linux/fs/super.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/super.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  super.c contains code to handle: - mount structures
   8 *                                   - super-block tables
   9 *                                   - filesystem drivers list
  10 *                                   - mount system call
  11 *                                   - umount system call
  12 *                                   - ustat system call
  13 *
  14 * GK 2/5/95  -  Changed to support mounting the root fs via NFS
  15 *
  16 *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
  17 *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
  18 *  Added options to /proc/mounts:
  19 *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
  20 *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
  21 *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
  22 */
  23
  24#include <linux/export.h>
  25#include <linux/slab.h>
  26#include <linux/blkdev.h>
  27#include <linux/mount.h>
  28#include <linux/security.h>
  29#include <linux/writeback.h>            /* for the emergency remount stuff */
  30#include <linux/idr.h>
  31#include <linux/mutex.h>
  32#include <linux/backing-dev.h>
  33#include <linux/rculist_bl.h>
  34#include <linux/cleancache.h>
  35#include <linux/fscrypt.h>
  36#include <linux/fsnotify.h>
  37#include <linux/lockdep.h>
  38#include <linux/user_namespace.h>
  39#include <linux/fs_context.h>
  40#include <uapi/linux/mount.h>
  41#include "internal.h"
  42
  43static int thaw_super_locked(struct super_block *sb);
  44
  45static LIST_HEAD(super_blocks);
  46static DEFINE_SPINLOCK(sb_lock);
  47
  48static char *sb_writers_name[SB_FREEZE_LEVELS] = {
  49        "sb_writers",
  50        "sb_pagefaults",
  51        "sb_internal",
  52};
  53
  54/*
  55 * One thing we have to be careful of with a per-sb shrinker is that we don't
  56 * drop the last active reference to the superblock from within the shrinker.
  57 * If that happens we could trigger unregistering the shrinker from within the
  58 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
  59 * take a passive reference to the superblock to avoid this from occurring.
  60 */
  61static unsigned long super_cache_scan(struct shrinker *shrink,
  62                                      struct shrink_control *sc)
  63{
  64        struct super_block *sb;
  65        long    fs_objects = 0;
  66        long    total_objects;
  67        long    freed = 0;
  68        long    dentries;
  69        long    inodes;
  70
  71        sb = container_of(shrink, struct super_block, s_shrink);
  72
  73        /*
  74         * Deadlock avoidance.  We may hold various FS locks, and we don't want
  75         * to recurse into the FS that called us in clear_inode() and friends..
  76         */
  77        if (!(sc->gfp_mask & __GFP_FS))
  78                return SHRINK_STOP;
  79
  80        if (!trylock_super(sb))
  81                return SHRINK_STOP;
  82
  83        if (sb->s_op->nr_cached_objects)
  84                fs_objects = sb->s_op->nr_cached_objects(sb, sc);
  85
  86        inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
  87        dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
  88        total_objects = dentries + inodes + fs_objects + 1;
  89        if (!total_objects)
  90                total_objects = 1;
  91
  92        /* proportion the scan between the caches */
  93        dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
  94        inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
  95        fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
  96
  97        /*
  98         * prune the dcache first as the icache is pinned by it, then
  99         * prune the icache, followed by the filesystem specific caches
 100         *
 101         * Ensure that we always scan at least one object - memcg kmem
 102         * accounting uses this to fully empty the caches.
 103         */
 104        sc->nr_to_scan = dentries + 1;
 105        freed = prune_dcache_sb(sb, sc);
 106        sc->nr_to_scan = inodes + 1;
 107        freed += prune_icache_sb(sb, sc);
 108
 109        if (fs_objects) {
 110                sc->nr_to_scan = fs_objects + 1;
 111                freed += sb->s_op->free_cached_objects(sb, sc);
 112        }
 113
 114        up_read(&sb->s_umount);
 115        return freed;
 116}
 117
 118static unsigned long super_cache_count(struct shrinker *shrink,
 119                                       struct shrink_control *sc)
 120{
 121        struct super_block *sb;
 122        long    total_objects = 0;
 123
 124        sb = container_of(shrink, struct super_block, s_shrink);
 125
 126        /*
 127         * We don't call trylock_super() here as it is a scalability bottleneck,
 128         * so we're exposed to partial setup state. The shrinker rwsem does not
 129         * protect filesystem operations backing list_lru_shrink_count() or
 130         * s_op->nr_cached_objects(). Counts can change between
 131         * super_cache_count and super_cache_scan, so we really don't need locks
 132         * here.
 133         *
 134         * However, if we are currently mounting the superblock, the underlying
 135         * filesystem might be in a state of partial construction and hence it
 136         * is dangerous to access it.  trylock_super() uses a SB_BORN check to
 137         * avoid this situation, so do the same here. The memory barrier is
 138         * matched with the one in mount_fs() as we don't hold locks here.
 139         */
 140        if (!(sb->s_flags & SB_BORN))
 141                return 0;
 142        smp_rmb();
 143
 144        if (sb->s_op && sb->s_op->nr_cached_objects)
 145                total_objects = sb->s_op->nr_cached_objects(sb, sc);
 146
 147        total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
 148        total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
 149
 150        if (!total_objects)
 151                return SHRINK_EMPTY;
 152
 153        total_objects = vfs_pressure_ratio(total_objects);
 154        return total_objects;
 155}
 156
 157static void destroy_super_work(struct work_struct *work)
 158{
 159        struct super_block *s = container_of(work, struct super_block,
 160                                                        destroy_work);
 161        int i;
 162
 163        for (i = 0; i < SB_FREEZE_LEVELS; i++)
 164                percpu_free_rwsem(&s->s_writers.rw_sem[i]);
 165        kfree(s);
 166}
 167
 168static void destroy_super_rcu(struct rcu_head *head)
 169{
 170        struct super_block *s = container_of(head, struct super_block, rcu);
 171        INIT_WORK(&s->destroy_work, destroy_super_work);
 172        schedule_work(&s->destroy_work);
 173}
 174
 175/* Free a superblock that has never been seen by anyone */
 176static void destroy_unused_super(struct super_block *s)
 177{
 178        if (!s)
 179                return;
 180        up_write(&s->s_umount);
 181        list_lru_destroy(&s->s_dentry_lru);
 182        list_lru_destroy(&s->s_inode_lru);
 183        security_sb_free(s);
 184        put_user_ns(s->s_user_ns);
 185        kfree(s->s_subtype);
 186        free_prealloced_shrinker(&s->s_shrink);
 187        /* no delays needed */
 188        destroy_super_work(&s->destroy_work);
 189}
 190
 191/**
 192 *      alloc_super     -       create new superblock
 193 *      @type:  filesystem type superblock should belong to
 194 *      @flags: the mount flags
 195 *      @user_ns: User namespace for the super_block
 196 *
 197 *      Allocates and initializes a new &struct super_block.  alloc_super()
 198 *      returns a pointer new superblock or %NULL if allocation had failed.
 199 */
 200static struct super_block *alloc_super(struct file_system_type *type, int flags,
 201                                       struct user_namespace *user_ns)
 202{
 203        struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
 204        static const struct super_operations default_op;
 205        int i;
 206
 207        if (!s)
 208                return NULL;
 209
 210        INIT_LIST_HEAD(&s->s_mounts);
 211        s->s_user_ns = get_user_ns(user_ns);
 212        init_rwsem(&s->s_umount);
 213        lockdep_set_class(&s->s_umount, &type->s_umount_key);
 214        /*
 215         * sget() can have s_umount recursion.
 216         *
 217         * When it cannot find a suitable sb, it allocates a new
 218         * one (this one), and tries again to find a suitable old
 219         * one.
 220         *
 221         * In case that succeeds, it will acquire the s_umount
 222         * lock of the old one. Since these are clearly distrinct
 223         * locks, and this object isn't exposed yet, there's no
 224         * risk of deadlocks.
 225         *
 226         * Annotate this by putting this lock in a different
 227         * subclass.
 228         */
 229        down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
 230
 231        if (security_sb_alloc(s))
 232                goto fail;
 233
 234        for (i = 0; i < SB_FREEZE_LEVELS; i++) {
 235                if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
 236                                        sb_writers_name[i],
 237                                        &type->s_writers_key[i]))
 238                        goto fail;
 239        }
 240        init_waitqueue_head(&s->s_writers.wait_unfrozen);
 241        s->s_bdi = &noop_backing_dev_info;
 242        s->s_flags = flags;
 243        if (s->s_user_ns != &init_user_ns)
 244                s->s_iflags |= SB_I_NODEV;
 245        INIT_HLIST_NODE(&s->s_instances);
 246        INIT_HLIST_BL_HEAD(&s->s_roots);
 247        mutex_init(&s->s_sync_lock);
 248        INIT_LIST_HEAD(&s->s_inodes);
 249        spin_lock_init(&s->s_inode_list_lock);
 250        INIT_LIST_HEAD(&s->s_inodes_wb);
 251        spin_lock_init(&s->s_inode_wblist_lock);
 252
 253        s->s_count = 1;
 254        atomic_set(&s->s_active, 1);
 255        mutex_init(&s->s_vfs_rename_mutex);
 256        lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
 257        init_rwsem(&s->s_dquot.dqio_sem);
 258        s->s_maxbytes = MAX_NON_LFS;
 259        s->s_op = &default_op;
 260        s->s_time_gran = 1000000000;
 261        s->s_time_min = TIME64_MIN;
 262        s->s_time_max = TIME64_MAX;
 263        s->cleancache_poolid = CLEANCACHE_NO_POOL;
 264
 265        s->s_shrink.seeks = DEFAULT_SEEKS;
 266        s->s_shrink.scan_objects = super_cache_scan;
 267        s->s_shrink.count_objects = super_cache_count;
 268        s->s_shrink.batch = 1024;
 269        s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
 270        if (prealloc_shrinker(&s->s_shrink))
 271                goto fail;
 272        if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
 273                goto fail;
 274        if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
 275                goto fail;
 276        return s;
 277
 278fail:
 279        destroy_unused_super(s);
 280        return NULL;
 281}
 282
 283/* Superblock refcounting  */
 284
 285/*
 286 * Drop a superblock's refcount.  The caller must hold sb_lock.
 287 */
 288static void __put_super(struct super_block *s)
 289{
 290        if (!--s->s_count) {
 291                list_del_init(&s->s_list);
 292                WARN_ON(s->s_dentry_lru.node);
 293                WARN_ON(s->s_inode_lru.node);
 294                WARN_ON(!list_empty(&s->s_mounts));
 295                security_sb_free(s);
 296                fscrypt_sb_free(s);
 297                put_user_ns(s->s_user_ns);
 298                kfree(s->s_subtype);
 299                call_rcu(&s->rcu, destroy_super_rcu);
 300        }
 301}
 302
 303/**
 304 *      put_super       -       drop a temporary reference to superblock
 305 *      @sb: superblock in question
 306 *
 307 *      Drops a temporary reference, frees superblock if there's no
 308 *      references left.
 309 */
 310void put_super(struct super_block *sb)
 311{
 312        spin_lock(&sb_lock);
 313        __put_super(sb);
 314        spin_unlock(&sb_lock);
 315}
 316
 317
 318/**
 319 *      deactivate_locked_super -       drop an active reference to superblock
 320 *      @s: superblock to deactivate
 321 *
 322 *      Drops an active reference to superblock, converting it into a temporary
 323 *      one if there is no other active references left.  In that case we
 324 *      tell fs driver to shut it down and drop the temporary reference we
 325 *      had just acquired.
 326 *
 327 *      Caller holds exclusive lock on superblock; that lock is released.
 328 */
 329void deactivate_locked_super(struct super_block *s)
 330{
 331        struct file_system_type *fs = s->s_type;
 332        if (atomic_dec_and_test(&s->s_active)) {
 333                cleancache_invalidate_fs(s);
 334                unregister_shrinker(&s->s_shrink);
 335                fs->kill_sb(s);
 336
 337                /*
 338                 * Since list_lru_destroy() may sleep, we cannot call it from
 339                 * put_super(), where we hold the sb_lock. Therefore we destroy
 340                 * the lru lists right now.
 341                 */
 342                list_lru_destroy(&s->s_dentry_lru);
 343                list_lru_destroy(&s->s_inode_lru);
 344
 345                put_filesystem(fs);
 346                put_super(s);
 347        } else {
 348                up_write(&s->s_umount);
 349        }
 350}
 351
 352EXPORT_SYMBOL(deactivate_locked_super);
 353
 354/**
 355 *      deactivate_super        -       drop an active reference to superblock
 356 *      @s: superblock to deactivate
 357 *
 358 *      Variant of deactivate_locked_super(), except that superblock is *not*
 359 *      locked by caller.  If we are going to drop the final active reference,
 360 *      lock will be acquired prior to that.
 361 */
 362void deactivate_super(struct super_block *s)
 363{
 364        if (!atomic_add_unless(&s->s_active, -1, 1)) {
 365                down_write(&s->s_umount);
 366                deactivate_locked_super(s);
 367        }
 368}
 369
 370EXPORT_SYMBOL(deactivate_super);
 371
 372/**
 373 *      grab_super - acquire an active reference
 374 *      @s: reference we are trying to make active
 375 *
 376 *      Tries to acquire an active reference.  grab_super() is used when we
 377 *      had just found a superblock in super_blocks or fs_type->fs_supers
 378 *      and want to turn it into a full-blown active reference.  grab_super()
 379 *      is called with sb_lock held and drops it.  Returns 1 in case of
 380 *      success, 0 if we had failed (superblock contents was already dead or
 381 *      dying when grab_super() had been called).  Note that this is only
 382 *      called for superblocks not in rundown mode (== ones still on ->fs_supers
 383 *      of their type), so increment of ->s_count is OK here.
 384 */
 385static int grab_super(struct super_block *s) __releases(sb_lock)
 386{
 387        s->s_count++;
 388        spin_unlock(&sb_lock);
 389        down_write(&s->s_umount);
 390        if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
 391                put_super(s);
 392                return 1;
 393        }
 394        up_write(&s->s_umount);
 395        put_super(s);
 396        return 0;
 397}
 398
 399/*
 400 *      trylock_super - try to grab ->s_umount shared
 401 *      @sb: reference we are trying to grab
 402 *
 403 *      Try to prevent fs shutdown.  This is used in places where we
 404 *      cannot take an active reference but we need to ensure that the
 405 *      filesystem is not shut down while we are working on it. It returns
 406 *      false if we cannot acquire s_umount or if we lose the race and
 407 *      filesystem already got into shutdown, and returns true with the s_umount
 408 *      lock held in read mode in case of success. On successful return,
 409 *      the caller must drop the s_umount lock when done.
 410 *
 411 *      Note that unlike get_super() et.al. this one does *not* bump ->s_count.
 412 *      The reason why it's safe is that we are OK with doing trylock instead
 413 *      of down_read().  There's a couple of places that are OK with that, but
 414 *      it's very much not a general-purpose interface.
 415 */
 416bool trylock_super(struct super_block *sb)
 417{
 418        if (down_read_trylock(&sb->s_umount)) {
 419                if (!hlist_unhashed(&sb->s_instances) &&
 420                    sb->s_root && (sb->s_flags & SB_BORN))
 421                        return true;
 422                up_read(&sb->s_umount);
 423        }
 424
 425        return false;
 426}
 427
 428/**
 429 *      generic_shutdown_super  -       common helper for ->kill_sb()
 430 *      @sb: superblock to kill
 431 *
 432 *      generic_shutdown_super() does all fs-independent work on superblock
 433 *      shutdown.  Typical ->kill_sb() should pick all fs-specific objects
 434 *      that need destruction out of superblock, call generic_shutdown_super()
 435 *      and release aforementioned objects.  Note: dentries and inodes _are_
 436 *      taken care of and do not need specific handling.
 437 *
 438 *      Upon calling this function, the filesystem may no longer alter or
 439 *      rearrange the set of dentries belonging to this super_block, nor may it
 440 *      change the attachments of dentries to inodes.
 441 */
 442void generic_shutdown_super(struct super_block *sb)
 443{
 444        const struct super_operations *sop = sb->s_op;
 445
 446        if (sb->s_root) {
 447                shrink_dcache_for_umount(sb);
 448                sync_filesystem(sb);
 449                sb->s_flags &= ~SB_ACTIVE;
 450
 451                cgroup_writeback_umount();
 452
 453                /* evict all inodes with zero refcount */
 454                evict_inodes(sb);
 455                /* only nonzero refcount inodes can have marks */
 456                fsnotify_sb_delete(sb);
 457                security_sb_delete(sb);
 458
 459                if (sb->s_dio_done_wq) {
 460                        destroy_workqueue(sb->s_dio_done_wq);
 461                        sb->s_dio_done_wq = NULL;
 462                }
 463
 464                if (sop->put_super)
 465                        sop->put_super(sb);
 466
 467                if (!list_empty(&sb->s_inodes)) {
 468                        printk("VFS: Busy inodes after unmount of %s. "
 469                           "Self-destruct in 5 seconds.  Have a nice day...\n",
 470                           sb->s_id);
 471                }
 472        }
 473        spin_lock(&sb_lock);
 474        /* should be initialized for __put_super_and_need_restart() */
 475        hlist_del_init(&sb->s_instances);
 476        spin_unlock(&sb_lock);
 477        up_write(&sb->s_umount);
 478        if (sb->s_bdi != &noop_backing_dev_info) {
 479                bdi_put(sb->s_bdi);
 480                sb->s_bdi = &noop_backing_dev_info;
 481        }
 482}
 483
 484EXPORT_SYMBOL(generic_shutdown_super);
 485
 486bool mount_capable(struct fs_context *fc)
 487{
 488        if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
 489                return capable(CAP_SYS_ADMIN);
 490        else
 491                return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
 492}
 493
 494/**
 495 * sget_fc - Find or create a superblock
 496 * @fc: Filesystem context.
 497 * @test: Comparison callback
 498 * @set: Setup callback
 499 *
 500 * Find or create a superblock using the parameters stored in the filesystem
 501 * context and the two callback functions.
 502 *
 503 * If an extant superblock is matched, then that will be returned with an
 504 * elevated reference count that the caller must transfer or discard.
 505 *
 506 * If no match is made, a new superblock will be allocated and basic
 507 * initialisation will be performed (s_type, s_fs_info and s_id will be set and
 508 * the set() callback will be invoked), the superblock will be published and it
 509 * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
 510 * as yet unset.
 511 */
 512struct super_block *sget_fc(struct fs_context *fc,
 513                            int (*test)(struct super_block *, struct fs_context *),
 514                            int (*set)(struct super_block *, struct fs_context *))
 515{
 516        struct super_block *s = NULL;
 517        struct super_block *old;
 518        struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
 519        int err;
 520
 521retry:
 522        spin_lock(&sb_lock);
 523        if (test) {
 524                hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
 525                        if (test(old, fc))
 526                                goto share_extant_sb;
 527                }
 528        }
 529        if (!s) {
 530                spin_unlock(&sb_lock);
 531                s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
 532                if (!s)
 533                        return ERR_PTR(-ENOMEM);
 534                goto retry;
 535        }
 536
 537        s->s_fs_info = fc->s_fs_info;
 538        err = set(s, fc);
 539        if (err) {
 540                s->s_fs_info = NULL;
 541                spin_unlock(&sb_lock);
 542                destroy_unused_super(s);
 543                return ERR_PTR(err);
 544        }
 545        fc->s_fs_info = NULL;
 546        s->s_type = fc->fs_type;
 547        s->s_iflags |= fc->s_iflags;
 548        strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
 549        list_add_tail(&s->s_list, &super_blocks);
 550        hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
 551        spin_unlock(&sb_lock);
 552        get_filesystem(s->s_type);
 553        register_shrinker_prepared(&s->s_shrink);
 554        return s;
 555
 556share_extant_sb:
 557        if (user_ns != old->s_user_ns) {
 558                spin_unlock(&sb_lock);
 559                destroy_unused_super(s);
 560                return ERR_PTR(-EBUSY);
 561        }
 562        if (!grab_super(old))
 563                goto retry;
 564        destroy_unused_super(s);
 565        return old;
 566}
 567EXPORT_SYMBOL(sget_fc);
 568
 569/**
 570 *      sget    -       find or create a superblock
 571 *      @type:    filesystem type superblock should belong to
 572 *      @test:    comparison callback
 573 *      @set:     setup callback
 574 *      @flags:   mount flags
 575 *      @data:    argument to each of them
 576 */
 577struct super_block *sget(struct file_system_type *type,
 578                        int (*test)(struct super_block *,void *),
 579                        int (*set)(struct super_block *,void *),
 580                        int flags,
 581                        void *data)
 582{
 583        struct user_namespace *user_ns = current_user_ns();
 584        struct super_block *s = NULL;
 585        struct super_block *old;
 586        int err;
 587
 588        /* We don't yet pass the user namespace of the parent
 589         * mount through to here so always use &init_user_ns
 590         * until that changes.
 591         */
 592        if (flags & SB_SUBMOUNT)
 593                user_ns = &init_user_ns;
 594
 595retry:
 596        spin_lock(&sb_lock);
 597        if (test) {
 598                hlist_for_each_entry(old, &type->fs_supers, s_instances) {
 599                        if (!test(old, data))
 600                                continue;
 601                        if (user_ns != old->s_user_ns) {
 602                                spin_unlock(&sb_lock);
 603                                destroy_unused_super(s);
 604                                return ERR_PTR(-EBUSY);
 605                        }
 606                        if (!grab_super(old))
 607                                goto retry;
 608                        destroy_unused_super(s);
 609                        return old;
 610                }
 611        }
 612        if (!s) {
 613                spin_unlock(&sb_lock);
 614                s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
 615                if (!s)
 616                        return ERR_PTR(-ENOMEM);
 617                goto retry;
 618        }
 619
 620        err = set(s, data);
 621        if (err) {
 622                spin_unlock(&sb_lock);
 623                destroy_unused_super(s);
 624                return ERR_PTR(err);
 625        }
 626        s->s_type = type;
 627        strlcpy(s->s_id, type->name, sizeof(s->s_id));
 628        list_add_tail(&s->s_list, &super_blocks);
 629        hlist_add_head(&s->s_instances, &type->fs_supers);
 630        spin_unlock(&sb_lock);
 631        get_filesystem(type);
 632        register_shrinker_prepared(&s->s_shrink);
 633        return s;
 634}
 635EXPORT_SYMBOL(sget);
 636
 637void drop_super(struct super_block *sb)
 638{
 639        up_read(&sb->s_umount);
 640        put_super(sb);
 641}
 642
 643EXPORT_SYMBOL(drop_super);
 644
 645void drop_super_exclusive(struct super_block *sb)
 646{
 647        up_write(&sb->s_umount);
 648        put_super(sb);
 649}
 650EXPORT_SYMBOL(drop_super_exclusive);
 651
 652static void __iterate_supers(void (*f)(struct super_block *))
 653{
 654        struct super_block *sb, *p = NULL;
 655
 656        spin_lock(&sb_lock);
 657        list_for_each_entry(sb, &super_blocks, s_list) {
 658                if (hlist_unhashed(&sb->s_instances))
 659                        continue;
 660                sb->s_count++;
 661                spin_unlock(&sb_lock);
 662
 663                f(sb);
 664
 665                spin_lock(&sb_lock);
 666                if (p)
 667                        __put_super(p);
 668                p = sb;
 669        }
 670        if (p)
 671                __put_super(p);
 672        spin_unlock(&sb_lock);
 673}
 674/**
 675 *      iterate_supers - call function for all active superblocks
 676 *      @f: function to call
 677 *      @arg: argument to pass to it
 678 *
 679 *      Scans the superblock list and calls given function, passing it
 680 *      locked superblock and given argument.
 681 */
 682void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
 683{
 684        struct super_block *sb, *p = NULL;
 685
 686        spin_lock(&sb_lock);
 687        list_for_each_entry(sb, &super_blocks, s_list) {
 688                if (hlist_unhashed(&sb->s_instances))
 689                        continue;
 690                sb->s_count++;
 691                spin_unlock(&sb_lock);
 692
 693                down_read(&sb->s_umount);
 694                if (sb->s_root && (sb->s_flags & SB_BORN))
 695                        f(sb, arg);
 696                up_read(&sb->s_umount);
 697
 698                spin_lock(&sb_lock);
 699                if (p)
 700                        __put_super(p);
 701                p = sb;
 702        }
 703        if (p)
 704                __put_super(p);
 705        spin_unlock(&sb_lock);
 706}
 707
 708/**
 709 *      iterate_supers_type - call function for superblocks of given type
 710 *      @type: fs type
 711 *      @f: function to call
 712 *      @arg: argument to pass to it
 713 *
 714 *      Scans the superblock list and calls given function, passing it
 715 *      locked superblock and given argument.
 716 */
 717void iterate_supers_type(struct file_system_type *type,
 718        void (*f)(struct super_block *, void *), void *arg)
 719{
 720        struct super_block *sb, *p = NULL;
 721
 722        spin_lock(&sb_lock);
 723        hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
 724                sb->s_count++;
 725                spin_unlock(&sb_lock);
 726
 727                down_read(&sb->s_umount);
 728                if (sb->s_root && (sb->s_flags & SB_BORN))
 729                        f(sb, arg);
 730                up_read(&sb->s_umount);
 731
 732                spin_lock(&sb_lock);
 733                if (p)
 734                        __put_super(p);
 735                p = sb;
 736        }
 737        if (p)
 738                __put_super(p);
 739        spin_unlock(&sb_lock);
 740}
 741
 742EXPORT_SYMBOL(iterate_supers_type);
 743
 744/**
 745 * get_super - get the superblock of a device
 746 * @bdev: device to get the superblock for
 747 *
 748 * Scans the superblock list and finds the superblock of the file system
 749 * mounted on the device given. %NULL is returned if no match is found.
 750 */
 751struct super_block *get_super(struct block_device *bdev)
 752{
 753        struct super_block *sb;
 754
 755        if (!bdev)
 756                return NULL;
 757
 758        spin_lock(&sb_lock);
 759rescan:
 760        list_for_each_entry(sb, &super_blocks, s_list) {
 761                if (hlist_unhashed(&sb->s_instances))
 762                        continue;
 763                if (sb->s_bdev == bdev) {
 764                        sb->s_count++;
 765                        spin_unlock(&sb_lock);
 766                        down_read(&sb->s_umount);
 767                        /* still alive? */
 768                        if (sb->s_root && (sb->s_flags & SB_BORN))
 769                                return sb;
 770                        up_read(&sb->s_umount);
 771                        /* nope, got unmounted */
 772                        spin_lock(&sb_lock);
 773                        __put_super(sb);
 774                        goto rescan;
 775                }
 776        }
 777        spin_unlock(&sb_lock);
 778        return NULL;
 779}
 780
 781/**
 782 * get_active_super - get an active reference to the superblock of a device
 783 * @bdev: device to get the superblock for
 784 *
 785 * Scans the superblock list and finds the superblock of the file system
 786 * mounted on the device given.  Returns the superblock with an active
 787 * reference or %NULL if none was found.
 788 */
 789struct super_block *get_active_super(struct block_device *bdev)
 790{
 791        struct super_block *sb;
 792
 793        if (!bdev)
 794                return NULL;
 795
 796restart:
 797        spin_lock(&sb_lock);
 798        list_for_each_entry(sb, &super_blocks, s_list) {
 799                if (hlist_unhashed(&sb->s_instances))
 800                        continue;
 801                if (sb->s_bdev == bdev) {
 802                        if (!grab_super(sb))
 803                                goto restart;
 804                        up_write(&sb->s_umount);
 805                        return sb;
 806                }
 807        }
 808        spin_unlock(&sb_lock);
 809        return NULL;
 810}
 811
 812struct super_block *user_get_super(dev_t dev, bool excl)
 813{
 814        struct super_block *sb;
 815
 816        spin_lock(&sb_lock);
 817rescan:
 818        list_for_each_entry(sb, &super_blocks, s_list) {
 819                if (hlist_unhashed(&sb->s_instances))
 820                        continue;
 821                if (sb->s_dev ==  dev) {
 822                        sb->s_count++;
 823                        spin_unlock(&sb_lock);
 824                        if (excl)
 825                                down_write(&sb->s_umount);
 826                        else
 827                                down_read(&sb->s_umount);
 828                        /* still alive? */
 829                        if (sb->s_root && (sb->s_flags & SB_BORN))
 830                                return sb;
 831                        if (excl)
 832                                up_write(&sb->s_umount);
 833                        else
 834                                up_read(&sb->s_umount);
 835                        /* nope, got unmounted */
 836                        spin_lock(&sb_lock);
 837                        __put_super(sb);
 838                        goto rescan;
 839                }
 840        }
 841        spin_unlock(&sb_lock);
 842        return NULL;
 843}
 844
 845/**
 846 * reconfigure_super - asks filesystem to change superblock parameters
 847 * @fc: The superblock and configuration
 848 *
 849 * Alters the configuration parameters of a live superblock.
 850 */
 851int reconfigure_super(struct fs_context *fc)
 852{
 853        struct super_block *sb = fc->root->d_sb;
 854        int retval;
 855        bool remount_ro = false;
 856        bool force = fc->sb_flags & SB_FORCE;
 857
 858        if (fc->sb_flags_mask & ~MS_RMT_MASK)
 859                return -EINVAL;
 860        if (sb->s_writers.frozen != SB_UNFROZEN)
 861                return -EBUSY;
 862
 863        retval = security_sb_remount(sb, fc->security);
 864        if (retval)
 865                return retval;
 866
 867        if (fc->sb_flags_mask & SB_RDONLY) {
 868#ifdef CONFIG_BLOCK
 869                if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
 870                    bdev_read_only(sb->s_bdev))
 871                        return -EACCES;
 872#endif
 873
 874                remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
 875        }
 876
 877        if (remount_ro) {
 878                if (!hlist_empty(&sb->s_pins)) {
 879                        up_write(&sb->s_umount);
 880                        group_pin_kill(&sb->s_pins);
 881                        down_write(&sb->s_umount);
 882                        if (!sb->s_root)
 883                                return 0;
 884                        if (sb->s_writers.frozen != SB_UNFROZEN)
 885                                return -EBUSY;
 886                        remount_ro = !sb_rdonly(sb);
 887                }
 888        }
 889        shrink_dcache_sb(sb);
 890
 891        /* If we are reconfiguring to RDONLY and current sb is read/write,
 892         * make sure there are no files open for writing.
 893         */
 894        if (remount_ro) {
 895                if (force) {
 896                        sb->s_readonly_remount = 1;
 897                        smp_wmb();
 898                } else {
 899                        retval = sb_prepare_remount_readonly(sb);
 900                        if (retval)
 901                                return retval;
 902                }
 903        }
 904
 905        if (fc->ops->reconfigure) {
 906                retval = fc->ops->reconfigure(fc);
 907                if (retval) {
 908                        if (!force)
 909                                goto cancel_readonly;
 910                        /* If forced remount, go ahead despite any errors */
 911                        WARN(1, "forced remount of a %s fs returned %i\n",
 912                             sb->s_type->name, retval);
 913                }
 914        }
 915
 916        WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
 917                                 (fc->sb_flags & fc->sb_flags_mask)));
 918        /* Needs to be ordered wrt mnt_is_readonly() */
 919        smp_wmb();
 920        sb->s_readonly_remount = 0;
 921
 922        /*
 923         * Some filesystems modify their metadata via some other path than the
 924         * bdev buffer cache (eg. use a private mapping, or directories in
 925         * pagecache, etc). Also file data modifications go via their own
 926         * mappings. So If we try to mount readonly then copy the filesystem
 927         * from bdev, we could get stale data, so invalidate it to give a best
 928         * effort at coherency.
 929         */
 930        if (remount_ro && sb->s_bdev)
 931                invalidate_bdev(sb->s_bdev);
 932        return 0;
 933
 934cancel_readonly:
 935        sb->s_readonly_remount = 0;
 936        return retval;
 937}
 938
 939static void do_emergency_remount_callback(struct super_block *sb)
 940{
 941        down_write(&sb->s_umount);
 942        if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
 943            !sb_rdonly(sb)) {
 944                struct fs_context *fc;
 945
 946                fc = fs_context_for_reconfigure(sb->s_root,
 947                                        SB_RDONLY | SB_FORCE, SB_RDONLY);
 948                if (!IS_ERR(fc)) {
 949                        if (parse_monolithic_mount_data(fc, NULL) == 0)
 950                                (void)reconfigure_super(fc);
 951                        put_fs_context(fc);
 952                }
 953        }
 954        up_write(&sb->s_umount);
 955}
 956
 957static void do_emergency_remount(struct work_struct *work)
 958{
 959        __iterate_supers(do_emergency_remount_callback);
 960        kfree(work);
 961        printk("Emergency Remount complete\n");
 962}
 963
 964void emergency_remount(void)
 965{
 966        struct work_struct *work;
 967
 968        work = kmalloc(sizeof(*work), GFP_ATOMIC);
 969        if (work) {
 970                INIT_WORK(work, do_emergency_remount);
 971                schedule_work(work);
 972        }
 973}
 974
 975static void do_thaw_all_callback(struct super_block *sb)
 976{
 977        down_write(&sb->s_umount);
 978        if (sb->s_root && sb->s_flags & SB_BORN) {
 979                emergency_thaw_bdev(sb);
 980                thaw_super_locked(sb);
 981        } else {
 982                up_write(&sb->s_umount);
 983        }
 984}
 985
 986static void do_thaw_all(struct work_struct *work)
 987{
 988        __iterate_supers(do_thaw_all_callback);
 989        kfree(work);
 990        printk(KERN_WARNING "Emergency Thaw complete\n");
 991}
 992
 993/**
 994 * emergency_thaw_all -- forcibly thaw every frozen filesystem
 995 *
 996 * Used for emergency unfreeze of all filesystems via SysRq
 997 */
 998void emergency_thaw_all(void)
 999{
1000        struct work_struct *work;
1001
1002        work = kmalloc(sizeof(*work), GFP_ATOMIC);
1003        if (work) {
1004                INIT_WORK(work, do_thaw_all);
1005                schedule_work(work);
1006        }
1007}
1008
1009static DEFINE_IDA(unnamed_dev_ida);
1010
1011/**
1012 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1013 * @p: Pointer to a dev_t.
1014 *
1015 * Filesystems which don't use real block devices can call this function
1016 * to allocate a virtual block device.
1017 *
1018 * Context: Any context.  Frequently called while holding sb_lock.
1019 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1020 * or -ENOMEM if memory allocation failed.
1021 */
1022int get_anon_bdev(dev_t *p)
1023{
1024        int dev;
1025
1026        /*
1027         * Many userspace utilities consider an FSID of 0 invalid.
1028         * Always return at least 1 from get_anon_bdev.
1029         */
1030        dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1031                        GFP_ATOMIC);
1032        if (dev == -ENOSPC)
1033                dev = -EMFILE;
1034        if (dev < 0)
1035                return dev;
1036
1037        *p = MKDEV(0, dev);
1038        return 0;
1039}
1040EXPORT_SYMBOL(get_anon_bdev);
1041
1042void free_anon_bdev(dev_t dev)
1043{
1044        ida_free(&unnamed_dev_ida, MINOR(dev));
1045}
1046EXPORT_SYMBOL(free_anon_bdev);
1047
1048int set_anon_super(struct super_block *s, void *data)
1049{
1050        return get_anon_bdev(&s->s_dev);
1051}
1052EXPORT_SYMBOL(set_anon_super);
1053
1054void kill_anon_super(struct super_block *sb)
1055{
1056        dev_t dev = sb->s_dev;
1057        generic_shutdown_super(sb);
1058        free_anon_bdev(dev);
1059}
1060EXPORT_SYMBOL(kill_anon_super);
1061
1062void kill_litter_super(struct super_block *sb)
1063{
1064        if (sb->s_root)
1065                d_genocide(sb->s_root);
1066        kill_anon_super(sb);
1067}
1068EXPORT_SYMBOL(kill_litter_super);
1069
1070int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1071{
1072        return set_anon_super(sb, NULL);
1073}
1074EXPORT_SYMBOL(set_anon_super_fc);
1075
1076static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1077{
1078        return sb->s_fs_info == fc->s_fs_info;
1079}
1080
1081static int test_single_super(struct super_block *s, struct fs_context *fc)
1082{
1083        return 1;
1084}
1085
1086/**
1087 * vfs_get_super - Get a superblock with a search key set in s_fs_info.
1088 * @fc: The filesystem context holding the parameters
1089 * @keying: How to distinguish superblocks
1090 * @fill_super: Helper to initialise a new superblock
1091 *
1092 * Search for a superblock and create a new one if not found.  The search
1093 * criterion is controlled by @keying.  If the search fails, a new superblock
1094 * is created and @fill_super() is called to initialise it.
1095 *
1096 * @keying can take one of a number of values:
1097 *
1098 * (1) vfs_get_single_super - Only one superblock of this type may exist on the
1099 *     system.  This is typically used for special system filesystems.
1100 *
1101 * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
1102 *     distinct keys (where the key is in s_fs_info).  Searching for the same
1103 *     key again will turn up the superblock for that key.
1104 *
1105 * (3) vfs_get_independent_super - Multiple superblocks may exist and are
1106 *     unkeyed.  Each call will get a new superblock.
1107 *
1108 * A permissions check is made by sget_fc() unless we're getting a superblock
1109 * for a kernel-internal mount or a submount.
1110 */
1111int vfs_get_super(struct fs_context *fc,
1112                  enum vfs_get_super_keying keying,
1113                  int (*fill_super)(struct super_block *sb,
1114                                    struct fs_context *fc))
1115{
1116        int (*test)(struct super_block *, struct fs_context *);
1117        struct super_block *sb;
1118        int err;
1119
1120        switch (keying) {
1121        case vfs_get_single_super:
1122        case vfs_get_single_reconf_super:
1123                test = test_single_super;
1124                break;
1125        case vfs_get_keyed_super:
1126                test = test_keyed_super;
1127                break;
1128        case vfs_get_independent_super:
1129                test = NULL;
1130                break;
1131        default:
1132                BUG();
1133        }
1134
1135        sb = sget_fc(fc, test, set_anon_super_fc);
1136        if (IS_ERR(sb))
1137                return PTR_ERR(sb);
1138
1139        if (!sb->s_root) {
1140                err = fill_super(sb, fc);
1141                if (err)
1142                        goto error;
1143
1144                sb->s_flags |= SB_ACTIVE;
1145                fc->root = dget(sb->s_root);
1146        } else {
1147                fc->root = dget(sb->s_root);
1148                if (keying == vfs_get_single_reconf_super) {
1149                        err = reconfigure_super(fc);
1150                        if (err < 0) {
1151                                dput(fc->root);
1152                                fc->root = NULL;
1153                                goto error;
1154                        }
1155                }
1156        }
1157
1158        return 0;
1159
1160error:
1161        deactivate_locked_super(sb);
1162        return err;
1163}
1164EXPORT_SYMBOL(vfs_get_super);
1165
1166int get_tree_nodev(struct fs_context *fc,
1167                  int (*fill_super)(struct super_block *sb,
1168                                    struct fs_context *fc))
1169{
1170        return vfs_get_super(fc, vfs_get_independent_super, fill_super);
1171}
1172EXPORT_SYMBOL(get_tree_nodev);
1173
1174int get_tree_single(struct fs_context *fc,
1175                  int (*fill_super)(struct super_block *sb,
1176                                    struct fs_context *fc))
1177{
1178        return vfs_get_super(fc, vfs_get_single_super, fill_super);
1179}
1180EXPORT_SYMBOL(get_tree_single);
1181
1182int get_tree_single_reconf(struct fs_context *fc,
1183                  int (*fill_super)(struct super_block *sb,
1184                                    struct fs_context *fc))
1185{
1186        return vfs_get_super(fc, vfs_get_single_reconf_super, fill_super);
1187}
1188EXPORT_SYMBOL(get_tree_single_reconf);
1189
1190int get_tree_keyed(struct fs_context *fc,
1191                  int (*fill_super)(struct super_block *sb,
1192                                    struct fs_context *fc),
1193                void *key)
1194{
1195        fc->s_fs_info = key;
1196        return vfs_get_super(fc, vfs_get_keyed_super, fill_super);
1197}
1198EXPORT_SYMBOL(get_tree_keyed);
1199
1200#ifdef CONFIG_BLOCK
1201
1202static int set_bdev_super(struct super_block *s, void *data)
1203{
1204        s->s_bdev = data;
1205        s->s_dev = s->s_bdev->bd_dev;
1206        s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1207
1208        if (blk_queue_stable_writes(s->s_bdev->bd_disk->queue))
1209                s->s_iflags |= SB_I_STABLE_WRITES;
1210        return 0;
1211}
1212
1213static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1214{
1215        return set_bdev_super(s, fc->sget_key);
1216}
1217
1218static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1219{
1220        return s->s_bdev == fc->sget_key;
1221}
1222
1223/**
1224 * get_tree_bdev - Get a superblock based on a single block device
1225 * @fc: The filesystem context holding the parameters
1226 * @fill_super: Helper to initialise a new superblock
1227 */
1228int get_tree_bdev(struct fs_context *fc,
1229                int (*fill_super)(struct super_block *,
1230                                  struct fs_context *))
1231{
1232        struct block_device *bdev;
1233        struct super_block *s;
1234        fmode_t mode = FMODE_READ | FMODE_EXCL;
1235        int error = 0;
1236
1237        if (!(fc->sb_flags & SB_RDONLY))
1238                mode |= FMODE_WRITE;
1239
1240        if (!fc->source)
1241                return invalf(fc, "No source specified");
1242
1243        bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type);
1244        if (IS_ERR(bdev)) {
1245                errorf(fc, "%s: Can't open blockdev", fc->source);
1246                return PTR_ERR(bdev);
1247        }
1248
1249        /* Once the superblock is inserted into the list by sget_fc(), s_umount
1250         * will protect the lockfs code from trying to start a snapshot while
1251         * we are mounting
1252         */
1253        mutex_lock(&bdev->bd_fsfreeze_mutex);
1254        if (bdev->bd_fsfreeze_count > 0) {
1255                mutex_unlock(&bdev->bd_fsfreeze_mutex);
1256                warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1257                blkdev_put(bdev, mode);
1258                return -EBUSY;
1259        }
1260
1261        fc->sb_flags |= SB_NOSEC;
1262        fc->sget_key = bdev;
1263        s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc);
1264        mutex_unlock(&bdev->bd_fsfreeze_mutex);
1265        if (IS_ERR(s)) {
1266                blkdev_put(bdev, mode);
1267                return PTR_ERR(s);
1268        }
1269
1270        if (s->s_root) {
1271                /* Don't summarily change the RO/RW state. */
1272                if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1273                        warnf(fc, "%pg: Can't mount, would change RO state", bdev);
1274                        deactivate_locked_super(s);
1275                        blkdev_put(bdev, mode);
1276                        return -EBUSY;
1277                }
1278
1279                /*
1280                 * s_umount nests inside open_mutex during
1281                 * __invalidate_device().  blkdev_put() acquires
1282                 * open_mutex and can't be called under s_umount.  Drop
1283                 * s_umount temporarily.  This is safe as we're
1284                 * holding an active reference.
1285                 */
1286                up_write(&s->s_umount);
1287                blkdev_put(bdev, mode);
1288                down_write(&s->s_umount);
1289        } else {
1290                s->s_mode = mode;
1291                snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1292                sb_set_blocksize(s, block_size(bdev));
1293                error = fill_super(s, fc);
1294                if (error) {
1295                        deactivate_locked_super(s);
1296                        return error;
1297                }
1298
1299                s->s_flags |= SB_ACTIVE;
1300                bdev->bd_super = s;
1301        }
1302
1303        BUG_ON(fc->root);
1304        fc->root = dget(s->s_root);
1305        return 0;
1306}
1307EXPORT_SYMBOL(get_tree_bdev);
1308
1309static int test_bdev_super(struct super_block *s, void *data)
1310{
1311        return (void *)s->s_bdev == data;
1312}
1313
1314struct dentry *mount_bdev(struct file_system_type *fs_type,
1315        int flags, const char *dev_name, void *data,
1316        int (*fill_super)(struct super_block *, void *, int))
1317{
1318        struct block_device *bdev;
1319        struct super_block *s;
1320        fmode_t mode = FMODE_READ | FMODE_EXCL;
1321        int error = 0;
1322
1323        if (!(flags & SB_RDONLY))
1324                mode |= FMODE_WRITE;
1325
1326        bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1327        if (IS_ERR(bdev))
1328                return ERR_CAST(bdev);
1329
1330        /*
1331         * once the super is inserted into the list by sget, s_umount
1332         * will protect the lockfs code from trying to start a snapshot
1333         * while we are mounting
1334         */
1335        mutex_lock(&bdev->bd_fsfreeze_mutex);
1336        if (bdev->bd_fsfreeze_count > 0) {
1337                mutex_unlock(&bdev->bd_fsfreeze_mutex);
1338                error = -EBUSY;
1339                goto error_bdev;
1340        }
1341        s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1342                 bdev);
1343        mutex_unlock(&bdev->bd_fsfreeze_mutex);
1344        if (IS_ERR(s))
1345                goto error_s;
1346
1347        if (s->s_root) {
1348                if ((flags ^ s->s_flags) & SB_RDONLY) {
1349                        deactivate_locked_super(s);
1350                        error = -EBUSY;
1351                        goto error_bdev;
1352                }
1353
1354                /*
1355                 * s_umount nests inside open_mutex during
1356                 * __invalidate_device().  blkdev_put() acquires
1357                 * open_mutex and can't be called under s_umount.  Drop
1358                 * s_umount temporarily.  This is safe as we're
1359                 * holding an active reference.
1360                 */
1361                up_write(&s->s_umount);
1362                blkdev_put(bdev, mode);
1363                down_write(&s->s_umount);
1364        } else {
1365                s->s_mode = mode;
1366                snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1367                sb_set_blocksize(s, block_size(bdev));
1368                error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1369                if (error) {
1370                        deactivate_locked_super(s);
1371                        goto error;
1372                }
1373
1374                s->s_flags |= SB_ACTIVE;
1375                bdev->bd_super = s;
1376        }
1377
1378        return dget(s->s_root);
1379
1380error_s:
1381        error = PTR_ERR(s);
1382error_bdev:
1383        blkdev_put(bdev, mode);
1384error:
1385        return ERR_PTR(error);
1386}
1387EXPORT_SYMBOL(mount_bdev);
1388
1389void kill_block_super(struct super_block *sb)
1390{
1391        struct block_device *bdev = sb->s_bdev;
1392        fmode_t mode = sb->s_mode;
1393
1394        bdev->bd_super = NULL;
1395        generic_shutdown_super(sb);
1396        sync_blockdev(bdev);
1397        WARN_ON_ONCE(!(mode & FMODE_EXCL));
1398        blkdev_put(bdev, mode | FMODE_EXCL);
1399}
1400
1401EXPORT_SYMBOL(kill_block_super);
1402#endif
1403
1404struct dentry *mount_nodev(struct file_system_type *fs_type,
1405        int flags, void *data,
1406        int (*fill_super)(struct super_block *, void *, int))
1407{
1408        int error;
1409        struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1410
1411        if (IS_ERR(s))
1412                return ERR_CAST(s);
1413
1414        error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1415        if (error) {
1416                deactivate_locked_super(s);
1417                return ERR_PTR(error);
1418        }
1419        s->s_flags |= SB_ACTIVE;
1420        return dget(s->s_root);
1421}
1422EXPORT_SYMBOL(mount_nodev);
1423
1424static int reconfigure_single(struct super_block *s,
1425                              int flags, void *data)
1426{
1427        struct fs_context *fc;
1428        int ret;
1429
1430        /* The caller really need to be passing fc down into mount_single(),
1431         * then a chunk of this can be removed.  [Bollocks -- AV]
1432         * Better yet, reconfiguration shouldn't happen, but rather the second
1433         * mount should be rejected if the parameters are not compatible.
1434         */
1435        fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1436        if (IS_ERR(fc))
1437                return PTR_ERR(fc);
1438
1439        ret = parse_monolithic_mount_data(fc, data);
1440        if (ret < 0)
1441                goto out;
1442
1443        ret = reconfigure_super(fc);
1444out:
1445        put_fs_context(fc);
1446        return ret;
1447}
1448
1449static int compare_single(struct super_block *s, void *p)
1450{
1451        return 1;
1452}
1453
1454struct dentry *mount_single(struct file_system_type *fs_type,
1455        int flags, void *data,
1456        int (*fill_super)(struct super_block *, void *, int))
1457{
1458        struct super_block *s;
1459        int error;
1460
1461        s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1462        if (IS_ERR(s))
1463                return ERR_CAST(s);
1464        if (!s->s_root) {
1465                error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1466                if (!error)
1467                        s->s_flags |= SB_ACTIVE;
1468        } else {
1469                error = reconfigure_single(s, flags, data);
1470        }
1471        if (unlikely(error)) {
1472                deactivate_locked_super(s);
1473                return ERR_PTR(error);
1474        }
1475        return dget(s->s_root);
1476}
1477EXPORT_SYMBOL(mount_single);
1478
1479/**
1480 * vfs_get_tree - Get the mountable root
1481 * @fc: The superblock configuration context.
1482 *
1483 * The filesystem is invoked to get or create a superblock which can then later
1484 * be used for mounting.  The filesystem places a pointer to the root to be
1485 * used for mounting in @fc->root.
1486 */
1487int vfs_get_tree(struct fs_context *fc)
1488{
1489        struct super_block *sb;
1490        int error;
1491
1492        if (fc->root)
1493                return -EBUSY;
1494
1495        /* Get the mountable root in fc->root, with a ref on the root and a ref
1496         * on the superblock.
1497         */
1498        error = fc->ops->get_tree(fc);
1499        if (error < 0)
1500                return error;
1501
1502        if (!fc->root) {
1503                pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1504                       fc->fs_type->name);
1505                /* We don't know what the locking state of the superblock is -
1506                 * if there is a superblock.
1507                 */
1508                BUG();
1509        }
1510
1511        sb = fc->root->d_sb;
1512        WARN_ON(!sb->s_bdi);
1513
1514        /*
1515         * Write barrier is for super_cache_count(). We place it before setting
1516         * SB_BORN as the data dependency between the two functions is the
1517         * superblock structure contents that we just set up, not the SB_BORN
1518         * flag.
1519         */
1520        smp_wmb();
1521        sb->s_flags |= SB_BORN;
1522
1523        error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1524        if (unlikely(error)) {
1525                fc_drop_locked(fc);
1526                return error;
1527        }
1528
1529        /*
1530         * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1531         * but s_maxbytes was an unsigned long long for many releases. Throw
1532         * this warning for a little while to try and catch filesystems that
1533         * violate this rule.
1534         */
1535        WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1536                "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1537
1538        return 0;
1539}
1540EXPORT_SYMBOL(vfs_get_tree);
1541
1542/*
1543 * Setup private BDI for given superblock. It gets automatically cleaned up
1544 * in generic_shutdown_super().
1545 */
1546int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1547{
1548        struct backing_dev_info *bdi;
1549        int err;
1550        va_list args;
1551
1552        bdi = bdi_alloc(NUMA_NO_NODE);
1553        if (!bdi)
1554                return -ENOMEM;
1555
1556        va_start(args, fmt);
1557        err = bdi_register_va(bdi, fmt, args);
1558        va_end(args);
1559        if (err) {
1560                bdi_put(bdi);
1561                return err;
1562        }
1563        WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1564        sb->s_bdi = bdi;
1565
1566        return 0;
1567}
1568EXPORT_SYMBOL(super_setup_bdi_name);
1569
1570/*
1571 * Setup private BDI for given superblock. I gets automatically cleaned up
1572 * in generic_shutdown_super().
1573 */
1574int super_setup_bdi(struct super_block *sb)
1575{
1576        static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1577
1578        return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1579                                    atomic_long_inc_return(&bdi_seq));
1580}
1581EXPORT_SYMBOL(super_setup_bdi);
1582
1583/**
1584 * sb_wait_write - wait until all writers to given file system finish
1585 * @sb: the super for which we wait
1586 * @level: type of writers we wait for (normal vs page fault)
1587 *
1588 * This function waits until there are no writers of given type to given file
1589 * system.
1590 */
1591static void sb_wait_write(struct super_block *sb, int level)
1592{
1593        percpu_down_write(sb->s_writers.rw_sem + level-1);
1594}
1595
1596/*
1597 * We are going to return to userspace and forget about these locks, the
1598 * ownership goes to the caller of thaw_super() which does unlock().
1599 */
1600static void lockdep_sb_freeze_release(struct super_block *sb)
1601{
1602        int level;
1603
1604        for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1605                percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1606}
1607
1608/*
1609 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1610 */
1611static void lockdep_sb_freeze_acquire(struct super_block *sb)
1612{
1613        int level;
1614
1615        for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1616                percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1617}
1618
1619static void sb_freeze_unlock(struct super_block *sb)
1620{
1621        int level;
1622
1623        for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1624                percpu_up_write(sb->s_writers.rw_sem + level);
1625}
1626
1627/**
1628 * freeze_super - lock the filesystem and force it into a consistent state
1629 * @sb: the super to lock
1630 *
1631 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1632 * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1633 * -EBUSY.
1634 *
1635 * During this function, sb->s_writers.frozen goes through these values:
1636 *
1637 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1638 *
1639 * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1640 * writes should be blocked, though page faults are still allowed. We wait for
1641 * all writes to complete and then proceed to the next stage.
1642 *
1643 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1644 * but internal fs threads can still modify the filesystem (although they
1645 * should not dirty new pages or inodes), writeback can run etc. After waiting
1646 * for all running page faults we sync the filesystem which will clean all
1647 * dirty pages and inodes (no new dirty pages or inodes can be created when
1648 * sync is running).
1649 *
1650 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1651 * modification are blocked (e.g. XFS preallocation truncation on inode
1652 * reclaim). This is usually implemented by blocking new transactions for
1653 * filesystems that have them and need this additional guard. After all
1654 * internal writers are finished we call ->freeze_fs() to finish filesystem
1655 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1656 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1657 *
1658 * sb->s_writers.frozen is protected by sb->s_umount.
1659 */
1660int freeze_super(struct super_block *sb)
1661{
1662        int ret;
1663
1664        atomic_inc(&sb->s_active);
1665        down_write(&sb->s_umount);
1666        if (sb->s_writers.frozen != SB_UNFROZEN) {
1667                deactivate_locked_super(sb);
1668                return -EBUSY;
1669        }
1670
1671        if (!(sb->s_flags & SB_BORN)) {
1672                up_write(&sb->s_umount);
1673                return 0;       /* sic - it's "nothing to do" */
1674        }
1675
1676        if (sb_rdonly(sb)) {
1677                /* Nothing to do really... */
1678                sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1679                up_write(&sb->s_umount);
1680                return 0;
1681        }
1682
1683        sb->s_writers.frozen = SB_FREEZE_WRITE;
1684        /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1685        up_write(&sb->s_umount);
1686        sb_wait_write(sb, SB_FREEZE_WRITE);
1687        down_write(&sb->s_umount);
1688
1689        /* Now we go and block page faults... */
1690        sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1691        sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1692
1693        /* All writers are done so after syncing there won't be dirty data */
1694        sync_filesystem(sb);
1695
1696        /* Now wait for internal filesystem counter */
1697        sb->s_writers.frozen = SB_FREEZE_FS;
1698        sb_wait_write(sb, SB_FREEZE_FS);
1699
1700        if (sb->s_op->freeze_fs) {
1701                ret = sb->s_op->freeze_fs(sb);
1702                if (ret) {
1703                        printk(KERN_ERR
1704                                "VFS:Filesystem freeze failed\n");
1705                        sb->s_writers.frozen = SB_UNFROZEN;
1706                        sb_freeze_unlock(sb);
1707                        wake_up(&sb->s_writers.wait_unfrozen);
1708                        deactivate_locked_super(sb);
1709                        return ret;
1710                }
1711        }
1712        /*
1713         * For debugging purposes so that fs can warn if it sees write activity
1714         * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1715         */
1716        sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1717        lockdep_sb_freeze_release(sb);
1718        up_write(&sb->s_umount);
1719        return 0;
1720}
1721EXPORT_SYMBOL(freeze_super);
1722
1723static int thaw_super_locked(struct super_block *sb)
1724{
1725        int error;
1726
1727        if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1728                up_write(&sb->s_umount);
1729                return -EINVAL;
1730        }
1731
1732        if (sb_rdonly(sb)) {
1733                sb->s_writers.frozen = SB_UNFROZEN;
1734                goto out;
1735        }
1736
1737        lockdep_sb_freeze_acquire(sb);
1738
1739        if (sb->s_op->unfreeze_fs) {
1740                error = sb->s_op->unfreeze_fs(sb);
1741                if (error) {
1742                        printk(KERN_ERR
1743                                "VFS:Filesystem thaw failed\n");
1744                        lockdep_sb_freeze_release(sb);
1745                        up_write(&sb->s_umount);
1746                        return error;
1747                }
1748        }
1749
1750        sb->s_writers.frozen = SB_UNFROZEN;
1751        sb_freeze_unlock(sb);
1752out:
1753        wake_up(&sb->s_writers.wait_unfrozen);
1754        deactivate_locked_super(sb);
1755        return 0;
1756}
1757
1758/**
1759 * thaw_super -- unlock filesystem
1760 * @sb: the super to thaw
1761 *
1762 * Unlocks the filesystem and marks it writeable again after freeze_super().
1763 */
1764int thaw_super(struct super_block *sb)
1765{
1766        down_write(&sb->s_umount);
1767        return thaw_super_locked(sb);
1768}
1769EXPORT_SYMBOL(thaw_super);
1770