245        struct list_head                rsrc_list;
 246        struct io_rsrc_data             *rsrc_data;
 247        struct llist_node               llist;
 248        bool                            done;
 249};
 250
 251typedef void (rsrc_put_fn)(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc);
 252
 253struct io_rsrc_data {
 254        struct io_ring_ctx              *ctx;
 255
 256        u64                             **tags;
 257        unsigned int                    nr;
 258        rsrc_put_fn                     *do_put;
 259        atomic_t                        refs;
 260        struct completion               done;
 261        bool                            quiesce;
 262};
 263
 264struct io_buffer {
 265        struct list_head list;
 266        __u64 addr;
 267        __u32 len;
 268        __u16 bid;
 269};
 270
 271struct io_restriction {
 272        DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
 273        DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
 274        u8 sqe_flags_allowed;
 275        u8 sqe_flags_required;
 276        bool registered;
 277};
 278
 279enum {
 280        IO_SQ_THREAD_SHOULD_STOP = 0,
 281        IO_SQ_THREAD_SHOULD_PARK,
 282};
 283
 284struct io_sq_data {
 285        refcount_t              refs;
 286        atomic_t                park_pending;
 287        struct mutex            lock;
 288
 289        /* ctx's that are using this sqd */
 290        struct list_head        ctx_list;
 291
 292        struct task_struct      *thread;
 293        struct wait_queue_head  wait;
 294
 295        unsigned                sq_thread_idle;
 296        int                     sq_cpu;
 297        pid_t                   task_pid;
 298        pid_t                   task_tgid;
 299
 300        unsigned long           state;
 301        struct completion       exited;
 302};
 303
 304#define IO_IOPOLL_BATCH                 8
 305#define IO_COMPL_BATCH                  32
 306#define IO_REQ_CACHE_SIZE               32
 307#define IO_REQ_ALLOC_BATCH              8
 308
 309struct io_comp_state {
 310        struct io_kiocb         *reqs[IO_COMPL_BATCH];
 311        unsigned int            nr;
 312        /* inline/task_work completion list, under ->uring_lock */
 313        struct list_head        free_list;
 314};
 315
 316struct io_submit_link {
 317        struct io_kiocb         *head;
 318        struct io_kiocb         *last;
 319};
 320
 321struct io_submit_state {
 322        struct blk_plug         plug;
 323        struct io_submit_link   link;
 324
 325        /*
 326         * io_kiocb alloc cache
 327         */
 328        void                    *reqs[IO_REQ_CACHE_SIZE];
 329        unsigned int            free_reqs;
 330
 331        bool                    plug_started;
 332
 333        /*
 334         * Batch completion logic
 335         */
 336        struct io_comp_state    comp;
 337
 338        /*
 339         * File reference cache
 340         */
 341        struct file             *file;
 342        unsigned int            fd;
 343        unsigned int            file_refs;
 344        unsigned int            ios_left;
 345};
 346
 347struct io_ring_ctx {
 348        /* const or read-mostly hot data */
 349        struct {
 350                struct percpu_ref       refs;
 351
 352                struct io_rings         *rings;
 353                unsigned int            flags;
 354                unsigned int            compat: 1;
 355                unsigned int            drain_next: 1;
 356                unsigned int            eventfd_async: 1;
 357                unsigned int            restricted: 1;
 358                unsigned int            off_timeout_used: 1;
 359                unsigned int            drain_active: 1;
 360        } ____cacheline_aligned_in_smp;
 361
 362        /* submission data */
 363        struct {
 364                struct mutex            uring_lock;
 365
 366                /*
 367                 * Ring buffer of indices into array of io_uring_sqe, which is
 368                 * mmapped by the application using the IORING_OFF_SQES offset.
 369                 *
 370                 * This indirection could e.g. be used to assign fixed
 371                 * io_uring_sqe entries to operations and only submit them to
 372                 * the queue when needed.
 373                 *
 374                 * The kernel modifies neither the indices array nor the entries
 375                 * array.
 376                 */
 377                u32                     *sq_array;
 378                struct io_uring_sqe     *sq_sqes;
 379                unsigned                cached_sq_head;
 380                unsigned                sq_entries;
 381                struct list_head        defer_list;
 382
 383                /*
 384                 * Fixed resources fast path, should be accessed only under
 385                 * uring_lock, and updated through io_uring_register(2)
 386                 */
 387                struct io_rsrc_node     *rsrc_node;
 388                struct io_file_table    file_table;
 389                unsigned                nr_user_files;
 390                unsigned                nr_user_bufs;
 391                struct io_mapped_ubuf   **user_bufs;
 392
 393                struct io_submit_state  submit_state;
 394                struct list_head        timeout_list;
 395                struct list_head        cq_overflow_list;
 396                struct xarray           io_buffers;
 397                struct xarray           personalities;
 398                u32                     pers_next;
 399                unsigned                sq_thread_idle;
 400        } ____cacheline_aligned_in_smp;
 401
 402        /* IRQ completion list, under ->completion_lock */
 403        struct list_head        locked_free_list;
 404        unsigned int            locked_free_nr;
 405
 406        const struct cred       *sq_creds;      /* cred used for __io_sq_thread() */
 407        struct io_sq_data       *sq_data;       /* if using sq thread polling */
 408
 409        struct wait_queue_head  sqo_sq_wait;
 410        struct list_head        sqd_list;
 411
 412        unsigned long           check_cq_overflow;
 413
 414        struct {
 415                unsigned                cached_cq_tail;
 416                unsigned                cq_entries;
 417                struct eventfd_ctx      *cq_ev_fd;
 418                struct wait_queue_head  poll_wait;
 419                struct wait_queue_head  cq_wait;
 420                unsigned                cq_extra;
 421                atomic_t                cq_timeouts;
 422                struct fasync_struct    *cq_fasync;
 423                unsigned                cq_last_tm_flush;
 424        } ____cacheline_aligned_in_smp;
 425
 426        struct {
 427                spinlock_t              completion_lock;
 428
 429                /*
 430                 * ->iopoll_list is protected by the ctx->uring_lock for
 431                 * io_uring instances that don't use IORING_SETUP_SQPOLL.
 432                 * For SQPOLL, only the single threaded io_sq_thread() will
 433                 * manipulate the list, hence no extra locking is needed there.
 434                 */
 435                struct list_head        iopoll_list;
 436                struct hlist_head       *cancel_hash;
 437                unsigned                cancel_hash_bits;
 438                bool                    poll_multi_queue;
 439        } ____cacheline_aligned_in_smp;
 440
 441        struct io_restriction           restrictions;
 442
 443        /* slow path rsrc auxilary data, used by update/register */
 444        struct {
 445                struct io_rsrc_node             *rsrc_backup_node;
 446                struct io_mapped_ubuf           *dummy_ubuf;
 447                struct io_rsrc_data             *file_data;
 448                struct io_rsrc_data             *buf_data;
 449
 450                struct delayed_work             rsrc_put_work;
 451                struct llist_head               rsrc_put_llist;
 452                struct list_head                rsrc_ref_list;
 453                spinlock_t                      rsrc_ref_lock;
 454        };
 455
 456        /* Keep this last, we don't need it for the fast path */
 457        struct {
 458                #if defined(CONFIG_UNIX)
 459                        struct socket           *ring_sock;
 460                #endif
 461                /* hashed buffered write serialization */
 462                struct io_wq_hash               *hash_map;
 463
 464                /* Only used for accounting purposes */
 465                struct user_struct              *user;
 466                struct mm_struct                *mm_account;
 467
 468                /* ctx exit and cancelation */
 469                struct llist_head               fallback_llist;
 470                struct delayed_work             fallback_work;
 471                struct work_struct              exit_work;
 472                struct list_head                tctx_list;
 473                struct completion               ref_comp;
 474        };
 475};
 476
 477struct io_uring_task {
 478        /* submission side */
 479        int                     cached_refs;
 480        struct xarray           xa;
 481        struct wait_queue_head  wait;
 482        const struct io_ring_ctx *last;
 483        struct io_wq            *io_wq;
 484        struct percpu_counter   inflight;
 485        atomic_t                inflight_tracked;
 486        atomic_t                in_idle;
 487
 488        spinlock_t              task_lock;
 489        struct io_wq_work_list  task_list;
 490        unsigned long           task_state;
 491        struct callback_head    task_work;
 492};
 493
 494/*
 495 * First field must be the file pointer in all the
 496 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
 497 */
 498struct io_poll_iocb {
 499        struct file                     *file;
 500        struct wait_queue_head          *head;
 501        __poll_t                        events;
 502        bool                            done;
 503        bool                            canceled;
 504        struct wait_queue_entry         wait;
 505};
 506
 507struct io_poll_update {
 508        struct file                     *file;
 509        u64                             old_user_data;
 510        u64                             new_user_data;
 511        __poll_t                        events;
 512        bool                            update_events;
 513        bool                            update_user_data;
 514};
 515
 516struct io_close {
 517        struct file                     *file;
 518        int                             fd;
 519};
 520
 521struct io_timeout_data {
 522        struct io_kiocb                 *req;
 523        struct hrtimer                  timer;
 524        struct timespec64               ts;
 525        enum hrtimer_mode               mode;
 526};
 527
 528struct io_accept {
 529        struct file                     *file;
 530        struct sockaddr __user          *addr;
 531        int __user                      *addr_len;
 532        int                             flags;
 533        unsigned long                   nofile;
 534};
 535
 536struct io_sync {
 537        struct file                     *file;
 538        loff_t                          len;
 539        loff_t                          off;
 540        int                             flags;
 541        int                             mode;
 542};
 543
 544struct io_cancel {
 545        struct file                     *file;
 546        u64                             addr;
 547};
 548
 549struct io_timeout {
 550        struct file                     *file;
 551        u32                             off;
 552        u32                             target_seq;
 553        struct list_head                list;
 554        /* head of the link, used by linked timeouts only */
 555        struct io_kiocb                 *head;
 556};
 557
 558struct io_timeout_rem {
 559        struct file                     *file;
 560        u64                             addr;
 561
 562        /* timeout update */
 563        struct timespec64               ts;
 564        u32                             flags;
 565};
 566
 567struct io_rw {
 568        /* NOTE: kiocb has the file as the first member, so don't do it here */
 569        struct kiocb                    kiocb;
 570        u64                             addr;
 571        u64                             len;
 572};
 573
 574struct io_connect {
 575        struct file                     *file;
 576        struct sockaddr __user          *addr;
 577        int                             addr_len;
 578};
 579
 580struct io_sr_msg {
 581        struct file                     *file;
 582        union {
 583                struct compat_msghdr __user     *umsg_compat;
 584                struct user_msghdr __user       *umsg;
 585                void __user                     *buf;
 586        };
 587        int                             msg_flags;
 588        int                             bgid;
 589        size_t                          len;
 590        struct io_buffer                *kbuf;
 591};
 592
 593struct io_open {
 594        struct file                     *file;
 595        int                             dfd;
 596        struct filename                 *filename;
 597        struct open_how                 how;
 598        unsigned long                   nofile;
 599};
 600
 601struct io_rsrc_update {
 602        struct file                     *file;
 603        u64                             arg;
 604        u32                             nr_args;
 605        u32                             offset;
 606};
 607
 608struct io_fadvise {
 609        struct file                     *file;
 610        u64                             offset;
 611        u32                             len;
 612        u32                             advice;
 613};
 614
 615struct io_madvise {
 616        struct file                     *file;
 617        u64                             addr;
 618        u32                             len;
 619        u32                             advice;
 620};
 621
 622struct io_epoll {
 623        struct file                     *file;
 624        int                             epfd;
 625        int                             op;
 626        int                             fd;
 627        struct epoll_event              event;
 628};
 629
 630struct io_splice {
 631        struct file                     *file_out;
 632        struct file                     *file_in;
 633        loff_t                          off_out;
 634        loff_t                          off_in;
 635        u64                             len;
 636        unsigned int                    flags;
 637};
 638
 639struct io_provide_buf {
 640        struct file                     *file;
 641        __u64                           addr;
 642        __u32                           len;
 643        __u32                           bgid;
 644        __u16                           nbufs;
 645        __u16                           bid;
 646};
 647
 648struct io_statx {
 649        struct file                     *file;
 650        int                             dfd;
 651        unsigned int                    mask;
 652        unsigned int                    flags;
 653        const char __user               *filename;
 654        struct statx __user             *buffer;
 655};
 656
 657struct io_shutdown {
 658        struct file                     *file;
 659        int                             how;
 660};
 661
 662struct io_rename {
 663        struct file                     *file;
 664        int                             old_dfd;
 665        int                             new_dfd;
 666        struct filename                 *oldpath;
 667        struct filename                 *newpath;
 668        int                             flags;
 669};
 670
 671struct io_unlink {
 672        struct file                     *file;
 673        int                             dfd;
 674        int                             flags;
 675        struct filename                 *filename;
 676};
 677
 678struct io_completion {
 679        struct file                     *file;
 680        struct list_head                list;
 681        u32                             cflags;
 682};
 683
 684struct io_async_connect {
 685        struct sockaddr_storage         address;
 686};
 687
 688struct io_async_msghdr {
 689        struct iovec                    fast_iov[UIO_FASTIOV];
 690        /* points to an allocated iov, if NULL we use fast_iov instead */
 691        struct iovec                    *free_iov;
 692        struct sockaddr __user          *uaddr;
 693        struct msghdr                   msg;
 694        struct sockaddr_storage         addr;
 695};
 696
 697struct io_async_rw {
 698        struct iovec                    fast_iov[UIO_FASTIOV];
 699        const struct iovec              *free_iovec;
 700        struct iov_iter                 iter;
 701        size_t                          bytes_done;
 702        struct wait_page_queue          wpq;
 703};
 704
 705enum {
 706        REQ_F_FIXED_FILE_BIT    = IOSQE_FIXED_FILE_BIT,
 707        REQ_F_IO_DRAIN_BIT      = IOSQE_IO_DRAIN_BIT,
 708        REQ_F_LINK_BIT          = IOSQE_IO_LINK_BIT,
 709        REQ_F_HARDLINK_BIT      = IOSQE_IO_HARDLINK_BIT,
 710        REQ_F_FORCE_ASYNC_BIT   = IOSQE_ASYNC_BIT,
 711        REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
 712
 713        /* first byte is taken by user flags, shift it to not overlap */
 714        REQ_F_FAIL_BIT          = 8,
 715        REQ_F_INFLIGHT_BIT,
 716        REQ_F_CUR_POS_BIT,
 717        REQ_F_NOWAIT_BIT,
 718        REQ_F_LINK_TIMEOUT_BIT,
 719        REQ_F_NEED_CLEANUP_BIT,
 720        REQ_F_POLLED_BIT,
 721        REQ_F_BUFFER_SELECTED_BIT,
 722        REQ_F_LTIMEOUT_ACTIVE_BIT,
 723        REQ_F_COMPLETE_INLINE_BIT,
 724        REQ_F_REISSUE_BIT,
 725        REQ_F_DONT_REISSUE_BIT,
 726        REQ_F_CREDS_BIT,
 727        /* keep async read/write and isreg together and in order */
 728        REQ_F_ASYNC_READ_BIT,
 729        REQ_F_ASYNC_WRITE_BIT,
 730        REQ_F_ISREG_BIT,
 731
 732        /* not a real bit, just to check we're not overflowing the space */
 733        __REQ_F_LAST_BIT,
 734};
 735
 736enum {
 737        /* ctx owns file */
 738        REQ_F_FIXED_FILE        = BIT(REQ_F_FIXED_FILE_BIT),
 739        /* drain existing IO first */
 740        REQ_F_IO_DRAIN          = BIT(REQ_F_IO_DRAIN_BIT),
 741        /* linked sqes */
 742        REQ_F_LINK              = BIT(REQ_F_LINK_BIT),
 743        /* doesn't sever on completion < 0 */
 744        REQ_F_HARDLINK          = BIT(REQ_F_HARDLINK_BIT),
 745        /* IOSQE_ASYNC */
 746        REQ_F_FORCE_ASYNC       = BIT(REQ_F_FORCE_ASYNC_BIT),
 747        /* IOSQE_BUFFER_SELECT */
 748        REQ_F_BUFFER_SELECT     = BIT(REQ_F_BUFFER_SELECT_BIT),
 749
 750        /* fail rest of links */
 751        REQ_F_FAIL              = BIT(REQ_F_FAIL_BIT),
 752        /* on inflight list, should be cancelled and waited on exit reliably */
 753        REQ_F_INFLIGHT          = BIT(REQ_F_INFLIGHT_BIT),
 754        /* read/write uses file position */
 755        REQ_F_CUR_POS           = BIT(REQ_F_CUR_POS_BIT),
 756        /* must not punt to workers */
 757        REQ_F_NOWAIT            = BIT(REQ_F_NOWAIT_BIT),
 758        /* has or had linked timeout */
 759        REQ_F_LINK_TIMEOUT      = BIT(REQ_F_LINK_TIMEOUT_BIT),
 760        /* needs cleanup */
 761        REQ_F_NEED_CLEANUP      = BIT(REQ_F_NEED_CLEANUP_BIT),
 762        /* already went through poll handler */
 763        REQ_F_POLLED            = BIT(REQ_F_POLLED_BIT),
 764        /* buffer already selected */
 765        REQ_F_BUFFER_SELECTED   = BIT(REQ_F_BUFFER_SELECTED_BIT),
 766        /* linked timeout is active, i.e. prepared by link's head */
 767        REQ_F_LTIMEOUT_ACTIVE   = BIT(REQ_F_LTIMEOUT_ACTIVE_BIT),
 768        /* completion is deferred through io_comp_state */
 769        REQ_F_COMPLETE_INLINE   = BIT(REQ_F_COMPLETE_INLINE_BIT),
 770        /* caller should reissue async */
 771        REQ_F_REISSUE           = BIT(REQ_F_REISSUE_BIT),
 772        /* don't attempt request reissue, see io_rw_reissue() */
 773        REQ_F_DONT_REISSUE      = BIT(REQ_F_DONT_REISSUE_BIT),
 774        /* supports async reads */
 775        REQ_F_ASYNC_READ        = BIT(REQ_F_ASYNC_READ_BIT),
 776        /* supports async writes */
 777        REQ_F_ASYNC_WRITE       = BIT(REQ_F_ASYNC_WRITE_BIT),
 778        /* regular file */
 779        REQ_F_ISREG             = BIT(REQ_F_ISREG_BIT),
 780        /* has creds assigned */
 781        REQ_F_CREDS             = BIT(REQ_F_CREDS_BIT),
 782};
 783
 784struct async_poll {
 785        struct io_poll_iocb     poll;
 786        struct io_poll_iocb     *double_poll;
 787};
 788
 789typedef void (*io_req_tw_func_t)(struct io_kiocb *req);
 790
 791struct io_task_work {
 792        union {
 793                struct io_wq_work_node  node;
 794                struct llist_node       fallback_node;
 795        };
 796        io_req_tw_func_t                func;
 797};
 798
 799enum {
 800        IORING_RSRC_FILE                = 0,
 801        IORING_RSRC_BUFFER              = 1,
 802};
 803
 804/*
 805 * NOTE! Each of the iocb union members has the file pointer
 806 * as the first entry in their struct definition. So you can
 807 * access the file pointer through any of the sub-structs,
 808 * or directly as just 'ki_filp' in this struct.
 809 */
 810struct io_kiocb {
 811        union {
 812                struct file             *file;
 813                struct io_rw            rw;
 814                struct io_poll_iocb     poll;
 815                struct io_poll_update   poll_update;
 816                struct io_accept        accept;
 817                struct io_sync          sync;
 818                struct io_cancel        cancel;
 819                struct io_timeout       timeout;
 820                struct io_timeout_rem   timeout_rem;
 821                struct io_connect       connect;
 822                struct io_sr_msg        sr_msg;
 823                struct io_open          open;
 824                struct io_close         close;
 825                struct io_rsrc_update   rsrc_update;
 826                struct io_fadvise       fadvise;
 827                struct io_madvise       madvise;
 828                struct io_epoll         epoll;
 829                struct io_splice        splice;
 830                struct io_provide_buf   pbuf;
 831                struct io_statx         statx;
 832                struct io_shutdown      shutdown;
 833                struct io_rename        rename;
 834                struct io_unlink        unlink;
 835                /* use only after cleaning per-op data, see io_clean_op() */
 836                struct io_completion    compl;
 837        };
 838
 839        /* opcode allocated if it needs to store data for async defer */
 840        void                            *async_data;
 841        u8                              opcode;
 842        /* polled IO has completed */
 843        u8                              iopoll_completed;
 844
 845        u16                             buf_index;
 846        u32                             result;
 847
 848        struct io_ring_ctx              *ctx;
 849        unsigned int                    flags;
 850        atomic_t                        refs;
 851        struct task_struct              *task;
 852        u64                             user_data;
 853
 854        struct io_kiocb                 *link;
 855        struct percpu_ref               *fixed_rsrc_refs;
 856
 857        /* used with ctx->iopoll_list with reads/writes */
 858        struct list_head                inflight_entry;
 859        struct io_task_work             io_task_work;
 860        /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
 861        struct hlist_node               hash_node;
 862        struct async_poll               *apoll;
 863        struct io_wq_work               work;
 864        const struct cred               *creds;
 865
 866        /* store used ubuf, so we can prevent reloading */
 867        struct io_mapped_ubuf           *imu;
 868};
 869
 870struct io_tctx_node {
 871        struct list_head        ctx_node;
 872        struct task_struct      *task;
 873        struct io_ring_ctx      *ctx;
 874};
 875
 876struct io_defer_entry {
 877        struct list_head        list;
 878        struct io_kiocb         *req;
 879        u32                     seq;
 880};
 881
 882struct io_op_def {
 883        /* needs req->file assigned */
 884        unsigned                needs_file : 1;
 885        /* hash wq insertion if file is a regular file */
 886        unsigned                hash_reg_file : 1;
 887        /* unbound wq insertion if file is a non-regular file */
 888        unsigned                unbound_nonreg_file : 1;
 889        /* opcode is not supported by this kernel */
 890        unsigned                not_supported : 1;
 891        /* set if opcode supports polled "wait" */
 892        unsigned                pollin : 1;
 893        unsigned                pollout : 1;
 894        /* op supports buffer selection */
 895        unsigned                buffer_select : 1;
 896        /* do prep async if is going to be punted */
 897        unsigned                needs_async_setup : 1;
 898        /* should block plug */
 899        unsigned                plug : 1;
 900        /* size of async data needed, if any */
 901        unsigned short          async_size;
 902};
 903
 904static const struct io_op_def io_op_defs[] = {
 905        [IORING_OP_NOP] = {},
 906        [IORING_OP_READV] = {
 907                .needs_file             = 1,
 908                .unbound_nonreg_file    = 1,
 909                .pollin                 = 1,
 910                .buffer_select          = 1,
 911                .needs_async_setup      = 1,
 912                .plug                   = 1,
 913                .async_size             = sizeof(struct io_async_rw),
 914        },
 915        [IORING_OP_WRITEV] = {
 916                .needs_file             = 1,
 917                .hash_reg_file          = 1,
 918                .unbound_nonreg_file    = 1,
 919                .pollout                = 1,
 920                .needs_async_setup      = 1,
 921                .plug                   = 1,
 922                .async_size             = sizeof(struct io_async_rw),
 923        },
 924        [IORING_OP_FSYNC] = {
 925                .needs_file             = 1,
 926        },
 927        [IORING_OP_READ_FIXED] = {
 928                .needs_file             = 1,
 929                .unbound_nonreg_file    = 1,
 930                .pollin                 = 1,
 931                .plug                   = 1,
 932                .async_size             = sizeof(struct io_async_rw),
 933        },
 934        [IORING_OP_WRITE_FIXED] = {
 935                .needs_file             = 1,
 936                .hash_reg_file          = 1,
 937                .unbound_nonreg_file    = 1,
 938                .pollout                = 1,
 939                .plug                   = 1,
 940                .async_size             = sizeof(struct io_async_rw),
 941        },
 942        [IORING_OP_POLL_ADD] = {
 943                .needs_file             = 1,
 944                .unbound_nonreg_file    = 1,
 945        },
 946        [IORING_OP_POLL_REMOVE] = {},
 947        [IORING_OP_SYNC_FILE_RANGE] = {
 948                .needs_file             = 1,
 949        },
 950        [IORING_OP_SENDMSG] = {
 951                .needs_file             = 1,
 952                .unbound_nonreg_file    = 1,
 953                .pollout                = 1,
 954                .needs_async_setup      = 1,
 955                .async_size             = sizeof(struct io_async_msghdr),
 956        },
 957        [IORING_OP_RECVMSG] = {
 958                .needs_file             = 1,
 959                .unbound_nonreg_file    = 1,
 960                .pollin                 = 1,
 961                .buffer_select          = 1,
 962                .needs_async_setup      = 1,
 963                .async_size             = sizeof(struct io_async_msghdr),
 964        },
 965        [IORING_OP_TIMEOUT] = {
 966                .async_size             = sizeof(struct io_timeout_data),
 967        },
 968        [IORING_OP_TIMEOUT_REMOVE] = {
 969                /* used by timeout updates' prep() */
 970        },
 971        [IORING_OP_ACCEPT] = {
 972                .needs_file             = 1,
 973                .unbound_nonreg_file    = 1,
 974                .pollin                 = 1,
 975        },
 976        [IORING_OP_ASYNC_CANCEL] = {},
 977        [IORING_OP_LINK_TIMEOUT] = {
 978                .async_size             = sizeof(struct io_timeout_data),
 979        },
 980        [IORING_OP_CONNECT] = {
 981                .needs_file             = 1,
 982                .unbound_nonreg_file    = 1,
 983                .pollout                = 1,
 984                .needs_async_setup      = 1,
 985                .async_size             = sizeof(struct io_async_connect),
 986        },
 987        [IORING_OP_FALLOCATE] = {
 988                .needs_file             = 1,
 989        },
 990        [IORING_OP_OPENAT] = {},
 991        [IORING_OP_CLOSE] = {},
 992        [IORING_OP_FILES_UPDATE] = {},
 993        [IORING_OP_STATX] = {},
 994        [IORING_OP_READ] = {
 995                .needs_file             = 1,
 996                .unbound_nonreg_file    = 1,
 997                .pollin                 = 1,
 998                .buffer_select          = 1,
 999                .plug                   = 1,
1000                .async_size             = sizeof(struct io_async_rw),
1001        },
1002        [IORING_OP_WRITE] = {
1003                .needs_file             = 1,
1004                .unbound_nonreg_file    = 1,
1005                .pollout                = 1,
1006                .plug                   = 1,
1007                .async_size             = sizeof(struct io_async_rw),
1008        },
1009        [IORING_OP_FADVISE] = {
1010                .needs_file             = 1,
1011        },
1012        [IORING_OP_MADVISE] = {},
1013        [IORING_OP_SEND] = {
1014                .needs_file             = 1,
1015                .unbound_nonreg_file    = 1,
1016                .pollout                = 1,
1017        },
1018        [IORING_OP_RECV] = {
1019                .needs_file             = 1,
1020                .unbound_nonreg_file    = 1,
1021                .pollin                 = 1,
1022                .buffer_select          = 1,
1023        },
1024        [IORING_OP_OPENAT2] = {
1025        },
1026        [IORING_OP_EPOLL_CTL] = {
1027                .unbound_nonreg_file    = 1,
1028        },
1029        [IORING_OP_SPLICE] = {
1030                .needs_file             = 1,
1031                .hash_reg_file          = 1,
1032                .unbound_nonreg_file    = 1,
1033        },
1034        [IORING_OP_PROVIDE_BUFFERS] = {},
1035        [IORING_OP_REMOVE_BUFFERS] = {},
1036        [IORING_OP_TEE] = {
1037                .needs_file             = 1,
1038                .hash_reg_file          = 1,
1039                .unbound_nonreg_file    = 1,
1040        },
1041        [IORING_OP_SHUTDOWN] = {
1042                .needs_file             = 1,
1043        },
1044        [IORING_OP_RENAMEAT] = {},
1045        [IORING_OP_UNLINKAT] = {},
1046};
1047
1048static bool io_disarm_next(struct io_kiocb *req);
1049static void io_uring_del_tctx_node(unsigned long index);
1050static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
1051                                         struct task_struct *task,
1052                                         bool cancel_all);
1053static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
1054static struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx);
1055
1056static bool io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1057                                 long res, unsigned int cflags);
1058static void io_put_req(struct io_kiocb *req);
1059static void io_put_req_deferred(struct io_kiocb *req, int nr);
1060static void io_dismantle_req(struct io_kiocb *req);
1061static void io_put_task(struct task_struct *task, int nr);
1062static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
1063static void io_queue_linked_timeout(struct io_kiocb *req);
1064static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
1065                                     struct io_uring_rsrc_update2 *up,
1066                                     unsigned nr_args);
1067static void io_clean_op(struct io_kiocb *req);
1068static struct file *io_file_get(struct io_submit_state *state,
1069                                struct io_kiocb *req, int fd, bool fixed);
1070static void __io_queue_sqe(struct io_kiocb *req);
1071static void io_rsrc_put_work(struct work_struct *work);
1072
1073static void io_req_task_queue(struct io_kiocb *req);
1074static void io_submit_flush_completions(struct io_ring_ctx *ctx);
1075static bool io_poll_remove_waitqs(struct io_kiocb *req);
1076static int io_req_prep_async(struct io_kiocb *req);
1077
1078static void io_fallback_req_func(struct work_struct *unused);
1079
1080static struct kmem_cache *req_cachep;
1081
1082static const struct file_operations io_uring_fops;
1083
1084struct sock *io_uring_get_socket(struct file *file)
1085{
1086#if defined(CONFIG_UNIX)
1087        if (file->f_op == &io_uring_fops) {
1088                struct io_ring_ctx *ctx = file->private_data;
1089
1090                return ctx->ring_sock->sk;
1091        }
1092#endif
1093        return NULL;
1094}
1095EXPORT_SYMBOL(io_uring_get_socket);
1096
1097#define io_for_each_link(pos, head) \
1098        for (pos = (head); pos; pos = pos->link)
1099
1100static inline void io_req_set_rsrc_node(struct io_kiocb *req)
1101{
1102        struct io_ring_ctx *ctx = req->ctx;
1103
1104        if (!req->fixed_rsrc_refs) {
1105                req->fixed_rsrc_refs = &ctx->rsrc_node->refs;
1106                percpu_ref_get(req->fixed_rsrc_refs);
1107        }
1108}
1109
1110static void io_refs_resurrect(struct percpu_ref *ref, struct completion *compl)
1111{
1112        bool got = percpu_ref_tryget(ref);
1113
1114        /* already at zero, wait for ->release() */
1115        if (!got)
1116                wait_for_completion(compl);
1117        percpu_ref_resurrect(ref);
1118        if (got)
1119                percpu_ref_put(ref);
1120}
1121
1122static bool io_match_task(struct io_kiocb *head, struct task_struct *task,
1123                          bool cancel_all)
1124{
1125        struct io_kiocb *req;
1126
1127        if (task && head->task != task)
1128                return false;
1129        if (cancel_all)
1130                return true;
1131
1132        io_for_each_link(req, head) {
1133                if (req->flags & REQ_F_INFLIGHT)
1134                        return true;
1135        }
1136        return false;
1137}
1138
1139static inline void req_set_fail(struct io_kiocb *req)
1140{
1141        req->flags |= REQ_F_FAIL;
1142}
1143
1144static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1145{
1146        struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1147
1148        complete(&ctx->ref_comp);
1149}
1150
1151static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1152{
1153        return !req->timeout.off;
1154}
1155
1156static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1157{
1158        struct io_ring_ctx *ctx;
1159        int hash_bits;
1160
1161        ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1162        if (!ctx)
1163                return NULL;
1164
1165        /*
1166         * Use 5 bits less than the max cq entries, that should give us around
1167         * 32 entries per hash list if totally full and uniformly spread.
1168         */
1169        hash_bits = ilog2(p->cq_entries);
1170        hash_bits -= 5;
1171        if (hash_bits <= 0)
1172                hash_bits = 1;
1173        ctx->cancel_hash_bits = hash_bits;
1174        ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1175                                        GFP_KERNEL);
1176        if (!ctx->cancel_hash)
1177                goto err;
1178        __hash_init(ctx->cancel_hash, 1U << hash_bits);
1179
1180        ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
1181        if (!ctx->dummy_ubuf)
1182                goto err;
1183        /* set invalid range, so io_import_fixed() fails meeting it */
1184        ctx->dummy_ubuf->ubuf = -1UL;
1185
1186        if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1187                            PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1188                goto err;
1189
1190        ctx->flags = p->flags;
1191        init_waitqueue_head(&ctx->sqo_sq_wait);
1192        INIT_LIST_HEAD(&ctx->sqd_list);
1193        init_waitqueue_head(&ctx->poll_wait);
1194        INIT_LIST_HEAD(&ctx->cq_overflow_list);
1195        init_completion(&ctx->ref_comp);
1196        xa_init_flags(&ctx->io_buffers, XA_FLAGS_ALLOC1);
1197        xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
1198        mutex_init(&ctx->uring_lock);
1199        init_waitqueue_head(&ctx->cq_wait);
1200        spin_lock_init(&ctx->completion_lock);
1201        INIT_LIST_HEAD(&ctx->iopoll_list);
1202        INIT_LIST_HEAD(&ctx->defer_list);
1203        INIT_LIST_HEAD(&ctx->timeout_list);
1204        spin_lock_init(&ctx->rsrc_ref_lock);
1205        INIT_LIST_HEAD(&ctx->rsrc_ref_list);
1206        INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
1207        init_llist_head(&ctx->rsrc_put_llist);
1208        INIT_LIST_HEAD(&ctx->tctx_list);
1209        INIT_LIST_HEAD(&ctx->submit_state.comp.free_list);
1210        INIT_LIST_HEAD(&ctx->locked_free_list);
1211        INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
1212        return ctx;
1213err:
1214        kfree(ctx->dummy_ubuf);
1215        kfree(ctx->cancel_hash);
1216        kfree(ctx);
1217        return NULL;
1218}
1219
1220static void io_account_cq_overflow(struct io_ring_ctx *ctx)
1221{
1222        struct io_rings *r = ctx->rings;
1223
1224        WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
1225        ctx->cq_extra--;
1226}
1227
1228static bool req_need_defer(struct io_kiocb *req, u32 seq)
1229{
1230        if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1231                struct io_ring_ctx *ctx = req->ctx;
1232
1233                return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
1234        }
1235
1236        return false;
1237}
1238
1239static void io_req_track_inflight(struct io_kiocb *req)
1240{
1241        if (!(req->flags & REQ_F_INFLIGHT)) {
1242                req->flags |= REQ_F_INFLIGHT;
1243                atomic_inc(&current->io_uring->inflight_tracked);
1244        }
1245}
1246
1247static void io_prep_async_work(struct io_kiocb *req)
1248{
1249        const struct io_op_def *def = &io_op_defs[req->opcode];
1250        struct io_ring_ctx *ctx = req->ctx;
1251
1252        if (!(req->flags & REQ_F_CREDS)) {
1253                req->flags |= REQ_F_CREDS;
1254                req->creds = get_current_cred();
1255        }
1256
1257        req->work.list.next = NULL;
1258        req->work.flags = 0;
1259        if (req->flags & REQ_F_FORCE_ASYNC)
1260                req->work.flags |= IO_WQ_WORK_CONCURRENT;
1261
1262        if (req->flags & REQ_F_ISREG) {
1263                if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1264                        io_wq_hash_work(&req->work, file_inode(req->file));
1265        } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
1266                if (def->unbound_nonreg_file)
1267                        req->work.flags |= IO_WQ_WORK_UNBOUND;
1268        }
1269
1270        switch (req->opcode) {
1271        case IORING_OP_SPLICE:
1272        case IORING_OP_TEE:
1273                if (!S_ISREG(file_inode(req->splice.file_in)->i_mode))
1274                        req->work.flags |= IO_WQ_WORK_UNBOUND;
1275                break;
1276        }
1277}
1278
1279static void io_prep_async_link(struct io_kiocb *req)
1280{
1281        struct io_kiocb *cur;
1282
1283        if (req->flags & REQ_F_LINK_TIMEOUT) {
1284                struct io_ring_ctx *ctx = req->ctx;
1285
1286                spin_lock_irq(&ctx->completion_lock);
1287                io_for_each_link(cur, req)
1288                        io_prep_async_work(cur);
1289                spin_unlock_irq(&ctx->completion_lock);
1290        } else {
1291                io_for_each_link(cur, req)
1292                        io_prep_async_work(cur);
1293        }
1294}
1295
1296static void io_queue_async_work(struct io_kiocb *req)
1297{
1298        struct io_ring_ctx *ctx = req->ctx;
1299        struct io_kiocb *link = io_prep_linked_timeout(req);
1300        struct io_uring_task *tctx = req->task->io_uring;
1301
1302        BUG_ON(!tctx);
1303        BUG_ON(!tctx->io_wq);
1304
1305        /* init ->work of the whole link before punting */
1306        io_prep_async_link(req);
1307
1308        /*
1309         * Not expected to happen, but if we do have a bug where this _can_
1310         * happen, catch it here and ensure the request is marked as
1311         * canceled. That will make io-wq go through the usual work cancel
1312         * procedure rather than attempt to run this request (or create a new
1313         * worker for it).
1314         */
1315        if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
1316                req->work.flags |= IO_WQ_WORK_CANCEL;
1317
1318        trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1319                                        &req->work, req->flags);
1320        io_wq_enqueue(tctx->io_wq, &req->work);
1321        if (link)
1322                io_queue_linked_timeout(link);
1323}
1324
1325static void io_kill_timeout(struct io_kiocb *req, int status)
1326        __must_hold(&req->ctx->completion_lock)
1327{
1328        struct io_timeout_data *io = req->async_data;
1329
1330        if (hrtimer_try_to_cancel(&io->timer) != -1) {
1331                atomic_set(&req->ctx->cq_timeouts,
1332                        atomic_read(&req->ctx->cq_timeouts) + 1);
1333                list_del_init(&req->timeout.list);
1334                io_cqring_fill_event(req->ctx, req->user_data, status, 0);
1335                io_put_req_deferred(req, 1);
1336        }
1337}
1338
1339static void io_queue_deferred(struct io_ring_ctx *ctx)
1340{
1341        while (!list_empty(&ctx->defer_list)) {
1342                struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1343                                                struct io_defer_entry, list);
1344
1345                if (req_need_defer(de->req, de->seq))
1346                        break;
1347                list_del_init(&de->list);
1348                io_req_task_queue(de->req);
1349                kfree(de);
1350        }
1351}
1352
1353static void io_flush_timeouts(struct io_ring_ctx *ctx)
1354{
1355        u32 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1356
1357        while (!list_empty(&ctx->timeout_list)) {
1358                u32 events_needed, events_got;
1359                struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1360                                                struct io_kiocb, timeout.list);
1361
1362                if (io_is_timeout_noseq(req))
1363                        break;
1364
1365                /*
1366                 * Since seq can easily wrap around over time, subtract
1367                 * the last seq at which timeouts were flushed before comparing.
1368                 * Assuming not more than 2^31-1 events have happened since,
1369                 * these subtractions won't have wrapped, so we can check if
1370                 * target is in [last_seq, current_seq] by comparing the two.
1371                 */
1372                events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1373                events_got = seq - ctx->cq_last_tm_flush;
1374                if (events_got < events_needed)
1375                        break;
1376
1377                list_del_init(&req->timeout.list);
1378                io_kill_timeout(req, 0);
1379        }
1380        ctx->cq_last_tm_flush = seq;
1381}
1382
1383static void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
1384{
1385        if (ctx->off_timeout_used)
1386                io_flush_timeouts(ctx);
1387        if (ctx->drain_active)
1388                io_queue_deferred(ctx);
1389}
1390
1391static inline void io_commit_cqring(struct io_ring_ctx *ctx)
1392{
1393        if (unlikely(ctx->off_timeout_used || ctx->drain_active))
1394                __io_commit_cqring_flush(ctx);
1395        /* order cqe stores with ring update */
1396        smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
1397}
1398
1399static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1400{
1401        struct io_rings *r = ctx->rings;
1402
1403        return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries;
1404}
1405
1406static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
1407{
1408        return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1409}
1410
1411static inline struct io_uring_cqe *io_get_cqe(struct io_ring_ctx *ctx)
1412{
1413        struct io_rings *rings = ctx->rings;
1414        unsigned tail, mask = ctx->cq_entries - 1;
1415
1416        /*
1417         * writes to the cq entry need to come after reading head; the
1418         * control dependency is enough as we're using WRITE_ONCE to
1419         * fill the cq entry
1420         */
1421        if (__io_cqring_events(ctx) == ctx->cq_entries)
1422                return NULL;
1423
1424        tail = ctx->cached_cq_tail++;
1425        return &rings->cqes[tail & mask];
1426}
1427
1428static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1429{
1430        if (likely(!ctx->cq_ev_fd))
1431                return false;
1432        if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1433                return false;
1434        return !ctx->eventfd_async || io_wq_current_is_worker();
1435}
1436
1437static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1438{
1439        /* see waitqueue_active() comment */
1440        smp_mb();
1441
1442        if (waitqueue_active(&ctx->cq_wait))
1443                wake_up(&ctx->cq_wait);
1444        if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1445                wake_up(&ctx->sq_data->wait);
1446        if (io_should_trigger_evfd(ctx))
1447                eventfd_signal(ctx->cq_ev_fd, 1);
1448        if (waitqueue_active(&ctx->poll_wait)) {
1449                wake_up_interruptible(&ctx->poll_wait);
1450                kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1451        }
1452}
1453
1454static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1455{
1456        /* see waitqueue_active() comment */
1457        smp_mb();
1458
1459        if (ctx->flags & IORING_SETUP_SQPOLL) {
1460                if (waitqueue_active(&ctx->cq_wait))
1461                        wake_up(&ctx->cq_wait);
1462        }
1463        if (io_should_trigger_evfd(ctx))
1464                eventfd_signal(ctx->cq_ev_fd, 1);
1465        if (waitqueue_active(&ctx->poll_wait)) {
1466                wake_up_interruptible(&ctx->poll_wait);
1467                kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1468        }
1469}
1470
1471/* Returns true if there are no backlogged entries after the flush */
1472static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1473{
1474        unsigned long flags;
1475        bool all_flushed, posted;
1476
1477        if (!force && __io_cqring_events(ctx) == ctx->cq_entries)
1478                return false;
1479
1480        posted = false;
1481        spin_lock_irqsave(&ctx->completion_lock, flags);
1482        while (!list_empty(&ctx->cq_overflow_list)) {
1483                struct io_uring_cqe *cqe = io_get_cqe(ctx);
1484                struct io_overflow_cqe *ocqe;
1485
1486                if (!cqe && !force)
1487                        break;
1488                ocqe = list_first_entry(&ctx->cq_overflow_list,
1489                                        struct io_overflow_cqe, list);
1490                if (cqe)
1491                        memcpy(cqe, &ocqe->cqe, sizeof(*cqe));
1492                else
1493                        io_account_cq_overflow(ctx);
1494
1495                posted = true;
1496                list_del(&ocqe->list);
1497                kfree(ocqe);
1498        }
1499
1500        all_flushed = list_empty(&ctx->cq_overflow_list);
1501        if (all_flushed) {
1502                clear_bit(0, &ctx->check_cq_overflow);
1503                WRITE_ONCE(ctx->rings->sq_flags,
1504                           ctx->rings->sq_flags & ~IORING_SQ_CQ_OVERFLOW);
1505        }
1506
1507        if (posted)
1508                io_commit_cqring(ctx);
1509        spin_unlock_irqrestore(&ctx->completion_lock, flags);
1510        if (posted)
1511                io_cqring_ev_posted(ctx);
1512        return all_flushed;
1513}
1514
1515static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1516{
1517        bool ret = true;
1518
1519        if (test_bit(0, &ctx->check_cq_overflow)) {
1520                /* iopoll syncs against uring_lock, not completion_lock */
1521                if (ctx->flags & IORING_SETUP_IOPOLL)
1522                        mutex_lock(&ctx->uring_lock);
1523                ret = __io_cqring_overflow_flush(ctx, force);
1524                if (ctx->flags & IORING_SETUP_IOPOLL)
1525                        mutex_unlock(&ctx->uring_lock);
1526        }
1527
1528        return ret;
1529}
1530
1531/*
1532 * Shamelessly stolen from the mm implementation of page reference checking,
1533 * see commit f958d7b528b1 for details.
1534 */
1535#define req_ref_zero_or_close_to_overflow(req)  \
1536        ((unsigned int) atomic_read(&(req->refs)) + 127u <= 127u)
1537
1538static inline bool req_ref_inc_not_zero(struct io_kiocb *req)
1539{
1540        return atomic_inc_not_zero(&req->refs);
1541}
1542
1543static inline bool req_ref_sub_and_test(struct io_kiocb *req, int refs)
1544{
1545        WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1546        return atomic_sub_and_test(refs, &req->refs);
1547}
1548
1549static inline bool req_ref_put_and_test(struct io_kiocb *req)
1550{
1551        WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1552        return atomic_dec_and_test(&req->refs);
1553}
1554
1555static inline void req_ref_put(struct io_kiocb *req)
1556{
1557        WARN_ON_ONCE(req_ref_put_and_test(req));
1558}
1559
1560static inline void req_ref_get(struct io_kiocb *req)
1561{
1562        WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1563        atomic_inc(&req->refs);
1564}
1565
1566static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
1567                                     long res, unsigned int cflags)
1568{
1569        struct io_overflow_cqe *ocqe;
1570
1571        ocqe = kmalloc(sizeof(*ocqe), GFP_ATOMIC | __GFP_ACCOUNT);
1572        if (!ocqe) {
1573                /*
1574                 * If we're in ring overflow flush mode, or in task cancel mode,
1575                 * or cannot allocate an overflow entry, then we need to drop it
1576                 * on the floor.
1577                 */
1578                io_account_cq_overflow(ctx);
1579                return false;
1580        }
1581        if (list_empty(&ctx->cq_overflow_list)) {
1582                set_bit(0, &ctx->check_cq_overflow);
1583                WRITE_ONCE(ctx->rings->sq_flags,
1584                           ctx->rings->sq_flags | IORING_SQ_CQ_OVERFLOW);
1585
1586        }
1587        ocqe->cqe.user_data = user_data;
1588        ocqe->cqe.res = res;
1589        ocqe->cqe.flags = cflags;
1590        list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
1591        return true;
1592}
1593
1594static inline bool __io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1595                                          long res, unsigned int cflags)
1596{
1597        struct io_uring_cqe *cqe;
1598
1599        trace_io_uring_complete(ctx, user_data, res, cflags);
1600
1601        /*
1602         * If we can't get a cq entry, userspace overflowed the
1603         * submission (by quite a lot). Increment the overflow count in
1604         * the ring.
1605         */
1606        cqe = io_get_cqe(ctx);
1607        if (likely(cqe)) {
1608                WRITE_ONCE(cqe->user_data, user_data);
1609                WRITE_ONCE(cqe->res, res);
1610                WRITE_ONCE(cqe->flags, cflags);
1611                return true;
1612        }
1613        return io_cqring_event_overflow(ctx, user_data, res, cflags);
1614}
1615
1616/* not as hot to bloat with inlining */
1617static noinline bool io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1618                                          long res, unsigned int cflags)
1619{
1620        return __io_cqring_fill_event(ctx, user_data, res, cflags);
1621}
1622
1623static void io_req_complete_post(struct io_kiocb *req, long res,
1624                                 unsigned int cflags)
1625{
1626        struct io_ring_ctx *ctx = req->ctx;
1627        unsigned long flags;
1628
1629        spin_lock_irqsave(&ctx->completion_lock, flags);
1630        __io_cqring_fill_event(ctx, req->user_data, res, cflags);
1631        /*
1632         * If we're the last reference to this request, add to our locked
1633         * free_list cache.
1634         */
1635        if (req_ref_put_and_test(req)) {
1636                if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
1637                        if (req->flags & (REQ_F_LINK_TIMEOUT | REQ_F_FAIL))
1638                                io_disarm_next(req);
1639                        if (req->link) {
1640                                io_req_task_queue(req->link);
1641                                req->link = NULL;
1642                        }
1643                }
1644                io_dismantle_req(req);
1645                io_put_task(req->task, 1);
1646                list_add(&req->compl.list, &ctx->locked_free_list);
1647                ctx->locked_free_nr++;
1648        } else {
1649                if (!percpu_ref_tryget(&ctx->refs))
1650                        req = NULL;
1651        }
1652        io_commit_cqring(ctx);
1653        spin_unlock_irqrestore(&ctx->completion_lock, flags);
1654
1655        if (req) {
1656                io_cqring_ev_posted(ctx);
1657                percpu_ref_put(&ctx->refs);
1658        }
1659}
1660
1661static inline bool io_req_needs_clean(struct io_kiocb *req)
1662{
1663        return req->flags & IO_REQ_CLEAN_FLAGS;
1664}
1665
1666static void io_req_complete_state(struct io_kiocb *req, long res,
1667                                  unsigned int cflags)
1668{
1669        if (io_req_needs_clean(req))
1670                io_clean_op(req);
1671        req->result = res;
1672        req->compl.cflags = cflags;
1673        req->flags |= REQ_F_COMPLETE_INLINE;
1674}
1675
1676static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
1677                                     long res, unsigned cflags)
1678{
1679        if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1680                io_req_complete_state(req, res, cflags);
1681        else
1682                io_req_complete_post(req, res, cflags);
1683}
1684
1685static inline void io_req_complete(struct io_kiocb *req, long res)
1686{
1687        __io_req_complete(req, 0, res, 0);
1688}
1689
1690static void io_req_complete_failed(struct io_kiocb *req, long res)
1691{
1692        req_set_fail(req);
1693        io_put_req(req);
1694        io_req_complete_post(req, res, 0);
1695}
1696
1697static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1698                                        struct io_comp_state *cs)
1699{
1700        spin_lock_irq(&ctx->completion_lock);
1701        list_splice_init(&ctx->locked_free_list, &cs->free_list);
1702        ctx->locked_free_nr = 0;
1703        spin_unlock_irq(&ctx->completion_lock);
1704}
1705
1706/* Returns true IFF there are requests in the cache */
1707static bool io_flush_cached_reqs(struct io_ring_ctx *ctx)
1708{
1709        struct io_submit_state *state = &ctx->submit_state;
1710        struct io_comp_state *cs = &state->comp;
1711        int nr;
1712
1713        /*
1714         * If we have more than a batch's worth of requests in our IRQ side
1715         * locked cache, grab the lock and move them over to our submission
1716         * side cache.
1717         */
1718        if (READ_ONCE(ctx->locked_free_nr) > IO_COMPL_BATCH)
1719                io_flush_cached_locked_reqs(ctx, cs);
1720
1721        nr = state->free_reqs;
1722        while (!list_empty(&cs->free_list)) {
1723                struct io_kiocb *req = list_first_entry(&cs->free_list,
1724                                                struct io_kiocb, compl.list);
1725
1726                list_del(&req->compl.list);
1727                state->reqs[nr++] = req;
1728                if (nr == ARRAY_SIZE(state->reqs))
1729                        break;
1730        }
1731
1732        state->free_reqs = nr;
1733        return nr != 0;
1734}
1735
1736static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
1737{
1738        struct io_submit_state *state = &ctx->submit_state;
1739
1740        BUILD_BUG_ON(ARRAY_SIZE(state->reqs) < IO_REQ_ALLOC_BATCH);
1741
1742        if (!state->free_reqs) {
1743                gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1744                int ret, i;
1745
1746                if (io_flush_cached_reqs(ctx))
1747                        goto got_req;
1748
1749                ret = kmem_cache_alloc_bulk(req_cachep, gfp, IO_REQ_ALLOC_BATCH,
1750                                            state->reqs);
1751
1752                /*
1753                 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1754                 * retry single alloc to be on the safe side.
1755                 */
1756                if (unlikely(ret <= 0)) {
1757                        state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1758                        if (!state->reqs[0])
1759                                return NULL;
1760                        ret = 1;
1761                }
1762
1763                /*
1764                 * Don't initialise the fields below on every allocation, but
1765                 * do that in advance and keep valid on free.
1766                 */
1767                for (i = 0; i < ret; i++) {
1768                        struct io_kiocb *req = state->reqs[i];
1769
1770                        req->ctx = ctx;
1771                        req->link = NULL;
1772                        req->async_data = NULL;
1773                        /* not necessary, but safer to zero */
1774                        req->result = 0;
1775                }
1776                state->free_reqs = ret;
1777        }
1778got_req:
1779        state->free_reqs--;
1780        return state->reqs[state->free_reqs];
1781}
1782
1783static inline void io_put_file(struct file *file)
1784{
1785        if (file)
1786                fput(file);
1787}
1788
1789static void io_dismantle_req(struct io_kiocb *req)
1790{
1791        unsigned int flags = req->flags;
1792
1793        if (io_req_needs_clean(req))
1794                io_clean_op(req);
1795        if (!(flags & REQ_F_FIXED_FILE))
1796                io_put_file(req->file);
1797        if (req->fixed_rsrc_refs)
1798                percpu_ref_put(req->fixed_rsrc_refs);
1799        if (req->async_data) {
1800                kfree(req->async_data);
1801                req->async_data = NULL;
1802        }
1803}
1804
1805/* must to be called somewhat shortly after putting a request */
1806static inline void io_put_task(struct task_struct *task, int nr)
1807{
1808        struct io_uring_task *tctx = task->io_uring;
1809
1810        percpu_counter_sub(&tctx->inflight, nr);
1811        if (unlikely(atomic_read(&tctx->in_idle)))
1812                wake_up(&tctx->wait);
1813        put_task_struct_many(task, nr);
1814}
1815
1816static void __io_free_req(struct io_kiocb *req)
1817{
1818        struct io_ring_ctx *ctx = req->ctx;
1819
1820        io_dismantle_req(req);
1821        io_put_task(req->task, 1);
1822
1823        kmem_cache_free(req_cachep, req);
1824        percpu_ref_put(&ctx->refs);
1825}
1826
1827static inline void io_remove_next_linked(struct io_kiocb *req)
1828{
1829        struct io_kiocb *nxt = req->link;
1830
1831        req->link = nxt->link;
1832        nxt->link = NULL;
1833}
1834
1835static bool io_kill_linked_timeout(struct io_kiocb *req)
1836        __must_hold(&req->ctx->completion_lock)
1837{
1838        struct io_kiocb *link = req->link;
1839
1840        /*
1841         * Can happen if a linked timeout fired and link had been like
1842         * req -> link t-out -> link t-out [-> ...]
1843         */
1844        if (link && (link->flags & REQ_F_LTIMEOUT_ACTIVE)) {
1845                struct io_timeout_data *io = link->async_data;
1846
1847                io_remove_next_linked(req);
1848                link->timeout.head = NULL;
1849                if (hrtimer_try_to_cancel(&io->timer) != -1) {
1850                        io_cqring_fill_event(link->ctx, link->user_data,
1851                                             -ECANCELED, 0);
1852                        io_put_req_deferred(link, 1);
1853                        return true;
1854                }
1855        }
1856        return false;
1857}
1858
1859static void io_fail_links(struct io_kiocb *req)
1860        __must_hold(&req->ctx->completion_lock)
1861{
1862        struct io_kiocb *nxt, *link = req->link;
1863
1864        req->link = NULL;
1865        while (link) {
1866                nxt = link->link;
1867                link->link = NULL;
1868
1869                trace_io_uring_fail_link(req, link);
1870                io_cqring_fill_event(link->ctx, link->user_data, -ECANCELED, 0);
1871                io_put_req_deferred(link, 2);
1872                link = nxt;
1873        }
1874}
1875
1876static bool io_disarm_next(struct io_kiocb *req)
1877        __must_hold(&req->ctx->completion_lock)
1878{
1879        bool posted = false;
1880
1881        if (likely(req->flags & REQ_F_LINK_TIMEOUT))
1882                posted = io_kill_linked_timeout(req);
1883        if (unlikely((req->flags & REQ_F_FAIL) &&
1884                     !(req->flags & REQ_F_HARDLINK))) {
1885                posted |= (req->link != NULL);
1886                io_fail_links(req);
1887        }
1888        return posted;
1889}
1890
1891static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
1892{
1893        struct io_kiocb *nxt;
1894
1895        /*
1896         * If LINK is set, we have dependent requests in this chain. If we
1897         * didn't fail this request, queue the first one up, moving any other
1898         * dependencies to the next request. In case of failure, fail the rest
1899         * of the chain.
1900         */
1901        if (req->flags & (REQ_F_LINK_TIMEOUT | REQ_F_FAIL)) {
1902                struct io_ring_ctx *ctx = req->ctx;
1903                unsigned long flags;
1904                bool posted;
1905
1906                spin_lock_irqsave(&ctx->completion_lock, flags);
1907                posted = io_disarm_next(req);
1908                if (posted)
1909                        io_commit_cqring(req->ctx);
1910                spin_unlock_irqrestore(&ctx->completion_lock, flags);
1911                if (posted)
1912                        io_cqring_ev_posted(ctx);
1913        }
1914        nxt = req->link;
1915        req->link = NULL;
1916        return nxt;
1917}
1918
1919static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1920{
1921        if (likely(!(req->flags & (REQ_F_LINK|REQ_F_HARDLINK))))
1922                return NULL;
1923        return __io_req_find_next(req);
1924}
1925
1926static void ctx_flush_and_put(struct io_ring_ctx *ctx)
1927{
1928        if (!ctx)
1929                return;
1930        if (ctx->submit_state.comp.nr) {
1931                mutex_lock(&ctx->uring_lock);
1932                io_submit_flush_completions(ctx);
1933                mutex_unlock(&ctx->uring_lock);
1934        }
1935        percpu_ref_put(&ctx->refs);
1936}
1937
1938static void tctx_task_work(struct callback_head *cb)
1939{
1940        struct io_ring_ctx *ctx = NULL;
1941        struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1942                                                  task_work);
1943
1944        while (1) {
1945                struct io_wq_work_node *node;
1946
1947                spin_lock_irq(&tctx->task_lock);
1948                node = tctx->task_list.first;
1949                INIT_WQ_LIST(&tctx->task_list);
1950                spin_unlock_irq(&tctx->task_lock);
1951
1952                while (node) {
1953                        struct io_wq_work_node *next = node->next;
1954                        struct io_kiocb *req = container_of(node, struct io_kiocb,
1955                                                            io_task_work.node);
1956
1957                        if (req->ctx != ctx) {
1958                                ctx_flush_and_put(ctx);
1959                                ctx = req->ctx;
1960                                percpu_ref_get(&ctx->refs);
1961                        }
1962                        req->io_task_work.func(req);
1963                        node = next;
1964                }
1965                if (wq_list_empty(&tctx->task_list)) {
1966                        spin_lock_irq(&tctx->task_lock);
1967                        clear_bit(0, &tctx->task_state);
1968                        if (wq_list_empty(&tctx->task_list)) {
1969                                spin_unlock_irq(&tctx->task_lock);
1970                                break;
1971                        }
1972                        spin_unlock_irq(&tctx->task_lock);
1973                        /* another tctx_task_work() is enqueued, yield */
1974                        if (test_and_set_bit(0, &tctx->task_state))
1975                                break;
1976                }
1977                cond_resched();
1978        }
1979
1980        ctx_flush_and_put(ctx);
1981}
1982
1983static void io_req_task_work_add(struct io_kiocb *req)
1984{
1985        struct task_struct *tsk = req->task;
1986        struct io_uring_task *tctx = tsk->io_uring;
1987        enum task_work_notify_mode notify;
1988        struct io_wq_work_node *node;
1989        unsigned long flags;
1990
1991        WARN_ON_ONCE(!tctx);
1992
1993        spin_lock_irqsave(&tctx->task_lock, flags);
1994        wq_list_add_tail(&req->io_task_work.node, &tctx->task_list);
1995        spin_unlock_irqrestore(&tctx->task_lock, flags);
1996
1997        /* task_work already pending, we're done */
1998        if (test_bit(0, &tctx->task_state) ||
1999            test_and_set_bit(0, &tctx->task_state))
2000                return;
2001        if (unlikely(tsk->flags & PF_EXITING))
2002                goto fail;
2003
2004        /*
2005         * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2006         * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2007         * processing task_work. There's no reliable way to tell if TWA_RESUME
2008         * will do the job.
2009         */
2010        notify = (req->ctx->flags & IORING_SETUP_SQPOLL) ? TWA_NONE : TWA_SIGNAL;
2011        if (!task_work_add(tsk, &tctx->task_work, notify)) {
2012                wake_up_process(tsk);
2013                return;
2014        }
2015fail:
2016        clear_bit(0, &tctx->task_state);
2017        spin_lock_irqsave(&tctx->task_lock, flags);
2018        node = tctx->task_list.first;
2019        INIT_WQ_LIST(&tctx->task_list);
2020        spin_unlock_irqrestore(&tctx->task_lock, flags);
2021
2022        while (node) {
2023                req = container_of(node, struct io_kiocb, io_task_work.node);
2024                node = node->next;
2025                if (llist_add(&req->io_task_work.fallback_node,
2026                              &req->ctx->fallback_llist))
2027                        schedule_delayed_work(&req->ctx->fallback_work, 1);
2028        }
2029}
2030
2031static void io_req_task_cancel(struct io_kiocb *req)
2032{
2033        struct io_ring_ctx *ctx = req->ctx;
2034
2035        /* ctx is guaranteed to stay alive while we hold uring_lock */
2036        mutex_lock(&ctx->uring_lock);
2037        io_req_complete_failed(req, req->result);
2038        mutex_unlock(&ctx->uring_lock);
2039}
2040
2041static void io_req_task_submit(struct io_kiocb *req)
2042{
2043        struct io_ring_ctx *ctx = req->ctx;
2044
2045        /* ctx stays valid until unlock, even if we drop all ours ctx->refs */
2046        mutex_lock(&ctx->uring_lock);
2047        if (!(req->task->flags & PF_EXITING) && !req->task->in_execve)
2048                __io_queue_sqe(req);
2049        else
2050                io_req_complete_failed(req, -EFAULT);
2051        mutex_unlock(&ctx->uring_lock);
2052}
2053
2054static void io_req_task_queue_fail(struct io_kiocb *req, int ret)
2055{
2056        req->result = ret;
2057        req->io_task_work.func = io_req_task_cancel;
2058        io_req_task_work_add(req);
2059}
2060
2061static void io_req_task_queue(struct io_kiocb *req)
2062{
2063        req->io_task_work.func = io_req_task_submit;
2064        io_req_task_work_add(req);
2065}
2066
2067static void io_req_task_queue_reissue(struct io_kiocb *req)
2068{
2069        req->io_task_work.func = io_queue_async_work;
2070        io_req_task_work_add(req);
2071}
2072
2073static inline void io_queue_next(struct io_kiocb *req)
2074{
2075        struct io_kiocb *nxt = io_req_find_next(req);
2076
2077        if (nxt)
2078                io_req_task_queue(nxt);
2079}
2080
2081static void io_free_req(struct io_kiocb *req)
2082{
2083        io_queue_next(req);
2084        __io_free_req(req);
2085}
2086
2087struct req_batch {
2088        struct task_struct      *task;
2089        int                     task_refs;
2090        int                     ctx_refs;
2091};
2092
2093static inline void io_init_req_batch(struct req_batch *rb)
2094{
2095        rb->task_refs = 0;
2096        rb->ctx_refs = 0;
2097        rb->task = NULL;
2098}
2099
2100static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2101                                     struct req_batch *rb)
2102{
2103        if (rb->task)
2104                io_put_task(rb->task, rb->task_refs);
2105        if (rb->ctx_refs)
2106                percpu_ref_put_many(&ctx->refs, rb->ctx_refs);
2107}
2108
2109static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req,
2110                              struct io_submit_state *state)
2111{
2112        io_queue_next(req);
2113        io_dismantle_req(req);
2114
2115        if (req->task != rb->task) {
2116                if (rb->task)
2117                        io_put_task(rb->task, rb->task_refs);
2118                rb->task = req->task;
2119                rb->task_refs = 0;
2120        }
2121        rb->task_refs++;
2122        rb->ctx_refs++;
2123
2124        if (state->free_reqs != ARRAY_SIZE(state->reqs))
2125                state->reqs[state->free_reqs++] = req;
2126        else
2127                list_add(&req->compl.list, &state->comp.free_list);
2128}
2129
2130static void io_submit_flush_completions(struct io_ring_ctx *ctx)
2131{
2132        struct io_comp_state *cs = &ctx->submit_state.comp;
2133        int i, nr = cs->nr;
2134        struct req_batch rb;
2135
2136        spin_lock_irq(&ctx->completion_lock);
2137        for (i = 0; i < nr; i++) {
2138                struct io_kiocb *req = cs->reqs[i];
2139
2140                __io_cqring_fill_event(ctx, req->user_data, req->result,
2141                                        req->compl.cflags);
2142        }
2143        io_commit_cqring(ctx);
2144        spin_unlock_irq(&ctx->completion_lock);
2145        io_cqring_ev_posted(ctx);
2146
2147        io_init_req_batch(&rb);
2148        for (i = 0; i < nr; i++) {
2149                struct io_kiocb *req = cs->reqs[i];
2150
2151                /* submission and completion refs */
2152                if (req_ref_sub_and_test(req, 2))
2153                        io_req_free_batch(&rb, req, &ctx->submit_state);
2154        }
2155
2156        io_req_free_batch_finish(ctx, &rb);
2157        cs->nr = 0;
2158}
2159
2160/*
2161 * Drop reference to request, return next in chain (if there is one) if this
2162 * was the last reference to this request.
2163 */
2164static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2165{
2166        struct io_kiocb *nxt = NULL;
2167
2168        if (req_ref_put_and_test(req)) {
2169                nxt = io_req_find_next(req);
2170                __io_free_req(req);
2171        }
2172        return nxt;
2173}
2174
2175static inline void io_put_req(struct io_kiocb *req)
2176{
2177        if (req_ref_put_and_test(req))
2178                io_free_req(req);
2179}
2180
2181static void io_free_req_deferred(struct io_kiocb *req)
2182{
2183        req->io_task_work.func = io_free_req;
2184        io_req_task_work_add(req);
2185}
2186
2187static inline void io_put_req_deferred(struct io_kiocb *req, int refs)
2188{
2189        if (req_ref_sub_and_test(req, refs))
2190                io_free_req_deferred(req);
2191}
2192
2193static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2194{
2195        /* See comment at the top of this file */
2196        smp_rmb();
2197        return __io_cqring_events(ctx);
2198}
2199
2200static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2201{
2202        struct io_rings *rings = ctx->rings;
2203
2204        /* make sure SQ entry isn't read before tail */
2205        return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2206}
2207
2208static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2209{
2210        unsigned int cflags;
2211
2212        cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2213        cflags |= IORING_CQE_F_BUFFER;
2214        req->flags &= ~REQ_F_BUFFER_SELECTED;
2215        kfree(kbuf);
2216        return cflags;
2217}
2218
2219static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2220{
2221        struct io_buffer *kbuf;
2222
2223        kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2224        return io_put_kbuf(req, kbuf);
2225}
2226
2227static inline bool io_run_task_work(void)
2228{
2229        if (test_thread_flag(TIF_NOTIFY_SIGNAL) || current->task_works) {
2230                __set_current_state(TASK_RUNNING);
2231                tracehook_notify_signal();
2232                return true;
2233        }
2234
2235        return false;
2236}
2237
2238/*
2239 * Find and free completed poll iocbs
2240 */
2241static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2242                               struct list_head *done, bool resubmit)
2243{
2244        struct req_batch rb;
2245        struct io_kiocb *req;
2246
2247        /* order with ->result store in io_complete_rw_iopoll() */
2248        smp_rmb();
2249
2250        io_init_req_batch(&rb);
2251        while (!list_empty(done)) {
2252                int cflags = 0;
2253
2254                req = list_first_entry(done, struct io_kiocb, inflight_entry);
2255                list_del(&req->inflight_entry);
2256
2257                if (READ_ONCE(req->result) == -EAGAIN && resubmit &&
2258                    !(req->flags & REQ_F_DONT_REISSUE)) {
2259                        req->iopoll_completed = 0;
2260                        req_ref_get(req);
2261                        io_req_task_queue_reissue(req);
2262                        continue;
2263                }
2264
2265                if (req->flags & REQ_F_BUFFER_SELECTED)
2266                        cflags = io_put_rw_kbuf(req);
2267
2268                __io_cqring_fill_event(ctx, req->user_data, req->result, cflags);
2269                (*nr_events)++;
2270
2271                if (req_ref_put_and_test(req))
2272                        io_req_free_batch(&rb, req, &ctx->submit_state);
2273        }
2274
2275        io_commit_cqring(ctx);
2276        io_cqring_ev_posted_iopoll(ctx);
2277        io_req_free_batch_finish(ctx, &rb);
2278}
2279
2280static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2281                        long min, bool resubmit)
2282{
2283        struct io_kiocb *req, *tmp;
2284        LIST_HEAD(done);
2285        bool spin;
2286        int ret;
2287
2288        /*
2289         * Only spin for completions if we don't have multiple devices hanging
2290         * off our complete list, and we're under the requested amount.
2291         */
2292        spin = !ctx->poll_multi_queue && *nr_events < min;
2293
2294        ret = 0;
2295        list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2296                struct kiocb *kiocb = &req->rw.kiocb;
2297
2298                /*
2299                 * Move completed and retryable entries to our local lists.
2300                 * If we find a request that requires polling, break out
2301                 * and complete those lists first, if we have entries there.
2302                 */
2303                if (READ_ONCE(req->iopoll_completed)) {
2304                        list_move_tail(&req->inflight_entry, &done);
2305                        continue;
2306                }
2307                if (!list_empty(&done))
2308                        break;
2309
2310                ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2311                if (ret < 0)
2312                        break;
2313
2314                /* iopoll may have completed current req */
2315                if (READ_ONCE(req->iopoll_completed))
2316                        list_move_tail(&req->inflight_entry, &done);
2317
2318                if (ret && spin)
2319                        spin = false;
2320                ret = 0;
2321        }
2322
2323        if (!list_empty(&done))
2324                io_iopoll_complete(ctx, nr_events, &done, resubmit);
2325
2326        return ret;
2327}
2328
2329/*
2330 * We can't just wait for polled events to come to us, we have to actively
2331 * find and complete them.
2332 */
2333static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2334{
2335        if (!(ctx->flags & IORING_SETUP_IOPOLL))
2336                return;
2337
2338        mutex_lock(&ctx->uring_lock);
2339        while (!list_empty(&ctx->iopoll_list)) {
2340                unsigned int nr_events = 0;
2341
2342                io_do_iopoll(ctx, &nr_events, 0, false);
2343
2344                /* let it sleep and repeat later if can't complete a request */
2345                if (nr_events == 0)
2346                        break;
2347                /*
2348                 * Ensure we allow local-to-the-cpu processing to take place,
2349                 * in this case we need to ensure that we reap all events.
2350                 * Also let task_work, etc. to progress by releasing the mutex
2351                 */
2352                if (need_resched()) {
2353                        mutex_unlock(&ctx->uring_lock);
2354                        cond_resched();
2355                        mutex_lock(&ctx->uring_lock);
2356                }
2357        }
2358        mutex_unlock(&ctx->uring_lock);
2359}
2360
2361static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2362{
2363        unsigned int nr_events = 0;
2364        int ret = 0;
2365
2366        /*
2367         * We disallow the app entering submit/complete with polling, but we
2368         * still need to lock the ring to prevent racing with polled issue
2369         * that got punted to a workqueue.
2370         */
2371        mutex_lock(&ctx->uring_lock);
2372        /*
2373         * Don't enter poll loop if we already have events pending.
2374         * If we do, we can potentially be spinning for commands that
2375         * already triggered a CQE (eg in error).
2376         */
2377        if (test_bit(0, &ctx->check_cq_overflow))
2378                __io_cqring_overflow_flush(ctx, false);
2379        if (io_cqring_events(ctx))
2380                goto out;
2381        do {
2382                /*
2383                 * If a submit got punted to a workqueue, we can have the
2384                 * application entering polling for a command before it gets
2385                 * issued. That app will hold the uring_lock for the duration
2386                 * of the poll right here, so we need to take a breather every
2387                 * now and then to ensure that the issue has a chance to add
2388                 * the poll to the issued list. Otherwise we can spin here
2389                 * forever, while the workqueue is stuck trying to acquire the
2390                 * very same mutex.
2391                 */
2392                if (list_empty(&ctx->iopoll_list)) {
2393                        u32 tail = ctx->cached_cq_tail;
2394
2395                        mutex_unlock(&ctx->uring_lock);
2396                        io_run_task_work();
2397                        mutex_lock(&ctx->uring_lock);
2398
2399                        /* some requests don't go through iopoll_list */
2400                        if (tail != ctx->cached_cq_tail ||
2401                            list_empty(&ctx->iopoll_list))
2402                                break;
2403                }
2404                ret = io_do_iopoll(ctx, &nr_events, min, true);
2405        } while (!ret && nr_events < min && !need_resched());
2406out:
2407        mutex_unlock(&ctx->uring_lock);
2408        return ret;
2409}
2410
2411static void kiocb_end_write(struct io_kiocb *req)
2412{
2413        /*
2414         * Tell lockdep we inherited freeze protection from submission
2415         * thread.
2416         */
2417        if (req->flags & REQ_F_ISREG) {
2418                struct super_block *sb = file_inode(req->file)->i_sb;
2419
2420                __sb_writers_acquired(sb, SB_FREEZE_WRITE);
2421                sb_end_write(sb);
2422        }
2423}
2424
2425#ifdef CONFIG_BLOCK
2426static bool io_resubmit_prep(struct io_kiocb *req)
2427{
2428        struct io_async_rw *rw = req->async_data;
2429
2430        if (!rw)
2431                return !io_req_prep_async(req);
2432        /* may have left rw->iter inconsistent on -EIOCBQUEUED */
2433        iov_iter_revert(&rw->iter, req->result - iov_iter_count(&rw->iter));
2434        return true;
2435}
2436
2437static bool io_rw_should_reissue(struct io_kiocb *req)
2438{
2439        umode_t mode = file_inode(req->file)->i_mode;
2440        struct io_ring_ctx *ctx = req->ctx;
2441
2442        if (!S_ISBLK(mode) && !S_ISREG(mode))
2443                return false;
2444        if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
2445            !(ctx->flags & IORING_SETUP_IOPOLL)))
2446                return false;
2447        /*
2448         * If ref is dying, we might be running poll reap from the exit work.
2449         * Don't attempt to reissue from that path, just let it fail with
2450         * -EAGAIN.
2451         */
2452        if (percpu_ref_is_dying(&ctx->refs))
2453                return false;
2454        /*
2455         * Play it safe and assume not safe to re-import and reissue if we're
2456         * not in the original thread group (or in task context).
2457         */
2458        if (!same_thread_group(req->task, current) || !in_task())
2459                return false;
2460        return true;
2461}
2462#else
2463static bool io_resubmit_prep(struct io_kiocb *req)
2464{
2465        return false;
2466}
2467static bool io_rw_should_reissue(struct io_kiocb *req)
2468{
2469        return false;
2470}
2471#endif
2472
2473static void io_fallback_req_func(struct work_struct *work)
2474{
2475        struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
2476                                                fallback_work.work);
2477        struct llist_node *node = llist_del_all(&ctx->fallback_llist);
2478        struct io_kiocb *req, *tmp;
2479
2480        percpu_ref_get(&ctx->refs);
2481        llist_for_each_entry_safe(req, tmp, node, io_task_work.fallback_node)
2482                req->io_task_work.func(req);
2483        percpu_ref_put(&ctx->refs);
2484}
2485
2486static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2487                             unsigned int issue_flags)
2488{
2489        int cflags = 0;
2490
2491        if (req->rw.kiocb.ki_flags & IOCB_WRITE)
2492                kiocb_end_write(req);
2493        if (res != req->result) {
2494                if ((res == -EAGAIN || res == -EOPNOTSUPP) &&
2495                    io_rw_should_reissue(req)) {
2496                        req->flags |= REQ_F_REISSUE;
2497                        return;
2498                }
2499                req_set_fail(req);
2500        }
2501        if (req->flags & REQ_F_BUFFER_SELECTED)
2502                cflags = io_put_rw_kbuf(req);
2503        __io_req_complete(req, issue_flags, res, cflags);
2504}
2505
2506static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2507{
2508        struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2509
2510        __io_complete_rw(req, res, res2, 0);
2511}
2512
2513static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2514{
2515        struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2516
2517        if (kiocb->ki_flags & IOCB_WRITE)
2518                kiocb_end_write(req);
2519        if (unlikely(res != req->result)) {
2520                if (!(res == -EAGAIN && io_rw_should_reissue(req) &&
2521                    io_resubmit_prep(req))) {
2522                        req_set_fail(req);
2523                        req->flags |= REQ_F_DONT_REISSUE;
2524                }
2525        }
2526
2527        WRITE_ONCE(req->result, res);
2528        /* order with io_iopoll_complete() checking ->result */
2529        smp_wmb();
2530        WRITE_ONCE(req->iopoll_completed, 1);
2531}
2532
2533/*
2534 * After the iocb has been issued, it's safe to be found on the poll list.
2535 * Adding the kiocb to the list AFTER submission ensures that we don't
2536 * find it from a io_do_iopoll() thread before the issuer is done
2537 * accessing the kiocb cookie.
2538 */
2539static void io_iopoll_req_issued(struct io_kiocb *req)
2540{
2541        struct io_ring_ctx *ctx = req->ctx;
2542        const bool in_async = io_wq_current_is_worker();
2543
2544        /* workqueue context doesn't hold uring_lock, grab it now */
2545        if (unlikely(in_async))
2546                mutex_lock(&ctx->uring_lock);
2547
2548        /*
2549         * Track whether we have multiple files in our lists. This will impact
2550         * how we do polling eventually, not spinning if we're on potentially
2551         * different devices.
2552         */
2553        if (list_empty(&ctx->iopoll_list)) {
2554                ctx->poll_multi_queue = false;
2555        } else if (!ctx->poll_multi_queue) {
2556                struct io_kiocb *list_req;
2557                unsigned int queue_num0, queue_num1;
2558
2559                list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2560                                                inflight_entry);
2561
2562                if (list_req->file != req->file) {
2563                        ctx->poll_multi_queue = true;
2564                } else {
2565                        queue_num0 = blk_qc_t_to_queue_num(list_req->rw.kiocb.ki_cookie);
2566                        queue_num1 = blk_qc_t_to_queue_num(req->rw.kiocb.ki_cookie);
2567                        if (queue_num0 != queue_num1)
2568                                ctx->poll_multi_queue = true;
2569                }
2570        }
2571
2572        /*
2573         * For fast devices, IO may have already completed. If it has, add
2574         * it to the front so we find it first.
2575         */
2576        if (READ_ONCE(req->iopoll_completed))
2577                list_add(&req->inflight_entry, &ctx->iopoll_list);
2578        else
2579                list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2580
2581        if (unlikely(in_async)) {
2582                /*
2583                 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
2584                 * in sq thread task context or in io worker task context. If
2585                 * current task context is sq thread, we don't need to check
2586                 * whether should wake up sq thread.
2587                 */
2588                if ((ctx->flags & IORING_SETUP_SQPOLL) &&
2589                    wq_has_sleeper(&ctx->sq_data->wait))
2590                        wake_up(&ctx->sq_data->wait);
2591
2592                mutex_unlock(&ctx->uring_lock);
2593        }
2594}
2595
2596static inline void io_state_file_put(struct io_submit_state *state)
2597{
2598        if (state->file_refs) {
2599                fput_many(state->file, state->file_refs);
2600                state->file_refs = 0;
2601        }
2602}
2603
2604/*
2605 * Get as many references to a file as we have IOs left in this submission,
2606 * assuming most submissions are for one file, or at least that each file
2607 * has more than one submission.
2608 */
2609static struct file *__io_file_get(struct io_submit_state *state, int fd)
2610{
2611        if (!state)
2612                return fget(fd);
2613
2614        if (state->file_refs) {
2615                if (state->fd == fd) {
2616                        state->file_refs--;
2617                        return state->file;
2618                }
2619                io_state_file_put(state);
2620        }
2621        state->file = fget_many(fd, state->ios_left);
2622        if (unlikely(!state->file))
2623                return NULL;
2624
2625        state->fd = fd;
2626        state->file_refs = state->ios_left - 1;
2627        return state->file;
2628}
2629
2630static bool io_bdev_nowait(struct block_device *bdev)
2631{
2632        return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2633}
2634
2635/*
2636 * If we tracked the file through the SCM inflight mechanism, we could support
2637 * any file. For now, just ensure that anything potentially problematic is done
2638 * inline.
2639 */
2640static bool __io_file_supports_async(struct file *file, int rw)
2641{
2642        umode_t mode = file_inode(file)->i_mode;
2643
2644        if (S_ISBLK(mode)) {
2645                if (IS_ENABLED(CONFIG_BLOCK) &&
2646                    io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2647                        return true;
2648                return false;
2649        }
2650        if (S_ISSOCK(mode))
2651                return true;
2652        if (S_ISREG(mode)) {
2653                if (IS_ENABLED(CONFIG_BLOCK) &&
2654                    io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2655                    file->f_op != &io_uring_fops)
2656                        return true;
2657                return false;
2658        }
2659
2660        /* any ->read/write should understand O_NONBLOCK */
2661        if (file->f_flags & O_NONBLOCK)
2662                return true;
2663
2664        if (!(file->f_mode & FMODE_NOWAIT))
2665                return false;
2666
2667        if (rw == READ)
2668                return file->f_op->read_iter != NULL;
2669
2670        return file->f_op->write_iter != NULL;
2671}
2672
2673static bool io_file_supports_async(struct io_kiocb *req, int rw)
2674{
2675        if (rw == READ && (req->flags & REQ_F_ASYNC_READ))
2676                return true;
2677        else if (rw == WRITE && (req->flags & REQ_F_ASYNC_WRITE))
2678                return true;
2679
2680        return __io_file_supports_async(req->file, rw);
2681}
2682
2683static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2684{
2685        struct io_ring_ctx *ctx = req->ctx;
2686        struct kiocb *kiocb = &req->rw.kiocb;
2687        struct file *file = req->file;
2688        unsigned ioprio;
2689        int ret;
2690
2691        if (!(req->flags & REQ_F_ISREG) && S_ISREG(file_inode(file)->i_mode))
2692                req->flags |= REQ_F_ISREG;
2693
2694        kiocb->ki_pos = READ_ONCE(sqe->off);
2695        if (kiocb->ki_pos == -1 && !(file->f_mode & FMODE_STREAM)) {
2696                req->flags |= REQ_F_CUR_POS;
2697                kiocb->ki_pos = file->f_pos;
2698        }
2699        kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2700        kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2701        ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2702        if (unlikely(ret))
2703                return ret;
2704
2705        /* don't allow async punt for O_NONBLOCK or RWF_NOWAIT */
2706        if ((kiocb->ki_flags & IOCB_NOWAIT) || (file->f_flags & O_NONBLOCK))
2707                req->flags |= REQ_F_NOWAIT;
2708
2709        ioprio = READ_ONCE(sqe->ioprio);
2710        if (ioprio) {
2711                ret = ioprio_check_cap(ioprio);
2712                if (ret)
2713                        return ret;
2714
2715                kiocb->ki_ioprio = ioprio;
2716        } else
2717                kiocb->ki_ioprio = get_current_ioprio();
2718
2719        if (ctx->flags & IORING_SETUP_IOPOLL) {
2720                if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2721                    !kiocb->ki_filp->f_op->iopoll)
2722                        return -EOPNOTSUPP;
2723
2724                kiocb->ki_flags |= IOCB_HIPRI;
2725                kiocb->ki_complete = io_complete_rw_iopoll;
2726                req->iopoll_completed = 0;
2727        } else {
2728                if (kiocb->ki_flags & IOCB_HIPRI)
2729                        return -EINVAL;
2730                kiocb->ki_complete = io_complete_rw;
2731        }
2732
2733        if (req->opcode == IORING_OP_READ_FIXED ||
2734            req->opcode == IORING_OP_WRITE_FIXED) {
2735                req->imu = NULL;
2736                io_req_set_rsrc_node(req);
2737        }
2738
2739        req->rw.addr = READ_ONCE(sqe->addr);
2740        req->rw.len = READ_ONCE(sqe->len);
2741        req->buf_index = READ_ONCE(sqe->buf_index);
2742        return 0;
2743}
2744
2745static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2746{
2747        switch (ret) {
2748        case -EIOCBQUEUED:
2749                break;
2750        case -ERESTARTSYS:
2751        case -ERESTARTNOINTR:
2752        case -ERESTARTNOHAND:
2753        case -ERESTART_RESTARTBLOCK:
2754                /*
2755                 * We can't just restart the syscall, since previously
2756                 * submitted sqes may already be in progress. Just fail this
2757                 * IO with EINTR.
2758                 */
2759                ret = -EINTR;
2760                fallthrough;
2761        default:
2762                kiocb->ki_complete(kiocb, ret, 0);
2763        }
2764}
2765
2766static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2767                       unsigned int issue_flags)
2768{
2769        struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2770        struct io_async_rw *io = req->async_data;
2771        bool check_reissue = kiocb->ki_complete == io_complete_rw;
2772
2773        /* add previously done IO, if any */
2774        if (io && io->bytes_done > 0) {
2775                if (ret < 0)
2776                        ret = io->bytes_done;
2777                else
2778                        ret += io->bytes_done;
2779        }
2780
2781        if (req->flags & REQ_F_CUR_POS)
2782                req->file->f_pos = kiocb->ki_pos;
2783        if (ret >= 0 && check_reissue)
2784                __io_complete_rw(req, ret, 0, issue_flags);
2785        else
2786                io_rw_done(kiocb, ret);
2787
2788        if (check_reissue && (req->flags & REQ_F_REISSUE)) {
2789                req->flags &= ~REQ_F_REISSUE;
2790                if (io_resubmit_prep(req)) {
2791                        req_ref_get(req);
2792                        io_req_task_queue_reissue(req);
2793                } else {
2794                        int cflags = 0;
2795
2796                        req_set_fail(req);
2797                        if (req->flags & REQ_F_BUFFER_SELECTED)
2798                                cflags = io_put_rw_kbuf(req);
2799                        __io_req_complete(req, issue_flags, ret, cflags);
2800                }
2801        }
2802}
2803
2804static int __io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter,
2805                             struct io_mapped_ubuf *imu)
2806{
2807        size_t len = req->rw.len;
2808        u64 buf_end, buf_addr = req->rw.addr;
2809        size_t offset;
2810
2811        if (unlikely(check_add_overflow(buf_addr, (u64)len, &buf_end)))
2812                return -EFAULT;
2813        /* not inside the mapped region */
2814        if (unlikely(buf_addr < imu->ubuf || buf_end > imu->ubuf_end))
2815                return -EFAULT;
2816
2817        /*
2818         * May not be a start of buffer, set size appropriately
2819         * and advance us to the beginning.
2820         */
2821        offset = buf_addr - imu->ubuf;
2822        iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
2823
2824        if (offset) {
2825                /*
2826                 * Don't use iov_iter_advance() here, as it's really slow for
2827                 * using the latter parts of a big fixed buffer - it iterates
2828                 * over each segment manually. We can cheat a bit here, because
2829                 * we know that:
2830                 *
2831                 * 1) it's a BVEC iter, we set it up
2832                 * 2) all bvecs are PAGE_SIZE in size, except potentially the
2833                 *    first and last bvec
2834                 *
2835                 * So just find our index, and adjust the iterator afterwards.
2836                 * If the offset is within the first bvec (or the whole first
2837                 * bvec, just use iov_iter_advance(). This makes it easier
2838                 * since we can just skip the first segment, which may not
2839                 * be PAGE_SIZE aligned.
2840                 */
2841                const struct bio_vec *bvec = imu->bvec;
2842
2843                if (offset <= bvec->bv_len) {
2844                        iov_iter_advance(iter, offset);
2845                } else {
2846                        unsigned long seg_skip;
2847
2848                        /* skip first vec */
2849                        offset -= bvec->bv_len;
2850                        seg_skip = 1 + (offset >> PAGE_SHIFT);
2851
2852                        iter->bvec = bvec + seg_skip;
2853                        iter->nr_segs -= seg_skip;
2854                        iter->count -= bvec->bv_len + offset;
2855                        iter->iov_offset = offset & ~PAGE_MASK;
2856                }
2857        }
2858
2859        return 0;
2860}
2861
2862static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter)
2863{
2864        struct io_ring_ctx *ctx = req->ctx;
2865        struct io_mapped_ubuf *imu = req->imu;
2866        u16 index, buf_index = req->buf_index;
2867
2868        if (likely(!imu)) {
2869                if (unlikely(buf_index >= ctx->nr_user_bufs))
2870                        return -EFAULT;
2871                index = array_index_nospec(buf_index, ctx->nr_user_bufs);
2872                imu = READ_ONCE(ctx->user_bufs[index]);
2873                req->imu = imu;
2874        }
2875        return __io_import_fixed(req, rw, iter, imu);
2876}
2877
2878static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
2879{
2880        if (needs_lock)
2881                mutex_unlock(&ctx->uring_lock);
2882}
2883
2884static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
2885{
2886        /*
2887         * "Normal" inline submissions always hold the uring_lock, since we
2888         * grab it from the system call. Same is true for the SQPOLL offload.
2889         * The only exception is when we've detached the request and issue it
2890         * from an async worker thread, grab the lock for that case.
2891         */
2892        if (needs_lock)
2893                mutex_lock(&ctx->uring_lock);
2894}
2895
2896static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
2897                                          int bgid, struct io_buffer *kbuf,
2898                                          bool needs_lock)
2899{
2900        struct io_buffer *head;
2901
2902        if (req->flags & REQ_F_BUFFER_SELECTED)
2903                return kbuf;
2904
2905        io_ring_submit_lock(req->ctx, needs_lock);
2906
2907        lockdep_assert_held(&req->ctx->uring_lock);
2908
2909        head = xa_load(&req->ctx->io_buffers, bgid);
2910        if (head) {
2911                if (!list_empty(&head->list)) {
2912                        kbuf = list_last_entry(&head->list, struct io_buffer,
2913                                                        list);
2914                        list_del(&kbuf->list);
2915                } else {
2916                        kbuf = head;
2917                        xa_erase(&req->ctx->io_buffers, bgid);
2918                }
2919                if (*len > kbuf->len)
2920                        *len = kbuf->len;
2921        } else {
2922                kbuf = ERR_PTR(-ENOBUFS);
2923        }
2924
2925        io_ring_submit_unlock(req->ctx, needs_lock);
2926
2927        return kbuf;
2928}
2929
2930static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
2931                                        bool needs_lock)
2932{
2933        struct io_buffer *kbuf;
2934        u16 bgid;
2935
2936        kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2937        bgid = req->buf_index;
2938        kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
2939        if (IS_ERR(kbuf))
2940                return kbuf;
2941        req->rw.addr = (u64) (unsigned long) kbuf;
2942        req->flags |= REQ_F_BUFFER_SELECTED;
2943        return u64_to_user_ptr(kbuf->addr);
2944}
2945
2946#ifdef CONFIG_COMPAT
2947static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
2948                                bool needs_lock)
2949{
2950        struct compat_iovec __user *uiov;
2951        compat_ssize_t clen;
2952        void __user *buf;
2953        ssize_t len;
2954
2955        uiov = u64_to_user_ptr(req->rw.addr);
2956        if (!access_ok(uiov, sizeof(*uiov)))
2957                return -EFAULT;
2958        if (__get_user(clen, &uiov->iov_len))
2959                return -EFAULT;
2960        if (clen < 0)
2961                return -EINVAL;
2962
2963        len = clen;
2964        buf = io_rw_buffer_select(req, &len, needs_lock);
2965        if (IS_ERR(buf))
2966                return PTR_ERR(buf);
2967        iov[0].iov_base = buf;
2968        iov[0].iov_len = (compat_size_t) len;
2969        return 0;
2970}
2971#endif
2972
2973static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
2974                                      bool needs_lock)
2975{
2976        struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
2977        void __user *buf;
2978        ssize_t len;
2979
2980        if (copy_from_user(iov, uiov, sizeof(*uiov)))
2981                return -EFAULT;
2982
2983        len = iov[0].iov_len;
2984        if (len < 0)
2985                return -EINVAL;
2986        buf = io_rw_buffer_select(req, &len, needs_lock);
2987        if (IS_ERR(buf))
2988                return PTR_ERR(buf);
2989        iov[0].iov_base = buf;
2990        iov[0].iov_len = len;
2991        return 0;
2992}
2993
2994static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
2995                                    bool needs_lock)
2996{
2997        if (req->flags & REQ_F_BUFFER_SELECTED) {
2998                struct io_buffer *kbuf;
2999
3000                kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3001                iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3002                iov[0].iov_len = kbuf->len;
3003                return 0;
3004        }
3005        if (req->rw.len != 1)
3006                return -EINVAL;
3007
3008#ifdef CONFIG_COMPAT
3009        if (req->ctx->compat)
3010                return io_compat_import(req, iov, needs_lock);
3011#endif
3012
3013        return __io_iov_buffer_select(req, iov, needs_lock);
3014}
3015
3016static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
3017                           struct iov_iter *iter, bool needs_lock)
3018{
3019        void __user *buf = u64_to_user_ptr(req->rw.addr);
3020        size_t sqe_len = req->rw.len;
3021        u8 opcode = req->opcode;
3022        ssize_t ret;
3023
3024        if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3025                *iovec = NULL;
3026                return io_import_fixed(req, rw, iter);
3027        }
3028
3029        /* buffer index only valid with fixed read/write, or buffer select  */
3030        if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3031                return -EINVAL;
3032
3033        if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3034                if (req->flags & REQ_F_BUFFER_SELECT) {
3035                        buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3036                        if (IS_ERR(buf))
3037                                return PTR_ERR(buf);
3038                        req->rw.len = sqe_len;
3039                }
3040
3041                ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3042                *iovec = NULL;
3043                return ret;
3044        }
3045
3046        if (req->flags & REQ_F_BUFFER_SELECT) {
3047                ret = io_iov_buffer_select(req, *iovec, needs_lock);
3048                if (!ret)
3049                        iov_iter_init(iter, rw, *iovec, 1, (*iovec)->iov_len);
3050                *iovec = NULL;
3051                return ret;
3052        }
3053
3054        return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3055                              req->ctx->compat);
3056}
3057
3058static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3059{
3060        return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3061}
3062
3063/*
3064 * For files that don't have ->read_iter() and ->write_iter(), handle them
3065 * by looping over ->read() or ->write() manually.
3066 */
3067static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3068{
3069        struct kiocb *kiocb = &req->rw.kiocb;
3070        struct file *file = req->file;
3071        ssize_t ret = 0;
3072
3073        /*
3074         * Don't support polled IO through this interface, and we can't
3075         * support non-blocking either. For the latter, this just causes
3076         * the kiocb to be handled from an async context.
3077         */
3078        if (kiocb->ki_flags & IOCB_HIPRI)
3079                return -EOPNOTSUPP;
3080        if (kiocb->ki_flags & IOCB_NOWAIT)
3081                return -EAGAIN;
3082
3083        while (iov_iter_count(iter)) {
3084                struct iovec iovec;
3085                ssize_t nr;
3086
3087                if (!iov_iter_is_bvec(iter)) {
3088                        iovec = iov_iter_iovec(iter);
3089                } else {
3090                        iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3091                        iovec.iov_len = req->rw.len;
3092                }
3093
3094                if (rw == READ) {
3095                        nr = file->f_op->read(file, iovec.iov_base,
3096                                              iovec.iov_len, io_kiocb_ppos(kiocb));
3097                } else {
3098                        nr = file->f_op->write(file, iovec.iov_base,
3099                                               iovec.iov_len, io_kiocb_ppos(kiocb));
3100                }
3101
3102                if (nr < 0) {
3103                        if (!ret)
3104                                ret = nr;
3105                        break;
3106                }
3107                ret += nr;
3108                if (nr != iovec.iov_len)
3109                        break;
3110                req->rw.len -= nr;
3111                req->rw.addr += nr;
3112                iov_iter_advance(iter, nr);
3113        }
3114
3115        return ret;
3116}
3117
3118static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3119                          const struct iovec *fast_iov, struct iov_iter *iter)
3120{
3121        struct io_async_rw *rw = req->async_data;
3122
3123        memcpy(&rw->iter, iter, sizeof(*iter));
3124        rw->free_iovec = iovec;
3125        rw->bytes_done = 0;
3126        /* can only be fixed buffers, no need to do anything */
3127        if (iov_iter_is_bvec(iter))
3128                return;
3129        if (!iovec) {
3130                unsigned iov_off = 0;
3131
3132                rw->iter.iov = rw->fast_iov;
3133                if (iter->iov != fast_iov) {
3134                        iov_off = iter->iov - fast_iov;
3135                        rw->iter.iov += iov_off;
3136                }
3137                if (rw->fast_iov != fast_iov)
3138                        memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3139                               sizeof(struct iovec) * iter->nr_segs);
3140        } else {
3141                req->flags |= REQ_F_NEED_CLEANUP;
3142        }
3143}
3144
3145static inline int io_alloc_async_data(struct io_kiocb *req)
3146{
3147        WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3148        req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3149        return req->async_data == NULL;
3150}
3151
3152static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3153                             const struct iovec *fast_iov,
3154                             struct iov_iter *iter, bool force)
3155{
3156        if (!force && !io_op_defs[req->opcode].needs_async_setup)
3157                return 0;
3158        if (!req->async_data) {
3159                if (io_alloc_async_data(req)) {
3160                        kfree(iovec);
3161                        return -ENOMEM;
3162                }
3163
3164                io_req_map_rw(req, iovec, fast_iov, iter);
3165        }
3166        return 0;
3167}
3168
3169static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3170{
3171        struct io_async_rw *iorw = req->async_data;
3172        struct iovec *iov = iorw->fast_iov;
3173        int ret;
3174
3175        ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3176        if (unlikely(ret < 0))
3177                return ret;
3178
3179        iorw->bytes_done = 0;
3180        iorw->free_iovec = iov;
3181        if (iov)
3182                req->flags |= REQ_F_NEED_CLEANUP;
3183        return 0;
3184}
3185
3186static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3187{
3188        if (unlikely(!(req->file->f_mode & FMODE_READ)))
3189                return -EBADF;
3190        return io_prep_rw(req, sqe);
3191}
3192
3193/*
3194 * This is our waitqueue callback handler, registered through lock_page_async()
3195 * when we initially tried to do the IO with the iocb armed our waitqueue.
3196 * This gets called when the page is unlocked, and we generally expect that to
3197 * happen when the page IO is completed and the page is now uptodate. This will
3198 * queue a task_work based retry of the operation, attempting to copy the data
3199 * again. If the latter fails because the page was NOT uptodate, then we will
3200 * do a thread based blocking retry of the operation. That's the unexpected
3201 * slow path.
3202 */
3203static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3204                             int sync, void *arg)
3205{
3206        struct wait_page_queue *wpq;
3207        struct io_kiocb *req = wait->private;
3208        struct wait_page_key *key = arg;
3209
3210        wpq = container_of(wait, struct wait_page_queue, wait);
3211
3212        if (!wake_page_match(wpq, key))
3213                return 0;
3214
3215        req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3216        list_del_init(&wait->entry);
3217
3218        /* submit ref gets dropped, acquire a new one */
3219        req_ref_get(req);
3220        io_req_task_queue(req);
3221        return 1;
3222}
3223
3224/*
3225 * This controls whether a given IO request should be armed for async page
3226 * based retry. If we return false here, the request is handed to the async
3227 * worker threads for retry. If we're doing buffered reads on a regular file,
3228 * we prepare a private wait_page_queue entry and retry the operation. This
3229 * will either succeed because the page is now uptodate and unlocked, or it
3230 * will register a callback when the page is unlocked at IO completion. Through
3231 * that callback, io_uring uses task_work to setup a retry of the operation.
3232 * That retry will attempt the buffered read again. The retry will generally
3233 * succeed, or in rare cases where it fails, we then fall back to using the
3234 * async worker threads for a blocking retry.
3235 */
3236static bool io_rw_should_retry(struct io_kiocb *req)
3237{
3238        struct io_async_rw *rw = req->async_data;
3239        struct wait_page_queue *wait = &rw->wpq;
3240        struct kiocb *kiocb = &req->rw.kiocb;
3241
3242        /* never retry for NOWAIT, we just complete with -EAGAIN */
3243        if (req->flags & REQ_F_NOWAIT)
3244                return false;
3245
3246        /* Only for buffered IO */
3247        if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3248                return false;
3249
3250        /*
3251         * just use poll if we can, and don't attempt if the fs doesn't
3252         * support callback based unlocks
3253         */
3254        if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3255                return false;
3256
3257        wait->wait.func = io_async_buf_func;
3258        wait->wait.private = req;
3259        wait->wait.flags = 0;
3260        INIT_LIST_HEAD(&wait->wait.entry);
3261        kiocb->ki_flags |= IOCB_WAITQ;
3262        kiocb->ki_flags &= ~IOCB_NOWAIT;
3263        kiocb->ki_waitq = wait;
3264        return true;
3265}
3266
3267static inline int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3268{
3269        if (req->file->f_op->read_iter)
3270                return call_read_iter(req->file, &req->rw.kiocb, iter);
3271        else if (req->file->f_op->read)
3272                return loop_rw_iter(READ, req, iter);
3273        else
3274                return -EINVAL;
3275}
3276
3277static int io_read(struct io_kiocb *req, unsigned int issue_flags)
3278{
3279        struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3280        struct kiocb *kiocb = &req->rw.kiocb;
3281        struct iov_iter __iter, *iter = &__iter;
3282        struct io_async_rw *rw = req->async_data;
3283        ssize_t io_size, ret, ret2;
3284        bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3285
3286        if (rw) {
3287                iter = &rw->iter;
3288                iovec = NULL;
3289        } else {
3290                ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3291                if (ret < 0)
3292                        return ret;
3293        }
3294        io_size = iov_iter_count(iter);
3295        req->result = io_size;
3296
3297        /* Ensure we clear previously set non-block flag */
3298        if (!force_nonblock)
3299                kiocb->ki_flags &= ~IOCB_NOWAIT;
3300        else
3301                kiocb->ki_flags |= IOCB_NOWAIT;
3302
3303        /* If the file doesn't support async, just async punt */
3304        if (force_nonblock && !io_file_supports_async(req, READ)) {
3305                ret = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3306                return ret ?: -EAGAIN;
3307        }
3308
3309        ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), io_size);
3310        if (unlikely(ret)) {
3311                kfree(iovec);
3312                return ret;
3313        }
3314
3315        ret = io_iter_do_read(req, iter);
3316
3317        if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) {
3318                req->flags &= ~REQ_F_REISSUE;
3319                /* IOPOLL retry should happen for io-wq threads */
3320                if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3321                        goto done;
3322                /* no retry on NONBLOCK nor RWF_NOWAIT */
3323                if (req->flags & REQ_F_NOWAIT)
3324                        goto done;
3325                /* some cases will consume bytes even on error returns */
3326                iov_iter_revert(iter, io_size - iov_iter_count(iter));
3327                ret = 0;
3328        } else if (ret == -EIOCBQUEUED) {
3329                goto out_free;
3330        } else if (ret <= 0 || ret == io_size || !force_nonblock ||
3331                   (req->flags & REQ_F_NOWAIT) || !(req->flags & REQ_F_ISREG)) {
3332                /* read all, failed, already did sync or don't want to retry */
3333                goto done;
3334        }
3335
3336        ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3337        if (ret2)
3338                return ret2;
3339
3340        iovec = NULL;
3341        rw = req->async_data;
3342        /* now use our persistent iterator, if we aren't already */
3343        iter = &rw->iter;
3344
3345        do {
3346                io_size -= ret;
3347                rw->bytes_done += ret;
3348                /* if we can retry, do so with the callbacks armed */
3349                if (!io_rw_should_retry(req)) {
3350                        kiocb->ki_flags &= ~IOCB_WAITQ;
3351                        return -EAGAIN;
3352                }
3353
3354                /*
3355                 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
3356                 * we get -EIOCBQUEUED, then we'll get a notification when the
3357                 * desired page gets unlocked. We can also get a partial read
3358                 * here, and if we do, then just retry at the new offset.
3359                 */
3360                ret = io_iter_do_read(req, iter);
3361                if (ret == -EIOCBQUEUED)
3362                        return 0;
3363                /* we got some bytes, but not all. retry. */
3364                kiocb->ki_flags &= ~IOCB_WAITQ;
3365        } while (ret > 0 && ret < io_size);
3366done:
3367        kiocb_done(kiocb, ret, issue_flags);
3368out_free:
3369        /* it's faster to check here then delegate to kfree */
3370        if (iovec)
3371                kfree(iovec);
3372        return 0;
3373}
3374
3375static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3376{
3377        if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3378                return -EBADF;
3379        return io_prep_rw(req, sqe);
3380}
3381
3382static int io_write(struct io_kiocb *req, unsigned int issue_flags)
3383{
3384        struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3385        struct kiocb *kiocb = &req->rw.kiocb;
3386        struct iov_iter __iter, *iter = &__iter;
3387        struct io_async_rw *rw = req->async_data;
3388        ssize_t ret, ret2, io_size;
3389        bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3390
3391        if (rw) {
3392                iter = &rw->iter;
3393                iovec = NULL;
3394        } else {
3395                ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3396                if (ret < 0)
3397                        return ret;
3398        }
3399        io_size = iov_iter_count(iter);
3400        req->result = io_size;
3401
3402        /* Ensure we clear previously set non-block flag */
3403        if (!force_nonblock)
3404                kiocb->ki_flags &= ~IOCB_NOWAIT;
3405        else
3406                kiocb->ki_flags |= IOCB_NOWAIT;
3407
3408        /* If the file doesn't support async, just async punt */
3409        if (force_nonblock && !io_file_supports_async(req, WRITE))
3410                goto copy_iov;
3411
3412        /* file path doesn't support NOWAIT for non-direct_IO */
3413        if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3414            (req->flags & REQ_F_ISREG))
3415                goto copy_iov;
3416
3417        ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), io_size);
3418        if (unlikely(ret))
3419                goto out_free;
3420
3421        /*
3422         * Open-code file_start_write here to grab freeze protection,
3423         * which will be released by another thread in
3424         * io_complete_rw().  Fool lockdep by telling it the lock got
3425         * released so that it doesn't complain about the held lock when
3426         * we return to userspace.
3427         */
3428        if (req->flags & REQ_F_ISREG) {
3429                sb_start_write(file_inode(req->file)->i_sb);
3430                __sb_writers_release(file_inode(req->file)->i_sb,
3431                                        SB_FREEZE_WRITE);
3432        }
3433        kiocb->ki_flags |= IOCB_WRITE;
3434
3435        if (req->file->f_op->write_iter)
3436                ret2 = call_write_iter(req->file, kiocb, iter);
3437        else if (req->file->f_op->write)
3438                ret2 = loop_rw_iter(WRITE, req, iter);
3439        else
3440                ret2 = -EINVAL;
3441
3442        if (req->flags & REQ_F_REISSUE) {
3443                req->flags &= ~REQ_F_REISSUE;
3444                ret2 = -EAGAIN;
3445        }
3446
3447        /*
3448         * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3449         * retry them without IOCB_NOWAIT.
3450         */
3451        if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3452                ret2 = -EAGAIN;
3453        /* no retry on NONBLOCK nor RWF_NOWAIT */
3454        if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
3455                goto done;
3456        if (!force_nonblock || ret2 != -EAGAIN) {
3457                /* IOPOLL retry should happen for io-wq threads */
3458                if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3459                        goto copy_iov;
3460done:
3461                kiocb_done(kiocb, ret2, issue_flags);
3462        } else {
3463copy_iov:
3464                /* some cases will consume bytes even on error returns */
3465                iov_iter_revert(iter, io_size - iov_iter_count(iter));
3466                ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3467                return ret ?: -EAGAIN;
3468        }
3469out_free:
3470        /* it's reportedly faster than delegating the null check to kfree() */
3471        if (iovec)
3472                kfree(iovec);
3473        return ret;
3474}
3475
3476static int io_renameat_prep(struct io_kiocb *req,
3477                            const struct io_uring_sqe *sqe)
3478{
3479        struct io_rename *ren = &req->rename;
3480        const char __user *oldf, *newf;
3481
3482        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3483                return -EINVAL;
3484        if (sqe->ioprio || sqe->buf_index)
3485                return -EINVAL;
3486        if (unlikely(req->flags & REQ_F_FIXED_FILE))
3487                return -EBADF;
3488
3489        ren->old_dfd = READ_ONCE(sqe->fd);
3490        oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3491        newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3492        ren->new_dfd = READ_ONCE(sqe->len);
3493        ren->flags = READ_ONCE(sqe->rename_flags);
3494
3495        ren->oldpath = getname(oldf);
3496        if (IS_ERR(ren->oldpath))
3497                return PTR_ERR(ren->oldpath);
3498
3499        ren->newpath = getname(newf);
3500        if (IS_ERR(ren->newpath)) {
3501                putname(ren->oldpath);
3502                return PTR_ERR(ren->newpath);
3503        }
3504
3505        req->flags |= REQ_F_NEED_CLEANUP;
3506        return 0;
3507}
3508
3509static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
3510{
3511        struct io_rename *ren = &req->rename;
3512        int ret;
3513
3514        if (issue_flags & IO_URING_F_NONBLOCK)
3515                return -EAGAIN;
3516
3517        ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3518                                ren->newpath, ren->flags);
3519
3520        req->flags &= ~REQ_F_NEED_CLEANUP;
3521        if (ret < 0)
3522                req_set_fail(req);
3523        io_req_complete(req, ret);
3524        return 0;
3525}
3526
3527static int io_unlinkat_prep(struct io_kiocb *req,
3528                            const struct io_uring_sqe *sqe)
3529{
3530        struct io_unlink *un = &req->unlink;
3531        const char __user *fname;
3532
3533        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3534                return -EINVAL;
3535        if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
3536                return -EINVAL;
3537        if (unlikely(req->flags & REQ_F_FIXED_FILE))
3538                return -EBADF;
3539
3540        un->dfd = READ_ONCE(sqe->fd);
3541
3542        un->flags = READ_ONCE(sqe->unlink_flags);
3543        if (un->flags & ~AT_REMOVEDIR)
3544                return -EINVAL;
3545
3546        fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3547        un->filename = getname(fname);
3548        if (IS_ERR(un->filename))
3549                return PTR_ERR(un->filename);
3550
3551        req->flags |= REQ_F_NEED_CLEANUP;
3552        return 0;
3553}
3554
3555static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
3556{
3557        struct io_unlink *un = &req->unlink;
3558        int ret;
3559
3560        if (issue_flags & IO_URING_F_NONBLOCK)
3561                return -EAGAIN;
3562
3563        if (un->flags & AT_REMOVEDIR)
3564                ret = do_rmdir(un->dfd, un->filename);
3565        else
3566                ret = do_unlinkat(un->dfd, un->filename);
3567
3568        req->flags &= ~REQ_F_NEED_CLEANUP;
3569        if (ret < 0)
3570                req_set_fail(req);
3571        io_req_complete(req, ret);
3572        return 0;
3573}
3574
3575static int io_shutdown_prep(struct io_kiocb *req,
3576                            const struct io_uring_sqe *sqe)
3577{
3578#if defined(CONFIG_NET)
3579        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3580                return -EINVAL;
3581        if (sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3582            sqe->buf_index)
3583                return -EINVAL;
3584
3585        req->shutdown.how = READ_ONCE(sqe->len);
3586        return 0;
3587#else
3588        return -EOPNOTSUPP;
3589#endif
3590}
3591
3592static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
3593{
3594#if defined(CONFIG_NET)
3595        struct socket *sock;
3596        int ret;
3597
3598        if (issue_flags & IO_URING_F_NONBLOCK)
3599                return -EAGAIN;
3600
3601        sock = sock_from_file(req->file);
3602        if (unlikely(!sock))
3603                return -ENOTSOCK;
3604
3605        ret = __sys_shutdown_sock(sock, req->shutdown.how);
3606        if (ret < 0)
3607                req_set_fail(req);
3608        io_req_complete(req, ret);
3609        return 0;
3610#else
3611        return -EOPNOTSUPP;
3612#endif
3613}
3614
3615static int __io_splice_prep(struct io_kiocb *req,
3616                            const struct io_uring_sqe *sqe)
3617{
3618        struct io_splice *sp = &req->splice;
3619        unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3620
3621        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3622                return -EINVAL;
3623
3624        sp->file_in = NULL;
3625        sp->len = READ_ONCE(sqe->len);
3626        sp->flags = READ_ONCE(sqe->splice_flags);
3627
3628        if (unlikely(sp->flags & ~valid_flags))
3629                return -EINVAL;
3630
3631        sp->file_in = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in),
3632                                  (sp->flags & SPLICE_F_FD_IN_FIXED));
3633        if (!sp->file_in)
3634                return -EBADF;
3635        req->flags |= REQ_F_NEED_CLEANUP;
3636        return 0;
3637}
3638
3639static int io_tee_prep(struct io_kiocb *req,
3640                       const struct io_uring_sqe *sqe)
3641{
3642        if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3643                return -EINVAL;
3644        return __io_splice_prep(req, sqe);
3645}
3646
3647static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
3648{
3649        struct io_splice *sp = &req->splice;
3650        struct file *in = sp->file_in;
3651        struct file *out = sp->file_out;
3652        unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3653        long ret = 0;
3654
3655        if (issue_flags & IO_URING_F_NONBLOCK)
3656                return -EAGAIN;
3657        if (sp->len)
3658                ret = do_tee(in, out, sp->len, flags);
3659
3660        if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
3661                io_put_file(in);
3662        req->flags &= ~REQ_F_NEED_CLEANUP;
3663
3664        if (ret != sp->len)
3665                req_set_fail(req);
3666        io_req_complete(req, ret);
3667        return 0;
3668}
3669
3670static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3671{
3672        struct io_splice *sp = &req->splice;
3673
3674        sp->off_in = READ_ONCE(sqe->splice_off_in);
3675        sp->off_out = READ_ONCE(sqe->off);
3676        return __io_splice_prep(req, sqe);
3677}
3678
3679static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
3680{
3681        struct io_splice *sp = &req->splice;
3682        struct file *in = sp->file_in;
3683        struct file *out = sp->file_out;
3684        unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3685        loff_t *poff_in, *poff_out;
3686        long ret = 0;
3687
3688        if (issue_flags & IO_URING_F_NONBLOCK)
3689                return -EAGAIN;
3690
3691        poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
3692        poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
3693
3694        if (sp->len)
3695                ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
3696
3697        if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
3698                io_put_file(in);
3699        req->flags &= ~REQ_F_NEED_CLEANUP;
3700
3701        if (ret != sp->len)
3702                req_set_fail(req);
3703        io_req_complete(req, ret);
3704        return 0;
3705}
3706
3707/*
3708 * IORING_OP_NOP just posts a completion event, nothing else.
3709 */
3710static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
3711{
3712        struct io_ring_ctx *ctx = req->ctx;
3713
3714        if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3715                return -EINVAL;
3716
3717        __io_req_complete(req, issue_flags, 0, 0);
3718        return 0;
3719}
3720
3721static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3722{
3723        struct io_ring_ctx *ctx = req->ctx;
3724
3725        if (!req->file)
3726                return -EBADF;
3727
3728        if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3729                return -EINVAL;
3730        if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
3731                return -EINVAL;
3732
3733        req->sync.flags = READ_ONCE(sqe->fsync_flags);
3734        if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
3735                return -EINVAL;
3736
3737        req->sync.off = READ_ONCE(sqe->off);
3738        req->sync.len = READ_ONCE(sqe->len);
3739        return 0;
3740}
3741
3742static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
3743{
3744        loff_t end = req->sync.off + req->sync.len;
3745        int ret;
3746
3747        /* fsync always requires a blocking context */
3748        if (issue_flags & IO_URING_F_NONBLOCK)
3749                return -EAGAIN;
3750
3751        ret = vfs_fsync_range(req->file, req->sync.off,
3752                                end > 0 ? end : LLONG_MAX,
3753                                req->sync.flags & IORING_FSYNC_DATASYNC);
3754        if (ret < 0)
3755                req_set_fail(req);
3756        io_req_complete(req, ret);
3757        return 0;
3758}
3759
3760static int io_fallocate_prep(struct io_kiocb *req,
3761                             const struct io_uring_sqe *sqe)
3762{
3763        if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
3764                return -EINVAL;
3765        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3766                return -EINVAL;
3767
3768        req->sync.off = READ_ONCE(sqe->off);
3769        req->sync.len = READ_ONCE(sqe->addr);
3770        req->sync.mode = READ_ONCE(sqe->len);
3771        return 0;
3772}
3773
3774static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
3775{
3776        int ret;
3777
3778        /* fallocate always requiring blocking context */
3779        if (issue_flags & IO_URING_F_NONBLOCK)
3780                return -EAGAIN;
3781        ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
3782                                req->sync.len);
3783        if (ret < 0)
3784                req_set_fail(req);
3785        io_req_complete(req, ret);
3786        return 0;
3787}
3788
3789static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3790{
3791        const char __user *fname;
3792        int ret;
3793
3794        if (unlikely(sqe->ioprio || sqe->buf_index))
3795                return -EINVAL;
3796        if (unlikely(req->flags & REQ_F_FIXED_FILE))
3797                return -EBADF;
3798
3799        /* open.how should be already initialised */
3800        if (!(req->open.how.flags & O_PATH) && force_o_largefile())
3801                req->open.how.flags |= O_LARGEFILE;
3802
3803        req->open.dfd = READ_ONCE(sqe->fd);
3804        fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3805        req->open.filename = getname(fname);
3806        if (IS_ERR(req->open.filename)) {
3807                ret = PTR_ERR(req->open.filename);
3808                req->open.filename = NULL;
3809                return ret;
3810        }
3811        req->open.nofile = rlimit(RLIMIT_NOFILE);
3812        req->flags |= REQ_F_NEED_CLEANUP;
3813        return 0;
3814}
3815
3816static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3817{
3818        u64 flags, mode;
3819
3820        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3821                return -EINVAL;
3822        mode = READ_ONCE(sqe->len);
3823        flags = READ_ONCE(sqe->open_flags);
3824        req->open.how = build_open_how(flags, mode);
3825        return __io_openat_prep(req, sqe);
3826}
3827
3828static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3829{
3830        struct open_how __user *how;
3831        size_t len;
3832        int ret;
3833
3834        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3835                return -EINVAL;
3836        how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3837        len = READ_ONCE(sqe->len);
3838        if (len < OPEN_HOW_SIZE_VER0)
3839                return -EINVAL;
3840
3841        ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
3842                                        len);
3843        if (ret)
3844                return ret;
3845
3846        return __io_openat_prep(req, sqe);
3847}
3848
3849static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
3850{
3851        struct open_flags op;
3852        struct file *file;
3853        bool nonblock_set;
3854        bool resolve_nonblock;
3855        int ret;
3856
3857        ret = build_open_flags(&req->open.how, &op);
3858        if (ret)
3859                goto err;
3860        nonblock_set = op.open_flag & O_NONBLOCK;
3861        resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
3862        if (issue_flags & IO_URING_F_NONBLOCK) {
3863                /*
3864                 * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
3865                 * it'll always -EAGAIN
3866                 */
3867                if (req->open.how.flags & (O_TRUNC | O_CREAT | O_TMPFILE))
3868                        return -EAGAIN;
3869                op.lookup_flags |= LOOKUP_CACHED;
3870                op.open_flag |= O_NONBLOCK;
3871        }
3872
3873        ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
3874        if (ret < 0)
3875                goto err;
3876
3877        file = do_filp_open(req->open.dfd, req->open.filename, &op);
3878        if (IS_ERR(file)) {
3879                /*
3880                 * We could hang on to this 'fd' on retrying, but seems like
3881                 * marginal gain for something that is now known to be a slower
3882                 * path. So just put it, and we'll get a new one when we retry.
3883                 */
3884                put_unused_fd(ret);
3885
3886                ret = PTR_ERR(file);
3887                /* only retry if RESOLVE_CACHED wasn't already set by application */
3888                if (ret == -EAGAIN &&
3889                    (!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)))
3890                        return -EAGAIN;
3891                goto err;
3892        }
3893
3894        if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
3895                file->f_flags &= ~O_NONBLOCK;
3896        fsnotify_open(file);
3897        fd_install(ret, file);
3898err:
3899        putname(req->open.filename);
3900        req->flags &= ~REQ_F_NEED_CLEANUP;
3901        if (ret < 0)
3902                req_set_fail(req);
3903        __io_req_complete(req, issue_flags, ret, 0);
3904        return 0;
3905}
3906
3907static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
3908{
3909        return io_openat2(req, issue_flags);
3910}
3911
3912static int io_remove_buffers_prep(struct io_kiocb *req,
3913                                  const struct io_uring_sqe *sqe)
3914{
3915        struct io_provide_buf *p = &req->pbuf;
3916        u64 tmp;
3917
3918        if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off)
3919                return -EINVAL;
3920
3921        tmp = READ_ONCE(sqe->fd);
3922        if (!tmp || tmp > USHRT_MAX)
3923                return -EINVAL;
3924
3925        memset(p, 0, sizeof(*p));
3926        p->nbufs = tmp;
3927        p->bgid = READ_ONCE(sqe->buf_group);
3928        return 0;
3929}
3930
3931static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
3932                               int bgid, unsigned nbufs)
3933{
3934        unsigned i = 0;
3935
3936        /* shouldn't happen */
3937        if (!nbufs)
3938                return 0;
3939
3940        /* the head kbuf is the list itself */
3941        while (!list_empty(&buf->list)) {
3942                struct io_buffer *nxt;
3943
3944                nxt = list_first_entry(&buf->list, struct io_buffer, list);
3945                list_del(&nxt->list);
3946                kfree(nxt);
3947                if (++i == nbufs)
3948                        return i;
3949        }
3950        i++;
3951        kfree(buf);
3952        xa_erase(&ctx->io_buffers, bgid);
3953
3954        return i;
3955}
3956
3957static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
3958{
3959        struct io_provide_buf *p = &req->pbuf;
3960        struct io_ring_ctx *ctx = req->ctx;
3961        struct io_buffer *head;
3962        int ret = 0;
3963        bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3964
3965        io_ring_submit_lock(ctx, !force_nonblock);
3966
3967        lockdep_assert_held(&ctx->uring_lock);
3968
3969        ret = -ENOENT;
3970        head = xa_load(&ctx->io_buffers, p->bgid);
3971        if (head)
3972                ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
3973        if (ret < 0)
3974                req_set_fail(req);
3975
3976        /* complete before unlock, IOPOLL may need the lock */
3977        __io_req_complete(req, issue_flags, ret, 0);
3978        io_ring_submit_unlock(ctx, !force_nonblock);
3979        return 0;
3980}
3981
3982static int io_provide_buffers_prep(struct io_kiocb *req,
3983                                   const struct io_uring_sqe *sqe)
3984{
3985        unsigned long size, tmp_check;
3986        struct io_provide_buf *p = &req->pbuf;
3987        u64 tmp;
3988
3989        if (sqe->ioprio || sqe->rw_flags)
3990                return -EINVAL;
3991
3992        tmp = READ_ONCE(sqe->fd);
3993        if (!tmp || tmp > USHRT_MAX)
3994                return -E2BIG;
3995        p->nbufs = tmp;
3996        p->addr = READ_ONCE(sqe->addr);
3997        p->len = READ_ONCE(sqe->len);
3998
3999        if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs,
4000                                &size))
4001                return -EOVERFLOW;
4002        if (check_add_overflow((unsigned long)p->addr, size, &tmp_check))
4003                return -EOVERFLOW;
4004
4005        size = (unsigned long)p->len * p->nbufs;
4006        if (!access_ok(u64_to_user_ptr(p->addr), size))
4007                return -EFAULT;
4008
4009        p->bgid = READ_ONCE(sqe->buf_group);
4010        tmp = READ_ONCE(sqe->off);
4011        if (tmp > USHRT_MAX)
4012                return -E2BIG;
4013        p->bid = tmp;
4014        return 0;
4015}
4016
4017static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4018{
4019        struct io_buffer *buf;
4020        u64 addr = pbuf->addr;
4021        int i, bid = pbuf->bid;
4022
4023        for (i = 0; i < pbuf->nbufs; i++) {
4024                buf = kmalloc(sizeof(*buf), GFP_KERNEL);
4025                if (!buf)
4026                        break;
4027
4028                buf->addr = addr;
4029                buf->len = min_t(__u32, pbuf->len, MAX_RW_COUNT);
4030                buf->bid = bid;
4031                addr += pbuf->len;
4032                bid++;
4033                if (!*head) {
4034                        INIT_LIST_HEAD(&buf->list);
4035                        *head = buf;
4036                } else {
4037                        list_add_tail(&buf->list, &(*head)->list);
4038                }
4039        }
4040
4041        return i ? i : -ENOMEM;
4042}
4043
4044static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
4045{
4046        struct io_provide_buf *p = &req->pbuf;
4047        struct io_ring_ctx *ctx = req->ctx;
4048        struct io_buffer *head, *list;
4049        int ret = 0;
4050        bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4051
4052        io_ring_submit_lock(ctx, !force_nonblock);
4053
4054        lockdep_assert_held(&ctx->uring_lock);
4055
4056        list = head = xa_load(&ctx->io_buffers, p->bgid);
4057
4058        ret = io_add_buffers(p, &head);
4059        if (ret >= 0 && !list) {
4060                ret = xa_insert(&ctx->io_buffers, p->bgid, head, GFP_KERNEL);
4061                if (ret < 0)
4062                        __io_remove_buffers(ctx, head, p->bgid, -1U);
4063        }
4064        if (ret < 0)
4065                req_set_fail(req);
4066        /* complete before unlock, IOPOLL may need the lock */
4067        __io_req_complete(req, issue_flags, ret, 0);
4068        io_ring_submit_unlock(ctx, !force_nonblock);
4069        return 0;
4070}
4071
4072static int io_epoll_ctl_prep(struct io_kiocb *req,
4073                             const struct io_uring_sqe *sqe)
4074{
4075#if defined(CONFIG_EPOLL)
4076        if (sqe->ioprio || sqe->buf_index)
4077                return -EINVAL;
4078        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4079                return -EINVAL;
4080
4081        req->epoll.epfd = READ_ONCE(sqe->fd);
4082        req->epoll.op = READ_ONCE(sqe->len);
4083        req->epoll.fd = READ_ONCE(sqe->off);
4084
4085        if (ep_op_has_event(req->epoll.op)) {
4086                struct epoll_event __user *ev;
4087
4088                ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4089                if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4090                        return -EFAULT;
4091        }
4092
4093        return 0;
4094#else
4095        return -EOPNOTSUPP;
4096#endif
4097}
4098
4099static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
4100{
4101#if defined(CONFIG_EPOLL)
4102        struct io_epoll *ie = &req->epoll;
4103        int ret;
4104        bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4105
4106        ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4107        if (force_nonblock && ret == -EAGAIN)
4108                return -EAGAIN;
4109
4110        if (ret < 0)
4111                req_set_fail(req);
4112        __io_req_complete(req, issue_flags, ret, 0);
4113        return 0;
4114#else
4115        return -EOPNOTSUPP;
4116#endif
4117}
4118
4119static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4120{
4121#if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4122        if (sqe->ioprio || sqe->buf_index || sqe->off)
4123                return -EINVAL;
4124        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4125                return -EINVAL;
4126
4127        req->madvise.addr = READ_ONCE(sqe->addr);
4128        req->madvise.len = READ_ONCE(sqe->len);
4129        req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4130        return 0;
4131#else
4132        return -EOPNOTSUPP;
4133#endif
4134}
4135
4136static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
4137{
4138#if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4139        struct io_madvise *ma = &req->madvise;
4140        int ret;
4141
4142        if (issue_flags & IO_URING_F_NONBLOCK)
4143                return -EAGAIN;
4144
4145        ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4146        if (ret < 0)
4147                req_set_fail(req);
4148        io_req_complete(req, ret);
4149        return 0;
4150#else
4151        return -EOPNOTSUPP;
4152#endif
4153}
4154
4155static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4156{
4157        if (sqe->ioprio || sqe->buf_index || sqe->addr)
4158                return -EINVAL;
4159        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4160                return -EINVAL;
4161
4162        req->fadvise.offset = READ_ONCE(sqe->off);
4163        req->fadvise.len = READ_ONCE(sqe->len);
4164        req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4165        return 0;
4166}
4167
4168static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
4169{
4170        struct io_fadvise *fa = &req->fadvise;
4171        int ret;
4172
4173        if (issue_flags & IO_URING_F_NONBLOCK) {
4174                switch (fa->advice) {
4175                case POSIX_FADV_NORMAL:
4176                case POSIX_FADV_RANDOM:
4177                case POSIX_FADV_SEQUENTIAL:
4178                        break;
4179                default:
4180                        return -EAGAIN;
4181                }
4182        }
4183
4184        ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4185        if (ret < 0)
4186                req_set_fail(req);
4187        __io_req_complete(req, issue_flags, ret, 0);
4188        return 0;
4189}
4190
4191static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4192{
4193        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4194                return -EINVAL;
4195        if (sqe->ioprio || sqe->buf_index)
4196                return -EINVAL;
4197        if (req->flags & REQ_F_FIXED_FILE)
4198                return -EBADF;
4199
4200        req->statx.dfd = READ_ONCE(sqe->fd);
4201        req->statx.mask = READ_ONCE(sqe->len);
4202        req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4203        req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4204        req->statx.flags = READ_ONCE(sqe->statx_flags);
4205
4206        return 0;
4207}
4208
4209static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
4210{
4211        struct io_statx *ctx = &req->statx;
4212        int ret;
4213
4214        if (issue_flags & IO_URING_F_NONBLOCK)
4215                return -EAGAIN;
4216
4217        ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4218                       ctx->buffer);
4219
4220        if (ret < 0)
4221                req_set_fail(req);
4222        io_req_complete(req, ret);
4223        return 0;
4224}
4225
4226static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4227{
4228        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4229                return -EINVAL;
4230        if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4231            sqe->rw_flags || sqe->buf_index)
4232                return -EINVAL;
4233        if (req->flags & REQ_F_FIXED_FILE)
4234                return -EBADF;
4235
4236        req->close.fd = READ_ONCE(sqe->fd);
4237        return 0;
4238}
4239
4240static int io_close(struct io_kiocb *req, unsigned int issue_flags)
4241{
4242        struct files_struct *files = current->files;
4243        struct io_close *close = &req->close;
4244        struct fdtable *fdt;
4245        struct file *file = NULL;
4246        int ret = -EBADF;
4247
4248        spin_lock(&files->file_lock);
4249        fdt = files_fdtable(files);
4250        if (close->fd >= fdt->max_fds) {
4251                spin_unlock(&files->file_lock);
4252                goto err;
4253        }
4254        file = fdt->fd[close->fd];
4255        if (!file || file->f_op == &io_uring_fops) {
4256                spin_unlock(&files->file_lock);
4257                file = NULL;
4258                goto err;
4259        }
4260
4261        /* if the file has a flush method, be safe and punt to async */
4262        if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
4263                spin_unlock(&files->file_lock);
4264                return -EAGAIN;
4265        }
4266
4267        ret = __close_fd_get_file(close->fd, &file);
4268        spin_unlock(&files->file_lock);
4269        if (ret < 0) {
4270                if (ret == -ENOENT)
4271                        ret = -EBADF;
4272                goto err;
4273        }
4274
4275        /* No ->flush() or already async, safely close from here */
4276        ret = filp_close(file, current->files);
4277err:
4278        if (ret < 0)
4279                req_set_fail(req);
4280        if (file)
4281                fput(file);
4282        __io_req_complete(req, issue_flags, ret, 0);
4283        return 0;
4284}
4285
4286static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4287{
4288        struct io_ring_ctx *ctx = req->ctx;
4289
4290        if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4291                return -EINVAL;
4292        if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
4293                return -EINVAL;
4294
4295        req->sync.off = READ_ONCE(sqe->off);
4296        req->sync.len = READ_ONCE(sqe->len);
4297        req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4298        return 0;
4299}
4300
4301static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
4302{
4303        int ret;
4304
4305        /* sync_file_range always requires a blocking context */
4306        if (issue_flags & IO_URING_F_NONBLOCK)
4307                return -EAGAIN;
4308
4309        ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4310                                req->sync.flags);
4311        if (ret < 0)
4312                req_set_fail(req);
4313        io_req_complete(req, ret);
4314        return 0;
4315}
4316
4317#if defined(CONFIG_NET)
4318static int io_setup_async_msg(struct io_kiocb *req,
4319                              struct io_async_msghdr *kmsg)
4320{
4321        struct io_async_msghdr *async_msg = req->async_data;
4322
4323        if (async_msg)
4324                return -EAGAIN;
4325        if (io_alloc_async_data(req)) {
4326                kfree(kmsg->free_iov);
4327                return -ENOMEM;
4328        }
4329        async_msg = req->async_data;
4330        req->flags |= REQ_F_NEED_CLEANUP;
4331        memcpy(async_msg, kmsg, sizeof(*kmsg));
4332        async_msg->msg.msg_name = &async_msg->addr;
4333        /* if were using fast_iov, set it to the new one */
4334        if (!async_msg->free_iov)
4335                async_msg->msg.msg_iter.iov = async_msg->fast_iov;
4336
4337        return -EAGAIN;
4338}
4339
4340static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4341                               struct io_async_msghdr *iomsg)
4342{
4343        iomsg->msg.msg_name = &iomsg->addr;
4344        iomsg->free_iov = iomsg->fast_iov;
4345        return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4346                                   req->sr_msg.msg_flags, &iomsg->free_iov);
4347}
4348
4349static int io_sendmsg_prep_async(struct io_kiocb *req)
4350{
4351        int ret;
4352
4353        ret = io_sendmsg_copy_hdr(req, req->async_data);
4354        if (!ret)
4355                req->flags |= REQ_F_NEED_CLEANUP;
4356        return ret;
4357}
4358
4359static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4360{
4361        struct io_sr_msg *sr = &req->sr_msg;
4362
4363        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4364                return -EINVAL;
4365
4366        sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4367        sr->len = READ_ONCE(sqe->len);
4368        sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4369        if (sr->msg_flags & MSG_DONTWAIT)
4370                req->flags |= REQ_F_NOWAIT;
4371
4372#ifdef CONFIG_COMPAT
4373        if (req->ctx->compat)
4374                sr->msg_flags |= MSG_CMSG_COMPAT;
4375#endif
4376        return 0;
4377}
4378
4379static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
4380{
4381        struct io_async_msghdr iomsg, *kmsg;
4382        struct socket *sock;
4383        unsigned flags;
4384        int min_ret = 0;
4385        int ret;
4386
4387        sock = sock_from_file(req->file);
4388        if (unlikely(!sock))
4389                return -ENOTSOCK;
4390
4391        kmsg = req->async_data;
4392        if (!kmsg) {
4393                ret = io_sendmsg_copy_hdr(req, &iomsg);
4394                if (ret)
4395                        return ret;
4396                kmsg = &iomsg;
4397        }
4398
4399        flags = req->sr_msg.msg_flags;
4400        if (issue_flags & IO_URING_F_NONBLOCK)
4401                flags |= MSG_DONTWAIT;
4402        if (flags & MSG_WAITALL)
4403                min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4404
4405        ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4406        if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4407                return io_setup_async_msg(req, kmsg);
4408        if (ret == -ERESTARTSYS)
4409                ret = -EINTR;
4410
4411        /* fast path, check for non-NULL to avoid function call */
4412        if (kmsg->free_iov)
4413                kfree(kmsg->free_iov);
4414        req->flags &= ~REQ_F_NEED_CLEANUP;
4415        if (ret < min_ret)
4416                req_set_fail(req);
4417        __io_req_complete(req, issue_flags, ret, 0);
4418        return 0;
4419}
4420
4421static int io_send(struct io_kiocb *req, unsigned int issue_flags)
4422{
4423        struct io_sr_msg *sr = &req->sr_msg;
4424        struct msghdr msg;
4425        struct iovec iov;
4426        struct socket *sock;
4427        unsigned flags;
4428        int min_ret = 0;
4429        int ret;
4430
4431        sock = sock_from_file(req->file);
4432        if (unlikely(!sock))
4433                return -ENOTSOCK;
4434
4435        ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4436        if (unlikely(ret))
4437                return ret;
4438
4439        msg.msg_name = NULL;
4440        msg.msg_control = NULL;
4441        msg.msg_controllen = 0;
4442        msg.msg_namelen = 0;
4443
4444        flags = req->sr_msg.msg_flags;
4445        if (issue_flags & IO_URING_F_NONBLOCK)
4446                flags |= MSG_DONTWAIT;
4447        if (flags & MSG_WAITALL)
4448                min_ret = iov_iter_count(&msg.msg_iter);
4449
4450        msg.msg_flags = flags;
4451        ret = sock_sendmsg(sock, &msg);
4452        if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4453                return -EAGAIN;
4454        if (ret == -ERESTARTSYS)
4455                ret = -EINTR;
4456
4457        if (ret < min_ret)
4458                req_set_fail(req);
4459        __io_req_complete(req, issue_flags, ret, 0);
4460        return 0;
4461}
4462
4463static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4464                                 struct io_async_msghdr *iomsg)
4465{
4466        struct io_sr_msg *sr = &req->sr_msg;
4467        struct iovec __user *uiov;
4468        size_t iov_len;
4469        int ret;
4470
4471        ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4472                                        &iomsg->uaddr, &uiov, &iov_len);
4473        if (ret)
4474                return ret;
4475
4476        if (req->flags & REQ_F_BUFFER_SELECT) {
4477                if (iov_len > 1)
4478                        return -EINVAL;
4479                if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
4480                        return -EFAULT;
4481                sr->len = iomsg->fast_iov[0].iov_len;
4482                iomsg->free_iov = NULL;
4483        } else {
4484                iomsg->free_iov = iomsg->fast_iov;
4485                ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4486                                     &iomsg->free_iov, &iomsg->msg.msg_iter,
4487                                     false);
4488                if (ret > 0)
4489                        ret = 0;
4490        }
4491
4492        return ret;
4493}
4494
4495#ifdef CONFIG_COMPAT
4496static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4497                                        struct io_async_msghdr *iomsg)
4498{
4499        struct io_sr_msg *sr = &req->sr_msg;
4500        struct compat_iovec __user *uiov;
4501        compat_uptr_t ptr;
4502        compat_size_t len;
4503        int ret;
4504
4505        ret = __get_compat_msghdr(&iomsg->msg, sr->umsg_compat, &iomsg->uaddr,
4506                                  &ptr, &len);
4507        if (ret)
4508                return ret;
4509
4510        uiov = compat_ptr(ptr);
4511        if (req->flags & REQ_F_BUFFER_SELECT) {
4512                compat_ssize_t clen;
4513
4514                if (len > 1)
4515                        return -EINVAL;
4516                if (!access_ok(uiov, sizeof(*uiov)))
4517                        return -EFAULT;
4518                if (__get_user(clen, &uiov->iov_len))
4519                        return -EFAULT;
4520                if (clen < 0)
4521                        return -EINVAL;
4522                sr->len = clen;
4523                iomsg->free_iov = NULL;
4524        } else {
4525                iomsg->free_iov = iomsg->fast_iov;
4526                ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4527                                   UIO_FASTIOV, &iomsg->free_iov,
4528                                   &iomsg->msg.msg_iter, true);
4529                if (ret < 0)
4530                        return ret;
4531        }
4532
4533        return 0;
4534}
4535#endif
4536
4537static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4538                               struct io_async_msghdr *iomsg)
4539{
4540        iomsg->msg.msg_name = &iomsg->addr;
4541
4542#ifdef CONFIG_COMPAT
4543        if (req->ctx->compat)
4544                return __io_compat_recvmsg_copy_hdr(req, iomsg);
4545#endif
4546
4547        return __io_recvmsg_copy_hdr(req, iomsg);
4548}
4549
4550static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4551                                               bool needs_lock)
4552{
4553        struct io_sr_msg *sr = &req->sr_msg;
4554        struct io_buffer *kbuf;
4555
4556        kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4557        if (IS_ERR(kbuf))
4558                return kbuf;
4559
4560        sr->kbuf = kbuf;
4561        req->flags |= REQ_F_BUFFER_SELECTED;
4562        return kbuf;
4563}
4564
4565static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4566{
4567        return io_put_kbuf(req, req->sr_msg.kbuf);
4568}
4569
4570static int io_recvmsg_prep_async(struct io_kiocb *req)
4571{
4572        int ret;
4573
4574        ret = io_recvmsg_copy_hdr(req, req->async_data);
4575        if (!ret)
4576                req->flags |= REQ_F_NEED_CLEANUP;
4577        return ret;
4578}
4579
4580static int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4581{
4582        struct io_sr_msg *sr = &req->sr_msg;
4583
4584        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4585                return -EINVAL;
4586
4587        sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4588        sr->len = READ_ONCE(sqe->len);
4589        sr->bgid = READ_ONCE(sqe->buf_group);
4590        sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4591        if (sr->msg_flags & MSG_DONTWAIT)
4592                req->flags |= REQ_F_NOWAIT;
4593
4594#ifdef CONFIG_COMPAT
4595        if (req->ctx->compat)
4596                sr->msg_flags |= MSG_CMSG_COMPAT;
4597#endif
4598        return 0;
4599}
4600
4601static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
4602{
4603        struct io_async_msghdr iomsg, *kmsg;
4604        struct socket *sock;
4605        struct io_buffer *kbuf;
4606        unsigned flags;
4607        int min_ret = 0;
4608        int ret, cflags = 0;
4609        bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4610
4611        sock = sock_from_file(req->file);
4612        if (unlikely(!sock))
4613                return -ENOTSOCK;
4614
4615        kmsg = req->async_data;
4616        if (!kmsg) {
4617                ret = io_recvmsg_copy_hdr(req, &iomsg);
4618                if (ret)
4619                        return ret;
4620                kmsg = &iomsg;
4621        }
4622
4623        if (req->flags & REQ_F_BUFFER_SELECT) {
4624                kbuf = io_recv_buffer_select(req, !force_nonblock);
4625                if (IS_ERR(kbuf))
4626                        return PTR_ERR(kbuf);
4627                kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
4628                kmsg->fast_iov[0].iov_len = req->sr_msg.len;
4629                iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov,
4630                                1, req->sr_msg.len);
4631        }
4632
4633        flags = req->sr_msg.msg_flags;
4634        if (force_nonblock)
4635                flags |= MSG_DONTWAIT;
4636        if (flags & MSG_WAITALL)
4637                min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4638
4639        ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
4640                                        kmsg->uaddr, flags);
4641        if (force_nonblock && ret == -EAGAIN)
4642                return io_setup_async_msg(req, kmsg);
4643        if (ret == -ERESTARTSYS)
4644                ret = -EINTR;
4645
4646        if (req->flags & REQ_F_BUFFER_SELECTED)
4647                cflags = io_put_recv_kbuf(req);
4648        /* fast path, check for non-NULL to avoid function call */
4649        if (kmsg->free_iov)
4650                kfree(kmsg->free_iov);
4651        req->flags &= ~REQ_F_NEED_CLEANUP;
4652        if (ret < min_ret || ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
4653                req_set_fail(req);
4654        __io_req_complete(req, issue_flags, ret, cflags);
4655        return 0;
4656}
4657
4658static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
4659{
4660        struct io_buffer *kbuf;
4661        struct io_sr_msg *sr = &req->sr_msg;
4662        struct msghdr msg;
4663        void __user *buf = sr->buf;
4664        struct socket *sock;
4665        struct iovec iov;
4666        unsigned flags;
4667        int min_ret = 0;
4668        int ret, cflags = 0;
4669        bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4670
4671        sock = sock_from_file(req->file);
4672        if (unlikely(!sock))
4673                return -ENOTSOCK;
4674
4675        if (req->flags & REQ_F_BUFFER_SELECT) {
4676                kbuf = io_recv_buffer_select(req, !force_nonblock);
4677                if (IS_ERR(kbuf))
4678                        return PTR_ERR(kbuf);
4679                buf = u64_to_user_ptr(kbuf->addr);
4680        }
4681
4682        ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
4683        if (unlikely(ret))
4684                goto out_free;
4685
4686        msg.msg_name = NULL;
4687        msg.msg_control = NULL;
4688        msg.msg_controllen = 0;
4689        msg.msg_namelen = 0;
4690        msg.msg_iocb = NULL;
4691        msg.msg_flags = 0;
4692
4693        flags = req->sr_msg.msg_flags;
4694        if (force_nonblock)
4695                flags |= MSG_DONTWAIT;
4696        if (flags & MSG_WAITALL)
4697                min_ret = iov_iter_count(&msg.msg_iter);
4698
4699        ret = sock_recvmsg(sock, &msg, flags);
4700        if (force_nonblock && ret == -EAGAIN)
4701                return -EAGAIN;
4702        if (ret == -ERESTARTSYS)
4703                ret = -EINTR;
4704out_free:
4705        if (req->flags & REQ_F_BUFFER_SELECTED)
4706                cflags = io_put_recv_kbuf(req);
4707        if (ret < min_ret || ((flags & MSG_WAITALL) && (msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
4708                req_set_fail(req);
4709        __io_req_complete(req, issue_flags, ret, cflags);
4710        return 0;
4711}
4712
4713static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4714{
4715        struct io_accept *accept = &req->accept;
4716
4717        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4718                return -EINVAL;
4719        if (sqe->ioprio || sqe->len || sqe->buf_index)
4720                return -EINVAL;
4721
4722        accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4723        accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4724        accept->flags = READ_ONCE(sqe->accept_flags);
4725        accept->nofile = rlimit(RLIMIT_NOFILE);
4726        return 0;
4727}
4728
4729static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
4730{
4731        struct io_accept *accept = &req->accept;
4732        bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4733        unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
4734        int ret;
4735
4736        if (req->file->f_flags & O_NONBLOCK)
4737                req->flags |= REQ_F_NOWAIT;
4738
4739        ret = __sys_accept4_file(req->file, file_flags, accept->addr,
4740                                        accept->addr_len, accept->flags,
4741                                        accept->nofile);
4742        if (ret == -EAGAIN && force_nonblock)
4743                return -EAGAIN;
4744        if (ret < 0) {
4745                if (ret == -ERESTARTSYS)
4746                        ret = -EINTR;
4747                req_set_fail(req);
4748        }
4749        __io_req_complete(req, issue_flags, ret, 0);
4750        return 0;
4751}
4752
4753static int io_connect_prep_async(struct io_kiocb *req)
4754{
4755        struct io_async_connect *io = req->async_data;
4756        struct io_connect *conn = &req->connect;
4757
4758        return move_addr_to_kernel(conn->addr, conn->addr_len, &io->address);
4759}
4760
4761static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4762{
4763        struct io_connect *conn = &req->connect;
4764
4765        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4766                return -EINVAL;
4767        if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
4768                return -EINVAL;
4769
4770        conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4771        conn->addr_len =  READ_ONCE(sqe->addr2);
4772        return 0;
4773}
4774
4775static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
4776{
4777        struct io_async_connect __io, *io;
4778        unsigned file_flags;
4779        int ret;
4780        bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4781
4782        if (req->async_data) {
4783                io = req->async_data;
4784        } else {
4785                ret = move_addr_to_kernel(req->connect.addr,
4786                                                req->connect.addr_len,
4787                                                &__io.address);
4788                if (ret)
4789                        goto out;
4790                io = &__io;
4791        }
4792
4793        file_flags = force_nonblock ? O_NONBLOCK : 0;
4794
4795        ret = __sys_connect_file(req->file, &io->address,
4796                                        req->connect.addr_len, file_flags);
4797        if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
4798                if (req->async_data)
4799                        return -EAGAIN;
4800                if (io_alloc_async_data(req)) {
4801                        ret = -ENOMEM;
4802                        goto out;
4803                }
4804                memcpy(req->async_data, &__io, sizeof(__io));
4805                return -EAGAIN;
4806        }
4807        if (ret == -ERESTARTSYS)
4808                ret = -EINTR;
4809out:
4810        if (ret < 0)
4811                req_set_fail(req);
4812        __io_req_complete(req, issue_flags, ret, 0);
4813        return 0;
4814}
4815#else /* !CONFIG_NET */
4816#define IO_NETOP_FN(op)                                                 \
4817static int io_##op(struct io_kiocb *req, unsigned int issue_flags)      \
4818{                                                                       \
4819        return -EOPNOTSUPP;                                             \
4820}
4821
4822#define IO_NETOP_PREP(op)                                               \
4823IO_NETOP_FN(op)                                                         \
4824static int io_##op##_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) \
4825{                                                                       \
4826        return -EOPNOTSUPP;                                             \
4827}                                                                       \
4828
4829#define IO_NETOP_PREP_ASYNC(op)                                         \
4830IO_NETOP_PREP(op)                                                       \
4831static int io_##op##_prep_async(struct io_kiocb *req)                   \
4832{                                                                       \
4833        return -EOPNOTSUPP;                                             \
4834}
4835
4836IO_NETOP_PREP_ASYNC(sendmsg);
4837IO_NETOP_PREP_ASYNC(recvmsg);
4838IO_NETOP_PREP_ASYNC(connect);
4839IO_NETOP_PREP(accept);
4840IO_NETOP_FN(send);
4841IO_NETOP_FN(recv);
4842#endif /* CONFIG_NET */
4843
4844struct io_poll_table {
4845        struct poll_table_struct pt;
4846        struct io_kiocb *req;
4847        int nr_entries;
4848        int error;
4849};
4850
4851static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
4852                           __poll_t mask, io_req_tw_func_t func)
4853{
4854        /* for instances that support it check for an event match first: */
4855        if (mask && !(mask & poll->events))
4856                return 0;
4857
4858        trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
4859
4860        list_del_init(&poll->wait.entry);
4861
4862        req->result = mask;
4863        req->io_task_work.func = func;
4864
4865        /*
4866         * If this fails, then the task is exiting. When a task exits, the
4867         * work gets canceled, so just cancel this request as well instead
4868         * of executing it. We can't safely execute it anyway, as we may not
4869         * have the needed state needed for it anyway.
4870         */
4871        io_req_task_work_add(req);
4872        return 1;
4873}
4874
4875static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
4876        __acquires(&req->ctx->completion_lock)
4877{
4878        struct io_ring_ctx *ctx = req->ctx;
4879
4880        if (unlikely(req->task->flags & PF_EXITING))
4881                WRITE_ONCE(poll->canceled, true);
4882
4883        if (!req->result && !READ_ONCE(poll->canceled)) {
4884                struct poll_table_struct pt = { ._key = poll->events };
4885
4886                req->result = vfs_poll(req->file, &pt) & poll->events;
4887        }
4888
4889        spin_lock_irq(&ctx->completion_lock);
4890        if (!req->result && !READ_ONCE(poll->canceled)) {
4891                add_wait_queue(poll->head, &poll->wait);
4892                return true;
4893        }
4894
4895        return false;
4896}
4897
4898static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
4899{
4900        /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
4901        if (req->opcode == IORING_OP_POLL_ADD)
4902                return req->async_data;
4903        return req->apoll->double_poll;
4904}
4905
4906static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
4907{
4908        if (req->opcode == IORING_OP_POLL_ADD)
4909                return &req->poll;
4910        return &req->apoll->poll;
4911}
4912
4913static void io_poll_remove_double(struct io_kiocb *req)
4914        __must_hold(&req->ctx->completion_lock)
4915{
4916        struct io_poll_iocb *poll = io_poll_get_double(req);
4917
4918        lockdep_assert_held(&req->ctx->completion_lock);
4919
4920        if (poll && poll->head) {
4921                struct wait_queue_head *head = poll->head;
4922
4923                spin_lock(&head->lock);
4924                list_del_init(&poll->wait.entry);
4925                if (poll->wait.private)
4926                        req_ref_put(req);
4927                poll->head = NULL;
4928                spin_unlock(&head->lock);
4929        }
4930}
4931
4932static bool io_poll_complete(struct io_kiocb *req, __poll_t mask)
4933        __must_hold(&req->ctx->completion_lock)
4934{
4935        struct io_ring_ctx *ctx = req->ctx;
4936        unsigned flags = IORING_CQE_F_MORE;
4937        int error;
4938
4939        if (READ_ONCE(req->poll.canceled)) {
4940                error = -ECANCELED;
4941                req->poll.events |= EPOLLONESHOT;
4942        } else {
4943                error = mangle_poll(mask);
4944        }
4945        if (req->poll.events & EPOLLONESHOT)
4946                flags = 0;
4947        if (!io_cqring_fill_event(ctx, req->user_data, error, flags)) {
4948                req->poll.done = true;
4949                flags = 0;
4950        }
4951        if (flags & IORING_CQE_F_MORE)
4952                ctx->cq_extra++;
4953
4954        io_commit_cqring(ctx);
4955        return !(flags & IORING_CQE_F_MORE);
4956}
4957
4958static void io_poll_task_func(struct io_kiocb *req)
4959{
4960        struct io_ring_ctx *ctx = req->ctx;
4961        struct io_kiocb *nxt;
4962
4963        if (io_poll_rewait(req, &req->poll)) {
4964                spin_unlock_irq(&ctx->completion_lock);
4965        } else {
4966                bool done;
4967
4968                done = io_poll_complete(req, req->result);
4969                if (done) {
4970                        io_poll_remove_double(req);
4971                        hash_del(&req->hash_node);
4972                } else {
4973                        req->result = 0;
4974                        add_wait_queue(req->poll.head, &req->poll.wait);
4975                }
4976                spin_unlock_irq(&ctx->completion_lock);
4977                io_cqring_ev_posted(ctx);
4978
4979                if (done) {
4980                        nxt = io_put_req_find_next(req);
4981                        if (nxt)
4982                                io_req_task_submit(nxt);
4983                }
4984        }
4985}
4986
4987static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
4988                               int sync, void *key)
4989{
4990        struct io_kiocb *req = wait->private;
4991        struct io_poll_iocb *poll = io_poll_get_single(req);
4992        __poll_t mask = key_to_poll(key);
4993
4994        /* for instances that support it check for an event match first: */
4995        if (mask && !(mask & poll->events))
4996                return 0;
4997        if (!(poll->events & EPOLLONESHOT))
4998                return poll->wait.func(&poll->wait, mode, sync, key);
4999
5000        list_del_init(&wait->entry);
5001
5002        if (poll->head) {
5003                bool done;
5004
5005                spin_lock(&poll->head->lock);
5006                done = list_empty(&poll->wait.entry);
5007                if (!done)
5008                        list_del_init(&poll->wait.entry);
5009                /* make sure double remove sees this as being gone */
5010                wait->private = NULL;
5011                spin_unlock(&poll->head->lock);
5012                if (!done) {
5013                        /* use wait func handler, so it matches the rq type */
5014                        poll->wait.func(&poll->wait, mode, sync, key);
5015                }
5016        }
5017        req_ref_put(req);
5018        return 1;
5019}
5020
5021static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5022                              wait_queue_func_t wake_func)
5023{
5024        poll->head = NULL;
5025        poll->done = false;
5026        poll->canceled = false;
5027#define IO_POLL_UNMASK  (EPOLLERR|EPOLLHUP|EPOLLNVAL|EPOLLRDHUP)
5028        /* mask in events that we always want/need */
5029        poll->events = events | IO_POLL_UNMASK;
5030        INIT_LIST_HEAD(&poll->wait.entry);
5031        init_waitqueue_func_entry(&poll->wait, wake_func);
5032}
5033
5034static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5035                            struct wait_queue_head *head,
5036                            struct io_poll_iocb **poll_ptr)
5037{
5038        struct io_kiocb *req = pt->req;
5039
5040        /*
5041         * The file being polled uses multiple waitqueues for poll handling
5042         * (e.g. one for read, one for write). Setup a separate io_poll_iocb
5043         * if this happens.
5044         */
5045        if (unlikely(pt->nr_entries)) {
5046                struct io_poll_iocb *poll_one = poll;
5047
5048                /* already have a 2nd entry, fail a third attempt */
5049                if (*poll_ptr) {
5050                        pt->error = -EINVAL;
5051                        return;
5052                }
5053                /*
5054                 * Can't handle multishot for double wait for now, turn it
5055                 * into one-shot mode.
5056                 */
5057                if (!(poll_one->events & EPOLLONESHOT))
5058                        poll_one->events |= EPOLLONESHOT;
5059                /* double add on the same waitqueue head, ignore */
5060                if (poll_one->head == head)
5061                        return;
5062                poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5063                if (!poll) {
5064                        pt->error = -ENOMEM;
5065                        return;
5066                }
5067                io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5068                req_ref_get(req);
5069                poll->wait.private = req;
5070                *poll_ptr = poll;
5071        }
5072
5073        pt->nr_entries++;
5074        poll->head = head;
5075
5076        if (poll->events & EPOLLEXCLUSIVE)
5077                add_wait_queue_exclusive(head, &poll->wait);
5078        else
5079                add_wait_queue(head, &poll->wait);
5080}
5081
5082static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5083                               struct poll_table_struct *p)
5084{
5085        struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5086        struct async_poll *apoll = pt->req->apoll;
5087
5088        __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5089}
5090
5091static void io_async_task_func(struct io_kiocb *req)
5092{
5093        struct async_poll *apoll = req->apoll;
5094        struct io_ring_ctx *ctx = req->ctx;
5095
5096        trace_io_uring_task_run(req->ctx, req, req->opcode, req->user_data);
5097
5098        if (io_poll_rewait(req, &apoll->poll)) {
5099                spin_unlock_irq(&ctx->completion_lock);
5100                return;
5101        }
5102
5103        hash_del(&req->hash_node);
5104        io_poll_remove_double(req);
5105        spin_unlock_irq(&ctx->completion_lock);
5106
5107        if (!READ_ONCE(apoll->poll.canceled))
5108                io_req_task_submit(req);
5109        else
5110                io_req_complete_failed(req, -ECANCELED);
5111}
5112
5113static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5114                        void *key)
5115{
5116        struct io_kiocb *req = wait->private;
5117        struct io_poll_iocb *poll = &req->apoll->poll;
5118
5119        trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5120                                        key_to_poll(key));
5121
5122        return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5123}
5124
5125static void io_poll_req_insert(struct io_kiocb *req)
5126{
5127        struct io_ring_ctx *ctx = req->ctx;
5128        struct hlist_head *list;
5129
5130        list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5131        hlist_add_head(&req->hash_node, list);
5132}
5133
5134static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5135                                      struct io_poll_iocb *poll,
5136                                      struct io_poll_table *ipt, __poll_t mask,
5137                                      wait_queue_func_t wake_func)
5138        __acquires(&ctx->completion_lock)
5139{
5140        struct io_ring_ctx *ctx = req->ctx;
5141        bool cancel = false;
5142
5143        INIT_HLIST_NODE(&req->hash_node);
5144        io_init_poll_iocb(poll, mask, wake_func);
5145        poll->file = req->file;
5146        poll->wait.private = req;
5147
5148        ipt->pt._key = mask;
5149        ipt->req = req;
5150        ipt->error = 0;
5151        ipt->nr_entries = 0;
5152
5153        mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5154        if (unlikely(!ipt->nr_entries) && !ipt->error)
5155                ipt->error = -EINVAL;
5156
5157        spin_lock_irq(&ctx->completion_lock);
5158        if (ipt->error || (mask && (poll->events & EPOLLONESHOT)))
5159                io_poll_remove_double(req);
5160        if (likely(poll->head)) {
5161                spin_lock(&poll->head->lock);
5162                if (unlikely(list_empty(&poll->wait.entry))) {
5163                        if (ipt->error)
5164                                cancel = true;
5165                        ipt->error = 0;
5166                        mask = 0;
5167                }
5168                if ((mask && (poll->events & EPOLLONESHOT)) || ipt->error)
5169                        list_del_init(&poll->wait.entry);
5170                else if (cancel)
5171                        WRITE_ONCE(poll->canceled, true);
5172                else if (!poll->done) /* actually waiting for an event */
5173                        io_poll_req_insert(req);
5174                spin_unlock(&poll->head->lock);
5175        }
5176
5177        return mask;
5178}
5179
5180enum {
5181        IO_APOLL_OK,
5182        IO_APOLL_ABORTED,
5183        IO_APOLL_READY
5184};
5185
5186static int io_arm_poll_handler(struct io_kiocb *req)
5187{
5188        const struct io_op_def *def = &io_op_defs[req->opcode];
5189        struct io_ring_ctx *ctx = req->ctx;
5190        struct async_poll *apoll;
5191        struct io_poll_table ipt;
5192        __poll_t ret, mask = EPOLLONESHOT | POLLERR | POLLPRI;
5193        int rw;
5194
5195        if (!req->file || !file_can_poll(req->file))
5196                return IO_APOLL_ABORTED;
5197        if (req->flags & REQ_F_POLLED)
5198                return IO_APOLL_ABORTED;
5199        if (!def->pollin && !def->pollout)
5200                return IO_APOLL_ABORTED;
5201
5202        if (def->pollin) {
5203                rw = READ;
5204                mask |= POLLIN | POLLRDNORM;
5205
5206                /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5207                if ((req->opcode == IORING_OP_RECVMSG) &&
5208                    (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5209                        mask &= ~POLLIN;
5210        } else {
5211                rw = WRITE;
5212                mask |= POLLOUT | POLLWRNORM;
5213        }
5214
5215        /* if we can't nonblock try, then no point in arming a poll handler */
5216        if (!io_file_supports_async(req, rw))
5217                return IO_APOLL_ABORTED;
5218
5219        apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5220        if (unlikely(!apoll))
5221                return IO_APOLL_ABORTED;
5222        apoll->double_poll = NULL;
5223        req->apoll = apoll;
5224        req->flags |= REQ_F_POLLED;
5225        ipt.pt._qproc = io_async_queue_proc;
5226
5227        ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5228                                        io_async_wake);
5229        if (ret || ipt.error) {
5230                spin_unlock_irq(&ctx->completion_lock);
5231                if (ret)
5232                        return IO_APOLL_READY;
5233                return IO_APOLL_ABORTED;
5234        }
5235        spin_unlock_irq(&ctx->completion_lock);
5236        trace_io_uring_poll_arm(ctx, req, req->opcode, req->user_data,
5237                                mask, apoll->poll.events);
5238        return IO_APOLL_OK;
5239}
5240
5241static bool __io_poll_remove_one(struct io_kiocb *req,
5242                                 struct io_poll_iocb *poll, bool do_cancel)
5243        __must_hold(&req->ctx->completion_lock)
5244{
5245        bool do_complete = false;
5246
5247        if (!poll->head)
5248                return false;
5249        spin_lock(&poll->head->lock);
5250        if (do_cancel)
5251                WRITE_ONCE(poll->canceled, true);
5252        if (!list_empty(&poll->wait.entry)) {
5253                list_del_init(&poll->wait.entry);
5254                do_complete = true;
5255        }
5256        spin_unlock(&poll->head->lock);
5257        hash_del(&req->hash_node);
5258        return do_complete;
5259}
5260
5261static bool io_poll_remove_waitqs(struct io_kiocb *req)
5262        __must_hold(&req->ctx->completion_lock)
5263{
5264        bool do_complete;
5265
5266        io_poll_remove_double(req);
5267        do_complete = __io_poll_remove_one(req, io_poll_get_single(req), true);
5268
5269        if (req->opcode != IORING_OP_POLL_ADD && do_complete) {
5270                /* non-poll requests have submit ref still */
5271                req_ref_put(req);
5272        }
5273        return do_complete;
5274}
5275
5276static bool io_poll_remove_one(struct io_kiocb *req)
5277        __must_hold(&req->ctx->completion_lock)
5278{
5279        bool do_complete;
5280
5281        do_complete = io_poll_remove_waitqs(req);
5282        if (do_complete) {
5283                io_cqring_fill_event(req->ctx, req->user_data, -ECANCELED, 0);
5284                io_commit_cqring(req->ctx);
5285                req_set_fail(req);
5286                io_put_req_deferred(req, 1);
5287        }
5288
5289        return do_complete;
5290}
5291
5292/*
5293 * Returns true if we found and killed one or more poll requests
5294 */
5295static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5296                               bool cancel_all)
5297{
5298        struct hlist_node *tmp;
5299        struct io_kiocb *req;
5300        int posted = 0, i;
5301
5302        spin_lock_irq(&ctx->completion_lock);
5303        for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5304                struct hlist_head *list;
5305
5306                list = &ctx->cancel_hash[i];
5307                hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5308                        if (io_match_task(req, tsk, cancel_all))
5309                                posted += io_poll_remove_one(req);
5310                }
5311        }
5312        spin_unlock_irq(&ctx->completion_lock);
5313
5314        if (posted)
5315                io_cqring_ev_posted(ctx);
5316
5317        return posted != 0;
5318}
5319
5320static struct io_kiocb *io_poll_find(struct io_ring_ctx *ctx, __u64 sqe_addr,
5321                                     bool poll_only)
5322        __must_hold(&ctx->completion_lock)
5323{
5324        struct hlist_head *list;
5325        struct io_kiocb *req;
5326
5327        list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5328        hlist_for_each_entry(req, list, hash_node) {
5329                if (sqe_addr != req->user_data)
5330                        continue;
5331                if (poll_only && req->opcode != IORING_OP_POLL_ADD)
5332                        continue;
5333                return req;
5334        }
5335        return NULL;
5336}
5337
5338static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr,
5339                          bool poll_only)
5340        __must_hold(&ctx->completion_lock)
5341{
5342        struct io_kiocb *req;
5343
5344        req = io_poll_find(ctx, sqe_addr, poll_only);
5345        if (!req)
5346                return -ENOENT;
5347        if (io_poll_remove_one(req))
5348                return 0;
5349
5350        return -EALREADY;
5351}
5352
5353static __poll_t io_poll_parse_events(const struct io_uring_sqe *sqe,
5354                                     unsigned int flags)
5355{
5356        u32 events;
5357
5358        events = READ_ONCE(sqe->poll32_events);
5359#ifdef __BIG_ENDIAN
5360        events = swahw32(events);
5361#endif
5362        if (!(flags & IORING_POLL_ADD_MULTI))
5363                events |= EPOLLONESHOT;
5364        return demangle_poll(events) | (events & (EPOLLEXCLUSIVE|EPOLLONESHOT));
5365}
5366
5367static int io_poll_update_prep(struct io_kiocb *req,
5368                               const struct io_uring_sqe *sqe)
5369{
5370        struct io_poll_update *upd = &req->poll_update;
5371        u32 flags;
5372
5373        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5374                return -EINVAL;
5375        if (sqe->ioprio || sqe->buf_index)
5376                return -EINVAL;
5377        flags = READ_ONCE(sqe->len);
5378        if (flags & ~(IORING_POLL_UPDATE_EVENTS | IORING_POLL_UPDATE_USER_DATA |
5379                      IORING_POLL_ADD_MULTI))
5380                return -EINVAL;
5381        /* meaningless without update */
5382        if (flags == IORING_POLL_ADD_MULTI)
5383                return -EINVAL;
5384
5385        upd->old_user_data = READ_ONCE(sqe->addr);
5386        upd->update_events = flags & IORING_POLL_UPDATE_EVENTS;
5387        upd->update_user_data = flags & IORING_POLL_UPDATE_USER_DATA;
5388
5389        upd->new_user_data = READ_ONCE(sqe->off);
5390        if (!upd->update_user_data && upd->new_user_data)
5391                return -EINVAL;
5392        if (upd->update_events)
5393                upd->events = io_poll_parse_events(sqe, flags);
5394        else if (sqe->poll32_events)
5395                return -EINVAL;
5396
5397        return 0;
5398}
5399
5400static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5401                        void *key)
5402{
5403        struct io_kiocb *req = wait->private;
5404        struct io_poll_iocb *poll = &req->poll;
5405
5406        return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5407}
5408
5409static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5410                               struct poll_table_struct *p)
5411{
5412        struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5413
5414        __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5415}
5416
5417static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5418{
5419        struct io_poll_iocb *poll = &req->poll;
5420        u32 flags;
5421
5422        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5423                return -EINVAL;
5424        if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->addr)
5425                return -EINVAL;
5426        flags = READ_ONCE(sqe->len);
5427        if (flags & ~IORING_POLL_ADD_MULTI)
5428                return -EINVAL;
5429
5430        poll->events = io_poll_parse_events(sqe, flags);
5431        return 0;
5432}
5433
5434static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
5435{
5436        struct io_poll_iocb *poll = &req->poll;
5437        struct io_ring_ctx *ctx = req->ctx;
5438        struct io_poll_table ipt;
5439        __poll_t mask;
5440
5441        ipt.pt._qproc = io_poll_queue_proc;
5442
5443        mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5444                                        io_poll_wake);
5445
5446        if (mask) { /* no async, we'd stolen it */
5447                ipt.error = 0;
5448                io_poll_complete(req, mask);
5449        }
5450        spin_unlock_irq(&ctx->completion_lock);
5451
5452        if (mask) {
5453                io_cqring_ev_posted(ctx);
5454                if (poll->events & EPOLLONESHOT)
5455                        io_put_req(req);
5456        }
5457        return ipt.error;
5458}
5459
5460static int io_poll_update(struct io_kiocb *req, unsigned int issue_flags)
5461{
5462        struct io_ring_ctx *ctx = req->ctx;
5463        struct io_kiocb *preq;
5464        bool completing;
5465        int ret;
5466
5467        spin_lock_irq(&ctx->completion_lock);
5468        preq = io_poll_find(ctx, req->poll_update.old_user_data, true);
5469        if (!preq) {
5470                ret = -ENOENT;
5471                goto err;
5472        }
5473
5474        if (!req->poll_update.update_events && !req->poll_update.update_user_data) {
5475                completing = true;
5476                ret = io_poll_remove_one(preq) ? 0 : -EALREADY;
5477                goto err;
5478        }
5479
5480        /*
5481         * Don't allow racy completion with singleshot, as we cannot safely
5482         * update those. For multishot, if we're racing with completion, just
5483         * let completion re-add it.
5484         */
5485        completing = !__io_poll_remove_one(preq, &preq->poll, false);
5486        if (completing && (preq->poll.events & EPOLLONESHOT)) {
5487                ret = -EALREADY;
5488                goto err;
5489        }
5490        /* we now have a detached poll request. reissue. */
5491        ret = 0;
5492err:
5493        if (ret < 0) {
5494                spin_unlock_irq(&ctx->completion_lock);
5495                req_set_fail(req);
5496                io_req_complete(req, ret);
5497                return 0;
5498        }
5499        /* only mask one event flags, keep behavior flags */
5500        if (req->poll_update.update_events) {
5501                preq->poll.events &= ~0xffff;
5502                preq->poll.events |= req->poll_update.events & 0xffff;
5503                preq->poll.events |= IO_POLL_UNMASK;
5504        }
5505        if (req->poll_update.update_user_data)
5506                preq->user_data = req->poll_update.new_user_data;
5507        spin_unlock_irq(&ctx->completion_lock);
5508
5509        /* complete update request, we're done with it */
5510        io_req_complete(req, ret);
5511
5512        if (!completing) {
5513                ret = io_poll_add(preq, issue_flags);
5514                if (ret < 0) {
5515                        req_set_fail(preq);
5516                        io_req_complete(preq, ret);
5517                }
5518        }
5519        return 0;
5520}
5521
5522static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5523{
5524        struct io_timeout_data *data = container_of(timer,
5525                                                struct io_timeout_data, timer);
5526        struct io_kiocb *req = data->req;
5527        struct io_ring_ctx *ctx = req->ctx;
5528        unsigned long flags;
5529
5530        spin_lock_irqsave(&ctx->completion_lock, flags);
5531        list_del_init(&req->timeout.list);
5532        atomic_set(&req->ctx->cq_timeouts,
5533                atomic_read(&req->ctx->cq_timeouts) + 1);
5534
5535        io_cqring_fill_event(ctx, req->user_data, -ETIME, 0);
5536        io_commit_cqring(ctx);
5537        spin_unlock_irqrestore(&ctx->completion_lock, flags);
5538
5539        io_cqring_ev_posted(ctx);
5540        req_set_fail(req);
5541        io_put_req(req);
5542        return HRTIMER_NORESTART;
5543}
5544
5545static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
5546                                           __u64 user_data)
5547        __must_hold(&ctx->completion_lock)
5548{
5549        struct io_timeout_data *io;
5550        struct io_kiocb *req;
5551        bool found = false;
5552
5553        list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5554                found = user_data == req->user_data;
5555                if (found)
5556                        break;
5557        }
5558        if (!found)
5559                return ERR_PTR(-ENOENT);
5560
5561        io = req->async_data;
5562        if (hrtimer_try_to_cancel(&io->timer) == -1)
5563                return ERR_PTR(-EALREADY);
5564        list_del_init(&req->timeout.list);
5565        return req;
5566}
5567
5568static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
5569        __must_hold(&ctx->completion_lock)
5570{
5571        struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5572
5573        if (IS_ERR(req))
5574                return PTR_ERR(req);
5575
5576        req_set_fail(req);
5577        io_cqring_fill_event(ctx, req->user_data, -ECANCELED, 0);
5578        io_put_req_deferred(req, 1);
5579        return 0;
5580}
5581
5582static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
5583                             struct timespec64 *ts, enum hrtimer_mode mode)
5584        __must_hold(&ctx->completion_lock)
5585{
5586        struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5587        struct io_timeout_data *data;
5588
5589        if (IS_ERR(req))
5590                return PTR_ERR(req);
5591
5592        req->timeout.off = 0; /* noseq */
5593        data = req->async_data;
5594        list_add_tail(&req->timeout.list, &ctx->timeout_list);
5595        hrtimer_init(&data->timer, CLOCK_MONOTONIC, mode);
5596        data->timer.function = io_timeout_fn;
5597        hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
5598        return 0;
5599}
5600
5601static int io_timeout_remove_prep(struct io_kiocb *req,
5602                                  const struct io_uring_sqe *sqe)
5603{
5604        struct io_timeout_rem *tr = &req->timeout_rem;
5605
5606        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5607                return -EINVAL;
5608        if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5609                return -EINVAL;
5610        if (sqe->ioprio || sqe->buf_index || sqe->len)
5611                return -EINVAL;
5612
5613        tr->addr = READ_ONCE(sqe->addr);
5614        tr->flags = READ_ONCE(sqe->timeout_flags);
5615        if (tr->flags & IORING_TIMEOUT_UPDATE) {
5616                if (tr->flags & ~(IORING_TIMEOUT_UPDATE|IORING_TIMEOUT_ABS))
5617                        return -EINVAL;
5618                if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
5619                        return -EFAULT;
5620        } else if (tr->flags) {
5621                /* timeout removal doesn't support flags */
5622                return -EINVAL;
5623        }
5624
5625        return 0;
5626}
5627
5628static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
5629{
5630        return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
5631                                            : HRTIMER_MODE_REL;
5632}
5633
5634/*
5635 * Remove or update an existing timeout command
5636 */
5637static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
5638{
5639        struct io_timeout_rem *tr = &req->timeout_rem;
5640        struct io_ring_ctx *ctx = req->ctx;
5641        int ret;
5642
5643        spin_lock_irq(&ctx->completion_lock);
5644        if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE))
5645                ret = io_timeout_cancel(ctx, tr->addr);
5646        else
5647                ret = io_timeout_update(ctx, tr->addr, &tr->ts,
5648                                        io_translate_timeout_mode(tr->flags));
5649
5650        io_cqring_fill_event(ctx, req->user_data, ret, 0);
5651        io_commit_cqring(ctx);
5652        spin_unlock_irq(&ctx->completion_lock);
5653        io_cqring_ev_posted(ctx);
5654        if (ret < 0)
5655                req_set_fail(req);
5656        io_put_req(req);
5657        return 0;
5658}
5659
5660static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5661                           bool is_timeout_link)
5662{
5663        struct io_timeout_data *data;
5664        unsigned flags;
5665        u32 off = READ_ONCE(sqe->off);
5666
5667        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5668                return -EINVAL;
5669        if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
5670                return -EINVAL;
5671        if (off && is_timeout_link)
5672                return -EINVAL;
5673        flags = READ_ONCE(sqe->timeout_flags);
5674        if (flags & ~IORING_TIMEOUT_ABS)
5675                return -EINVAL;
5676
5677        req->timeout.off = off;
5678        if (unlikely(off && !req->ctx->off_timeout_used))
5679                req->ctx->off_timeout_used = true;
5680
5681        if (!req->async_data && io_alloc_async_data(req))
5682                return -ENOMEM;
5683
5684        data = req->async_data;
5685        data->req = req;
5686
5687        if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
5688                return -EFAULT;
5689
5690        data->mode = io_translate_timeout_mode(flags);
5691        hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
5692        if (is_timeout_link)
5693                io_req_track_inflight(req);
5694        return 0;
5695}
5696
5697static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
5698{
5699        struct io_ring_ctx *ctx = req->ctx;
5700        struct io_timeout_data *data = req->async_data;
5701        struct list_head *entry;
5702        u32 tail, off = req->timeout.off;
5703
5704        spin_lock_irq(&ctx->completion_lock);
5705
5706        /*
5707         * sqe->off holds how many events that need to occur for this
5708         * timeout event to be satisfied. If it isn't set, then this is
5709         * a pure timeout request, sequence isn't used.
5710         */
5711        if (io_is_timeout_noseq(req)) {
5712                entry = ctx->timeout_list.prev;
5713                goto add;
5714        }
5715
5716        tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
5717        req->timeout.target_seq = tail + off;
5718
5719        /* Update the last seq here in case io_flush_timeouts() hasn't.
5720         * This is safe because ->completion_lock is held, and submissions
5721         * and completions are never mixed in the same ->completion_lock section.
5722         */
5723        ctx->cq_last_tm_flush = tail;
5724
5725        /*
5726         * Insertion sort, ensuring the first entry in the list is always
5727         * the one we need first.
5728         */
5729        list_for_each_prev(entry, &ctx->timeout_list) {
5730                struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
5731                                                  timeout.list);
5732
5733                if (io_is_timeout_noseq(nxt))
5734                        continue;
5735                /* nxt.seq is behind @tail, otherwise would've been completed */
5736                if (off >= nxt->timeout.target_seq - tail)
5737                        break;
5738        }
5739add:
5740        list_add(&req->timeout.list, entry);
5741        data->timer.function = io_timeout_fn;
5742        hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
5743        spin_unlock_irq(&ctx->completion_lock);
5744        return 0;
5745}
5746
5747struct io_cancel_data {
5748        struct io_ring_ctx *ctx;
5749        u64 user_data;
5750};
5751
5752static bool io_cancel_cb(struct io_wq_work *work, void *data)
5753{
5754        struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5755        struct io_cancel_data *cd = data;
5756
5757        return req->ctx == cd->ctx && req->user_data == cd->user_data;
5758}
5759
5760static int io_async_cancel_one(struct io_uring_task *tctx, u64 user_data,
5761                               struct io_ring_ctx *ctx)
5762{
5763        struct io_cancel_data data = { .ctx = ctx, .user_data = user_data, };
5764        enum io_wq_cancel cancel_ret;
5765        int ret = 0;
5766
5767        if (!tctx || !tctx->io_wq)
5768                return -ENOENT;
5769
5770        cancel_ret = io_wq_cancel_cb(tctx->io_wq, io_cancel_cb, &data, false);
5771        switch (cancel_ret) {
5772        case IO_WQ_CANCEL_OK:
5773                ret = 0;
5774                break;
5775        case IO_WQ_CANCEL_RUNNING:
5776                ret = -EALREADY;
5777                break;
5778        case IO_WQ_CANCEL_NOTFOUND:
5779                ret = -ENOENT;
5780                break;
5781        }
5782
5783        return ret;
5784}
5785
5786static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
5787                                     struct io_kiocb *req, __u64 sqe_addr,
5788                                     int success_ret)
5789{
5790        unsigned long flags;
5791        int ret;
5792
5793        ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx);
5794        spin_lock_irqsave(&ctx->completion_lock, flags);
5795        if (ret != -ENOENT)
5796                goto done;
5797        ret = io_timeout_cancel(ctx, sqe_addr);
5798        if (ret != -ENOENT)
5799                goto done;
5800        ret = io_poll_cancel(ctx, sqe_addr, false);
5801done:
5802        if (!ret)
5803                ret = success_ret;
5804        io_cqring_fill_event(ctx, req->user_data, ret, 0);
5805        io_commit_cqring(ctx);
5806        spin_unlock_irqrestore(&ctx->completion_lock, flags);
5807        io_cqring_ev_posted(ctx);
5808
5809        if (ret < 0)
5810                req_set_fail(req);
5811}
5812
5813static int io_async_cancel_prep(struct io_kiocb *req,
5814                                const struct io_uring_sqe *sqe)
5815{
5816        if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5817                return -EINVAL;
5818        if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5819                return -EINVAL;
5820        if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags)
5821                return -EINVAL;
5822
5823        req->cancel.addr = READ_ONCE(sqe->addr);
5824        return 0;
5825}
5826
5827static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
5828{
5829        struct io_ring_ctx *ctx = req->ctx;
5830        u64 sqe_addr = req->cancel.addr;
5831        struct io_tctx_node *node;
5832        int ret;
5833
5834        /* tasks should wait for their io-wq threads, so safe w/o sync */
5835        ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx);
5836        spin_lock_irq(&ctx->completion_lock);
5837        if (ret != -ENOENT)
5838                goto done;
5839        ret = io_timeout_cancel(ctx, sqe_addr);
5840        if (ret != -ENOENT)
5841                goto done;
5842        ret = io_poll_cancel(ctx, sqe_addr, false);
5843        if (ret != -ENOENT)
5844                goto done;
5845        spin_unlock_irq(&ctx->completion_lock);
5846
5847        /* slow path, try all io-wq's */
5848        io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
5849        ret = -ENOENT;
5850        list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
5851                struct io_uring_task *tctx = node->task->io_uring;
5852
5853                ret = io_async_cancel_one(tctx, req->cancel.addr, ctx);
5854                if (ret != -ENOENT)
5855                        break;
5856        }
5857        io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
5858
5859        spin_lock_irq(&ctx->completion_lock);
5860done:
5861        io_cqring_fill_event(ctx, req->user_data, ret, 0);
5862        io_commit_cqring(ctx);
5863        spin_unlock_irq(&ctx->completion_lock);
5864        io_cqring_ev_posted(ctx);
5865
5866        if (ret < 0)
5867                req_set_fail(req);
5868        io_put_req(req);
5869        return 0;
5870}
5871
5872static int io_rsrc_update_prep(struct io_kiocb *req,
5873                                const struct io_uring_sqe *sqe)
5874{
5875        if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5876                return -EINVAL;
5877        if (sqe->ioprio || sqe->rw_flags)
5878                return -EINVAL;
5879
5880        req->rsrc_update.offset = READ_ONCE(sqe->off);
5881        req->rsrc_update.nr_args = READ_ONCE(sqe->len);
5882        if (!req->rsrc_update.nr_args)
5883                return -EINVAL;
5884        req->rsrc_update.arg = READ_ONCE(sqe->addr);
5885        return 0;
5886}
5887
5888static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
5889{
5890        struct io_ring_ctx *ctx = req->ctx;
5891        struct io_uring_rsrc_update2 up;
5892        int ret;
5893
5894        if (issue_flags & IO_URING_F_NONBLOCK)
5895                return -EAGAIN;
5896
5897        up.offset = req->rsrc_update.offset;
5898        up.data = req->rsrc_update.arg;
5899        up.nr = 0;
5900        up.tags = 0;
5901        up.resv = 0;
5902
5903        mutex_lock(&ctx->uring_lock);
5904        ret = __io_register_rsrc_update(ctx, IORING_RSRC_FILE,
5905                                        &up, req->rsrc_update.nr_args);
5906        mutex_unlock(&ctx->uring_lock);
5907
5908        if (ret < 0)
5909                req_set_fail(req);
5910        __io_req_complete(req, issue_flags, ret, 0);
5911        return 0;
5912}
5913
5914static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5915{
5916        switch (req->opcode) {
5917        case IORING_OP_NOP:
5918                return 0;
5919        case IORING_OP_READV:
5920        case IORING_OP_READ_FIXED:
5921        case IORING_OP_READ:
5922                return io_read_prep(req, sqe);
5923        case IORING_OP_WRITEV:
5924        case IORING_OP_WRITE_FIXED:
5925        case IORING_OP_WRITE:
5926                return io_write_prep(req, sqe);
5927        case IORING_OP_POLL_ADD:
5928                return io_poll_add_prep(req, sqe);
5929        case IORING_OP_POLL_REMOVE:
5930                return io_poll_update_prep(req, sqe);
5931        case IORING_OP_FSYNC:
5932                return io_fsync_prep(req, sqe);
5933        case IORING_OP_SYNC_FILE_RANGE:
5934                return io_sfr_prep(req, sqe);
5935        case IORING_OP_SENDMSG:
5936        case IORING_OP_SEND:
5937                return io_sendmsg_prep(req, sqe);
5938        case IORING_OP_RECVMSG:
5939        case IORING_OP_RECV:
5940                return io_recvmsg_prep(req, sqe);
5941        case IORING_OP_CONNECT:
5942                return io_connect_prep(req, sqe);
5943        case IORING_OP_TIMEOUT:
5944                return io_timeout_prep(req, sqe, false);
5945        case IORING_OP_TIMEOUT_REMOVE:
5946                return io_timeout_remove_prep(req, sqe);
5947        case IORING_OP_ASYNC_CANCEL:
5948                return io_async_cancel_prep(req, sqe);
5949        case IORING_OP_LINK_TIMEOUT:
5950                return io_timeout_prep(req, sqe, true);
5951        case IORING_OP_ACCEPT:
5952                return io_accept_prep(req, sqe);
5953        case IORING_OP_FALLOCATE:
5954                return io_fallocate_prep(req, sqe);
5955        case IORING_OP_OPENAT:
5956                return io_openat_prep(req, sqe);
5957        case IORING_OP_CLOSE:
5958                return io_close_prep(req, sqe);
5959        case IORING_OP_FILES_UPDATE:
5960                return io_rsrc_update_prep(req, sqe);
5961        case IORING_OP_STATX:
5962                return io_statx_prep(req, sqe);
5963        case IORING_OP_FADVISE:
5964                return io_fadvise_prep(req, sqe);
5965        case IORING_OP_MADVISE:
5966                return io_madvise_prep(req, sqe);
5967        case IORING_OP_OPENAT2:
5968                return io_openat2_prep(req, sqe);
5969        case IORING_OP_EPOLL_CTL:
5970                return io_epoll_ctl_prep(req, sqe);
5971        case IORING_OP_SPLICE:
5972                return io_splice_prep(req, sqe);
5973        case IORING_OP_PROVIDE_BUFFERS:
5974                return io_provide_buffers_prep(req, sqe);
5975        case IORING_OP_REMOVE_BUFFERS:
5976                return io_remove_buffers_prep(req, sqe);
5977        case IORING_OP_TEE:
5978                return io_tee_prep(req, sqe);
5979        case IORING_OP_SHUTDOWN:
5980                return io_shutdown_prep(req, sqe);
5981        case IORING_OP_RENAMEAT:
5982                return io_renameat_prep(req, sqe);
5983        case IORING_OP_UNLINKAT:
5984                return io_unlinkat_prep(req, sqe);
5985        }
5986
5987        printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
5988                        req->opcode);
5989        return -EINVAL;
5990}
5991
5992static int io_req_prep_async(struct io_kiocb *req)
5993{
5994        if (!io_op_defs[req->opcode].needs_async_setup)
5995                return 0;
5996        if (WARN_ON_ONCE(req->async_data))
5997                return -EFAULT;
5998        if (io_alloc_async_data(req))
5999                return -EAGAIN;
6000
6001        switch (req->opcode) {
6002        case IORING_OP_READV:
6003                return io_rw_prep_async(req, READ);
6004        case IORING_OP_WRITEV:
6005                return io_rw_prep_async(req, WRITE);
6006        case IORING_OP_SENDMSG:
6007                return io_sendmsg_prep_async(req);
6008        case IORING_OP_RECVMSG:
6009                return io_recvmsg_prep_async(req);
6010        case IORING_OP_CONNECT:
6011                return io_connect_prep_async(req);
6012        }
6013        printk_once(KERN_WARNING "io_uring: prep_async() bad opcode %d\n",
6014                    req->opcode);
6015        return -EFAULT;
6016}
6017
6018static u32 io_get_sequence(struct io_kiocb *req)
6019{
6020        u32 seq = req->ctx->cached_sq_head;
6021
6022        /* need original cached_sq_head, but it was increased for each req */
6023        io_for_each_link(req, req)
6024                seq--;
6025        return seq;
6026}
6027
6028static bool io_drain_req(struct io_kiocb *req)
6029{
6030        struct io_kiocb *pos;
6031        struct io_ring_ctx *ctx = req->ctx;
6032        struct io_defer_entry *de;
6033        int ret;
6034        u32 seq;
6035
6036        /*
6037         * If we need to drain a request in the middle of a link, drain the
6038         * head request and the next request/link after the current link.
6039         * Considering sequential execution of links, IOSQE_IO_DRAIN will be
6040         * maintained for every request of our link.
6041         */
6042        if (ctx->drain_next) {
6043                req->flags |= REQ_F_IO_DRAIN;
6044                ctx->drain_next = false;
6045        }
6046        /* not interested in head, start from the first linked */
6047        io_for_each_link(pos, req->link) {
6048                if (pos->flags & REQ_F_IO_DRAIN) {
6049                        ctx->drain_next = true;
6050                        req->flags |= REQ_F_IO_DRAIN;
6051                        break;
6052                }
6053        }
6054
6055        /* Still need defer if there is pending req in defer list. */
6056        if (likely(list_empty_careful(&ctx->defer_list) &&
6057                !(req->flags & REQ_F_IO_DRAIN))) {
6058                ctx->drain_active = false;
6059                return false;
6060        }
6061
6062        seq = io_get_sequence(req);
6063        /* Still a chance to pass the sequence check */
6064        if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6065                return false;
6066
6067        ret = io_req_prep_async(req);
6068        if (ret)
6069                goto fail;
6070        io_prep_async_link(req);
6071        de = kmalloc(sizeof(*de), GFP_KERNEL);
6072        if (!de) {
6073                ret = -ENOMEM;
6074fail:
6075                io_req_complete_failed(req, ret);
6076                return true;
6077        }
6078
6079        spin_lock_irq(&ctx->completion_lock);
6080        if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6081                spin_unlock_irq(&ctx->completion_lock);
6082                kfree(de);
6083                io_queue_async_work(req);
6084                return true;
6085        }
6086
6087        trace_io_uring_defer(ctx, req, req->user_data);
6088        de->req = req;
6089        de->seq = seq;
6090        list_add_tail(&de->list, &ctx->defer_list);
6091        spin_unlock_irq(&ctx->completion_lock);
6092        return true;
6093}
6094
6095static void io_clean_op(struct io_kiocb *req)
6096{
6097        if (req->flags & REQ_F_BUFFER_SELECTED) {
6098                switch (req->opcode) {
6099                case IORING_OP_READV:
6100                case IORING_OP_READ_FIXED:
6101                case IORING_OP_READ:
6102                        kfree((void *)(unsigned long)req->rw.addr);
6103                        break;
6104                case IORING_OP_RECVMSG:
6105                case IORING_OP_RECV:
6106                        kfree(req->sr_msg.kbuf);
6107                        break;
6108                }
6109        }
6110
6111        if (req->flags & REQ_F_NEED_CLEANUP) {
6112                switch (req->opcode) {
6113                case IORING_OP_READV:
6114                case IORING_OP_READ_FIXED:
6115                case IORING_OP_READ:
6116                case IORING_OP_WRITEV:
6117                case IORING_OP_WRITE_FIXED:
6118                case IORING_OP_WRITE: {
6119                        struct io_async_rw *io = req->async_data;
6120
6121                        kfree(io->free_iovec);
6122                        break;
6123                        }
6124                case IORING_OP_RECVMSG:
6125                case IORING_OP_SENDMSG: {
6126                        struct io_async_msghdr *io = req->async_data;
6127
6128                        kfree(io->free_iov);
6129                        break;
6130                        }
6131                case IORING_OP_SPLICE:
6132                case IORING_OP_TEE:
6133                        if (!(req->splice.flags & SPLICE_F_FD_IN_FIXED))
6134                                io_put_file(req->splice.file_in);
6135                        break;
6136                case IORING_OP_OPENAT:
6137                case IORING_OP_OPENAT2:
6138                        if (req->open.filename)
6139                                putname(req->open.filename);
6140                        break;
6141                case IORING_OP_RENAMEAT:
6142                        putname(req->rename.oldpath);
6143                        putname(req->rename.newpath);
6144                        break;
6145                case IORING_OP_UNLINKAT:
6146                        putname(req->unlink.filename);
6147                        break;
6148                }
6149        }
6150        if ((req->flags & REQ_F_POLLED) && req->apoll) {
6151                kfree(req->apoll->double_poll);
6152                kfree(req->apoll);
6153                req->apoll = NULL;
6154        }
6155        if (req->flags & REQ_F_INFLIGHT) {
6156                struct io_uring_task *tctx = req->task->io_uring;
6157
6158                atomic_dec(&tctx->inflight_tracked);
6159        }
6160        if (req->flags & REQ_F_CREDS)
6161                put_cred(req->creds);
6162
6163        req->flags &= ~IO_REQ_CLEAN_FLAGS;
6164}
6165
6166static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
6167{
6168        struct io_ring_ctx *ctx = req->ctx;
6169        const struct cred *creds = NULL;
6170        int ret;
6171
6172        if ((req->flags & REQ_F_CREDS) && req->creds != current_cred())
6173                creds = override_creds(req->creds);
6174
6175        switch (req->opcode) {
6176        case IORING_OP_NOP:
6177                ret = io_nop(req, issue_flags);
6178                break;
6179        case IORING_OP_READV:
6180        case IORING_OP_READ_FIXED:
6181        case IORING_OP_READ:
6182                ret = io_read(req, issue_flags);
6183                break;
6184        case IORING_OP_WRITEV:
6185        case IORING_OP_WRITE_FIXED:
6186        case IORING_OP_WRITE:
6187                ret = io_write(req, issue_flags);
6188                break;
6189        case IORING_OP_FSYNC:
6190                ret = io_fsync(req, issue_flags);
6191                break;
6192        case IORING_OP_POLL_ADD:
6193                ret = io_poll_add(req, issue_flags);
6194                break;
6195        case IORING_OP_POLL_REMOVE:
6196                ret = io_poll_update(req, issue_flags);
6197                break;
6198        case IORING_OP_SYNC_FILE_RANGE:
6199                ret = io_sync_file_range(req, issue_flags);
6200                break;
6201        case IORING_OP_SENDMSG:
6202                ret = io_sendmsg(req, issue_flags);
6203                break;
6204        case IORING_OP_SEND:
6205                ret = io_send(req, issue_flags);
6206                break;
6207        case IORING_OP_RECVMSG:
6208                ret = io_recvmsg(req, issue_flags);
6209                break;
6210        case IORING_OP_RECV:
6211                ret = io_recv(req, issue_flags);
6212                break;
6213        case IORING_OP_TIMEOUT:
6214                ret = io_timeout(req, issue_flags);
6215                break;
6216        case IORING_OP_TIMEOUT_REMOVE:
6217                ret = io_timeout_remove(req, issue_flags);
6218                break;
6219        case IORING_OP_ACCEPT:
6220                ret = io_accept(req, issue_flags);
6221                break;
6222        case IORING_OP_CONNECT:
6223                ret = io_connect(req, issue_flags);
6224                break;
6225        case IORING_OP_ASYNC_CANCEL:
6226                ret = io_async_cancel(req, issue_flags);
6227                break;
6228        case IORING_OP_FALLOCATE:
6229                ret = io_fallocate(req, issue_flags);
6230                break;
6231        case IORING_OP_OPENAT:
6232                ret = io_openat(req, issue_flags);
6233                break;
6234        case IORING_OP_CLOSE:
6235                ret = io_close(req, issue_flags);
6236                break;
6237        case IORING_OP_FILES_UPDATE:
6238                ret = io_files_update(req, issue_flags);
6239                break;
6240        case IORING_OP_STATX:
6241                ret = io_statx(req, issue_flags);
6242                break;
6243        case IORING_OP_FADVISE:
6244                ret = io_fadvise(req, issue_flags);
6245                break;
6246        case IORING_OP_MADVISE:
6247                ret = io_madvise(req, issue_flags);
6248                break;
6249        case IORING_OP_OPENAT2:
6250                ret = io_openat2(req, issue_flags);
6251                break;
6252        case IORING_OP_EPOLL_CTL:
6253                ret = io_epoll_ctl(req, issue_flags);
6254                break;
6255        case IORING_OP_SPLICE:
6256                ret = io_splice(req, issue_flags);
6257                break;
6258        case IORING_OP_PROVIDE_BUFFERS:
6259                ret = io_provide_buffers(req, issue_flags);
6260                break;
6261        case IORING_OP_REMOVE_BUFFERS:
6262                ret = io_remove_buffers(req, issue_flags);
6263                break;
6264        case IORING_OP_TEE:
6265                ret = io_tee(req, issue_flags);
6266                break;
6267        case IORING_OP_SHUTDOWN:
6268                ret = io_shutdown(req, issue_flags);
6269                break;
6270        case IORING_OP_RENAMEAT:
6271                ret = io_renameat(req, issue_flags);
6272                break;
6273        case IORING_OP_UNLINKAT:
6274                ret = io_unlinkat(req, issue_flags);
6275                break;
6276        default:
6277                ret = -EINVAL;
6278                break;
6279        }
6280
6281        if (creds)
6282                revert_creds(creds);
6283        if (ret)
6284                return ret;
6285        /* If the op doesn't have a file, we're not polling for it */
6286        if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file)
6287                io_iopoll_req_issued(req);
6288
6289        return 0;
6290}
6291
6292static void io_wq_submit_work(struct io_wq_work *work)
6293{
6294        struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6295        struct io_kiocb *timeout;
6296        int ret = 0;
6297
6298        timeout = io_prep_linked_timeout(req);
6299        if (timeout)
6300                io_queue_linked_timeout(timeout);
6301
6302        if (work->flags & IO_WQ_WORK_CANCEL)
6303                ret = -ECANCELED;
6304
6305        if (!ret) {
6306                do {
6307                        ret = io_issue_sqe(req, 0);
6308                        /*
6309                         * We can get EAGAIN for polled IO even though we're
6310                         * forcing a sync submission from here, since we can't
6311                         * wait for request slots on the block side.
6312                         */
6313                        if (ret != -EAGAIN)
6314                                break;
6315                        cond_resched();
6316                } while (1);
6317        }
6318
6319        /* avoid locking problems by failing it from a clean context */
6320        if (ret) {
6321                /* io-wq is going to take one down */
6322                req_ref_get(req);
6323                io_req_task_queue_fail(req, ret);
6324        }
6325}
6326
6327#define FFS_ASYNC_READ          0x1UL
6328#define FFS_ASYNC_WRITE         0x2UL
6329#ifdef CONFIG_64BIT
6330#define FFS_ISREG               0x4UL
6331#else
6332#define FFS_ISREG               0x0UL
6333#endif
6334#define FFS_MASK                ~(FFS_ASYNC_READ|FFS_ASYNC_WRITE|FFS_ISREG)
6335
6336static inline struct io_fixed_file *io_fixed_file_slot(struct io_file_table *table,
6337                                                      unsigned i)
6338{
6339        struct io_fixed_file *table_l2;
6340
6341        table_l2 = table->files[i >> IORING_FILE_TABLE_SHIFT];
6342        return &table_l2[i & IORING_FILE_TABLE_MASK];
6343}
6344
6345static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6346                                              int index)
6347{
6348        struct io_fixed_file *slot = io_fixed_file_slot(&ctx->file_table, index);
6349
6350        return (struct file *) (slot->file_ptr & FFS_MASK);
6351}
6352
6353static void io_fixed_file_set(struct io_fixed_file *file_slot, struct file *file)
6354{
6355        unsigned long file_ptr = (unsigned long) file;
6356
6357        if (__io_file_supports_async(file, READ))
6358                file_ptr |= FFS_ASYNC_READ;
6359        if (__io_file_supports_async(file, WRITE))
6360                file_ptr |= FFS_ASYNC_WRITE;
6361        if (S_ISREG(file_inode(file)->i_mode))
6362                file_ptr |= FFS_ISREG;
6363        file_slot->file_ptr = file_ptr;
6364}
6365
6366static struct file *io_file_get(struct io_submit_state *state,
6367                                struct io_kiocb *req, int fd, bool fixed)
6368{
6369        struct io_ring_ctx *ctx = req->ctx;
6370        struct file *file;
6371
6372        if (fixed) {
6373                unsigned long file_ptr;
6374
6375                if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6376                        return NULL;
6377                fd = array_index_nospec(fd, ctx->nr_user_files);
6378                file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
6379                file = (struct file *) (file_ptr & FFS_MASK);
6380                file_ptr &= ~FFS_MASK;
6381                /* mask in overlapping REQ_F and FFS bits */
6382                req->flags |= (file_ptr << REQ_F_ASYNC_READ_BIT);
6383                io_req_set_rsrc_node(req);
6384        } else {
6385                trace_io_uring_file_get(ctx, fd);
6386                file = __io_file_get(state, fd);
6387
6388                /* we don't allow fixed io_uring files */
6389                if (file && unlikely(file->f_op == &io_uring_fops))
6390                        io_req_track_inflight(req);
6391        }
6392
6393        return file;
6394}
6395
6396static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6397{
6398        struct io_timeout_data *data = container_of(timer,
6399                                                struct io_timeout_data, timer);
6400        struct io_kiocb *prev, *req = data->req;
6401        struct io_ring_ctx *ctx = req->ctx;
6402        unsigned long flags;
6403
6404        spin_lock_irqsave(&ctx->completion_lock, flags);
6405        prev = req->timeout.head;
6406        req->timeout.head = NULL;
6407
6408        /*
6409         * We don't expect the list to be empty, that will only happen if we
6410         * race with the completion of the linked work.
6411         */
6412        if (prev) {
6413                io_remove_next_linked(prev);
6414                if (!req_ref_inc_not_zero(prev))
6415                        prev = NULL;
6416        }
6417        spin_unlock_irqrestore(&ctx->completion_lock, flags);
6418
6419        if (prev) {
6420                io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
6421                io_put_req_deferred(prev, 1);
6422                io_put_req_deferred(req, 1);
6423        } else {
6424                io_req_complete_post(req, -ETIME, 0);
6425        }
6426        return HRTIMER_NORESTART;
6427}
6428
6429static void io_queue_linked_timeout(struct io_kiocb *req)
6430{
6431        struct io_ring_ctx *ctx = req->ctx;
6432
6433        spin_lock_irq(&ctx->completion_lock);
6434        /*
6435         * If the back reference is NULL, then our linked request finished
6436         * before we got a chance to setup the timer
6437         */
6438        if (req->timeout.head) {
6439                struct io_timeout_data *data = req->async_data;
6440
6441                data->timer.function = io_link_timeout_fn;
6442                hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6443                                data->mode);
6444        }
6445        spin_unlock_irq(&ctx->completion_lock);
6446        /* drop submission reference */
6447        io_put_req(req);
6448}
6449
6450static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
6451{
6452        struct io_kiocb *nxt = req->link;
6453
6454        if (!nxt || (req->flags & REQ_F_LINK_TIMEOUT) ||
6455            nxt->opcode != IORING_OP_LINK_TIMEOUT)
6456                return NULL;
6457
6458        nxt->timeout.head = req;
6459        nxt->flags |= REQ_F_LTIMEOUT_ACTIVE;
6460        req->flags |= REQ_F_LINK_TIMEOUT;
6461        return nxt;
6462}
6463
6464static void __io_queue_sqe(struct io_kiocb *req)
6465{
6466        struct io_kiocb *linked_timeout = io_prep_linked_timeout(req);
6467        int ret;
6468
6469issue_sqe:
6470        ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
6471
6472        /*
6473         * We async punt it if the file wasn't marked NOWAIT, or if the file
6474         * doesn't support non-blocking read/write attempts
6475         */
6476        if (likely(!ret)) {
6477                /* drop submission reference */
6478                if (req->flags & REQ_F_COMPLETE_INLINE) {
6479                        struct io_ring_ctx *ctx = req->ctx;
6480                        struct io_comp_state *cs = &ctx->submit_state.comp;
6481
6482                        cs->reqs[cs->nr++] = req;
6483                        if (cs->nr == ARRAY_SIZE(cs->reqs))
6484                                io_submit_flush_completions(ctx);
6485                } else {
6486                        io_put_req(req);
6487                }
6488        } else if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
6489                switch (io_arm_poll_handler(req)) {
6490                case IO_APOLL_READY:
6491                        goto issue_sqe;
6492                case IO_APOLL_ABORTED:
6493                        /*
6494                         * Queued up for async execution, worker will release
6495                         * submit reference when the iocb is actually submitted.
6496                         */
6497                        io_queue_async_work(req);
6498                        break;
6499                }
6500        } else {
6501                io_req_complete_failed(req, ret);
6502        }
6503        if (linked_timeout)
6504                io_queue_linked_timeout(linked_timeout);
6505}
6506
6507static inline void io_queue_sqe(struct io_kiocb *req)
6508{
6509        if (unlikely(req->ctx->drain_active) && io_drain_req(req))
6510                return;
6511
6512        if (likely(!(req->flags & REQ_F_FORCE_ASYNC))) {
6513                __io_queue_sqe(req);
6514        } else {
6515                int ret = io_req_prep_async(req);
6516
6517                if (unlikely(ret))
6518                        io_req_complete_failed(req, ret);
6519                else
6520                        io_queue_async_work(req);
6521        }
6522}
6523
6524/*
6525 * Check SQE restrictions (opcode and flags).
6526 *
6527 * Returns 'true' if SQE is allowed, 'false' otherwise.
6528 */
6529static inline bool io_check_restriction(struct io_ring_ctx *ctx,
6530                                        struct io_kiocb *req,
6531                                        unsigned int sqe_flags)
6532{
6533        if (likely(!ctx->restricted))
6534                return true;
6535
6536        if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
6537                return false;
6538
6539        if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
6540            ctx->restrictions.sqe_flags_required)
6541                return false;
6542
6543        if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
6544                          ctx->restrictions.sqe_flags_required))
6545                return false;
6546
6547        return true;
6548}
6549
6550static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
6551                       const struct io_uring_sqe *sqe)
6552{
6553        struct io_submit_state *state;
6554        unsigned int sqe_flags;
6555        int personality, ret = 0;
6556
6557        req->opcode = READ_ONCE(sqe->opcode);
6558        /* same numerical values with corresponding REQ_F_*, safe to copy */
6559        req->flags = sqe_flags = READ_ONCE(sqe->flags);
6560        req->user_data = READ_ONCE(sqe->user_data);
6561        req->file = NULL;
6562        req->fixed_rsrc_refs = NULL;
6563        /* one is dropped after submission, the other at completion */
6564        atomic_set(&req->refs, 2);
6565        req->task = current;
6566
6567        /* enforce forwards compatibility on users */
6568        if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
6569                return -EINVAL;
6570        if (unlikely(req->opcode >= IORING_OP_LAST))
6571                return -EINVAL;
6572        if (!io_check_restriction(ctx, req, sqe_flags))
6573                return -EACCES;
6574
6575        if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
6576            !io_op_defs[req->opcode].buffer_select)
6577                return -EOPNOTSUPP;
6578        if (unlikely(sqe_flags & IOSQE_IO_DRAIN))
6579                ctx->drain_active = true;
6580
6581        personality = READ_ONCE(sqe->personality);
6582        if (personality) {
6583                req->creds = xa_load(&ctx->personalities, personality);
6584                if (!req->creds)
6585                        return -EINVAL;
6586                get_cred(req->creds);
6587                req->flags |= REQ_F_CREDS;
6588        }
6589        state = &ctx->submit_state;
6590
6591        /*
6592         * Plug now if we have more than 1 IO left after this, and the target
6593         * is potentially a read/write to block based storage.
6594         */
6595        if (!state->plug_started && state->ios_left > 1 &&
6596            io_op_defs[req->opcode].plug) {
6597                blk_start_plug(&state->plug);
6598                state->plug_started = true;
6599        }
6600
6601        if (io_op_defs[req->opcode].needs_file) {
6602                bool fixed = req->flags & REQ_F_FIXED_FILE;
6603
6604                req->file = io_file_get(state, req, READ_ONCE(sqe->fd), fixed);
6605                if (unlikely(!req->file))
6606                        ret = -EBADF;
6607        }
6608
6609        state->ios_left--;
6610        return ret;
6611}
6612
6613static int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
6614                         const struct io_uring_sqe *sqe)
6615{
6616        struct io_submit_link *link = &ctx->submit_state.link;
6617        int ret;
6618
6619        ret = io_init_req(ctx, req, sqe);
6620        if (unlikely(ret)) {
6621fail_req:
6622                if (link->head) {
6623                        /* fail even hard links since we don't submit */
6624                        req_set_fail(link->head);
6625                        io_req_complete_failed(link->head, -ECANCELED);
6626                        link->head = NULL;
6627                }
6628                io_req_complete_failed(req, ret);
6629                return ret;
6630        }
6631
6632        ret = io_req_prep(req, sqe);
6633        if (unlikely(ret))
6634                goto fail_req;
6635
6636        /* don't need @sqe from now on */
6637        trace_io_uring_submit_sqe(ctx, req, req->opcode, req->user_data,
6638                                  req->flags, true,
6639                                  ctx->flags & IORING_SETUP_SQPOLL);
6640
6641        /*
6642         * If we already have a head request, queue this one for async
6643         * submittal once the head completes. If we don't have a head but
6644         * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
6645         * submitted sync once the chain is complete. If none of those
6646         * conditions are true (normal request), then just queue it.
6647         */
6648        if (link->head) {
6649                struct io_kiocb *head = link->head;
6650
6651                ret = io_req_prep_async(req);
6652                if (unlikely(ret))
6653                        goto fail_req;
6654                trace_io_uring_link(ctx, req, head);
6655                link->last->link = req;
6656                link->last = req;
6657
6658                /* last request of a link, enqueue the link */
6659                if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
6660                        link->head = NULL;
6661                        io_queue_sqe(head);
6662                }
6663        } else {
6664                if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
6665                        link->head = req;
6666                        link->last = req;
6667                } else {
6668                        io_queue_sqe(req);
6669                }
6670        }
6671
6672        return 0;
6673}
6674
6675/*
6676 * Batched submission is done, ensure local IO is flushed out.
6677 */
6678static void io_submit_state_end(struct io_submit_state *state,
6679                                struct io_ring_ctx *ctx)
6680{
6681        if (state->link.head)
6682                io_queue_sqe(state->link.head);
6683        if (state->comp.nr)
6684                io_submit_flush_completions(ctx);
6685        if (state->plug_started)
6686                blk_finish_plug(&state->plug);
6687        io_state_file_put(state);
6688}
6689
6690/*
6691 * Start submission side cache.
6692 */
6693static void io_submit_state_start(struct io_submit_state *state,
6694                                  unsigned int max_ios)
6695{
6696        state->plug_started = false;
6697        state->ios_left = max_ios;
6698        /* set only head, no need to init link_last in advance */
6699        state->link.head = NULL;
6700}
6701
6702static void io_commit_sqring(struct io_ring_ctx *ctx)
6703{
6704        struct io_rings *rings = ctx->rings;
6705
6706        /*
6707         * Ensure any loads from the SQEs are done at this point,
6708         * since once we write the new head, the application could
6709         * write new data to them.
6710         */
6711        smp_store_release(&rings->sq.head, ctx->cached_sq_head);
6712}
6713
6714/*
6715 * Fetch an sqe, if one is available. Note this returns a pointer to memory
6716 * that is mapped by userspace. This means that care needs to be taken to
6717 * ensure that reads are stable, as we cannot rely on userspace always
6718 * being a good citizen. If members of the sqe are validated and then later
6719 * used, it's important that those reads are done through READ_ONCE() to
6720 * prevent a re-load down the line.
6721 */
6722static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
6723{
6724        unsigned head, mask = ctx->sq_entries - 1;
6725        unsigned sq_idx = ctx->cached_sq_head++ & mask;
6726
6727        /*
6728         * The cached sq head (or cq tail) serves two purposes:
6729         *
6730         * 1) allows us to batch the cost of updating the user visible
6731         *    head updates.
6732         * 2) allows the kernel side to track the head on its own, even
6733         *    though the application is the one updating it.
6734         */
6735        head = READ_ONCE(ctx->sq_array[sq_idx]);
6736        if (likely(head < ctx->sq_entries))
6737                return &ctx->sq_sqes[head];
6738
6739        /* drop invalid entries */
6740        ctx->cq_extra--;
6741        WRITE_ONCE(ctx->rings->sq_dropped,
6742                   READ_ONCE(ctx->rings->sq_dropped) + 1);
6743        return NULL;
6744}
6745
6746static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
6747{
6748        struct io_uring_task *tctx;
6749        int submitted = 0;
6750
6751        /* make sure SQ entry isn't read before tail */
6752        nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
6753        if (!percpu_ref_tryget_many(&ctx->refs, nr))
6754                return -EAGAIN;
6755
6756        tctx = current->io_uring;
6757        tctx->cached_refs -= nr;
6758        if (unlikely(tctx->cached_refs < 0)) {
6759                unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
6760
6761                percpu_counter_add(&tctx->inflight, refill);
6762                refcount_add(refill, &current->usage);
6763                tctx->cached_refs += refill;
6764        }
6765        io_submit_state_start(&ctx->submit_state, nr);
6766
6767        while (submitted < nr) {
6768                const struct io_uring_sqe *sqe;
6769                struct io_kiocb *req;
6770
6771                req = io_alloc_req(ctx);
6772                if (unlikely(!req)) {
6773                        if (!submitted)
6774                                submitted = -EAGAIN;
6775                        break;
6776                }
6777                sqe = io_get_sqe(ctx);
6778                if (unlikely(!sqe)) {
6779                        kmem_cache_free(req_cachep, req);
6780                        break;
6781                }
6782                /* will complete beyond this point, count as submitted */
6783                submitted++;
6784                if (io_submit_sqe(ctx, req, sqe))
6785                        break;
6786        }
6787
6788        if (unlikely(submitted != nr)) {
6789                int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
6790                int unused = nr - ref_used;
6791
6792                current->io_uring->cached_refs += unused;
6793                percpu_ref_put_many(&ctx->refs, unused);
6794        }
6795
6796        io_submit_state_end(&ctx->submit_state, ctx);
6797         /* Commit SQ ring head once we've consumed and submitted all SQEs */
6798        io_commit_sqring(ctx);
6799
6800        return submitted;
6801}
6802
6803static inline bool io_sqd_events_pending(struct io_sq_data *sqd)
6804{
6805        return READ_ONCE(sqd->state);
6806}
6807
6808static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
6809{
6810        /* Tell userspace we may need a wakeup call */
6811        spin_lock_irq(&ctx->completion_lock);
6812        WRITE_ONCE(ctx->rings->sq_flags,
6813                   ctx->rings->sq_flags | IORING_SQ_NEED_WAKEUP);
6814        spin_unlock_irq(&ctx->completion_lock);
6815}
6816
6817static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
6818{
6819        spin_lock_irq(&ctx->completion_lock);
6820        WRITE_ONCE(ctx->rings->sq_flags,
6821                   ctx->rings->sq_flags & ~IORING_SQ_NEED_WAKEUP);
6822        spin_unlock_irq(&ctx->completion_lock);
6823}
6824
6825static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
6826{
6827        unsigned int to_submit;
6828        int ret = 0;
6829
6830        to_submit = io_sqring_entries(ctx);
6831        /* if we're handling multiple rings, cap submit size for fairness */
6832        if (cap_entries && to_submit > IORING_SQPOLL_CAP_ENTRIES_VALUE)
6833                to_submit = IORING_SQPOLL_CAP_ENTRIES_VALUE;
6834
6835        if (!list_empty(&ctx->iopoll_list) || to_submit) {
6836                unsigned nr_events = 0;
6837                const struct cred *creds = NULL;
6838
6839                if (ctx->sq_creds != current_cred())
6840                        creds = override_creds(ctx->sq_creds);
6841
6842                mutex_lock(&ctx->uring_lock);
6843                if (!list_empty(&ctx->iopoll_list))
6844                        io_do_iopoll(ctx, &nr_events, 0, true);
6845
6846                /*
6847                 * Don't submit if refs are dying, good for io_uring_register(),
6848                 * but also it is relied upon by io_ring_exit_work()
6849                 */
6850                if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)) &&
6851                    !(ctx->flags & IORING_SETUP_R_DISABLED))
6852                        ret = io_submit_sqes(ctx, to_submit);
6853                mutex_unlock(&ctx->uring_lock);
6854
6855                if (to_submit && wq_has_sleeper(&ctx->sqo_sq_wait))
6856                        wake_up(&ctx->sqo_sq_wait);
6857                if (creds)
6858                        revert_creds(creds);
6859        }
6860
6861        return ret;
6862}
6863
6864static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
6865{
6866        struct io_ring_ctx *ctx;
6867        unsigned sq_thread_idle = 0;
6868
6869        list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6870                sq_thread_idle = max(sq_thread_idle, ctx->sq_thread_idle);
6871        sqd->sq_thread_idle = sq_thread_idle;
6872}
6873
6874static bool io_sqd_handle_event(struct io_sq_data *sqd)
6875{
6876        bool did_sig = false;
6877        struct ksignal ksig;
6878
6879        if (test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state) ||
6880            signal_pending(current)) {
6881                mutex_unlock(&sqd->lock);
6882                if (signal_pending(current))
6883                        did_sig = get_signal(&ksig);
6884                cond_resched();
6885                mutex_lock(&sqd->lock);
6886        }
6887        return did_sig || test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
6888}
6889
6890static int io_sq_thread(void *data)
6891{
6892        struct io_sq_data *sqd = data;
6893        struct io_ring_ctx *ctx;
6894        unsigned long timeout = 0;
6895        char buf[TASK_COMM_LEN];
6896        DEFINE_WAIT(wait);
6897
6898        snprintf(buf, sizeof(buf), "iou-sqp-%d", sqd->task_pid);
6899        set_task_comm(current, buf);
6900
6901        if (sqd->sq_cpu != -1)
6902                set_cpus_allowed_ptr(current, cpumask_of(sqd->sq_cpu));
6903        else
6904                set_cpus_allowed_ptr(current, cpu_online_mask);
6905        current->flags |= PF_NO_SETAFFINITY;
6906
6907        mutex_lock(&sqd->lock);
6908        while (1) {
6909                bool cap_entries, sqt_spin = false;
6910
6911                if (io_sqd_events_pending(sqd) || signal_pending(current)) {
6912                        if (io_sqd_handle_event(sqd))
6913                                break;
6914                        timeout = jiffies + sqd->sq_thread_idle;
6915                }
6916
6917                cap_entries = !list_is_singular(&sqd->ctx_list);
6918                list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
6919                        int ret = __io_sq_thread(ctx, cap_entries);
6920
6921                        if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
6922                                sqt_spin = true;
6923                }
6924                if (io_run_task_work())
6925                        sqt_spin = true;
6926
6927                if (sqt_spin || !time_after(jiffies, timeout)) {
6928                        cond_resched();
6929                        if (sqt_spin)
6930                                timeout = jiffies + sqd->sq_thread_idle;
6931                        continue;
6932                }
6933
6934                prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
6935                if (!io_sqd_events_pending(sqd) && !current->task_works) {
6936                        bool needs_sched = true;
6937
6938                        list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
6939                                io_ring_set_wakeup_flag(ctx);
6940
6941                                if ((ctx->flags & IORING_SETUP_IOPOLL) &&
6942                                    !list_empty_careful(&ctx->iopoll_list)) {
6943                                        needs_sched = false;
6944                                        break;
6945                                }
6946                                if (io_sqring_entries(ctx)) {
6947                                        needs_sched = false;
6948                                        break;
6949                                }
6950                        }
6951
6952                        if (needs_sched) {
6953                                mutex_unlock(&sqd->lock);
6954                                schedule();
6955                                mutex_lock(&sqd->lock);
6956                        }
6957                        list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6958                                io_ring_clear_wakeup_flag(ctx);
6959                }
6960
6961                finish_wait(&sqd->wait, &wait);
6962                timeout = jiffies + sqd->sq_thread_idle;
6963        }
6964
6965        io_uring_cancel_generic(true, sqd);
6966        sqd->thread = NULL;
6967        list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6968                io_ring_set_wakeup_flag(ctx);
6969        io_run_task_work();
6970        mutex_unlock(&sqd->lock);
6971
6972        complete(&sqd->exited);
6973        do_exit(0);
6974}
6975
6976struct io_wait_queue {
6977        struct wait_queue_entry wq;
6978        struct io_ring_ctx *ctx;
6979        unsigned to_wait;
6980        unsigned nr_timeouts;
6981};
6982
6983static inline bool io_should_wake(struct io_wait_queue *iowq)
6984{
6985        struct io_ring_ctx *ctx = iowq->ctx;
6986
6987        /*
6988         * Wake up if we have enough events, or if a timeout occurred since we
6989         * started waiting. For timeouts, we always want to return to userspace,
6990         * regardless of event count.
6991         */
6992        return io_cqring_events(ctx) >= iowq->to_wait ||
6993                        atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
6994}
6995
6996static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
6997                            int wake_flags, void *key)
6998{
6999        struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7000                                                        wq);
7001
7002        /*
7003         * Cannot safely flush overflowed CQEs from here, ensure we wake up
7004         * the task, and the next invocation will do it.
7005         */
7006        if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->check_cq_overflow))
7007                return autoremove_wake_function(curr, mode, wake_flags, key);
7008        return -1;
7009}
7010
7011static int io_run_task_work_sig(void)
7012{
7013        if (io_run_task_work())
7014                return 1;
7015        if (!signal_pending(current))
7016                return 0;
7017        if (test_thread_flag(TIF_NOTIFY_SIGNAL))
7018                return -ERESTARTSYS;
7019        return -EINTR;
7020}
7021
7022/* when returns >0, the caller should retry */
7023static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
7024                                          struct io_wait_queue *iowq,
7025                                          signed long *timeout)
7026{
7027        int ret;
7028
7029        /* make sure we run task_work before checking for signals */
7030        ret = io_run_task_work_sig();
7031        if (ret || io_should_wake(iowq))
7032                return ret;
7033        /* let the caller flush overflows, retry */
7034        if (test_bit(0, &ctx->check_cq_overflow))
7035                return 1;
7036
7037        *timeout = schedule_timeout(*timeout);
7038        return !*timeout ? -ETIME : 1;
7039}
7040
7041/*
7042 * Wait until events become available, if we don't already have some. The
7043 * application must reap them itself, as they reside on the shared cq ring.
7044 */
7045static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7046                          const sigset_t __user *sig, size_t sigsz,
7047                          struct __kernel_timespec __user *uts)
7048{
7049        struct io_wait_queue iowq = {
7050                .wq = {
7051                        .private        = current,
7052                        .func           = io_wake_function,
7053                        .entry          = LIST_HEAD_INIT(iowq.wq.entry),
7054                },
7055                .ctx            = ctx,
7056                .to_wait        = min_events,
7057        };
7058        struct io_rings *rings = ctx->rings;
7059        signed long timeout = MAX_SCHEDULE_TIMEOUT;
7060        int ret;
7061
7062        do {
7063                io_cqring_overflow_flush(ctx, false);
7064                if (io_cqring_events(ctx) >= min_events)
7065                        return 0;
7066                if (!io_run_task_work())
7067                        break;
7068        } while (1);
7069
7070        if (sig) {
7071#ifdef CONFIG_COMPAT
7072                if (in_compat_syscall())
7073                        ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7074                                                      sigsz);
7075                else
7076#endif
7077                        ret = set_user_sigmask(sig, sigsz);
7078
7079                if (ret)
7080                        return ret;
7081        }
7082
7083        if (uts) {
7084                struct timespec64 ts;
7085
7086                if (get_timespec64(&ts, uts))
7087                        return -EFAULT;
7088                timeout = timespec64_to_jiffies(&ts);
7089        }
7090
7091        iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7092        trace_io_uring_cqring_wait(ctx, min_events);
7093        do {
7094                /* if we can't even flush overflow, don't wait for more */
7095                if (!io_cqring_overflow_flush(ctx, false)) {
7096                        ret = -EBUSY;
7097                        break;
7098                }
7099                prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
7100                                                TASK_INTERRUPTIBLE);
7101                ret = io_cqring_wait_schedule(ctx, &iowq, &timeout);
7102                finish_wait(&ctx->cq_wait, &iowq.wq);
7103                cond_resched();
7104        } while (ret > 0);
7105
7106        restore_saved_sigmask_unless(ret == -EINTR);
7107
7108        return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7109}
7110
7111static void io_free_page_table(void **table, size_t size)
7112{
7113        unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7114
7115        for (i = 0; i < nr_tables; i++)
7116                kfree(table[i]);
7117        kfree(table);
7118}
7119
7120static void **io_alloc_page_table(size_t size)
7121{
7122        unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7123        size_t init_size = size;
7124        void **table;
7125
7126        table = kcalloc(nr_tables, sizeof(*table), GFP_KERNEL);
7127        if (!table)
7128                return NULL;
7129
7130        for (i = 0; i < nr_tables; i++) {
7131                unsigned int this_size = min_t(size_t, size, PAGE_SIZE);
7132
7133                table[i] = kzalloc(this_size, GFP_KERNEL);
7134                if (!table[i]) {
7135                        io_free_page_table(table, init_size);
7136                        return NULL;
7137                }
7138                size -= this_size;
7139        }
7140        return table;
7141}
7142
7143static void io_rsrc_node_destroy(struct io_rsrc_node *ref_node)
7144{
7145        percpu_ref_exit(&ref_node->refs);
7146        kfree(ref_node);
7147}
7148
7149static void io_rsrc_node_switch(struct io_ring_ctx *ctx,
7150                                struct io_rsrc_data *data_to_kill)
7151{
7152        WARN_ON_ONCE(!ctx->rsrc_backup_node);
7153        WARN_ON_ONCE(data_to_kill && !ctx->rsrc_node);
7154
7155        if (data_to_kill) {
7156                struct io_rsrc_node *rsrc_node = ctx->rsrc_node;
7157
7158                rsrc_node->rsrc_data = data_to_kill;
7159                spin_lock_irq(&ctx->rsrc_ref_lock);
7160                list_add_tail(&rsrc_node->node, &ctx->rsrc_ref_list);
7161                spin_unlock_irq(&ctx->rsrc_ref_lock);
7162
7163                atomic_inc(&data_to_kill->refs);
7164                percpu_ref_kill(&rsrc_node->refs);
7165                ctx->rsrc_node = NULL;
7166        }
7167
7168        if (!ctx->rsrc_node) {
7169                ctx->rsrc_node = ctx->rsrc_backup_node;
7170                ctx->rsrc_backup_node = NULL;
7171        }
7172}
7173
7174static int io_rsrc_node_switch_start(struct io_ring_ctx *ctx)
7175{
7176        if (ctx->rsrc_backup_node)
7177                return 0;
7178        ctx->rsrc_backup_node = io_rsrc_node_alloc(ctx);
7179        return ctx->rsrc_backup_node ? 0 : -ENOMEM;
7180}
7181
7182static int io_rsrc_ref_quiesce(struct io_rsrc_data *data, struct io_ring_ctx *ctx)
7183{
7184        int ret;
7185
7186        /* As we may drop ->uring_lock, other task may have started quiesce */
7187        if (data->quiesce)
7188                return -ENXIO;
7189
7190        data->quiesce = true;
7191        do {
7192                ret = io_rsrc_node_switch_start(ctx);
7193                if (ret)
7194                        break;
7195                io_rsrc_node_switch(ctx, data);
7196
7197                /* kill initial ref, already quiesced if zero */
7198                if (atomic_dec_and_test(&data->refs))
7199                        break;
7200                mutex_unlock(&ctx->uring_lock);
7201                flush_delayed_work(&ctx->rsrc_put_work);
7202                ret = wait_for_completion_interruptible(&data->done);
7203                if (!ret) {
7204                        mutex_lock(&ctx->uring_lock);
7205                        break;
7206                }
7207
7208                atomic_inc(&data->refs);
7209                /* wait for all works potentially completing data->done */
7210                flush_delayed_work(&ctx->rsrc_put_work);
7211                reinit_completion(&data->done);
7212
7213                ret = io_run_task_work_sig();
7214                mutex_lock(&ctx->uring_lock);
7215        } while (ret >= 0);
7216        data->quiesce = false;
7217
7218        return ret;
7219}
7220
7221static u64 *io_get_tag_slot(struct io_rsrc_data *data, unsigned int idx)
7222{
7223        unsigned int off = idx & IO_RSRC_TAG_TABLE_MASK;
7224        unsigned int table_idx = idx >> IO_RSRC_TAG_TABLE_SHIFT;
7225
7226        return &data->tags[table_idx][off];
7227}
7228
7229static void io_rsrc_data_free(struct io_rsrc_data *data)
7230{
7231        size_t size = data->nr * sizeof(data->tags[0][0]);
7232
7233        if (data->tags)
7234                io_free_page_table((void **)data->tags, size);
7235        kfree(data);
7236}
7237
7238static int io_rsrc_data_alloc(struct io_ring_ctx *ctx, rsrc_put_fn *do_put,
7239                              u64 __user *utags, unsigned nr,
7240                              struct io_rsrc_data **pdata)
7241{
7242        struct io_rsrc_data *data;
7243        int ret = -ENOMEM;
7244        unsigned i;
7245
7246        data = kzalloc(sizeof(*data), GFP_KERNEL);
7247        if (!data)
7248                return -ENOMEM;
7249        data->tags = (u64 **)io_alloc_page_table(nr * sizeof(data->tags[0][0]));
7250        if (!data->tags) {
7251                kfree(data);
7252                return -ENOMEM;
7253        }
7254
7255        data->nr = nr;
7256        data->ctx = ctx;
7257        data->do_put = do_put;
7258        if (utags) {
7259                ret = -EFAULT;
7260                for (i = 0; i < nr; i++) {
7261                        u64 *tag_slot = io_get_tag_slot(data, i);
7262
7263                        if (copy_from_user(tag_slot, &utags[i],
7264                                           sizeof(*tag_slot)))
7265                                goto fail;
7266                }
7267        }
7268
7269        atomic_set(&data->refs, 1);
7270        init_completion(&data->done);
7271        *pdata = data;
7272        return 0;
7273fail:
7274        io_rsrc_data_free(data);
7275        return ret;
7276}
7277
7278static bool io_alloc_file_tables(struct io_file_table *table, unsigned nr_files)
7279{
7280        size_t size = nr_files * sizeof(struct io_fixed_file);
7281
7282        table->files = (struct io_fixed_file **)io_alloc_page_table(size);
7283        return !!table->files;
7284}
7285
7286static void io_free_file_tables(struct io_file_table *table, unsigned nr_files)
7287{
7288        size_t size = nr_files * sizeof(struct io_fixed_file);
7289
7290        io_free_page_table((void **)table->files, size);
7291        table->files = NULL;
7292}
7293
7294static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7295{
7296#if defined(CONFIG_UNIX)
7297        if (ctx->ring_sock) {
7298                struct sock *sock = ctx->ring_sock->sk;
7299                struct sk_buff *skb;
7300
7301                while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7302                        kfree_skb(skb);
7303        }
7304#else
7305        int i;
7306
7307        for (i = 0; i < ctx->nr_user_files; i++) {
7308                struct file *file;
7309
7310                file = io_file_from_index(ctx, i);
7311                if (file)
7312                        fput(file);
7313        }
7314#endif
7315        io_free_file_tables(&ctx->file_table, ctx->nr_user_files);
7316        io_rsrc_data_free(ctx->file_data);
7317        ctx->file_data = NULL;
7318        ctx->nr_user_files = 0;
7319}
7320
7321static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7322{
7323        int ret;
7324
7325        if (!ctx->file_data)
7326                return -ENXIO;
7327        ret = io_rsrc_ref_quiesce(ctx->file_data, ctx);
7328        if (!ret)
7329                __io_sqe_files_unregister(ctx);
7330        return ret;
7331}
7332
7333static void io_sq_thread_unpark(struct io_sq_data *sqd)
7334        __releases(&sqd->lock)
7335{
7336        WARN_ON_ONCE(sqd->thread == current);
7337
7338        /*
7339         * Do the dance but not conditional clear_bit() because it'd race with
7340         * other threads incrementing park_pending and setting the bit.
7341         */
7342        clear_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7343        if (atomic_dec_return(&sqd->park_pending))
7344                set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7345        mutex_unlock(&sqd->lock);
7346}
7347
7348static void io_sq_thread_park(struct io_sq_data *sqd)
7349        __acquires(&sqd->lock)
7350{
7351        WARN_ON_ONCE(sqd->thread == current);
7352
7353        atomic_inc(&sqd->park_pending);
7354        set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7355        mutex_lock(&sqd->lock);
7356        if (sqd->thread)
7357                wake_up_process(sqd->thread);
7358}
7359
7360static void io_sq_thread_stop(struct io_sq_data *sqd)
7361{
7362        WARN_ON_ONCE(sqd->thread == current);
7363        WARN_ON_ONCE(test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state));
7364
7365        set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7366        mutex_lock(&sqd->lock);
7367        if (sqd->thread)
7368                wake_up_process(sqd->thread);
7369        mutex_unlock(&sqd->lock);
7370        wait_for_completion(&sqd->exited);
7371}
7372
7373static void io_put_sq_data(struct io_sq_data *sqd)
7374{
7375        if (refcount_dec_and_test(&sqd->refs)) {
7376                WARN_ON_ONCE(atomic_read(&sqd->park_pending));
7377
7378                io_sq_thread_stop(sqd);
7379                kfree(sqd);
7380        }
7381}
7382
7383static void io_sq_thread_finish(struct io_ring_ctx *ctx)
7384{
7385        struct io_sq_data *sqd = ctx->sq_data;
7386
7387        if (sqd) {
7388                io_sq_thread_park(sqd);
7389                list_del_init(&ctx->sqd_list);
7390                io_sqd_update_thread_idle(sqd);
7391                io_sq_thread_unpark(sqd);
7392
7393                io_put_sq_data(sqd);
7394                ctx->sq_data = NULL;
7395        }
7396}
7397
7398static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
7399{
7400        struct io_ring_ctx *ctx_attach;
7401        struct io_sq_data *sqd;
7402        struct fd f;
7403
7404        f = fdget(p->wq_fd);
7405        if (!f.file)
7406                return ERR_PTR(-ENXIO);
7407        if (f.file->f_op != &io_uring_fops) {
7408                fdput(f);
7409                return ERR_PTR(-EINVAL);
7410        }
7411
7412        ctx_attach = f.file->private_data;
7413        sqd = ctx_attach->sq_data;
7414        if (!sqd) {
7415                fdput(f);
7416                return ERR_PTR(-EINVAL);
7417        }
7418        if (sqd->task_tgid != current->tgid) {
7419                fdput(f);
7420                return ERR_PTR(-EPERM);
7421        }
7422
7423        refcount_inc(&sqd->refs);
7424        fdput(f);
7425        return sqd;
7426}
7427
7428static struct io_sq_data *io_get_sq_data(struct io_uring_params *p,
7429                                         bool *attached)
7430{
7431        struct io_sq_data *sqd;
7432
7433        *attached = false;
7434        if (p->flags & IORING_SETUP_ATTACH_WQ) {
7435                sqd = io_attach_sq_data(p);
7436                if (!IS_ERR(sqd)) {
7437                        *attached = true;
7438                        return sqd;
7439                }
7440                /* fall through for EPERM case, setup new sqd/task */
7441                if (PTR_ERR(sqd) != -EPERM)
7442                        return sqd;
7443        }
7444
7445        sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
7446        if (!sqd)
7447                return ERR_PTR(-ENOMEM);
7448
7449        atomic_set(&sqd->park_pending, 0);
7450        refcount_set(&sqd->refs, 1);
7451        INIT_LIST_HEAD(&sqd->ctx_list);
7452        mutex_init(&sqd->lock);
7453        init_waitqueue_head(&sqd->wait);
7454        init_completion(&sqd->exited);
7455        return sqd;
7456}
7457
7458#if defined(CONFIG_UNIX)
7459/*
7460 * Ensure the UNIX gc is aware of our file set, so we are certain that
7461 * the io_uring can be safely unregistered on process exit, even if we have
7462 * loops in the file referencing.
7463 */
7464static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
7465{
7466        struct sock *sk = ctx->ring_sock->sk;
7467        struct scm_fp_list *fpl;
7468        struct sk_buff *skb;
7469        int i, nr_files;
7470
7471        fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
7472        if (!fpl)
7473                return -ENOMEM;
7474
7475        skb = alloc_skb(0, GFP_KERNEL);
7476        if (!skb) {
7477                kfree(fpl);
7478                return -ENOMEM;
7479        }
7480
7481        skb->sk = sk;
7482
7483        nr_files = 0;
7484        fpl->user = get_uid(current_user());
7485        for (i = 0; i < nr; i++) {
7486                struct file *file = io_file_from_index(ctx, i + offset);
7487
7488                if (!file)
7489                        continue;
7490                fpl->fp[nr_files] = get_file(file);
7491                unix_inflight(fpl->user, fpl->fp[nr_files]);
7492                nr_files++;
7493        }
7494
7495        if (nr_files) {
7496                fpl->max = SCM_MAX_FD;
7497                fpl->count = nr_files;
7498                UNIXCB(skb).fp = fpl;
7499                skb->destructor = unix_destruct_scm;
7500                refcount_add(skb->truesize, &sk->sk_wmem_alloc);
7501                skb_queue_head(&sk->sk_receive_queue, skb);
7502
7503                for (i = 0; i < nr_files; i++)
7504                        fput(fpl->fp[i]);
7505        } else {
7506                kfree_skb(skb);
7507                kfree(fpl);
7508        }
7509
7510        return 0;
7511}
7512
7513/*
7514 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
7515 * causes regular reference counting to break down. We rely on the UNIX
7516 * garbage collection to take care of this problem for us.
7517 */
7518static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7519{
7520        unsigned left, total;
7521        int ret = 0;
7522
7523        total = 0;
7524        left = ctx->nr_user_files;
7525        while (left) {
7526                unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
7527
7528                ret = __io_sqe_files_scm(ctx, this_files, total);
7529                if (ret)
7530                        break;
7531                left -= this_files;
7532                total += this_files;
7533        }
7534
7535        if (!ret)
7536                return 0;
7537
7538        while (total < ctx->nr_user_files) {
7539                struct file *file = io_file_from_index(ctx, total);
7540
7541                if (file)
7542                        fput(file);
7543                total++;
7544        }
7545
7546        return ret;
7547}
7548#else
7549static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7550{
7551        return 0;
7552}
7553#endif
7554
7555static void io_rsrc_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
7556{
7557        struct file *file = prsrc->file;
7558#if defined(CONFIG_UNIX)
7559        struct sock *sock = ctx->ring_sock->sk;
7560        struct sk_buff_head list, *head = &sock->sk_receive_queue;
7561        struct sk_buff *skb;
7562        int i;
7563
7564        __skb_queue_head_init(&list);
7565
7566        /*
7567         * Find the skb that holds this file in its SCM_RIGHTS. When found,
7568         * remove this entry and rearrange the file array.
7569         */
7570        skb = skb_dequeue(head);
7571        while (skb) {
7572                struct scm_fp_list *fp;
7573
7574                fp = UNIXCB(skb).fp;
7575                for (i = 0; i < fp->count; i++) {
7576                        int left;
7577
7578                        if (fp->fp[i] != file)
7579                                continue;
7580
7581                        unix_notinflight(fp->user, fp->fp[i]);
7582                        left = fp->count - 1 - i;
7583                        if (left) {
7584                                memmove(&fp->fp[i], &fp->fp[i + 1],
7585                                                left * sizeof(struct file *));
7586                        }
7587                        fp->count--;
7588                        if (!fp->count) {
7589                                kfree_skb(skb);
7590                                skb = NULL;
7591                        } else {
7592                                __skb_queue_tail(&list, skb);
7593                        }
7594                        fput(file);
7595                        file = NULL;
7596                        break;
7597                }
7598
7599                if (!file)
7600                        break;
7601
7602                __skb_queue_tail(&list, skb);
7603
7604                skb = skb_dequeue(head);
7605        }
7606
7607        if (skb_peek(&list)) {
7608                spin_lock_irq(&head->lock);
7609                while ((skb = __skb_dequeue(&list)) != NULL)
7610                        __skb_queue_tail(head, skb);
7611                spin_unlock_irq(&head->lock);
7612        }
7613#else
7614        fput(file);
7615#endif
7616}
7617
7618static void __io_rsrc_put_work(struct io_rsrc_node *ref_node)
7619{
7620        struct io_rsrc_data *rsrc_data = ref_node->rsrc_data;
7621        struct io_ring_ctx *ctx = rsrc_data->ctx;
7622        struct io_rsrc_put *prsrc, *tmp;
7623
7624        list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
7625                list_del(&prsrc->list);
7626
7627                if (prsrc->tag) {
7628                        bool lock_ring = ctx->flags & IORING_SETUP_IOPOLL;
7629
7630                        io_ring_submit_lock(ctx, lock_ring);
7631                        spin_lock_irq(&ctx->completion_lock);
7632                        io_cqring_fill_event(ctx, prsrc->tag, 0, 0);
7633                        ctx->cq_extra++;
7634                        io_commit_cqring(ctx);
7635                        spin_unlock_irq(&ctx->completion_lock);
7636                        io_cqring_ev_posted(ctx);
7637                        io_ring_submit_unlock(ctx, lock_ring);
7638                }
7639
7640                rsrc_data->do_put(ctx, prsrc);
7641                kfree(prsrc);
7642        }
7643
7644        io_rsrc_node_destroy(ref_node);
7645        if (atomic_dec_and_test(&rsrc_data->refs))
7646                complete(&rsrc_data->done);
7647}
7648
7649static void io_rsrc_put_work(struct work_struct *work)
7650{
7651        struct io_ring_ctx *ctx;
7652        struct llist_node *node;
7653
7654        ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
7655        node = llist_del_all(&ctx->rsrc_put_llist);
7656
7657        while (node) {
7658                struct io_rsrc_node *ref_node;
7659                struct llist_node *next = node->next;
7660
7661                ref_node = llist_entry(node, struct io_rsrc_node, llist);
7662                __io_rsrc_put_work(ref_node);
7663                node = next;
7664        }
7665}
7666
7667static void io_rsrc_node_ref_zero(struct percpu_ref *ref)
7668{
7669        struct io_rsrc_node *node = container_of(ref, struct io_rsrc_node, refs);
7670        struct io_ring_ctx *ctx = node->rsrc_data->ctx;
7671        unsigned long flags;
7672        bool first_add = false;
7673
7674        spin_lock_irqsave(&ctx->rsrc_ref_lock, flags);
7675        node->done = true;
7676
7677        while (!list_empty(&ctx->rsrc_ref_list)) {
7678                node = list_first_entry(&ctx->rsrc_ref_list,
7679                                            struct io_rsrc_node, node);
7680                /* recycle ref nodes in order */
7681                if (!node->done)
7682                        break;
7683                list_del(&node->node);
7684                first_add |= llist_add(&node->llist, &ctx->rsrc_put_llist);
7685        }
7686        spin_unlock_irqrestore(&ctx->rsrc_ref_lock, flags);
7687
7688        if (first_add)
7689                mod_delayed_work(system_wq, &ctx->rsrc_put_work, HZ);
7690}
7691
7692static struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx)
7693{
7694        struct io_rsrc_node *ref_node;
7695
7696        ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7697        if (!ref_node)
7698                return NULL;
7699
7700        if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
7701                            0, GFP_KERNEL)) {
7702                kfree(ref_node);
7703                return NULL;
7704        }
7705        INIT_LIST_HEAD(&ref_node->node);
7706        INIT_LIST_HEAD(&ref_node->rsrc_list);
7707        ref_node->done = false;
7708        return ref_node;
7709}
7710
7711static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
7712                                 unsigned nr_args, u64 __user *tags)
7713{
7714        __s32 __user *fds = (__s32 __user *) arg;
7715        struct file *file;
7716        int fd, ret;
7717        unsigned i;
7718
7719        if (ctx->file_data)
7720                return -EBUSY;
7721        if (!nr_args)
7722                return -EINVAL;
7723        if (nr_args > IORING_MAX_FIXED_FILES)
7724                return -EMFILE;
7725        ret = io_rsrc_node_switch_start(ctx);
7726        if (ret)
7727                return ret;
7728        ret = io_rsrc_data_alloc(ctx, io_rsrc_file_put, tags, nr_args,
7729                                 &ctx->file_data);
7730        if (ret)
7731                return ret;
7732
7733        ret = -ENOMEM;
7734        if (!io_alloc_file_tables(&ctx->file_table, nr_args))
7735                goto out_free;
7736
7737        for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
7738                if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
7739                        ret = -EFAULT;
7740                        goto out_fput;
7741                }
7742                /* allow sparse sets */
7743                if (fd == -1) {
7744                        ret = -EINVAL;
7745                        if (unlikely(*io_get_tag_slot(ctx->file_data, i)))
7746                                goto out_fput;
7747                        continue;
7748                }
7749
7750                file = fget(fd);
7751                ret = -EBADF;
7752                if (unlikely(!file))
7753                        goto out_fput;
7754
7755                /*
7756                 * Don't allow io_uring instances to be registered. If UNIX
7757                 * isn't enabled, then this causes a reference cycle and this
7758                 * instance can never get freed. If UNIX is enabled we'll
7759                 * handle it just fine, but there's still no point in allowing
7760                 * a ring fd as it doesn't support regular read/write anyway.
7761                 */
7762                if (file->f_op == &io_uring_fops) {
7763                        fput(file);
7764                        goto out_fput;
7765                }
7766                io_fixed_file_set(io_fixed_file_slot(&ctx->file_table, i), file);
7767        }
7768
7769        ret = io_sqe_files_scm(ctx);
7770        if (ret) {
7771                __io_sqe_files_unregister(ctx);
7772                return ret;
7773        }
7774
7775        io_rsrc_node_switch(ctx, NULL);
7776        return ret;
7777out_fput:
7778        for (i = 0; i < ctx->nr_user_files; i++) {
7779                file = io_file_from_index(ctx, i);
7780                if (file)
7781                        fput(file);
7782        }
7783        io_free_file_tables(&ctx->file_table, nr_args);
7784        ctx->nr_user_files = 0;
7785out_free:
7786        io_rsrc_data_free(ctx->file_data);
7787        ctx->file_data = NULL;
7788        return ret;
7789}
7790
7791static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
7792                                int index)
7793{
7794#if defined(CONFIG_UNIX)
7795        struct sock *sock = ctx->ring_sock->sk;
7796        struct sk_buff_head *head = &sock->sk_receive_queue;
7797        struct sk_buff *skb;
7798
7799        /*
7800         * See if we can merge this file into an existing skb SCM_RIGHTS
7801         * file set. If there's no room, fall back to allocating a new skb
7802         * and filling it in.
7803         */
7804        spin_lock_irq(&head->lock);
7805        skb = skb_peek(head);
7806        if (skb) {
7807                struct scm_fp_list *fpl = UNIXCB(skb).fp;
7808
7809                if (fpl->count < SCM_MAX_FD) {
7810                        __skb_unlink(skb, head);
7811                        spin_unlock_irq(&head->lock);
7812                        fpl->fp[fpl->count] = get_file(file);
7813                        unix_inflight(fpl->user, fpl->fp[fpl->count]);
7814                        fpl->count++;
7815                        spin_lock_irq(&head->lock);
7816                        __skb_queue_head(head, skb);
7817                } else {
7818                        skb = NULL;
7819                }
7820        }
7821        spin_unlock_irq(&head->lock);
7822
7823        if (skb) {
7824                fput(file);
7825                return 0;
7826        }
7827
7828        return __io_sqe_files_scm(ctx, 1, index);
7829#else
7830        return 0;
7831#endif
7832}
7833
7834static int io_queue_rsrc_removal(struct io_rsrc_data *data, unsigned idx,
7835                                 struct io_rsrc_node *node, void *rsrc)
7836{
7837        struct io_rsrc_put *prsrc;
7838
7839        prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
7840        if (!prsrc)
7841                return -ENOMEM;
7842
7843        prsrc->tag = *io_get_tag_slot(data, idx);
7844        prsrc->rsrc = rsrc;
7845        list_add(&prsrc->list, &node->rsrc_list);
7846        return 0;
7847}
7848
7849static int __io_sqe_files_update(struct io_ring_ctx *ctx,
7850                                 struct io_uring_rsrc_update2 *up,
7851                                 unsigned nr_args)
7852{
7853        u64 __user *tags = u64_to_user_ptr(up->tags);
7854        __s32 __user *fds = u64_to_user_ptr(up->data);
7855        struct io_rsrc_data *data = ctx->file_data;
7856        struct io_fixed_file *file_slot;
7857        struct file *file;
7858        int fd, i, err = 0;
7859        unsigned int done;
7860        bool needs_switch = false;
7861
7862        if (!ctx->file_data)
7863                return -ENXIO;
7864        if (up->offset + nr_args > ctx->nr_user_files)
7865                return -EINVAL;
7866
7867        for (done = 0; done < nr_args; done++) {
7868                u64 tag = 0;
7869
7870                if ((tags && copy_from_user(&tag, &tags[done], sizeof(tag))) ||
7871                    copy_from_user(&fd, &fds[done], sizeof(fd))) {
7872                        err = -EFAULT;
7873                        break;
7874                }
7875                if ((fd == IORING_REGISTER_FILES_SKIP || fd == -1) && tag) {
7876                        err = -EINVAL;
7877                        break;
7878                }
7879                if (fd == IORING_REGISTER_FILES_SKIP)
7880                        continue;
7881
7882                i = array_index_nospec(up->offset + done, ctx->nr_user_files);
7883                file_slot = io_fixed_file_slot(&ctx->file_table, i);
7884
7885                if (file_slot->file_ptr) {
7886                        file = (struct file *)(file_slot->file_ptr & FFS_MASK);
7887                        err = io_queue_rsrc_removal(data, up->offset + done,
7888                                                    ctx->rsrc_node, file);
7889                        if (err)
7890                                break;
7891                        file_slot->file_ptr = 0;
7892                        needs_switch = true;
7893                }
7894                if (fd != -1) {
7895                        file = fget(fd);
7896                        if (!file) {
7897                                err = -EBADF;
7898                                break;
7899                        }
7900                        /*
7901                         * Don't allow io_uring instances to be registered. If
7902                         * UNIX isn't enabled, then this causes a reference
7903                         * cycle and this instance can never get freed. If UNIX
7904                         * is enabled we'll handle it just fine, but there's
7905                         * still no point in allowing a ring fd as it doesn't
7906                         * support regular read/write anyway.
7907                         */
7908                        if (file->f_op == &io_uring_fops) {
7909                                fput(file);
7910                                err = -EBADF;
7911                                break;
7912                        }
7913                        *io_get_tag_slot(data, up->offset + done) = tag;
7914                        io_fixed_file_set(file_slot, file);
7915                        err = io_sqe_file_register(ctx, file, i);
7916                        if (err) {
7917                                file_slot->file_ptr = 0;
7918                                fput(file);
7919                                break;
7920                        }
7921                }
7922        }
7923
7924        if (needs_switch)
7925                io_rsrc_node_switch(ctx, data);
7926        return done ? done : err;
7927}
7928
7929static struct io_wq_work *io_free_work(struct io_wq_work *work)
7930{
7931        struct io_kiocb *req = container_of(work, struct io_kiocb, work);
7932
7933        req = io_put_req_find_next(req);
7934        return req ? &req->work : NULL;
7935}
7936
7937static struct io_wq *io_init_wq_offload(struct io_ring_ctx *ctx,
7938                                        struct task_struct *task)
7939{
7940        struct io_wq_hash *hash;
7941        struct io_wq_data data;
7942        unsigned int concurrency;
7943
7944        mutex_lock(&ctx->uring_lock);
7945        hash = ctx->hash_map;
7946        if (!hash) {
7947                hash = kzalloc(sizeof(*hash), GFP_KERNEL);
7948                if (!hash) {
7949                        mutex_unlock(&ctx->uring_lock);
7950                        return ERR_PTR(-ENOMEM);
7951                }
7952                refcount_set(&hash->refs, 1);
7953                init_waitqueue_head(&hash->wait);
7954                ctx->hash_map = hash;
7955        }
7956        mutex_unlock(&ctx->uring_lock);
7957
7958        data.hash = hash;
7959        data.task = task;
7960        data.free_work = io_free_work;
7961        data.do_work = io_wq_submit_work;
7962
7963        /* Do QD, or 4 * CPUS, whatever is smallest */
7964        concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
7965
7966        return io_wq_create(concurrency, &data);
7967}
7968
7969static int io_uring_alloc_task_context(struct task_struct *task,
7970                                       struct io_ring_ctx *ctx)
7971{
7972        struct io_uring_task *tctx;
7973        int ret;
7974
7975        tctx = kzalloc(sizeof(*tctx), GFP_KERNEL);
7976        if (unlikely(!tctx))
7977                return -ENOMEM;
7978
7979        ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
7980        if (unlikely(ret)) {
7981                kfree(tctx);
7982                return ret;
7983        }
7984
7985        tctx->io_wq = io_init_wq_offload(ctx, task);
7986        if (IS_ERR(tctx->io_wq)) {
7987                ret = PTR_ERR(tctx->io_wq);
7988                percpu_counter_destroy(&tctx->inflight);
7989                kfree(tctx);
7990                return ret;
7991        }
7992
7993        xa_init(&tctx->xa);
7994        init_waitqueue_head(&tctx->wait);
7995        atomic_set(&tctx->in_idle, 0);
7996        atomic_set(&tctx->inflight_tracked, 0);
7997        task->io_uring = tctx;
7998        spin_lock_init(&tctx->task_lock);
7999        INIT_WQ_LIST(&tctx->task_list);
8000        init_task_work(&tctx->task_work, tctx_task_work);
8001        return 0;
8002}
8003
8004void __io_uring_free(struct task_struct *tsk)
8005{
8006        struct io_uring_task *tctx = tsk->io_uring;
8007
8008        WARN_ON_ONCE(!xa_empty(&tctx->xa));
8009        WARN_ON_ONCE(tctx->io_wq);
8010        WARN_ON_ONCE(tctx->cached_refs);
8011
8012        percpu_counter_destroy(&tctx->inflight);
8013        kfree(tctx);
8014        tsk->io_uring = NULL;
8015}
8016
8017static int io_sq_offload_create(struct io_ring_ctx *ctx,
8018                                struct io_uring_params *p)
8019{
8020        int ret;
8021
8022        /* Retain compatibility with failing for an invalid attach attempt */
8023        if ((ctx->flags & (IORING_SETUP_ATTACH_WQ | IORING_SETUP_SQPOLL)) ==
8024                                IORING_SETUP_ATTACH_WQ) {
8025                struct fd f;
8026
8027                f = fdget(p->wq_fd);
8028                if (!f.file)
8029                        return -ENXIO;
8030                if (f.file->f_op != &io_uring_fops) {
8031                        fdput(f);
8032                        return -EINVAL;
8033                }
8034                fdput(f);
8035        }
8036        if (ctx->flags & IORING_SETUP_SQPOLL) {
8037                struct task_struct *tsk;
8038                struct io_sq_data *sqd;
8039                bool attached;
8040
8041                sqd = io_get_sq_data(p, &attached);
8042                if (IS_ERR(sqd)) {
8043                        ret = PTR_ERR(sqd);
8044                        goto err;
8045                }
8046
8047                ctx->sq_creds = get_current_cred();
8048                ctx->sq_data = sqd;
8049                ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8050                if (!ctx->sq_thread_idle)
8051                        ctx->sq_thread_idle = HZ;
8052
8053                io_sq_thread_park(sqd);
8054                list_add(&ctx->sqd_list, &sqd->ctx_list);
8055                io_sqd_update_thread_idle(sqd);
8056                /* don't attach to a dying SQPOLL thread, would be racy */
8057                ret = (attached && !sqd->thread) ? -ENXIO : 0;
8058                io_sq_thread_unpark(sqd);
8059
8060                if (ret < 0)
8061                        goto err;
8062                if (attached)
8063                        return 0;
8064
8065                if (p->flags & IORING_SETUP_SQ_AFF) {
8066                        int cpu = p->sq_thread_cpu;
8067
8068                        ret = -EINVAL;
8069                        if (cpu >= nr_cpu_ids || !cpu_online(cpu))
8070                                goto err_sqpoll;
8071                        sqd->sq_cpu = cpu;
8072                } else {
8073                        sqd->sq_cpu = -1;
8074                }
8075
8076                sqd->task_pid = current->pid;
8077                sqd->task_tgid = current->tgid;
8078                tsk = create_io_thread(io_sq_thread, sqd, NUMA_NO_NODE);
8079                if (IS_ERR(tsk)) {
8080                        ret = PTR_ERR(tsk);
8081                        goto err_sqpoll;
8082                }
8083
8084                sqd->thread = tsk;
8085                ret = io_uring_alloc_task_context(tsk, ctx);
8086                wake_up_new_task(tsk);
8087                if (ret)
8088                        goto err;
8089        } else if (p->flags & IORING_SETUP_SQ_AFF) {
8090                /* Can't have SQ_AFF without SQPOLL */
8091                ret = -EINVAL;
8092                goto err;
8093        }
8094
8095        return 0;
8096err_sqpoll:
8097        complete(&ctx->sq_data->exited);
8098err:
8099        io_sq_thread_finish(ctx);
8100        return ret;
8101}
8102
8103static inline void __io_unaccount_mem(struct user_struct *user,
8104                                      unsigned long nr_pages)
8105{
8106        atomic_long_sub(nr_pages, &user->locked_vm);
8107}
8108
8109static inline int __io_account_mem(struct user_struct *user,
8110                                   unsigned long nr_pages)
8111{
8112        unsigned long page_limit, cur_pages, new_pages;
8113
8114        /* Don't allow more pages than we can safely lock */
8115        page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8116
8117        do {
8118                cur_pages = atomic_long_read(&user->locked_vm);
8119                new_pages = cur_pages + nr_pages;
8120                if (new_pages > page_limit)
8121                        return -ENOMEM;
8122        } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8123                                        new_pages) != cur_pages);
8124
8125        return 0;
8126}
8127
8128static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8129{
8130        if (ctx->user)
8131                __io_unaccount_mem(ctx->user, nr_pages);
8132
8133        if (ctx->mm_account)
8134                atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8135}
8136
8137static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8138{
8139        int ret;
8140
8141        if (ctx->user) {
8142                ret = __io_account_mem(ctx->user, nr_pages);
8143                if (ret)
8144                        return ret;
8145        }
8146
8147        if (ctx->mm_account)
8148                atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8149
8150        return 0;
8151}
8152
8153static void io_mem_free(void *ptr)
8154{
8155        struct page *page;
8156
8157        if (!ptr)
8158                return;
8159
8160        page = virt_to_head_page(ptr);
8161        if (put_page_testzero(page))
8162                free_compound_page(page);
8163}
8164
8165static void *io_mem_alloc(size_t size)
8166{
8167        gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
8168                                __GFP_NORETRY | __GFP_ACCOUNT;
8169
8170        return (void *) __get_free_pages(gfp_flags, get_order(size));
8171}
8172
8173static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8174                                size_t *sq_offset)
8175{
8176        struct io_rings *rings;
8177        size_t off, sq_array_size;
8178
8179        off = struct_size(rings, cqes, cq_entries);
8180        if (off == SIZE_MAX)
8181                return SIZE_MAX;
8182
8183#ifdef CONFIG_SMP
8184        off = ALIGN(off, SMP_CACHE_BYTES);
8185        if (off == 0)
8186                return SIZE_MAX;
8187#endif
8188
8189        if (sq_offset)
8190                *sq_offset = off;
8191
8192        sq_array_size = array_size(sizeof(u32), sq_entries);
8193        if (sq_array_size == SIZE_MAX)
8194                return SIZE_MAX;
8195
8196        if (check_add_overflow(off, sq_array_size, &off))
8197                return SIZE_MAX;
8198
8199        return off;
8200}
8201
8202static void io_buffer_unmap(struct io_ring_ctx *ctx, struct io_mapped_ubuf **slot)
8203{
8204        struct io_mapped_ubuf *imu = *slot;
8205        unsigned int i;
8206
8207        if (imu != ctx->dummy_ubuf) {
8208                for (i = 0; i < imu->nr_bvecs; i++)
8209                        unpin_user_page(imu->bvec[i].bv_page);
8210                if (imu->acct_pages)
8211                        io_unaccount_mem(ctx, imu->acct_pages);
8212                kvfree(imu);
8213        }
8214        *slot = NULL;
8215}
8216
8217static void io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8218{
8219        io_buffer_unmap(ctx, &prsrc->buf);
8220        prsrc->buf = NULL;
8221}
8222
8223static void __io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8224{
8225        unsigned int i;
8226
8227        for (i = 0; i < ctx->nr_user_bufs; i++)
8228                io_buffer_unmap(ctx, &ctx->user_bufs[i]);
8229        kfree(ctx->user_bufs);
8230        io_rsrc_data_free(ctx->buf_data);
8231        ctx->user_bufs = NULL;
8232        ctx->buf_data = NULL;
8233        ctx->nr_user_bufs = 0;
8234}
8235
8236static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8237{
8238        int ret;
8239
8240        if (!ctx->buf_data)
8241                return -ENXIO;
8242
8243        ret = io_rsrc_ref_quiesce(ctx->buf_data, ctx);
8244        if (!ret)
8245                __io_sqe_buffers_unregister(ctx);
8246        return ret;
8247}
8248
8249static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8250                       void __user *arg, unsigned index)
8251{
8252        struct iovec __user *src;
8253
8254#ifdef CONFIG_COMPAT
8255        if (ctx->compat) {
8256                struct compat_iovec __user *ciovs;
8257                struct compat_iovec ciov;
8258
8259                ciovs = (struct compat_iovec __user *) arg;
8260                if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8261                        return -EFAULT;
8262
8263                dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8264                dst->iov_len = ciov.iov_len;
8265                return 0;
8266        }
8267#endif
8268        src = (struct iovec __user *) arg;
8269        if (copy_from_user(dst, &src[index], sizeof(*dst)))
8270                return -EFAULT;
8271        return 0;
8272}
8273
8274/*
8275 * Not super efficient, but this is just a registration time. And we do cache
8276 * the last compound head, so generally we'll only do a full search if we don't
8277 * match that one.
8278 *
8279 * We check if the given compound head page has already been accounted, to
8280 * avoid double accounting it. This allows us to account the full size of the
8281 * page, not just the constituent pages of a huge page.
8282 */
8283static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8284                                  int nr_pages, struct page *hpage)
8285{
8286        int i, j;
8287
8288        /* check current page array */
8289        for (i = 0; i < nr_pages; i++) {
8290                if (!PageCompound(pages[i]))
8291                        continue;
8292                if (compound_head(pages[i]) == hpage)
8293                        return true;
8294        }
8295
8296        /* check previously registered pages */
8297        for (i = 0; i < ctx->nr_user_bufs; i++) {
8298                struct io_mapped_ubuf *imu = ctx->user_bufs[i];
8299
8300                for (j = 0; j < imu->nr_bvecs; j++) {
8301                        if (!PageCompound(imu->bvec[j].bv_page))
8302                                continue;
8303                        if (compound_head(imu->bvec[j].bv_page) == hpage)
8304                                return true;
8305                }
8306        }
8307
8308        return false;
8309}
8310
8311static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8312                                 int nr_pages, struct io_mapped_ubuf *imu,
8313                                 struct page **last_hpage)
8314{
8315        int i, ret;
8316
8317        imu->acct_pages = 0;
8318        for (i = 0; i < nr_pages; i++) {
8319                if (!PageCompound(pages[i])) {
8320                        imu->acct_pages++;
8321                } else {
8322                        struct page *hpage;
8323
8324                        hpage = compound_head(pages[i]);
8325                        if (hpage == *last_hpage)
8326                                continue;
8327                        *last_hpage = hpage;
8328                        if (headpage_already_acct(ctx, pages, i, hpage))
8329                                continue;
8330                        imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8331                }
8332        }
8333
8334        if (!imu->acct_pages)
8335                return 0;
8336
8337        ret = io_account_mem(ctx, imu->acct_pages);
8338        if (ret)
8339                imu->acct_pages = 0;
8340        return ret;
8341}
8342
8343static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
8344                                  struct io_mapped_ubuf **pimu,
8345                                  struct page **last_hpage)
8346{
8347        struct io_mapped_ubuf *imu = NULL;
8348        struct vm_area_struct **vmas = NULL;
8349        struct page **pages = NULL;
8350        unsigned long off, start, end, ubuf;
8351        size_t size;
8352        int ret, pret, nr_pages, i;
8353
8354        if (!iov->iov_base) {
8355                *pimu = ctx->dummy_ubuf;
8356                return 0;
8357        }
8358
8359        ubuf = (unsigned long) iov->iov_base;
8360        end = (ubuf + iov->iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8361        start = ubuf >> PAGE_SHIFT;
8362        nr_pages = end - start;
8363
8364        *pimu = NULL;
8365        ret = -ENOMEM;
8366
8367        pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
8368        if (!pages)
8369                goto done;
8370
8371        vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
8372                              GFP_KERNEL);
8373        if (!vmas)
8374                goto done;
8375
8376        imu = kvmalloc(struct_size(imu, bvec, nr_pages), GFP_KERNEL);
8377        if (!imu)
8378                goto done;
8379
8380        ret = 0;
8381        mmap_read_lock(current->mm);
8382        pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
8383                              pages, vmas);
8384        if (pret == nr_pages) {
8385                /* don't support file backed memory */
8386                for (i = 0; i < nr_pages; i++) {
8387                        struct vm_area_struct *vma = vmas[i];
8388
8389                        if (vma_is_shmem(vma))
8390                                continue;
8391                        if (vma->vm_file &&
8392                            !is_file_hugepages(vma->vm_file)) {
8393                                ret = -EOPNOTSUPP;
8394                                break;
8395                        }
8396                }
8397        } else {
8398                ret = pret < 0 ? pret : -EFAULT;
8399        }
8400        mmap_read_unlock(current->mm);
8401        if (ret) {
8402                /*
8403                 * if we did partial map, or found file backed vmas,
8404                 * release any pages we did get
8405                 */
8406                if (pret > 0)
8407                        unpin_user_pages(pages, pret);
8408                goto done;
8409        }
8410
8411        ret = io_buffer_account_pin(ctx, pages, pret, imu, last_hpage);
8412        if (ret) {
8413                unpin_user_pages(pages, pret);
8414                goto done;
8415        }
8416
8417        off = ubuf & ~PAGE_MASK;
8418        size = iov->iov_len;
8419        for (i = 0; i < nr_pages; i++) {
8420                size_t vec_len;
8421
8422                vec_len = min_t(size_t, size, PAGE_SIZE - off);
8423                imu->bvec[i].bv_page = pages[i];
8424                imu->bvec[i].bv_len = vec_len;
8425                imu->bvec[i].bv_offset = off;
8426                off = 0;
8427                size -= vec_len;
8428        }
8429        /* store original address for later verification */
8430        imu->ubuf = ubuf;
8431        imu->ubuf_end = ubuf + iov->iov_len;
8432        imu->nr_bvecs = nr_pages;
8433        *pimu = imu;
8434        ret = 0;
8435done:
8436        if (ret)
8437                kvfree(imu);
8438        kvfree(pages);
8439        kvfree(vmas);
8440        return ret;
8441}
8442
8443static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
8444{
8445        ctx->user_bufs = kcalloc(nr_args, sizeof(*ctx->user_bufs), GFP_KERNEL);
8446        return ctx->user_bufs ? 0 : -ENOMEM;
8447}
8448
8449static int io_buffer_validate(struct iovec *iov)
8450{
8451        unsigned long tmp, acct_len = iov->iov_len + (PAGE_SIZE - 1);
8452
8453        /*
8454         * Don't impose further limits on the size and buffer
8455         * constraints here, we'll -EINVAL later when IO is
8456         * submitted if they are wrong.
8457         */
8458        if (!iov->iov_base)
8459                return iov->iov_len ? -EFAULT : 0;
8460        if (!iov->iov_len)
8461                return -EFAULT;
8462
8463        /* arbitrary limit, but we need something */
8464        if (iov->iov_len > SZ_1G)
8465                return -EFAULT;
8466
8467        if (check_add_overflow((unsigned long)iov->iov_base, acct_len, &tmp))
8468                return -EOVERFLOW;
8469
8470        return 0;
8471}
8472
8473static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
8474                                   unsigned int nr_args, u64 __user *tags)
8475{
8476        struct page *last_hpage = NULL;
8477        struct io_rsrc_data *data;
8478        int i, ret;
8479        struct iovec iov;
8480
8481        if (ctx->user_bufs)
8482                return -EBUSY;
8483        if (!nr_args || nr_args > IORING_MAX_REG_BUFFERS)
8484                return -EINVAL;
8485        ret = io_rsrc_node_switch_start(ctx);
8486        if (ret)
8487                return ret;
8488        ret = io_rsrc_data_alloc(ctx, io_rsrc_buf_put, tags, nr_args, &data);
8489        if (ret)
8490                return ret;
8491        ret = io_buffers_map_alloc(ctx, nr_args);
8492        if (ret) {
8493                io_rsrc_data_free(data);
8494                return ret;
8495        }
8496
8497        for (i = 0; i < nr_args; i++, ctx->nr_user_bufs++) {
8498                ret = io_copy_iov(ctx, &iov, arg, i);
8499                if (ret)
8500                        break;
8501                ret = io_buffer_validate(&iov);
8502                if (ret)
8503                        break;
8504                if (!iov.iov_base && *io_get_tag_slot(data, i)) {
8505                        ret = -EINVAL;
8506                        break;
8507                }
8508
8509                ret = io_sqe_buffer_register(ctx, &iov, &ctx->user_bufs[i],
8510                                             &last_hpage);
8511                if (ret)
8512                        break;
8513        }
8514
8515        WARN_ON_ONCE(ctx->buf_data);
8516
8517        ctx->buf_data = data;
8518        if (ret)
8519                __io_sqe_buffers_unregister(ctx);
8520        else
8521                io_rsrc_node_switch(ctx, NULL);
8522        return ret;
8523}
8524
8525static int __io_sqe_buffers_update(struct io_ring_ctx *ctx,
8526                                   struct io_uring_rsrc_update2 *up,
8527                                   unsigned int nr_args)
8528{
8529        u64 __user *tags = u64_to_user_ptr(up->tags);
8530        struct iovec iov, __user *iovs = u64_to_user_ptr(up->data);
8531        struct page *last_hpage = NULL;
8532        bool needs_switch = false;
8533        __u32 done;
8534        int i, err;
8535
8536        if (!ctx->buf_data)
8537                return -ENXIO;
8538        if (up->offset + nr_args > ctx->nr_user_bufs)
8539                return -EINVAL;
8540
8541        for (done = 0; done < nr_args; done++) {
8542                struct io_mapped_ubuf *imu;
8543                int offset = up->offset + done;
8544                u64 tag = 0;
8545
8546                err = io_copy_iov(ctx, &iov, iovs, done);
8547                if (err)
8548                        break;
8549                if (tags && copy_from_user(&tag, &tags[done], sizeof(tag))) {
8550                        err = -EFAULT;
8551                        break;
8552                }
8553                err = io_buffer_validate(&iov);
8554                if (err)
8555                        break;
8556                if (!iov.iov_base && tag) {
8557                        err = -EINVAL;
8558                        break;
8559                }
8560                err = io_sqe_buffer_register(ctx, &iov, &imu, &last_hpage);
8561                if (err)
8562                        break;
8563
8564                i = array_index_nospec(offset, ctx->nr_user_bufs);
8565                if (ctx->user_bufs[i] != ctx->dummy_ubuf) {
8566                        err = io_queue_rsrc_removal(ctx->buf_data, offset,
8567                                                    ctx->rsrc_node, ctx->user_bufs[i]);
8568                        if (unlikely(err)) {
8569                                io_buffer_unmap(ctx, &imu);
8570                                break;
8571                        }
8572                        ctx->user_bufs[i] = NULL;
8573                        needs_switch = true;
8574                }
8575
8576                ctx->user_bufs[i] = imu;
8577                *io_get_tag_slot(ctx->buf_data, offset) = tag;
8578        }
8579
8580        if (needs_switch)
8581                io_rsrc_node_switch(ctx, ctx->buf_data);
8582        return done ? done : err;
8583}
8584
8585static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
8586{
8587        __s32 __user *fds = arg;
8588        int fd;
8589
8590        if (ctx->cq_ev_fd)
8591                return -EBUSY;
8592
8593        if (copy_from_user(&fd, fds, sizeof(*fds)))
8594                return -EFAULT;
8595
8596        ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
8597        if (IS_ERR(ctx->cq_ev_fd)) {
8598                int ret = PTR_ERR(ctx->cq_ev_fd);
8599
8600                ctx->cq_ev_fd = NULL;
8601                return ret;
8602        }
8603
8604        return 0;
8605}
8606
8607static int io_eventfd_unregister(struct io_ring_ctx *ctx)
8608{
8609        if (ctx->cq_ev_fd) {
8610                eventfd_ctx_put(ctx->cq_ev_fd);
8611                ctx->cq_ev_fd = NULL;
8612                return 0;
8613        }
8614
8615        return -ENXIO;
8616}
8617
8618static void io_destroy_buffers(struct io_ring_ctx *ctx)
8619{
8620        struct io_buffer *buf;
8621        unsigned long index;
8622
8623        xa_for_each(&ctx->io_buffers, index, buf)
8624                __io_remove_buffers(ctx, buf, index, -1U);
8625}
8626
8627static void io_req_cache_free(struct list_head *list, struct task_struct *tsk)
8628{
8629        struct io_kiocb *req, *nxt;
8630
8631        list_for_each_entry_safe(req, nxt, list, compl.list) {
8632                if (tsk && req->task != tsk)
8633                        continue;
8634                list_del(&req->compl.list);
8635                kmem_cache_free(req_cachep, req);
8636        }
8637}
8638
8639static void io_req_caches_free(struct io_ring_ctx *ctx)
8640{
8641        struct io_submit_state *submit_state = &ctx->submit_state;
8642        struct io_comp_state *cs = &ctx->submit_state.comp;
8643
8644        mutex_lock(&ctx->uring_lock);
8645
8646        if (submit_state->free_reqs) {
8647                kmem_cache_free_bulk(req_cachep, submit_state->free_reqs,
8648                                     submit_state->reqs);
8649                submit_state->free_reqs = 0;
8650        }
8651
8652        io_flush_cached_locked_reqs(ctx, cs);
8653        io_req_cache_free(&cs->free_list, NULL);
8654        mutex_unlock(&ctx->uring_lock);
8655}
8656
8657static void io_wait_rsrc_data(struct io_rsrc_data *data)
8658{
8659        if (data && !atomic_dec_and_test(&data->refs))
8660                wait_for_completion(&data->done);
8661}
8662
8663static void io_ring_ctx_free(struct io_ring_ctx *ctx)
8664{
8665        io_sq_thread_finish(ctx);
8666
8667        if (ctx->mm_account) {
8668                mmdrop(ctx->mm_account);
8669                ctx->mm_account = NULL;
8670        }
8671
8672        /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
8673        io_wait_rsrc_data(ctx->buf_data);
8674        io_wait_rsrc_data(ctx->file_data);
8675
8676        mutex_lock(&ctx->uring_lock);
8677        if (ctx->buf_data)
8678                __io_sqe_buffers_unregister(ctx);
8679        if (ctx->file_data)
8680                __io_sqe_files_unregister(ctx);
8681        if (ctx->rings)
8682                __io_cqring_overflow_flush(ctx, true);
8683        mutex_unlock(&ctx->uring_lock);
8684        io_eventfd_unregister(ctx);
8685        io_destroy_buffers(ctx);
8686        if (ctx->sq_creds)
8687                put_cred(ctx->sq_creds);
8688
8689        /* there are no registered resources left, nobody uses it */
8690        if (ctx->rsrc_node)
8691                io_rsrc_node_destroy(ctx->rsrc_node);
8692        if (ctx->rsrc_backup_node)
8693                io_rsrc_node_destroy(ctx->rsrc_backup_node);
8694        flush_delayed_work(&ctx->rsrc_put_work);
8695
8696        WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
8697        WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
8698
8699#if defined(CONFIG_UNIX)
8700        if (ctx->ring_sock) {
8701                ctx->ring_sock->file = NULL; /* so that iput() is called */
8702                sock_release(ctx->ring_sock);
8703        }
8704#endif
8705
8706        io_mem_free(ctx->rings);
8707        io_mem_free(ctx->sq_sqes);
8708
8709        percpu_ref_exit(&ctx->refs);
8710        free_uid(ctx->user);
8711        io_req_caches_free(ctx);
8712        if (ctx->hash_map)
8713                io_wq_put_hash(ctx->hash_map);
8714        kfree(ctx->cancel_hash);
8715        kfree(ctx->dummy_ubuf);
8716        kfree(ctx);
8717}
8718
8719static __poll_t io_uring_poll(struct file *file, poll_table *wait)
8720{
8721        struct io_ring_ctx *ctx = file->private_data;
8722        __poll_t mask = 0;
8723
8724        poll_wait(file, &ctx->poll_wait, wait);
8725        /*
8726         * synchronizes with barrier from wq_has_sleeper call in
8727         * io_commit_cqring
8728         */
8729        smp_rmb();
8730        if (!io_sqring_full(ctx))
8731                mask |= EPOLLOUT | EPOLLWRNORM;
8732
8733        /*
8734         * Don't flush cqring overflow list here, just do a simple check.
8735         * Otherwise there could possible be ABBA deadlock:
8736         *      CPU0                    CPU1
8737         *      ----                    ----
8738         * lock(&ctx->uring_lock);
8739         *                              lock(&ep->mtx);
8740         *                              lock(&ctx->uring_lock);
8741         * lock(&ep->mtx);
8742         *
8743         * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
8744         * pushs them to do the flush.
8745         */
8746        if (io_cqring_events(ctx) || test_bit(0, &ctx->check_cq_overflow))
8747                mask |= EPOLLIN | EPOLLRDNORM;
8748
8749        return mask;
8750}
8751
8752static int io_uring_fasync(int fd, struct file *file, int on)
8753{
8754        struct io_ring_ctx *ctx = file->private_data;
8755
8756        return fasync_helper(fd, file, on, &ctx->cq_fasync);
8757}
8758
8759static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
8760{
8761        const struct cred *creds;
8762
8763        creds = xa_erase(&ctx->personalities, id);
8764        if (creds) {
8765                put_cred(creds);
8766                return 0;
8767        }
8768
8769        return -EINVAL;
8770}
8771
8772struct io_tctx_exit {
8773        struct callback_head            task_work;
8774        struct completion               completion;
8775        struct io_ring_ctx              *ctx;
8776};
8777
8778static void io_tctx_exit_cb(struct callback_head *cb)
8779{
8780        struct io_uring_task *tctx = current->io_uring;
8781        struct io_tctx_exit *work;
8782
8783        work = container_of(cb, struct io_tctx_exit, task_work);
8784        /*
8785         * When @in_idle, we're in cancellation and it's racy to remove the
8786         * node. It'll be removed by the end of cancellation, just ignore it.
8787         */
8788        if (!atomic_read(&tctx->in_idle))
8789                io_uring_del_tctx_node((unsigned long)work->ctx);
8790        complete(&work->completion);
8791}
8792
8793static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
8794{
8795        struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8796
8797        return req->ctx == data;
8798}
8799
8800static void io_ring_exit_work(struct work_struct *work)
8801{
8802        struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
8803        unsigned long timeout = jiffies + HZ * 60 * 5;
8804        struct io_tctx_exit exit;
8805        struct io_tctx_node *node;
8806        int ret;
8807
8808        /*
8809         * If we're doing polled IO and end up having requests being
8810         * submitted async (out-of-line), then completions can come in while
8811         * we're waiting for refs to drop. We need to reap these manually,
8812         * as nobody else will be looking for them.
8813         */
8814        do {
8815                io_uring_try_cancel_requests(ctx, NULL, true);
8816                if (ctx->sq_data) {
8817                        struct io_sq_data *sqd = ctx->sq_data;
8818                        struct task_struct *tsk;
8819
8820                        io_sq_thread_park(sqd);
8821                        tsk = sqd->thread;
8822                        if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
8823                                io_wq_cancel_cb(tsk->io_uring->io_wq,
8824                                                io_cancel_ctx_cb, ctx, true);
8825                        io_sq_thread_unpark(sqd);
8826                }
8827
8828                WARN_ON_ONCE(time_after(jiffies, timeout));
8829        } while (!wait_for_completion_timeout(&ctx->ref_comp, HZ/20));
8830
8831        init_completion(&exit.completion);
8832        init_task_work(&exit.task_work, io_tctx_exit_cb);
8833        exit.ctx = ctx;
8834        /*
8835         * Some may use context even when all refs and requests have been put,
8836         * and they are free to do so while still holding uring_lock or
8837         * completion_lock, see io_req_task_submit(). Apart from other work,
8838         * this lock/unlock section also waits them to finish.
8839         */
8840        mutex_lock(&ctx->uring_lock);
8841        while (!list_empty(&ctx->tctx_list)) {
8842                WARN_ON_ONCE(time_after(jiffies, timeout));
8843
8844                node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
8845                                        ctx_node);
8846                /* don't spin on a single task if cancellation failed */
8847                list_rotate_left(&ctx->tctx_list);
8848                ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
8849                if (WARN_ON_ONCE(ret))
8850                        continue;
8851                wake_up_process(node->task);
8852
8853                mutex_unlock(&ctx->uring_lock);
8854                wait_for_completion(&exit.completion);
8855                mutex_lock(&ctx->uring_lock);
8856        }
8857        mutex_unlock(&ctx->uring_lock);
8858        spin_lock_irq(&ctx->completion_lock);
8859        spin_unlock_irq(&ctx->completion_lock);
8860
8861        io_ring_ctx_free(ctx);
8862}
8863
8864/* Returns true if we found and killed one or more timeouts */
8865static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
8866                             bool cancel_all)
8867{
8868        struct io_kiocb *req, *tmp;
8869        int canceled = 0;
8870
8871        spin_lock_irq(&ctx->completion_lock);
8872        list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
8873                if (io_match_task(req, tsk, cancel_all)) {
8874                        io_kill_timeout(req, -ECANCELED);
8875                        canceled++;
8876                }
8877        }
8878        if (canceled != 0)
8879                io_commit_cqring(ctx);
8880        spin_unlock_irq(&ctx->completion_lock);
8881        if (canceled != 0)
8882                io_cqring_ev_posted(ctx);
8883        return canceled != 0;
8884}
8885
8886static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
8887{
8888        unsigned long index;
8889        struct creds *creds;
8890
8891        mutex_lock(&ctx->uring_lock);
8892        percpu_ref_kill(&ctx->refs);
8893        if (ctx->rings)
8894                __io_cqring_overflow_flush(ctx, true);
8895        xa_for_each(&ctx->personalities, index, creds)
8896                io_unregister_personality(ctx, index);
8897        mutex_unlock(&ctx->uring_lock);
8898
8899        io_kill_timeouts(ctx, NULL, true);
8900        io_poll_remove_all(ctx, NULL, true);
8901
8902        /* if we failed setting up the ctx, we might not have any rings */
8903        io_iopoll_try_reap_events(ctx);
8904
8905        INIT_WORK(&ctx->exit_work, io_ring_exit_work);
8906        /*
8907         * Use system_unbound_wq to avoid spawning tons of event kworkers
8908         * if we're exiting a ton of rings at the same time. It just adds
8909         * noise and overhead, there's no discernable change in runtime
8910         * over using system_wq.
8911         */
8912        queue_work(system_unbound_wq, &ctx->exit_work);
8913}
8914
8915static int io_uring_release(struct inode *inode, struct file *file)
8916{
8917        struct io_ring_ctx *ctx = file->private_data;
8918
8919        file->private_data = NULL;
8920        io_ring_ctx_wait_and_kill(ctx);
8921        return 0;
8922}
8923
8924struct io_task_cancel {
8925        struct task_struct *task;
8926        bool all;
8927};
8928
8929static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
8930{
8931        struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8932        struct io_task_cancel *cancel = data;
8933        bool ret;
8934
8935        if (!cancel->all && (req->flags & REQ_F_LINK_TIMEOUT)) {
8936                unsigned long flags;
8937                struct io_ring_ctx *ctx = req->ctx;
8938
8939                /* protect against races with linked timeouts */
8940                spin_lock_irqsave(&ctx->completion_lock, flags);
8941                ret = io_match_task(req, cancel->task, cancel->all);
8942                spin_unlock_irqrestore(&ctx->completion_lock, flags);
8943        } else {
8944                ret = io_match_task(req, cancel->task, cancel->all);
8945        }
8946        return ret;
8947}
8948
8949static bool io_cancel_defer_files(struct io_ring_ctx *ctx,
8950                                  struct task_struct *task, bool cancel_all)
8951{
8952        struct io_defer_entry *de;
8953        LIST_HEAD(list);
8954
8955        spin_lock_irq(&ctx->completion_lock);
8956        list_for_each_entry_reverse(de, &ctx->defer_list, list) {
8957                if (io_match_task(de->req, task, cancel_all)) {
8958                        list_cut_position(&list, &ctx->defer_list, &de->list);
8959                        break;
8960                }
8961        }
8962        spin_unlock_irq(&ctx->completion_lock);
8963        if (list_empty(&list))
8964                return false;
8965
8966        while (!list_empty(&list)) {
8967                de = list_first_entry(&list, struct io_defer_entry, list);
8968                list_del_init(&de->list);
8969                io_req_complete_failed(de->req, -ECANCELED);
8970                kfree(de);
8971        }
8972        return true;
8973}
8974
8975static bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
8976{
8977        struct io_tctx_node *node;
8978        enum io_wq_cancel cret;
8979        bool ret = false;
8980
8981        mutex_lock(&ctx->uring_lock);
8982        list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
8983                struct io_uring_task *tctx = node->task->io_uring;
8984
8985                /*
8986                 * io_wq will stay alive while we hold uring_lock, because it's
8987                 * killed after ctx nodes, which requires to take the lock.
8988                 */
8989                if (!tctx || !tctx->io_wq)
8990                        continue;
8991                cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
8992                ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
8993        }
8994        mutex_unlock(&ctx->uring_lock);
8995
8996        return ret;
8997}
8998
8999static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
9000                                         struct task_struct *task,
9001                                         bool cancel_all)
9002{
9003        struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
9004        struct io_uring_task *tctx = task ? task->io_uring : NULL;
9005
9006        while (1) {
9007                enum io_wq_cancel cret;
9008                bool ret = false;
9009
9010                if (!task) {
9011                        ret |= io_uring_try_cancel_iowq(ctx);
9012                } else if (tctx && tctx->io_wq) {
9013                        /*
9014                         * Cancels requests of all rings, not only @ctx, but
9015                         * it's fine as the task is in exit/exec.
9016                         */
9017                        cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
9018                                               &cancel, true);
9019                        ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9020                }
9021
9022                /* SQPOLL thread does its own polling */
9023                if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
9024                    (ctx->sq_data && ctx->sq_data->thread == current)) {
9025                        while (!list_empty_careful(&ctx->iopoll_list)) {
9026                                io_iopoll_try_reap_events(ctx);
9027                                ret = true;
9028                        }
9029                }
9030
9031                ret |= io_cancel_defer_files(ctx, task, cancel_all);
9032                ret |= io_poll_remove_all(ctx, task, cancel_all);
9033                ret |= io_kill_timeouts(ctx, task, cancel_all);
9034                if (task)
9035                        ret |= io_run_task_work();
9036                if (!ret)
9037                        break;
9038                cond_resched();
9039        }
9040}
9041
9042static int __io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9043{
9044        struct io_uring_task *tctx = current->io_uring;
9045        struct io_tctx_node *node;
9046        int ret;
9047
9048        if (unlikely(!tctx)) {
9049                ret = io_uring_alloc_task_context(current, ctx);
9050                if (unlikely(ret))
9051                        return ret;
9052                tctx = current->io_uring;
9053        }
9054        if (!xa_load(&tctx->xa, (unsigned long)ctx)) {
9055                node = kmalloc(sizeof(*node), GFP_KERNEL);
9056                if (!node)
9057                        return -ENOMEM;
9058                node->ctx = ctx;
9059                node->task = current;
9060
9061                ret = xa_err(xa_store(&tctx->xa, (unsigned long)ctx,
9062                                        node, GFP_KERNEL));
9063                if (ret) {
9064                        kfree(node);
9065                        return ret;
9066                }
9067
9068                mutex_lock(&ctx->uring_lock);
9069                list_add(&node->ctx_node, &ctx->tctx_list);
9070                mutex_unlock(&ctx->uring_lock);
9071        }
9072        tctx->last = ctx;
9073        return 0;
9074}
9075
9076/*
9077 * Note that this task has used io_uring. We use it for cancelation purposes.
9078 */
9079static inline int io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9080{
9081        struct io_uring_task *tctx = current->io_uring;
9082
9083        if (likely(tctx && tctx->last == ctx))
9084                return 0;
9085        return __io_uring_add_tctx_node(ctx);
9086}
9087
9088/*
9089 * Remove this io_uring_file -> task mapping.
9090 */
9091static void io_uring_del_tctx_node(unsigned long index)
9092{
9093        struct io_uring_task *tctx = current->io_uring;
9094        struct io_tctx_node *node;
9095
9096        if (!tctx)
9097                return;
9098        node = xa_erase(&tctx->xa, index);
9099        if (!node)
9100                return;
9101
9102        WARN_ON_ONCE(current != node->task);
9103        WARN_ON_ONCE(list_empty(&node->ctx_node));
9104
9105        mutex_lock(&node->ctx->uring_lock);
9106        list_del(&node->ctx_node);
9107        mutex_unlock(&node->ctx->uring_lock);
9108
9109        if (tctx->last == node->ctx)
9110                tctx->last = NULL;
9111        kfree(node);
9112}
9113
9114static void io_uring_clean_tctx(struct io_uring_task *tctx)
9115{
9116        struct io_wq *wq = tctx->io_wq;
9117        struct io_tctx_node *node;
9118        unsigned long index;
9119
9120        xa_for_each(&tctx->xa, index, node)
9121                io_uring_del_tctx_node(index);
9122        if (wq) {
9123                /*
9124                 * Must be after io_uring_del_task_file() (removes nodes under
9125                 * uring_lock) to avoid race with io_uring_try_cancel_iowq().
9126                 */
9127                tctx->io_wq = NULL;
9128                io_wq_put_and_exit(wq);
9129        }
9130}
9131
9132static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
9133{
9134        if (tracked)
9135                return atomic_read(&tctx->inflight_tracked);
9136        return percpu_counter_sum(&tctx->inflight);
9137}
9138
9139static void io_uring_drop_tctx_refs(struct task_struct *task)
9140{
9141        struct io_uring_task *tctx = task->io_uring;
9142        unsigned int refs = tctx->cached_refs;
9143
9144        tctx->cached_refs = 0;
9145        percpu_counter_sub(&tctx->inflight, refs);
9146        put_task_struct_many(task, refs);
9147}
9148
9149/*
9150 * Find any io_uring ctx that this task has registered or done IO on, and cancel
9151 * requests. @sqd should be not-null IIF it's an SQPOLL thread cancellation.
9152 */
9153static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
9154{
9155        struct io_uring_task *tctx = current->io_uring;
9156        struct io_ring_ctx *ctx;
9157        s64 inflight;
9158        DEFINE_WAIT(wait);
9159
9160        WARN_ON_ONCE(sqd && sqd->thread != current);
9161
9162        if (!current->io_uring)
9163                return;
9164        if (tctx->io_wq)
9165                io_wq_exit_start(tctx->io_wq);
9166
9167        io_uring_drop_tctx_refs(current);
9168        atomic_inc(&tctx->in_idle);
9169        do {
9170                /* read completions before cancelations */
9171                inflight = tctx_inflight(tctx, !cancel_all);
9172                if (!inflight)
9173                        break;
9174
9175                if (!sqd) {
9176                        struct io_tctx_node *node;
9177                        unsigned long index;
9178
9179                        xa_for_each(&tctx->xa, index, node) {
9180                                /* sqpoll task will cancel all its requests */
9181                                if (node->ctx->sq_data)
9182                                        continue;
9183                                io_uring_try_cancel_requests(node->ctx, current,
9184                                                             cancel_all);
9185                        }
9186                } else {
9187                        list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
9188                                io_uring_try_cancel_requests(ctx, current,
9189                                                             cancel_all);
9190                }
9191
9192                prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9193                /*
9194                 * If we've seen completions, retry without waiting. This
9195                 * avoids a race where a completion comes in before we did
9196                 * prepare_to_wait().
9197                 */
9198                if (inflight == tctx_inflight(tctx, !cancel_all))
9199                        schedule();
9200                finish_wait(&tctx->wait, &wait);
9201        } while (1);
9202        atomic_dec(&tctx->in_idle);
9203
9204        io_uring_clean_tctx(tctx);
9205        if (cancel_all) {
9206                /* for exec all current's requests should be gone, kill tctx */
9207                __io_uring_free(current);
9208        }
9209}
9210
9211void __io_uring_cancel(struct files_struct *files)
9212{
9213        io_uring_cancel_generic(!files, NULL);
9214}
9215
9216static void *io_uring_validate_mmap_request(struct file *file,
9217                                            loff_t pgoff, size_t sz)
9218{
9219        struct io_ring_ctx *ctx = file->private_data;
9220        loff_t offset = pgoff << PAGE_SHIFT;
9221        struct page *page;
9222        void *ptr;
9223
9224        switch (offset) {
9225        case IORING_OFF_SQ_RING:
9226        case IORING_OFF_CQ_RING:
9227                ptr = ctx->rings;
9228                break;
9229        case IORING_OFF_SQES:
9230                ptr = ctx->sq_sqes;
9231                break;
9232        default:
9233                return ERR_PTR(-EINVAL);
9234        }
9235
9236        page = virt_to_head_page(ptr);
9237        if (sz > page_size(page))
9238                return ERR_PTR(-EINVAL);
9239
9240        return ptr;
9241}
9242
9243#ifdef CONFIG_MMU
9244
9245static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9246{
9247        size_t sz = vma->vm_end - vma->vm_start;
9248        unsigned long pfn;
9249        void *ptr;
9250
9251        ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9252        if (IS_ERR(ptr))
9253                return PTR_ERR(ptr);
9254
9255        pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9256        return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9257}
9258
9259#else /* !CONFIG_MMU */
9260
9261static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9262{
9263        return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9264}
9265
9266static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9267{
9268        return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9269}
9270
9271static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9272        unsigned long addr, unsigned long len,
9273        unsigned long pgoff, unsigned long flags)
9274{
9275        void *ptr;
9276
9277        ptr = io_uring_validate_mmap_request(file, pgoff, len);
9278        if (IS_ERR(ptr))
9279                return PTR_ERR(ptr);
9280
9281        return (unsigned long) ptr;
9282}
9283
9284#endif /* !CONFIG_MMU */
9285
9286static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9287{
9288        DEFINE_WAIT(wait);
9289
9290        do {
9291                if (!io_sqring_full(ctx))
9292                        break;
9293                prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9294
9295                if (!io_sqring_full(ctx))
9296                        break;
9297                schedule();
9298        } while (!signal_pending(current));
9299
9300        finish_wait(&ctx->sqo_sq_wait, &wait);
9301        return 0;
9302}
9303
9304static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9305                          struct __kernel_timespec __user **ts,
9306                          const sigset_t __user **sig)
9307{
9308        struct io_uring_getevents_arg arg;
9309
9310        /*
9311         * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9312         * is just a pointer to the sigset_t.
9313         */
9314        if (!(flags & IORING_ENTER_EXT_ARG)) {
9315                *sig = (const sigset_t __user *) argp;
9316                *ts = NULL;
9317                return 0;
9318        }
9319
9320        /*
9321         * EXT_ARG is set - ensure we agree on the size of it and copy in our
9322         * timespec and sigset_t pointers if good.
9323         */
9324        if (*argsz != sizeof(arg))
9325                return -EINVAL;
9326        if (copy_from_user(&arg, argp, sizeof(arg)))
9327                return -EFAULT;
9328        *sig = u64_to_user_ptr(arg.sigmask);
9329        *argsz = arg.sigmask_sz;
9330        *ts = u64_to_user_ptr(arg.ts);
9331        return 0;
9332}
9333
9334SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9335                u32, min_complete, u32, flags, const void __user *, argp,
9336                size_t, argsz)
9337{
9338        struct io_ring_ctx *ctx;
9339        int submitted = 0;
9340        struct fd f;
9341        long ret;
9342
9343        io_run_task_work();
9344
9345        if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
9346                               IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG)))
9347                return -EINVAL;
9348
9349        f = fdget(fd);
9350        if (unlikely(!f.file))
9351                return -EBADF;
9352
9353        ret = -EOPNOTSUPP;
9354        if (unlikely(f.file->f_op != &io_uring_fops))
9355                goto out_fput;
9356
9357        ret = -ENXIO;
9358        ctx = f.file->private_data;
9359        if (unlikely(!percpu_ref_tryget(&ctx->refs)))
9360                goto out_fput;
9361
9362        ret = -EBADFD;
9363        if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
9364                goto out;
9365
9366        /*
9367         * For SQ polling, the thread will do all submissions and completions.
9368         * Just return the requested submit count, and wake the thread if
9369         * we were asked to.
9370         */
9371        ret = 0;
9372        if (ctx->flags & IORING_SETUP_SQPOLL) {
9373                io_cqring_overflow_flush(ctx, false);
9374
9375                if (unlikely(ctx->sq_data->thread == NULL)) {
9376                        ret = -EOWNERDEAD;
9377                        goto out;
9378                }
9379                if (flags & IORING_ENTER_SQ_WAKEUP)
9380                        wake_up(&ctx->sq_data->wait);
9381                if (flags & IORING_ENTER_SQ_WAIT) {
9382                        ret = io_sqpoll_wait_sq(ctx);
9383                        if (ret)
9384                                goto out;
9385                }
9386                submitted = to_submit;
9387        } else if (to_submit) {
9388                ret = io_uring_add_tctx_node(ctx);
9389                if (unlikely(ret))
9390                        goto out;
9391                mutex_lock(&ctx->uring_lock);
9392                submitted = io_submit_sqes(ctx, to_submit);
9393                mutex_unlock(&ctx->uring_lock);
9394
9395                if (submitted != to_submit)
9396                        goto out;
9397        }
9398        if (flags & IORING_ENTER_GETEVENTS) {
9399                const sigset_t __user *sig;
9400                struct __kernel_timespec __user *ts;
9401
9402                ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
9403                if (unlikely(ret))
9404                        goto out;
9405
9406                min_complete = min(min_complete, ctx->cq_entries);
9407
9408                /*
9409                 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
9410                 * space applications don't need to do io completion events
9411                 * polling again, they can rely on io_sq_thread to do polling
9412                 * work, which can reduce cpu usage and uring_lock contention.
9413                 */
9414                if (ctx->flags & IORING_SETUP_IOPOLL &&
9415                    !(ctx->flags & IORING_SETUP_SQPOLL)) {
9416                        ret = io_iopoll_check(ctx, min_complete);
9417                } else {
9418                        ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
9419                }
9420        }
9421
9422out:
9423        percpu_ref_put(&ctx->refs);
9424out_fput:
9425        fdput(f);
9426        return submitted ? submitted : ret;
9427}
9428
9429#ifdef CONFIG_PROC_FS
9430static int io_uring_show_cred(struct seq_file *m, unsigned int id,
9431                const struct cred *cred)
9432{
9433        struct user_namespace *uns = seq_user_ns(m);
9434        struct group_info *gi;
9435        kernel_cap_t cap;
9436        unsigned __capi;
9437        int g;
9438
9439        seq_printf(m, "%5d\n", id);
9440        seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
9441        seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
9442        seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
9443        seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
9444        seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
9445        seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
9446        seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
9447        seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
9448        seq_puts(m, "\n\tGroups:\t");
9449        gi = cred->group_info;
9450        for (g = 0; g < gi->ngroups; g++) {
9451                seq_put_decimal_ull(m, g ? " " : "",
9452                                        from_kgid_munged(uns, gi->gid[g]));
9453        }
9454        seq_puts(m, "\n\tCapEff:\t");
9455        cap = cred->cap_effective;
9456        CAP_FOR_EACH_U32(__capi)
9457                seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
9458        seq_putc(m, '\n');
9459        return 0;
9460}
9461
9462static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
9463{
9464        struct io_sq_data *sq = NULL;
9465        bool has_lock;
9466        int i;
9467
9468        /*
9469         * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
9470         * since fdinfo case grabs it in the opposite direction of normal use
9471         * cases. If we fail to get the lock, we just don't iterate any
9472         * structures that could be going away outside the io_uring mutex.
9473         */
9474        has_lock = mutex_trylock(&ctx->uring_lock);
9475
9476        if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL)) {
9477                sq = ctx->sq_data;
9478                if (!sq->thread)
9479                        sq = NULL;
9480        }
9481
9482        seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
9483        seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
9484        seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
9485        for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
9486                struct file *f = io_file_from_index(ctx, i);
9487
9488                if (f)
9489                        seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
9490                else
9491                        seq_printf(m, "%5u: <none>\n", i);
9492        }
9493        seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
9494        for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
9495                struct io_mapped_ubuf *buf = ctx->user_bufs[i];
9496                unsigned int len = buf->ubuf_end - buf->ubuf;
9497
9498                seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf, len);
9499        }
9500        if (has_lock && !xa_empty(&ctx->personalities)) {
9501                unsigned long index;
9502                const struct cred *cred;
9503
9504                seq_printf(m, "Personalities:\n");
9505                xa_for_each(&ctx->personalities, index, cred)
9506                        io_uring_show_cred(m, index, cred);
9507        }
9508        seq_printf(m, "PollList:\n");
9509        spin_lock_irq(&ctx->completion_lock);
9510        for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
9511                struct hlist_head *list = &ctx->cancel_hash[i];
9512                struct io_kiocb *req;
9513
9514                hlist_for_each_entry(req, list, hash_node)
9515                        seq_printf(m, "  op=%d, task_works=%d\n", req->opcode,
9516                                        req->task->task_works != NULL);
9517        }
9518        spin_unlock_irq(&ctx->completion_lock);
9519        if (has_lock)
9520                mutex_unlock(&ctx->uring_lock);
9521}
9522
9523static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
9524{
9525        struct io_ring_ctx *ctx = f->private_data;
9526
9527        if (percpu_ref_tryget(&ctx->refs)) {
9528                __io_uring_show_fdinfo(ctx, m);
9529                percpu_ref_put(&ctx->refs);
9530        }
9531}
9532#endif
9533
9534static const struct file_operations io_uring_fops = {
9535        .release        = io_uring_release,
9536        .mmap           = io_uring_mmap,
9537#ifndef CONFIG_MMU
9538        .get_unmapped_area = io_uring_nommu_get_unmapped_area,
9539        .mmap_capabilities = io_uring_nommu_mmap_capabilities,
9540#endif
9541        .poll           = io_uring_poll,
9542        .fasync         = io_uring_fasync,
9543#ifdef CONFIG_PROC_FS
9544        .show_fdinfo    = io_uring_show_fdinfo,
9545#endif
9546};
9547
9548static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
9549                                  struct io_uring_params *p)
9550{
9551        struct io_rings *rings;
9552        size_t size, sq_array_offset;
9553
9554        /* make sure these are sane, as we already accounted them */
9555        ctx->sq_entries = p->sq_entries;
9556        ctx->cq_entries = p->cq_entries;
9557
9558        size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
9559        if (size == SIZE_MAX)
9560                return -EOVERFLOW;
9561
9562        rings = io_mem_alloc(size);
9563        if (!rings)
9564                return -ENOMEM;
9565
9566        ctx->rings = rings;
9567        ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
9568        rings->sq_ring_mask = p->sq_entries - 1;
9569        rings->cq_ring_mask = p->cq_entries - 1;
9570        rings->sq_ring_entries = p->sq_entries;
9571        rings->cq_ring_entries = p->cq_entries;
9572
9573        size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
9574        if (size == SIZE_MAX) {
9575                io_mem_free(ctx->rings);
9576                ctx->rings = NULL;
9577                return -EOVERFLOW;
9578        }
9579
9580        ctx->sq_sqes = io_mem_alloc(size);
9581        if (!ctx->sq_sqes) {
9582                io_mem_free(ctx->rings);
9583                ctx->rings = NULL;
9584                return -ENOMEM;
9585        }
9586
9587        return 0;
9588}
9589
9590static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
9591{
9592        int ret, fd;
9593
9594        fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
9595        if (fd < 0)
9596                return fd;
9597
9598        ret = io_uring_add_tctx_node(ctx);
9599        if (ret) {
9600                put_unused_fd(fd);
9601                return ret;
9602        }
9603        fd_install(fd, file);
9604        return fd;
9605}
9606
9607/*
9608 * Allocate an anonymous fd, this is what constitutes the application
9609 * visible backing of an io_uring instance. The application mmaps this
9610 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
9611 * we have to tie this fd to a socket for file garbage collection purposes.
9612 */
9613static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
9614{
9615        struct file *file;
9616#if defined(CONFIG_UNIX)
9617        int ret;
9618
9619        ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
9620                                &ctx->ring_sock);
9621        if (ret)
9622                return ERR_PTR(ret);
9623#endif
9624
9625        file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
9626                                        O_RDWR | O_CLOEXEC);
9627#if defined(CONFIG_UNIX)
9628        if (IS_ERR(file)) {
9629                sock_release(ctx->ring_sock);
9630                ctx->ring_sock = NULL;
9631        } else {
9632                ctx->ring_sock->file = file;
9633        }
9634#endif
9635        return file;
9636}
9637
9638static int io_uring_create(unsigned entries, struct io_uring_params *p,
9639                           struct io_uring_params __user *params)
9640{
9641        struct io_ring_ctx *ctx;
9642        struct file *file;
9643        int ret;
9644
9645        if (!entries)
9646                return -EINVAL;
9647        if (entries > IORING_MAX_ENTRIES) {
9648                if (!(p->flags & IORING_SETUP_CLAMP))
9649                        return -EINVAL;
9650                entries = IORING_MAX_ENTRIES;
9651        }
9652
9653        /*
9654         * Use twice as many entries for the CQ ring. It's possible for the
9655         * application to drive a higher depth than the size of the SQ ring,
9656         * since the sqes are only used at submission time. This allows for
9657         * some flexibility in overcommitting a bit. If the application has
9658         * set IORING_SETUP_CQSIZE, it will have passed in the desired number
9659         * of CQ ring entries manually.
9660         */
9661        p->sq_entries = roundup_pow_of_two(entries);
9662        if (p->flags & IORING_SETUP_CQSIZE) {
9663                /*
9664                 * If IORING_SETUP_CQSIZE is set, we do the same roundup
9665                 * to a power-of-two, if it isn't already. We do NOT impose
9666                 * any cq vs sq ring sizing.
9667                 */
9668                if (!p->cq_entries)
9669                        return -EINVAL;
9670                if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
9671                        if (!(p->flags & IORING_SETUP_CLAMP))
9672                                return -EINVAL;
9673                        p->cq_entries = IORING_MAX_CQ_ENTRIES;
9674                }
9675                p->cq_entries = roundup_pow_of_two(p->cq_entries);
9676                if (p->cq_entries < p->sq_entries)
9677                        return -EINVAL;
9678        } else {
9679                p->cq_entries = 2 * p->sq_entries;
9680        }
9681
9682        ctx = io_ring_ctx_alloc(p);
9683        if (!ctx)
9684                return -ENOMEM;
9685        ctx->compat = in_compat_syscall();
9686        if (!capable(CAP_IPC_LOCK))
9687                ctx->user = get_uid(current_user());
9688
9689        /*
9690         * This is just grabbed for accounting purposes. When a process exits,
9691         * the mm is exited and dropped before the files, hence we need to hang
9692         * on to this mm purely for the purposes of being able to unaccount
9693         * memory (locked/pinned vm). It's not used for anything else.
9694         */
9695        mmgrab(current->mm);
9696        ctx->mm_account = current->mm;
9697
9698        ret = io_allocate_scq_urings(ctx, p);
9699        if (ret)
9700                goto err;
9701
9702        ret = io_sq_offload_create(ctx, p);
9703        if (ret)
9704                goto err;
9705        /* always set a rsrc node */
9706        ret = io_rsrc_node_switch_start(ctx);
9707        if (ret)
9708                goto err;
9709        io_rsrc_node_switch(ctx, NULL);
9710
9711        memset(&p->sq_off, 0, sizeof(p->sq_off));
9712        p->sq_off.head = offsetof(struct io_rings, sq.head);
9713        p->sq_off.tail = offsetof(struct io_rings, sq.tail);
9714        p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
9715        p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
9716        p->sq_off.flags = offsetof(struct io_rings, sq_flags);
9717        p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
9718        p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
9719
9720        memset(&p->cq_off, 0, sizeof(p->cq_off));
9721        p->cq_off.head = offsetof(struct io_rings, cq.head);
9722        p->cq_off.tail = offsetof(struct io_rings, cq.tail);
9723        p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
9724        p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
9725        p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
9726        p->cq_off.cqes = offsetof(struct io_rings, cqes);
9727        p->cq_off.flags = offsetof(struct io_rings, cq_flags);
9728
9729        p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
9730                        IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
9731                        IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
9732                        IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
9733                        IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
9734                        IORING_FEAT_RSRC_TAGS;
9735
9736        if (copy_to_user(params, p, sizeof(*p))) {
9737                ret = -EFAULT;
9738                goto err;
9739        }
9740
9741        file = io_uring_get_file(ctx);
9742        if (IS_ERR(file)) {
9743                ret = PTR_ERR(file);
9744                goto err;
9745        }
9746
9747        /*
9748         * Install ring fd as the very last thing, so we don't risk someone
9749         * having closed it before we finish setup
9750         */
9751        ret = io_uring_install_fd(ctx, file);
9752        if (ret < 0) {
9753                /* fput will clean it up */
9754                fput(file);
9755                return ret;
9756        }
9757
9758        trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
9759        return ret;
9760err:
9761        io_ring_ctx_wait_and_kill(ctx);
9762        return ret;
9763}
9764
9765/*
9766 * Sets up an aio uring context, and returns the fd. Applications asks for a
9767 * ring size, we return the actual sq/cq ring sizes (among other things) in the
9768 * params structure passed in.
9769 */
9770static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
9771{
9772        struct io_uring_params p;
9773        int i;
9774
9775        if (copy_from_user(&p, params, sizeof(p)))
9776                return -EFAULT;
9777        for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
9778                if (p.resv[i])
9779                        return -EINVAL;
9780        }
9781
9782        if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
9783                        IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
9784                        IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
9785                        IORING_SETUP_R_DISABLED))
9786                return -EINVAL;
9787
9788        return  io_uring_create(entries, &p, params);
9789}
9790
9791SYSCALL_DEFINE2(io_uring_setup, u32, entries,
9792                struct io_uring_params __user *, params)
9793{
9794        return io_uring_setup(entries, params);
9795}
9796
9797static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
9798{
9799        struct io_uring_probe *p;
9800        size_t size;
9801        int i, ret;
9802
9803        size = struct_size(p, ops, nr_args);
9804        if (size == SIZE_MAX)
9805                return -EOVERFLOW;
9806        p = kzalloc(size, GFP_KERNEL);
9807        if (!p)
9808                return -ENOMEM;
9809
9810        ret = -EFAULT;
9811        if (copy_from_user(p, arg, size))
9812                goto out;
9813        ret = -EINVAL;
9814        if (memchr_inv(p, 0, size))
9815                goto out;
9816
9817        p->last_op = IORING_OP_LAST - 1;
9818        if (nr_args > IORING_OP_LAST)
9819                nr_args = IORING_OP_LAST;
9820
9821        for (i = 0; i < nr_args; i++) {
9822                p->ops[i].op = i;
9823                if (!io_op_defs[i].not_supported)
9824                        p->ops[i].flags = IO_URING_OP_SUPPORTED;
9825        }
9826        p->ops_len = i;
9827
9828        ret = 0;
9829        if (copy_to_user(arg, p, size))
9830                ret = -EFAULT;
9831out:
9832        kfree(p);
9833        return ret;
9834}
9835
9836static int io_register_personality(struct io_ring_ctx *ctx)
9837{
9838        const struct cred *creds;
9839        u32 id;
9840        int ret;
9841
9842        creds = get_current_cred();
9843
9844        ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
9845                        XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
9846        if (ret < 0) {
9847                put_cred(creds);
9848                return ret;
9849        }
9850        return id;
9851}
9852
9853static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
9854                                    unsigned int nr_args)
9855{
9856        struct io_uring_restriction *res;
9857        size_t size;
9858        int i, ret;
9859
9860        /* Restrictions allowed only if rings started disabled */
9861        if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9862                return -EBADFD;
9863
9864        /* We allow only a single restrictions registration */
9865        if (ctx->restrictions.registered)
9866                return -EBUSY;
9867
9868        if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
9869                return -EINVAL;
9870
9871        size = array_size(nr_args, sizeof(*res));
9872        if (size == SIZE_MAX)
9873                return -EOVERFLOW;
9874
9875        res = memdup_user(arg, size);
9876        if (IS_ERR(res))
9877                return PTR_ERR(res);
9878
9879        ret = 0;
9880
9881        for (i = 0; i < nr_args; i++) {
9882                switch (res[i].opcode) {
9883                case IORING_RESTRICTION_REGISTER_OP:
9884                        if (res[i].register_op >= IORING_REGISTER_LAST) {
9885                                ret = -EINVAL;
9886                                goto out;
9887                        }
9888
9889                        __set_bit(res[i].register_op,
9890                                  ctx->restrictions.register_op);
9891                        break;
9892                case IORING_RESTRICTION_SQE_OP:
9893                        if (res[i].sqe_op >= IORING_OP_LAST) {
9894                                ret = -EINVAL;
9895                                goto out;
9896                        }
9897
9898                        __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
9899                        break;
9900                case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
9901                        ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
9902                        break;
9903                case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
9904                        ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
9905                        break;
9906                default:
9907                        ret = -EINVAL;
9908                        goto out;
9909                }
9910        }
9911
9912out:
9913        /* Reset all restrictions if an error happened */
9914        if (ret != 0)
9915                memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
9916        else
9917                ctx->restrictions.registered = true;
9918
9919        kfree(res);
9920        return ret;
9921}
9922
9923static int io_register_enable_rings(struct io_ring_ctx *ctx)
9924{
9925        if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9926                return -EBADFD;
9927
9928        if (ctx->restrictions.registered)
9929                ctx->restricted = 1;
9930
9931        ctx->flags &= ~IORING_SETUP_R_DISABLED;
9932        if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
9933                wake_up(&ctx->sq_data->wait);
9934        return 0;
9935}
9936
9937static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
9938                                     struct io_uring_rsrc_update2 *up,
9939                                     unsigned nr_args)
9940{
9941        __u32 tmp;
9942        int err;
9943
9944        if (up->resv)
9945                return -EINVAL;
9946        if (check_add_overflow(up->offset, nr_args, &tmp))
9947                return -EOVERFLOW;
9948        err = io_rsrc_node_switch_start(ctx);
9949        if (err)
9950                return err;
9951
9952        switch (type) {
9953        case IORING_RSRC_FILE:
9954                return __io_sqe_files_update(ctx, up, nr_args);
9955        case IORING_RSRC_BUFFER:
9956                return __io_sqe_buffers_update(ctx, up, nr_args);
9957        }
9958        return -EINVAL;
9959}
9960
9961static int io_register_files_update(struct io_ring_ctx *ctx, void __user *arg,
9962                                    unsigned nr_args)
9963{
9964        struct io_uring_rsrc_update2 up;
9965
9966        if (!nr_args)
9967                return -EINVAL;
9968        memset(&up, 0, sizeof(up));
9969        if (copy_from_user(&up, arg, sizeof(struct io_uring_rsrc_update)))
9970                return -EFAULT;
9971        return __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up, nr_args);
9972}
9973
9974static int io_register_rsrc_update(struct io_ring_ctx *ctx, void __user *arg,
9975                                   unsigned size, unsigned type)
9976{
9977        struct io_uring_rsrc_update2 up;
9978
9979        if (size != sizeof(up))
9980                return -EINVAL;
9981        if (copy_from_user(&up, arg, sizeof(up)))
9982                return -EFAULT;
9983        if (!up.nr || up.resv)
9984                return -EINVAL;
9985        return __io_register_rsrc_update(ctx, type, &up, up.nr);
9986}
9987
9988static int io_register_rsrc(struct io_ring_ctx *ctx, void __user *arg,
9989                            unsigned int size, unsigned int type)
9990{
9991        struct io_uring_rsrc_register rr;
9992
9993        /* keep it extendible */
9994        if (size != sizeof(rr))
9995                return -EINVAL;
9996
9997        memset(&rr, 0, sizeof(rr));
9998        if (copy_from_user(&rr, arg, size))
9999                return -EFAULT;
10000        if (!rr.nr || rr.resv || rr.resv2)
10001                return -EINVAL;
10002
10003        switch (type) {
10004        case IORING_RSRC_FILE:
10005                return io_sqe_files_register(ctx, u64_to_user_ptr(rr.data),
10006                                             rr.nr, u64_to_user_ptr(rr.tags));
10007        case IORING_RSRC_BUFFER:
10008                return io_sqe_buffers_register(ctx, u64_to_user_ptr(rr.data),
10009                                               rr.nr, u64_to_user_ptr(rr.tags));
10010        }
10011        return -EINVAL;
10012}
10013
10014static int io_register_iowq_aff(struct io_ring_ctx *ctx, void __user *arg,
10015                                unsigned len)
10016{
10017        struct io_uring_task *tctx = current->io_uring;
10018        cpumask_var_t new_mask;
10019        int ret;
10020
10021        if (!tctx || !tctx->io_wq)
10022                return -EINVAL;
10023
10024        if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
10025                return -ENOMEM;
10026
10027        cpumask_clear(new_mask);
10028        if (len > cpumask_size())
10029                len = cpumask_size();
10030
10031        if (copy_from_user(new_mask, arg, len)) {
10032                free_cpumask_var(new_mask);
10033                return -EFAULT;
10034        }
10035
10036        ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
10037        free_cpumask_var(new_mask);
10038        return ret;
10039}
10040
10041static int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
10042{
10043        struct io_uring_task *tctx = current->io_uring;
10044
10045        if (!tctx || !tctx->io_wq)
10046                return -EINVAL;
10047
10048        return io_wq_cpu_affinity(tctx->io_wq, NULL);
10049}
10050
10051static bool io_register_op_must_quiesce(int op)
10052{
10053        switch (op) {
10054        case IORING_REGISTER_BUFFERS:
10055        case IORING_UNREGISTER_BUFFERS:
10056        case IORING_REGISTER_FILES:
10057        case IORING_UNREGISTER_FILES:
10058        case IORING_REGISTER_FILES_UPDATE:
10059        case IORING_REGISTER_PROBE:
10060        case IORING_REGISTER_PERSONALITY:
10061        case IORING_UNREGISTER_PERSONALITY:
10062        case IORING_REGISTER_FILES2:
10063        case IORING_REGISTER_FILES_UPDATE2:
10064        case IORING_REGISTER_BUFFERS2:
10065        case IORING_REGISTER_BUFFERS_UPDATE:
10066        case IORING_REGISTER_IOWQ_AFF:
10067        case IORING_UNREGISTER_IOWQ_AFF:
10068                return false;
10069        default:
10070                return true;
10071        }
10072}
10073
10074static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
10075                               void __user *arg, unsigned nr_args)
10076        __releases(ctx->uring_lock)
10077        __acquires(ctx->uring_lock)
10078{
10079        int ret;
10080
10081        /*
10082         * We're inside the ring mutex, if the ref is already dying, then
10083         * someone else killed the ctx or is already going through
10084         * io_uring_register().
10085         */
10086        if (percpu_ref_is_dying(&ctx->refs))
10087                return -ENXIO;
10088
10089        if (ctx->restricted) {
10090                if (opcode >= IORING_REGISTER_LAST)
10091                        return -EINVAL;
10092                opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
10093                if (!test_bit(opcode, ctx->restrictions.register_op))
10094                        return -EACCES;
10095        }
10096
10097        if (io_register_op_must_quiesce(opcode)) {
10098                percpu_ref_kill(&ctx->refs);
10099
10100                /*
10101                 * Drop uring mutex before waiting for references to exit. If
10102                 * another thread is currently inside io_uring_enter() it might
10103                 * need to grab the uring_lock to make progress. If we hold it
10104                 * here across the drain wait, then we can deadlock. It's safe
10105                 * to drop the mutex here, since no new references will come in
10106                 * after we've killed the percpu ref.
10107                 */
10108                mutex_unlock(&ctx->uring_lock);
10109                do {
10110                        ret = wait_for_completion_interruptible(&ctx->ref_comp);
10111                        if (!ret)
10112                                break;
10113                        ret = io_run_task_work_sig();
10114                        if (ret < 0)
10115                                break;
10116                } while (1);
10117                mutex_lock(&ctx->uring_lock);
10118
10119                if (ret) {
10120                        io_refs_resurrect(&ctx->refs, &ctx->ref_comp);
10121                        return ret;
10122                }
10123        }
10124
10125        switch (opcode) {
10126        case IORING_REGISTER_BUFFERS:
10127                ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
10128                break;
10129        case IORING_UNREGISTER_BUFFERS:
10130                ret = -EINVAL;
10131                if (arg || nr_args)
10132                        break;
10133                ret = io_sqe_buffers_unregister(ctx);
10134                break;
10135        case IORING_REGISTER_FILES:
10136                ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
10137                break;
10138        case IORING_UNREGISTER_FILES:
10139                ret = -EINVAL;
10140                if (arg || nr_args)
10141                        break;
10142                ret = io_sqe_files_unregister(ctx);
10143                break;
10144        case IORING_REGISTER_FILES_UPDATE:
10145                ret = io_register_files_update(ctx, arg, nr_args);
10146                break;
10147        case IORING_REGISTER_EVENTFD:
10148        case IORING_REGISTER_EVENTFD_ASYNC:
10149                ret = -EINVAL;
10150                if (nr_args != 1)
10151                        break;
10152                ret = io_eventfd_register(ctx, arg);
10153                if (ret)
10154                        break;
10155                if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10156                        ctx->eventfd_async = 1;
10157                else
10158                        ctx->eventfd_async = 0;
10159                break;
10160        case IORING_UNREGISTER_EVENTFD:
10161                ret = -EINVAL;
10162                if (arg || nr_args)
10163                        break;
10164                ret = io_eventfd_unregister(ctx);
10165                break;
10166        case IORING_REGISTER_PROBE:
10167                ret = -EINVAL;
10168                if (!arg || nr_args > 256)
10169                        break;
10170                ret = io_probe(ctx, arg, nr_args);
10171                break;
10172        case IORING_REGISTER_PERSONALITY:
10173                ret = -EINVAL;
10174                if (arg || nr_args)
10175                        break;
10176                ret = io_register_personality(ctx);
10177                break;
10178        case IORING_UNREGISTER_PERSONALITY:
10179                ret = -EINVAL;
10180                if (arg)
10181                        break;
10182                ret = io_unregister_personality(ctx, nr_args);
10183                break;
10184        case IORING_REGISTER_ENABLE_RINGS:
10185                ret = -EINVAL;
10186                if (arg || nr_args)
10187                        break;
10188                ret = io_register_enable_rings(ctx);
10189                break;
10190        case IORING_REGISTER_RESTRICTIONS:
10191                ret = io_register_restrictions(ctx, arg, nr_args);
10192                break;
10193        case IORING_REGISTER_FILES2:
10194                ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
10195                break;
10196        case IORING_REGISTER_FILES_UPDATE2:
10197                ret = io_register_rsrc_update(ctx, arg, nr_args,
10198                                              IORING_RSRC_FILE);
10199                break;
10200        case IORING_REGISTER_BUFFERS2:
10201                ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
10202                break;
10203        case IORING_REGISTER_BUFFERS_UPDATE:
10204                ret = io_register_rsrc_update(ctx, arg, nr_args,
10205                                              IORING_RSRC_BUFFER);
10206                break;
10207        case IORING_REGISTER_IOWQ_AFF:
10208                ret = -EINVAL;
10209                if (!arg || !nr_args)
10210                        break;
10211                ret = io_register_iowq_aff(ctx, arg, nr_args);
10212                break;
10213        case IORING_UNREGISTER_IOWQ_AFF:
10214                ret = -EINVAL;
10215                if (arg || nr_args)
10216                        break;
10217                ret = io_unregister_iowq_aff(ctx);
10218                break;
10219        default:
10220                ret = -EINVAL;
10221                break;
10222        }
10223
10224        if (io_register_op_must_quiesce(opcode)) {
10225                /* bring the ctx back to life */
10226                percpu_ref_reinit(&ctx->refs);
10227                reinit_completion(&ctx->ref_comp);
10228        }
10229        return ret;
10230}
10231
10232SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
10233                void __user *, arg, unsigned int, nr_args)
10234{
10235        struct io_ring_ctx *ctx;
10236        long ret = -EBADF;
10237        struct fd f;
10238
10239        f = fdget(fd);
10240        if (!f.file)
10241                return -EBADF;
10242
10243        ret = -EOPNOTSUPP;
10244        if (f.file->f_op != &io_uring_fops)
10245                goto out_fput;
10246
10247        ctx = f.file->private_data;
10248
10249        io_run_task_work();
10250
10251        mutex_lock(&ctx->uring_lock);
10252        ret = __io_uring_register(ctx, opcode, arg, nr_args);
10253        mutex_unlock(&ctx->uring_lock);
10254        trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
10255                                                        ctx->cq_ev_fd != NULL, ret);
10256out_fput:
10257        fdput(f);
10258        return ret;
10259}
10260
10261static int __init io_uring_init(void)
10262{
10263#define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
10264        BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
10265        BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
10266} while (0)
10267
10268#define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
10269        __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
10270        BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
10271        BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
10272        BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
10273        BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
10274        BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
10275        BUILD_BUG_SQE_ELEM(8,  __u64,  off);
10276        BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
10277        BUILD_BUG_SQE_ELEM(16, __u64,  addr);
10278        BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
10279        BUILD_BUG_SQE_ELEM(24, __u32,  len);
10280        BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
10281        BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
10282        BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
10283        BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
10284        BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
10285        BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
10286        BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
10287        BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
10288        BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
10289        BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
10290        BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
10291        BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
10292        BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
10293        BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
10294        BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
10295        BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
10296        BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
10297        BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
10298        BUILD_BUG_SQE_ELEM(42, __u16,  personality);
10299        BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
10300
10301        BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
10302                     sizeof(struct io_uring_rsrc_update));
10303        BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
10304                     sizeof(struct io_uring_rsrc_update2));
10305        /* should fit into one byte */
10306        BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
10307
10308        BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
10309        BUILD_BUG_ON(__REQ_F_LAST_BIT >= 8 * sizeof(int));
10310
10311        req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
10312                                SLAB_ACCOUNT);
10313        return 0;
10314};
10315__initcall(io_uring_init);
10316