linux/fs/ubifs/replay.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
   7 * Authors: Adrian Hunter
   8 *          Artem Bityutskiy (Битюцкий Артём)
   9 */
  10
  11/*
  12 * This file contains journal replay code. It runs when the file-system is being
  13 * mounted and requires no locking.
  14 *
  15 * The larger is the journal, the longer it takes to scan it, so the longer it
  16 * takes to mount UBIFS. This is why the journal has limited size which may be
  17 * changed depending on the system requirements. But a larger journal gives
  18 * faster I/O speed because it writes the index less frequently. So this is a
  19 * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
  20 * larger is the journal, the more memory its index may consume.
  21 */
  22
  23#include "ubifs.h"
  24#include <linux/list_sort.h>
  25#include <crypto/hash.h>
  26#include <crypto/algapi.h>
  27
  28/**
  29 * struct replay_entry - replay list entry.
  30 * @lnum: logical eraseblock number of the node
  31 * @offs: node offset
  32 * @len: node length
  33 * @deletion: non-zero if this entry corresponds to a node deletion
  34 * @sqnum: node sequence number
  35 * @list: links the replay list
  36 * @key: node key
  37 * @nm: directory entry name
  38 * @old_size: truncation old size
  39 * @new_size: truncation new size
  40 *
  41 * The replay process first scans all buds and builds the replay list, then
  42 * sorts the replay list in nodes sequence number order, and then inserts all
  43 * the replay entries to the TNC.
  44 */
  45struct replay_entry {
  46        int lnum;
  47        int offs;
  48        int len;
  49        u8 hash[UBIFS_HASH_ARR_SZ];
  50        unsigned int deletion:1;
  51        unsigned long long sqnum;
  52        struct list_head list;
  53        union ubifs_key key;
  54        union {
  55                struct fscrypt_name nm;
  56                struct {
  57                        loff_t old_size;
  58                        loff_t new_size;
  59                };
  60        };
  61};
  62
  63/**
  64 * struct bud_entry - entry in the list of buds to replay.
  65 * @list: next bud in the list
  66 * @bud: bud description object
  67 * @sqnum: reference node sequence number
  68 * @free: free bytes in the bud
  69 * @dirty: dirty bytes in the bud
  70 */
  71struct bud_entry {
  72        struct list_head list;
  73        struct ubifs_bud *bud;
  74        unsigned long long sqnum;
  75        int free;
  76        int dirty;
  77};
  78
  79/**
  80 * set_bud_lprops - set free and dirty space used by a bud.
  81 * @c: UBIFS file-system description object
  82 * @b: bud entry which describes the bud
  83 *
  84 * This function makes sure the LEB properties of bud @b are set correctly
  85 * after the replay. Returns zero in case of success and a negative error code
  86 * in case of failure.
  87 */
  88static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b)
  89{
  90        const struct ubifs_lprops *lp;
  91        int err = 0, dirty;
  92
  93        ubifs_get_lprops(c);
  94
  95        lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum);
  96        if (IS_ERR(lp)) {
  97                err = PTR_ERR(lp);
  98                goto out;
  99        }
 100
 101        dirty = lp->dirty;
 102        if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
 103                /*
 104                 * The LEB was added to the journal with a starting offset of
 105                 * zero which means the LEB must have been empty. The LEB
 106                 * property values should be @lp->free == @c->leb_size and
 107                 * @lp->dirty == 0, but that is not the case. The reason is that
 108                 * the LEB had been garbage collected before it became the bud,
 109                 * and there was not commit inbetween. The garbage collector
 110                 * resets the free and dirty space without recording it
 111                 * anywhere except lprops, so if there was no commit then
 112                 * lprops does not have that information.
 113                 *
 114                 * We do not need to adjust free space because the scan has told
 115                 * us the exact value which is recorded in the replay entry as
 116                 * @b->free.
 117                 *
 118                 * However we do need to subtract from the dirty space the
 119                 * amount of space that the garbage collector reclaimed, which
 120                 * is the whole LEB minus the amount of space that was free.
 121                 */
 122                dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
 123                        lp->free, lp->dirty);
 124                dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
 125                        lp->free, lp->dirty);
 126                dirty -= c->leb_size - lp->free;
 127                /*
 128                 * If the replay order was perfect the dirty space would now be
 129                 * zero. The order is not perfect because the journal heads
 130                 * race with each other. This is not a problem but is does mean
 131                 * that the dirty space may temporarily exceed c->leb_size
 132                 * during the replay.
 133                 */
 134                if (dirty != 0)
 135                        dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty",
 136                                b->bud->lnum, lp->free, lp->dirty, b->free,
 137                                b->dirty);
 138        }
 139        lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty,
 140                             lp->flags | LPROPS_TAKEN, 0);
 141        if (IS_ERR(lp)) {
 142                err = PTR_ERR(lp);
 143                goto out;
 144        }
 145
 146        /* Make sure the journal head points to the latest bud */
 147        err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf,
 148                                     b->bud->lnum, c->leb_size - b->free);
 149
 150out:
 151        ubifs_release_lprops(c);
 152        return err;
 153}
 154
 155/**
 156 * set_buds_lprops - set free and dirty space for all replayed buds.
 157 * @c: UBIFS file-system description object
 158 *
 159 * This function sets LEB properties for all replayed buds. Returns zero in
 160 * case of success and a negative error code in case of failure.
 161 */
 162static int set_buds_lprops(struct ubifs_info *c)
 163{
 164        struct bud_entry *b;
 165        int err;
 166
 167        list_for_each_entry(b, &c->replay_buds, list) {
 168                err = set_bud_lprops(c, b);
 169                if (err)
 170                        return err;
 171        }
 172
 173        return 0;
 174}
 175
 176/**
 177 * trun_remove_range - apply a replay entry for a truncation to the TNC.
 178 * @c: UBIFS file-system description object
 179 * @r: replay entry of truncation
 180 */
 181static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
 182{
 183        unsigned min_blk, max_blk;
 184        union ubifs_key min_key, max_key;
 185        ino_t ino;
 186
 187        min_blk = r->new_size / UBIFS_BLOCK_SIZE;
 188        if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
 189                min_blk += 1;
 190
 191        max_blk = r->old_size / UBIFS_BLOCK_SIZE;
 192        if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
 193                max_blk -= 1;
 194
 195        ino = key_inum(c, &r->key);
 196
 197        data_key_init(c, &min_key, ino, min_blk);
 198        data_key_init(c, &max_key, ino, max_blk);
 199
 200        return ubifs_tnc_remove_range(c, &min_key, &max_key);
 201}
 202
 203/**
 204 * inode_still_linked - check whether inode in question will be re-linked.
 205 * @c: UBIFS file-system description object
 206 * @rino: replay entry to test
 207 *
 208 * O_TMPFILE files can be re-linked, this means link count goes from 0 to 1.
 209 * This case needs special care, otherwise all references to the inode will
 210 * be removed upon the first replay entry of an inode with link count 0
 211 * is found.
 212 */
 213static bool inode_still_linked(struct ubifs_info *c, struct replay_entry *rino)
 214{
 215        struct replay_entry *r;
 216
 217        ubifs_assert(c, rino->deletion);
 218        ubifs_assert(c, key_type(c, &rino->key) == UBIFS_INO_KEY);
 219
 220        /*
 221         * Find the most recent entry for the inode behind @rino and check
 222         * whether it is a deletion.
 223         */
 224        list_for_each_entry_reverse(r, &c->replay_list, list) {
 225                ubifs_assert(c, r->sqnum >= rino->sqnum);
 226                if (key_inum(c, &r->key) == key_inum(c, &rino->key) &&
 227                    key_type(c, &r->key) == UBIFS_INO_KEY)
 228                        return r->deletion == 0;
 229
 230        }
 231
 232        ubifs_assert(c, 0);
 233        return false;
 234}
 235
 236/**
 237 * apply_replay_entry - apply a replay entry to the TNC.
 238 * @c: UBIFS file-system description object
 239 * @r: replay entry to apply
 240 *
 241 * Apply a replay entry to the TNC.
 242 */
 243static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
 244{
 245        int err;
 246
 247        dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ",
 248                 r->lnum, r->offs, r->len, r->deletion, r->sqnum);
 249
 250        if (is_hash_key(c, &r->key)) {
 251                if (r->deletion)
 252                        err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
 253                else
 254                        err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
 255                                               r->len, r->hash, &r->nm);
 256        } else {
 257                if (r->deletion)
 258                        switch (key_type(c, &r->key)) {
 259                        case UBIFS_INO_KEY:
 260                        {
 261                                ino_t inum = key_inum(c, &r->key);
 262
 263                                if (inode_still_linked(c, r)) {
 264                                        err = 0;
 265                                        break;
 266                                }
 267
 268                                err = ubifs_tnc_remove_ino(c, inum);
 269                                break;
 270                        }
 271                        case UBIFS_TRUN_KEY:
 272                                err = trun_remove_range(c, r);
 273                                break;
 274                        default:
 275                                err = ubifs_tnc_remove(c, &r->key);
 276                                break;
 277                        }
 278                else
 279                        err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
 280                                            r->len, r->hash);
 281                if (err)
 282                        return err;
 283
 284                if (c->need_recovery)
 285                        err = ubifs_recover_size_accum(c, &r->key, r->deletion,
 286                                                       r->new_size);
 287        }
 288
 289        return err;
 290}
 291
 292/**
 293 * replay_entries_cmp - compare 2 replay entries.
 294 * @priv: UBIFS file-system description object
 295 * @a: first replay entry
 296 * @b: second replay entry
 297 *
 298 * This is a comparios function for 'list_sort()' which compares 2 replay
 299 * entries @a and @b by comparing their sequence number.  Returns %1 if @a has
 300 * greater sequence number and %-1 otherwise.
 301 */
 302static int replay_entries_cmp(void *priv, const struct list_head *a,
 303                              const struct list_head *b)
 304{
 305        struct ubifs_info *c = priv;
 306        struct replay_entry *ra, *rb;
 307
 308        cond_resched();
 309        if (a == b)
 310                return 0;
 311
 312        ra = list_entry(a, struct replay_entry, list);
 313        rb = list_entry(b, struct replay_entry, list);
 314        ubifs_assert(c, ra->sqnum != rb->sqnum);
 315        if (ra->sqnum > rb->sqnum)
 316                return 1;
 317        return -1;
 318}
 319
 320/**
 321 * apply_replay_list - apply the replay list to the TNC.
 322 * @c: UBIFS file-system description object
 323 *
 324 * Apply all entries in the replay list to the TNC. Returns zero in case of
 325 * success and a negative error code in case of failure.
 326 */
 327static int apply_replay_list(struct ubifs_info *c)
 328{
 329        struct replay_entry *r;
 330        int err;
 331
 332        list_sort(c, &c->replay_list, &replay_entries_cmp);
 333
 334        list_for_each_entry(r, &c->replay_list, list) {
 335                cond_resched();
 336
 337                err = apply_replay_entry(c, r);
 338                if (err)
 339                        return err;
 340        }
 341
 342        return 0;
 343}
 344
 345/**
 346 * destroy_replay_list - destroy the replay.
 347 * @c: UBIFS file-system description object
 348 *
 349 * Destroy the replay list.
 350 */
 351static void destroy_replay_list(struct ubifs_info *c)
 352{
 353        struct replay_entry *r, *tmp;
 354
 355        list_for_each_entry_safe(r, tmp, &c->replay_list, list) {
 356                if (is_hash_key(c, &r->key))
 357                        kfree(fname_name(&r->nm));
 358                list_del(&r->list);
 359                kfree(r);
 360        }
 361}
 362
 363/**
 364 * insert_node - insert a node to the replay list
 365 * @c: UBIFS file-system description object
 366 * @lnum: node logical eraseblock number
 367 * @offs: node offset
 368 * @len: node length
 369 * @key: node key
 370 * @sqnum: sequence number
 371 * @deletion: non-zero if this is a deletion
 372 * @used: number of bytes in use in a LEB
 373 * @old_size: truncation old size
 374 * @new_size: truncation new size
 375 *
 376 * This function inserts a scanned non-direntry node to the replay list. The
 377 * replay list contains @struct replay_entry elements, and we sort this list in
 378 * sequence number order before applying it. The replay list is applied at the
 379 * very end of the replay process. Since the list is sorted in sequence number
 380 * order, the older modifications are applied first. This function returns zero
 381 * in case of success and a negative error code in case of failure.
 382 */
 383static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
 384                       const u8 *hash, union ubifs_key *key,
 385                       unsigned long long sqnum, int deletion, int *used,
 386                       loff_t old_size, loff_t new_size)
 387{
 388        struct replay_entry *r;
 389
 390        dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
 391
 392        if (key_inum(c, key) >= c->highest_inum)
 393                c->highest_inum = key_inum(c, key);
 394
 395        r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
 396        if (!r)
 397                return -ENOMEM;
 398
 399        if (!deletion)
 400                *used += ALIGN(len, 8);
 401        r->lnum = lnum;
 402        r->offs = offs;
 403        r->len = len;
 404        ubifs_copy_hash(c, hash, r->hash);
 405        r->deletion = !!deletion;
 406        r->sqnum = sqnum;
 407        key_copy(c, key, &r->key);
 408        r->old_size = old_size;
 409        r->new_size = new_size;
 410
 411        list_add_tail(&r->list, &c->replay_list);
 412        return 0;
 413}
 414
 415/**
 416 * insert_dent - insert a directory entry node into the replay list.
 417 * @c: UBIFS file-system description object
 418 * @lnum: node logical eraseblock number
 419 * @offs: node offset
 420 * @len: node length
 421 * @key: node key
 422 * @name: directory entry name
 423 * @nlen: directory entry name length
 424 * @sqnum: sequence number
 425 * @deletion: non-zero if this is a deletion
 426 * @used: number of bytes in use in a LEB
 427 *
 428 * This function inserts a scanned directory entry node or an extended
 429 * attribute entry to the replay list. Returns zero in case of success and a
 430 * negative error code in case of failure.
 431 */
 432static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
 433                       const u8 *hash, union ubifs_key *key,
 434                       const char *name, int nlen, unsigned long long sqnum,
 435                       int deletion, int *used)
 436{
 437        struct replay_entry *r;
 438        char *nbuf;
 439
 440        dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
 441        if (key_inum(c, key) >= c->highest_inum)
 442                c->highest_inum = key_inum(c, key);
 443
 444        r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
 445        if (!r)
 446                return -ENOMEM;
 447
 448        nbuf = kmalloc(nlen + 1, GFP_KERNEL);
 449        if (!nbuf) {
 450                kfree(r);
 451                return -ENOMEM;
 452        }
 453
 454        if (!deletion)
 455                *used += ALIGN(len, 8);
 456        r->lnum = lnum;
 457        r->offs = offs;
 458        r->len = len;
 459        ubifs_copy_hash(c, hash, r->hash);
 460        r->deletion = !!deletion;
 461        r->sqnum = sqnum;
 462        key_copy(c, key, &r->key);
 463        fname_len(&r->nm) = nlen;
 464        memcpy(nbuf, name, nlen);
 465        nbuf[nlen] = '\0';
 466        fname_name(&r->nm) = nbuf;
 467
 468        list_add_tail(&r->list, &c->replay_list);
 469        return 0;
 470}
 471
 472/**
 473 * ubifs_validate_entry - validate directory or extended attribute entry node.
 474 * @c: UBIFS file-system description object
 475 * @dent: the node to validate
 476 *
 477 * This function validates directory or extended attribute entry node @dent.
 478 * Returns zero if the node is all right and a %-EINVAL if not.
 479 */
 480int ubifs_validate_entry(struct ubifs_info *c,
 481                         const struct ubifs_dent_node *dent)
 482{
 483        int key_type = key_type_flash(c, dent->key);
 484        int nlen = le16_to_cpu(dent->nlen);
 485
 486        if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
 487            dent->type >= UBIFS_ITYPES_CNT ||
 488            nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
 489            (key_type == UBIFS_XENT_KEY && strnlen(dent->name, nlen) != nlen) ||
 490            le64_to_cpu(dent->inum) > MAX_INUM) {
 491                ubifs_err(c, "bad %s node", key_type == UBIFS_DENT_KEY ?
 492                          "directory entry" : "extended attribute entry");
 493                return -EINVAL;
 494        }
 495
 496        if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
 497                ubifs_err(c, "bad key type %d", key_type);
 498                return -EINVAL;
 499        }
 500
 501        return 0;
 502}
 503
 504/**
 505 * is_last_bud - check if the bud is the last in the journal head.
 506 * @c: UBIFS file-system description object
 507 * @bud: bud description object
 508 *
 509 * This function checks if bud @bud is the last bud in its journal head. This
 510 * information is then used by 'replay_bud()' to decide whether the bud can
 511 * have corruptions or not. Indeed, only last buds can be corrupted by power
 512 * cuts. Returns %1 if this is the last bud, and %0 if not.
 513 */
 514static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud)
 515{
 516        struct ubifs_jhead *jh = &c->jheads[bud->jhead];
 517        struct ubifs_bud *next;
 518        uint32_t data;
 519        int err;
 520
 521        if (list_is_last(&bud->list, &jh->buds_list))
 522                return 1;
 523
 524        /*
 525         * The following is a quirk to make sure we work correctly with UBIFS
 526         * images used with older UBIFS.
 527         *
 528         * Normally, the last bud will be the last in the journal head's list
 529         * of bud. However, there is one exception if the UBIFS image belongs
 530         * to older UBIFS. This is fairly unlikely: one would need to use old
 531         * UBIFS, then have a power cut exactly at the right point, and then
 532         * try to mount this image with new UBIFS.
 533         *
 534         * The exception is: it is possible to have 2 buds A and B, A goes
 535         * before B, and B is the last, bud B is contains no data, and bud A is
 536         * corrupted at the end. The reason is that in older versions when the
 537         * journal code switched the next bud (from A to B), it first added a
 538         * log reference node for the new bud (B), and only after this it
 539         * synchronized the write-buffer of current bud (A). But later this was
 540         * changed and UBIFS started to always synchronize the write-buffer of
 541         * the bud (A) before writing the log reference for the new bud (B).
 542         *
 543         * But because older UBIFS always synchronized A's write-buffer before
 544         * writing to B, we can recognize this exceptional situation but
 545         * checking the contents of bud B - if it is empty, then A can be
 546         * treated as the last and we can recover it.
 547         *
 548         * TODO: remove this piece of code in a couple of years (today it is
 549         * 16.05.2011).
 550         */
 551        next = list_entry(bud->list.next, struct ubifs_bud, list);
 552        if (!list_is_last(&next->list, &jh->buds_list))
 553                return 0;
 554
 555        err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1);
 556        if (err)
 557                return 0;
 558
 559        return data == 0xFFFFFFFF;
 560}
 561
 562/* authenticate_sleb_hash is split out for stack usage */
 563static int noinline_for_stack
 564authenticate_sleb_hash(struct ubifs_info *c,
 565                       struct shash_desc *log_hash, u8 *hash)
 566{
 567        SHASH_DESC_ON_STACK(hash_desc, c->hash_tfm);
 568
 569        hash_desc->tfm = c->hash_tfm;
 570
 571        ubifs_shash_copy_state(c, log_hash, hash_desc);
 572        return crypto_shash_final(hash_desc, hash);
 573}
 574
 575/**
 576 * authenticate_sleb - authenticate one scan LEB
 577 * @c: UBIFS file-system description object
 578 * @sleb: the scan LEB to authenticate
 579 * @log_hash:
 580 * @is_last: if true, this is the last LEB
 581 *
 582 * This function iterates over the buds of a single LEB authenticating all buds
 583 * with the authentication nodes on this LEB. Authentication nodes are written
 584 * after some buds and contain a HMAC covering the authentication node itself
 585 * and the buds between the last authentication node and the current
 586 * authentication node. It can happen that the last buds cannot be authenticated
 587 * because a powercut happened when some nodes were written but not the
 588 * corresponding authentication node. This function returns the number of nodes
 589 * that could be authenticated or a negative error code.
 590 */
 591static int authenticate_sleb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
 592                             struct shash_desc *log_hash, int is_last)
 593{
 594        int n_not_auth = 0;
 595        struct ubifs_scan_node *snod;
 596        int n_nodes = 0;
 597        int err;
 598        u8 hash[UBIFS_HASH_ARR_SZ];
 599        u8 hmac[UBIFS_HMAC_ARR_SZ];
 600
 601        if (!ubifs_authenticated(c))
 602                return sleb->nodes_cnt;
 603
 604        list_for_each_entry(snod, &sleb->nodes, list) {
 605
 606                n_nodes++;
 607
 608                if (snod->type == UBIFS_AUTH_NODE) {
 609                        struct ubifs_auth_node *auth = snod->node;
 610
 611                        err = authenticate_sleb_hash(c, log_hash, hash);
 612                        if (err)
 613                                goto out;
 614
 615                        err = crypto_shash_tfm_digest(c->hmac_tfm, hash,
 616                                                      c->hash_len, hmac);
 617                        if (err)
 618                                goto out;
 619
 620                        err = ubifs_check_hmac(c, auth->hmac, hmac);
 621                        if (err) {
 622                                err = -EPERM;
 623                                goto out;
 624                        }
 625                        n_not_auth = 0;
 626                } else {
 627                        err = crypto_shash_update(log_hash, snod->node,
 628                                                  snod->len);
 629                        if (err)
 630                                goto out;
 631                        n_not_auth++;
 632                }
 633        }
 634
 635        /*
 636         * A powercut can happen when some nodes were written, but not yet
 637         * the corresponding authentication node. This may only happen on
 638         * the last bud though.
 639         */
 640        if (n_not_auth) {
 641                if (is_last) {
 642                        dbg_mnt("%d unauthenticated nodes found on LEB %d, Ignoring them",
 643                                n_not_auth, sleb->lnum);
 644                        err = 0;
 645                } else {
 646                        dbg_mnt("%d unauthenticated nodes found on non-last LEB %d",
 647                                n_not_auth, sleb->lnum);
 648                        err = -EPERM;
 649                }
 650        } else {
 651                err = 0;
 652        }
 653out:
 654        return err ? err : n_nodes - n_not_auth;
 655}
 656
 657/**
 658 * replay_bud - replay a bud logical eraseblock.
 659 * @c: UBIFS file-system description object
 660 * @b: bud entry which describes the bud
 661 *
 662 * This function replays bud @bud, recovers it if needed, and adds all nodes
 663 * from this bud to the replay list. Returns zero in case of success and a
 664 * negative error code in case of failure.
 665 */
 666static int replay_bud(struct ubifs_info *c, struct bud_entry *b)
 667{
 668        int is_last = is_last_bud(c, b->bud);
 669        int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start;
 670        int n_nodes, n = 0;
 671        struct ubifs_scan_leb *sleb;
 672        struct ubifs_scan_node *snod;
 673
 674        dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d",
 675                lnum, b->bud->jhead, offs, is_last);
 676
 677        if (c->need_recovery && is_last)
 678                /*
 679                 * Recover only last LEBs in the journal heads, because power
 680                 * cuts may cause corruptions only in these LEBs, because only
 681                 * these LEBs could possibly be written to at the power cut
 682                 * time.
 683                 */
 684                sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead);
 685        else
 686                sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
 687        if (IS_ERR(sleb))
 688                return PTR_ERR(sleb);
 689
 690        n_nodes = authenticate_sleb(c, sleb, b->bud->log_hash, is_last);
 691        if (n_nodes < 0) {
 692                err = n_nodes;
 693                goto out;
 694        }
 695
 696        ubifs_shash_copy_state(c, b->bud->log_hash,
 697                               c->jheads[b->bud->jhead].log_hash);
 698
 699        /*
 700         * The bud does not have to start from offset zero - the beginning of
 701         * the 'lnum' LEB may contain previously committed data. One of the
 702         * things we have to do in replay is to correctly update lprops with
 703         * newer information about this LEB.
 704         *
 705         * At this point lprops thinks that this LEB has 'c->leb_size - offs'
 706         * bytes of free space because it only contain information about
 707         * committed data.
 708         *
 709         * But we know that real amount of free space is 'c->leb_size -
 710         * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
 711         * 'sleb->endpt' is used by bud data. We have to correctly calculate
 712         * how much of these data are dirty and update lprops with this
 713         * information.
 714         *
 715         * The dirt in that LEB region is comprised of padding nodes, deletion
 716         * nodes, truncation nodes and nodes which are obsoleted by subsequent
 717         * nodes in this LEB. So instead of calculating clean space, we
 718         * calculate used space ('used' variable).
 719         */
 720
 721        list_for_each_entry(snod, &sleb->nodes, list) {
 722                u8 hash[UBIFS_HASH_ARR_SZ];
 723                int deletion = 0;
 724
 725                cond_resched();
 726
 727                if (snod->sqnum >= SQNUM_WATERMARK) {
 728                        ubifs_err(c, "file system's life ended");
 729                        goto out_dump;
 730                }
 731
 732                ubifs_node_calc_hash(c, snod->node, hash);
 733
 734                if (snod->sqnum > c->max_sqnum)
 735                        c->max_sqnum = snod->sqnum;
 736
 737                switch (snod->type) {
 738                case UBIFS_INO_NODE:
 739                {
 740                        struct ubifs_ino_node *ino = snod->node;
 741                        loff_t new_size = le64_to_cpu(ino->size);
 742
 743                        if (le32_to_cpu(ino->nlink) == 0)
 744                                deletion = 1;
 745                        err = insert_node(c, lnum, snod->offs, snod->len, hash,
 746                                          &snod->key, snod->sqnum, deletion,
 747                                          &used, 0, new_size);
 748                        break;
 749                }
 750                case UBIFS_DATA_NODE:
 751                {
 752                        struct ubifs_data_node *dn = snod->node;
 753                        loff_t new_size = le32_to_cpu(dn->size) +
 754                                          key_block(c, &snod->key) *
 755                                          UBIFS_BLOCK_SIZE;
 756
 757                        err = insert_node(c, lnum, snod->offs, snod->len, hash,
 758                                          &snod->key, snod->sqnum, deletion,
 759                                          &used, 0, new_size);
 760                        break;
 761                }
 762                case UBIFS_DENT_NODE:
 763                case UBIFS_XENT_NODE:
 764                {
 765                        struct ubifs_dent_node *dent = snod->node;
 766
 767                        err = ubifs_validate_entry(c, dent);
 768                        if (err)
 769                                goto out_dump;
 770
 771                        err = insert_dent(c, lnum, snod->offs, snod->len, hash,
 772                                          &snod->key, dent->name,
 773                                          le16_to_cpu(dent->nlen), snod->sqnum,
 774                                          !le64_to_cpu(dent->inum), &used);
 775                        break;
 776                }
 777                case UBIFS_TRUN_NODE:
 778                {
 779                        struct ubifs_trun_node *trun = snod->node;
 780                        loff_t old_size = le64_to_cpu(trun->old_size);
 781                        loff_t new_size = le64_to_cpu(trun->new_size);
 782                        union ubifs_key key;
 783
 784                        /* Validate truncation node */
 785                        if (old_size < 0 || old_size > c->max_inode_sz ||
 786                            new_size < 0 || new_size > c->max_inode_sz ||
 787                            old_size <= new_size) {
 788                                ubifs_err(c, "bad truncation node");
 789                                goto out_dump;
 790                        }
 791
 792                        /*
 793                         * Create a fake truncation key just to use the same
 794                         * functions which expect nodes to have keys.
 795                         */
 796                        trun_key_init(c, &key, le32_to_cpu(trun->inum));
 797                        err = insert_node(c, lnum, snod->offs, snod->len, hash,
 798                                          &key, snod->sqnum, 1, &used,
 799                                          old_size, new_size);
 800                        break;
 801                }
 802                case UBIFS_AUTH_NODE:
 803                        break;
 804                default:
 805                        ubifs_err(c, "unexpected node type %d in bud LEB %d:%d",
 806                                  snod->type, lnum, snod->offs);
 807                        err = -EINVAL;
 808                        goto out_dump;
 809                }
 810                if (err)
 811                        goto out;
 812
 813                n++;
 814                if (n == n_nodes)
 815                        break;
 816        }
 817
 818        ubifs_assert(c, ubifs_search_bud(c, lnum));
 819        ubifs_assert(c, sleb->endpt - offs >= used);
 820        ubifs_assert(c, sleb->endpt % c->min_io_size == 0);
 821
 822        b->dirty = sleb->endpt - offs - used;
 823        b->free = c->leb_size - sleb->endpt;
 824        dbg_mnt("bud LEB %d replied: dirty %d, free %d",
 825                lnum, b->dirty, b->free);
 826
 827out:
 828        ubifs_scan_destroy(sleb);
 829        return err;
 830
 831out_dump:
 832        ubifs_err(c, "bad node is at LEB %d:%d", lnum, snod->offs);
 833        ubifs_dump_node(c, snod->node, c->leb_size - snod->offs);
 834        ubifs_scan_destroy(sleb);
 835        return -EINVAL;
 836}
 837
 838/**
 839 * replay_buds - replay all buds.
 840 * @c: UBIFS file-system description object
 841 *
 842 * This function returns zero in case of success and a negative error code in
 843 * case of failure.
 844 */
 845static int replay_buds(struct ubifs_info *c)
 846{
 847        struct bud_entry *b;
 848        int err;
 849        unsigned long long prev_sqnum = 0;
 850
 851        list_for_each_entry(b, &c->replay_buds, list) {
 852                err = replay_bud(c, b);
 853                if (err)
 854                        return err;
 855
 856                ubifs_assert(c, b->sqnum > prev_sqnum);
 857                prev_sqnum = b->sqnum;
 858        }
 859
 860        return 0;
 861}
 862
 863/**
 864 * destroy_bud_list - destroy the list of buds to replay.
 865 * @c: UBIFS file-system description object
 866 */
 867static void destroy_bud_list(struct ubifs_info *c)
 868{
 869        struct bud_entry *b;
 870
 871        while (!list_empty(&c->replay_buds)) {
 872                b = list_entry(c->replay_buds.next, struct bud_entry, list);
 873                list_del(&b->list);
 874                kfree(b);
 875        }
 876}
 877
 878/**
 879 * add_replay_bud - add a bud to the list of buds to replay.
 880 * @c: UBIFS file-system description object
 881 * @lnum: bud logical eraseblock number to replay
 882 * @offs: bud start offset
 883 * @jhead: journal head to which this bud belongs
 884 * @sqnum: reference node sequence number
 885 *
 886 * This function returns zero in case of success and a negative error code in
 887 * case of failure.
 888 */
 889static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
 890                          unsigned long long sqnum)
 891{
 892        struct ubifs_bud *bud;
 893        struct bud_entry *b;
 894        int err;
 895
 896        dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
 897
 898        bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
 899        if (!bud)
 900                return -ENOMEM;
 901
 902        b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
 903        if (!b) {
 904                err = -ENOMEM;
 905                goto out;
 906        }
 907
 908        bud->lnum = lnum;
 909        bud->start = offs;
 910        bud->jhead = jhead;
 911        bud->log_hash = ubifs_hash_get_desc(c);
 912        if (IS_ERR(bud->log_hash)) {
 913                err = PTR_ERR(bud->log_hash);
 914                goto out;
 915        }
 916
 917        ubifs_shash_copy_state(c, c->log_hash, bud->log_hash);
 918
 919        ubifs_add_bud(c, bud);
 920
 921        b->bud = bud;
 922        b->sqnum = sqnum;
 923        list_add_tail(&b->list, &c->replay_buds);
 924
 925        return 0;
 926out:
 927        kfree(bud);
 928        kfree(b);
 929
 930        return err;
 931}
 932
 933/**
 934 * validate_ref - validate a reference node.
 935 * @c: UBIFS file-system description object
 936 * @ref: the reference node to validate
 937 *
 938 * This function returns %1 if a bud reference already exists for the LEB. %0 is
 939 * returned if the reference node is new, otherwise %-EINVAL is returned if
 940 * validation failed.
 941 */
 942static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
 943{
 944        struct ubifs_bud *bud;
 945        int lnum = le32_to_cpu(ref->lnum);
 946        unsigned int offs = le32_to_cpu(ref->offs);
 947        unsigned int jhead = le32_to_cpu(ref->jhead);
 948
 949        /*
 950         * ref->offs may point to the end of LEB when the journal head points
 951         * to the end of LEB and we write reference node for it during commit.
 952         * So this is why we require 'offs > c->leb_size'.
 953         */
 954        if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
 955            lnum < c->main_first || offs > c->leb_size ||
 956            offs & (c->min_io_size - 1))
 957                return -EINVAL;
 958
 959        /* Make sure we have not already looked at this bud */
 960        bud = ubifs_search_bud(c, lnum);
 961        if (bud) {
 962                if (bud->jhead == jhead && bud->start <= offs)
 963                        return 1;
 964                ubifs_err(c, "bud at LEB %d:%d was already referred", lnum, offs);
 965                return -EINVAL;
 966        }
 967
 968        return 0;
 969}
 970
 971/**
 972 * replay_log_leb - replay a log logical eraseblock.
 973 * @c: UBIFS file-system description object
 974 * @lnum: log logical eraseblock to replay
 975 * @offs: offset to start replaying from
 976 * @sbuf: scan buffer
 977 *
 978 * This function replays a log LEB and returns zero in case of success, %1 if
 979 * this is the last LEB in the log, and a negative error code in case of
 980 * failure.
 981 */
 982static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
 983{
 984        int err;
 985        struct ubifs_scan_leb *sleb;
 986        struct ubifs_scan_node *snod;
 987        const struct ubifs_cs_node *node;
 988
 989        dbg_mnt("replay log LEB %d:%d", lnum, offs);
 990        sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
 991        if (IS_ERR(sleb)) {
 992                if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
 993                        return PTR_ERR(sleb);
 994                /*
 995                 * Note, the below function will recover this log LEB only if
 996                 * it is the last, because unclean reboots can possibly corrupt
 997                 * only the tail of the log.
 998                 */
 999                sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
1000                if (IS_ERR(sleb))
1001                        return PTR_ERR(sleb);
1002        }
1003
1004        if (sleb->nodes_cnt == 0) {
1005                err = 1;
1006                goto out;
1007        }
1008
1009        node = sleb->buf;
1010        snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
1011        if (c->cs_sqnum == 0) {
1012                /*
1013                 * This is the first log LEB we are looking at, make sure that
1014                 * the first node is a commit start node. Also record its
1015                 * sequence number so that UBIFS can determine where the log
1016                 * ends, because all nodes which were have higher sequence
1017                 * numbers.
1018                 */
1019                if (snod->type != UBIFS_CS_NODE) {
1020                        ubifs_err(c, "first log node at LEB %d:%d is not CS node",
1021                                  lnum, offs);
1022                        goto out_dump;
1023                }
1024                if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
1025                        ubifs_err(c, "first CS node at LEB %d:%d has wrong commit number %llu expected %llu",
1026                                  lnum, offs,
1027                                  (unsigned long long)le64_to_cpu(node->cmt_no),
1028                                  c->cmt_no);
1029                        goto out_dump;
1030                }
1031
1032                c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
1033                dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
1034
1035                err = ubifs_shash_init(c, c->log_hash);
1036                if (err)
1037                        goto out;
1038
1039                err = ubifs_shash_update(c, c->log_hash, node, UBIFS_CS_NODE_SZ);
1040                if (err < 0)
1041                        goto out;
1042        }
1043
1044        if (snod->sqnum < c->cs_sqnum) {
1045                /*
1046                 * This means that we reached end of log and now
1047                 * look to the older log data, which was already
1048                 * committed but the eraseblock was not erased (UBIFS
1049                 * only un-maps it). So this basically means we have to
1050                 * exit with "end of log" code.
1051                 */
1052                err = 1;
1053                goto out;
1054        }
1055
1056        /* Make sure the first node sits at offset zero of the LEB */
1057        if (snod->offs != 0) {
1058                ubifs_err(c, "first node is not at zero offset");
1059                goto out_dump;
1060        }
1061
1062        list_for_each_entry(snod, &sleb->nodes, list) {
1063                cond_resched();
1064
1065                if (snod->sqnum >= SQNUM_WATERMARK) {
1066                        ubifs_err(c, "file system's life ended");
1067                        goto out_dump;
1068                }
1069
1070                if (snod->sqnum < c->cs_sqnum) {
1071                        ubifs_err(c, "bad sqnum %llu, commit sqnum %llu",
1072                                  snod->sqnum, c->cs_sqnum);
1073                        goto out_dump;
1074                }
1075
1076                if (snod->sqnum > c->max_sqnum)
1077                        c->max_sqnum = snod->sqnum;
1078
1079                switch (snod->type) {
1080                case UBIFS_REF_NODE: {
1081                        const struct ubifs_ref_node *ref = snod->node;
1082
1083                        err = validate_ref(c, ref);
1084                        if (err == 1)
1085                                break; /* Already have this bud */
1086                        if (err)
1087                                goto out_dump;
1088
1089                        err = ubifs_shash_update(c, c->log_hash, ref,
1090                                                 UBIFS_REF_NODE_SZ);
1091                        if (err)
1092                                goto out;
1093
1094                        err = add_replay_bud(c, le32_to_cpu(ref->lnum),
1095                                             le32_to_cpu(ref->offs),
1096                                             le32_to_cpu(ref->jhead),
1097                                             snod->sqnum);
1098                        if (err)
1099                                goto out;
1100
1101                        break;
1102                }
1103                case UBIFS_CS_NODE:
1104                        /* Make sure it sits at the beginning of LEB */
1105                        if (snod->offs != 0) {
1106                                ubifs_err(c, "unexpected node in log");
1107                                goto out_dump;
1108                        }
1109                        break;
1110                default:
1111                        ubifs_err(c, "unexpected node in log");
1112                        goto out_dump;
1113                }
1114        }
1115
1116        if (sleb->endpt || c->lhead_offs >= c->leb_size) {
1117                c->lhead_lnum = lnum;
1118                c->lhead_offs = sleb->endpt;
1119        }
1120
1121        err = !sleb->endpt;
1122out:
1123        ubifs_scan_destroy(sleb);
1124        return err;
1125
1126out_dump:
1127        ubifs_err(c, "log error detected while replaying the log at LEB %d:%d",
1128                  lnum, offs + snod->offs);
1129        ubifs_dump_node(c, snod->node, c->leb_size - snod->offs);
1130        ubifs_scan_destroy(sleb);
1131        return -EINVAL;
1132}
1133
1134/**
1135 * take_ihead - update the status of the index head in lprops to 'taken'.
1136 * @c: UBIFS file-system description object
1137 *
1138 * This function returns the amount of free space in the index head LEB or a
1139 * negative error code.
1140 */
1141static int take_ihead(struct ubifs_info *c)
1142{
1143        const struct ubifs_lprops *lp;
1144        int err, free;
1145
1146        ubifs_get_lprops(c);
1147
1148        lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
1149        if (IS_ERR(lp)) {
1150                err = PTR_ERR(lp);
1151                goto out;
1152        }
1153
1154        free = lp->free;
1155
1156        lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
1157                             lp->flags | LPROPS_TAKEN, 0);
1158        if (IS_ERR(lp)) {
1159                err = PTR_ERR(lp);
1160                goto out;
1161        }
1162
1163        err = free;
1164out:
1165        ubifs_release_lprops(c);
1166        return err;
1167}
1168
1169/**
1170 * ubifs_replay_journal - replay journal.
1171 * @c: UBIFS file-system description object
1172 *
1173 * This function scans the journal, replays and cleans it up. It makes sure all
1174 * memory data structures related to uncommitted journal are built (dirty TNC
1175 * tree, tree of buds, modified lprops, etc).
1176 */
1177int ubifs_replay_journal(struct ubifs_info *c)
1178{
1179        int err, lnum, free;
1180
1181        BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
1182
1183        /* Update the status of the index head in lprops to 'taken' */
1184        free = take_ihead(c);
1185        if (free < 0)
1186                return free; /* Error code */
1187
1188        if (c->ihead_offs != c->leb_size - free) {
1189                ubifs_err(c, "bad index head LEB %d:%d", c->ihead_lnum,
1190                          c->ihead_offs);
1191                return -EINVAL;
1192        }
1193
1194        dbg_mnt("start replaying the journal");
1195        c->replaying = 1;
1196        lnum = c->ltail_lnum = c->lhead_lnum;
1197
1198        do {
1199                err = replay_log_leb(c, lnum, 0, c->sbuf);
1200                if (err == 1) {
1201                        if (lnum != c->lhead_lnum)
1202                                /* We hit the end of the log */
1203                                break;
1204
1205                        /*
1206                         * The head of the log must always start with the
1207                         * "commit start" node on a properly formatted UBIFS.
1208                         * But we found no nodes at all, which means that
1209                         * something went wrong and we cannot proceed mounting
1210                         * the file-system.
1211                         */
1212                        ubifs_err(c, "no UBIFS nodes found at the log head LEB %d:%d, possibly corrupted",
1213                                  lnum, 0);
1214                        err = -EINVAL;
1215                }
1216                if (err)
1217                        goto out;
1218                lnum = ubifs_next_log_lnum(c, lnum);
1219        } while (lnum != c->ltail_lnum);
1220
1221        err = replay_buds(c);
1222        if (err)
1223                goto out;
1224
1225        err = apply_replay_list(c);
1226        if (err)
1227                goto out;
1228
1229        err = set_buds_lprops(c);
1230        if (err)
1231                goto out;
1232
1233        /*
1234         * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable
1235         * to roughly estimate index growth. Things like @c->bi.min_idx_lebs
1236         * depend on it. This means we have to initialize it to make sure
1237         * budgeting works properly.
1238         */
1239        c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
1240        c->bi.uncommitted_idx *= c->max_idx_node_sz;
1241
1242        ubifs_assert(c, c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
1243        dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu",
1244                c->lhead_lnum, c->lhead_offs, c->max_sqnum,
1245                (unsigned long)c->highest_inum);
1246out:
1247        destroy_replay_list(c);
1248        destroy_bud_list(c);
1249        c->replaying = 0;
1250        return err;
1251}
1252