linux/fs/namei.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/namei.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8/*
   9 * Some corrections by tytso.
  10 */
  11
  12/* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
  13 * lookup logic.
  14 */
  15/* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
  16 */
  17
  18#include <linux/init.h>
  19#include <linux/export.h>
  20#include <linux/kernel.h>
  21#include <linux/slab.h>
  22#include <linux/fs.h>
  23#include <linux/namei.h>
  24#include <linux/pagemap.h>
  25#include <linux/fsnotify.h>
  26#include <linux/personality.h>
  27#include <linux/security.h>
  28#include <linux/ima.h>
  29#include <linux/syscalls.h>
  30#include <linux/mount.h>
  31#include <linux/audit.h>
  32#include <linux/capability.h>
  33#include <linux/file.h>
  34#include <linux/fcntl.h>
  35#include <linux/device_cgroup.h>
  36#include <linux/fs_struct.h>
  37#include <linux/posix_acl.h>
  38#include <linux/hash.h>
  39#include <linux/bitops.h>
  40#include <linux/init_task.h>
  41#include <linux/uaccess.h>
  42
  43#include "internal.h"
  44#include "mount.h"
  45
  46/* [Feb-1997 T. Schoebel-Theuer]
  47 * Fundamental changes in the pathname lookup mechanisms (namei)
  48 * were necessary because of omirr.  The reason is that omirr needs
  49 * to know the _real_ pathname, not the user-supplied one, in case
  50 * of symlinks (and also when transname replacements occur).
  51 *
  52 * The new code replaces the old recursive symlink resolution with
  53 * an iterative one (in case of non-nested symlink chains).  It does
  54 * this with calls to <fs>_follow_link().
  55 * As a side effect, dir_namei(), _namei() and follow_link() are now 
  56 * replaced with a single function lookup_dentry() that can handle all 
  57 * the special cases of the former code.
  58 *
  59 * With the new dcache, the pathname is stored at each inode, at least as
  60 * long as the refcount of the inode is positive.  As a side effect, the
  61 * size of the dcache depends on the inode cache and thus is dynamic.
  62 *
  63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
  64 * resolution to correspond with current state of the code.
  65 *
  66 * Note that the symlink resolution is not *completely* iterative.
  67 * There is still a significant amount of tail- and mid- recursion in
  68 * the algorithm.  Also, note that <fs>_readlink() is not used in
  69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
  70 * may return different results than <fs>_follow_link().  Many virtual
  71 * filesystems (including /proc) exhibit this behavior.
  72 */
  73
  74/* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
  75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
  76 * and the name already exists in form of a symlink, try to create the new
  77 * name indicated by the symlink. The old code always complained that the
  78 * name already exists, due to not following the symlink even if its target
  79 * is nonexistent.  The new semantics affects also mknod() and link() when
  80 * the name is a symlink pointing to a non-existent name.
  81 *
  82 * I don't know which semantics is the right one, since I have no access
  83 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
  84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
  85 * "old" one. Personally, I think the new semantics is much more logical.
  86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
  87 * file does succeed in both HP-UX and SunOs, but not in Solaris
  88 * and in the old Linux semantics.
  89 */
  90
  91/* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
  92 * semantics.  See the comments in "open_namei" and "do_link" below.
  93 *
  94 * [10-Sep-98 Alan Modra] Another symlink change.
  95 */
  96
  97/* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
  98 *      inside the path - always follow.
  99 *      in the last component in creation/removal/renaming - never follow.
 100 *      if LOOKUP_FOLLOW passed - follow.
 101 *      if the pathname has trailing slashes - follow.
 102 *      otherwise - don't follow.
 103 * (applied in that order).
 104 *
 105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
 106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
 107 * During the 2.4 we need to fix the userland stuff depending on it -
 108 * hopefully we will be able to get rid of that wart in 2.5. So far only
 109 * XEmacs seems to be relying on it...
 110 */
 111/*
 112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
 113 * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
 114 * any extra contention...
 115 */
 116
 117/* In order to reduce some races, while at the same time doing additional
 118 * checking and hopefully speeding things up, we copy filenames to the
 119 * kernel data space before using them..
 120 *
 121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
 122 * PATH_MAX includes the nul terminator --RR.
 123 */
 124
 125#define EMBEDDED_NAME_MAX       (PATH_MAX - offsetof(struct filename, iname))
 126
 127struct filename *
 128getname_flags(const char __user *filename, int flags, int *empty)
 129{
 130        struct filename *result;
 131        char *kname;
 132        int len;
 133
 134        result = audit_reusename(filename);
 135        if (result)
 136                return result;
 137
 138        result = __getname();
 139        if (unlikely(!result))
 140                return ERR_PTR(-ENOMEM);
 141
 142        /*
 143         * First, try to embed the struct filename inside the names_cache
 144         * allocation
 145         */
 146        kname = (char *)result->iname;
 147        result->name = kname;
 148
 149        len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
 150        if (unlikely(len < 0)) {
 151                __putname(result);
 152                return ERR_PTR(len);
 153        }
 154
 155        /*
 156         * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
 157         * separate struct filename so we can dedicate the entire
 158         * names_cache allocation for the pathname, and re-do the copy from
 159         * userland.
 160         */
 161        if (unlikely(len == EMBEDDED_NAME_MAX)) {
 162                const size_t size = offsetof(struct filename, iname[1]);
 163                kname = (char *)result;
 164
 165                /*
 166                 * size is chosen that way we to guarantee that
 167                 * result->iname[0] is within the same object and that
 168                 * kname can't be equal to result->iname, no matter what.
 169                 */
 170                result = kzalloc(size, GFP_KERNEL);
 171                if (unlikely(!result)) {
 172                        __putname(kname);
 173                        return ERR_PTR(-ENOMEM);
 174                }
 175                result->name = kname;
 176                len = strncpy_from_user(kname, filename, PATH_MAX);
 177                if (unlikely(len < 0)) {
 178                        __putname(kname);
 179                        kfree(result);
 180                        return ERR_PTR(len);
 181                }
 182                if (unlikely(len == PATH_MAX)) {
 183                        __putname(kname);
 184                        kfree(result);
 185                        return ERR_PTR(-ENAMETOOLONG);
 186                }
 187        }
 188
 189        result->refcnt = 1;
 190        /* The empty path is special. */
 191        if (unlikely(!len)) {
 192                if (empty)
 193                        *empty = 1;
 194                if (!(flags & LOOKUP_EMPTY)) {
 195                        putname(result);
 196                        return ERR_PTR(-ENOENT);
 197                }
 198        }
 199
 200        result->uptr = filename;
 201        result->aname = NULL;
 202        audit_getname(result);
 203        return result;
 204}
 205
 206struct filename *
 207getname(const char __user * filename)
 208{
 209        return getname_flags(filename, 0, NULL);
 210}
 211
 212struct filename *
 213getname_kernel(const char * filename)
 214{
 215        struct filename *result;
 216        int len = strlen(filename) + 1;
 217
 218        result = __getname();
 219        if (unlikely(!result))
 220                return ERR_PTR(-ENOMEM);
 221
 222        if (len <= EMBEDDED_NAME_MAX) {
 223                result->name = (char *)result->iname;
 224        } else if (len <= PATH_MAX) {
 225                const size_t size = offsetof(struct filename, iname[1]);
 226                struct filename *tmp;
 227
 228                tmp = kmalloc(size, GFP_KERNEL);
 229                if (unlikely(!tmp)) {
 230                        __putname(result);
 231                        return ERR_PTR(-ENOMEM);
 232                }
 233                tmp->name = (char *)result;
 234                result = tmp;
 235        } else {
 236                __putname(result);
 237                return ERR_PTR(-ENAMETOOLONG);
 238        }
 239        memcpy((char *)result->name, filename, len);
 240        result->uptr = NULL;
 241        result->aname = NULL;
 242        result->refcnt = 1;
 243        audit_getname(result);
 244
 245        return result;
 246}
 247
 248void putname(struct filename *name)
 249{
 250        BUG_ON(name->refcnt <= 0);
 251
 252        if (--name->refcnt > 0)
 253                return;
 254
 255        if (name->name != name->iname) {
 256                __putname(name->name);
 257                kfree(name);
 258        } else
 259                __putname(name);
 260}
 261
 262/**
 263 * check_acl - perform ACL permission checking
 264 * @mnt_userns: user namespace of the mount the inode was found from
 265 * @inode:      inode to check permissions on
 266 * @mask:       right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
 267 *
 268 * This function performs the ACL permission checking. Since this function
 269 * retrieve POSIX acls it needs to know whether it is called from a blocking or
 270 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
 271 *
 272 * If the inode has been found through an idmapped mount the user namespace of
 273 * the vfsmount must be passed through @mnt_userns. This function will then take
 274 * care to map the inode according to @mnt_userns before checking permissions.
 275 * On non-idmapped mounts or if permission checking is to be performed on the
 276 * raw inode simply passs init_user_ns.
 277 */
 278static int check_acl(struct user_namespace *mnt_userns,
 279                     struct inode *inode, int mask)
 280{
 281#ifdef CONFIG_FS_POSIX_ACL
 282        struct posix_acl *acl;
 283
 284        if (mask & MAY_NOT_BLOCK) {
 285                acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
 286                if (!acl)
 287                        return -EAGAIN;
 288                /* no ->get_acl() calls in RCU mode... */
 289                if (is_uncached_acl(acl))
 290                        return -ECHILD;
 291                return posix_acl_permission(mnt_userns, inode, acl, mask);
 292        }
 293
 294        acl = get_acl(inode, ACL_TYPE_ACCESS);
 295        if (IS_ERR(acl))
 296                return PTR_ERR(acl);
 297        if (acl) {
 298                int error = posix_acl_permission(mnt_userns, inode, acl, mask);
 299                posix_acl_release(acl);
 300                return error;
 301        }
 302#endif
 303
 304        return -EAGAIN;
 305}
 306
 307/**
 308 * acl_permission_check - perform basic UNIX permission checking
 309 * @mnt_userns: user namespace of the mount the inode was found from
 310 * @inode:      inode to check permissions on
 311 * @mask:       right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
 312 *
 313 * This function performs the basic UNIX permission checking. Since this
 314 * function may retrieve POSIX acls it needs to know whether it is called from a
 315 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
 316 *
 317 * If the inode has been found through an idmapped mount the user namespace of
 318 * the vfsmount must be passed through @mnt_userns. This function will then take
 319 * care to map the inode according to @mnt_userns before checking permissions.
 320 * On non-idmapped mounts or if permission checking is to be performed on the
 321 * raw inode simply passs init_user_ns.
 322 */
 323static int acl_permission_check(struct user_namespace *mnt_userns,
 324                                struct inode *inode, int mask)
 325{
 326        unsigned int mode = inode->i_mode;
 327        kuid_t i_uid;
 328
 329        /* Are we the owner? If so, ACL's don't matter */
 330        i_uid = i_uid_into_mnt(mnt_userns, inode);
 331        if (likely(uid_eq(current_fsuid(), i_uid))) {
 332                mask &= 7;
 333                mode >>= 6;
 334                return (mask & ~mode) ? -EACCES : 0;
 335        }
 336
 337        /* Do we have ACL's? */
 338        if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
 339                int error = check_acl(mnt_userns, inode, mask);
 340                if (error != -EAGAIN)
 341                        return error;
 342        }
 343
 344        /* Only RWX matters for group/other mode bits */
 345        mask &= 7;
 346
 347        /*
 348         * Are the group permissions different from
 349         * the other permissions in the bits we care
 350         * about? Need to check group ownership if so.
 351         */
 352        if (mask & (mode ^ (mode >> 3))) {
 353                kgid_t kgid = i_gid_into_mnt(mnt_userns, inode);
 354                if (in_group_p(kgid))
 355                        mode >>= 3;
 356        }
 357
 358        /* Bits in 'mode' clear that we require? */
 359        return (mask & ~mode) ? -EACCES : 0;
 360}
 361
 362/**
 363 * generic_permission -  check for access rights on a Posix-like filesystem
 364 * @mnt_userns: user namespace of the mount the inode was found from
 365 * @inode:      inode to check access rights for
 366 * @mask:       right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
 367 *              %MAY_NOT_BLOCK ...)
 368 *
 369 * Used to check for read/write/execute permissions on a file.
 370 * We use "fsuid" for this, letting us set arbitrary permissions
 371 * for filesystem access without changing the "normal" uids which
 372 * are used for other things.
 373 *
 374 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
 375 * request cannot be satisfied (eg. requires blocking or too much complexity).
 376 * It would then be called again in ref-walk mode.
 377 *
 378 * If the inode has been found through an idmapped mount the user namespace of
 379 * the vfsmount must be passed through @mnt_userns. This function will then take
 380 * care to map the inode according to @mnt_userns before checking permissions.
 381 * On non-idmapped mounts or if permission checking is to be performed on the
 382 * raw inode simply passs init_user_ns.
 383 */
 384int generic_permission(struct user_namespace *mnt_userns, struct inode *inode,
 385                       int mask)
 386{
 387        int ret;
 388
 389        /*
 390         * Do the basic permission checks.
 391         */
 392        ret = acl_permission_check(mnt_userns, inode, mask);
 393        if (ret != -EACCES)
 394                return ret;
 395
 396        if (S_ISDIR(inode->i_mode)) {
 397                /* DACs are overridable for directories */
 398                if (!(mask & MAY_WRITE))
 399                        if (capable_wrt_inode_uidgid(mnt_userns, inode,
 400                                                     CAP_DAC_READ_SEARCH))
 401                                return 0;
 402                if (capable_wrt_inode_uidgid(mnt_userns, inode,
 403                                             CAP_DAC_OVERRIDE))
 404                        return 0;
 405                return -EACCES;
 406        }
 407
 408        /*
 409         * Searching includes executable on directories, else just read.
 410         */
 411        mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
 412        if (mask == MAY_READ)
 413                if (capable_wrt_inode_uidgid(mnt_userns, inode,
 414                                             CAP_DAC_READ_SEARCH))
 415                        return 0;
 416        /*
 417         * Read/write DACs are always overridable.
 418         * Executable DACs are overridable when there is
 419         * at least one exec bit set.
 420         */
 421        if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
 422                if (capable_wrt_inode_uidgid(mnt_userns, inode,
 423                                             CAP_DAC_OVERRIDE))
 424                        return 0;
 425
 426        return -EACCES;
 427}
 428EXPORT_SYMBOL(generic_permission);
 429
 430/**
 431 * do_inode_permission - UNIX permission checking
 432 * @mnt_userns: user namespace of the mount the inode was found from
 433 * @inode:      inode to check permissions on
 434 * @mask:       right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
 435 *
 436 * We _really_ want to just do "generic_permission()" without
 437 * even looking at the inode->i_op values. So we keep a cache
 438 * flag in inode->i_opflags, that says "this has not special
 439 * permission function, use the fast case".
 440 */
 441static inline int do_inode_permission(struct user_namespace *mnt_userns,
 442                                      struct inode *inode, int mask)
 443{
 444        if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
 445                if (likely(inode->i_op->permission))
 446                        return inode->i_op->permission(mnt_userns, inode, mask);
 447
 448                /* This gets set once for the inode lifetime */
 449                spin_lock(&inode->i_lock);
 450                inode->i_opflags |= IOP_FASTPERM;
 451                spin_unlock(&inode->i_lock);
 452        }
 453        return generic_permission(mnt_userns, inode, mask);
 454}
 455
 456/**
 457 * sb_permission - Check superblock-level permissions
 458 * @sb: Superblock of inode to check permission on
 459 * @inode: Inode to check permission on
 460 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 461 *
 462 * Separate out file-system wide checks from inode-specific permission checks.
 463 */
 464static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
 465{
 466        if (unlikely(mask & MAY_WRITE)) {
 467                umode_t mode = inode->i_mode;
 468
 469                /* Nobody gets write access to a read-only fs. */
 470                if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
 471                        return -EROFS;
 472        }
 473        return 0;
 474}
 475
 476/**
 477 * inode_permission - Check for access rights to a given inode
 478 * @mnt_userns: User namespace of the mount the inode was found from
 479 * @inode:      Inode to check permission on
 480 * @mask:       Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 481 *
 482 * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
 483 * this, letting us set arbitrary permissions for filesystem access without
 484 * changing the "normal" UIDs which are used for other things.
 485 *
 486 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
 487 */
 488int inode_permission(struct user_namespace *mnt_userns,
 489                     struct inode *inode, int mask)
 490{
 491        int retval;
 492
 493        retval = sb_permission(inode->i_sb, inode, mask);
 494        if (retval)
 495                return retval;
 496
 497        if (unlikely(mask & MAY_WRITE)) {
 498                /*
 499                 * Nobody gets write access to an immutable file.
 500                 */
 501                if (IS_IMMUTABLE(inode))
 502                        return -EPERM;
 503
 504                /*
 505                 * Updating mtime will likely cause i_uid and i_gid to be
 506                 * written back improperly if their true value is unknown
 507                 * to the vfs.
 508                 */
 509                if (HAS_UNMAPPED_ID(mnt_userns, inode))
 510                        return -EACCES;
 511        }
 512
 513        retval = do_inode_permission(mnt_userns, inode, mask);
 514        if (retval)
 515                return retval;
 516
 517        retval = devcgroup_inode_permission(inode, mask);
 518        if (retval)
 519                return retval;
 520
 521        return security_inode_permission(inode, mask);
 522}
 523EXPORT_SYMBOL(inode_permission);
 524
 525/**
 526 * path_get - get a reference to a path
 527 * @path: path to get the reference to
 528 *
 529 * Given a path increment the reference count to the dentry and the vfsmount.
 530 */
 531void path_get(const struct path *path)
 532{
 533        mntget(path->mnt);
 534        dget(path->dentry);
 535}
 536EXPORT_SYMBOL(path_get);
 537
 538/**
 539 * path_put - put a reference to a path
 540 * @path: path to put the reference to
 541 *
 542 * Given a path decrement the reference count to the dentry and the vfsmount.
 543 */
 544void path_put(const struct path *path)
 545{
 546        dput(path->dentry);
 547        mntput(path->mnt);
 548}
 549EXPORT_SYMBOL(path_put);
 550
 551#define EMBEDDED_LEVELS 2
 552struct nameidata {
 553        struct path     path;
 554        struct qstr     last;
 555        struct path     root;
 556        struct inode    *inode; /* path.dentry.d_inode */
 557        unsigned int    flags, state;
 558        unsigned        seq, m_seq, r_seq;
 559        int             last_type;
 560        unsigned        depth;
 561        int             total_link_count;
 562        struct saved {
 563                struct path link;
 564                struct delayed_call done;
 565                const char *name;
 566                unsigned seq;
 567        } *stack, internal[EMBEDDED_LEVELS];
 568        struct filename *name;
 569        struct nameidata *saved;
 570        unsigned        root_seq;
 571        int             dfd;
 572        kuid_t          dir_uid;
 573        umode_t         dir_mode;
 574} __randomize_layout;
 575
 576#define ND_ROOT_PRESET 1
 577#define ND_ROOT_GRABBED 2
 578#define ND_JUMPED 4
 579
 580static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
 581{
 582        struct nameidata *old = current->nameidata;
 583        p->stack = p->internal;
 584        p->depth = 0;
 585        p->dfd = dfd;
 586        p->name = name;
 587        p->path.mnt = NULL;
 588        p->path.dentry = NULL;
 589        p->total_link_count = old ? old->total_link_count : 0;
 590        p->saved = old;
 591        current->nameidata = p;
 592}
 593
 594static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
 595                          const struct path *root)
 596{
 597        __set_nameidata(p, dfd, name);
 598        p->state = 0;
 599        if (unlikely(root)) {
 600                p->state = ND_ROOT_PRESET;
 601                p->root = *root;
 602        }
 603}
 604
 605static void restore_nameidata(void)
 606{
 607        struct nameidata *now = current->nameidata, *old = now->saved;
 608
 609        current->nameidata = old;
 610        if (old)
 611                old->total_link_count = now->total_link_count;
 612        if (now->stack != now->internal)
 613                kfree(now->stack);
 614}
 615
 616static bool nd_alloc_stack(struct nameidata *nd)
 617{
 618        struct saved *p;
 619
 620        p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
 621                         nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
 622        if (unlikely(!p))
 623                return false;
 624        memcpy(p, nd->internal, sizeof(nd->internal));
 625        nd->stack = p;
 626        return true;
 627}
 628
 629/**
 630 * path_connected - Verify that a dentry is below mnt.mnt_root
 631 *
 632 * Rename can sometimes move a file or directory outside of a bind
 633 * mount, path_connected allows those cases to be detected.
 634 */
 635static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
 636{
 637        struct super_block *sb = mnt->mnt_sb;
 638
 639        /* Bind mounts can have disconnected paths */
 640        if (mnt->mnt_root == sb->s_root)
 641                return true;
 642
 643        return is_subdir(dentry, mnt->mnt_root);
 644}
 645
 646static void drop_links(struct nameidata *nd)
 647{
 648        int i = nd->depth;
 649        while (i--) {
 650                struct saved *last = nd->stack + i;
 651                do_delayed_call(&last->done);
 652                clear_delayed_call(&last->done);
 653        }
 654}
 655
 656static void terminate_walk(struct nameidata *nd)
 657{
 658        drop_links(nd);
 659        if (!(nd->flags & LOOKUP_RCU)) {
 660                int i;
 661                path_put(&nd->path);
 662                for (i = 0; i < nd->depth; i++)
 663                        path_put(&nd->stack[i].link);
 664                if (nd->state & ND_ROOT_GRABBED) {
 665                        path_put(&nd->root);
 666                        nd->state &= ~ND_ROOT_GRABBED;
 667                }
 668        } else {
 669                nd->flags &= ~LOOKUP_RCU;
 670                rcu_read_unlock();
 671        }
 672        nd->depth = 0;
 673        nd->path.mnt = NULL;
 674        nd->path.dentry = NULL;
 675}
 676
 677/* path_put is needed afterwards regardless of success or failure */
 678static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
 679{
 680        int res = __legitimize_mnt(path->mnt, mseq);
 681        if (unlikely(res)) {
 682                if (res > 0)
 683                        path->mnt = NULL;
 684                path->dentry = NULL;
 685                return false;
 686        }
 687        if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
 688                path->dentry = NULL;
 689                return false;
 690        }
 691        return !read_seqcount_retry(&path->dentry->d_seq, seq);
 692}
 693
 694static inline bool legitimize_path(struct nameidata *nd,
 695                            struct path *path, unsigned seq)
 696{
 697        return __legitimize_path(path, seq, nd->m_seq);
 698}
 699
 700static bool legitimize_links(struct nameidata *nd)
 701{
 702        int i;
 703        if (unlikely(nd->flags & LOOKUP_CACHED)) {
 704                drop_links(nd);
 705                nd->depth = 0;
 706                return false;
 707        }
 708        for (i = 0; i < nd->depth; i++) {
 709                struct saved *last = nd->stack + i;
 710                if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
 711                        drop_links(nd);
 712                        nd->depth = i + 1;
 713                        return false;
 714                }
 715        }
 716        return true;
 717}
 718
 719static bool legitimize_root(struct nameidata *nd)
 720{
 721        /*
 722         * For scoped-lookups (where nd->root has been zeroed), we need to
 723         * restart the whole lookup from scratch -- because set_root() is wrong
 724         * for these lookups (nd->dfd is the root, not the filesystem root).
 725         */
 726        if (!nd->root.mnt && (nd->flags & LOOKUP_IS_SCOPED))
 727                return false;
 728        /* Nothing to do if nd->root is zero or is managed by the VFS user. */
 729        if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
 730                return true;
 731        nd->state |= ND_ROOT_GRABBED;
 732        return legitimize_path(nd, &nd->root, nd->root_seq);
 733}
 734
 735/*
 736 * Path walking has 2 modes, rcu-walk and ref-walk (see
 737 * Documentation/filesystems/path-lookup.txt).  In situations when we can't
 738 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
 739 * normal reference counts on dentries and vfsmounts to transition to ref-walk
 740 * mode.  Refcounts are grabbed at the last known good point before rcu-walk
 741 * got stuck, so ref-walk may continue from there. If this is not successful
 742 * (eg. a seqcount has changed), then failure is returned and it's up to caller
 743 * to restart the path walk from the beginning in ref-walk mode.
 744 */
 745
 746/**
 747 * try_to_unlazy - try to switch to ref-walk mode.
 748 * @nd: nameidata pathwalk data
 749 * Returns: true on success, false on failure
 750 *
 751 * try_to_unlazy attempts to legitimize the current nd->path and nd->root
 752 * for ref-walk mode.
 753 * Must be called from rcu-walk context.
 754 * Nothing should touch nameidata between try_to_unlazy() failure and
 755 * terminate_walk().
 756 */
 757static bool try_to_unlazy(struct nameidata *nd)
 758{
 759        struct dentry *parent = nd->path.dentry;
 760
 761        BUG_ON(!(nd->flags & LOOKUP_RCU));
 762
 763        nd->flags &= ~LOOKUP_RCU;
 764        if (unlikely(!legitimize_links(nd)))
 765                goto out1;
 766        if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
 767                goto out;
 768        if (unlikely(!legitimize_root(nd)))
 769                goto out;
 770        rcu_read_unlock();
 771        BUG_ON(nd->inode != parent->d_inode);
 772        return true;
 773
 774out1:
 775        nd->path.mnt = NULL;
 776        nd->path.dentry = NULL;
 777out:
 778        rcu_read_unlock();
 779        return false;
 780}
 781
 782/**
 783 * try_to_unlazy_next - try to switch to ref-walk mode.
 784 * @nd: nameidata pathwalk data
 785 * @dentry: next dentry to step into
 786 * @seq: seq number to check @dentry against
 787 * Returns: true on success, false on failure
 788 *
 789 * Similar to to try_to_unlazy(), but here we have the next dentry already
 790 * picked by rcu-walk and want to legitimize that in addition to the current
 791 * nd->path and nd->root for ref-walk mode.  Must be called from rcu-walk context.
 792 * Nothing should touch nameidata between try_to_unlazy_next() failure and
 793 * terminate_walk().
 794 */
 795static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry, unsigned seq)
 796{
 797        BUG_ON(!(nd->flags & LOOKUP_RCU));
 798
 799        nd->flags &= ~LOOKUP_RCU;
 800        if (unlikely(!legitimize_links(nd)))
 801                goto out2;
 802        if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
 803                goto out2;
 804        if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
 805                goto out1;
 806
 807        /*
 808         * We need to move both the parent and the dentry from the RCU domain
 809         * to be properly refcounted. And the sequence number in the dentry
 810         * validates *both* dentry counters, since we checked the sequence
 811         * number of the parent after we got the child sequence number. So we
 812         * know the parent must still be valid if the child sequence number is
 813         */
 814        if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
 815                goto out;
 816        if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
 817                goto out_dput;
 818        /*
 819         * Sequence counts matched. Now make sure that the root is
 820         * still valid and get it if required.
 821         */
 822        if (unlikely(!legitimize_root(nd)))
 823                goto out_dput;
 824        rcu_read_unlock();
 825        return true;
 826
 827out2:
 828        nd->path.mnt = NULL;
 829out1:
 830        nd->path.dentry = NULL;
 831out:
 832        rcu_read_unlock();
 833        return false;
 834out_dput:
 835        rcu_read_unlock();
 836        dput(dentry);
 837        return false;
 838}
 839
 840static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
 841{
 842        if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
 843                return dentry->d_op->d_revalidate(dentry, flags);
 844        else
 845                return 1;
 846}
 847
 848/**
 849 * complete_walk - successful completion of path walk
 850 * @nd:  pointer nameidata
 851 *
 852 * If we had been in RCU mode, drop out of it and legitimize nd->path.
 853 * Revalidate the final result, unless we'd already done that during
 854 * the path walk or the filesystem doesn't ask for it.  Return 0 on
 855 * success, -error on failure.  In case of failure caller does not
 856 * need to drop nd->path.
 857 */
 858static int complete_walk(struct nameidata *nd)
 859{
 860        struct dentry *dentry = nd->path.dentry;
 861        int status;
 862
 863        if (nd->flags & LOOKUP_RCU) {
 864                /*
 865                 * We don't want to zero nd->root for scoped-lookups or
 866                 * externally-managed nd->root.
 867                 */
 868                if (!(nd->state & ND_ROOT_PRESET))
 869                        if (!(nd->flags & LOOKUP_IS_SCOPED))
 870                                nd->root.mnt = NULL;
 871                nd->flags &= ~LOOKUP_CACHED;
 872                if (!try_to_unlazy(nd))
 873                        return -ECHILD;
 874        }
 875
 876        if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
 877                /*
 878                 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
 879                 * ever step outside the root during lookup" and should already
 880                 * be guaranteed by the rest of namei, we want to avoid a namei
 881                 * BUG resulting in userspace being given a path that was not
 882                 * scoped within the root at some point during the lookup.
 883                 *
 884                 * So, do a final sanity-check to make sure that in the
 885                 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
 886                 * we won't silently return an fd completely outside of the
 887                 * requested root to userspace.
 888                 *
 889                 * Userspace could move the path outside the root after this
 890                 * check, but as discussed elsewhere this is not a concern (the
 891                 * resolved file was inside the root at some point).
 892                 */
 893                if (!path_is_under(&nd->path, &nd->root))
 894                        return -EXDEV;
 895        }
 896
 897        if (likely(!(nd->state & ND_JUMPED)))
 898                return 0;
 899
 900        if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
 901                return 0;
 902
 903        status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
 904        if (status > 0)
 905                return 0;
 906
 907        if (!status)
 908                status = -ESTALE;
 909
 910        return status;
 911}
 912
 913static int set_root(struct nameidata *nd)
 914{
 915        struct fs_struct *fs = current->fs;
 916
 917        /*
 918         * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
 919         * still have to ensure it doesn't happen because it will cause a breakout
 920         * from the dirfd.
 921         */
 922        if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
 923                return -ENOTRECOVERABLE;
 924
 925        if (nd->flags & LOOKUP_RCU) {
 926                unsigned seq;
 927
 928                do {
 929                        seq = read_seqcount_begin(&fs->seq);
 930                        nd->root = fs->root;
 931                        nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
 932                } while (read_seqcount_retry(&fs->seq, seq));
 933        } else {
 934                get_fs_root(fs, &nd->root);
 935                nd->state |= ND_ROOT_GRABBED;
 936        }
 937        return 0;
 938}
 939
 940static int nd_jump_root(struct nameidata *nd)
 941{
 942        if (unlikely(nd->flags & LOOKUP_BENEATH))
 943                return -EXDEV;
 944        if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
 945                /* Absolute path arguments to path_init() are allowed. */
 946                if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
 947                        return -EXDEV;
 948        }
 949        if (!nd->root.mnt) {
 950                int error = set_root(nd);
 951                if (error)
 952                        return error;
 953        }
 954        if (nd->flags & LOOKUP_RCU) {
 955                struct dentry *d;
 956                nd->path = nd->root;
 957                d = nd->path.dentry;
 958                nd->inode = d->d_inode;
 959                nd->seq = nd->root_seq;
 960                if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
 961                        return -ECHILD;
 962        } else {
 963                path_put(&nd->path);
 964                nd->path = nd->root;
 965                path_get(&nd->path);
 966                nd->inode = nd->path.dentry->d_inode;
 967        }
 968        nd->state |= ND_JUMPED;
 969        return 0;
 970}
 971
 972/*
 973 * Helper to directly jump to a known parsed path from ->get_link,
 974 * caller must have taken a reference to path beforehand.
 975 */
 976int nd_jump_link(struct path *path)
 977{
 978        int error = -ELOOP;
 979        struct nameidata *nd = current->nameidata;
 980
 981        if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
 982                goto err;
 983
 984        error = -EXDEV;
 985        if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
 986                if (nd->path.mnt != path->mnt)
 987                        goto err;
 988        }
 989        /* Not currently safe for scoped-lookups. */
 990        if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
 991                goto err;
 992
 993        path_put(&nd->path);
 994        nd->path = *path;
 995        nd->inode = nd->path.dentry->d_inode;
 996        nd->state |= ND_JUMPED;
 997        return 0;
 998
 999err:
1000        path_put(path);
1001        return error;
1002}
1003
1004static inline void put_link(struct nameidata *nd)
1005{
1006        struct saved *last = nd->stack + --nd->depth;
1007        do_delayed_call(&last->done);
1008        if (!(nd->flags & LOOKUP_RCU))
1009                path_put(&last->link);
1010}
1011
1012int sysctl_protected_symlinks __read_mostly = 0;
1013int sysctl_protected_hardlinks __read_mostly = 0;
1014int sysctl_protected_fifos __read_mostly;
1015int sysctl_protected_regular __read_mostly;
1016
1017/**
1018 * may_follow_link - Check symlink following for unsafe situations
1019 * @nd: nameidata pathwalk data
1020 *
1021 * In the case of the sysctl_protected_symlinks sysctl being enabled,
1022 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1023 * in a sticky world-writable directory. This is to protect privileged
1024 * processes from failing races against path names that may change out
1025 * from under them by way of other users creating malicious symlinks.
1026 * It will permit symlinks to be followed only when outside a sticky
1027 * world-writable directory, or when the uid of the symlink and follower
1028 * match, or when the directory owner matches the symlink's owner.
1029 *
1030 * Returns 0 if following the symlink is allowed, -ve on error.
1031 */
1032static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1033{
1034        struct user_namespace *mnt_userns;
1035        kuid_t i_uid;
1036
1037        if (!sysctl_protected_symlinks)
1038                return 0;
1039
1040        mnt_userns = mnt_user_ns(nd->path.mnt);
1041        i_uid = i_uid_into_mnt(mnt_userns, inode);
1042        /* Allowed if owner and follower match. */
1043        if (uid_eq(current_cred()->fsuid, i_uid))
1044                return 0;
1045
1046        /* Allowed if parent directory not sticky and world-writable. */
1047        if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1048                return 0;
1049
1050        /* Allowed if parent directory and link owner match. */
1051        if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, i_uid))
1052                return 0;
1053
1054        if (nd->flags & LOOKUP_RCU)
1055                return -ECHILD;
1056
1057        audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1058        audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1059        return -EACCES;
1060}
1061
1062/**
1063 * safe_hardlink_source - Check for safe hardlink conditions
1064 * @mnt_userns: user namespace of the mount the inode was found from
1065 * @inode: the source inode to hardlink from
1066 *
1067 * Return false if at least one of the following conditions:
1068 *    - inode is not a regular file
1069 *    - inode is setuid
1070 *    - inode is setgid and group-exec
1071 *    - access failure for read and write
1072 *
1073 * Otherwise returns true.
1074 */
1075static bool safe_hardlink_source(struct user_namespace *mnt_userns,
1076                                 struct inode *inode)
1077{
1078        umode_t mode = inode->i_mode;
1079
1080        /* Special files should not get pinned to the filesystem. */
1081        if (!S_ISREG(mode))
1082                return false;
1083
1084        /* Setuid files should not get pinned to the filesystem. */
1085        if (mode & S_ISUID)
1086                return false;
1087
1088        /* Executable setgid files should not get pinned to the filesystem. */
1089        if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1090                return false;
1091
1092        /* Hardlinking to unreadable or unwritable sources is dangerous. */
1093        if (inode_permission(mnt_userns, inode, MAY_READ | MAY_WRITE))
1094                return false;
1095
1096        return true;
1097}
1098
1099/**
1100 * may_linkat - Check permissions for creating a hardlink
1101 * @mnt_userns: user namespace of the mount the inode was found from
1102 * @link: the source to hardlink from
1103 *
1104 * Block hardlink when all of:
1105 *  - sysctl_protected_hardlinks enabled
1106 *  - fsuid does not match inode
1107 *  - hardlink source is unsafe (see safe_hardlink_source() above)
1108 *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1109 *
1110 * If the inode has been found through an idmapped mount the user namespace of
1111 * the vfsmount must be passed through @mnt_userns. This function will then take
1112 * care to map the inode according to @mnt_userns before checking permissions.
1113 * On non-idmapped mounts or if permission checking is to be performed on the
1114 * raw inode simply passs init_user_ns.
1115 *
1116 * Returns 0 if successful, -ve on error.
1117 */
1118int may_linkat(struct user_namespace *mnt_userns, struct path *link)
1119{
1120        struct inode *inode = link->dentry->d_inode;
1121
1122        /* Inode writeback is not safe when the uid or gid are invalid. */
1123        if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) ||
1124            !gid_valid(i_gid_into_mnt(mnt_userns, inode)))
1125                return -EOVERFLOW;
1126
1127        if (!sysctl_protected_hardlinks)
1128                return 0;
1129
1130        /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1131         * otherwise, it must be a safe source.
1132         */
1133        if (safe_hardlink_source(mnt_userns, inode) ||
1134            inode_owner_or_capable(mnt_userns, inode))
1135                return 0;
1136
1137        audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1138        return -EPERM;
1139}
1140
1141/**
1142 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1143 *                        should be allowed, or not, on files that already
1144 *                        exist.
1145 * @mnt_userns: user namespace of the mount the inode was found from
1146 * @nd: nameidata pathwalk data
1147 * @inode: the inode of the file to open
1148 *
1149 * Block an O_CREAT open of a FIFO (or a regular file) when:
1150 *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1151 *   - the file already exists
1152 *   - we are in a sticky directory
1153 *   - we don't own the file
1154 *   - the owner of the directory doesn't own the file
1155 *   - the directory is world writable
1156 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1157 * the directory doesn't have to be world writable: being group writable will
1158 * be enough.
1159 *
1160 * If the inode has been found through an idmapped mount the user namespace of
1161 * the vfsmount must be passed through @mnt_userns. This function will then take
1162 * care to map the inode according to @mnt_userns before checking permissions.
1163 * On non-idmapped mounts or if permission checking is to be performed on the
1164 * raw inode simply passs init_user_ns.
1165 *
1166 * Returns 0 if the open is allowed, -ve on error.
1167 */
1168static int may_create_in_sticky(struct user_namespace *mnt_userns,
1169                                struct nameidata *nd, struct inode *const inode)
1170{
1171        umode_t dir_mode = nd->dir_mode;
1172        kuid_t dir_uid = nd->dir_uid;
1173
1174        if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1175            (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1176            likely(!(dir_mode & S_ISVTX)) ||
1177            uid_eq(i_uid_into_mnt(mnt_userns, inode), dir_uid) ||
1178            uid_eq(current_fsuid(), i_uid_into_mnt(mnt_userns, inode)))
1179                return 0;
1180
1181        if (likely(dir_mode & 0002) ||
1182            (dir_mode & 0020 &&
1183             ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1184              (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1185                const char *operation = S_ISFIFO(inode->i_mode) ?
1186                                        "sticky_create_fifo" :
1187                                        "sticky_create_regular";
1188                audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1189                return -EACCES;
1190        }
1191        return 0;
1192}
1193
1194/*
1195 * follow_up - Find the mountpoint of path's vfsmount
1196 *
1197 * Given a path, find the mountpoint of its source file system.
1198 * Replace @path with the path of the mountpoint in the parent mount.
1199 * Up is towards /.
1200 *
1201 * Return 1 if we went up a level and 0 if we were already at the
1202 * root.
1203 */
1204int follow_up(struct path *path)
1205{
1206        struct mount *mnt = real_mount(path->mnt);
1207        struct mount *parent;
1208        struct dentry *mountpoint;
1209
1210        read_seqlock_excl(&mount_lock);
1211        parent = mnt->mnt_parent;
1212        if (parent == mnt) {
1213                read_sequnlock_excl(&mount_lock);
1214                return 0;
1215        }
1216        mntget(&parent->mnt);
1217        mountpoint = dget(mnt->mnt_mountpoint);
1218        read_sequnlock_excl(&mount_lock);
1219        dput(path->dentry);
1220        path->dentry = mountpoint;
1221        mntput(path->mnt);
1222        path->mnt = &parent->mnt;
1223        return 1;
1224}
1225EXPORT_SYMBOL(follow_up);
1226
1227static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1228                                  struct path *path, unsigned *seqp)
1229{
1230        while (mnt_has_parent(m)) {
1231                struct dentry *mountpoint = m->mnt_mountpoint;
1232
1233                m = m->mnt_parent;
1234                if (unlikely(root->dentry == mountpoint &&
1235                             root->mnt == &m->mnt))
1236                        break;
1237                if (mountpoint != m->mnt.mnt_root) {
1238                        path->mnt = &m->mnt;
1239                        path->dentry = mountpoint;
1240                        *seqp = read_seqcount_begin(&mountpoint->d_seq);
1241                        return true;
1242                }
1243        }
1244        return false;
1245}
1246
1247static bool choose_mountpoint(struct mount *m, const struct path *root,
1248                              struct path *path)
1249{
1250        bool found;
1251
1252        rcu_read_lock();
1253        while (1) {
1254                unsigned seq, mseq = read_seqbegin(&mount_lock);
1255
1256                found = choose_mountpoint_rcu(m, root, path, &seq);
1257                if (unlikely(!found)) {
1258                        if (!read_seqretry(&mount_lock, mseq))
1259                                break;
1260                } else {
1261                        if (likely(__legitimize_path(path, seq, mseq)))
1262                                break;
1263                        rcu_read_unlock();
1264                        path_put(path);
1265                        rcu_read_lock();
1266                }
1267        }
1268        rcu_read_unlock();
1269        return found;
1270}
1271
1272/*
1273 * Perform an automount
1274 * - return -EISDIR to tell follow_managed() to stop and return the path we
1275 *   were called with.
1276 */
1277static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1278{
1279        struct dentry *dentry = path->dentry;
1280
1281        /* We don't want to mount if someone's just doing a stat -
1282         * unless they're stat'ing a directory and appended a '/' to
1283         * the name.
1284         *
1285         * We do, however, want to mount if someone wants to open or
1286         * create a file of any type under the mountpoint, wants to
1287         * traverse through the mountpoint or wants to open the
1288         * mounted directory.  Also, autofs may mark negative dentries
1289         * as being automount points.  These will need the attentions
1290         * of the daemon to instantiate them before they can be used.
1291         */
1292        if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1293                           LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1294            dentry->d_inode)
1295                return -EISDIR;
1296
1297        if (count && (*count)++ >= MAXSYMLINKS)
1298                return -ELOOP;
1299
1300        return finish_automount(dentry->d_op->d_automount(path), path);
1301}
1302
1303/*
1304 * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1305 * dentries are pinned but not locked here, so negative dentry can go
1306 * positive right under us.  Use of smp_load_acquire() provides a barrier
1307 * sufficient for ->d_inode and ->d_flags consistency.
1308 */
1309static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1310                             int *count, unsigned lookup_flags)
1311{
1312        struct vfsmount *mnt = path->mnt;
1313        bool need_mntput = false;
1314        int ret = 0;
1315
1316        while (flags & DCACHE_MANAGED_DENTRY) {
1317                /* Allow the filesystem to manage the transit without i_mutex
1318                 * being held. */
1319                if (flags & DCACHE_MANAGE_TRANSIT) {
1320                        ret = path->dentry->d_op->d_manage(path, false);
1321                        flags = smp_load_acquire(&path->dentry->d_flags);
1322                        if (ret < 0)
1323                                break;
1324                }
1325
1326                if (flags & DCACHE_MOUNTED) {   // something's mounted on it..
1327                        struct vfsmount *mounted = lookup_mnt(path);
1328                        if (mounted) {          // ... in our namespace
1329                                dput(path->dentry);
1330                                if (need_mntput)
1331                                        mntput(path->mnt);
1332                                path->mnt = mounted;
1333                                path->dentry = dget(mounted->mnt_root);
1334                                // here we know it's positive
1335                                flags = path->dentry->d_flags;
1336                                need_mntput = true;
1337                                continue;
1338                        }
1339                }
1340
1341                if (!(flags & DCACHE_NEED_AUTOMOUNT))
1342                        break;
1343
1344                // uncovered automount point
1345                ret = follow_automount(path, count, lookup_flags);
1346                flags = smp_load_acquire(&path->dentry->d_flags);
1347                if (ret < 0)
1348                        break;
1349        }
1350
1351        if (ret == -EISDIR)
1352                ret = 0;
1353        // possible if you race with several mount --move
1354        if (need_mntput && path->mnt == mnt)
1355                mntput(path->mnt);
1356        if (!ret && unlikely(d_flags_negative(flags)))
1357                ret = -ENOENT;
1358        *jumped = need_mntput;
1359        return ret;
1360}
1361
1362static inline int traverse_mounts(struct path *path, bool *jumped,
1363                                  int *count, unsigned lookup_flags)
1364{
1365        unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1366
1367        /* fastpath */
1368        if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1369                *jumped = false;
1370                if (unlikely(d_flags_negative(flags)))
1371                        return -ENOENT;
1372                return 0;
1373        }
1374        return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1375}
1376
1377int follow_down_one(struct path *path)
1378{
1379        struct vfsmount *mounted;
1380
1381        mounted = lookup_mnt(path);
1382        if (mounted) {
1383                dput(path->dentry);
1384                mntput(path->mnt);
1385                path->mnt = mounted;
1386                path->dentry = dget(mounted->mnt_root);
1387                return 1;
1388        }
1389        return 0;
1390}
1391EXPORT_SYMBOL(follow_down_one);
1392
1393/*
1394 * Follow down to the covering mount currently visible to userspace.  At each
1395 * point, the filesystem owning that dentry may be queried as to whether the
1396 * caller is permitted to proceed or not.
1397 */
1398int follow_down(struct path *path)
1399{
1400        struct vfsmount *mnt = path->mnt;
1401        bool jumped;
1402        int ret = traverse_mounts(path, &jumped, NULL, 0);
1403
1404        if (path->mnt != mnt)
1405                mntput(mnt);
1406        return ret;
1407}
1408EXPORT_SYMBOL(follow_down);
1409
1410/*
1411 * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1412 * we meet a managed dentry that would need blocking.
1413 */
1414static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1415                               struct inode **inode, unsigned *seqp)
1416{
1417        struct dentry *dentry = path->dentry;
1418        unsigned int flags = dentry->d_flags;
1419
1420        if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1421                return true;
1422
1423        if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1424                return false;
1425
1426        for (;;) {
1427                /*
1428                 * Don't forget we might have a non-mountpoint managed dentry
1429                 * that wants to block transit.
1430                 */
1431                if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1432                        int res = dentry->d_op->d_manage(path, true);
1433                        if (res)
1434                                return res == -EISDIR;
1435                        flags = dentry->d_flags;
1436                }
1437
1438                if (flags & DCACHE_MOUNTED) {
1439                        struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1440                        if (mounted) {
1441                                path->mnt = &mounted->mnt;
1442                                dentry = path->dentry = mounted->mnt.mnt_root;
1443                                nd->state |= ND_JUMPED;
1444                                *seqp = read_seqcount_begin(&dentry->d_seq);
1445                                *inode = dentry->d_inode;
1446                                /*
1447                                 * We don't need to re-check ->d_seq after this
1448                                 * ->d_inode read - there will be an RCU delay
1449                                 * between mount hash removal and ->mnt_root
1450                                 * becoming unpinned.
1451                                 */
1452                                flags = dentry->d_flags;
1453                                continue;
1454                        }
1455                        if (read_seqretry(&mount_lock, nd->m_seq))
1456                                return false;
1457                }
1458                return !(flags & DCACHE_NEED_AUTOMOUNT);
1459        }
1460}
1461
1462static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1463                          struct path *path, struct inode **inode,
1464                          unsigned int *seqp)
1465{
1466        bool jumped;
1467        int ret;
1468
1469        path->mnt = nd->path.mnt;
1470        path->dentry = dentry;
1471        if (nd->flags & LOOKUP_RCU) {
1472                unsigned int seq = *seqp;
1473                if (unlikely(!*inode))
1474                        return -ENOENT;
1475                if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1476                        return 0;
1477                if (!try_to_unlazy_next(nd, dentry, seq))
1478                        return -ECHILD;
1479                // *path might've been clobbered by __follow_mount_rcu()
1480                path->mnt = nd->path.mnt;
1481                path->dentry = dentry;
1482        }
1483        ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1484        if (jumped) {
1485                if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1486                        ret = -EXDEV;
1487                else
1488                        nd->state |= ND_JUMPED;
1489        }
1490        if (unlikely(ret)) {
1491                dput(path->dentry);
1492                if (path->mnt != nd->path.mnt)
1493                        mntput(path->mnt);
1494        } else {
1495                *inode = d_backing_inode(path->dentry);
1496                *seqp = 0; /* out of RCU mode, so the value doesn't matter */
1497        }
1498        return ret;
1499}
1500
1501/*
1502 * This looks up the name in dcache and possibly revalidates the found dentry.
1503 * NULL is returned if the dentry does not exist in the cache.
1504 */
1505static struct dentry *lookup_dcache(const struct qstr *name,
1506                                    struct dentry *dir,
1507                                    unsigned int flags)
1508{
1509        struct dentry *dentry = d_lookup(dir, name);
1510        if (dentry) {
1511                int error = d_revalidate(dentry, flags);
1512                if (unlikely(error <= 0)) {
1513                        if (!error)
1514                                d_invalidate(dentry);
1515                        dput(dentry);
1516                        return ERR_PTR(error);
1517                }
1518        }
1519        return dentry;
1520}
1521
1522/*
1523 * Parent directory has inode locked exclusive.  This is one
1524 * and only case when ->lookup() gets called on non in-lookup
1525 * dentries - as the matter of fact, this only gets called
1526 * when directory is guaranteed to have no in-lookup children
1527 * at all.
1528 */
1529static struct dentry *__lookup_hash(const struct qstr *name,
1530                struct dentry *base, unsigned int flags)
1531{
1532        struct dentry *dentry = lookup_dcache(name, base, flags);
1533        struct dentry *old;
1534        struct inode *dir = base->d_inode;
1535
1536        if (dentry)
1537                return dentry;
1538
1539        /* Don't create child dentry for a dead directory. */
1540        if (unlikely(IS_DEADDIR(dir)))
1541                return ERR_PTR(-ENOENT);
1542
1543        dentry = d_alloc(base, name);
1544        if (unlikely(!dentry))
1545                return ERR_PTR(-ENOMEM);
1546
1547        old = dir->i_op->lookup(dir, dentry, flags);
1548        if (unlikely(old)) {
1549                dput(dentry);
1550                dentry = old;
1551        }
1552        return dentry;
1553}
1554
1555static struct dentry *lookup_fast(struct nameidata *nd,
1556                                  struct inode **inode,
1557                                  unsigned *seqp)
1558{
1559        struct dentry *dentry, *parent = nd->path.dentry;
1560        int status = 1;
1561
1562        /*
1563         * Rename seqlock is not required here because in the off chance
1564         * of a false negative due to a concurrent rename, the caller is
1565         * going to fall back to non-racy lookup.
1566         */
1567        if (nd->flags & LOOKUP_RCU) {
1568                unsigned seq;
1569                dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1570                if (unlikely(!dentry)) {
1571                        if (!try_to_unlazy(nd))
1572                                return ERR_PTR(-ECHILD);
1573                        return NULL;
1574                }
1575
1576                /*
1577                 * This sequence count validates that the inode matches
1578                 * the dentry name information from lookup.
1579                 */
1580                *inode = d_backing_inode(dentry);
1581                if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1582                        return ERR_PTR(-ECHILD);
1583
1584                /*
1585                 * This sequence count validates that the parent had no
1586                 * changes while we did the lookup of the dentry above.
1587                 *
1588                 * The memory barrier in read_seqcount_begin of child is
1589                 *  enough, we can use __read_seqcount_retry here.
1590                 */
1591                if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1592                        return ERR_PTR(-ECHILD);
1593
1594                *seqp = seq;
1595                status = d_revalidate(dentry, nd->flags);
1596                if (likely(status > 0))
1597                        return dentry;
1598                if (!try_to_unlazy_next(nd, dentry, seq))
1599                        return ERR_PTR(-ECHILD);
1600                if (status == -ECHILD)
1601                        /* we'd been told to redo it in non-rcu mode */
1602                        status = d_revalidate(dentry, nd->flags);
1603        } else {
1604                dentry = __d_lookup(parent, &nd->last);
1605                if (unlikely(!dentry))
1606                        return NULL;
1607                status = d_revalidate(dentry, nd->flags);
1608        }
1609        if (unlikely(status <= 0)) {
1610                if (!status)
1611                        d_invalidate(dentry);
1612                dput(dentry);
1613                return ERR_PTR(status);
1614        }
1615        return dentry;
1616}
1617
1618/* Fast lookup failed, do it the slow way */
1619static struct dentry *__lookup_slow(const struct qstr *name,
1620                                    struct dentry *dir,
1621                                    unsigned int flags)
1622{
1623        struct dentry *dentry, *old;
1624        struct inode *inode = dir->d_inode;
1625        DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1626
1627        /* Don't go there if it's already dead */
1628        if (unlikely(IS_DEADDIR(inode)))
1629                return ERR_PTR(-ENOENT);
1630again:
1631        dentry = d_alloc_parallel(dir, name, &wq);
1632        if (IS_ERR(dentry))
1633                return dentry;
1634        if (unlikely(!d_in_lookup(dentry))) {
1635                int error = d_revalidate(dentry, flags);
1636                if (unlikely(error <= 0)) {
1637                        if (!error) {
1638                                d_invalidate(dentry);
1639                                dput(dentry);
1640                                goto again;
1641                        }
1642                        dput(dentry);
1643                        dentry = ERR_PTR(error);
1644                }
1645        } else {
1646                old = inode->i_op->lookup(inode, dentry, flags);
1647                d_lookup_done(dentry);
1648                if (unlikely(old)) {
1649                        dput(dentry);
1650                        dentry = old;
1651                }
1652        }
1653        return dentry;
1654}
1655
1656static struct dentry *lookup_slow(const struct qstr *name,
1657                                  struct dentry *dir,
1658                                  unsigned int flags)
1659{
1660        struct inode *inode = dir->d_inode;
1661        struct dentry *res;
1662        inode_lock_shared(inode);
1663        res = __lookup_slow(name, dir, flags);
1664        inode_unlock_shared(inode);
1665        return res;
1666}
1667
1668static inline int may_lookup(struct user_namespace *mnt_userns,
1669                             struct nameidata *nd)
1670{
1671        if (nd->flags & LOOKUP_RCU) {
1672                int err = inode_permission(mnt_userns, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1673                if (err != -ECHILD || !try_to_unlazy(nd))
1674                        return err;
1675        }
1676        return inode_permission(mnt_userns, nd->inode, MAY_EXEC);
1677}
1678
1679static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq)
1680{
1681        if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1682                return -ELOOP;
1683
1684        if (likely(nd->depth != EMBEDDED_LEVELS))
1685                return 0;
1686        if (likely(nd->stack != nd->internal))
1687                return 0;
1688        if (likely(nd_alloc_stack(nd)))
1689                return 0;
1690
1691        if (nd->flags & LOOKUP_RCU) {
1692                // we need to grab link before we do unlazy.  And we can't skip
1693                // unlazy even if we fail to grab the link - cleanup needs it
1694                bool grabbed_link = legitimize_path(nd, link, seq);
1695
1696                if (!try_to_unlazy(nd) != 0 || !grabbed_link)
1697                        return -ECHILD;
1698
1699                if (nd_alloc_stack(nd))
1700                        return 0;
1701        }
1702        return -ENOMEM;
1703}
1704
1705enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1706
1707static const char *pick_link(struct nameidata *nd, struct path *link,
1708                     struct inode *inode, unsigned seq, int flags)
1709{
1710        struct saved *last;
1711        const char *res;
1712        int error = reserve_stack(nd, link, seq);
1713
1714        if (unlikely(error)) {
1715                if (!(nd->flags & LOOKUP_RCU))
1716                        path_put(link);
1717                return ERR_PTR(error);
1718        }
1719        last = nd->stack + nd->depth++;
1720        last->link = *link;
1721        clear_delayed_call(&last->done);
1722        last->seq = seq;
1723
1724        if (flags & WALK_TRAILING) {
1725                error = may_follow_link(nd, inode);
1726                if (unlikely(error))
1727                        return ERR_PTR(error);
1728        }
1729
1730        if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1731                        unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1732                return ERR_PTR(-ELOOP);
1733
1734        if (!(nd->flags & LOOKUP_RCU)) {
1735                touch_atime(&last->link);
1736                cond_resched();
1737        } else if (atime_needs_update(&last->link, inode)) {
1738                if (!try_to_unlazy(nd))
1739                        return ERR_PTR(-ECHILD);
1740                touch_atime(&last->link);
1741        }
1742
1743        error = security_inode_follow_link(link->dentry, inode,
1744                                           nd->flags & LOOKUP_RCU);
1745        if (unlikely(error))
1746                return ERR_PTR(error);
1747
1748        res = READ_ONCE(inode->i_link);
1749        if (!res) {
1750                const char * (*get)(struct dentry *, struct inode *,
1751                                struct delayed_call *);
1752                get = inode->i_op->get_link;
1753                if (nd->flags & LOOKUP_RCU) {
1754                        res = get(NULL, inode, &last->done);
1755                        if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1756                                res = get(link->dentry, inode, &last->done);
1757                } else {
1758                        res = get(link->dentry, inode, &last->done);
1759                }
1760                if (!res)
1761                        goto all_done;
1762                if (IS_ERR(res))
1763                        return res;
1764        }
1765        if (*res == '/') {
1766                error = nd_jump_root(nd);
1767                if (unlikely(error))
1768                        return ERR_PTR(error);
1769                while (unlikely(*++res == '/'))
1770                        ;
1771        }
1772        if (*res)
1773                return res;
1774all_done: // pure jump
1775        put_link(nd);
1776        return NULL;
1777}
1778
1779/*
1780 * Do we need to follow links? We _really_ want to be able
1781 * to do this check without having to look at inode->i_op,
1782 * so we keep a cache of "no, this doesn't need follow_link"
1783 * for the common case.
1784 */
1785static const char *step_into(struct nameidata *nd, int flags,
1786                     struct dentry *dentry, struct inode *inode, unsigned seq)
1787{
1788        struct path path;
1789        int err = handle_mounts(nd, dentry, &path, &inode, &seq);
1790
1791        if (err < 0)
1792                return ERR_PTR(err);
1793        if (likely(!d_is_symlink(path.dentry)) ||
1794           ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1795           (flags & WALK_NOFOLLOW)) {
1796                /* not a symlink or should not follow */
1797                if (!(nd->flags & LOOKUP_RCU)) {
1798                        dput(nd->path.dentry);
1799                        if (nd->path.mnt != path.mnt)
1800                                mntput(nd->path.mnt);
1801                }
1802                nd->path = path;
1803                nd->inode = inode;
1804                nd->seq = seq;
1805                return NULL;
1806        }
1807        if (nd->flags & LOOKUP_RCU) {
1808                /* make sure that d_is_symlink above matches inode */
1809                if (read_seqcount_retry(&path.dentry->d_seq, seq))
1810                        return ERR_PTR(-ECHILD);
1811        } else {
1812                if (path.mnt == nd->path.mnt)
1813                        mntget(path.mnt);
1814        }
1815        return pick_link(nd, &path, inode, seq, flags);
1816}
1817
1818static struct dentry *follow_dotdot_rcu(struct nameidata *nd,
1819                                        struct inode **inodep,
1820                                        unsigned *seqp)
1821{
1822        struct dentry *parent, *old;
1823
1824        if (path_equal(&nd->path, &nd->root))
1825                goto in_root;
1826        if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1827                struct path path;
1828                unsigned seq;
1829                if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1830                                           &nd->root, &path, &seq))
1831                        goto in_root;
1832                if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1833                        return ERR_PTR(-ECHILD);
1834                nd->path = path;
1835                nd->inode = path.dentry->d_inode;
1836                nd->seq = seq;
1837                if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1838                        return ERR_PTR(-ECHILD);
1839                /* we know that mountpoint was pinned */
1840        }
1841        old = nd->path.dentry;
1842        parent = old->d_parent;
1843        *inodep = parent->d_inode;
1844        *seqp = read_seqcount_begin(&parent->d_seq);
1845        if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1846                return ERR_PTR(-ECHILD);
1847        if (unlikely(!path_connected(nd->path.mnt, parent)))
1848                return ERR_PTR(-ECHILD);
1849        return parent;
1850in_root:
1851        if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1852                return ERR_PTR(-ECHILD);
1853        if (unlikely(nd->flags & LOOKUP_BENEATH))
1854                return ERR_PTR(-ECHILD);
1855        return NULL;
1856}
1857
1858static struct dentry *follow_dotdot(struct nameidata *nd,
1859                                 struct inode **inodep,
1860                                 unsigned *seqp)
1861{
1862        struct dentry *parent;
1863
1864        if (path_equal(&nd->path, &nd->root))
1865                goto in_root;
1866        if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1867                struct path path;
1868
1869                if (!choose_mountpoint(real_mount(nd->path.mnt),
1870                                       &nd->root, &path))
1871                        goto in_root;
1872                path_put(&nd->path);
1873                nd->path = path;
1874                nd->inode = path.dentry->d_inode;
1875                if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1876                        return ERR_PTR(-EXDEV);
1877        }
1878        /* rare case of legitimate dget_parent()... */
1879        parent = dget_parent(nd->path.dentry);
1880        if (unlikely(!path_connected(nd->path.mnt, parent))) {
1881                dput(parent);
1882                return ERR_PTR(-ENOENT);
1883        }
1884        *seqp = 0;
1885        *inodep = parent->d_inode;
1886        return parent;
1887
1888in_root:
1889        if (unlikely(nd->flags & LOOKUP_BENEATH))
1890                return ERR_PTR(-EXDEV);
1891        dget(nd->path.dentry);
1892        return NULL;
1893}
1894
1895static const char *handle_dots(struct nameidata *nd, int type)
1896{
1897        if (type == LAST_DOTDOT) {
1898                const char *error = NULL;
1899                struct dentry *parent;
1900                struct inode *inode;
1901                unsigned seq;
1902
1903                if (!nd->root.mnt) {
1904                        error = ERR_PTR(set_root(nd));
1905                        if (error)
1906                                return error;
1907                }
1908                if (nd->flags & LOOKUP_RCU)
1909                        parent = follow_dotdot_rcu(nd, &inode, &seq);
1910                else
1911                        parent = follow_dotdot(nd, &inode, &seq);
1912                if (IS_ERR(parent))
1913                        return ERR_CAST(parent);
1914                if (unlikely(!parent))
1915                        error = step_into(nd, WALK_NOFOLLOW,
1916                                         nd->path.dentry, nd->inode, nd->seq);
1917                else
1918                        error = step_into(nd, WALK_NOFOLLOW,
1919                                         parent, inode, seq);
1920                if (unlikely(error))
1921                        return error;
1922
1923                if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1924                        /*
1925                         * If there was a racing rename or mount along our
1926                         * path, then we can't be sure that ".." hasn't jumped
1927                         * above nd->root (and so userspace should retry or use
1928                         * some fallback).
1929                         */
1930                        smp_rmb();
1931                        if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)))
1932                                return ERR_PTR(-EAGAIN);
1933                        if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)))
1934                                return ERR_PTR(-EAGAIN);
1935                }
1936        }
1937        return NULL;
1938}
1939
1940static const char *walk_component(struct nameidata *nd, int flags)
1941{
1942        struct dentry *dentry;
1943        struct inode *inode;
1944        unsigned seq;
1945        /*
1946         * "." and ".." are special - ".." especially so because it has
1947         * to be able to know about the current root directory and
1948         * parent relationships.
1949         */
1950        if (unlikely(nd->last_type != LAST_NORM)) {
1951                if (!(flags & WALK_MORE) && nd->depth)
1952                        put_link(nd);
1953                return handle_dots(nd, nd->last_type);
1954        }
1955        dentry = lookup_fast(nd, &inode, &seq);
1956        if (IS_ERR(dentry))
1957                return ERR_CAST(dentry);
1958        if (unlikely(!dentry)) {
1959                dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
1960                if (IS_ERR(dentry))
1961                        return ERR_CAST(dentry);
1962        }
1963        if (!(flags & WALK_MORE) && nd->depth)
1964                put_link(nd);
1965        return step_into(nd, flags, dentry, inode, seq);
1966}
1967
1968/*
1969 * We can do the critical dentry name comparison and hashing
1970 * operations one word at a time, but we are limited to:
1971 *
1972 * - Architectures with fast unaligned word accesses. We could
1973 *   do a "get_unaligned()" if this helps and is sufficiently
1974 *   fast.
1975 *
1976 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1977 *   do not trap on the (extremely unlikely) case of a page
1978 *   crossing operation.
1979 *
1980 * - Furthermore, we need an efficient 64-bit compile for the
1981 *   64-bit case in order to generate the "number of bytes in
1982 *   the final mask". Again, that could be replaced with a
1983 *   efficient population count instruction or similar.
1984 */
1985#ifdef CONFIG_DCACHE_WORD_ACCESS
1986
1987#include <asm/word-at-a-time.h>
1988
1989#ifdef HASH_MIX
1990
1991/* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1992
1993#elif defined(CONFIG_64BIT)
1994/*
1995 * Register pressure in the mixing function is an issue, particularly
1996 * on 32-bit x86, but almost any function requires one state value and
1997 * one temporary.  Instead, use a function designed for two state values
1998 * and no temporaries.
1999 *
2000 * This function cannot create a collision in only two iterations, so
2001 * we have two iterations to achieve avalanche.  In those two iterations,
2002 * we have six layers of mixing, which is enough to spread one bit's
2003 * influence out to 2^6 = 64 state bits.
2004 *
2005 * Rotate constants are scored by considering either 64 one-bit input
2006 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2007 * probability of that delta causing a change to each of the 128 output
2008 * bits, using a sample of random initial states.
2009 *
2010 * The Shannon entropy of the computed probabilities is then summed
2011 * to produce a score.  Ideally, any input change has a 50% chance of
2012 * toggling any given output bit.
2013 *
2014 * Mixing scores (in bits) for (12,45):
2015 * Input delta: 1-bit      2-bit
2016 * 1 round:     713.3    42542.6
2017 * 2 rounds:   2753.7   140389.8
2018 * 3 rounds:   5954.1   233458.2
2019 * 4 rounds:   7862.6   256672.2
2020 * Perfect:    8192     258048
2021 *            (64*128) (64*63/2 * 128)
2022 */
2023#define HASH_MIX(x, y, a)       \
2024        (       x ^= (a),       \
2025        y ^= x, x = rol64(x,12),\
2026        x += y, y = rol64(y,45),\
2027        y *= 9                  )
2028
2029/*
2030 * Fold two longs into one 32-bit hash value.  This must be fast, but
2031 * latency isn't quite as critical, as there is a fair bit of additional
2032 * work done before the hash value is used.
2033 */
2034static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2035{
2036        y ^= x * GOLDEN_RATIO_64;
2037        y *= GOLDEN_RATIO_64;
2038        return y >> 32;
2039}
2040
2041#else   /* 32-bit case */
2042
2043/*
2044 * Mixing scores (in bits) for (7,20):
2045 * Input delta: 1-bit      2-bit
2046 * 1 round:     330.3     9201.6
2047 * 2 rounds:   1246.4    25475.4
2048 * 3 rounds:   1907.1    31295.1
2049 * 4 rounds:   2042.3    31718.6
2050 * Perfect:    2048      31744
2051 *            (32*64)   (32*31/2 * 64)
2052 */
2053#define HASH_MIX(x, y, a)       \
2054        (       x ^= (a),       \
2055        y ^= x, x = rol32(x, 7),\
2056        x += y, y = rol32(y,20),\
2057        y *= 9                  )
2058
2059static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2060{
2061        /* Use arch-optimized multiply if one exists */
2062        return __hash_32(y ^ __hash_32(x));
2063}
2064
2065#endif
2066
2067/*
2068 * Return the hash of a string of known length.  This is carfully
2069 * designed to match hash_name(), which is the more critical function.
2070 * In particular, we must end by hashing a final word containing 0..7
2071 * payload bytes, to match the way that hash_name() iterates until it
2072 * finds the delimiter after the name.
2073 */
2074unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2075{
2076        unsigned long a, x = 0, y = (unsigned long)salt;
2077
2078        for (;;) {
2079                if (!len)
2080                        goto done;
2081                a = load_unaligned_zeropad(name);
2082                if (len < sizeof(unsigned long))
2083                        break;
2084                HASH_MIX(x, y, a);
2085                name += sizeof(unsigned long);
2086                len -= sizeof(unsigned long);
2087        }
2088        x ^= a & bytemask_from_count(len);
2089done:
2090        return fold_hash(x, y);
2091}
2092EXPORT_SYMBOL(full_name_hash);
2093
2094/* Return the "hash_len" (hash and length) of a null-terminated string */
2095u64 hashlen_string(const void *salt, const char *name)
2096{
2097        unsigned long a = 0, x = 0, y = (unsigned long)salt;
2098        unsigned long adata, mask, len;
2099        const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2100
2101        len = 0;
2102        goto inside;
2103
2104        do {
2105                HASH_MIX(x, y, a);
2106                len += sizeof(unsigned long);
2107inside:
2108                a = load_unaligned_zeropad(name+len);
2109        } while (!has_zero(a, &adata, &constants));
2110
2111        adata = prep_zero_mask(a, adata, &constants);
2112        mask = create_zero_mask(adata);
2113        x ^= a & zero_bytemask(mask);
2114
2115        return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2116}
2117EXPORT_SYMBOL(hashlen_string);
2118
2119/*
2120 * Calculate the length and hash of the path component, and
2121 * return the "hash_len" as the result.
2122 */
2123static inline u64 hash_name(const void *salt, const char *name)
2124{
2125        unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2126        unsigned long adata, bdata, mask, len;
2127        const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2128
2129        len = 0;
2130        goto inside;
2131
2132        do {
2133                HASH_MIX(x, y, a);
2134                len += sizeof(unsigned long);
2135inside:
2136                a = load_unaligned_zeropad(name+len);
2137                b = a ^ REPEAT_BYTE('/');
2138        } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2139
2140        adata = prep_zero_mask(a, adata, &constants);
2141        bdata = prep_zero_mask(b, bdata, &constants);
2142        mask = create_zero_mask(adata | bdata);
2143        x ^= a & zero_bytemask(mask);
2144
2145        return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2146}
2147
2148#else   /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2149
2150/* Return the hash of a string of known length */
2151unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2152{
2153        unsigned long hash = init_name_hash(salt);
2154        while (len--)
2155                hash = partial_name_hash((unsigned char)*name++, hash);
2156        return end_name_hash(hash);
2157}
2158EXPORT_SYMBOL(full_name_hash);
2159
2160/* Return the "hash_len" (hash and length) of a null-terminated string */
2161u64 hashlen_string(const void *salt, const char *name)
2162{
2163        unsigned long hash = init_name_hash(salt);
2164        unsigned long len = 0, c;
2165
2166        c = (unsigned char)*name;
2167        while (c) {
2168                len++;
2169                hash = partial_name_hash(c, hash);
2170                c = (unsigned char)name[len];
2171        }
2172        return hashlen_create(end_name_hash(hash), len);
2173}
2174EXPORT_SYMBOL(hashlen_string);
2175
2176/*
2177 * We know there's a real path component here of at least
2178 * one character.
2179 */
2180static inline u64 hash_name(const void *salt, const char *name)
2181{
2182        unsigned long hash = init_name_hash(salt);
2183        unsigned long len = 0, c;
2184
2185        c = (unsigned char)*name;
2186        do {
2187                len++;
2188                hash = partial_name_hash(c, hash);
2189                c = (unsigned char)name[len];
2190        } while (c && c != '/');
2191        return hashlen_create(end_name_hash(hash), len);
2192}
2193
2194#endif
2195
2196/*
2197 * Name resolution.
2198 * This is the basic name resolution function, turning a pathname into
2199 * the final dentry. We expect 'base' to be positive and a directory.
2200 *
2201 * Returns 0 and nd will have valid dentry and mnt on success.
2202 * Returns error and drops reference to input namei data on failure.
2203 */
2204static int link_path_walk(const char *name, struct nameidata *nd)
2205{
2206        int depth = 0; // depth <= nd->depth
2207        int err;
2208
2209        nd->last_type = LAST_ROOT;
2210        nd->flags |= LOOKUP_PARENT;
2211        if (IS_ERR(name))
2212                return PTR_ERR(name);
2213        while (*name=='/')
2214                name++;
2215        if (!*name) {
2216                nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2217                return 0;
2218        }
2219
2220        /* At this point we know we have a real path component. */
2221        for(;;) {
2222                struct user_namespace *mnt_userns;
2223                const char *link;
2224                u64 hash_len;
2225                int type;
2226
2227                mnt_userns = mnt_user_ns(nd->path.mnt);
2228                err = may_lookup(mnt_userns, nd);
2229                if (err)
2230                        return err;
2231
2232                hash_len = hash_name(nd->path.dentry, name);
2233
2234                type = LAST_NORM;
2235                if (name[0] == '.') switch (hashlen_len(hash_len)) {
2236                        case 2:
2237                                if (name[1] == '.') {
2238                                        type = LAST_DOTDOT;
2239                                        nd->state |= ND_JUMPED;
2240                                }
2241                                break;
2242                        case 1:
2243                                type = LAST_DOT;
2244                }
2245                if (likely(type == LAST_NORM)) {
2246                        struct dentry *parent = nd->path.dentry;
2247                        nd->state &= ~ND_JUMPED;
2248                        if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2249                                struct qstr this = { { .hash_len = hash_len }, .name = name };
2250                                err = parent->d_op->d_hash(parent, &this);
2251                                if (err < 0)
2252                                        return err;
2253                                hash_len = this.hash_len;
2254                                name = this.name;
2255                        }
2256                }
2257
2258                nd->last.hash_len = hash_len;
2259                nd->last.name = name;
2260                nd->last_type = type;
2261
2262                name += hashlen_len(hash_len);
2263                if (!*name)
2264                        goto OK;
2265                /*
2266                 * If it wasn't NUL, we know it was '/'. Skip that
2267                 * slash, and continue until no more slashes.
2268                 */
2269                do {
2270                        name++;
2271                } while (unlikely(*name == '/'));
2272                if (unlikely(!*name)) {
2273OK:
2274                        /* pathname or trailing symlink, done */
2275                        if (!depth) {
2276                                nd->dir_uid = i_uid_into_mnt(mnt_userns, nd->inode);
2277                                nd->dir_mode = nd->inode->i_mode;
2278                                nd->flags &= ~LOOKUP_PARENT;
2279                                return 0;
2280                        }
2281                        /* last component of nested symlink */
2282                        name = nd->stack[--depth].name;
2283                        link = walk_component(nd, 0);
2284                } else {
2285                        /* not the last component */
2286                        link = walk_component(nd, WALK_MORE);
2287                }
2288                if (unlikely(link)) {
2289                        if (IS_ERR(link))
2290                                return PTR_ERR(link);
2291                        /* a symlink to follow */
2292                        nd->stack[depth++].name = name;
2293                        name = link;
2294                        continue;
2295                }
2296                if (unlikely(!d_can_lookup(nd->path.dentry))) {
2297                        if (nd->flags & LOOKUP_RCU) {
2298                                if (!try_to_unlazy(nd))
2299                                        return -ECHILD;
2300                        }
2301                        return -ENOTDIR;
2302                }
2303        }
2304}
2305
2306/* must be paired with terminate_walk() */
2307static const char *path_init(struct nameidata *nd, unsigned flags)
2308{
2309        int error;
2310        const char *s = nd->name->name;
2311
2312        /* LOOKUP_CACHED requires RCU, ask caller to retry */
2313        if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2314                return ERR_PTR(-EAGAIN);
2315
2316        if (!*s)
2317                flags &= ~LOOKUP_RCU;
2318        if (flags & LOOKUP_RCU)
2319                rcu_read_lock();
2320
2321        nd->flags = flags;
2322        nd->state |= ND_JUMPED;
2323
2324        nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2325        nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2326        smp_rmb();
2327
2328        if (nd->state & ND_ROOT_PRESET) {
2329                struct dentry *root = nd->root.dentry;
2330                struct inode *inode = root->d_inode;
2331                if (*s && unlikely(!d_can_lookup(root)))
2332                        return ERR_PTR(-ENOTDIR);
2333                nd->path = nd->root;
2334                nd->inode = inode;
2335                if (flags & LOOKUP_RCU) {
2336                        nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2337                        nd->root_seq = nd->seq;
2338                } else {
2339                        path_get(&nd->path);
2340                }
2341                return s;
2342        }
2343
2344        nd->root.mnt = NULL;
2345
2346        /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2347        if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2348                error = nd_jump_root(nd);
2349                if (unlikely(error))
2350                        return ERR_PTR(error);
2351                return s;
2352        }
2353
2354        /* Relative pathname -- get the starting-point it is relative to. */
2355        if (nd->dfd == AT_FDCWD) {
2356                if (flags & LOOKUP_RCU) {
2357                        struct fs_struct *fs = current->fs;
2358                        unsigned seq;
2359
2360                        do {
2361                                seq = read_seqcount_begin(&fs->seq);
2362                                nd->path = fs->pwd;
2363                                nd->inode = nd->path.dentry->d_inode;
2364                                nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2365                        } while (read_seqcount_retry(&fs->seq, seq));
2366                } else {
2367                        get_fs_pwd(current->fs, &nd->path);
2368                        nd->inode = nd->path.dentry->d_inode;
2369                }
2370        } else {
2371                /* Caller must check execute permissions on the starting path component */
2372                struct fd f = fdget_raw(nd->dfd);
2373                struct dentry *dentry;
2374
2375                if (!f.file)
2376                        return ERR_PTR(-EBADF);
2377
2378                dentry = f.file->f_path.dentry;
2379
2380                if (*s && unlikely(!d_can_lookup(dentry))) {
2381                        fdput(f);
2382                        return ERR_PTR(-ENOTDIR);
2383                }
2384
2385                nd->path = f.file->f_path;
2386                if (flags & LOOKUP_RCU) {
2387                        nd->inode = nd->path.dentry->d_inode;
2388                        nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2389                } else {
2390                        path_get(&nd->path);
2391                        nd->inode = nd->path.dentry->d_inode;
2392                }
2393                fdput(f);
2394        }
2395
2396        /* For scoped-lookups we need to set the root to the dirfd as well. */
2397        if (flags & LOOKUP_IS_SCOPED) {
2398                nd->root = nd->path;
2399                if (flags & LOOKUP_RCU) {
2400                        nd->root_seq = nd->seq;
2401                } else {
2402                        path_get(&nd->root);
2403                        nd->state |= ND_ROOT_GRABBED;
2404                }
2405        }
2406        return s;
2407}
2408
2409static inline const char *lookup_last(struct nameidata *nd)
2410{
2411        if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2412                nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2413
2414        return walk_component(nd, WALK_TRAILING);
2415}
2416
2417static int handle_lookup_down(struct nameidata *nd)
2418{
2419        if (!(nd->flags & LOOKUP_RCU))
2420                dget(nd->path.dentry);
2421        return PTR_ERR(step_into(nd, WALK_NOFOLLOW,
2422                        nd->path.dentry, nd->inode, nd->seq));
2423}
2424
2425/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2426static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2427{
2428        const char *s = path_init(nd, flags);
2429        int err;
2430
2431        if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2432                err = handle_lookup_down(nd);
2433                if (unlikely(err < 0))
2434                        s = ERR_PTR(err);
2435        }
2436
2437        while (!(err = link_path_walk(s, nd)) &&
2438               (s = lookup_last(nd)) != NULL)
2439                ;
2440        if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2441                err = handle_lookup_down(nd);
2442                nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2443        }
2444        if (!err)
2445                err = complete_walk(nd);
2446
2447        if (!err && nd->flags & LOOKUP_DIRECTORY)
2448                if (!d_can_lookup(nd->path.dentry))
2449                        err = -ENOTDIR;
2450        if (!err) {
2451                *path = nd->path;
2452                nd->path.mnt = NULL;
2453                nd->path.dentry = NULL;
2454        }
2455        terminate_walk(nd);
2456        return err;
2457}
2458
2459int filename_lookup(int dfd, struct filename *name, unsigned flags,
2460                    struct path *path, struct path *root)
2461{
2462        int retval;
2463        struct nameidata nd;
2464        if (IS_ERR(name))
2465                return PTR_ERR(name);
2466        set_nameidata(&nd, dfd, name, root);
2467        retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2468        if (unlikely(retval == -ECHILD))
2469                retval = path_lookupat(&nd, flags, path);
2470        if (unlikely(retval == -ESTALE))
2471                retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2472
2473        if (likely(!retval))
2474                audit_inode(name, path->dentry,
2475                            flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2476        restore_nameidata();
2477        putname(name);
2478        return retval;
2479}
2480
2481/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2482static int path_parentat(struct nameidata *nd, unsigned flags,
2483                                struct path *parent)
2484{
2485        const char *s = path_init(nd, flags);
2486        int err = link_path_walk(s, nd);
2487        if (!err)
2488                err = complete_walk(nd);
2489        if (!err) {
2490                *parent = nd->path;
2491                nd->path.mnt = NULL;
2492                nd->path.dentry = NULL;
2493        }
2494        terminate_walk(nd);
2495        return err;
2496}
2497
2498static struct filename *filename_parentat(int dfd, struct filename *name,
2499                                unsigned int flags, struct path *parent,
2500                                struct qstr *last, int *type)
2501{
2502        int retval;
2503        struct nameidata nd;
2504
2505        if (IS_ERR(name))
2506                return name;
2507        set_nameidata(&nd, dfd, name, NULL);
2508        retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2509        if (unlikely(retval == -ECHILD))
2510                retval = path_parentat(&nd, flags, parent);
2511        if (unlikely(retval == -ESTALE))
2512                retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2513        if (likely(!retval)) {
2514                *last = nd.last;
2515                *type = nd.last_type;
2516                audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2517        } else {
2518                putname(name);
2519                name = ERR_PTR(retval);
2520        }
2521        restore_nameidata();
2522        return name;
2523}
2524
2525/* does lookup, returns the object with parent locked */
2526struct dentry *kern_path_locked(const char *name, struct path *path)
2527{
2528        struct filename *filename;
2529        struct dentry *d;
2530        struct qstr last;
2531        int type;
2532
2533        filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2534                                    &last, &type);
2535        if (IS_ERR(filename))
2536                return ERR_CAST(filename);
2537        if (unlikely(type != LAST_NORM)) {
2538                path_put(path);
2539                putname(filename);
2540                return ERR_PTR(-EINVAL);
2541        }
2542        inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2543        d = __lookup_hash(&last, path->dentry, 0);
2544        if (IS_ERR(d)) {
2545                inode_unlock(path->dentry->d_inode);
2546                path_put(path);
2547        }
2548        putname(filename);
2549        return d;
2550}
2551
2552int kern_path(const char *name, unsigned int flags, struct path *path)
2553{
2554        return filename_lookup(AT_FDCWD, getname_kernel(name),
2555                               flags, path, NULL);
2556}
2557EXPORT_SYMBOL(kern_path);
2558
2559/**
2560 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2561 * @dentry:  pointer to dentry of the base directory
2562 * @mnt: pointer to vfs mount of the base directory
2563 * @name: pointer to file name
2564 * @flags: lookup flags
2565 * @path: pointer to struct path to fill
2566 */
2567int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2568                    const char *name, unsigned int flags,
2569                    struct path *path)
2570{
2571        struct path root = {.mnt = mnt, .dentry = dentry};
2572        /* the first argument of filename_lookup() is ignored with root */
2573        return filename_lookup(AT_FDCWD, getname_kernel(name),
2574                               flags , path, &root);
2575}
2576EXPORT_SYMBOL(vfs_path_lookup);
2577
2578static int lookup_one_len_common(const char *name, struct dentry *base,
2579                                 int len, struct qstr *this)
2580{
2581        this->name = name;
2582        this->len = len;
2583        this->hash = full_name_hash(base, name, len);
2584        if (!len)
2585                return -EACCES;
2586
2587        if (unlikely(name[0] == '.')) {
2588                if (len < 2 || (len == 2 && name[1] == '.'))
2589                        return -EACCES;
2590        }
2591
2592        while (len--) {
2593                unsigned int c = *(const unsigned char *)name++;
2594                if (c == '/' || c == '\0')
2595                        return -EACCES;
2596        }
2597        /*
2598         * See if the low-level filesystem might want
2599         * to use its own hash..
2600         */
2601        if (base->d_flags & DCACHE_OP_HASH) {
2602                int err = base->d_op->d_hash(base, this);
2603                if (err < 0)
2604                        return err;
2605        }
2606
2607        return inode_permission(&init_user_ns, base->d_inode, MAY_EXEC);
2608}
2609
2610/**
2611 * try_lookup_one_len - filesystem helper to lookup single pathname component
2612 * @name:       pathname component to lookup
2613 * @base:       base directory to lookup from
2614 * @len:        maximum length @len should be interpreted to
2615 *
2616 * Look up a dentry by name in the dcache, returning NULL if it does not
2617 * currently exist.  The function does not try to create a dentry.
2618 *
2619 * Note that this routine is purely a helper for filesystem usage and should
2620 * not be called by generic code.
2621 *
2622 * The caller must hold base->i_mutex.
2623 */
2624struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2625{
2626        struct qstr this;
2627        int err;
2628
2629        WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2630
2631        err = lookup_one_len_common(name, base, len, &this);
2632        if (err)
2633                return ERR_PTR(err);
2634
2635        return lookup_dcache(&this, base, 0);
2636}
2637EXPORT_SYMBOL(try_lookup_one_len);
2638
2639/**
2640 * lookup_one_len - filesystem helper to lookup single pathname component
2641 * @name:       pathname component to lookup
2642 * @base:       base directory to lookup from
2643 * @len:        maximum length @len should be interpreted to
2644 *
2645 * Note that this routine is purely a helper for filesystem usage and should
2646 * not be called by generic code.
2647 *
2648 * The caller must hold base->i_mutex.
2649 */
2650struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2651{
2652        struct dentry *dentry;
2653        struct qstr this;
2654        int err;
2655
2656        WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2657
2658        err = lookup_one_len_common(name, base, len, &this);
2659        if (err)
2660                return ERR_PTR(err);
2661
2662        dentry = lookup_dcache(&this, base, 0);
2663        return dentry ? dentry : __lookup_slow(&this, base, 0);
2664}
2665EXPORT_SYMBOL(lookup_one_len);
2666
2667/**
2668 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2669 * @name:       pathname component to lookup
2670 * @base:       base directory to lookup from
2671 * @len:        maximum length @len should be interpreted to
2672 *
2673 * Note that this routine is purely a helper for filesystem usage and should
2674 * not be called by generic code.
2675 *
2676 * Unlike lookup_one_len, it should be called without the parent
2677 * i_mutex held, and will take the i_mutex itself if necessary.
2678 */
2679struct dentry *lookup_one_len_unlocked(const char *name,
2680                                       struct dentry *base, int len)
2681{
2682        struct qstr this;
2683        int err;
2684        struct dentry *ret;
2685
2686        err = lookup_one_len_common(name, base, len, &this);
2687        if (err)
2688                return ERR_PTR(err);
2689
2690        ret = lookup_dcache(&this, base, 0);
2691        if (!ret)
2692                ret = lookup_slow(&this, base, 0);
2693        return ret;
2694}
2695EXPORT_SYMBOL(lookup_one_len_unlocked);
2696
2697/*
2698 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2699 * on negatives.  Returns known positive or ERR_PTR(); that's what
2700 * most of the users want.  Note that pinned negative with unlocked parent
2701 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2702 * need to be very careful; pinned positives have ->d_inode stable, so
2703 * this one avoids such problems.
2704 */
2705struct dentry *lookup_positive_unlocked(const char *name,
2706                                       struct dentry *base, int len)
2707{
2708        struct dentry *ret = lookup_one_len_unlocked(name, base, len);
2709        if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2710                dput(ret);
2711                ret = ERR_PTR(-ENOENT);
2712        }
2713        return ret;
2714}
2715EXPORT_SYMBOL(lookup_positive_unlocked);
2716
2717#ifdef CONFIG_UNIX98_PTYS
2718int path_pts(struct path *path)
2719{
2720        /* Find something mounted on "pts" in the same directory as
2721         * the input path.
2722         */
2723        struct dentry *parent = dget_parent(path->dentry);
2724        struct dentry *child;
2725        struct qstr this = QSTR_INIT("pts", 3);
2726
2727        if (unlikely(!path_connected(path->mnt, parent))) {
2728                dput(parent);
2729                return -ENOENT;
2730        }
2731        dput(path->dentry);
2732        path->dentry = parent;
2733        child = d_hash_and_lookup(parent, &this);
2734        if (!child)
2735                return -ENOENT;
2736
2737        path->dentry = child;
2738        dput(parent);
2739        follow_down(path);
2740        return 0;
2741}
2742#endif
2743
2744int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2745                 struct path *path, int *empty)
2746{
2747        return filename_lookup(dfd, getname_flags(name, flags, empty),
2748                               flags, path, NULL);
2749}
2750EXPORT_SYMBOL(user_path_at_empty);
2751
2752int __check_sticky(struct user_namespace *mnt_userns, struct inode *dir,
2753                   struct inode *inode)
2754{
2755        kuid_t fsuid = current_fsuid();
2756
2757        if (uid_eq(i_uid_into_mnt(mnt_userns, inode), fsuid))
2758                return 0;
2759        if (uid_eq(i_uid_into_mnt(mnt_userns, dir), fsuid))
2760                return 0;
2761        return !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FOWNER);
2762}
2763EXPORT_SYMBOL(__check_sticky);
2764
2765/*
2766 *      Check whether we can remove a link victim from directory dir, check
2767 *  whether the type of victim is right.
2768 *  1. We can't do it if dir is read-only (done in permission())
2769 *  2. We should have write and exec permissions on dir
2770 *  3. We can't remove anything from append-only dir
2771 *  4. We can't do anything with immutable dir (done in permission())
2772 *  5. If the sticky bit on dir is set we should either
2773 *      a. be owner of dir, or
2774 *      b. be owner of victim, or
2775 *      c. have CAP_FOWNER capability
2776 *  6. If the victim is append-only or immutable we can't do antyhing with
2777 *     links pointing to it.
2778 *  7. If the victim has an unknown uid or gid we can't change the inode.
2779 *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2780 *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2781 * 10. We can't remove a root or mountpoint.
2782 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2783 *     nfs_async_unlink().
2784 */
2785static int may_delete(struct user_namespace *mnt_userns, struct inode *dir,
2786                      struct dentry *victim, bool isdir)
2787{
2788        struct inode *inode = d_backing_inode(victim);
2789        int error;
2790
2791        if (d_is_negative(victim))
2792                return -ENOENT;
2793        BUG_ON(!inode);
2794
2795        BUG_ON(victim->d_parent->d_inode != dir);
2796
2797        /* Inode writeback is not safe when the uid or gid are invalid. */
2798        if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) ||
2799            !gid_valid(i_gid_into_mnt(mnt_userns, inode)))
2800                return -EOVERFLOW;
2801
2802        audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2803
2804        error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
2805        if (error)
2806                return error;
2807        if (IS_APPEND(dir))
2808                return -EPERM;
2809
2810        if (check_sticky(mnt_userns, dir, inode) || IS_APPEND(inode) ||
2811            IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
2812            HAS_UNMAPPED_ID(mnt_userns, inode))
2813                return -EPERM;
2814        if (isdir) {
2815                if (!d_is_dir(victim))
2816                        return -ENOTDIR;
2817                if (IS_ROOT(victim))
2818                        return -EBUSY;
2819        } else if (d_is_dir(victim))
2820                return -EISDIR;
2821        if (IS_DEADDIR(dir))
2822                return -ENOENT;
2823        if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2824                return -EBUSY;
2825        return 0;
2826}
2827
2828/*      Check whether we can create an object with dentry child in directory
2829 *  dir.
2830 *  1. We can't do it if child already exists (open has special treatment for
2831 *     this case, but since we are inlined it's OK)
2832 *  2. We can't do it if dir is read-only (done in permission())
2833 *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2834 *  4. We should have write and exec permissions on dir
2835 *  5. We can't do it if dir is immutable (done in permission())
2836 */
2837static inline int may_create(struct user_namespace *mnt_userns,
2838                             struct inode *dir, struct dentry *child)
2839{
2840        audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2841        if (child->d_inode)
2842                return -EEXIST;
2843        if (IS_DEADDIR(dir))
2844                return -ENOENT;
2845        if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
2846                return -EOVERFLOW;
2847
2848        return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
2849}
2850
2851/*
2852 * p1 and p2 should be directories on the same fs.
2853 */
2854struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2855{
2856        struct dentry *p;
2857
2858        if (p1 == p2) {
2859                inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2860                return NULL;
2861        }
2862
2863        mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2864
2865        p = d_ancestor(p2, p1);
2866        if (p) {
2867                inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2868                inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2869                return p;
2870        }
2871
2872        p = d_ancestor(p1, p2);
2873        if (p) {
2874                inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2875                inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2876                return p;
2877        }
2878
2879        inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2880        inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2881        return NULL;
2882}
2883EXPORT_SYMBOL(lock_rename);
2884
2885void unlock_rename(struct dentry *p1, struct dentry *p2)
2886{
2887        inode_unlock(p1->d_inode);
2888        if (p1 != p2) {
2889                inode_unlock(p2->d_inode);
2890                mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2891        }
2892}
2893EXPORT_SYMBOL(unlock_rename);
2894
2895/**
2896 * vfs_create - create new file
2897 * @mnt_userns: user namespace of the mount the inode was found from
2898 * @dir:        inode of @dentry
2899 * @dentry:     pointer to dentry of the base directory
2900 * @mode:       mode of the new file
2901 * @want_excl:  whether the file must not yet exist
2902 *
2903 * Create a new file.
2904 *
2905 * If the inode has been found through an idmapped mount the user namespace of
2906 * the vfsmount must be passed through @mnt_userns. This function will then take
2907 * care to map the inode according to @mnt_userns before checking permissions.
2908 * On non-idmapped mounts or if permission checking is to be performed on the
2909 * raw inode simply passs init_user_ns.
2910 */
2911int vfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2912               struct dentry *dentry, umode_t mode, bool want_excl)
2913{
2914        int error = may_create(mnt_userns, dir, dentry);
2915        if (error)
2916                return error;
2917
2918        if (!dir->i_op->create)
2919                return -EACCES; /* shouldn't it be ENOSYS? */
2920        mode &= S_IALLUGO;
2921        mode |= S_IFREG;
2922        error = security_inode_create(dir, dentry, mode);
2923        if (error)
2924                return error;
2925        error = dir->i_op->create(mnt_userns, dir, dentry, mode, want_excl);
2926        if (!error)
2927                fsnotify_create(dir, dentry);
2928        return error;
2929}
2930EXPORT_SYMBOL(vfs_create);
2931
2932int vfs_mkobj(struct dentry *dentry, umode_t mode,
2933                int (*f)(struct dentry *, umode_t, void *),
2934                void *arg)
2935{
2936        struct inode *dir = dentry->d_parent->d_inode;
2937        int error = may_create(&init_user_ns, dir, dentry);
2938        if (error)
2939                return error;
2940
2941        mode &= S_IALLUGO;
2942        mode |= S_IFREG;
2943        error = security_inode_create(dir, dentry, mode);
2944        if (error)
2945                return error;
2946        error = f(dentry, mode, arg);
2947        if (!error)
2948                fsnotify_create(dir, dentry);
2949        return error;
2950}
2951EXPORT_SYMBOL(vfs_mkobj);
2952
2953bool may_open_dev(const struct path *path)
2954{
2955        return !(path->mnt->mnt_flags & MNT_NODEV) &&
2956                !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2957}
2958
2959static int may_open(struct user_namespace *mnt_userns, const struct path *path,
2960                    int acc_mode, int flag)
2961{
2962        struct dentry *dentry = path->dentry;
2963        struct inode *inode = dentry->d_inode;
2964        int error;
2965
2966        if (!inode)
2967                return -ENOENT;
2968
2969        switch (inode->i_mode & S_IFMT) {
2970        case S_IFLNK:
2971                return -ELOOP;
2972        case S_IFDIR:
2973                if (acc_mode & MAY_WRITE)
2974                        return -EISDIR;
2975                if (acc_mode & MAY_EXEC)
2976                        return -EACCES;
2977                break;
2978        case S_IFBLK:
2979        case S_IFCHR:
2980                if (!may_open_dev(path))
2981                        return -EACCES;
2982                fallthrough;
2983        case S_IFIFO:
2984        case S_IFSOCK:
2985                if (acc_mode & MAY_EXEC)
2986                        return -EACCES;
2987                flag &= ~O_TRUNC;
2988                break;
2989        case S_IFREG:
2990                if ((acc_mode & MAY_EXEC) && path_noexec(path))
2991                        return -EACCES;
2992                break;
2993        }
2994
2995        error = inode_permission(mnt_userns, inode, MAY_OPEN | acc_mode);
2996        if (error)
2997                return error;
2998
2999        /*
3000         * An append-only file must be opened in append mode for writing.
3001         */
3002        if (IS_APPEND(inode)) {
3003                if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3004                        return -EPERM;
3005                if (flag & O_TRUNC)
3006                        return -EPERM;
3007        }
3008
3009        /* O_NOATIME can only be set by the owner or superuser */
3010        if (flag & O_NOATIME && !inode_owner_or_capable(mnt_userns, inode))
3011                return -EPERM;
3012
3013        return 0;
3014}
3015
3016static int handle_truncate(struct user_namespace *mnt_userns, struct file *filp)
3017{
3018        const struct path *path = &filp->f_path;
3019        struct inode *inode = path->dentry->d_inode;
3020        int error = get_write_access(inode);
3021        if (error)
3022                return error;
3023        /*
3024         * Refuse to truncate files with mandatory locks held on them.
3025         */
3026        error = locks_verify_locked(filp);
3027        if (!error)
3028                error = security_path_truncate(path);
3029        if (!error) {
3030                error = do_truncate(mnt_userns, path->dentry, 0,
3031                                    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3032                                    filp);
3033        }
3034        put_write_access(inode);
3035        return error;
3036}
3037
3038static inline int open_to_namei_flags(int flag)
3039{
3040        if ((flag & O_ACCMODE) == 3)
3041                flag--;
3042        return flag;
3043}
3044
3045static int may_o_create(struct user_namespace *mnt_userns,
3046                        const struct path *dir, struct dentry *dentry,
3047                        umode_t mode)
3048{
3049        int error = security_path_mknod(dir, dentry, mode, 0);
3050        if (error)
3051                return error;
3052
3053        if (!fsuidgid_has_mapping(dir->dentry->d_sb, mnt_userns))
3054                return -EOVERFLOW;
3055
3056        error = inode_permission(mnt_userns, dir->dentry->d_inode,
3057                                 MAY_WRITE | MAY_EXEC);
3058        if (error)
3059                return error;
3060
3061        return security_inode_create(dir->dentry->d_inode, dentry, mode);
3062}
3063
3064/*
3065 * Attempt to atomically look up, create and open a file from a negative
3066 * dentry.
3067 *
3068 * Returns 0 if successful.  The file will have been created and attached to
3069 * @file by the filesystem calling finish_open().
3070 *
3071 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3072 * be set.  The caller will need to perform the open themselves.  @path will
3073 * have been updated to point to the new dentry.  This may be negative.
3074 *
3075 * Returns an error code otherwise.
3076 */
3077static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3078                                  struct file *file,
3079                                  int open_flag, umode_t mode)
3080{
3081        struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3082        struct inode *dir =  nd->path.dentry->d_inode;
3083        int error;
3084
3085        if (nd->flags & LOOKUP_DIRECTORY)
3086                open_flag |= O_DIRECTORY;
3087
3088        file->f_path.dentry = DENTRY_NOT_SET;
3089        file->f_path.mnt = nd->path.mnt;
3090        error = dir->i_op->atomic_open(dir, dentry, file,
3091                                       open_to_namei_flags(open_flag), mode);
3092        d_lookup_done(dentry);
3093        if (!error) {
3094                if (file->f_mode & FMODE_OPENED) {
3095                        if (unlikely(dentry != file->f_path.dentry)) {
3096                                dput(dentry);
3097                                dentry = dget(file->f_path.dentry);
3098                        }
3099                } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3100                        error = -EIO;
3101                } else {
3102                        if (file->f_path.dentry) {
3103                                dput(dentry);
3104                                dentry = file->f_path.dentry;
3105                        }
3106                        if (unlikely(d_is_negative(dentry)))
3107                                error = -ENOENT;
3108                }
3109        }
3110        if (error) {
3111                dput(dentry);
3112                dentry = ERR_PTR(error);
3113        }
3114        return dentry;
3115}
3116
3117/*
3118 * Look up and maybe create and open the last component.
3119 *
3120 * Must be called with parent locked (exclusive in O_CREAT case).
3121 *
3122 * Returns 0 on success, that is, if
3123 *  the file was successfully atomically created (if necessary) and opened, or
3124 *  the file was not completely opened at this time, though lookups and
3125 *  creations were performed.
3126 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3127 * In the latter case dentry returned in @path might be negative if O_CREAT
3128 * hadn't been specified.
3129 *
3130 * An error code is returned on failure.
3131 */
3132static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3133                                  const struct open_flags *op,
3134                                  bool got_write)
3135{
3136        struct user_namespace *mnt_userns;
3137        struct dentry *dir = nd->path.dentry;
3138        struct inode *dir_inode = dir->d_inode;
3139        int open_flag = op->open_flag;
3140        struct dentry *dentry;
3141        int error, create_error = 0;
3142        umode_t mode = op->mode;
3143        DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3144
3145        if (unlikely(IS_DEADDIR(dir_inode)))
3146                return ERR_PTR(-ENOENT);
3147
3148        file->f_mode &= ~FMODE_CREATED;
3149        dentry = d_lookup(dir, &nd->last);
3150        for (;;) {
3151                if (!dentry) {
3152                        dentry = d_alloc_parallel(dir, &nd->last, &wq);
3153                        if (IS_ERR(dentry))
3154                                return dentry;
3155                }
3156                if (d_in_lookup(dentry))
3157                        break;
3158
3159                error = d_revalidate(dentry, nd->flags);
3160                if (likely(error > 0))
3161                        break;
3162                if (error)
3163                        goto out_dput;
3164                d_invalidate(dentry);
3165                dput(dentry);
3166                dentry = NULL;
3167        }
3168        if (dentry->d_inode) {
3169                /* Cached positive dentry: will open in f_op->open */
3170                return dentry;
3171        }
3172
3173        /*
3174         * Checking write permission is tricky, bacuse we don't know if we are
3175         * going to actually need it: O_CREAT opens should work as long as the
3176         * file exists.  But checking existence breaks atomicity.  The trick is
3177         * to check access and if not granted clear O_CREAT from the flags.
3178         *
3179         * Another problem is returing the "right" error value (e.g. for an
3180         * O_EXCL open we want to return EEXIST not EROFS).
3181         */
3182        if (unlikely(!got_write))
3183                open_flag &= ~O_TRUNC;
3184        mnt_userns = mnt_user_ns(nd->path.mnt);
3185        if (open_flag & O_CREAT) {
3186                if (open_flag & O_EXCL)
3187                        open_flag &= ~O_TRUNC;
3188                if (!IS_POSIXACL(dir->d_inode))
3189                        mode &= ~current_umask();
3190                if (likely(got_write))
3191                        create_error = may_o_create(mnt_userns, &nd->path,
3192                                                    dentry, mode);
3193                else
3194                        create_error = -EROFS;
3195        }
3196        if (create_error)
3197                open_flag &= ~O_CREAT;
3198        if (dir_inode->i_op->atomic_open) {
3199                dentry = atomic_open(nd, dentry, file, open_flag, mode);
3200                if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3201                        dentry = ERR_PTR(create_error);
3202                return dentry;
3203        }
3204
3205        if (d_in_lookup(dentry)) {
3206                struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3207                                                             nd->flags);
3208                d_lookup_done(dentry);
3209                if (unlikely(res)) {
3210                        if (IS_ERR(res)) {
3211                                error = PTR_ERR(res);
3212                                goto out_dput;
3213                        }
3214                        dput(dentry);
3215                        dentry = res;
3216                }
3217        }
3218
3219        /* Negative dentry, just create the file */
3220        if (!dentry->d_inode && (open_flag & O_CREAT)) {
3221                file->f_mode |= FMODE_CREATED;
3222                audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3223                if (!dir_inode->i_op->create) {
3224                        error = -EACCES;
3225                        goto out_dput;
3226                }
3227
3228                error = dir_inode->i_op->create(mnt_userns, dir_inode, dentry,
3229                                                mode, open_flag & O_EXCL);
3230                if (error)
3231                        goto out_dput;
3232        }
3233        if (unlikely(create_error) && !dentry->d_inode) {
3234                error = create_error;
3235                goto out_dput;
3236        }
3237        return dentry;
3238
3239out_dput:
3240        dput(dentry);
3241        return ERR_PTR(error);
3242}
3243
3244static const char *open_last_lookups(struct nameidata *nd,
3245                   struct file *file, const struct open_flags *op)
3246{
3247        struct dentry *dir = nd->path.dentry;
3248        int open_flag = op->open_flag;
3249        bool got_write = false;
3250        unsigned seq;
3251        struct inode *inode;
3252        struct dentry *dentry;
3253        const char *res;
3254
3255        nd->flags |= op->intent;
3256
3257        if (nd->last_type != LAST_NORM) {
3258                if (nd->depth)
3259                        put_link(nd);
3260                return handle_dots(nd, nd->last_type);
3261        }
3262
3263        if (!(open_flag & O_CREAT)) {
3264                if (nd->last.name[nd->last.len])
3265                        nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3266                /* we _can_ be in RCU mode here */
3267                dentry = lookup_fast(nd, &inode, &seq);
3268                if (IS_ERR(dentry))
3269                        return ERR_CAST(dentry);
3270                if (likely(dentry))
3271                        goto finish_lookup;
3272
3273                BUG_ON(nd->flags & LOOKUP_RCU);
3274        } else {
3275                /* create side of things */
3276                if (nd->flags & LOOKUP_RCU) {
3277                        if (!try_to_unlazy(nd))
3278                                return ERR_PTR(-ECHILD);
3279                }
3280                audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3281                /* trailing slashes? */
3282                if (unlikely(nd->last.name[nd->last.len]))
3283                        return ERR_PTR(-EISDIR);
3284        }
3285
3286        if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3287                got_write = !mnt_want_write(nd->path.mnt);
3288                /*
3289                 * do _not_ fail yet - we might not need that or fail with
3290                 * a different error; let lookup_open() decide; we'll be
3291                 * dropping this one anyway.
3292                 */
3293        }
3294        if (open_flag & O_CREAT)
3295                inode_lock(dir->d_inode);
3296        else
3297                inode_lock_shared(dir->d_inode);
3298        dentry = lookup_open(nd, file, op, got_write);
3299        if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3300                fsnotify_create(dir->d_inode, dentry);
3301        if (open_flag & O_CREAT)
3302                inode_unlock(dir->d_inode);
3303        else
3304                inode_unlock_shared(dir->d_inode);
3305
3306        if (got_write)
3307                mnt_drop_write(nd->path.mnt);
3308
3309        if (IS_ERR(dentry))
3310                return ERR_CAST(dentry);
3311
3312        if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3313                dput(nd->path.dentry);
3314                nd->path.dentry = dentry;
3315                return NULL;
3316        }
3317
3318finish_lookup:
3319        if (nd->depth)
3320                put_link(nd);
3321        res = step_into(nd, WALK_TRAILING, dentry, inode, seq);
3322        if (unlikely(res))
3323                nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3324        return res;
3325}
3326
3327/*
3328 * Handle the last step of open()
3329 */
3330static int do_open(struct nameidata *nd,
3331                   struct file *file, const struct open_flags *op)
3332{
3333        struct user_namespace *mnt_userns;
3334        int open_flag = op->open_flag;
3335        bool do_truncate;
3336        int acc_mode;
3337        int error;
3338
3339        if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3340                error = complete_walk(nd);
3341                if (error)
3342                        return error;
3343        }
3344        if (!(file->f_mode & FMODE_CREATED))
3345                audit_inode(nd->name, nd->path.dentry, 0);
3346        mnt_userns = mnt_user_ns(nd->path.mnt);
3347        if (open_flag & O_CREAT) {
3348                if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3349                        return -EEXIST;
3350                if (d_is_dir(nd->path.dentry))
3351                        return -EISDIR;
3352                error = may_create_in_sticky(mnt_userns, nd,
3353                                             d_backing_inode(nd->path.dentry));
3354                if (unlikely(error))
3355                        return error;
3356        }
3357        if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3358                return -ENOTDIR;
3359
3360        do_truncate = false;
3361        acc_mode = op->acc_mode;
3362        if (file->f_mode & FMODE_CREATED) {
3363                /* Don't check for write permission, don't truncate */
3364                open_flag &= ~O_TRUNC;
3365                acc_mode = 0;
3366        } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3367                error = mnt_want_write(nd->path.mnt);
3368                if (error)
3369                        return error;
3370                do_truncate = true;
3371        }
3372        error = may_open(mnt_userns, &nd->path, acc_mode, open_flag);
3373        if (!error && !(file->f_mode & FMODE_OPENED))
3374                error = vfs_open(&nd->path, file);
3375        if (!error)
3376                error = ima_file_check(file, op->acc_mode);
3377        if (!error && do_truncate)
3378                error = handle_truncate(mnt_userns, file);
3379        if (unlikely(error > 0)) {
3380                WARN_ON(1);
3381                error = -EINVAL;
3382        }
3383        if (do_truncate)
3384                mnt_drop_write(nd->path.mnt);
3385        return error;
3386}
3387
3388/**
3389 * vfs_tmpfile - create tmpfile
3390 * @mnt_userns: user namespace of the mount the inode was found from
3391 * @dentry:     pointer to dentry of the base directory
3392 * @mode:       mode of the new tmpfile
3393 * @open_flag:  flags
3394 *
3395 * Create a temporary file.
3396 *
3397 * If the inode has been found through an idmapped mount the user namespace of
3398 * the vfsmount must be passed through @mnt_userns. This function will then take
3399 * care to map the inode according to @mnt_userns before checking permissions.
3400 * On non-idmapped mounts or if permission checking is to be performed on the
3401 * raw inode simply passs init_user_ns.
3402 */
3403struct dentry *vfs_tmpfile(struct user_namespace *mnt_userns,
3404                           struct dentry *dentry, umode_t mode, int open_flag)
3405{
3406        struct dentry *child = NULL;
3407        struct inode *dir = dentry->d_inode;
3408        struct inode *inode;
3409        int error;
3410
3411        /* we want directory to be writable */
3412        error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
3413        if (error)
3414                goto out_err;
3415        error = -EOPNOTSUPP;
3416        if (!dir->i_op->tmpfile)
3417                goto out_err;
3418        error = -ENOMEM;
3419        child = d_alloc(dentry, &slash_name);
3420        if (unlikely(!child))
3421                goto out_err;
3422        error = dir->i_op->tmpfile(mnt_userns, dir, child, mode);
3423        if (error)
3424                goto out_err;
3425        error = -ENOENT;
3426        inode = child->d_inode;
3427        if (unlikely(!inode))
3428                goto out_err;
3429        if (!(open_flag & O_EXCL)) {
3430                spin_lock(&inode->i_lock);
3431                inode->i_state |= I_LINKABLE;
3432                spin_unlock(&inode->i_lock);
3433        }
3434        ima_post_create_tmpfile(mnt_userns, inode);
3435        return child;
3436
3437out_err:
3438        dput(child);
3439        return ERR_PTR(error);
3440}
3441EXPORT_SYMBOL(vfs_tmpfile);
3442
3443static int do_tmpfile(struct nameidata *nd, unsigned flags,
3444                const struct open_flags *op,
3445                struct file *file)
3446{
3447        struct user_namespace *mnt_userns;
3448        struct dentry *child;
3449        struct path path;
3450        int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3451        if (unlikely(error))
3452                return error;
3453        error = mnt_want_write(path.mnt);
3454        if (unlikely(error))
3455                goto out;
3456        mnt_userns = mnt_user_ns(path.mnt);
3457        child = vfs_tmpfile(mnt_userns, path.dentry, op->mode, op->open_flag);
3458        error = PTR_ERR(child);
3459        if (IS_ERR(child))
3460                goto out2;
3461        dput(path.dentry);
3462        path.dentry = child;
3463        audit_inode(nd->name, child, 0);
3464        /* Don't check for other permissions, the inode was just created */
3465        error = may_open(mnt_userns, &path, 0, op->open_flag);
3466        if (!error)
3467                error = vfs_open(&path, file);
3468out2:
3469        mnt_drop_write(path.mnt);
3470out:
3471        path_put(&path);
3472        return error;
3473}
3474
3475static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3476{
3477        struct path path;
3478        int error = path_lookupat(nd, flags, &path);
3479        if (!error) {
3480                audit_inode(nd->name, path.dentry, 0);
3481                error = vfs_open(&path, file);
3482                path_put(&path);
3483        }
3484        return error;
3485}
3486
3487static struct file *path_openat(struct nameidata *nd,
3488                        const struct open_flags *op, unsigned flags)
3489{
3490        struct file *file;
3491        int error;
3492
3493        file = alloc_empty_file(op->open_flag, current_cred());
3494        if (IS_ERR(file))
3495                return file;
3496
3497        if (unlikely(file->f_flags & __O_TMPFILE)) {
3498                error = do_tmpfile(nd, flags, op, file);
3499        } else if (unlikely(file->f_flags & O_PATH)) {
3500                error = do_o_path(nd, flags, file);
3501        } else {
3502                const char *s = path_init(nd, flags);
3503                while (!(error = link_path_walk(s, nd)) &&
3504                       (s = open_last_lookups(nd, file, op)) != NULL)
3505                        ;
3506                if (!error)
3507                        error = do_open(nd, file, op);
3508                terminate_walk(nd);
3509        }
3510        if (likely(!error)) {
3511                if (likely(file->f_mode & FMODE_OPENED))
3512                        return file;
3513                WARN_ON(1);
3514                error = -EINVAL;
3515        }
3516        fput(file);
3517        if (error == -EOPENSTALE) {
3518                if (flags & LOOKUP_RCU)
3519                        error = -ECHILD;
3520                else
3521                        error = -ESTALE;
3522        }
3523        return ERR_PTR(error);
3524}
3525
3526struct file *do_filp_open(int dfd, struct filename *pathname,
3527                const struct open_flags *op)
3528{
3529        struct nameidata nd;
3530        int flags = op->lookup_flags;
3531        struct file *filp;
3532
3533        set_nameidata(&nd, dfd, pathname, NULL);
3534        filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3535        if (unlikely(filp == ERR_PTR(-ECHILD)))
3536                filp = path_openat(&nd, op, flags);
3537        if (unlikely(filp == ERR_PTR(-ESTALE)))
3538                filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3539        restore_nameidata();
3540        return filp;
3541}
3542
3543struct file *do_file_open_root(const struct path *root,
3544                const char *name, const struct open_flags *op)
3545{
3546        struct nameidata nd;
3547        struct file *file;
3548        struct filename *filename;
3549        int flags = op->lookup_flags;
3550
3551        if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
3552                return ERR_PTR(-ELOOP);
3553
3554        filename = getname_kernel(name);
3555        if (IS_ERR(filename))
3556                return ERR_CAST(filename);
3557
3558        set_nameidata(&nd, -1, filename, root);
3559        file = path_openat(&nd, op, flags | LOOKUP_RCU);
3560        if (unlikely(file == ERR_PTR(-ECHILD)))
3561                file = path_openat(&nd, op, flags);
3562        if (unlikely(file == ERR_PTR(-ESTALE)))
3563                file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3564        restore_nameidata();
3565        putname(filename);
3566        return file;
3567}
3568
3569static struct dentry *filename_create(int dfd, struct filename *name,
3570                                struct path *path, unsigned int lookup_flags)
3571{
3572        struct dentry *dentry = ERR_PTR(-EEXIST);
3573        struct qstr last;
3574        int type;
3575        int err2;
3576        int error;
3577        bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3578
3579        /*
3580         * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3581         * other flags passed in are ignored!
3582         */
3583        lookup_flags &= LOOKUP_REVAL;
3584
3585        name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3586        if (IS_ERR(name))
3587                return ERR_CAST(name);
3588
3589        /*
3590         * Yucky last component or no last component at all?
3591         * (foo/., foo/.., /////)
3592         */
3593        if (unlikely(type != LAST_NORM))
3594                goto out;
3595
3596        /* don't fail immediately if it's r/o, at least try to report other errors */
3597        err2 = mnt_want_write(path->mnt);
3598        /*
3599         * Do the final lookup.
3600         */
3601        lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3602        inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3603        dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3604        if (IS_ERR(dentry))
3605                goto unlock;
3606
3607        error = -EEXIST;
3608        if (d_is_positive(dentry))
3609                goto fail;
3610
3611        /*
3612         * Special case - lookup gave negative, but... we had foo/bar/
3613         * From the vfs_mknod() POV we just have a negative dentry -
3614         * all is fine. Let's be bastards - you had / on the end, you've
3615         * been asking for (non-existent) directory. -ENOENT for you.
3616         */
3617        if (unlikely(!is_dir && last.name[last.len])) {
3618                error = -ENOENT;
3619                goto fail;
3620        }
3621        if (unlikely(err2)) {
3622                error = err2;
3623                goto fail;
3624        }
3625        putname(name);
3626        return dentry;
3627fail:
3628        dput(dentry);
3629        dentry = ERR_PTR(error);
3630unlock:
3631        inode_unlock(path->dentry->d_inode);
3632        if (!err2)
3633                mnt_drop_write(path->mnt);
3634out:
3635        path_put(path);
3636        putname(name);
3637        return dentry;
3638}
3639
3640struct dentry *kern_path_create(int dfd, const char *pathname,
3641                                struct path *path, unsigned int lookup_flags)
3642{
3643        return filename_create(dfd, getname_kernel(pathname),
3644                                path, lookup_flags);
3645}
3646EXPORT_SYMBOL(kern_path_create);
3647
3648void done_path_create(struct path *path, struct dentry *dentry)
3649{
3650        dput(dentry);
3651        inode_unlock(path->dentry->d_inode);
3652        mnt_drop_write(path->mnt);
3653        path_put(path);
3654}
3655EXPORT_SYMBOL(done_path_create);
3656
3657inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3658                                struct path *path, unsigned int lookup_flags)
3659{
3660        return filename_create(dfd, getname(pathname), path, lookup_flags);
3661}
3662EXPORT_SYMBOL(user_path_create);
3663
3664/**
3665 * vfs_mknod - create device node or file
3666 * @mnt_userns: user namespace of the mount the inode was found from
3667 * @dir:        inode of @dentry
3668 * @dentry:     pointer to dentry of the base directory
3669 * @mode:       mode of the new device node or file
3670 * @dev:        device number of device to create
3671 *
3672 * Create a device node or file.
3673 *
3674 * If the inode has been found through an idmapped mount the user namespace of
3675 * the vfsmount must be passed through @mnt_userns. This function will then take
3676 * care to map the inode according to @mnt_userns before checking permissions.
3677 * On non-idmapped mounts or if permission checking is to be performed on the
3678 * raw inode simply passs init_user_ns.
3679 */
3680int vfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
3681              struct dentry *dentry, umode_t mode, dev_t dev)
3682{
3683        bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3684        int error = may_create(mnt_userns, dir, dentry);
3685
3686        if (error)
3687                return error;
3688
3689        if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3690            !capable(CAP_MKNOD))
3691                return -EPERM;
3692
3693        if (!dir->i_op->mknod)
3694                return -EPERM;
3695
3696        error = devcgroup_inode_mknod(mode, dev);
3697        if (error)
3698                return error;
3699
3700        error = security_inode_mknod(dir, dentry, mode, dev);
3701        if (error)
3702                return error;
3703
3704        error = dir->i_op->mknod(mnt_userns, dir, dentry, mode, dev);
3705        if (!error)
3706                fsnotify_create(dir, dentry);
3707        return error;
3708}
3709EXPORT_SYMBOL(vfs_mknod);
3710
3711static int may_mknod(umode_t mode)
3712{
3713        switch (mode & S_IFMT) {
3714        case S_IFREG:
3715        case S_IFCHR:
3716        case S_IFBLK:
3717        case S_IFIFO:
3718        case S_IFSOCK:
3719        case 0: /* zero mode translates to S_IFREG */
3720                return 0;
3721        case S_IFDIR:
3722                return -EPERM;
3723        default:
3724                return -EINVAL;
3725        }
3726}
3727
3728static long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3729                unsigned int dev)
3730{
3731        struct user_namespace *mnt_userns;
3732        struct dentry *dentry;
3733        struct path path;
3734        int error;
3735        unsigned int lookup_flags = 0;
3736
3737        error = may_mknod(mode);
3738        if (error)
3739                return error;
3740retry:
3741        dentry = user_path_create(dfd, filename, &path, lookup_flags);
3742        if (IS_ERR(dentry))
3743                return PTR_ERR(dentry);
3744
3745        if (!IS_POSIXACL(path.dentry->d_inode))
3746                mode &= ~current_umask();
3747        error = security_path_mknod(&path, dentry, mode, dev);
3748        if (error)
3749                goto out;
3750
3751        mnt_userns = mnt_user_ns(path.mnt);
3752        switch (mode & S_IFMT) {
3753                case 0: case S_IFREG:
3754                        error = vfs_create(mnt_userns, path.dentry->d_inode,
3755                                           dentry, mode, true);
3756                        if (!error)
3757                                ima_post_path_mknod(mnt_userns, dentry);
3758                        break;
3759                case S_IFCHR: case S_IFBLK:
3760                        error = vfs_mknod(mnt_userns, path.dentry->d_inode,
3761                                          dentry, mode, new_decode_dev(dev));
3762                        break;
3763                case S_IFIFO: case S_IFSOCK:
3764                        error = vfs_mknod(mnt_userns, path.dentry->d_inode,
3765                                          dentry, mode, 0);
3766                        break;
3767        }
3768out:
3769        done_path_create(&path, dentry);
3770        if (retry_estale(error, lookup_flags)) {
3771                lookup_flags |= LOOKUP_REVAL;
3772                goto retry;
3773        }
3774        return error;
3775}
3776
3777SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3778                unsigned int, dev)
3779{
3780        return do_mknodat(dfd, filename, mode, dev);
3781}
3782
3783SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3784{
3785        return do_mknodat(AT_FDCWD, filename, mode, dev);
3786}
3787
3788/**
3789 * vfs_mkdir - create directory
3790 * @mnt_userns: user namespace of the mount the inode was found from
3791 * @dir:        inode of @dentry
3792 * @dentry:     pointer to dentry of the base directory
3793 * @mode:       mode of the new directory
3794 *
3795 * Create a directory.
3796 *
3797 * If the inode has been found through an idmapped mount the user namespace of
3798 * the vfsmount must be passed through @mnt_userns. This function will then take
3799 * care to map the inode according to @mnt_userns before checking permissions.
3800 * On non-idmapped mounts or if permission checking is to be performed on the
3801 * raw inode simply passs init_user_ns.
3802 */
3803int vfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
3804              struct dentry *dentry, umode_t mode)
3805{
3806        int error = may_create(mnt_userns, dir, dentry);
3807        unsigned max_links = dir->i_sb->s_max_links;
3808
3809        if (error)
3810                return error;
3811
3812        if (!dir->i_op->mkdir)
3813                return -EPERM;
3814
3815        mode &= (S_IRWXUGO|S_ISVTX);
3816        error = security_inode_mkdir(dir, dentry, mode);
3817        if (error)
3818                return error;
3819
3820        if (max_links && dir->i_nlink >= max_links)
3821                return -EMLINK;
3822
3823        error = dir->i_op->mkdir(mnt_userns, dir, dentry, mode);
3824        if (!error)
3825                fsnotify_mkdir(dir, dentry);
3826        return error;
3827}
3828EXPORT_SYMBOL(vfs_mkdir);
3829
3830static long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3831{
3832        struct dentry *dentry;
3833        struct path path;
3834        int error;
3835        unsigned int lookup_flags = LOOKUP_DIRECTORY;
3836
3837retry:
3838        dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3839        if (IS_ERR(dentry))
3840                return PTR_ERR(dentry);
3841
3842        if (!IS_POSIXACL(path.dentry->d_inode))
3843                mode &= ~current_umask();
3844        error = security_path_mkdir(&path, dentry, mode);
3845        if (!error) {
3846                struct user_namespace *mnt_userns;
3847                mnt_userns = mnt_user_ns(path.mnt);
3848                error = vfs_mkdir(mnt_userns, path.dentry->d_inode, dentry,
3849                                  mode);
3850        }
3851        done_path_create(&path, dentry);
3852        if (retry_estale(error, lookup_flags)) {
3853                lookup_flags |= LOOKUP_REVAL;
3854                goto retry;
3855        }
3856        return error;
3857}
3858
3859SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3860{
3861        return do_mkdirat(dfd, pathname, mode);
3862}
3863
3864SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3865{
3866        return do_mkdirat(AT_FDCWD, pathname, mode);
3867}
3868
3869/**
3870 * vfs_rmdir - remove directory
3871 * @mnt_userns: user namespace of the mount the inode was found from
3872 * @dir:        inode of @dentry
3873 * @dentry:     pointer to dentry of the base directory
3874 *
3875 * Remove a directory.
3876 *
3877 * If the inode has been found through an idmapped mount the user namespace of
3878 * the vfsmount must be passed through @mnt_userns. This function will then take
3879 * care to map the inode according to @mnt_userns before checking permissions.
3880 * On non-idmapped mounts or if permission checking is to be performed on the
3881 * raw inode simply passs init_user_ns.
3882 */
3883int vfs_rmdir(struct user_namespace *mnt_userns, struct inode *dir,
3884                     struct dentry *dentry)
3885{
3886        int error = may_delete(mnt_userns, dir, dentry, 1);
3887
3888        if (error)
3889                return error;
3890
3891        if (!dir->i_op->rmdir)
3892                return -EPERM;
3893
3894        dget(dentry);
3895        inode_lock(dentry->d_inode);
3896
3897        error = -EBUSY;
3898        if (is_local_mountpoint(dentry))
3899                goto out;
3900
3901        error = security_inode_rmdir(dir, dentry);
3902        if (error)
3903                goto out;
3904
3905        error = dir->i_op->rmdir(dir, dentry);
3906        if (error)
3907                goto out;
3908
3909        shrink_dcache_parent(dentry);
3910        dentry->d_inode->i_flags |= S_DEAD;
3911        dont_mount(dentry);
3912        detach_mounts(dentry);
3913        fsnotify_rmdir(dir, dentry);
3914
3915out:
3916        inode_unlock(dentry->d_inode);
3917        dput(dentry);
3918        if (!error)
3919                d_delete(dentry);
3920        return error;
3921}
3922EXPORT_SYMBOL(vfs_rmdir);
3923
3924long do_rmdir(int dfd, struct filename *name)
3925{
3926        struct user_namespace *mnt_userns;
3927        int error = 0;
3928        struct dentry *dentry;
3929        struct path path;
3930        struct qstr last;
3931        int type;
3932        unsigned int lookup_flags = 0;
3933retry:
3934        name = filename_parentat(dfd, name, lookup_flags,
3935                                &path, &last, &type);
3936        if (IS_ERR(name))
3937                return PTR_ERR(name);
3938
3939        switch (type) {
3940        case LAST_DOTDOT:
3941                error = -ENOTEMPTY;
3942                goto exit1;
3943        case LAST_DOT:
3944                error = -EINVAL;
3945                goto exit1;
3946        case LAST_ROOT:
3947                error = -EBUSY;
3948                goto exit1;
3949        }
3950
3951        error = mnt_want_write(path.mnt);
3952        if (error)
3953                goto exit1;
3954
3955        inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3956        dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3957        error = PTR_ERR(dentry);
3958        if (IS_ERR(dentry))
3959                goto exit2;
3960        if (!dentry->d_inode) {
3961                error = -ENOENT;
3962                goto exit3;
3963        }
3964        error = security_path_rmdir(&path, dentry);
3965        if (error)
3966                goto exit3;
3967        mnt_userns = mnt_user_ns(path.mnt);
3968        error = vfs_rmdir(mnt_userns, path.dentry->d_inode, dentry);
3969exit3:
3970        dput(dentry);
3971exit2:
3972        inode_unlock(path.dentry->d_inode);
3973        mnt_drop_write(path.mnt);
3974exit1:
3975        path_put(&path);
3976        if (retry_estale(error, lookup_flags)) {
3977                lookup_flags |= LOOKUP_REVAL;
3978                goto retry;
3979        }
3980        putname(name);
3981        return error;
3982}
3983
3984SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3985{
3986        return do_rmdir(AT_FDCWD, getname(pathname));
3987}
3988
3989/**
3990 * vfs_unlink - unlink a filesystem object
3991 * @mnt_userns: user namespace of the mount the inode was found from
3992 * @dir:        parent directory
3993 * @dentry:     victim
3994 * @delegated_inode: returns victim inode, if the inode is delegated.
3995 *
3996 * The caller must hold dir->i_mutex.
3997 *
3998 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3999 * return a reference to the inode in delegated_inode.  The caller
4000 * should then break the delegation on that inode and retry.  Because
4001 * breaking a delegation may take a long time, the caller should drop
4002 * dir->i_mutex before doing so.
4003 *
4004 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4005 * be appropriate for callers that expect the underlying filesystem not
4006 * to be NFS exported.
4007 *
4008 * If the inode has been found through an idmapped mount the user namespace of
4009 * the vfsmount must be passed through @mnt_userns. This function will then take
4010 * care to map the inode according to @mnt_userns before checking permissions.
4011 * On non-idmapped mounts or if permission checking is to be performed on the
4012 * raw inode simply passs init_user_ns.
4013 */
4014int vfs_unlink(struct user_namespace *mnt_userns, struct inode *dir,
4015               struct dentry *dentry, struct inode **delegated_inode)
4016{
4017        struct inode *target = dentry->d_inode;
4018        int error = may_delete(mnt_userns, dir, dentry, 0);
4019
4020        if (error)
4021                return error;
4022
4023        if (!dir->i_op->unlink)
4024                return -EPERM;
4025
4026        inode_lock(target);
4027        if (is_local_mountpoint(dentry))
4028                error = -EBUSY;
4029        else {
4030                error = security_inode_unlink(dir, dentry);
4031                if (!error) {
4032                        error = try_break_deleg(target, delegated_inode);
4033                        if (error)
4034                                goto out;
4035                        error = dir->i_op->unlink(dir, dentry);
4036                        if (!error) {
4037                                dont_mount(dentry);
4038                                detach_mounts(dentry);
4039                                fsnotify_unlink(dir, dentry);
4040                        }
4041                }
4042        }
4043out:
4044        inode_unlock(target);
4045
4046        /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4047        if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
4048                fsnotify_link_count(target);
4049                d_delete(dentry);
4050        }
4051
4052        return error;
4053}
4054EXPORT_SYMBOL(vfs_unlink);
4055
4056/*
4057 * Make sure that the actual truncation of the file will occur outside its
4058 * directory's i_mutex.  Truncate can take a long time if there is a lot of
4059 * writeout happening, and we don't want to prevent access to the directory
4060 * while waiting on the I/O.
4061 */
4062long do_unlinkat(int dfd, struct filename *name)
4063{
4064        int error;
4065        struct dentry *dentry;
4066        struct path path;
4067        struct qstr last;
4068        int type;
4069        struct inode *inode = NULL;
4070        struct inode *delegated_inode = NULL;
4071        unsigned int lookup_flags = 0;
4072retry:
4073        name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4074        if (IS_ERR(name))
4075                return PTR_ERR(name);
4076
4077        error = -EISDIR;
4078        if (type != LAST_NORM)
4079                goto exit1;
4080
4081        error = mnt_want_write(path.mnt);
4082        if (error)
4083                goto exit1;
4084retry_deleg:
4085        inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4086        dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4087        error = PTR_ERR(dentry);
4088        if (!IS_ERR(dentry)) {
4089                struct user_namespace *mnt_userns;
4090
4091                /* Why not before? Because we want correct error value */
4092                if (last.name[last.len])
4093                        goto slashes;
4094                inode = dentry->d_inode;
4095                if (d_is_negative(dentry))
4096                        goto slashes;
4097                ihold(inode);
4098                error = security_path_unlink(&path, dentry);
4099                if (error)
4100                        goto exit2;
4101                mnt_userns = mnt_user_ns(path.mnt);
4102                error = vfs_unlink(mnt_userns, path.dentry->d_inode, dentry,
4103                                   &delegated_inode);
4104exit2:
4105                dput(dentry);
4106        }
4107        inode_unlock(path.dentry->d_inode);
4108        if (inode)
4109                iput(inode);    /* truncate the inode here */
4110        inode = NULL;
4111        if (delegated_inode) {
4112                error = break_deleg_wait(&delegated_inode);
4113                if (!error)
4114                        goto retry_deleg;
4115        }
4116        mnt_drop_write(path.mnt);
4117exit1:
4118        path_put(&path);
4119        if (retry_estale(error, lookup_flags)) {
4120                lookup_flags |= LOOKUP_REVAL;
4121                inode = NULL;
4122                goto retry;
4123        }
4124        putname(name);
4125        return error;
4126
4127slashes:
4128        if (d_is_negative(dentry))
4129                error = -ENOENT;
4130        else if (d_is_dir(dentry))
4131                error = -EISDIR;
4132        else
4133                error = -ENOTDIR;
4134        goto exit2;
4135}
4136
4137SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4138{
4139        if ((flag & ~AT_REMOVEDIR) != 0)
4140                return -EINVAL;
4141
4142        if (flag & AT_REMOVEDIR)
4143                return do_rmdir(dfd, getname(pathname));
4144        return do_unlinkat(dfd, getname(pathname));
4145}
4146
4147SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4148{
4149        return do_unlinkat(AT_FDCWD, getname(pathname));
4150}
4151
4152/**
4153 * vfs_symlink - create symlink
4154 * @mnt_userns: user namespace of the mount the inode was found from
4155 * @dir:        inode of @dentry
4156 * @dentry:     pointer to dentry of the base directory
4157 * @oldname:    name of the file to link to
4158 *
4159 * Create a symlink.
4160 *
4161 * If the inode has been found through an idmapped mount the user namespace of
4162 * the vfsmount must be passed through @mnt_userns. This function will then take
4163 * care to map the inode according to @mnt_userns before checking permissions.
4164 * On non-idmapped mounts or if permission checking is to be performed on the
4165 * raw inode simply passs init_user_ns.
4166 */
4167int vfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
4168                struct dentry *dentry, const char *oldname)
4169{
4170        int error = may_create(mnt_userns, dir, dentry);
4171
4172        if (error)
4173                return error;
4174
4175        if (!dir->i_op->symlink)
4176                return -EPERM;
4177
4178        error = security_inode_symlink(dir, dentry, oldname);
4179        if (error)
4180                return error;
4181
4182        error = dir->i_op->symlink(mnt_userns, dir, dentry, oldname);
4183        if (!error)
4184                fsnotify_create(dir, dentry);
4185        return error;
4186}
4187EXPORT_SYMBOL(vfs_symlink);
4188
4189static long do_symlinkat(const char __user *oldname, int newdfd,
4190                  const char __user *newname)
4191{
4192        int error;
4193        struct filename *from;
4194        struct dentry *dentry;
4195        struct path path;
4196        unsigned int lookup_flags = 0;
4197
4198        from = getname(oldname);
4199        if (IS_ERR(from))
4200                return PTR_ERR(from);
4201retry:
4202        dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4203        error = PTR_ERR(dentry);
4204        if (IS_ERR(dentry))
4205                goto out_putname;
4206
4207        error = security_path_symlink(&path, dentry, from->name);
4208        if (!error) {
4209                struct user_namespace *mnt_userns;
4210
4211                mnt_userns = mnt_user_ns(path.mnt);
4212                error = vfs_symlink(mnt_userns, path.dentry->d_inode, dentry,
4213                                    from->name);
4214        }
4215        done_path_create(&path, dentry);
4216        if (retry_estale(error, lookup_flags)) {
4217                lookup_flags |= LOOKUP_REVAL;
4218                goto retry;
4219        }
4220out_putname:
4221        putname(from);
4222        return error;
4223}
4224
4225SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4226                int, newdfd, const char __user *, newname)
4227{
4228        return do_symlinkat(oldname, newdfd, newname);
4229}
4230
4231SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4232{
4233        return do_symlinkat(oldname, AT_FDCWD, newname);
4234}
4235
4236/**
4237 * vfs_link - create a new link
4238 * @old_dentry: object to be linked
4239 * @mnt_userns: the user namespace of the mount
4240 * @dir:        new parent
4241 * @new_dentry: where to create the new link
4242 * @delegated_inode: returns inode needing a delegation break
4243 *
4244 * The caller must hold dir->i_mutex
4245 *
4246 * If vfs_link discovers a delegation on the to-be-linked file in need
4247 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4248 * inode in delegated_inode.  The caller should then break the delegation
4249 * and retry.  Because breaking a delegation may take a long time, the
4250 * caller should drop the i_mutex before doing so.
4251 *
4252 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4253 * be appropriate for callers that expect the underlying filesystem not
4254 * to be NFS exported.
4255 *
4256 * If the inode has been found through an idmapped mount the user namespace of
4257 * the vfsmount must be passed through @mnt_userns. This function will then take
4258 * care to map the inode according to @mnt_userns before checking permissions.
4259 * On non-idmapped mounts or if permission checking is to be performed on the
4260 * raw inode simply passs init_user_ns.
4261 */
4262int vfs_link(struct dentry *old_dentry, struct user_namespace *mnt_userns,
4263             struct inode *dir, struct dentry *new_dentry,
4264             struct inode **delegated_inode)
4265{
4266        struct inode *inode = old_dentry->d_inode;
4267        unsigned max_links = dir->i_sb->s_max_links;
4268        int error;
4269
4270        if (!inode)
4271                return -ENOENT;
4272
4273        error = may_create(mnt_userns, dir, new_dentry);
4274        if (error)
4275                return error;
4276
4277        if (dir->i_sb != inode->i_sb)
4278                return -EXDEV;
4279
4280        /*
4281         * A link to an append-only or immutable file cannot be created.
4282         */
4283        if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4284                return -EPERM;
4285        /*
4286         * Updating the link count will likely cause i_uid and i_gid to
4287         * be writen back improperly if their true value is unknown to
4288         * the vfs.
4289         */
4290        if (HAS_UNMAPPED_ID(mnt_userns, inode))
4291                return -EPERM;
4292        if (!dir->i_op->link)
4293                return -EPERM;
4294        if (S_ISDIR(inode->i_mode))
4295                return -EPERM;
4296
4297        error = security_inode_link(old_dentry, dir, new_dentry);
4298        if (error)
4299                return error;
4300
4301        inode_lock(inode);
4302        /* Make sure we don't allow creating hardlink to an unlinked file */
4303        if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4304                error =  -ENOENT;
4305        else if (max_links && inode->i_nlink >= max_links)
4306                error = -EMLINK;
4307        else {
4308                error = try_break_deleg(inode, delegated_inode);
4309                if (!error)
4310                        error = dir->i_op->link(old_dentry, dir, new_dentry);
4311        }
4312
4313        if (!error && (inode->i_state & I_LINKABLE)) {
4314                spin_lock(&inode->i_lock);
4315                inode->i_state &= ~I_LINKABLE;
4316                spin_unlock(&inode->i_lock);
4317        }
4318        inode_unlock(inode);
4319        if (!error)
4320                fsnotify_link(dir, inode, new_dentry);
4321        return error;
4322}
4323EXPORT_SYMBOL(vfs_link);
4324
4325/*
4326 * Hardlinks are often used in delicate situations.  We avoid
4327 * security-related surprises by not following symlinks on the
4328 * newname.  --KAB
4329 *
4330 * We don't follow them on the oldname either to be compatible
4331 * with linux 2.0, and to avoid hard-linking to directories
4332 * and other special files.  --ADM
4333 */
4334static int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4335              const char __user *newname, int flags)
4336{
4337        struct user_namespace *mnt_userns;
4338        struct dentry *new_dentry;
4339        struct path old_path, new_path;
4340        struct inode *delegated_inode = NULL;
4341        int how = 0;
4342        int error;
4343
4344        if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4345                return -EINVAL;
4346        /*
4347         * To use null names we require CAP_DAC_READ_SEARCH
4348         * This ensures that not everyone will be able to create
4349         * handlink using the passed filedescriptor.
4350         */
4351        if (flags & AT_EMPTY_PATH) {
4352                if (!capable(CAP_DAC_READ_SEARCH))
4353                        return -ENOENT;
4354                how = LOOKUP_EMPTY;
4355        }
4356
4357        if (flags & AT_SYMLINK_FOLLOW)
4358                how |= LOOKUP_FOLLOW;
4359retry:
4360        error = user_path_at(olddfd, oldname, how, &old_path);
4361        if (error)
4362                return error;
4363
4364        new_dentry = user_path_create(newdfd, newname, &new_path,
4365                                        (how & LOOKUP_REVAL));
4366        error = PTR_ERR(new_dentry);
4367        if (IS_ERR(new_dentry))
4368                goto out;
4369
4370        error = -EXDEV;
4371        if (old_path.mnt != new_path.mnt)
4372                goto out_dput;
4373        mnt_userns = mnt_user_ns(new_path.mnt);
4374        error = may_linkat(mnt_userns, &old_path);
4375        if (unlikely(error))
4376                goto out_dput;
4377        error = security_path_link(old_path.dentry, &new_path, new_dentry);
4378        if (error)
4379                goto out_dput;
4380        error = vfs_link(old_path.dentry, mnt_userns, new_path.dentry->d_inode,
4381                         new_dentry, &delegated_inode);
4382out_dput:
4383        done_path_create(&new_path, new_dentry);
4384        if (delegated_inode) {
4385                error = break_deleg_wait(&delegated_inode);
4386                if (!error) {
4387                        path_put(&old_path);
4388                        goto retry;
4389                }
4390        }
4391        if (retry_estale(error, how)) {
4392                path_put(&old_path);
4393                how |= LOOKUP_REVAL;
4394                goto retry;
4395        }
4396out:
4397        path_put(&old_path);
4398
4399        return error;
4400}
4401
4402SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4403                int, newdfd, const char __user *, newname, int, flags)
4404{
4405        return do_linkat(olddfd, oldname, newdfd, newname, flags);
4406}
4407
4408SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4409{
4410        return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4411}
4412
4413/**
4414 * vfs_rename - rename a filesystem object
4415 * @rd:         pointer to &struct renamedata info
4416 *
4417 * The caller must hold multiple mutexes--see lock_rename()).
4418 *
4419 * If vfs_rename discovers a delegation in need of breaking at either
4420 * the source or destination, it will return -EWOULDBLOCK and return a
4421 * reference to the inode in delegated_inode.  The caller should then
4422 * break the delegation and retry.  Because breaking a delegation may
4423 * take a long time, the caller should drop all locks before doing
4424 * so.
4425 *
4426 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4427 * be appropriate for callers that expect the underlying filesystem not
4428 * to be NFS exported.
4429 *
4430 * The worst of all namespace operations - renaming directory. "Perverted"
4431 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4432 * Problems:
4433 *
4434 *      a) we can get into loop creation.
4435 *      b) race potential - two innocent renames can create a loop together.
4436 *         That's where 4.4 screws up. Current fix: serialization on
4437 *         sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4438 *         story.
4439 *      c) we have to lock _four_ objects - parents and victim (if it exists),
4440 *         and source (if it is not a directory).
4441 *         And that - after we got ->i_mutex on parents (until then we don't know
4442 *         whether the target exists).  Solution: try to be smart with locking
4443 *         order for inodes.  We rely on the fact that tree topology may change
4444 *         only under ->s_vfs_rename_mutex _and_ that parent of the object we
4445 *         move will be locked.  Thus we can rank directories by the tree
4446 *         (ancestors first) and rank all non-directories after them.
4447 *         That works since everybody except rename does "lock parent, lookup,
4448 *         lock child" and rename is under ->s_vfs_rename_mutex.
4449 *         HOWEVER, it relies on the assumption that any object with ->lookup()
4450 *         has no more than 1 dentry.  If "hybrid" objects will ever appear,
4451 *         we'd better make sure that there's no link(2) for them.
4452 *      d) conversion from fhandle to dentry may come in the wrong moment - when
4453 *         we are removing the target. Solution: we will have to grab ->i_mutex
4454 *         in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4455 *         ->i_mutex on parents, which works but leads to some truly excessive
4456 *         locking].
4457 */
4458int vfs_rename(struct renamedata *rd)
4459{
4460        int error;
4461        struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4462        struct dentry *old_dentry = rd->old_dentry;
4463        struct dentry *new_dentry = rd->new_dentry;
4464        struct inode **delegated_inode = rd->delegated_inode;
4465        unsigned int flags = rd->flags;
4466        bool is_dir = d_is_dir(old_dentry);
4467        struct inode *source = old_dentry->d_inode;
4468        struct inode *target = new_dentry->d_inode;
4469        bool new_is_dir = false;
4470        unsigned max_links = new_dir->i_sb->s_max_links;
4471        struct name_snapshot old_name;
4472
4473        if (source == target)
4474                return 0;
4475
4476        error = may_delete(rd->old_mnt_userns, old_dir, old_dentry, is_dir);
4477        if (error)
4478                return error;
4479
4480        if (!target) {
4481                error = may_create(rd->new_mnt_userns, new_dir, new_dentry);
4482        } else {
4483                new_is_dir = d_is_dir(new_dentry);
4484
4485                if (!(flags & RENAME_EXCHANGE))
4486                        error = may_delete(rd->new_mnt_userns, new_dir,
4487                                           new_dentry, is_dir);
4488                else
4489                        error = may_delete(rd->new_mnt_userns, new_dir,
4490                                           new_dentry, new_is_dir);
4491        }
4492        if (error)
4493                return error;
4494
4495        if (!old_dir->i_op->rename)
4496                return -EPERM;
4497
4498        /*
4499         * If we are going to change the parent - check write permissions,
4500         * we'll need to flip '..'.
4501         */
4502        if (new_dir != old_dir) {
4503                if (is_dir) {
4504                        error = inode_permission(rd->old_mnt_userns, source,
4505                                                 MAY_WRITE);
4506                        if (error)
4507                                return error;
4508                }
4509                if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4510                        error = inode_permission(rd->new_mnt_userns, target,
4511                                                 MAY_WRITE);
4512                        if (error)
4513                                return error;
4514                }
4515        }
4516
4517        error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4518                                      flags);
4519        if (error)
4520                return error;
4521
4522        take_dentry_name_snapshot(&old_name, old_dentry);
4523        dget(new_dentry);
4524        if (!is_dir || (flags & RENAME_EXCHANGE))
4525                lock_two_nondirectories(source, target);
4526        else if (target)
4527                inode_lock(target);
4528
4529        error = -EBUSY;
4530        if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4531                goto out;
4532
4533        if (max_links && new_dir != old_dir) {
4534                error = -EMLINK;
4535                if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4536                        goto out;
4537                if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4538                    old_dir->i_nlink >= max_links)
4539                        goto out;
4540        }
4541        if (!is_dir) {
4542                error = try_break_deleg(source, delegated_inode);
4543                if (error)
4544                        goto out;
4545        }
4546        if (target && !new_is_dir) {
4547                error = try_break_deleg(target, delegated_inode);
4548                if (error)
4549                        goto out;
4550        }
4551        error = old_dir->i_op->rename(rd->new_mnt_userns, old_dir, old_dentry,
4552                                      new_dir, new_dentry, flags);
4553        if (error)
4554                goto out;
4555
4556        if (!(flags & RENAME_EXCHANGE) && target) {
4557                if (is_dir) {
4558                        shrink_dcache_parent(new_dentry);
4559                        target->i_flags |= S_DEAD;
4560                }
4561                dont_mount(new_dentry);
4562                detach_mounts(new_dentry);
4563        }
4564        if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4565                if (!(flags & RENAME_EXCHANGE))
4566                        d_move(old_dentry, new_dentry);
4567                else
4568                        d_exchange(old_dentry, new_dentry);
4569        }
4570out:
4571        if (!is_dir || (flags & RENAME_EXCHANGE))
4572                unlock_two_nondirectories(source, target);
4573        else if (target)
4574                inode_unlock(target);
4575        dput(new_dentry);
4576        if (!error) {
4577                fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4578                              !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4579                if (flags & RENAME_EXCHANGE) {
4580                        fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4581                                      new_is_dir, NULL, new_dentry);
4582                }
4583        }
4584        release_dentry_name_snapshot(&old_name);
4585
4586        return error;
4587}
4588EXPORT_SYMBOL(vfs_rename);
4589
4590int do_renameat2(int olddfd, struct filename *from, int newdfd,
4591                 struct filename *to, unsigned int flags)
4592{
4593        struct renamedata rd;
4594        struct dentry *old_dentry, *new_dentry;
4595        struct dentry *trap;
4596        struct path old_path, new_path;
4597        struct qstr old_last, new_last;
4598        int old_type, new_type;
4599        struct inode *delegated_inode = NULL;
4600        unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4601        bool should_retry = false;
4602        int error = -EINVAL;
4603
4604        if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4605                goto put_both;
4606
4607        if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4608            (flags & RENAME_EXCHANGE))
4609                goto put_both;
4610
4611        if (flags & RENAME_EXCHANGE)
4612                target_flags = 0;
4613
4614retry:
4615        from = filename_parentat(olddfd, from, lookup_flags, &old_path,
4616                                        &old_last, &old_type);
4617        if (IS_ERR(from)) {
4618                error = PTR_ERR(from);
4619                goto put_new;
4620        }
4621
4622        to = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4623                                &new_type);
4624        if (IS_ERR(to)) {
4625                error = PTR_ERR(to);
4626                goto exit1;
4627        }
4628
4629        error = -EXDEV;
4630        if (old_path.mnt != new_path.mnt)
4631                goto exit2;
4632
4633        error = -EBUSY;
4634        if (old_type != LAST_NORM)
4635                goto exit2;
4636
4637        if (flags & RENAME_NOREPLACE)
4638                error = -EEXIST;
4639        if (new_type != LAST_NORM)
4640                goto exit2;
4641
4642        error = mnt_want_write(old_path.mnt);
4643        if (error)
4644                goto exit2;
4645
4646retry_deleg:
4647        trap = lock_rename(new_path.dentry, old_path.dentry);
4648
4649        old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4650        error = PTR_ERR(old_dentry);
4651        if (IS_ERR(old_dentry))
4652                goto exit3;
4653        /* source must exist */
4654        error = -ENOENT;
4655        if (d_is_negative(old_dentry))
4656                goto exit4;
4657        new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4658        error = PTR_ERR(new_dentry);
4659        if (IS_ERR(new_dentry))
4660                goto exit4;
4661        error = -EEXIST;
4662        if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4663                goto exit5;
4664        if (flags & RENAME_EXCHANGE) {
4665                error = -ENOENT;
4666                if (d_is_negative(new_dentry))
4667                        goto exit5;
4668
4669                if (!d_is_dir(new_dentry)) {
4670                        error = -ENOTDIR;
4671                        if (new_last.name[new_last.len])
4672                                goto exit5;
4673                }
4674        }
4675        /* unless the source is a directory trailing slashes give -ENOTDIR */
4676        if (!d_is_dir(old_dentry)) {
4677                error = -ENOTDIR;
4678                if (old_last.name[old_last.len])
4679                        goto exit5;
4680                if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4681                        goto exit5;
4682        }
4683        /* source should not be ancestor of target */
4684        error = -EINVAL;
4685        if (old_dentry == trap)
4686                goto exit5;
4687        /* target should not be an ancestor of source */
4688        if (!(flags & RENAME_EXCHANGE))
4689                error = -ENOTEMPTY;
4690        if (new_dentry == trap)
4691                goto exit5;
4692
4693        error = security_path_rename(&old_path, old_dentry,
4694                                     &new_path, new_dentry, flags);
4695        if (error)
4696                goto exit5;
4697
4698        rd.old_dir         = old_path.dentry->d_inode;
4699        rd.old_dentry      = old_dentry;
4700        rd.old_mnt_userns  = mnt_user_ns(old_path.mnt);
4701        rd.new_dir         = new_path.dentry->d_inode;
4702        rd.new_dentry      = new_dentry;
4703        rd.new_mnt_userns  = mnt_user_ns(new_path.mnt);
4704        rd.delegated_inode = &delegated_inode;
4705        rd.flags           = flags;
4706        error = vfs_rename(&rd);
4707exit5:
4708        dput(new_dentry);
4709exit4:
4710        dput(old_dentry);
4711exit3:
4712        unlock_rename(new_path.dentry, old_path.dentry);
4713        if (delegated_inode) {
4714                error = break_deleg_wait(&delegated_inode);
4715                if (!error)
4716                        goto retry_deleg;
4717        }
4718        mnt_drop_write(old_path.mnt);
4719exit2:
4720        if (retry_estale(error, lookup_flags))
4721                should_retry = true;
4722        path_put(&new_path);
4723exit1:
4724        path_put(&old_path);
4725        if (should_retry) {
4726                should_retry = false;
4727                lookup_flags |= LOOKUP_REVAL;
4728                goto retry;
4729        }
4730put_both:
4731        if (!IS_ERR(from))
4732                putname(from);
4733put_new:
4734        if (!IS_ERR(to))
4735                putname(to);
4736        return error;
4737}
4738
4739SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4740                int, newdfd, const char __user *, newname, unsigned int, flags)
4741{
4742        return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4743                                flags);
4744}
4745
4746SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4747                int, newdfd, const char __user *, newname)
4748{
4749        return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4750                                0);
4751}
4752
4753SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4754{
4755        return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
4756                                getname(newname), 0);
4757}
4758
4759int readlink_copy(char __user *buffer, int buflen, const char *link)
4760{
4761        int len = PTR_ERR(link);
4762        if (IS_ERR(link))
4763                goto out;
4764
4765        len = strlen(link);
4766        if (len > (unsigned) buflen)
4767                len = buflen;
4768        if (copy_to_user(buffer, link, len))
4769                len = -EFAULT;
4770out:
4771        return len;
4772}
4773
4774/**
4775 * vfs_readlink - copy symlink body into userspace buffer
4776 * @dentry: dentry on which to get symbolic link
4777 * @buffer: user memory pointer
4778 * @buflen: size of buffer
4779 *
4780 * Does not touch atime.  That's up to the caller if necessary
4781 *
4782 * Does not call security hook.
4783 */
4784int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4785{
4786        struct inode *inode = d_inode(dentry);
4787        DEFINE_DELAYED_CALL(done);
4788        const char *link;
4789        int res;
4790
4791        if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4792                if (unlikely(inode->i_op->readlink))
4793                        return inode->i_op->readlink(dentry, buffer, buflen);
4794
4795                if (!d_is_symlink(dentry))
4796                        return -EINVAL;
4797
4798                spin_lock(&inode->i_lock);
4799                inode->i_opflags |= IOP_DEFAULT_READLINK;
4800                spin_unlock(&inode->i_lock);
4801        }
4802
4803        link = READ_ONCE(inode->i_link);
4804        if (!link) {
4805                link = inode->i_op->get_link(dentry, inode, &done);
4806                if (IS_ERR(link))
4807                        return PTR_ERR(link);
4808        }
4809        res = readlink_copy(buffer, buflen, link);
4810        do_delayed_call(&done);
4811        return res;
4812}
4813EXPORT_SYMBOL(vfs_readlink);
4814
4815/**
4816 * vfs_get_link - get symlink body
4817 * @dentry: dentry on which to get symbolic link
4818 * @done: caller needs to free returned data with this
4819 *
4820 * Calls security hook and i_op->get_link() on the supplied inode.
4821 *
4822 * It does not touch atime.  That's up to the caller if necessary.
4823 *
4824 * Does not work on "special" symlinks like /proc/$$/fd/N
4825 */
4826const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4827{
4828        const char *res = ERR_PTR(-EINVAL);
4829        struct inode *inode = d_inode(dentry);
4830
4831        if (d_is_symlink(dentry)) {
4832                res = ERR_PTR(security_inode_readlink(dentry));
4833                if (!res)
4834                        res = inode->i_op->get_link(dentry, inode, done);
4835        }
4836        return res;
4837}
4838EXPORT_SYMBOL(vfs_get_link);
4839
4840/* get the link contents into pagecache */
4841const char *page_get_link(struct dentry *dentry, struct inode *inode,
4842                          struct delayed_call *callback)
4843{
4844        char *kaddr;
4845        struct page *page;
4846        struct address_space *mapping = inode->i_mapping;
4847
4848        if (!dentry) {
4849                page = find_get_page(mapping, 0);
4850                if (!page)
4851                        return ERR_PTR(-ECHILD);
4852                if (!PageUptodate(page)) {
4853                        put_page(page);
4854                        return ERR_PTR(-ECHILD);
4855                }
4856        } else {
4857                page = read_mapping_page(mapping, 0, NULL);
4858                if (IS_ERR(page))
4859                        return (char*)page;
4860        }
4861        set_delayed_call(callback, page_put_link, page);
4862        BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4863        kaddr = page_address(page);
4864        nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4865        return kaddr;
4866}
4867
4868EXPORT_SYMBOL(page_get_link);
4869
4870void page_put_link(void *arg)
4871{
4872        put_page(arg);
4873}
4874EXPORT_SYMBOL(page_put_link);
4875
4876int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4877{
4878        DEFINE_DELAYED_CALL(done);
4879        int res = readlink_copy(buffer, buflen,
4880                                page_get_link(dentry, d_inode(dentry),
4881                                              &done));
4882        do_delayed_call(&done);
4883        return res;
4884}
4885EXPORT_SYMBOL(page_readlink);
4886
4887/*
4888 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4889 */
4890int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4891{
4892        struct address_space *mapping = inode->i_mapping;
4893        struct page *page;
4894        void *fsdata;
4895        int err;
4896        unsigned int flags = 0;
4897        if (nofs)
4898                flags |= AOP_FLAG_NOFS;
4899
4900retry:
4901        err = pagecache_write_begin(NULL, mapping, 0, len-1,
4902                                flags, &page, &fsdata);
4903        if (err)
4904                goto fail;
4905
4906        memcpy(page_address(page), symname, len-1);
4907
4908        err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4909                                                        page, fsdata);
4910        if (err < 0)
4911                goto fail;
4912        if (err < len-1)
4913                goto retry;
4914
4915        mark_inode_dirty(inode);
4916        return 0;
4917fail:
4918        return err;
4919}
4920EXPORT_SYMBOL(__page_symlink);
4921
4922int page_symlink(struct inode *inode, const char *symname, int len)
4923{
4924        return __page_symlink(inode, symname, len,
4925                        !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4926}
4927EXPORT_SYMBOL(page_symlink);
4928
4929const struct inode_operations page_symlink_inode_operations = {
4930        .get_link       = page_get_link,
4931};
4932EXPORT_SYMBOL(page_symlink_inode_operations);
4933