linux/fs/libfs.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *      fs/libfs.c
   4 *      Library for filesystems writers.
   5 */
   6
   7#include <linux/blkdev.h>
   8#include <linux/export.h>
   9#include <linux/pagemap.h>
  10#include <linux/slab.h>
  11#include <linux/cred.h>
  12#include <linux/mount.h>
  13#include <linux/vfs.h>
  14#include <linux/quotaops.h>
  15#include <linux/mutex.h>
  16#include <linux/namei.h>
  17#include <linux/exportfs.h>
  18#include <linux/writeback.h>
  19#include <linux/buffer_head.h> /* sync_mapping_buffers */
  20#include <linux/fs_context.h>
  21#include <linux/pseudo_fs.h>
  22#include <linux/fsnotify.h>
  23#include <linux/unicode.h>
  24#include <linux/fscrypt.h>
  25
  26#include <linux/uaccess.h>
  27
  28#include "internal.h"
  29
  30int simple_getattr(struct user_namespace *mnt_userns, const struct path *path,
  31                   struct kstat *stat, u32 request_mask,
  32                   unsigned int query_flags)
  33{
  34        struct inode *inode = d_inode(path->dentry);
  35        generic_fillattr(&init_user_ns, inode, stat);
  36        stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
  37        return 0;
  38}
  39EXPORT_SYMBOL(simple_getattr);
  40
  41int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
  42{
  43        buf->f_type = dentry->d_sb->s_magic;
  44        buf->f_bsize = PAGE_SIZE;
  45        buf->f_namelen = NAME_MAX;
  46        return 0;
  47}
  48EXPORT_SYMBOL(simple_statfs);
  49
  50/*
  51 * Retaining negative dentries for an in-memory filesystem just wastes
  52 * memory and lookup time: arrange for them to be deleted immediately.
  53 */
  54int always_delete_dentry(const struct dentry *dentry)
  55{
  56        return 1;
  57}
  58EXPORT_SYMBOL(always_delete_dentry);
  59
  60const struct dentry_operations simple_dentry_operations = {
  61        .d_delete = always_delete_dentry,
  62};
  63EXPORT_SYMBOL(simple_dentry_operations);
  64
  65/*
  66 * Lookup the data. This is trivial - if the dentry didn't already
  67 * exist, we know it is negative.  Set d_op to delete negative dentries.
  68 */
  69struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
  70{
  71        if (dentry->d_name.len > NAME_MAX)
  72                return ERR_PTR(-ENAMETOOLONG);
  73        if (!dentry->d_sb->s_d_op)
  74                d_set_d_op(dentry, &simple_dentry_operations);
  75        d_add(dentry, NULL);
  76        return NULL;
  77}
  78EXPORT_SYMBOL(simple_lookup);
  79
  80int dcache_dir_open(struct inode *inode, struct file *file)
  81{
  82        file->private_data = d_alloc_cursor(file->f_path.dentry);
  83
  84        return file->private_data ? 0 : -ENOMEM;
  85}
  86EXPORT_SYMBOL(dcache_dir_open);
  87
  88int dcache_dir_close(struct inode *inode, struct file *file)
  89{
  90        dput(file->private_data);
  91        return 0;
  92}
  93EXPORT_SYMBOL(dcache_dir_close);
  94
  95/* parent is locked at least shared */
  96/*
  97 * Returns an element of siblings' list.
  98 * We are looking for <count>th positive after <p>; if
  99 * found, dentry is grabbed and returned to caller.
 100 * If no such element exists, NULL is returned.
 101 */
 102static struct dentry *scan_positives(struct dentry *cursor,
 103                                        struct list_head *p,
 104                                        loff_t count,
 105                                        struct dentry *last)
 106{
 107        struct dentry *dentry = cursor->d_parent, *found = NULL;
 108
 109        spin_lock(&dentry->d_lock);
 110        while ((p = p->next) != &dentry->d_subdirs) {
 111                struct dentry *d = list_entry(p, struct dentry, d_child);
 112                // we must at least skip cursors, to avoid livelocks
 113                if (d->d_flags & DCACHE_DENTRY_CURSOR)
 114                        continue;
 115                if (simple_positive(d) && !--count) {
 116                        spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
 117                        if (simple_positive(d))
 118                                found = dget_dlock(d);
 119                        spin_unlock(&d->d_lock);
 120                        if (likely(found))
 121                                break;
 122                        count = 1;
 123                }
 124                if (need_resched()) {
 125                        list_move(&cursor->d_child, p);
 126                        p = &cursor->d_child;
 127                        spin_unlock(&dentry->d_lock);
 128                        cond_resched();
 129                        spin_lock(&dentry->d_lock);
 130                }
 131        }
 132        spin_unlock(&dentry->d_lock);
 133        dput(last);
 134        return found;
 135}
 136
 137loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
 138{
 139        struct dentry *dentry = file->f_path.dentry;
 140        switch (whence) {
 141                case 1:
 142                        offset += file->f_pos;
 143                        fallthrough;
 144                case 0:
 145                        if (offset >= 0)
 146                                break;
 147                        fallthrough;
 148                default:
 149                        return -EINVAL;
 150        }
 151        if (offset != file->f_pos) {
 152                struct dentry *cursor = file->private_data;
 153                struct dentry *to = NULL;
 154
 155                inode_lock_shared(dentry->d_inode);
 156
 157                if (offset > 2)
 158                        to = scan_positives(cursor, &dentry->d_subdirs,
 159                                            offset - 2, NULL);
 160                spin_lock(&dentry->d_lock);
 161                if (to)
 162                        list_move(&cursor->d_child, &to->d_child);
 163                else
 164                        list_del_init(&cursor->d_child);
 165                spin_unlock(&dentry->d_lock);
 166                dput(to);
 167
 168                file->f_pos = offset;
 169
 170                inode_unlock_shared(dentry->d_inode);
 171        }
 172        return offset;
 173}
 174EXPORT_SYMBOL(dcache_dir_lseek);
 175
 176/* Relationship between i_mode and the DT_xxx types */
 177static inline unsigned char dt_type(struct inode *inode)
 178{
 179        return (inode->i_mode >> 12) & 15;
 180}
 181
 182/*
 183 * Directory is locked and all positive dentries in it are safe, since
 184 * for ramfs-type trees they can't go away without unlink() or rmdir(),
 185 * both impossible due to the lock on directory.
 186 */
 187
 188int dcache_readdir(struct file *file, struct dir_context *ctx)
 189{
 190        struct dentry *dentry = file->f_path.dentry;
 191        struct dentry *cursor = file->private_data;
 192        struct list_head *anchor = &dentry->d_subdirs;
 193        struct dentry *next = NULL;
 194        struct list_head *p;
 195
 196        if (!dir_emit_dots(file, ctx))
 197                return 0;
 198
 199        if (ctx->pos == 2)
 200                p = anchor;
 201        else if (!list_empty(&cursor->d_child))
 202                p = &cursor->d_child;
 203        else
 204                return 0;
 205
 206        while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
 207                if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
 208                              d_inode(next)->i_ino, dt_type(d_inode(next))))
 209                        break;
 210                ctx->pos++;
 211                p = &next->d_child;
 212        }
 213        spin_lock(&dentry->d_lock);
 214        if (next)
 215                list_move_tail(&cursor->d_child, &next->d_child);
 216        else
 217                list_del_init(&cursor->d_child);
 218        spin_unlock(&dentry->d_lock);
 219        dput(next);
 220
 221        return 0;
 222}
 223EXPORT_SYMBOL(dcache_readdir);
 224
 225ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
 226{
 227        return -EISDIR;
 228}
 229EXPORT_SYMBOL(generic_read_dir);
 230
 231const struct file_operations simple_dir_operations = {
 232        .open           = dcache_dir_open,
 233        .release        = dcache_dir_close,
 234        .llseek         = dcache_dir_lseek,
 235        .read           = generic_read_dir,
 236        .iterate_shared = dcache_readdir,
 237        .fsync          = noop_fsync,
 238};
 239EXPORT_SYMBOL(simple_dir_operations);
 240
 241const struct inode_operations simple_dir_inode_operations = {
 242        .lookup         = simple_lookup,
 243};
 244EXPORT_SYMBOL(simple_dir_inode_operations);
 245
 246static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
 247{
 248        struct dentry *child = NULL;
 249        struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs;
 250
 251        spin_lock(&parent->d_lock);
 252        while ((p = p->next) != &parent->d_subdirs) {
 253                struct dentry *d = container_of(p, struct dentry, d_child);
 254                if (simple_positive(d)) {
 255                        spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
 256                        if (simple_positive(d))
 257                                child = dget_dlock(d);
 258                        spin_unlock(&d->d_lock);
 259                        if (likely(child))
 260                                break;
 261                }
 262        }
 263        spin_unlock(&parent->d_lock);
 264        dput(prev);
 265        return child;
 266}
 267
 268void simple_recursive_removal(struct dentry *dentry,
 269                              void (*callback)(struct dentry *))
 270{
 271        struct dentry *this = dget(dentry);
 272        while (true) {
 273                struct dentry *victim = NULL, *child;
 274                struct inode *inode = this->d_inode;
 275
 276                inode_lock(inode);
 277                if (d_is_dir(this))
 278                        inode->i_flags |= S_DEAD;
 279                while ((child = find_next_child(this, victim)) == NULL) {
 280                        // kill and ascend
 281                        // update metadata while it's still locked
 282                        inode->i_ctime = current_time(inode);
 283                        clear_nlink(inode);
 284                        inode_unlock(inode);
 285                        victim = this;
 286                        this = this->d_parent;
 287                        inode = this->d_inode;
 288                        inode_lock(inode);
 289                        if (simple_positive(victim)) {
 290                                d_invalidate(victim);   // avoid lost mounts
 291                                if (d_is_dir(victim))
 292                                        fsnotify_rmdir(inode, victim);
 293                                else
 294                                        fsnotify_unlink(inode, victim);
 295                                if (callback)
 296                                        callback(victim);
 297                                dput(victim);           // unpin it
 298                        }
 299                        if (victim == dentry) {
 300                                inode->i_ctime = inode->i_mtime =
 301                                        current_time(inode);
 302                                if (d_is_dir(dentry))
 303                                        drop_nlink(inode);
 304                                inode_unlock(inode);
 305                                dput(dentry);
 306                                return;
 307                        }
 308                }
 309                inode_unlock(inode);
 310                this = child;
 311        }
 312}
 313EXPORT_SYMBOL(simple_recursive_removal);
 314
 315static const struct super_operations simple_super_operations = {
 316        .statfs         = simple_statfs,
 317};
 318
 319static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
 320{
 321        struct pseudo_fs_context *ctx = fc->fs_private;
 322        struct inode *root;
 323
 324        s->s_maxbytes = MAX_LFS_FILESIZE;
 325        s->s_blocksize = PAGE_SIZE;
 326        s->s_blocksize_bits = PAGE_SHIFT;
 327        s->s_magic = ctx->magic;
 328        s->s_op = ctx->ops ?: &simple_super_operations;
 329        s->s_xattr = ctx->xattr;
 330        s->s_time_gran = 1;
 331        root = new_inode(s);
 332        if (!root)
 333                return -ENOMEM;
 334
 335        /*
 336         * since this is the first inode, make it number 1. New inodes created
 337         * after this must take care not to collide with it (by passing
 338         * max_reserved of 1 to iunique).
 339         */
 340        root->i_ino = 1;
 341        root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
 342        root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
 343        s->s_root = d_make_root(root);
 344        if (!s->s_root)
 345                return -ENOMEM;
 346        s->s_d_op = ctx->dops;
 347        return 0;
 348}
 349
 350static int pseudo_fs_get_tree(struct fs_context *fc)
 351{
 352        return get_tree_nodev(fc, pseudo_fs_fill_super);
 353}
 354
 355static void pseudo_fs_free(struct fs_context *fc)
 356{
 357        kfree(fc->fs_private);
 358}
 359
 360static const struct fs_context_operations pseudo_fs_context_ops = {
 361        .free           = pseudo_fs_free,
 362        .get_tree       = pseudo_fs_get_tree,
 363};
 364
 365/*
 366 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
 367 * will never be mountable)
 368 */
 369struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
 370                                        unsigned long magic)
 371{
 372        struct pseudo_fs_context *ctx;
 373
 374        ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
 375        if (likely(ctx)) {
 376                ctx->magic = magic;
 377                fc->fs_private = ctx;
 378                fc->ops = &pseudo_fs_context_ops;
 379                fc->sb_flags |= SB_NOUSER;
 380                fc->global = true;
 381        }
 382        return ctx;
 383}
 384EXPORT_SYMBOL(init_pseudo);
 385
 386int simple_open(struct inode *inode, struct file *file)
 387{
 388        if (inode->i_private)
 389                file->private_data = inode->i_private;
 390        return 0;
 391}
 392EXPORT_SYMBOL(simple_open);
 393
 394int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
 395{
 396        struct inode *inode = d_inode(old_dentry);
 397
 398        inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 399        inc_nlink(inode);
 400        ihold(inode);
 401        dget(dentry);
 402        d_instantiate(dentry, inode);
 403        return 0;
 404}
 405EXPORT_SYMBOL(simple_link);
 406
 407int simple_empty(struct dentry *dentry)
 408{
 409        struct dentry *child;
 410        int ret = 0;
 411
 412        spin_lock(&dentry->d_lock);
 413        list_for_each_entry(child, &dentry->d_subdirs, d_child) {
 414                spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
 415                if (simple_positive(child)) {
 416                        spin_unlock(&child->d_lock);
 417                        goto out;
 418                }
 419                spin_unlock(&child->d_lock);
 420        }
 421        ret = 1;
 422out:
 423        spin_unlock(&dentry->d_lock);
 424        return ret;
 425}
 426EXPORT_SYMBOL(simple_empty);
 427
 428int simple_unlink(struct inode *dir, struct dentry *dentry)
 429{
 430        struct inode *inode = d_inode(dentry);
 431
 432        inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 433        drop_nlink(inode);
 434        dput(dentry);
 435        return 0;
 436}
 437EXPORT_SYMBOL(simple_unlink);
 438
 439int simple_rmdir(struct inode *dir, struct dentry *dentry)
 440{
 441        if (!simple_empty(dentry))
 442                return -ENOTEMPTY;
 443
 444        drop_nlink(d_inode(dentry));
 445        simple_unlink(dir, dentry);
 446        drop_nlink(dir);
 447        return 0;
 448}
 449EXPORT_SYMBOL(simple_rmdir);
 450
 451int simple_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
 452                  struct dentry *old_dentry, struct inode *new_dir,
 453                  struct dentry *new_dentry, unsigned int flags)
 454{
 455        struct inode *inode = d_inode(old_dentry);
 456        int they_are_dirs = d_is_dir(old_dentry);
 457
 458        if (flags & ~RENAME_NOREPLACE)
 459                return -EINVAL;
 460
 461        if (!simple_empty(new_dentry))
 462                return -ENOTEMPTY;
 463
 464        if (d_really_is_positive(new_dentry)) {
 465                simple_unlink(new_dir, new_dentry);
 466                if (they_are_dirs) {
 467                        drop_nlink(d_inode(new_dentry));
 468                        drop_nlink(old_dir);
 469                }
 470        } else if (they_are_dirs) {
 471                drop_nlink(old_dir);
 472                inc_nlink(new_dir);
 473        }
 474
 475        old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
 476                new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
 477
 478        return 0;
 479}
 480EXPORT_SYMBOL(simple_rename);
 481
 482/**
 483 * simple_setattr - setattr for simple filesystem
 484 * @mnt_userns: user namespace of the target mount
 485 * @dentry: dentry
 486 * @iattr: iattr structure
 487 *
 488 * Returns 0 on success, -error on failure.
 489 *
 490 * simple_setattr is a simple ->setattr implementation without a proper
 491 * implementation of size changes.
 492 *
 493 * It can either be used for in-memory filesystems or special files
 494 * on simple regular filesystems.  Anything that needs to change on-disk
 495 * or wire state on size changes needs its own setattr method.
 496 */
 497int simple_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
 498                   struct iattr *iattr)
 499{
 500        struct inode *inode = d_inode(dentry);
 501        int error;
 502
 503        error = setattr_prepare(mnt_userns, dentry, iattr);
 504        if (error)
 505                return error;
 506
 507        if (iattr->ia_valid & ATTR_SIZE)
 508                truncate_setsize(inode, iattr->ia_size);
 509        setattr_copy(mnt_userns, inode, iattr);
 510        mark_inode_dirty(inode);
 511        return 0;
 512}
 513EXPORT_SYMBOL(simple_setattr);
 514
 515static int simple_readpage(struct file *file, struct page *page)
 516{
 517        clear_highpage(page);
 518        flush_dcache_page(page);
 519        SetPageUptodate(page);
 520        unlock_page(page);
 521        return 0;
 522}
 523
 524int simple_write_begin(struct file *file, struct address_space *mapping,
 525                        loff_t pos, unsigned len, unsigned flags,
 526                        struct page **pagep, void **fsdata)
 527{
 528        struct page *page;
 529        pgoff_t index;
 530
 531        index = pos >> PAGE_SHIFT;
 532
 533        page = grab_cache_page_write_begin(mapping, index, flags);
 534        if (!page)
 535                return -ENOMEM;
 536
 537        *pagep = page;
 538
 539        if (!PageUptodate(page) && (len != PAGE_SIZE)) {
 540                unsigned from = pos & (PAGE_SIZE - 1);
 541
 542                zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
 543        }
 544        return 0;
 545}
 546EXPORT_SYMBOL(simple_write_begin);
 547
 548/**
 549 * simple_write_end - .write_end helper for non-block-device FSes
 550 * @file: See .write_end of address_space_operations
 551 * @mapping:            "
 552 * @pos:                "
 553 * @len:                "
 554 * @copied:             "
 555 * @page:               "
 556 * @fsdata:             "
 557 *
 558 * simple_write_end does the minimum needed for updating a page after writing is
 559 * done. It has the same API signature as the .write_end of
 560 * address_space_operations vector. So it can just be set onto .write_end for
 561 * FSes that don't need any other processing. i_mutex is assumed to be held.
 562 * Block based filesystems should use generic_write_end().
 563 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
 564 * is not called, so a filesystem that actually does store data in .write_inode
 565 * should extend on what's done here with a call to mark_inode_dirty() in the
 566 * case that i_size has changed.
 567 *
 568 * Use *ONLY* with simple_readpage()
 569 */
 570static int simple_write_end(struct file *file, struct address_space *mapping,
 571                        loff_t pos, unsigned len, unsigned copied,
 572                        struct page *page, void *fsdata)
 573{
 574        struct inode *inode = page->mapping->host;
 575        loff_t last_pos = pos + copied;
 576
 577        /* zero the stale part of the page if we did a short copy */
 578        if (!PageUptodate(page)) {
 579                if (copied < len) {
 580                        unsigned from = pos & (PAGE_SIZE - 1);
 581
 582                        zero_user(page, from + copied, len - copied);
 583                }
 584                SetPageUptodate(page);
 585        }
 586        /*
 587         * No need to use i_size_read() here, the i_size
 588         * cannot change under us because we hold the i_mutex.
 589         */
 590        if (last_pos > inode->i_size)
 591                i_size_write(inode, last_pos);
 592
 593        set_page_dirty(page);
 594        unlock_page(page);
 595        put_page(page);
 596
 597        return copied;
 598}
 599
 600/*
 601 * Provides ramfs-style behavior: data in the pagecache, but no writeback.
 602 */
 603const struct address_space_operations ram_aops = {
 604        .readpage       = simple_readpage,
 605        .write_begin    = simple_write_begin,
 606        .write_end      = simple_write_end,
 607        .set_page_dirty = __set_page_dirty_no_writeback,
 608};
 609EXPORT_SYMBOL(ram_aops);
 610
 611/*
 612 * the inodes created here are not hashed. If you use iunique to generate
 613 * unique inode values later for this filesystem, then you must take care
 614 * to pass it an appropriate max_reserved value to avoid collisions.
 615 */
 616int simple_fill_super(struct super_block *s, unsigned long magic,
 617                      const struct tree_descr *files)
 618{
 619        struct inode *inode;
 620        struct dentry *root;
 621        struct dentry *dentry;
 622        int i;
 623
 624        s->s_blocksize = PAGE_SIZE;
 625        s->s_blocksize_bits = PAGE_SHIFT;
 626        s->s_magic = magic;
 627        s->s_op = &simple_super_operations;
 628        s->s_time_gran = 1;
 629
 630        inode = new_inode(s);
 631        if (!inode)
 632                return -ENOMEM;
 633        /*
 634         * because the root inode is 1, the files array must not contain an
 635         * entry at index 1
 636         */
 637        inode->i_ino = 1;
 638        inode->i_mode = S_IFDIR | 0755;
 639        inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 640        inode->i_op = &simple_dir_inode_operations;
 641        inode->i_fop = &simple_dir_operations;
 642        set_nlink(inode, 2);
 643        root = d_make_root(inode);
 644        if (!root)
 645                return -ENOMEM;
 646        for (i = 0; !files->name || files->name[0]; i++, files++) {
 647                if (!files->name)
 648                        continue;
 649
 650                /* warn if it tries to conflict with the root inode */
 651                if (unlikely(i == 1))
 652                        printk(KERN_WARNING "%s: %s passed in a files array"
 653                                "with an index of 1!\n", __func__,
 654                                s->s_type->name);
 655
 656                dentry = d_alloc_name(root, files->name);
 657                if (!dentry)
 658                        goto out;
 659                inode = new_inode(s);
 660                if (!inode) {
 661                        dput(dentry);
 662                        goto out;
 663                }
 664                inode->i_mode = S_IFREG | files->mode;
 665                inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
 666                inode->i_fop = files->ops;
 667                inode->i_ino = i;
 668                d_add(dentry, inode);
 669        }
 670        s->s_root = root;
 671        return 0;
 672out:
 673        d_genocide(root);
 674        shrink_dcache_parent(root);
 675        dput(root);
 676        return -ENOMEM;
 677}
 678EXPORT_SYMBOL(simple_fill_super);
 679
 680static DEFINE_SPINLOCK(pin_fs_lock);
 681
 682int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
 683{
 684        struct vfsmount *mnt = NULL;
 685        spin_lock(&pin_fs_lock);
 686        if (unlikely(!*mount)) {
 687                spin_unlock(&pin_fs_lock);
 688                mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
 689                if (IS_ERR(mnt))
 690                        return PTR_ERR(mnt);
 691                spin_lock(&pin_fs_lock);
 692                if (!*mount)
 693                        *mount = mnt;
 694        }
 695        mntget(*mount);
 696        ++*count;
 697        spin_unlock(&pin_fs_lock);
 698        mntput(mnt);
 699        return 0;
 700}
 701EXPORT_SYMBOL(simple_pin_fs);
 702
 703void simple_release_fs(struct vfsmount **mount, int *count)
 704{
 705        struct vfsmount *mnt;
 706        spin_lock(&pin_fs_lock);
 707        mnt = *mount;
 708        if (!--*count)
 709                *mount = NULL;
 710        spin_unlock(&pin_fs_lock);
 711        mntput(mnt);
 712}
 713EXPORT_SYMBOL(simple_release_fs);
 714
 715/**
 716 * simple_read_from_buffer - copy data from the buffer to user space
 717 * @to: the user space buffer to read to
 718 * @count: the maximum number of bytes to read
 719 * @ppos: the current position in the buffer
 720 * @from: the buffer to read from
 721 * @available: the size of the buffer
 722 *
 723 * The simple_read_from_buffer() function reads up to @count bytes from the
 724 * buffer @from at offset @ppos into the user space address starting at @to.
 725 *
 726 * On success, the number of bytes read is returned and the offset @ppos is
 727 * advanced by this number, or negative value is returned on error.
 728 **/
 729ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
 730                                const void *from, size_t available)
 731{
 732        loff_t pos = *ppos;
 733        size_t ret;
 734
 735        if (pos < 0)
 736                return -EINVAL;
 737        if (pos >= available || !count)
 738                return 0;
 739        if (count > available - pos)
 740                count = available - pos;
 741        ret = copy_to_user(to, from + pos, count);
 742        if (ret == count)
 743                return -EFAULT;
 744        count -= ret;
 745        *ppos = pos + count;
 746        return count;
 747}
 748EXPORT_SYMBOL(simple_read_from_buffer);
 749
 750/**
 751 * simple_write_to_buffer - copy data from user space to the buffer
 752 * @to: the buffer to write to
 753 * @available: the size of the buffer
 754 * @ppos: the current position in the buffer
 755 * @from: the user space buffer to read from
 756 * @count: the maximum number of bytes to read
 757 *
 758 * The simple_write_to_buffer() function reads up to @count bytes from the user
 759 * space address starting at @from into the buffer @to at offset @ppos.
 760 *
 761 * On success, the number of bytes written is returned and the offset @ppos is
 762 * advanced by this number, or negative value is returned on error.
 763 **/
 764ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
 765                const void __user *from, size_t count)
 766{
 767        loff_t pos = *ppos;
 768        size_t res;
 769
 770        if (pos < 0)
 771                return -EINVAL;
 772        if (pos >= available || !count)
 773                return 0;
 774        if (count > available - pos)
 775                count = available - pos;
 776        res = copy_from_user(to + pos, from, count);
 777        if (res == count)
 778                return -EFAULT;
 779        count -= res;
 780        *ppos = pos + count;
 781        return count;
 782}
 783EXPORT_SYMBOL(simple_write_to_buffer);
 784
 785/**
 786 * memory_read_from_buffer - copy data from the buffer
 787 * @to: the kernel space buffer to read to
 788 * @count: the maximum number of bytes to read
 789 * @ppos: the current position in the buffer
 790 * @from: the buffer to read from
 791 * @available: the size of the buffer
 792 *
 793 * The memory_read_from_buffer() function reads up to @count bytes from the
 794 * buffer @from at offset @ppos into the kernel space address starting at @to.
 795 *
 796 * On success, the number of bytes read is returned and the offset @ppos is
 797 * advanced by this number, or negative value is returned on error.
 798 **/
 799ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
 800                                const void *from, size_t available)
 801{
 802        loff_t pos = *ppos;
 803
 804        if (pos < 0)
 805                return -EINVAL;
 806        if (pos >= available)
 807                return 0;
 808        if (count > available - pos)
 809                count = available - pos;
 810        memcpy(to, from + pos, count);
 811        *ppos = pos + count;
 812
 813        return count;
 814}
 815EXPORT_SYMBOL(memory_read_from_buffer);
 816
 817/*
 818 * Transaction based IO.
 819 * The file expects a single write which triggers the transaction, and then
 820 * possibly a read which collects the result - which is stored in a
 821 * file-local buffer.
 822 */
 823
 824void simple_transaction_set(struct file *file, size_t n)
 825{
 826        struct simple_transaction_argresp *ar = file->private_data;
 827
 828        BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
 829
 830        /*
 831         * The barrier ensures that ar->size will really remain zero until
 832         * ar->data is ready for reading.
 833         */
 834        smp_mb();
 835        ar->size = n;
 836}
 837EXPORT_SYMBOL(simple_transaction_set);
 838
 839char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
 840{
 841        struct simple_transaction_argresp *ar;
 842        static DEFINE_SPINLOCK(simple_transaction_lock);
 843
 844        if (size > SIMPLE_TRANSACTION_LIMIT - 1)
 845                return ERR_PTR(-EFBIG);
 846
 847        ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
 848        if (!ar)
 849                return ERR_PTR(-ENOMEM);
 850
 851        spin_lock(&simple_transaction_lock);
 852
 853        /* only one write allowed per open */
 854        if (file->private_data) {
 855                spin_unlock(&simple_transaction_lock);
 856                free_page((unsigned long)ar);
 857                return ERR_PTR(-EBUSY);
 858        }
 859
 860        file->private_data = ar;
 861
 862        spin_unlock(&simple_transaction_lock);
 863
 864        if (copy_from_user(ar->data, buf, size))
 865                return ERR_PTR(-EFAULT);
 866
 867        return ar->data;
 868}
 869EXPORT_SYMBOL(simple_transaction_get);
 870
 871ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
 872{
 873        struct simple_transaction_argresp *ar = file->private_data;
 874
 875        if (!ar)
 876                return 0;
 877        return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
 878}
 879EXPORT_SYMBOL(simple_transaction_read);
 880
 881int simple_transaction_release(struct inode *inode, struct file *file)
 882{
 883        free_page((unsigned long)file->private_data);
 884        return 0;
 885}
 886EXPORT_SYMBOL(simple_transaction_release);
 887
 888/* Simple attribute files */
 889
 890struct simple_attr {
 891        int (*get)(void *, u64 *);
 892        int (*set)(void *, u64);
 893        char get_buf[24];       /* enough to store a u64 and "\n\0" */
 894        char set_buf[24];
 895        void *data;
 896        const char *fmt;        /* format for read operation */
 897        struct mutex mutex;     /* protects access to these buffers */
 898};
 899
 900/* simple_attr_open is called by an actual attribute open file operation
 901 * to set the attribute specific access operations. */
 902int simple_attr_open(struct inode *inode, struct file *file,
 903                     int (*get)(void *, u64 *), int (*set)(void *, u64),
 904                     const char *fmt)
 905{
 906        struct simple_attr *attr;
 907
 908        attr = kzalloc(sizeof(*attr), GFP_KERNEL);
 909        if (!attr)
 910                return -ENOMEM;
 911
 912        attr->get = get;
 913        attr->set = set;
 914        attr->data = inode->i_private;
 915        attr->fmt = fmt;
 916        mutex_init(&attr->mutex);
 917
 918        file->private_data = attr;
 919
 920        return nonseekable_open(inode, file);
 921}
 922EXPORT_SYMBOL_GPL(simple_attr_open);
 923
 924int simple_attr_release(struct inode *inode, struct file *file)
 925{
 926        kfree(file->private_data);
 927        return 0;
 928}
 929EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only?  This?  Really? */
 930
 931/* read from the buffer that is filled with the get function */
 932ssize_t simple_attr_read(struct file *file, char __user *buf,
 933                         size_t len, loff_t *ppos)
 934{
 935        struct simple_attr *attr;
 936        size_t size;
 937        ssize_t ret;
 938
 939        attr = file->private_data;
 940
 941        if (!attr->get)
 942                return -EACCES;
 943
 944        ret = mutex_lock_interruptible(&attr->mutex);
 945        if (ret)
 946                return ret;
 947
 948        if (*ppos && attr->get_buf[0]) {
 949                /* continued read */
 950                size = strlen(attr->get_buf);
 951        } else {
 952                /* first read */
 953                u64 val;
 954                ret = attr->get(attr->data, &val);
 955                if (ret)
 956                        goto out;
 957
 958                size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
 959                                 attr->fmt, (unsigned long long)val);
 960        }
 961
 962        ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
 963out:
 964        mutex_unlock(&attr->mutex);
 965        return ret;
 966}
 967EXPORT_SYMBOL_GPL(simple_attr_read);
 968
 969/* interpret the buffer as a number to call the set function with */
 970ssize_t simple_attr_write(struct file *file, const char __user *buf,
 971                          size_t len, loff_t *ppos)
 972{
 973        struct simple_attr *attr;
 974        unsigned long long val;
 975        size_t size;
 976        ssize_t ret;
 977
 978        attr = file->private_data;
 979        if (!attr->set)
 980                return -EACCES;
 981
 982        ret = mutex_lock_interruptible(&attr->mutex);
 983        if (ret)
 984                return ret;
 985
 986        ret = -EFAULT;
 987        size = min(sizeof(attr->set_buf) - 1, len);
 988        if (copy_from_user(attr->set_buf, buf, size))
 989                goto out;
 990
 991        attr->set_buf[size] = '\0';
 992        ret = kstrtoull(attr->set_buf, 0, &val);
 993        if (ret)
 994                goto out;
 995        ret = attr->set(attr->data, val);
 996        if (ret == 0)
 997                ret = len; /* on success, claim we got the whole input */
 998out:
 999        mutex_unlock(&attr->mutex);
1000        return ret;
1001}
1002EXPORT_SYMBOL_GPL(simple_attr_write);
1003
1004/**
1005 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1006 * @sb:         filesystem to do the file handle conversion on
1007 * @fid:        file handle to convert
1008 * @fh_len:     length of the file handle in bytes
1009 * @fh_type:    type of file handle
1010 * @get_inode:  filesystem callback to retrieve inode
1011 *
1012 * This function decodes @fid as long as it has one of the well-known
1013 * Linux filehandle types and calls @get_inode on it to retrieve the
1014 * inode for the object specified in the file handle.
1015 */
1016struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1017                int fh_len, int fh_type, struct inode *(*get_inode)
1018                        (struct super_block *sb, u64 ino, u32 gen))
1019{
1020        struct inode *inode = NULL;
1021
1022        if (fh_len < 2)
1023                return NULL;
1024
1025        switch (fh_type) {
1026        case FILEID_INO32_GEN:
1027        case FILEID_INO32_GEN_PARENT:
1028                inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1029                break;
1030        }
1031
1032        return d_obtain_alias(inode);
1033}
1034EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1035
1036/**
1037 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1038 * @sb:         filesystem to do the file handle conversion on
1039 * @fid:        file handle to convert
1040 * @fh_len:     length of the file handle in bytes
1041 * @fh_type:    type of file handle
1042 * @get_inode:  filesystem callback to retrieve inode
1043 *
1044 * This function decodes @fid as long as it has one of the well-known
1045 * Linux filehandle types and calls @get_inode on it to retrieve the
1046 * inode for the _parent_ object specified in the file handle if it
1047 * is specified in the file handle, or NULL otherwise.
1048 */
1049struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1050                int fh_len, int fh_type, struct inode *(*get_inode)
1051                        (struct super_block *sb, u64 ino, u32 gen))
1052{
1053        struct inode *inode = NULL;
1054
1055        if (fh_len <= 2)
1056                return NULL;
1057
1058        switch (fh_type) {
1059        case FILEID_INO32_GEN_PARENT:
1060                inode = get_inode(sb, fid->i32.parent_ino,
1061                                  (fh_len > 3 ? fid->i32.parent_gen : 0));
1062                break;
1063        }
1064
1065        return d_obtain_alias(inode);
1066}
1067EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1068
1069/**
1070 * __generic_file_fsync - generic fsync implementation for simple filesystems
1071 *
1072 * @file:       file to synchronize
1073 * @start:      start offset in bytes
1074 * @end:        end offset in bytes (inclusive)
1075 * @datasync:   only synchronize essential metadata if true
1076 *
1077 * This is a generic implementation of the fsync method for simple
1078 * filesystems which track all non-inode metadata in the buffers list
1079 * hanging off the address_space structure.
1080 */
1081int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1082                                 int datasync)
1083{
1084        struct inode *inode = file->f_mapping->host;
1085        int err;
1086        int ret;
1087
1088        err = file_write_and_wait_range(file, start, end);
1089        if (err)
1090                return err;
1091
1092        inode_lock(inode);
1093        ret = sync_mapping_buffers(inode->i_mapping);
1094        if (!(inode->i_state & I_DIRTY_ALL))
1095                goto out;
1096        if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1097                goto out;
1098
1099        err = sync_inode_metadata(inode, 1);
1100        if (ret == 0)
1101                ret = err;
1102
1103out:
1104        inode_unlock(inode);
1105        /* check and advance again to catch errors after syncing out buffers */
1106        err = file_check_and_advance_wb_err(file);
1107        if (ret == 0)
1108                ret = err;
1109        return ret;
1110}
1111EXPORT_SYMBOL(__generic_file_fsync);
1112
1113/**
1114 * generic_file_fsync - generic fsync implementation for simple filesystems
1115 *                      with flush
1116 * @file:       file to synchronize
1117 * @start:      start offset in bytes
1118 * @end:        end offset in bytes (inclusive)
1119 * @datasync:   only synchronize essential metadata if true
1120 *
1121 */
1122
1123int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1124                       int datasync)
1125{
1126        struct inode *inode = file->f_mapping->host;
1127        int err;
1128
1129        err = __generic_file_fsync(file, start, end, datasync);
1130        if (err)
1131                return err;
1132        return blkdev_issue_flush(inode->i_sb->s_bdev);
1133}
1134EXPORT_SYMBOL(generic_file_fsync);
1135
1136/**
1137 * generic_check_addressable - Check addressability of file system
1138 * @blocksize_bits:     log of file system block size
1139 * @num_blocks:         number of blocks in file system
1140 *
1141 * Determine whether a file system with @num_blocks blocks (and a
1142 * block size of 2**@blocksize_bits) is addressable by the sector_t
1143 * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1144 */
1145int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1146{
1147        u64 last_fs_block = num_blocks - 1;
1148        u64 last_fs_page =
1149                last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1150
1151        if (unlikely(num_blocks == 0))
1152                return 0;
1153
1154        if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1155                return -EINVAL;
1156
1157        if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1158            (last_fs_page > (pgoff_t)(~0ULL))) {
1159                return -EFBIG;
1160        }
1161        return 0;
1162}
1163EXPORT_SYMBOL(generic_check_addressable);
1164
1165/*
1166 * No-op implementation of ->fsync for in-memory filesystems.
1167 */
1168int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1169{
1170        return 0;
1171}
1172EXPORT_SYMBOL(noop_fsync);
1173
1174void noop_invalidatepage(struct page *page, unsigned int offset,
1175                unsigned int length)
1176{
1177        /*
1178         * There is no page cache to invalidate in the dax case, however
1179         * we need this callback defined to prevent falling back to
1180         * block_invalidatepage() in do_invalidatepage().
1181         */
1182}
1183EXPORT_SYMBOL_GPL(noop_invalidatepage);
1184
1185ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1186{
1187        /*
1188         * iomap based filesystems support direct I/O without need for
1189         * this callback. However, it still needs to be set in
1190         * inode->a_ops so that open/fcntl know that direct I/O is
1191         * generally supported.
1192         */
1193        return -EINVAL;
1194}
1195EXPORT_SYMBOL_GPL(noop_direct_IO);
1196
1197/* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1198void kfree_link(void *p)
1199{
1200        kfree(p);
1201}
1202EXPORT_SYMBOL(kfree_link);
1203
1204struct inode *alloc_anon_inode(struct super_block *s)
1205{
1206        static const struct address_space_operations anon_aops = {
1207                .set_page_dirty = __set_page_dirty_no_writeback,
1208        };
1209        struct inode *inode = new_inode_pseudo(s);
1210
1211        if (!inode)
1212                return ERR_PTR(-ENOMEM);
1213
1214        inode->i_ino = get_next_ino();
1215        inode->i_mapping->a_ops = &anon_aops;
1216
1217        /*
1218         * Mark the inode dirty from the very beginning,
1219         * that way it will never be moved to the dirty
1220         * list because mark_inode_dirty() will think
1221         * that it already _is_ on the dirty list.
1222         */
1223        inode->i_state = I_DIRTY;
1224        inode->i_mode = S_IRUSR | S_IWUSR;
1225        inode->i_uid = current_fsuid();
1226        inode->i_gid = current_fsgid();
1227        inode->i_flags |= S_PRIVATE;
1228        inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1229        return inode;
1230}
1231EXPORT_SYMBOL(alloc_anon_inode);
1232
1233/**
1234 * simple_nosetlease - generic helper for prohibiting leases
1235 * @filp: file pointer
1236 * @arg: type of lease to obtain
1237 * @flp: new lease supplied for insertion
1238 * @priv: private data for lm_setup operation
1239 *
1240 * Generic helper for filesystems that do not wish to allow leases to be set.
1241 * All arguments are ignored and it just returns -EINVAL.
1242 */
1243int
1244simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1245                  void **priv)
1246{
1247        return -EINVAL;
1248}
1249EXPORT_SYMBOL(simple_nosetlease);
1250
1251/**
1252 * simple_get_link - generic helper to get the target of "fast" symlinks
1253 * @dentry: not used here
1254 * @inode: the symlink inode
1255 * @done: not used here
1256 *
1257 * Generic helper for filesystems to use for symlink inodes where a pointer to
1258 * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1259 * since as an optimization the path lookup code uses any non-NULL ->i_link
1260 * directly, without calling ->get_link().  But ->get_link() still must be set,
1261 * to mark the inode_operations as being for a symlink.
1262 *
1263 * Return: the symlink target
1264 */
1265const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1266                            struct delayed_call *done)
1267{
1268        return inode->i_link;
1269}
1270EXPORT_SYMBOL(simple_get_link);
1271
1272const struct inode_operations simple_symlink_inode_operations = {
1273        .get_link = simple_get_link,
1274};
1275EXPORT_SYMBOL(simple_symlink_inode_operations);
1276
1277/*
1278 * Operations for a permanently empty directory.
1279 */
1280static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1281{
1282        return ERR_PTR(-ENOENT);
1283}
1284
1285static int empty_dir_getattr(struct user_namespace *mnt_userns,
1286                             const struct path *path, struct kstat *stat,
1287                             u32 request_mask, unsigned int query_flags)
1288{
1289        struct inode *inode = d_inode(path->dentry);
1290        generic_fillattr(&init_user_ns, inode, stat);
1291        return 0;
1292}
1293
1294static int empty_dir_setattr(struct user_namespace *mnt_userns,
1295                             struct dentry *dentry, struct iattr *attr)
1296{
1297        return -EPERM;
1298}
1299
1300static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1301{
1302        return -EOPNOTSUPP;
1303}
1304
1305static const struct inode_operations empty_dir_inode_operations = {
1306        .lookup         = empty_dir_lookup,
1307        .permission     = generic_permission,
1308        .setattr        = empty_dir_setattr,
1309        .getattr        = empty_dir_getattr,
1310        .listxattr      = empty_dir_listxattr,
1311};
1312
1313static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1314{
1315        /* An empty directory has two entries . and .. at offsets 0 and 1 */
1316        return generic_file_llseek_size(file, offset, whence, 2, 2);
1317}
1318
1319static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1320{
1321        dir_emit_dots(file, ctx);
1322        return 0;
1323}
1324
1325static const struct file_operations empty_dir_operations = {
1326        .llseek         = empty_dir_llseek,
1327        .read           = generic_read_dir,
1328        .iterate_shared = empty_dir_readdir,
1329        .fsync          = noop_fsync,
1330};
1331
1332
1333void make_empty_dir_inode(struct inode *inode)
1334{
1335        set_nlink(inode, 2);
1336        inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1337        inode->i_uid = GLOBAL_ROOT_UID;
1338        inode->i_gid = GLOBAL_ROOT_GID;
1339        inode->i_rdev = 0;
1340        inode->i_size = 0;
1341        inode->i_blkbits = PAGE_SHIFT;
1342        inode->i_blocks = 0;
1343
1344        inode->i_op = &empty_dir_inode_operations;
1345        inode->i_opflags &= ~IOP_XATTR;
1346        inode->i_fop = &empty_dir_operations;
1347}
1348
1349bool is_empty_dir_inode(struct inode *inode)
1350{
1351        return (inode->i_fop == &empty_dir_operations) &&
1352                (inode->i_op == &empty_dir_inode_operations);
1353}
1354
1355#ifdef CONFIG_UNICODE
1356/*
1357 * Determine if the name of a dentry should be casefolded.
1358 *
1359 * Return: if names will need casefolding
1360 */
1361static bool needs_casefold(const struct inode *dir)
1362{
1363        return IS_CASEFOLDED(dir) && dir->i_sb->s_encoding;
1364}
1365
1366/**
1367 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1368 * @dentry:     dentry whose name we are checking against
1369 * @len:        len of name of dentry
1370 * @str:        str pointer to name of dentry
1371 * @name:       Name to compare against
1372 *
1373 * Return: 0 if names match, 1 if mismatch, or -ERRNO
1374 */
1375static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1376                                const char *str, const struct qstr *name)
1377{
1378        const struct dentry *parent = READ_ONCE(dentry->d_parent);
1379        const struct inode *dir = READ_ONCE(parent->d_inode);
1380        const struct super_block *sb = dentry->d_sb;
1381        const struct unicode_map *um = sb->s_encoding;
1382        struct qstr qstr = QSTR_INIT(str, len);
1383        char strbuf[DNAME_INLINE_LEN];
1384        int ret;
1385
1386        if (!dir || !needs_casefold(dir))
1387                goto fallback;
1388        /*
1389         * If the dentry name is stored in-line, then it may be concurrently
1390         * modified by a rename.  If this happens, the VFS will eventually retry
1391         * the lookup, so it doesn't matter what ->d_compare() returns.
1392         * However, it's unsafe to call utf8_strncasecmp() with an unstable
1393         * string.  Therefore, we have to copy the name into a temporary buffer.
1394         */
1395        if (len <= DNAME_INLINE_LEN - 1) {
1396                memcpy(strbuf, str, len);
1397                strbuf[len] = 0;
1398                qstr.name = strbuf;
1399                /* prevent compiler from optimizing out the temporary buffer */
1400                barrier();
1401        }
1402        ret = utf8_strncasecmp(um, name, &qstr);
1403        if (ret >= 0)
1404                return ret;
1405
1406        if (sb_has_strict_encoding(sb))
1407                return -EINVAL;
1408fallback:
1409        if (len != name->len)
1410                return 1;
1411        return !!memcmp(str, name->name, len);
1412}
1413
1414/**
1415 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1416 * @dentry:     dentry of the parent directory
1417 * @str:        qstr of name whose hash we should fill in
1418 *
1419 * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1420 */
1421static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1422{
1423        const struct inode *dir = READ_ONCE(dentry->d_inode);
1424        struct super_block *sb = dentry->d_sb;
1425        const struct unicode_map *um = sb->s_encoding;
1426        int ret = 0;
1427
1428        if (!dir || !needs_casefold(dir))
1429                return 0;
1430
1431        ret = utf8_casefold_hash(um, dentry, str);
1432        if (ret < 0 && sb_has_strict_encoding(sb))
1433                return -EINVAL;
1434        return 0;
1435}
1436
1437static const struct dentry_operations generic_ci_dentry_ops = {
1438        .d_hash = generic_ci_d_hash,
1439        .d_compare = generic_ci_d_compare,
1440};
1441#endif
1442
1443#ifdef CONFIG_FS_ENCRYPTION
1444static const struct dentry_operations generic_encrypted_dentry_ops = {
1445        .d_revalidate = fscrypt_d_revalidate,
1446};
1447#endif
1448
1449#if defined(CONFIG_FS_ENCRYPTION) && defined(CONFIG_UNICODE)
1450static const struct dentry_operations generic_encrypted_ci_dentry_ops = {
1451        .d_hash = generic_ci_d_hash,
1452        .d_compare = generic_ci_d_compare,
1453        .d_revalidate = fscrypt_d_revalidate,
1454};
1455#endif
1456
1457/**
1458 * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry
1459 * @dentry:     dentry to set ops on
1460 *
1461 * Casefolded directories need d_hash and d_compare set, so that the dentries
1462 * contained in them are handled case-insensitively.  Note that these operations
1463 * are needed on the parent directory rather than on the dentries in it, and
1464 * while the casefolding flag can be toggled on and off on an empty directory,
1465 * dentry_operations can't be changed later.  As a result, if the filesystem has
1466 * casefolding support enabled at all, we have to give all dentries the
1467 * casefolding operations even if their inode doesn't have the casefolding flag
1468 * currently (and thus the casefolding ops would be no-ops for now).
1469 *
1470 * Encryption works differently in that the only dentry operation it needs is
1471 * d_revalidate, which it only needs on dentries that have the no-key name flag.
1472 * The no-key flag can't be set "later", so we don't have to worry about that.
1473 *
1474 * Finally, to maximize compatibility with overlayfs (which isn't compatible
1475 * with certain dentry operations) and to avoid taking an unnecessary
1476 * performance hit, we use custom dentry_operations for each possible
1477 * combination rather than always installing all operations.
1478 */
1479void generic_set_encrypted_ci_d_ops(struct dentry *dentry)
1480{
1481#ifdef CONFIG_FS_ENCRYPTION
1482        bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME;
1483#endif
1484#ifdef CONFIG_UNICODE
1485        bool needs_ci_ops = dentry->d_sb->s_encoding;
1486#endif
1487#if defined(CONFIG_FS_ENCRYPTION) && defined(CONFIG_UNICODE)
1488        if (needs_encrypt_ops && needs_ci_ops) {
1489                d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops);
1490                return;
1491        }
1492#endif
1493#ifdef CONFIG_FS_ENCRYPTION
1494        if (needs_encrypt_ops) {
1495                d_set_d_op(dentry, &generic_encrypted_dentry_ops);
1496                return;
1497        }
1498#endif
1499#ifdef CONFIG_UNICODE
1500        if (needs_ci_ops) {
1501                d_set_d_op(dentry, &generic_ci_dentry_ops);
1502                return;
1503        }
1504#endif
1505}
1506EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops);
1507