linux/fs/pnode.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/pnode.c
   4 *
   5 * (C) Copyright IBM Corporation 2005.
   6 *      Author : Ram Pai (linuxram@us.ibm.com)
   7 */
   8#include <linux/mnt_namespace.h>
   9#include <linux/mount.h>
  10#include <linux/fs.h>
  11#include <linux/nsproxy.h>
  12#include <uapi/linux/mount.h>
  13#include "internal.h"
  14#include "pnode.h"
  15
  16/* return the next shared peer mount of @p */
  17static inline struct mount *next_peer(struct mount *p)
  18{
  19        return list_entry(p->mnt_share.next, struct mount, mnt_share);
  20}
  21
  22static inline struct mount *first_slave(struct mount *p)
  23{
  24        return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave);
  25}
  26
  27static inline struct mount *last_slave(struct mount *p)
  28{
  29        return list_entry(p->mnt_slave_list.prev, struct mount, mnt_slave);
  30}
  31
  32static inline struct mount *next_slave(struct mount *p)
  33{
  34        return list_entry(p->mnt_slave.next, struct mount, mnt_slave);
  35}
  36
  37static struct mount *get_peer_under_root(struct mount *mnt,
  38                                         struct mnt_namespace *ns,
  39                                         const struct path *root)
  40{
  41        struct mount *m = mnt;
  42
  43        do {
  44                /* Check the namespace first for optimization */
  45                if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root))
  46                        return m;
  47
  48                m = next_peer(m);
  49        } while (m != mnt);
  50
  51        return NULL;
  52}
  53
  54/*
  55 * Get ID of closest dominating peer group having a representative
  56 * under the given root.
  57 *
  58 * Caller must hold namespace_sem
  59 */
  60int get_dominating_id(struct mount *mnt, const struct path *root)
  61{
  62        struct mount *m;
  63
  64        for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
  65                struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root);
  66                if (d)
  67                        return d->mnt_group_id;
  68        }
  69
  70        return 0;
  71}
  72
  73static int do_make_slave(struct mount *mnt)
  74{
  75        struct mount *master, *slave_mnt;
  76
  77        if (list_empty(&mnt->mnt_share)) {
  78                if (IS_MNT_SHARED(mnt)) {
  79                        mnt_release_group_id(mnt);
  80                        CLEAR_MNT_SHARED(mnt);
  81                }
  82                master = mnt->mnt_master;
  83                if (!master) {
  84                        struct list_head *p = &mnt->mnt_slave_list;
  85                        while (!list_empty(p)) {
  86                                slave_mnt = list_first_entry(p,
  87                                                struct mount, mnt_slave);
  88                                list_del_init(&slave_mnt->mnt_slave);
  89                                slave_mnt->mnt_master = NULL;
  90                        }
  91                        return 0;
  92                }
  93        } else {
  94                struct mount *m;
  95                /*
  96                 * slave 'mnt' to a peer mount that has the
  97                 * same root dentry. If none is available then
  98                 * slave it to anything that is available.
  99                 */
 100                for (m = master = next_peer(mnt); m != mnt; m = next_peer(m)) {
 101                        if (m->mnt.mnt_root == mnt->mnt.mnt_root) {
 102                                master = m;
 103                                break;
 104                        }
 105                }
 106                list_del_init(&mnt->mnt_share);
 107                mnt->mnt_group_id = 0;
 108                CLEAR_MNT_SHARED(mnt);
 109        }
 110        list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
 111                slave_mnt->mnt_master = master;
 112        list_move(&mnt->mnt_slave, &master->mnt_slave_list);
 113        list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
 114        INIT_LIST_HEAD(&mnt->mnt_slave_list);
 115        mnt->mnt_master = master;
 116        return 0;
 117}
 118
 119/*
 120 * vfsmount lock must be held for write
 121 */
 122void change_mnt_propagation(struct mount *mnt, int type)
 123{
 124        if (type == MS_SHARED) {
 125                set_mnt_shared(mnt);
 126                return;
 127        }
 128        do_make_slave(mnt);
 129        if (type != MS_SLAVE) {
 130                list_del_init(&mnt->mnt_slave);
 131                mnt->mnt_master = NULL;
 132                if (type == MS_UNBINDABLE)
 133                        mnt->mnt.mnt_flags |= MNT_UNBINDABLE;
 134                else
 135                        mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE;
 136        }
 137}
 138
 139/*
 140 * get the next mount in the propagation tree.
 141 * @m: the mount seen last
 142 * @origin: the original mount from where the tree walk initiated
 143 *
 144 * Note that peer groups form contiguous segments of slave lists.
 145 * We rely on that in get_source() to be able to find out if
 146 * vfsmount found while iterating with propagation_next() is
 147 * a peer of one we'd found earlier.
 148 */
 149static struct mount *propagation_next(struct mount *m,
 150                                         struct mount *origin)
 151{
 152        /* are there any slaves of this mount? */
 153        if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
 154                return first_slave(m);
 155
 156        while (1) {
 157                struct mount *master = m->mnt_master;
 158
 159                if (master == origin->mnt_master) {
 160                        struct mount *next = next_peer(m);
 161                        return (next == origin) ? NULL : next;
 162                } else if (m->mnt_slave.next != &master->mnt_slave_list)
 163                        return next_slave(m);
 164
 165                /* back at master */
 166                m = master;
 167        }
 168}
 169
 170static struct mount *skip_propagation_subtree(struct mount *m,
 171                                                struct mount *origin)
 172{
 173        /*
 174         * Advance m such that propagation_next will not return
 175         * the slaves of m.
 176         */
 177        if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
 178                m = last_slave(m);
 179
 180        return m;
 181}
 182
 183static struct mount *next_group(struct mount *m, struct mount *origin)
 184{
 185        while (1) {
 186                while (1) {
 187                        struct mount *next;
 188                        if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
 189                                return first_slave(m);
 190                        next = next_peer(m);
 191                        if (m->mnt_group_id == origin->mnt_group_id) {
 192                                if (next == origin)
 193                                        return NULL;
 194                        } else if (m->mnt_slave.next != &next->mnt_slave)
 195                                break;
 196                        m = next;
 197                }
 198                /* m is the last peer */
 199                while (1) {
 200                        struct mount *master = m->mnt_master;
 201                        if (m->mnt_slave.next != &master->mnt_slave_list)
 202                                return next_slave(m);
 203                        m = next_peer(master);
 204                        if (master->mnt_group_id == origin->mnt_group_id)
 205                                break;
 206                        if (master->mnt_slave.next == &m->mnt_slave)
 207                                break;
 208                        m = master;
 209                }
 210                if (m == origin)
 211                        return NULL;
 212        }
 213}
 214
 215/* all accesses are serialized by namespace_sem */
 216static struct mount *last_dest, *first_source, *last_source, *dest_master;
 217static struct mountpoint *mp;
 218static struct hlist_head *list;
 219
 220static inline bool peers(struct mount *m1, struct mount *m2)
 221{
 222        return m1->mnt_group_id == m2->mnt_group_id && m1->mnt_group_id;
 223}
 224
 225static int propagate_one(struct mount *m)
 226{
 227        struct mount *child;
 228        int type;
 229        /* skip ones added by this propagate_mnt() */
 230        if (IS_MNT_NEW(m))
 231                return 0;
 232        /* skip if mountpoint isn't covered by it */
 233        if (!is_subdir(mp->m_dentry, m->mnt.mnt_root))
 234                return 0;
 235        if (peers(m, last_dest)) {
 236                type = CL_MAKE_SHARED;
 237        } else {
 238                struct mount *n, *p;
 239                bool done;
 240                for (n = m; ; n = p) {
 241                        p = n->mnt_master;
 242                        if (p == dest_master || IS_MNT_MARKED(p))
 243                                break;
 244                }
 245                do {
 246                        struct mount *parent = last_source->mnt_parent;
 247                        if (last_source == first_source)
 248                                break;
 249                        done = parent->mnt_master == p;
 250                        if (done && peers(n, parent))
 251                                break;
 252                        last_source = last_source->mnt_master;
 253                } while (!done);
 254
 255                type = CL_SLAVE;
 256                /* beginning of peer group among the slaves? */
 257                if (IS_MNT_SHARED(m))
 258                        type |= CL_MAKE_SHARED;
 259        }
 260                
 261        child = copy_tree(last_source, last_source->mnt.mnt_root, type);
 262        if (IS_ERR(child))
 263                return PTR_ERR(child);
 264        read_seqlock_excl(&mount_lock);
 265        mnt_set_mountpoint(m, mp, child);
 266        if (m->mnt_master != dest_master)
 267                SET_MNT_MARK(m->mnt_master);
 268        read_sequnlock_excl(&mount_lock);
 269        last_dest = m;
 270        last_source = child;
 271        hlist_add_head(&child->mnt_hash, list);
 272        return count_mounts(m->mnt_ns, child);
 273}
 274
 275/*
 276 * mount 'source_mnt' under the destination 'dest_mnt' at
 277 * dentry 'dest_dentry'. And propagate that mount to
 278 * all the peer and slave mounts of 'dest_mnt'.
 279 * Link all the new mounts into a propagation tree headed at
 280 * source_mnt. Also link all the new mounts using ->mnt_list
 281 * headed at source_mnt's ->mnt_list
 282 *
 283 * @dest_mnt: destination mount.
 284 * @dest_dentry: destination dentry.
 285 * @source_mnt: source mount.
 286 * @tree_list : list of heads of trees to be attached.
 287 */
 288int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp,
 289                    struct mount *source_mnt, struct hlist_head *tree_list)
 290{
 291        struct mount *m, *n;
 292        int ret = 0;
 293
 294        /*
 295         * we don't want to bother passing tons of arguments to
 296         * propagate_one(); everything is serialized by namespace_sem,
 297         * so globals will do just fine.
 298         */
 299        last_dest = dest_mnt;
 300        first_source = source_mnt;
 301        last_source = source_mnt;
 302        mp = dest_mp;
 303        list = tree_list;
 304        dest_master = dest_mnt->mnt_master;
 305
 306        /* all peers of dest_mnt, except dest_mnt itself */
 307        for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) {
 308                ret = propagate_one(n);
 309                if (ret)
 310                        goto out;
 311        }
 312
 313        /* all slave groups */
 314        for (m = next_group(dest_mnt, dest_mnt); m;
 315                        m = next_group(m, dest_mnt)) {
 316                /* everything in that slave group */
 317                n = m;
 318                do {
 319                        ret = propagate_one(n);
 320                        if (ret)
 321                                goto out;
 322                        n = next_peer(n);
 323                } while (n != m);
 324        }
 325out:
 326        read_seqlock_excl(&mount_lock);
 327        hlist_for_each_entry(n, tree_list, mnt_hash) {
 328                m = n->mnt_parent;
 329                if (m->mnt_master != dest_mnt->mnt_master)
 330                        CLEAR_MNT_MARK(m->mnt_master);
 331        }
 332        read_sequnlock_excl(&mount_lock);
 333        return ret;
 334}
 335
 336static struct mount *find_topper(struct mount *mnt)
 337{
 338        /* If there is exactly one mount covering mnt completely return it. */
 339        struct mount *child;
 340
 341        if (!list_is_singular(&mnt->mnt_mounts))
 342                return NULL;
 343
 344        child = list_first_entry(&mnt->mnt_mounts, struct mount, mnt_child);
 345        if (child->mnt_mountpoint != mnt->mnt.mnt_root)
 346                return NULL;
 347
 348        return child;
 349}
 350
 351/*
 352 * return true if the refcount is greater than count
 353 */
 354static inline int do_refcount_check(struct mount *mnt, int count)
 355{
 356        return mnt_get_count(mnt) > count;
 357}
 358
 359/*
 360 * check if the mount 'mnt' can be unmounted successfully.
 361 * @mnt: the mount to be checked for unmount
 362 * NOTE: unmounting 'mnt' would naturally propagate to all
 363 * other mounts its parent propagates to.
 364 * Check if any of these mounts that **do not have submounts**
 365 * have more references than 'refcnt'. If so return busy.
 366 *
 367 * vfsmount lock must be held for write
 368 */
 369int propagate_mount_busy(struct mount *mnt, int refcnt)
 370{
 371        struct mount *m, *child, *topper;
 372        struct mount *parent = mnt->mnt_parent;
 373
 374        if (mnt == parent)
 375                return do_refcount_check(mnt, refcnt);
 376
 377        /*
 378         * quickly check if the current mount can be unmounted.
 379         * If not, we don't have to go checking for all other
 380         * mounts
 381         */
 382        if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
 383                return 1;
 384
 385        for (m = propagation_next(parent, parent); m;
 386                        m = propagation_next(m, parent)) {
 387                int count = 1;
 388                child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
 389                if (!child)
 390                        continue;
 391
 392                /* Is there exactly one mount on the child that covers
 393                 * it completely whose reference should be ignored?
 394                 */
 395                topper = find_topper(child);
 396                if (topper)
 397                        count += 1;
 398                else if (!list_empty(&child->mnt_mounts))
 399                        continue;
 400
 401                if (do_refcount_check(child, count))
 402                        return 1;
 403        }
 404        return 0;
 405}
 406
 407/*
 408 * Clear MNT_LOCKED when it can be shown to be safe.
 409 *
 410 * mount_lock lock must be held for write
 411 */
 412void propagate_mount_unlock(struct mount *mnt)
 413{
 414        struct mount *parent = mnt->mnt_parent;
 415        struct mount *m, *child;
 416
 417        BUG_ON(parent == mnt);
 418
 419        for (m = propagation_next(parent, parent); m;
 420                        m = propagation_next(m, parent)) {
 421                child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
 422                if (child)
 423                        child->mnt.mnt_flags &= ~MNT_LOCKED;
 424        }
 425}
 426
 427static void umount_one(struct mount *mnt, struct list_head *to_umount)
 428{
 429        CLEAR_MNT_MARK(mnt);
 430        mnt->mnt.mnt_flags |= MNT_UMOUNT;
 431        list_del_init(&mnt->mnt_child);
 432        list_del_init(&mnt->mnt_umounting);
 433        list_move_tail(&mnt->mnt_list, to_umount);
 434}
 435
 436/*
 437 * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
 438 * parent propagates to.
 439 */
 440static bool __propagate_umount(struct mount *mnt,
 441                               struct list_head *to_umount,
 442                               struct list_head *to_restore)
 443{
 444        bool progress = false;
 445        struct mount *child;
 446
 447        /*
 448         * The state of the parent won't change if this mount is
 449         * already unmounted or marked as without children.
 450         */
 451        if (mnt->mnt.mnt_flags & (MNT_UMOUNT | MNT_MARKED))
 452                goto out;
 453
 454        /* Verify topper is the only grandchild that has not been
 455         * speculatively unmounted.
 456         */
 457        list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
 458                if (child->mnt_mountpoint == mnt->mnt.mnt_root)
 459                        continue;
 460                if (!list_empty(&child->mnt_umounting) && IS_MNT_MARKED(child))
 461                        continue;
 462                /* Found a mounted child */
 463                goto children;
 464        }
 465
 466        /* Mark mounts that can be unmounted if not locked */
 467        SET_MNT_MARK(mnt);
 468        progress = true;
 469
 470        /* If a mount is without children and not locked umount it. */
 471        if (!IS_MNT_LOCKED(mnt)) {
 472                umount_one(mnt, to_umount);
 473        } else {
 474children:
 475                list_move_tail(&mnt->mnt_umounting, to_restore);
 476        }
 477out:
 478        return progress;
 479}
 480
 481static void umount_list(struct list_head *to_umount,
 482                        struct list_head *to_restore)
 483{
 484        struct mount *mnt, *child, *tmp;
 485        list_for_each_entry(mnt, to_umount, mnt_list) {
 486                list_for_each_entry_safe(child, tmp, &mnt->mnt_mounts, mnt_child) {
 487                        /* topper? */
 488                        if (child->mnt_mountpoint == mnt->mnt.mnt_root)
 489                                list_move_tail(&child->mnt_umounting, to_restore);
 490                        else
 491                                umount_one(child, to_umount);
 492                }
 493        }
 494}
 495
 496static void restore_mounts(struct list_head *to_restore)
 497{
 498        /* Restore mounts to a clean working state */
 499        while (!list_empty(to_restore)) {
 500                struct mount *mnt, *parent;
 501                struct mountpoint *mp;
 502
 503                mnt = list_first_entry(to_restore, struct mount, mnt_umounting);
 504                CLEAR_MNT_MARK(mnt);
 505                list_del_init(&mnt->mnt_umounting);
 506
 507                /* Should this mount be reparented? */
 508                mp = mnt->mnt_mp;
 509                parent = mnt->mnt_parent;
 510                while (parent->mnt.mnt_flags & MNT_UMOUNT) {
 511                        mp = parent->mnt_mp;
 512                        parent = parent->mnt_parent;
 513                }
 514                if (parent != mnt->mnt_parent)
 515                        mnt_change_mountpoint(parent, mp, mnt);
 516        }
 517}
 518
 519static void cleanup_umount_visitations(struct list_head *visited)
 520{
 521        while (!list_empty(visited)) {
 522                struct mount *mnt =
 523                        list_first_entry(visited, struct mount, mnt_umounting);
 524                list_del_init(&mnt->mnt_umounting);
 525        }
 526}
 527
 528/*
 529 * collect all mounts that receive propagation from the mount in @list,
 530 * and return these additional mounts in the same list.
 531 * @list: the list of mounts to be unmounted.
 532 *
 533 * vfsmount lock must be held for write
 534 */
 535int propagate_umount(struct list_head *list)
 536{
 537        struct mount *mnt;
 538        LIST_HEAD(to_restore);
 539        LIST_HEAD(to_umount);
 540        LIST_HEAD(visited);
 541
 542        /* Find candidates for unmounting */
 543        list_for_each_entry_reverse(mnt, list, mnt_list) {
 544                struct mount *parent = mnt->mnt_parent;
 545                struct mount *m;
 546
 547                /*
 548                 * If this mount has already been visited it is known that it's
 549                 * entire peer group and all of their slaves in the propagation
 550                 * tree for the mountpoint has already been visited and there is
 551                 * no need to visit them again.
 552                 */
 553                if (!list_empty(&mnt->mnt_umounting))
 554                        continue;
 555
 556                list_add_tail(&mnt->mnt_umounting, &visited);
 557                for (m = propagation_next(parent, parent); m;
 558                     m = propagation_next(m, parent)) {
 559                        struct mount *child = __lookup_mnt(&m->mnt,
 560                                                           mnt->mnt_mountpoint);
 561                        if (!child)
 562                                continue;
 563
 564                        if (!list_empty(&child->mnt_umounting)) {
 565                                /*
 566                                 * If the child has already been visited it is
 567                                 * know that it's entire peer group and all of
 568                                 * their slaves in the propgation tree for the
 569                                 * mountpoint has already been visited and there
 570                                 * is no need to visit this subtree again.
 571                                 */
 572                                m = skip_propagation_subtree(m, parent);
 573                                continue;
 574                        } else if (child->mnt.mnt_flags & MNT_UMOUNT) {
 575                                /*
 576                                 * We have come accross an partially unmounted
 577                                 * mount in list that has not been visited yet.
 578                                 * Remember it has been visited and continue
 579                                 * about our merry way.
 580                                 */
 581                                list_add_tail(&child->mnt_umounting, &visited);
 582                                continue;
 583                        }
 584
 585                        /* Check the child and parents while progress is made */
 586                        while (__propagate_umount(child,
 587                                                  &to_umount, &to_restore)) {
 588                                /* Is the parent a umount candidate? */
 589                                child = child->mnt_parent;
 590                                if (list_empty(&child->mnt_umounting))
 591                                        break;
 592                        }
 593                }
 594        }
 595
 596        umount_list(&to_umount, &to_restore);
 597        restore_mounts(&to_restore);
 598        cleanup_umount_visitations(&visited);
 599        list_splice_tail(&to_umount, list);
 600
 601        return 0;
 602}
 603