linux/fs/ocfs2/journal.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * journal.c
   4 *
   5 * Defines functions of journalling api
   6 *
   7 * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
   8 */
   9
  10#include <linux/fs.h>
  11#include <linux/types.h>
  12#include <linux/slab.h>
  13#include <linux/highmem.h>
  14#include <linux/kthread.h>
  15#include <linux/time.h>
  16#include <linux/random.h>
  17#include <linux/delay.h>
  18
  19#include <cluster/masklog.h>
  20
  21#include "ocfs2.h"
  22
  23#include "alloc.h"
  24#include "blockcheck.h"
  25#include "dir.h"
  26#include "dlmglue.h"
  27#include "extent_map.h"
  28#include "heartbeat.h"
  29#include "inode.h"
  30#include "journal.h"
  31#include "localalloc.h"
  32#include "slot_map.h"
  33#include "super.h"
  34#include "sysfile.h"
  35#include "uptodate.h"
  36#include "quota.h"
  37#include "file.h"
  38#include "namei.h"
  39
  40#include "buffer_head_io.h"
  41#include "ocfs2_trace.h"
  42
  43DEFINE_SPINLOCK(trans_inc_lock);
  44
  45#define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
  46
  47static int ocfs2_force_read_journal(struct inode *inode);
  48static int ocfs2_recover_node(struct ocfs2_super *osb,
  49                              int node_num, int slot_num);
  50static int __ocfs2_recovery_thread(void *arg);
  51static int ocfs2_commit_cache(struct ocfs2_super *osb);
  52static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
  53static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
  54                                      int dirty, int replayed);
  55static int ocfs2_trylock_journal(struct ocfs2_super *osb,
  56                                 int slot_num);
  57static int ocfs2_recover_orphans(struct ocfs2_super *osb,
  58                                 int slot,
  59                                 enum ocfs2_orphan_reco_type orphan_reco_type);
  60static int ocfs2_commit_thread(void *arg);
  61static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
  62                                            int slot_num,
  63                                            struct ocfs2_dinode *la_dinode,
  64                                            struct ocfs2_dinode *tl_dinode,
  65                                            struct ocfs2_quota_recovery *qrec,
  66                                            enum ocfs2_orphan_reco_type orphan_reco_type);
  67
  68static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
  69{
  70        return __ocfs2_wait_on_mount(osb, 0);
  71}
  72
  73static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
  74{
  75        return __ocfs2_wait_on_mount(osb, 1);
  76}
  77
  78/*
  79 * This replay_map is to track online/offline slots, so we could recover
  80 * offline slots during recovery and mount
  81 */
  82
  83enum ocfs2_replay_state {
  84        REPLAY_UNNEEDED = 0,    /* Replay is not needed, so ignore this map */
  85        REPLAY_NEEDED,          /* Replay slots marked in rm_replay_slots */
  86        REPLAY_DONE             /* Replay was already queued */
  87};
  88
  89struct ocfs2_replay_map {
  90        unsigned int rm_slots;
  91        enum ocfs2_replay_state rm_state;
  92        unsigned char rm_replay_slots[];
  93};
  94
  95static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
  96{
  97        if (!osb->replay_map)
  98                return;
  99
 100        /* If we've already queued the replay, we don't have any more to do */
 101        if (osb->replay_map->rm_state == REPLAY_DONE)
 102                return;
 103
 104        osb->replay_map->rm_state = state;
 105}
 106
 107int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
 108{
 109        struct ocfs2_replay_map *replay_map;
 110        int i, node_num;
 111
 112        /* If replay map is already set, we don't do it again */
 113        if (osb->replay_map)
 114                return 0;
 115
 116        replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
 117                             (osb->max_slots * sizeof(char)), GFP_KERNEL);
 118
 119        if (!replay_map) {
 120                mlog_errno(-ENOMEM);
 121                return -ENOMEM;
 122        }
 123
 124        spin_lock(&osb->osb_lock);
 125
 126        replay_map->rm_slots = osb->max_slots;
 127        replay_map->rm_state = REPLAY_UNNEEDED;
 128
 129        /* set rm_replay_slots for offline slot(s) */
 130        for (i = 0; i < replay_map->rm_slots; i++) {
 131                if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
 132                        replay_map->rm_replay_slots[i] = 1;
 133        }
 134
 135        osb->replay_map = replay_map;
 136        spin_unlock(&osb->osb_lock);
 137        return 0;
 138}
 139
 140static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
 141                enum ocfs2_orphan_reco_type orphan_reco_type)
 142{
 143        struct ocfs2_replay_map *replay_map = osb->replay_map;
 144        int i;
 145
 146        if (!replay_map)
 147                return;
 148
 149        if (replay_map->rm_state != REPLAY_NEEDED)
 150                return;
 151
 152        for (i = 0; i < replay_map->rm_slots; i++)
 153                if (replay_map->rm_replay_slots[i])
 154                        ocfs2_queue_recovery_completion(osb->journal, i, NULL,
 155                                                        NULL, NULL,
 156                                                        orphan_reco_type);
 157        replay_map->rm_state = REPLAY_DONE;
 158}
 159
 160static void ocfs2_free_replay_slots(struct ocfs2_super *osb)
 161{
 162        struct ocfs2_replay_map *replay_map = osb->replay_map;
 163
 164        if (!osb->replay_map)
 165                return;
 166
 167        kfree(replay_map);
 168        osb->replay_map = NULL;
 169}
 170
 171int ocfs2_recovery_init(struct ocfs2_super *osb)
 172{
 173        struct ocfs2_recovery_map *rm;
 174
 175        mutex_init(&osb->recovery_lock);
 176        osb->disable_recovery = 0;
 177        osb->recovery_thread_task = NULL;
 178        init_waitqueue_head(&osb->recovery_event);
 179
 180        rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
 181                     osb->max_slots * sizeof(unsigned int),
 182                     GFP_KERNEL);
 183        if (!rm) {
 184                mlog_errno(-ENOMEM);
 185                return -ENOMEM;
 186        }
 187
 188        rm->rm_entries = (unsigned int *)((char *)rm +
 189                                          sizeof(struct ocfs2_recovery_map));
 190        osb->recovery_map = rm;
 191
 192        return 0;
 193}
 194
 195/* we can't grab the goofy sem lock from inside wait_event, so we use
 196 * memory barriers to make sure that we'll see the null task before
 197 * being woken up */
 198static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
 199{
 200        mb();
 201        return osb->recovery_thread_task != NULL;
 202}
 203
 204void ocfs2_recovery_exit(struct ocfs2_super *osb)
 205{
 206        struct ocfs2_recovery_map *rm;
 207
 208        /* disable any new recovery threads and wait for any currently
 209         * running ones to exit. Do this before setting the vol_state. */
 210        mutex_lock(&osb->recovery_lock);
 211        osb->disable_recovery = 1;
 212        mutex_unlock(&osb->recovery_lock);
 213        wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
 214
 215        /* At this point, we know that no more recovery threads can be
 216         * launched, so wait for any recovery completion work to
 217         * complete. */
 218        if (osb->ocfs2_wq)
 219                flush_workqueue(osb->ocfs2_wq);
 220
 221        /*
 222         * Now that recovery is shut down, and the osb is about to be
 223         * freed,  the osb_lock is not taken here.
 224         */
 225        rm = osb->recovery_map;
 226        /* XXX: Should we bug if there are dirty entries? */
 227
 228        kfree(rm);
 229}
 230
 231static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
 232                                     unsigned int node_num)
 233{
 234        int i;
 235        struct ocfs2_recovery_map *rm = osb->recovery_map;
 236
 237        assert_spin_locked(&osb->osb_lock);
 238
 239        for (i = 0; i < rm->rm_used; i++) {
 240                if (rm->rm_entries[i] == node_num)
 241                        return 1;
 242        }
 243
 244        return 0;
 245}
 246
 247/* Behaves like test-and-set.  Returns the previous value */
 248static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
 249                                  unsigned int node_num)
 250{
 251        struct ocfs2_recovery_map *rm = osb->recovery_map;
 252
 253        spin_lock(&osb->osb_lock);
 254        if (__ocfs2_recovery_map_test(osb, node_num)) {
 255                spin_unlock(&osb->osb_lock);
 256                return 1;
 257        }
 258
 259        /* XXX: Can this be exploited? Not from o2dlm... */
 260        BUG_ON(rm->rm_used >= osb->max_slots);
 261
 262        rm->rm_entries[rm->rm_used] = node_num;
 263        rm->rm_used++;
 264        spin_unlock(&osb->osb_lock);
 265
 266        return 0;
 267}
 268
 269static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
 270                                     unsigned int node_num)
 271{
 272        int i;
 273        struct ocfs2_recovery_map *rm = osb->recovery_map;
 274
 275        spin_lock(&osb->osb_lock);
 276
 277        for (i = 0; i < rm->rm_used; i++) {
 278                if (rm->rm_entries[i] == node_num)
 279                        break;
 280        }
 281
 282        if (i < rm->rm_used) {
 283                /* XXX: be careful with the pointer math */
 284                memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
 285                        (rm->rm_used - i - 1) * sizeof(unsigned int));
 286                rm->rm_used--;
 287        }
 288
 289        spin_unlock(&osb->osb_lock);
 290}
 291
 292static int ocfs2_commit_cache(struct ocfs2_super *osb)
 293{
 294        int status = 0;
 295        unsigned int flushed;
 296        struct ocfs2_journal *journal = NULL;
 297
 298        journal = osb->journal;
 299
 300        /* Flush all pending commits and checkpoint the journal. */
 301        down_write(&journal->j_trans_barrier);
 302
 303        flushed = atomic_read(&journal->j_num_trans);
 304        trace_ocfs2_commit_cache_begin(flushed);
 305        if (flushed == 0) {
 306                up_write(&journal->j_trans_barrier);
 307                goto finally;
 308        }
 309
 310        jbd2_journal_lock_updates(journal->j_journal);
 311        status = jbd2_journal_flush(journal->j_journal, 0);
 312        jbd2_journal_unlock_updates(journal->j_journal);
 313        if (status < 0) {
 314                up_write(&journal->j_trans_barrier);
 315                mlog_errno(status);
 316                goto finally;
 317        }
 318
 319        ocfs2_inc_trans_id(journal);
 320
 321        flushed = atomic_read(&journal->j_num_trans);
 322        atomic_set(&journal->j_num_trans, 0);
 323        up_write(&journal->j_trans_barrier);
 324
 325        trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
 326
 327        ocfs2_wake_downconvert_thread(osb);
 328        wake_up(&journal->j_checkpointed);
 329finally:
 330        return status;
 331}
 332
 333handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
 334{
 335        journal_t *journal = osb->journal->j_journal;
 336        handle_t *handle;
 337
 338        BUG_ON(!osb || !osb->journal->j_journal);
 339
 340        if (ocfs2_is_hard_readonly(osb))
 341                return ERR_PTR(-EROFS);
 342
 343        BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
 344        BUG_ON(max_buffs <= 0);
 345
 346        /* Nested transaction? Just return the handle... */
 347        if (journal_current_handle())
 348                return jbd2_journal_start(journal, max_buffs);
 349
 350        sb_start_intwrite(osb->sb);
 351
 352        down_read(&osb->journal->j_trans_barrier);
 353
 354        handle = jbd2_journal_start(journal, max_buffs);
 355        if (IS_ERR(handle)) {
 356                up_read(&osb->journal->j_trans_barrier);
 357                sb_end_intwrite(osb->sb);
 358
 359                mlog_errno(PTR_ERR(handle));
 360
 361                if (is_journal_aborted(journal)) {
 362                        ocfs2_abort(osb->sb, "Detected aborted journal\n");
 363                        handle = ERR_PTR(-EROFS);
 364                }
 365        } else {
 366                if (!ocfs2_mount_local(osb))
 367                        atomic_inc(&(osb->journal->j_num_trans));
 368        }
 369
 370        return handle;
 371}
 372
 373int ocfs2_commit_trans(struct ocfs2_super *osb,
 374                       handle_t *handle)
 375{
 376        int ret, nested;
 377        struct ocfs2_journal *journal = osb->journal;
 378
 379        BUG_ON(!handle);
 380
 381        nested = handle->h_ref > 1;
 382        ret = jbd2_journal_stop(handle);
 383        if (ret < 0)
 384                mlog_errno(ret);
 385
 386        if (!nested) {
 387                up_read(&journal->j_trans_barrier);
 388                sb_end_intwrite(osb->sb);
 389        }
 390
 391        return ret;
 392}
 393
 394/*
 395 * 'nblocks' is what you want to add to the current transaction.
 396 *
 397 * This might call jbd2_journal_restart() which will commit dirty buffers
 398 * and then restart the transaction. Before calling
 399 * ocfs2_extend_trans(), any changed blocks should have been
 400 * dirtied. After calling it, all blocks which need to be changed must
 401 * go through another set of journal_access/journal_dirty calls.
 402 *
 403 * WARNING: This will not release any semaphores or disk locks taken
 404 * during the transaction, so make sure they were taken *before*
 405 * start_trans or we'll have ordering deadlocks.
 406 *
 407 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
 408 * good because transaction ids haven't yet been recorded on the
 409 * cluster locks associated with this handle.
 410 */
 411int ocfs2_extend_trans(handle_t *handle, int nblocks)
 412{
 413        int status, old_nblocks;
 414
 415        BUG_ON(!handle);
 416        BUG_ON(nblocks < 0);
 417
 418        if (!nblocks)
 419                return 0;
 420
 421        old_nblocks = jbd2_handle_buffer_credits(handle);
 422
 423        trace_ocfs2_extend_trans(old_nblocks, nblocks);
 424
 425#ifdef CONFIG_OCFS2_DEBUG_FS
 426        status = 1;
 427#else
 428        status = jbd2_journal_extend(handle, nblocks, 0);
 429        if (status < 0) {
 430                mlog_errno(status);
 431                goto bail;
 432        }
 433#endif
 434
 435        if (status > 0) {
 436                trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
 437                status = jbd2_journal_restart(handle,
 438                                              old_nblocks + nblocks);
 439                if (status < 0) {
 440                        mlog_errno(status);
 441                        goto bail;
 442                }
 443        }
 444
 445        status = 0;
 446bail:
 447        return status;
 448}
 449
 450/*
 451 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
 452 * If that fails, restart the transaction & regain write access for the
 453 * buffer head which is used for metadata modifications.
 454 * Taken from Ext4: extend_or_restart_transaction()
 455 */
 456int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
 457{
 458        int status, old_nblks;
 459
 460        BUG_ON(!handle);
 461
 462        old_nblks = jbd2_handle_buffer_credits(handle);
 463        trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
 464
 465        if (old_nblks < thresh)
 466                return 0;
 467
 468        status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0);
 469        if (status < 0) {
 470                mlog_errno(status);
 471                goto bail;
 472        }
 473
 474        if (status > 0) {
 475                status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
 476                if (status < 0)
 477                        mlog_errno(status);
 478        }
 479
 480bail:
 481        return status;
 482}
 483
 484
 485struct ocfs2_triggers {
 486        struct jbd2_buffer_trigger_type ot_triggers;
 487        int                             ot_offset;
 488};
 489
 490static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
 491{
 492        return container_of(triggers, struct ocfs2_triggers, ot_triggers);
 493}
 494
 495static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
 496                                 struct buffer_head *bh,
 497                                 void *data, size_t size)
 498{
 499        struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
 500
 501        /*
 502         * We aren't guaranteed to have the superblock here, so we
 503         * must unconditionally compute the ecc data.
 504         * __ocfs2_journal_access() will only set the triggers if
 505         * metaecc is enabled.
 506         */
 507        ocfs2_block_check_compute(data, size, data + ot->ot_offset);
 508}
 509
 510/*
 511 * Quota blocks have their own trigger because the struct ocfs2_block_check
 512 * offset depends on the blocksize.
 513 */
 514static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
 515                                 struct buffer_head *bh,
 516                                 void *data, size_t size)
 517{
 518        struct ocfs2_disk_dqtrailer *dqt =
 519                ocfs2_block_dqtrailer(size, data);
 520
 521        /*
 522         * We aren't guaranteed to have the superblock here, so we
 523         * must unconditionally compute the ecc data.
 524         * __ocfs2_journal_access() will only set the triggers if
 525         * metaecc is enabled.
 526         */
 527        ocfs2_block_check_compute(data, size, &dqt->dq_check);
 528}
 529
 530/*
 531 * Directory blocks also have their own trigger because the
 532 * struct ocfs2_block_check offset depends on the blocksize.
 533 */
 534static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
 535                                 struct buffer_head *bh,
 536                                 void *data, size_t size)
 537{
 538        struct ocfs2_dir_block_trailer *trailer =
 539                ocfs2_dir_trailer_from_size(size, data);
 540
 541        /*
 542         * We aren't guaranteed to have the superblock here, so we
 543         * must unconditionally compute the ecc data.
 544         * __ocfs2_journal_access() will only set the triggers if
 545         * metaecc is enabled.
 546         */
 547        ocfs2_block_check_compute(data, size, &trailer->db_check);
 548}
 549
 550static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
 551                                struct buffer_head *bh)
 552{
 553        mlog(ML_ERROR,
 554             "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
 555             "bh->b_blocknr = %llu\n",
 556             (unsigned long)bh,
 557             (unsigned long long)bh->b_blocknr);
 558
 559        ocfs2_error(bh->b_bdev->bd_super,
 560                    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
 561}
 562
 563static struct ocfs2_triggers di_triggers = {
 564        .ot_triggers = {
 565                .t_frozen = ocfs2_frozen_trigger,
 566                .t_abort = ocfs2_abort_trigger,
 567        },
 568        .ot_offset      = offsetof(struct ocfs2_dinode, i_check),
 569};
 570
 571static struct ocfs2_triggers eb_triggers = {
 572        .ot_triggers = {
 573                .t_frozen = ocfs2_frozen_trigger,
 574                .t_abort = ocfs2_abort_trigger,
 575        },
 576        .ot_offset      = offsetof(struct ocfs2_extent_block, h_check),
 577};
 578
 579static struct ocfs2_triggers rb_triggers = {
 580        .ot_triggers = {
 581                .t_frozen = ocfs2_frozen_trigger,
 582                .t_abort = ocfs2_abort_trigger,
 583        },
 584        .ot_offset      = offsetof(struct ocfs2_refcount_block, rf_check),
 585};
 586
 587static struct ocfs2_triggers gd_triggers = {
 588        .ot_triggers = {
 589                .t_frozen = ocfs2_frozen_trigger,
 590                .t_abort = ocfs2_abort_trigger,
 591        },
 592        .ot_offset      = offsetof(struct ocfs2_group_desc, bg_check),
 593};
 594
 595static struct ocfs2_triggers db_triggers = {
 596        .ot_triggers = {
 597                .t_frozen = ocfs2_db_frozen_trigger,
 598                .t_abort = ocfs2_abort_trigger,
 599        },
 600};
 601
 602static struct ocfs2_triggers xb_triggers = {
 603        .ot_triggers = {
 604                .t_frozen = ocfs2_frozen_trigger,
 605                .t_abort = ocfs2_abort_trigger,
 606        },
 607        .ot_offset      = offsetof(struct ocfs2_xattr_block, xb_check),
 608};
 609
 610static struct ocfs2_triggers dq_triggers = {
 611        .ot_triggers = {
 612                .t_frozen = ocfs2_dq_frozen_trigger,
 613                .t_abort = ocfs2_abort_trigger,
 614        },
 615};
 616
 617static struct ocfs2_triggers dr_triggers = {
 618        .ot_triggers = {
 619                .t_frozen = ocfs2_frozen_trigger,
 620                .t_abort = ocfs2_abort_trigger,
 621        },
 622        .ot_offset      = offsetof(struct ocfs2_dx_root_block, dr_check),
 623};
 624
 625static struct ocfs2_triggers dl_triggers = {
 626        .ot_triggers = {
 627                .t_frozen = ocfs2_frozen_trigger,
 628                .t_abort = ocfs2_abort_trigger,
 629        },
 630        .ot_offset      = offsetof(struct ocfs2_dx_leaf, dl_check),
 631};
 632
 633static int __ocfs2_journal_access(handle_t *handle,
 634                                  struct ocfs2_caching_info *ci,
 635                                  struct buffer_head *bh,
 636                                  struct ocfs2_triggers *triggers,
 637                                  int type)
 638{
 639        int status;
 640        struct ocfs2_super *osb =
 641                OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
 642
 643        BUG_ON(!ci || !ci->ci_ops);
 644        BUG_ON(!handle);
 645        BUG_ON(!bh);
 646
 647        trace_ocfs2_journal_access(
 648                (unsigned long long)ocfs2_metadata_cache_owner(ci),
 649                (unsigned long long)bh->b_blocknr, type, bh->b_size);
 650
 651        /* we can safely remove this assertion after testing. */
 652        if (!buffer_uptodate(bh)) {
 653                mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
 654                mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
 655                     (unsigned long long)bh->b_blocknr, bh->b_state);
 656
 657                lock_buffer(bh);
 658                /*
 659                 * A previous transaction with a couple of buffer heads fail
 660                 * to checkpoint, so all the bhs are marked as BH_Write_EIO.
 661                 * For current transaction, the bh is just among those error
 662                 * bhs which previous transaction handle. We can't just clear
 663                 * its BH_Write_EIO and reuse directly, since other bhs are
 664                 * not written to disk yet and that will cause metadata
 665                 * inconsistency. So we should set fs read-only to avoid
 666                 * further damage.
 667                 */
 668                if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
 669                        unlock_buffer(bh);
 670                        return ocfs2_error(osb->sb, "A previous attempt to "
 671                                        "write this buffer head failed\n");
 672                }
 673                unlock_buffer(bh);
 674        }
 675
 676        /* Set the current transaction information on the ci so
 677         * that the locking code knows whether it can drop it's locks
 678         * on this ci or not. We're protected from the commit
 679         * thread updating the current transaction id until
 680         * ocfs2_commit_trans() because ocfs2_start_trans() took
 681         * j_trans_barrier for us. */
 682        ocfs2_set_ci_lock_trans(osb->journal, ci);
 683
 684        ocfs2_metadata_cache_io_lock(ci);
 685        switch (type) {
 686        case OCFS2_JOURNAL_ACCESS_CREATE:
 687        case OCFS2_JOURNAL_ACCESS_WRITE:
 688                status = jbd2_journal_get_write_access(handle, bh);
 689                break;
 690
 691        case OCFS2_JOURNAL_ACCESS_UNDO:
 692                status = jbd2_journal_get_undo_access(handle, bh);
 693                break;
 694
 695        default:
 696                status = -EINVAL;
 697                mlog(ML_ERROR, "Unknown access type!\n");
 698        }
 699        if (!status && ocfs2_meta_ecc(osb) && triggers)
 700                jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
 701        ocfs2_metadata_cache_io_unlock(ci);
 702
 703        if (status < 0)
 704                mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
 705                     status, type);
 706
 707        return status;
 708}
 709
 710int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
 711                            struct buffer_head *bh, int type)
 712{
 713        return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
 714}
 715
 716int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
 717                            struct buffer_head *bh, int type)
 718{
 719        return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
 720}
 721
 722int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
 723                            struct buffer_head *bh, int type)
 724{
 725        return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
 726                                      type);
 727}
 728
 729int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
 730                            struct buffer_head *bh, int type)
 731{
 732        return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
 733}
 734
 735int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
 736                            struct buffer_head *bh, int type)
 737{
 738        return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
 739}
 740
 741int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
 742                            struct buffer_head *bh, int type)
 743{
 744        return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
 745}
 746
 747int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
 748                            struct buffer_head *bh, int type)
 749{
 750        return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
 751}
 752
 753int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
 754                            struct buffer_head *bh, int type)
 755{
 756        return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
 757}
 758
 759int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
 760                            struct buffer_head *bh, int type)
 761{
 762        return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
 763}
 764
 765int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
 766                         struct buffer_head *bh, int type)
 767{
 768        return __ocfs2_journal_access(handle, ci, bh, NULL, type);
 769}
 770
 771void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
 772{
 773        int status;
 774
 775        trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
 776
 777        status = jbd2_journal_dirty_metadata(handle, bh);
 778        if (status) {
 779                mlog_errno(status);
 780                if (!is_handle_aborted(handle)) {
 781                        journal_t *journal = handle->h_transaction->t_journal;
 782                        struct super_block *sb = bh->b_bdev->bd_super;
 783
 784                        mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
 785                                        "Aborting transaction and journal.\n");
 786                        handle->h_err = status;
 787                        jbd2_journal_abort_handle(handle);
 788                        jbd2_journal_abort(journal, status);
 789                        ocfs2_abort(sb, "Journal already aborted.\n");
 790                }
 791        }
 792}
 793
 794#define OCFS2_DEFAULT_COMMIT_INTERVAL   (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
 795
 796void ocfs2_set_journal_params(struct ocfs2_super *osb)
 797{
 798        journal_t *journal = osb->journal->j_journal;
 799        unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
 800
 801        if (osb->osb_commit_interval)
 802                commit_interval = osb->osb_commit_interval;
 803
 804        write_lock(&journal->j_state_lock);
 805        journal->j_commit_interval = commit_interval;
 806        if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
 807                journal->j_flags |= JBD2_BARRIER;
 808        else
 809                journal->j_flags &= ~JBD2_BARRIER;
 810        write_unlock(&journal->j_state_lock);
 811}
 812
 813int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
 814{
 815        int status = -1;
 816        struct inode *inode = NULL; /* the journal inode */
 817        journal_t *j_journal = NULL;
 818        struct ocfs2_dinode *di = NULL;
 819        struct buffer_head *bh = NULL;
 820        struct ocfs2_super *osb;
 821        int inode_lock = 0;
 822
 823        BUG_ON(!journal);
 824
 825        osb = journal->j_osb;
 826
 827        /* already have the inode for our journal */
 828        inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
 829                                            osb->slot_num);
 830        if (inode == NULL) {
 831                status = -EACCES;
 832                mlog_errno(status);
 833                goto done;
 834        }
 835        if (is_bad_inode(inode)) {
 836                mlog(ML_ERROR, "access error (bad inode)\n");
 837                iput(inode);
 838                inode = NULL;
 839                status = -EACCES;
 840                goto done;
 841        }
 842
 843        SET_INODE_JOURNAL(inode);
 844        OCFS2_I(inode)->ip_open_count++;
 845
 846        /* Skip recovery waits here - journal inode metadata never
 847         * changes in a live cluster so it can be considered an
 848         * exception to the rule. */
 849        status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
 850        if (status < 0) {
 851                if (status != -ERESTARTSYS)
 852                        mlog(ML_ERROR, "Could not get lock on journal!\n");
 853                goto done;
 854        }
 855
 856        inode_lock = 1;
 857        di = (struct ocfs2_dinode *)bh->b_data;
 858
 859        if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
 860                mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
 861                     i_size_read(inode));
 862                status = -EINVAL;
 863                goto done;
 864        }
 865
 866        trace_ocfs2_journal_init(i_size_read(inode),
 867                                 (unsigned long long)inode->i_blocks,
 868                                 OCFS2_I(inode)->ip_clusters);
 869
 870        /* call the kernels journal init function now */
 871        j_journal = jbd2_journal_init_inode(inode);
 872        if (j_journal == NULL) {
 873                mlog(ML_ERROR, "Linux journal layer error\n");
 874                status = -EINVAL;
 875                goto done;
 876        }
 877
 878        trace_ocfs2_journal_init_maxlen(j_journal->j_total_len);
 879
 880        *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
 881                  OCFS2_JOURNAL_DIRTY_FL);
 882
 883        journal->j_journal = j_journal;
 884        journal->j_journal->j_submit_inode_data_buffers =
 885                jbd2_journal_submit_inode_data_buffers;
 886        journal->j_journal->j_finish_inode_data_buffers =
 887                jbd2_journal_finish_inode_data_buffers;
 888        journal->j_inode = inode;
 889        journal->j_bh = bh;
 890
 891        ocfs2_set_journal_params(osb);
 892
 893        journal->j_state = OCFS2_JOURNAL_LOADED;
 894
 895        status = 0;
 896done:
 897        if (status < 0) {
 898                if (inode_lock)
 899                        ocfs2_inode_unlock(inode, 1);
 900                brelse(bh);
 901                if (inode) {
 902                        OCFS2_I(inode)->ip_open_count--;
 903                        iput(inode);
 904                }
 905        }
 906
 907        return status;
 908}
 909
 910static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
 911{
 912        le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
 913}
 914
 915static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
 916{
 917        return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
 918}
 919
 920static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
 921                                      int dirty, int replayed)
 922{
 923        int status;
 924        unsigned int flags;
 925        struct ocfs2_journal *journal = osb->journal;
 926        struct buffer_head *bh = journal->j_bh;
 927        struct ocfs2_dinode *fe;
 928
 929        fe = (struct ocfs2_dinode *)bh->b_data;
 930
 931        /* The journal bh on the osb always comes from ocfs2_journal_init()
 932         * and was validated there inside ocfs2_inode_lock_full().  It's a
 933         * code bug if we mess it up. */
 934        BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
 935
 936        flags = le32_to_cpu(fe->id1.journal1.ij_flags);
 937        if (dirty)
 938                flags |= OCFS2_JOURNAL_DIRTY_FL;
 939        else
 940                flags &= ~OCFS2_JOURNAL_DIRTY_FL;
 941        fe->id1.journal1.ij_flags = cpu_to_le32(flags);
 942
 943        if (replayed)
 944                ocfs2_bump_recovery_generation(fe);
 945
 946        ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
 947        status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
 948        if (status < 0)
 949                mlog_errno(status);
 950
 951        return status;
 952}
 953
 954/*
 955 * If the journal has been kmalloc'd it needs to be freed after this
 956 * call.
 957 */
 958void ocfs2_journal_shutdown(struct ocfs2_super *osb)
 959{
 960        struct ocfs2_journal *journal = NULL;
 961        int status = 0;
 962        struct inode *inode = NULL;
 963        int num_running_trans = 0;
 964
 965        BUG_ON(!osb);
 966
 967        journal = osb->journal;
 968        if (!journal)
 969                goto done;
 970
 971        inode = journal->j_inode;
 972
 973        if (journal->j_state != OCFS2_JOURNAL_LOADED)
 974                goto done;
 975
 976        /* need to inc inode use count - jbd2_journal_destroy will iput. */
 977        if (!igrab(inode))
 978                BUG();
 979
 980        num_running_trans = atomic_read(&(osb->journal->j_num_trans));
 981        trace_ocfs2_journal_shutdown(num_running_trans);
 982
 983        /* Do a commit_cache here. It will flush our journal, *and*
 984         * release any locks that are still held.
 985         * set the SHUTDOWN flag and release the trans lock.
 986         * the commit thread will take the trans lock for us below. */
 987        journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
 988
 989        /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
 990         * drop the trans_lock (which we want to hold until we
 991         * completely destroy the journal. */
 992        if (osb->commit_task) {
 993                /* Wait for the commit thread */
 994                trace_ocfs2_journal_shutdown_wait(osb->commit_task);
 995                kthread_stop(osb->commit_task);
 996                osb->commit_task = NULL;
 997        }
 998
 999        BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
1000
1001        if (ocfs2_mount_local(osb)) {
1002                jbd2_journal_lock_updates(journal->j_journal);
1003                status = jbd2_journal_flush(journal->j_journal, 0);
1004                jbd2_journal_unlock_updates(journal->j_journal);
1005                if (status < 0)
1006                        mlog_errno(status);
1007        }
1008
1009        /* Shutdown the kernel journal system */
1010        if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1011                /*
1012                 * Do not toggle if flush was unsuccessful otherwise
1013                 * will leave dirty metadata in a "clean" journal
1014                 */
1015                status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1016                if (status < 0)
1017                        mlog_errno(status);
1018        }
1019        journal->j_journal = NULL;
1020
1021        OCFS2_I(inode)->ip_open_count--;
1022
1023        /* unlock our journal */
1024        ocfs2_inode_unlock(inode, 1);
1025
1026        brelse(journal->j_bh);
1027        journal->j_bh = NULL;
1028
1029        journal->j_state = OCFS2_JOURNAL_FREE;
1030
1031//      up_write(&journal->j_trans_barrier);
1032done:
1033        iput(inode);
1034}
1035
1036static void ocfs2_clear_journal_error(struct super_block *sb,
1037                                      journal_t *journal,
1038                                      int slot)
1039{
1040        int olderr;
1041
1042        olderr = jbd2_journal_errno(journal);
1043        if (olderr) {
1044                mlog(ML_ERROR, "File system error %d recorded in "
1045                     "journal %u.\n", olderr, slot);
1046                mlog(ML_ERROR, "File system on device %s needs checking.\n",
1047                     sb->s_id);
1048
1049                jbd2_journal_ack_err(journal);
1050                jbd2_journal_clear_err(journal);
1051        }
1052}
1053
1054int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1055{
1056        int status = 0;
1057        struct ocfs2_super *osb;
1058
1059        BUG_ON(!journal);
1060
1061        osb = journal->j_osb;
1062
1063        status = jbd2_journal_load(journal->j_journal);
1064        if (status < 0) {
1065                mlog(ML_ERROR, "Failed to load journal!\n");
1066                goto done;
1067        }
1068
1069        ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1070
1071        if (replayed) {
1072                jbd2_journal_lock_updates(journal->j_journal);
1073                status = jbd2_journal_flush(journal->j_journal, 0);
1074                jbd2_journal_unlock_updates(journal->j_journal);
1075                if (status < 0)
1076                        mlog_errno(status);
1077        }
1078
1079        status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1080        if (status < 0) {
1081                mlog_errno(status);
1082                goto done;
1083        }
1084
1085        /* Launch the commit thread */
1086        if (!local) {
1087                osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1088                                "ocfs2cmt-%s", osb->uuid_str);
1089                if (IS_ERR(osb->commit_task)) {
1090                        status = PTR_ERR(osb->commit_task);
1091                        osb->commit_task = NULL;
1092                        mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1093                             "error=%d", status);
1094                        goto done;
1095                }
1096        } else
1097                osb->commit_task = NULL;
1098
1099done:
1100        return status;
1101}
1102
1103
1104/* 'full' flag tells us whether we clear out all blocks or if we just
1105 * mark the journal clean */
1106int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1107{
1108        int status;
1109
1110        BUG_ON(!journal);
1111
1112        status = jbd2_journal_wipe(journal->j_journal, full);
1113        if (status < 0) {
1114                mlog_errno(status);
1115                goto bail;
1116        }
1117
1118        status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1119        if (status < 0)
1120                mlog_errno(status);
1121
1122bail:
1123        return status;
1124}
1125
1126static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1127{
1128        int empty;
1129        struct ocfs2_recovery_map *rm = osb->recovery_map;
1130
1131        spin_lock(&osb->osb_lock);
1132        empty = (rm->rm_used == 0);
1133        spin_unlock(&osb->osb_lock);
1134
1135        return empty;
1136}
1137
1138void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1139{
1140        wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1141}
1142
1143/*
1144 * JBD Might read a cached version of another nodes journal file. We
1145 * don't want this as this file changes often and we get no
1146 * notification on those changes. The only way to be sure that we've
1147 * got the most up to date version of those blocks then is to force
1148 * read them off disk. Just searching through the buffer cache won't
1149 * work as there may be pages backing this file which are still marked
1150 * up to date. We know things can't change on this file underneath us
1151 * as we have the lock by now :)
1152 */
1153static int ocfs2_force_read_journal(struct inode *inode)
1154{
1155        int status = 0;
1156        int i;
1157        u64 v_blkno, p_blkno, p_blocks, num_blocks;
1158        struct buffer_head *bh = NULL;
1159        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1160
1161        num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1162        v_blkno = 0;
1163        while (v_blkno < num_blocks) {
1164                status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1165                                                     &p_blkno, &p_blocks, NULL);
1166                if (status < 0) {
1167                        mlog_errno(status);
1168                        goto bail;
1169                }
1170
1171                for (i = 0; i < p_blocks; i++, p_blkno++) {
1172                        bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1173                                        osb->sb->s_blocksize);
1174                        /* block not cached. */
1175                        if (!bh)
1176                                continue;
1177
1178                        brelse(bh);
1179                        bh = NULL;
1180                        /* We are reading journal data which should not
1181                         * be put in the uptodate cache.
1182                         */
1183                        status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1184                        if (status < 0) {
1185                                mlog_errno(status);
1186                                goto bail;
1187                        }
1188
1189                        brelse(bh);
1190                        bh = NULL;
1191                }
1192
1193                v_blkno += p_blocks;
1194        }
1195
1196bail:
1197        return status;
1198}
1199
1200struct ocfs2_la_recovery_item {
1201        struct list_head        lri_list;
1202        int                     lri_slot;
1203        struct ocfs2_dinode     *lri_la_dinode;
1204        struct ocfs2_dinode     *lri_tl_dinode;
1205        struct ocfs2_quota_recovery *lri_qrec;
1206        enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1207};
1208
1209/* Does the second half of the recovery process. By this point, the
1210 * node is marked clean and can actually be considered recovered,
1211 * hence it's no longer in the recovery map, but there's still some
1212 * cleanup we can do which shouldn't happen within the recovery thread
1213 * as locking in that context becomes very difficult if we are to take
1214 * recovering nodes into account.
1215 *
1216 * NOTE: This function can and will sleep on recovery of other nodes
1217 * during cluster locking, just like any other ocfs2 process.
1218 */
1219void ocfs2_complete_recovery(struct work_struct *work)
1220{
1221        int ret = 0;
1222        struct ocfs2_journal *journal =
1223                container_of(work, struct ocfs2_journal, j_recovery_work);
1224        struct ocfs2_super *osb = journal->j_osb;
1225        struct ocfs2_dinode *la_dinode, *tl_dinode;
1226        struct ocfs2_la_recovery_item *item, *n;
1227        struct ocfs2_quota_recovery *qrec;
1228        enum ocfs2_orphan_reco_type orphan_reco_type;
1229        LIST_HEAD(tmp_la_list);
1230
1231        trace_ocfs2_complete_recovery(
1232                (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1233
1234        spin_lock(&journal->j_lock);
1235        list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1236        spin_unlock(&journal->j_lock);
1237
1238        list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1239                list_del_init(&item->lri_list);
1240
1241                ocfs2_wait_on_quotas(osb);
1242
1243                la_dinode = item->lri_la_dinode;
1244                tl_dinode = item->lri_tl_dinode;
1245                qrec = item->lri_qrec;
1246                orphan_reco_type = item->lri_orphan_reco_type;
1247
1248                trace_ocfs2_complete_recovery_slot(item->lri_slot,
1249                        la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1250                        tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1251                        qrec);
1252
1253                if (la_dinode) {
1254                        ret = ocfs2_complete_local_alloc_recovery(osb,
1255                                                                  la_dinode);
1256                        if (ret < 0)
1257                                mlog_errno(ret);
1258
1259                        kfree(la_dinode);
1260                }
1261
1262                if (tl_dinode) {
1263                        ret = ocfs2_complete_truncate_log_recovery(osb,
1264                                                                   tl_dinode);
1265                        if (ret < 0)
1266                                mlog_errno(ret);
1267
1268                        kfree(tl_dinode);
1269                }
1270
1271                ret = ocfs2_recover_orphans(osb, item->lri_slot,
1272                                orphan_reco_type);
1273                if (ret < 0)
1274                        mlog_errno(ret);
1275
1276                if (qrec) {
1277                        ret = ocfs2_finish_quota_recovery(osb, qrec,
1278                                                          item->lri_slot);
1279                        if (ret < 0)
1280                                mlog_errno(ret);
1281                        /* Recovery info is already freed now */
1282                }
1283
1284                kfree(item);
1285        }
1286
1287        trace_ocfs2_complete_recovery_end(ret);
1288}
1289
1290/* NOTE: This function always eats your references to la_dinode and
1291 * tl_dinode, either manually on error, or by passing them to
1292 * ocfs2_complete_recovery */
1293static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1294                                            int slot_num,
1295                                            struct ocfs2_dinode *la_dinode,
1296                                            struct ocfs2_dinode *tl_dinode,
1297                                            struct ocfs2_quota_recovery *qrec,
1298                                            enum ocfs2_orphan_reco_type orphan_reco_type)
1299{
1300        struct ocfs2_la_recovery_item *item;
1301
1302        item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1303        if (!item) {
1304                /* Though we wish to avoid it, we are in fact safe in
1305                 * skipping local alloc cleanup as fsck.ocfs2 is more
1306                 * than capable of reclaiming unused space. */
1307                kfree(la_dinode);
1308                kfree(tl_dinode);
1309
1310                if (qrec)
1311                        ocfs2_free_quota_recovery(qrec);
1312
1313                mlog_errno(-ENOMEM);
1314                return;
1315        }
1316
1317        INIT_LIST_HEAD(&item->lri_list);
1318        item->lri_la_dinode = la_dinode;
1319        item->lri_slot = slot_num;
1320        item->lri_tl_dinode = tl_dinode;
1321        item->lri_qrec = qrec;
1322        item->lri_orphan_reco_type = orphan_reco_type;
1323
1324        spin_lock(&journal->j_lock);
1325        list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1326        queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1327        spin_unlock(&journal->j_lock);
1328}
1329
1330/* Called by the mount code to queue recovery the last part of
1331 * recovery for it's own and offline slot(s). */
1332void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1333{
1334        struct ocfs2_journal *journal = osb->journal;
1335
1336        if (ocfs2_is_hard_readonly(osb))
1337                return;
1338
1339        /* No need to queue up our truncate_log as regular cleanup will catch
1340         * that */
1341        ocfs2_queue_recovery_completion(journal, osb->slot_num,
1342                                        osb->local_alloc_copy, NULL, NULL,
1343                                        ORPHAN_NEED_TRUNCATE);
1344        ocfs2_schedule_truncate_log_flush(osb, 0);
1345
1346        osb->local_alloc_copy = NULL;
1347
1348        /* queue to recover orphan slots for all offline slots */
1349        ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1350        ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1351        ocfs2_free_replay_slots(osb);
1352}
1353
1354void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1355{
1356        if (osb->quota_rec) {
1357                ocfs2_queue_recovery_completion(osb->journal,
1358                                                osb->slot_num,
1359                                                NULL,
1360                                                NULL,
1361                                                osb->quota_rec,
1362                                                ORPHAN_NEED_TRUNCATE);
1363                osb->quota_rec = NULL;
1364        }
1365}
1366
1367static int __ocfs2_recovery_thread(void *arg)
1368{
1369        int status, node_num, slot_num;
1370        struct ocfs2_super *osb = arg;
1371        struct ocfs2_recovery_map *rm = osb->recovery_map;
1372        int *rm_quota = NULL;
1373        int rm_quota_used = 0, i;
1374        struct ocfs2_quota_recovery *qrec;
1375
1376        /* Whether the quota supported. */
1377        int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1378                        OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1379                || OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1380                        OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1381
1382        status = ocfs2_wait_on_mount(osb);
1383        if (status < 0) {
1384                goto bail;
1385        }
1386
1387        if (quota_enabled) {
1388                rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1389                if (!rm_quota) {
1390                        status = -ENOMEM;
1391                        goto bail;
1392                }
1393        }
1394restart:
1395        status = ocfs2_super_lock(osb, 1);
1396        if (status < 0) {
1397                mlog_errno(status);
1398                goto bail;
1399        }
1400
1401        status = ocfs2_compute_replay_slots(osb);
1402        if (status < 0)
1403                mlog_errno(status);
1404
1405        /* queue recovery for our own slot */
1406        ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1407                                        NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1408
1409        spin_lock(&osb->osb_lock);
1410        while (rm->rm_used) {
1411                /* It's always safe to remove entry zero, as we won't
1412                 * clear it until ocfs2_recover_node() has succeeded. */
1413                node_num = rm->rm_entries[0];
1414                spin_unlock(&osb->osb_lock);
1415                slot_num = ocfs2_node_num_to_slot(osb, node_num);
1416                trace_ocfs2_recovery_thread_node(node_num, slot_num);
1417                if (slot_num == -ENOENT) {
1418                        status = 0;
1419                        goto skip_recovery;
1420                }
1421
1422                /* It is a bit subtle with quota recovery. We cannot do it
1423                 * immediately because we have to obtain cluster locks from
1424                 * quota files and we also don't want to just skip it because
1425                 * then quota usage would be out of sync until some node takes
1426                 * the slot. So we remember which nodes need quota recovery
1427                 * and when everything else is done, we recover quotas. */
1428                if (quota_enabled) {
1429                        for (i = 0; i < rm_quota_used
1430                                        && rm_quota[i] != slot_num; i++)
1431                                ;
1432
1433                        if (i == rm_quota_used)
1434                                rm_quota[rm_quota_used++] = slot_num;
1435                }
1436
1437                status = ocfs2_recover_node(osb, node_num, slot_num);
1438skip_recovery:
1439                if (!status) {
1440                        ocfs2_recovery_map_clear(osb, node_num);
1441                } else {
1442                        mlog(ML_ERROR,
1443                             "Error %d recovering node %d on device (%u,%u)!\n",
1444                             status, node_num,
1445                             MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1446                        mlog(ML_ERROR, "Volume requires unmount.\n");
1447                }
1448
1449                spin_lock(&osb->osb_lock);
1450        }
1451        spin_unlock(&osb->osb_lock);
1452        trace_ocfs2_recovery_thread_end(status);
1453
1454        /* Refresh all journal recovery generations from disk */
1455        status = ocfs2_check_journals_nolocks(osb);
1456        status = (status == -EROFS) ? 0 : status;
1457        if (status < 0)
1458                mlog_errno(status);
1459
1460        /* Now it is right time to recover quotas... We have to do this under
1461         * superblock lock so that no one can start using the slot (and crash)
1462         * before we recover it */
1463        if (quota_enabled) {
1464                for (i = 0; i < rm_quota_used; i++) {
1465                        qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1466                        if (IS_ERR(qrec)) {
1467                                status = PTR_ERR(qrec);
1468                                mlog_errno(status);
1469                                continue;
1470                        }
1471                        ocfs2_queue_recovery_completion(osb->journal,
1472                                        rm_quota[i],
1473                                        NULL, NULL, qrec,
1474                                        ORPHAN_NEED_TRUNCATE);
1475                }
1476        }
1477
1478        ocfs2_super_unlock(osb, 1);
1479
1480        /* queue recovery for offline slots */
1481        ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1482
1483bail:
1484        mutex_lock(&osb->recovery_lock);
1485        if (!status && !ocfs2_recovery_completed(osb)) {
1486                mutex_unlock(&osb->recovery_lock);
1487                goto restart;
1488        }
1489
1490        ocfs2_free_replay_slots(osb);
1491        osb->recovery_thread_task = NULL;
1492        mb(); /* sync with ocfs2_recovery_thread_running */
1493        wake_up(&osb->recovery_event);
1494
1495        mutex_unlock(&osb->recovery_lock);
1496
1497        if (quota_enabled)
1498                kfree(rm_quota);
1499
1500        /* no one is callint kthread_stop() for us so the kthread() api
1501         * requires that we call do_exit().  And it isn't exported, but
1502         * complete_and_exit() seems to be a minimal wrapper around it. */
1503        complete_and_exit(NULL, status);
1504}
1505
1506void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1507{
1508        mutex_lock(&osb->recovery_lock);
1509
1510        trace_ocfs2_recovery_thread(node_num, osb->node_num,
1511                osb->disable_recovery, osb->recovery_thread_task,
1512                osb->disable_recovery ?
1513                -1 : ocfs2_recovery_map_set(osb, node_num));
1514
1515        if (osb->disable_recovery)
1516                goto out;
1517
1518        if (osb->recovery_thread_task)
1519                goto out;
1520
1521        osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1522                        "ocfs2rec-%s", osb->uuid_str);
1523        if (IS_ERR(osb->recovery_thread_task)) {
1524                mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1525                osb->recovery_thread_task = NULL;
1526        }
1527
1528out:
1529        mutex_unlock(&osb->recovery_lock);
1530        wake_up(&osb->recovery_event);
1531}
1532
1533static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1534                                    int slot_num,
1535                                    struct buffer_head **bh,
1536                                    struct inode **ret_inode)
1537{
1538        int status = -EACCES;
1539        struct inode *inode = NULL;
1540
1541        BUG_ON(slot_num >= osb->max_slots);
1542
1543        inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1544                                            slot_num);
1545        if (!inode || is_bad_inode(inode)) {
1546                mlog_errno(status);
1547                goto bail;
1548        }
1549        SET_INODE_JOURNAL(inode);
1550
1551        status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1552        if (status < 0) {
1553                mlog_errno(status);
1554                goto bail;
1555        }
1556
1557        status = 0;
1558
1559bail:
1560        if (inode) {
1561                if (status || !ret_inode)
1562                        iput(inode);
1563                else
1564                        *ret_inode = inode;
1565        }
1566        return status;
1567}
1568
1569/* Does the actual journal replay and marks the journal inode as
1570 * clean. Will only replay if the journal inode is marked dirty. */
1571static int ocfs2_replay_journal(struct ocfs2_super *osb,
1572                                int node_num,
1573                                int slot_num)
1574{
1575        int status;
1576        int got_lock = 0;
1577        unsigned int flags;
1578        struct inode *inode = NULL;
1579        struct ocfs2_dinode *fe;
1580        journal_t *journal = NULL;
1581        struct buffer_head *bh = NULL;
1582        u32 slot_reco_gen;
1583
1584        status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1585        if (status) {
1586                mlog_errno(status);
1587                goto done;
1588        }
1589
1590        fe = (struct ocfs2_dinode *)bh->b_data;
1591        slot_reco_gen = ocfs2_get_recovery_generation(fe);
1592        brelse(bh);
1593        bh = NULL;
1594
1595        /*
1596         * As the fs recovery is asynchronous, there is a small chance that
1597         * another node mounted (and recovered) the slot before the recovery
1598         * thread could get the lock. To handle that, we dirty read the journal
1599         * inode for that slot to get the recovery generation. If it is
1600         * different than what we expected, the slot has been recovered.
1601         * If not, it needs recovery.
1602         */
1603        if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1604                trace_ocfs2_replay_journal_recovered(slot_num,
1605                     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1606                osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1607                status = -EBUSY;
1608                goto done;
1609        }
1610
1611        /* Continue with recovery as the journal has not yet been recovered */
1612
1613        status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1614        if (status < 0) {
1615                trace_ocfs2_replay_journal_lock_err(status);
1616                if (status != -ERESTARTSYS)
1617                        mlog(ML_ERROR, "Could not lock journal!\n");
1618                goto done;
1619        }
1620        got_lock = 1;
1621
1622        fe = (struct ocfs2_dinode *) bh->b_data;
1623
1624        flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1625        slot_reco_gen = ocfs2_get_recovery_generation(fe);
1626
1627        if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1628                trace_ocfs2_replay_journal_skip(node_num);
1629                /* Refresh recovery generation for the slot */
1630                osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1631                goto done;
1632        }
1633
1634        /* we need to run complete recovery for offline orphan slots */
1635        ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1636
1637        printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1638               "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1639               MINOR(osb->sb->s_dev));
1640
1641        OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1642
1643        status = ocfs2_force_read_journal(inode);
1644        if (status < 0) {
1645                mlog_errno(status);
1646                goto done;
1647        }
1648
1649        journal = jbd2_journal_init_inode(inode);
1650        if (journal == NULL) {
1651                mlog(ML_ERROR, "Linux journal layer error\n");
1652                status = -EIO;
1653                goto done;
1654        }
1655
1656        status = jbd2_journal_load(journal);
1657        if (status < 0) {
1658                mlog_errno(status);
1659                if (!igrab(inode))
1660                        BUG();
1661                jbd2_journal_destroy(journal);
1662                goto done;
1663        }
1664
1665        ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1666
1667        /* wipe the journal */
1668        jbd2_journal_lock_updates(journal);
1669        status = jbd2_journal_flush(journal, 0);
1670        jbd2_journal_unlock_updates(journal);
1671        if (status < 0)
1672                mlog_errno(status);
1673
1674        /* This will mark the node clean */
1675        flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1676        flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1677        fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1678
1679        /* Increment recovery generation to indicate successful recovery */
1680        ocfs2_bump_recovery_generation(fe);
1681        osb->slot_recovery_generations[slot_num] =
1682                                        ocfs2_get_recovery_generation(fe);
1683
1684        ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1685        status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1686        if (status < 0)
1687                mlog_errno(status);
1688
1689        if (!igrab(inode))
1690                BUG();
1691
1692        jbd2_journal_destroy(journal);
1693
1694        printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1695               "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1696               MINOR(osb->sb->s_dev));
1697done:
1698        /* drop the lock on this nodes journal */
1699        if (got_lock)
1700                ocfs2_inode_unlock(inode, 1);
1701
1702        iput(inode);
1703        brelse(bh);
1704
1705        return status;
1706}
1707
1708/*
1709 * Do the most important parts of node recovery:
1710 *  - Replay it's journal
1711 *  - Stamp a clean local allocator file
1712 *  - Stamp a clean truncate log
1713 *  - Mark the node clean
1714 *
1715 * If this function completes without error, a node in OCFS2 can be
1716 * said to have been safely recovered. As a result, failure during the
1717 * second part of a nodes recovery process (local alloc recovery) is
1718 * far less concerning.
1719 */
1720static int ocfs2_recover_node(struct ocfs2_super *osb,
1721                              int node_num, int slot_num)
1722{
1723        int status = 0;
1724        struct ocfs2_dinode *la_copy = NULL;
1725        struct ocfs2_dinode *tl_copy = NULL;
1726
1727        trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1728
1729        /* Should not ever be called to recover ourselves -- in that
1730         * case we should've called ocfs2_journal_load instead. */
1731        BUG_ON(osb->node_num == node_num);
1732
1733        status = ocfs2_replay_journal(osb, node_num, slot_num);
1734        if (status < 0) {
1735                if (status == -EBUSY) {
1736                        trace_ocfs2_recover_node_skip(slot_num, node_num);
1737                        status = 0;
1738                        goto done;
1739                }
1740                mlog_errno(status);
1741                goto done;
1742        }
1743
1744        /* Stamp a clean local alloc file AFTER recovering the journal... */
1745        status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1746        if (status < 0) {
1747                mlog_errno(status);
1748                goto done;
1749        }
1750
1751        /* An error from begin_truncate_log_recovery is not
1752         * serious enough to warrant halting the rest of
1753         * recovery. */
1754        status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1755        if (status < 0)
1756                mlog_errno(status);
1757
1758        /* Likewise, this would be a strange but ultimately not so
1759         * harmful place to get an error... */
1760        status = ocfs2_clear_slot(osb, slot_num);
1761        if (status < 0)
1762                mlog_errno(status);
1763
1764        /* This will kfree the memory pointed to by la_copy and tl_copy */
1765        ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1766                                        tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1767
1768        status = 0;
1769done:
1770
1771        return status;
1772}
1773
1774/* Test node liveness by trylocking his journal. If we get the lock,
1775 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1776 * still alive (we couldn't get the lock) and < 0 on error. */
1777static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1778                                 int slot_num)
1779{
1780        int status, flags;
1781        struct inode *inode = NULL;
1782
1783        inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1784                                            slot_num);
1785        if (inode == NULL) {
1786                mlog(ML_ERROR, "access error\n");
1787                status = -EACCES;
1788                goto bail;
1789        }
1790        if (is_bad_inode(inode)) {
1791                mlog(ML_ERROR, "access error (bad inode)\n");
1792                iput(inode);
1793                inode = NULL;
1794                status = -EACCES;
1795                goto bail;
1796        }
1797        SET_INODE_JOURNAL(inode);
1798
1799        flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1800        status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1801        if (status < 0) {
1802                if (status != -EAGAIN)
1803                        mlog_errno(status);
1804                goto bail;
1805        }
1806
1807        ocfs2_inode_unlock(inode, 1);
1808bail:
1809        iput(inode);
1810
1811        return status;
1812}
1813
1814/* Call this underneath ocfs2_super_lock. It also assumes that the
1815 * slot info struct has been updated from disk. */
1816int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1817{
1818        unsigned int node_num;
1819        int status, i;
1820        u32 gen;
1821        struct buffer_head *bh = NULL;
1822        struct ocfs2_dinode *di;
1823
1824        /* This is called with the super block cluster lock, so we
1825         * know that the slot map can't change underneath us. */
1826
1827        for (i = 0; i < osb->max_slots; i++) {
1828                /* Read journal inode to get the recovery generation */
1829                status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1830                if (status) {
1831                        mlog_errno(status);
1832                        goto bail;
1833                }
1834                di = (struct ocfs2_dinode *)bh->b_data;
1835                gen = ocfs2_get_recovery_generation(di);
1836                brelse(bh);
1837                bh = NULL;
1838
1839                spin_lock(&osb->osb_lock);
1840                osb->slot_recovery_generations[i] = gen;
1841
1842                trace_ocfs2_mark_dead_nodes(i,
1843                                            osb->slot_recovery_generations[i]);
1844
1845                if (i == osb->slot_num) {
1846                        spin_unlock(&osb->osb_lock);
1847                        continue;
1848                }
1849
1850                status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1851                if (status == -ENOENT) {
1852                        spin_unlock(&osb->osb_lock);
1853                        continue;
1854                }
1855
1856                if (__ocfs2_recovery_map_test(osb, node_num)) {
1857                        spin_unlock(&osb->osb_lock);
1858                        continue;
1859                }
1860                spin_unlock(&osb->osb_lock);
1861
1862                /* Ok, we have a slot occupied by another node which
1863                 * is not in the recovery map. We trylock his journal
1864                 * file here to test if he's alive. */
1865                status = ocfs2_trylock_journal(osb, i);
1866                if (!status) {
1867                        /* Since we're called from mount, we know that
1868                         * the recovery thread can't race us on
1869                         * setting / checking the recovery bits. */
1870                        ocfs2_recovery_thread(osb, node_num);
1871                } else if ((status < 0) && (status != -EAGAIN)) {
1872                        mlog_errno(status);
1873                        goto bail;
1874                }
1875        }
1876
1877        status = 0;
1878bail:
1879        return status;
1880}
1881
1882/*
1883 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1884 * randomness to the timeout to minimize multple nodes firing the timer at the
1885 * same time.
1886 */
1887static inline unsigned long ocfs2_orphan_scan_timeout(void)
1888{
1889        unsigned long time;
1890
1891        get_random_bytes(&time, sizeof(time));
1892        time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1893        return msecs_to_jiffies(time);
1894}
1895
1896/*
1897 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1898 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1899 * is done to catch any orphans that are left over in orphan directories.
1900 *
1901 * It scans all slots, even ones that are in use. It does so to handle the
1902 * case described below:
1903 *
1904 *   Node 1 has an inode it was using. The dentry went away due to memory
1905 *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1906 *   has the open lock.
1907 *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1908 *   but node 1 has no dentry and doesn't get the message. It trylocks the
1909 *   open lock, sees that another node has a PR, and does nothing.
1910 *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1911 *   open lock, sees the PR still, and does nothing.
1912 *   Basically, we have to trigger an orphan iput on node 1. The only way
1913 *   for this to happen is if node 1 runs node 2's orphan dir.
1914 *
1915 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1916 * seconds.  It gets an EX lock on os_lockres and checks sequence number
1917 * stored in LVB. If the sequence number has changed, it means some other
1918 * node has done the scan.  This node skips the scan and tracks the
1919 * sequence number.  If the sequence number didn't change, it means a scan
1920 * hasn't happened.  The node queues a scan and increments the
1921 * sequence number in the LVB.
1922 */
1923static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1924{
1925        struct ocfs2_orphan_scan *os;
1926        int status, i;
1927        u32 seqno = 0;
1928
1929        os = &osb->osb_orphan_scan;
1930
1931        if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1932                goto out;
1933
1934        trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1935                                            atomic_read(&os->os_state));
1936
1937        status = ocfs2_orphan_scan_lock(osb, &seqno);
1938        if (status < 0) {
1939                if (status != -EAGAIN)
1940                        mlog_errno(status);
1941                goto out;
1942        }
1943
1944        /* Do no queue the tasks if the volume is being umounted */
1945        if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1946                goto unlock;
1947
1948        if (os->os_seqno != seqno) {
1949                os->os_seqno = seqno;
1950                goto unlock;
1951        }
1952
1953        for (i = 0; i < osb->max_slots; i++)
1954                ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1955                                                NULL, ORPHAN_NO_NEED_TRUNCATE);
1956        /*
1957         * We queued a recovery on orphan slots, increment the sequence
1958         * number and update LVB so other node will skip the scan for a while
1959         */
1960        seqno++;
1961        os->os_count++;
1962        os->os_scantime = ktime_get_seconds();
1963unlock:
1964        ocfs2_orphan_scan_unlock(osb, seqno);
1965out:
1966        trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1967                                          atomic_read(&os->os_state));
1968        return;
1969}
1970
1971/* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1972static void ocfs2_orphan_scan_work(struct work_struct *work)
1973{
1974        struct ocfs2_orphan_scan *os;
1975        struct ocfs2_super *osb;
1976
1977        os = container_of(work, struct ocfs2_orphan_scan,
1978                          os_orphan_scan_work.work);
1979        osb = os->os_osb;
1980
1981        mutex_lock(&os->os_lock);
1982        ocfs2_queue_orphan_scan(osb);
1983        if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1984                queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
1985                                      ocfs2_orphan_scan_timeout());
1986        mutex_unlock(&os->os_lock);
1987}
1988
1989void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1990{
1991        struct ocfs2_orphan_scan *os;
1992
1993        os = &osb->osb_orphan_scan;
1994        if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1995                atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1996                mutex_lock(&os->os_lock);
1997                cancel_delayed_work(&os->os_orphan_scan_work);
1998                mutex_unlock(&os->os_lock);
1999        }
2000}
2001
2002void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
2003{
2004        struct ocfs2_orphan_scan *os;
2005
2006        os = &osb->osb_orphan_scan;
2007        os->os_osb = osb;
2008        os->os_count = 0;
2009        os->os_seqno = 0;
2010        mutex_init(&os->os_lock);
2011        INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2012}
2013
2014void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2015{
2016        struct ocfs2_orphan_scan *os;
2017
2018        os = &osb->osb_orphan_scan;
2019        os->os_scantime = ktime_get_seconds();
2020        if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2021                atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2022        else {
2023                atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2024                queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2025                                   ocfs2_orphan_scan_timeout());
2026        }
2027}
2028
2029struct ocfs2_orphan_filldir_priv {
2030        struct dir_context      ctx;
2031        struct inode            *head;
2032        struct ocfs2_super      *osb;
2033        enum ocfs2_orphan_reco_type orphan_reco_type;
2034};
2035
2036static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2037                                int name_len, loff_t pos, u64 ino,
2038                                unsigned type)
2039{
2040        struct ocfs2_orphan_filldir_priv *p =
2041                container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2042        struct inode *iter;
2043
2044        if (name_len == 1 && !strncmp(".", name, 1))
2045                return 0;
2046        if (name_len == 2 && !strncmp("..", name, 2))
2047                return 0;
2048
2049        /* do not include dio entry in case of orphan scan */
2050        if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2051                        (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2052                        OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2053                return 0;
2054
2055        /* Skip bad inodes so that recovery can continue */
2056        iter = ocfs2_iget(p->osb, ino,
2057                          OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2058        if (IS_ERR(iter))
2059                return 0;
2060
2061        if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2062                        OCFS2_DIO_ORPHAN_PREFIX_LEN))
2063                OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2064
2065        /* Skip inodes which are already added to recover list, since dio may
2066         * happen concurrently with unlink/rename */
2067        if (OCFS2_I(iter)->ip_next_orphan) {
2068                iput(iter);
2069                return 0;
2070        }
2071
2072        trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2073        /* No locking is required for the next_orphan queue as there
2074         * is only ever a single process doing orphan recovery. */
2075        OCFS2_I(iter)->ip_next_orphan = p->head;
2076        p->head = iter;
2077
2078        return 0;
2079}
2080
2081static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2082                               int slot,
2083                               struct inode **head,
2084                               enum ocfs2_orphan_reco_type orphan_reco_type)
2085{
2086        int status;
2087        struct inode *orphan_dir_inode = NULL;
2088        struct ocfs2_orphan_filldir_priv priv = {
2089                .ctx.actor = ocfs2_orphan_filldir,
2090                .osb = osb,
2091                .head = *head,
2092                .orphan_reco_type = orphan_reco_type
2093        };
2094
2095        orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2096                                                       ORPHAN_DIR_SYSTEM_INODE,
2097                                                       slot);
2098        if  (!orphan_dir_inode) {
2099                status = -ENOENT;
2100                mlog_errno(status);
2101                return status;
2102        }
2103
2104        inode_lock(orphan_dir_inode);
2105        status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2106        if (status < 0) {
2107                mlog_errno(status);
2108                goto out;
2109        }
2110
2111        status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2112        if (status) {
2113                mlog_errno(status);
2114                goto out_cluster;
2115        }
2116
2117        *head = priv.head;
2118
2119out_cluster:
2120        ocfs2_inode_unlock(orphan_dir_inode, 0);
2121out:
2122        inode_unlock(orphan_dir_inode);
2123        iput(orphan_dir_inode);
2124        return status;
2125}
2126
2127static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2128                                              int slot)
2129{
2130        int ret;
2131
2132        spin_lock(&osb->osb_lock);
2133        ret = !osb->osb_orphan_wipes[slot];
2134        spin_unlock(&osb->osb_lock);
2135        return ret;
2136}
2137
2138static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2139                                             int slot)
2140{
2141        spin_lock(&osb->osb_lock);
2142        /* Mark ourselves such that new processes in delete_inode()
2143         * know to quit early. */
2144        ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2145        while (osb->osb_orphan_wipes[slot]) {
2146                /* If any processes are already in the middle of an
2147                 * orphan wipe on this dir, then we need to wait for
2148                 * them. */
2149                spin_unlock(&osb->osb_lock);
2150                wait_event_interruptible(osb->osb_wipe_event,
2151                                         ocfs2_orphan_recovery_can_continue(osb, slot));
2152                spin_lock(&osb->osb_lock);
2153        }
2154        spin_unlock(&osb->osb_lock);
2155}
2156
2157static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2158                                              int slot)
2159{
2160        ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2161}
2162
2163/*
2164 * Orphan recovery. Each mounted node has it's own orphan dir which we
2165 * must run during recovery. Our strategy here is to build a list of
2166 * the inodes in the orphan dir and iget/iput them. The VFS does
2167 * (most) of the rest of the work.
2168 *
2169 * Orphan recovery can happen at any time, not just mount so we have a
2170 * couple of extra considerations.
2171 *
2172 * - We grab as many inodes as we can under the orphan dir lock -
2173 *   doing iget() outside the orphan dir risks getting a reference on
2174 *   an invalid inode.
2175 * - We must be sure not to deadlock with other processes on the
2176 *   system wanting to run delete_inode(). This can happen when they go
2177 *   to lock the orphan dir and the orphan recovery process attempts to
2178 *   iget() inside the orphan dir lock. This can be avoided by
2179 *   advertising our state to ocfs2_delete_inode().
2180 */
2181static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2182                                 int slot,
2183                                 enum ocfs2_orphan_reco_type orphan_reco_type)
2184{
2185        int ret = 0;
2186        struct inode *inode = NULL;
2187        struct inode *iter;
2188        struct ocfs2_inode_info *oi;
2189        struct buffer_head *di_bh = NULL;
2190        struct ocfs2_dinode *di = NULL;
2191
2192        trace_ocfs2_recover_orphans(slot);
2193
2194        ocfs2_mark_recovering_orphan_dir(osb, slot);
2195        ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2196        ocfs2_clear_recovering_orphan_dir(osb, slot);
2197
2198        /* Error here should be noted, but we want to continue with as
2199         * many queued inodes as we've got. */
2200        if (ret)
2201                mlog_errno(ret);
2202
2203        while (inode) {
2204                oi = OCFS2_I(inode);
2205                trace_ocfs2_recover_orphans_iput(
2206                                        (unsigned long long)oi->ip_blkno);
2207
2208                iter = oi->ip_next_orphan;
2209                oi->ip_next_orphan = NULL;
2210
2211                if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2212                        inode_lock(inode);
2213                        ret = ocfs2_rw_lock(inode, 1);
2214                        if (ret < 0) {
2215                                mlog_errno(ret);
2216                                goto unlock_mutex;
2217                        }
2218                        /*
2219                         * We need to take and drop the inode lock to
2220                         * force read inode from disk.
2221                         */
2222                        ret = ocfs2_inode_lock(inode, &di_bh, 1);
2223                        if (ret) {
2224                                mlog_errno(ret);
2225                                goto unlock_rw;
2226                        }
2227
2228                        di = (struct ocfs2_dinode *)di_bh->b_data;
2229
2230                        if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2231                                ret = ocfs2_truncate_file(inode, di_bh,
2232                                                i_size_read(inode));
2233                                if (ret < 0) {
2234                                        if (ret != -ENOSPC)
2235                                                mlog_errno(ret);
2236                                        goto unlock_inode;
2237                                }
2238
2239                                ret = ocfs2_del_inode_from_orphan(osb, inode,
2240                                                di_bh, 0, 0);
2241                                if (ret)
2242                                        mlog_errno(ret);
2243                        }
2244unlock_inode:
2245                        ocfs2_inode_unlock(inode, 1);
2246                        brelse(di_bh);
2247                        di_bh = NULL;
2248unlock_rw:
2249                        ocfs2_rw_unlock(inode, 1);
2250unlock_mutex:
2251                        inode_unlock(inode);
2252
2253                        /* clear dio flag in ocfs2_inode_info */
2254                        oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2255                } else {
2256                        spin_lock(&oi->ip_lock);
2257                        /* Set the proper information to get us going into
2258                         * ocfs2_delete_inode. */
2259                        oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2260                        spin_unlock(&oi->ip_lock);
2261                }
2262
2263                iput(inode);
2264                inode = iter;
2265        }
2266
2267        return ret;
2268}
2269
2270static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2271{
2272        /* This check is good because ocfs2 will wait on our recovery
2273         * thread before changing it to something other than MOUNTED
2274         * or DISABLED. */
2275        wait_event(osb->osb_mount_event,
2276                  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2277                   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2278                   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2279
2280        /* If there's an error on mount, then we may never get to the
2281         * MOUNTED flag, but this is set right before
2282         * dismount_volume() so we can trust it. */
2283        if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2284                trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2285                mlog(0, "mount error, exiting!\n");
2286                return -EBUSY;
2287        }
2288
2289        return 0;
2290}
2291
2292static int ocfs2_commit_thread(void *arg)
2293{
2294        int status;
2295        struct ocfs2_super *osb = arg;
2296        struct ocfs2_journal *journal = osb->journal;
2297
2298        /* we can trust j_num_trans here because _should_stop() is only set in
2299         * shutdown and nobody other than ourselves should be able to start
2300         * transactions.  committing on shutdown might take a few iterations
2301         * as final transactions put deleted inodes on the list */
2302        while (!(kthread_should_stop() &&
2303                 atomic_read(&journal->j_num_trans) == 0)) {
2304
2305                wait_event_interruptible(osb->checkpoint_event,
2306                                         atomic_read(&journal->j_num_trans)
2307                                         || kthread_should_stop());
2308
2309                status = ocfs2_commit_cache(osb);
2310                if (status < 0) {
2311                        static unsigned long abort_warn_time;
2312
2313                        /* Warn about this once per minute */
2314                        if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2315                                mlog(ML_ERROR, "status = %d, journal is "
2316                                                "already aborted.\n", status);
2317                        /*
2318                         * After ocfs2_commit_cache() fails, j_num_trans has a
2319                         * non-zero value.  Sleep here to avoid a busy-wait
2320                         * loop.
2321                         */
2322                        msleep_interruptible(1000);
2323                }
2324
2325                if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2326                        mlog(ML_KTHREAD,
2327                             "commit_thread: %u transactions pending on "
2328                             "shutdown\n",
2329                             atomic_read(&journal->j_num_trans));
2330                }
2331        }
2332
2333        return 0;
2334}
2335
2336/* Reads all the journal inodes without taking any cluster locks. Used
2337 * for hard readonly access to determine whether any journal requires
2338 * recovery. Also used to refresh the recovery generation numbers after
2339 * a journal has been recovered by another node.
2340 */
2341int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2342{
2343        int ret = 0;
2344        unsigned int slot;
2345        struct buffer_head *di_bh = NULL;
2346        struct ocfs2_dinode *di;
2347        int journal_dirty = 0;
2348
2349        for(slot = 0; slot < osb->max_slots; slot++) {
2350                ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2351                if (ret) {
2352                        mlog_errno(ret);
2353                        goto out;
2354                }
2355
2356                di = (struct ocfs2_dinode *) di_bh->b_data;
2357
2358                osb->slot_recovery_generations[slot] =
2359                                        ocfs2_get_recovery_generation(di);
2360
2361                if (le32_to_cpu(di->id1.journal1.ij_flags) &
2362                    OCFS2_JOURNAL_DIRTY_FL)
2363                        journal_dirty = 1;
2364
2365                brelse(di_bh);
2366                di_bh = NULL;
2367        }
2368
2369out:
2370        if (journal_dirty)
2371                ret = -EROFS;
2372        return ret;
2373}
2374