linux/fs/ubifs/super.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
   7 * Authors: Artem Bityutskiy (Битюцкий Артём)
   8 *          Adrian Hunter
   9 */
  10
  11/*
  12 * This file implements UBIFS initialization and VFS superblock operations. Some
  13 * initialization stuff which is rather large and complex is placed at
  14 * corresponding subsystems, but most of it is here.
  15 */
  16
  17#include <linux/init.h>
  18#include <linux/slab.h>
  19#include <linux/module.h>
  20#include <linux/ctype.h>
  21#include <linux/kthread.h>
  22#include <linux/parser.h>
  23#include <linux/seq_file.h>
  24#include <linux/mount.h>
  25#include <linux/math64.h>
  26#include <linux/writeback.h>
  27#include "ubifs.h"
  28
  29static int ubifs_default_version_set(const char *val, const struct kernel_param *kp)
  30{
  31        int n = 0, ret;
  32
  33        ret = kstrtoint(val, 10, &n);
  34        if (ret != 0 || n < 4 || n > UBIFS_FORMAT_VERSION)
  35                return -EINVAL;
  36        return param_set_int(val, kp);
  37}
  38
  39static const struct kernel_param_ops ubifs_default_version_ops = {
  40        .set = ubifs_default_version_set,
  41        .get = param_get_int,
  42};
  43
  44int ubifs_default_version = UBIFS_FORMAT_VERSION;
  45module_param_cb(default_version, &ubifs_default_version_ops, &ubifs_default_version, 0600);
  46
  47/*
  48 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
  49 * allocating too much.
  50 */
  51#define UBIFS_KMALLOC_OK (128*1024)
  52
  53/* Slab cache for UBIFS inodes */
  54static struct kmem_cache *ubifs_inode_slab;
  55
  56/* UBIFS TNC shrinker description */
  57static struct shrinker ubifs_shrinker_info = {
  58        .scan_objects = ubifs_shrink_scan,
  59        .count_objects = ubifs_shrink_count,
  60        .seeks = DEFAULT_SEEKS,
  61};
  62
  63/**
  64 * validate_inode - validate inode.
  65 * @c: UBIFS file-system description object
  66 * @inode: the inode to validate
  67 *
  68 * This is a helper function for 'ubifs_iget()' which validates various fields
  69 * of a newly built inode to make sure they contain sane values and prevent
  70 * possible vulnerabilities. Returns zero if the inode is all right and
  71 * a non-zero error code if not.
  72 */
  73static int validate_inode(struct ubifs_info *c, const struct inode *inode)
  74{
  75        int err;
  76        const struct ubifs_inode *ui = ubifs_inode(inode);
  77
  78        if (inode->i_size > c->max_inode_sz) {
  79                ubifs_err(c, "inode is too large (%lld)",
  80                          (long long)inode->i_size);
  81                return 1;
  82        }
  83
  84        if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
  85                ubifs_err(c, "unknown compression type %d", ui->compr_type);
  86                return 2;
  87        }
  88
  89        if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
  90                return 3;
  91
  92        if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
  93                return 4;
  94
  95        if (ui->xattr && !S_ISREG(inode->i_mode))
  96                return 5;
  97
  98        if (!ubifs_compr_present(c, ui->compr_type)) {
  99                ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
 100                           inode->i_ino, ubifs_compr_name(c, ui->compr_type));
 101        }
 102
 103        err = dbg_check_dir(c, inode);
 104        return err;
 105}
 106
 107struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
 108{
 109        int err;
 110        union ubifs_key key;
 111        struct ubifs_ino_node *ino;
 112        struct ubifs_info *c = sb->s_fs_info;
 113        struct inode *inode;
 114        struct ubifs_inode *ui;
 115
 116        dbg_gen("inode %lu", inum);
 117
 118        inode = iget_locked(sb, inum);
 119        if (!inode)
 120                return ERR_PTR(-ENOMEM);
 121        if (!(inode->i_state & I_NEW))
 122                return inode;
 123        ui = ubifs_inode(inode);
 124
 125        ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
 126        if (!ino) {
 127                err = -ENOMEM;
 128                goto out;
 129        }
 130
 131        ino_key_init(c, &key, inode->i_ino);
 132
 133        err = ubifs_tnc_lookup(c, &key, ino);
 134        if (err)
 135                goto out_ino;
 136
 137        inode->i_flags |= S_NOCMTIME;
 138
 139        if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
 140                inode->i_flags |= S_NOATIME;
 141
 142        set_nlink(inode, le32_to_cpu(ino->nlink));
 143        i_uid_write(inode, le32_to_cpu(ino->uid));
 144        i_gid_write(inode, le32_to_cpu(ino->gid));
 145        inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
 146        inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
 147        inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
 148        inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
 149        inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
 150        inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
 151        inode->i_mode = le32_to_cpu(ino->mode);
 152        inode->i_size = le64_to_cpu(ino->size);
 153
 154        ui->data_len    = le32_to_cpu(ino->data_len);
 155        ui->flags       = le32_to_cpu(ino->flags);
 156        ui->compr_type  = le16_to_cpu(ino->compr_type);
 157        ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
 158        ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
 159        ui->xattr_size  = le32_to_cpu(ino->xattr_size);
 160        ui->xattr_names = le32_to_cpu(ino->xattr_names);
 161        ui->synced_i_size = ui->ui_size = inode->i_size;
 162
 163        ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
 164
 165        err = validate_inode(c, inode);
 166        if (err)
 167                goto out_invalid;
 168
 169        switch (inode->i_mode & S_IFMT) {
 170        case S_IFREG:
 171                inode->i_mapping->a_ops = &ubifs_file_address_operations;
 172                inode->i_op = &ubifs_file_inode_operations;
 173                inode->i_fop = &ubifs_file_operations;
 174                if (ui->xattr) {
 175                        ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
 176                        if (!ui->data) {
 177                                err = -ENOMEM;
 178                                goto out_ino;
 179                        }
 180                        memcpy(ui->data, ino->data, ui->data_len);
 181                        ((char *)ui->data)[ui->data_len] = '\0';
 182                } else if (ui->data_len != 0) {
 183                        err = 10;
 184                        goto out_invalid;
 185                }
 186                break;
 187        case S_IFDIR:
 188                inode->i_op  = &ubifs_dir_inode_operations;
 189                inode->i_fop = &ubifs_dir_operations;
 190                if (ui->data_len != 0) {
 191                        err = 11;
 192                        goto out_invalid;
 193                }
 194                break;
 195        case S_IFLNK:
 196                inode->i_op = &ubifs_symlink_inode_operations;
 197                if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
 198                        err = 12;
 199                        goto out_invalid;
 200                }
 201                ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
 202                if (!ui->data) {
 203                        err = -ENOMEM;
 204                        goto out_ino;
 205                }
 206                memcpy(ui->data, ino->data, ui->data_len);
 207                ((char *)ui->data)[ui->data_len] = '\0';
 208                break;
 209        case S_IFBLK:
 210        case S_IFCHR:
 211        {
 212                dev_t rdev;
 213                union ubifs_dev_desc *dev;
 214
 215                ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
 216                if (!ui->data) {
 217                        err = -ENOMEM;
 218                        goto out_ino;
 219                }
 220
 221                dev = (union ubifs_dev_desc *)ino->data;
 222                if (ui->data_len == sizeof(dev->new))
 223                        rdev = new_decode_dev(le32_to_cpu(dev->new));
 224                else if (ui->data_len == sizeof(dev->huge))
 225                        rdev = huge_decode_dev(le64_to_cpu(dev->huge));
 226                else {
 227                        err = 13;
 228                        goto out_invalid;
 229                }
 230                memcpy(ui->data, ino->data, ui->data_len);
 231                inode->i_op = &ubifs_file_inode_operations;
 232                init_special_inode(inode, inode->i_mode, rdev);
 233                break;
 234        }
 235        case S_IFSOCK:
 236        case S_IFIFO:
 237                inode->i_op = &ubifs_file_inode_operations;
 238                init_special_inode(inode, inode->i_mode, 0);
 239                if (ui->data_len != 0) {
 240                        err = 14;
 241                        goto out_invalid;
 242                }
 243                break;
 244        default:
 245                err = 15;
 246                goto out_invalid;
 247        }
 248
 249        kfree(ino);
 250        ubifs_set_inode_flags(inode);
 251        unlock_new_inode(inode);
 252        return inode;
 253
 254out_invalid:
 255        ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
 256        ubifs_dump_node(c, ino, UBIFS_MAX_INO_NODE_SZ);
 257        ubifs_dump_inode(c, inode);
 258        err = -EINVAL;
 259out_ino:
 260        kfree(ino);
 261out:
 262        ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
 263        iget_failed(inode);
 264        return ERR_PTR(err);
 265}
 266
 267static struct inode *ubifs_alloc_inode(struct super_block *sb)
 268{
 269        struct ubifs_inode *ui;
 270
 271        ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
 272        if (!ui)
 273                return NULL;
 274
 275        memset((void *)ui + sizeof(struct inode), 0,
 276               sizeof(struct ubifs_inode) - sizeof(struct inode));
 277        mutex_init(&ui->ui_mutex);
 278        init_rwsem(&ui->xattr_sem);
 279        spin_lock_init(&ui->ui_lock);
 280        return &ui->vfs_inode;
 281};
 282
 283static void ubifs_free_inode(struct inode *inode)
 284{
 285        struct ubifs_inode *ui = ubifs_inode(inode);
 286
 287        kfree(ui->data);
 288        fscrypt_free_inode(inode);
 289
 290        kmem_cache_free(ubifs_inode_slab, ui);
 291}
 292
 293/*
 294 * Note, Linux write-back code calls this without 'i_mutex'.
 295 */
 296static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
 297{
 298        int err = 0;
 299        struct ubifs_info *c = inode->i_sb->s_fs_info;
 300        struct ubifs_inode *ui = ubifs_inode(inode);
 301
 302        ubifs_assert(c, !ui->xattr);
 303        if (is_bad_inode(inode))
 304                return 0;
 305
 306        mutex_lock(&ui->ui_mutex);
 307        /*
 308         * Due to races between write-back forced by budgeting
 309         * (see 'sync_some_inodes()') and background write-back, the inode may
 310         * have already been synchronized, do not do this again. This might
 311         * also happen if it was synchronized in an VFS operation, e.g.
 312         * 'ubifs_link()'.
 313         */
 314        if (!ui->dirty) {
 315                mutex_unlock(&ui->ui_mutex);
 316                return 0;
 317        }
 318
 319        /*
 320         * As an optimization, do not write orphan inodes to the media just
 321         * because this is not needed.
 322         */
 323        dbg_gen("inode %lu, mode %#x, nlink %u",
 324                inode->i_ino, (int)inode->i_mode, inode->i_nlink);
 325        if (inode->i_nlink) {
 326                err = ubifs_jnl_write_inode(c, inode);
 327                if (err)
 328                        ubifs_err(c, "can't write inode %lu, error %d",
 329                                  inode->i_ino, err);
 330                else
 331                        err = dbg_check_inode_size(c, inode, ui->ui_size);
 332        }
 333
 334        ui->dirty = 0;
 335        mutex_unlock(&ui->ui_mutex);
 336        ubifs_release_dirty_inode_budget(c, ui);
 337        return err;
 338}
 339
 340static int ubifs_drop_inode(struct inode *inode)
 341{
 342        int drop = generic_drop_inode(inode);
 343
 344        if (!drop)
 345                drop = fscrypt_drop_inode(inode);
 346
 347        return drop;
 348}
 349
 350static void ubifs_evict_inode(struct inode *inode)
 351{
 352        int err;
 353        struct ubifs_info *c = inode->i_sb->s_fs_info;
 354        struct ubifs_inode *ui = ubifs_inode(inode);
 355
 356        if (ui->xattr)
 357                /*
 358                 * Extended attribute inode deletions are fully handled in
 359                 * 'ubifs_removexattr()'. These inodes are special and have
 360                 * limited usage, so there is nothing to do here.
 361                 */
 362                goto out;
 363
 364        dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
 365        ubifs_assert(c, !atomic_read(&inode->i_count));
 366
 367        truncate_inode_pages_final(&inode->i_data);
 368
 369        if (inode->i_nlink)
 370                goto done;
 371
 372        if (is_bad_inode(inode))
 373                goto out;
 374
 375        ui->ui_size = inode->i_size = 0;
 376        err = ubifs_jnl_delete_inode(c, inode);
 377        if (err)
 378                /*
 379                 * Worst case we have a lost orphan inode wasting space, so a
 380                 * simple error message is OK here.
 381                 */
 382                ubifs_err(c, "can't delete inode %lu, error %d",
 383                          inode->i_ino, err);
 384
 385out:
 386        if (ui->dirty)
 387                ubifs_release_dirty_inode_budget(c, ui);
 388        else {
 389                /* We've deleted something - clean the "no space" flags */
 390                c->bi.nospace = c->bi.nospace_rp = 0;
 391                smp_wmb();
 392        }
 393done:
 394        clear_inode(inode);
 395        fscrypt_put_encryption_info(inode);
 396}
 397
 398static void ubifs_dirty_inode(struct inode *inode, int flags)
 399{
 400        struct ubifs_info *c = inode->i_sb->s_fs_info;
 401        struct ubifs_inode *ui = ubifs_inode(inode);
 402
 403        ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
 404        if (!ui->dirty) {
 405                ui->dirty = 1;
 406                dbg_gen("inode %lu",  inode->i_ino);
 407        }
 408}
 409
 410static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
 411{
 412        struct ubifs_info *c = dentry->d_sb->s_fs_info;
 413        unsigned long long free;
 414        __le32 *uuid = (__le32 *)c->uuid;
 415
 416        free = ubifs_get_free_space(c);
 417        dbg_gen("free space %lld bytes (%lld blocks)",
 418                free, free >> UBIFS_BLOCK_SHIFT);
 419
 420        buf->f_type = UBIFS_SUPER_MAGIC;
 421        buf->f_bsize = UBIFS_BLOCK_SIZE;
 422        buf->f_blocks = c->block_cnt;
 423        buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
 424        if (free > c->report_rp_size)
 425                buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
 426        else
 427                buf->f_bavail = 0;
 428        buf->f_files = 0;
 429        buf->f_ffree = 0;
 430        buf->f_namelen = UBIFS_MAX_NLEN;
 431        buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
 432        buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
 433        ubifs_assert(c, buf->f_bfree <= c->block_cnt);
 434        return 0;
 435}
 436
 437static int ubifs_show_options(struct seq_file *s, struct dentry *root)
 438{
 439        struct ubifs_info *c = root->d_sb->s_fs_info;
 440
 441        if (c->mount_opts.unmount_mode == 2)
 442                seq_puts(s, ",fast_unmount");
 443        else if (c->mount_opts.unmount_mode == 1)
 444                seq_puts(s, ",norm_unmount");
 445
 446        if (c->mount_opts.bulk_read == 2)
 447                seq_puts(s, ",bulk_read");
 448        else if (c->mount_opts.bulk_read == 1)
 449                seq_puts(s, ",no_bulk_read");
 450
 451        if (c->mount_opts.chk_data_crc == 2)
 452                seq_puts(s, ",chk_data_crc");
 453        else if (c->mount_opts.chk_data_crc == 1)
 454                seq_puts(s, ",no_chk_data_crc");
 455
 456        if (c->mount_opts.override_compr) {
 457                seq_printf(s, ",compr=%s",
 458                           ubifs_compr_name(c, c->mount_opts.compr_type));
 459        }
 460
 461        seq_printf(s, ",assert=%s", ubifs_assert_action_name(c));
 462        seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
 463
 464        return 0;
 465}
 466
 467static int ubifs_sync_fs(struct super_block *sb, int wait)
 468{
 469        int i, err;
 470        struct ubifs_info *c = sb->s_fs_info;
 471
 472        /*
 473         * Zero @wait is just an advisory thing to help the file system shove
 474         * lots of data into the queues, and there will be the second
 475         * '->sync_fs()' call, with non-zero @wait.
 476         */
 477        if (!wait)
 478                return 0;
 479
 480        /*
 481         * Synchronize write buffers, because 'ubifs_run_commit()' does not
 482         * do this if it waits for an already running commit.
 483         */
 484        for (i = 0; i < c->jhead_cnt; i++) {
 485                err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
 486                if (err)
 487                        return err;
 488        }
 489
 490        /*
 491         * Strictly speaking, it is not necessary to commit the journal here,
 492         * synchronizing write-buffers would be enough. But committing makes
 493         * UBIFS free space predictions much more accurate, so we want to let
 494         * the user be able to get more accurate results of 'statfs()' after
 495         * they synchronize the file system.
 496         */
 497        err = ubifs_run_commit(c);
 498        if (err)
 499                return err;
 500
 501        return ubi_sync(c->vi.ubi_num);
 502}
 503
 504/**
 505 * init_constants_early - initialize UBIFS constants.
 506 * @c: UBIFS file-system description object
 507 *
 508 * This function initialize UBIFS constants which do not need the superblock to
 509 * be read. It also checks that the UBI volume satisfies basic UBIFS
 510 * requirements. Returns zero in case of success and a negative error code in
 511 * case of failure.
 512 */
 513static int init_constants_early(struct ubifs_info *c)
 514{
 515        if (c->vi.corrupted) {
 516                ubifs_warn(c, "UBI volume is corrupted - read-only mode");
 517                c->ro_media = 1;
 518        }
 519
 520        if (c->di.ro_mode) {
 521                ubifs_msg(c, "read-only UBI device");
 522                c->ro_media = 1;
 523        }
 524
 525        if (c->vi.vol_type == UBI_STATIC_VOLUME) {
 526                ubifs_msg(c, "static UBI volume - read-only mode");
 527                c->ro_media = 1;
 528        }
 529
 530        c->leb_cnt = c->vi.size;
 531        c->leb_size = c->vi.usable_leb_size;
 532        c->leb_start = c->di.leb_start;
 533        c->half_leb_size = c->leb_size / 2;
 534        c->min_io_size = c->di.min_io_size;
 535        c->min_io_shift = fls(c->min_io_size) - 1;
 536        c->max_write_size = c->di.max_write_size;
 537        c->max_write_shift = fls(c->max_write_size) - 1;
 538
 539        if (c->leb_size < UBIFS_MIN_LEB_SZ) {
 540                ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
 541                           c->leb_size, UBIFS_MIN_LEB_SZ);
 542                return -EINVAL;
 543        }
 544
 545        if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
 546                ubifs_errc(c, "too few LEBs (%d), min. is %d",
 547                           c->leb_cnt, UBIFS_MIN_LEB_CNT);
 548                return -EINVAL;
 549        }
 550
 551        if (!is_power_of_2(c->min_io_size)) {
 552                ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
 553                return -EINVAL;
 554        }
 555
 556        /*
 557         * Maximum write size has to be greater or equivalent to min. I/O
 558         * size, and be multiple of min. I/O size.
 559         */
 560        if (c->max_write_size < c->min_io_size ||
 561            c->max_write_size % c->min_io_size ||
 562            !is_power_of_2(c->max_write_size)) {
 563                ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
 564                           c->max_write_size, c->min_io_size);
 565                return -EINVAL;
 566        }
 567
 568        /*
 569         * UBIFS aligns all node to 8-byte boundary, so to make function in
 570         * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
 571         * less than 8.
 572         */
 573        if (c->min_io_size < 8) {
 574                c->min_io_size = 8;
 575                c->min_io_shift = 3;
 576                if (c->max_write_size < c->min_io_size) {
 577                        c->max_write_size = c->min_io_size;
 578                        c->max_write_shift = c->min_io_shift;
 579                }
 580        }
 581
 582        c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
 583        c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
 584
 585        /*
 586         * Initialize node length ranges which are mostly needed for node
 587         * length validation.
 588         */
 589        c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
 590        c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
 591        c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
 592        c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
 593        c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
 594        c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
 595        c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ;
 596        c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ +
 597                                UBIFS_MAX_HMAC_LEN;
 598        c->ranges[UBIFS_SIG_NODE].min_len = UBIFS_SIG_NODE_SZ;
 599        c->ranges[UBIFS_SIG_NODE].max_len = c->leb_size - UBIFS_SB_NODE_SZ;
 600
 601        c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
 602        c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
 603        c->ranges[UBIFS_ORPH_NODE].min_len =
 604                                UBIFS_ORPH_NODE_SZ + sizeof(__le64);
 605        c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
 606        c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
 607        c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
 608        c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
 609        c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
 610        c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
 611        c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
 612        /*
 613         * Minimum indexing node size is amended later when superblock is
 614         * read and the key length is known.
 615         */
 616        c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
 617        /*
 618         * Maximum indexing node size is amended later when superblock is
 619         * read and the fanout is known.
 620         */
 621        c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
 622
 623        /*
 624         * Initialize dead and dark LEB space watermarks. See gc.c for comments
 625         * about these values.
 626         */
 627        c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
 628        c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
 629
 630        /*
 631         * Calculate how many bytes would be wasted at the end of LEB if it was
 632         * fully filled with data nodes of maximum size. This is used in
 633         * calculations when reporting free space.
 634         */
 635        c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
 636
 637        /* Buffer size for bulk-reads */
 638        c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
 639        if (c->max_bu_buf_len > c->leb_size)
 640                c->max_bu_buf_len = c->leb_size;
 641
 642        /* Log is ready, preserve one LEB for commits. */
 643        c->min_log_bytes = c->leb_size;
 644
 645        return 0;
 646}
 647
 648/**
 649 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
 650 * @c: UBIFS file-system description object
 651 * @lnum: LEB the write-buffer was synchronized to
 652 * @free: how many free bytes left in this LEB
 653 * @pad: how many bytes were padded
 654 *
 655 * This is a callback function which is called by the I/O unit when the
 656 * write-buffer is synchronized. We need this to correctly maintain space
 657 * accounting in bud logical eraseblocks. This function returns zero in case of
 658 * success and a negative error code in case of failure.
 659 *
 660 * This function actually belongs to the journal, but we keep it here because
 661 * we want to keep it static.
 662 */
 663static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
 664{
 665        return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
 666}
 667
 668/*
 669 * init_constants_sb - initialize UBIFS constants.
 670 * @c: UBIFS file-system description object
 671 *
 672 * This is a helper function which initializes various UBIFS constants after
 673 * the superblock has been read. It also checks various UBIFS parameters and
 674 * makes sure they are all right. Returns zero in case of success and a
 675 * negative error code in case of failure.
 676 */
 677static int init_constants_sb(struct ubifs_info *c)
 678{
 679        int tmp, err;
 680        long long tmp64;
 681
 682        c->main_bytes = (long long)c->main_lebs * c->leb_size;
 683        c->max_znode_sz = sizeof(struct ubifs_znode) +
 684                                c->fanout * sizeof(struct ubifs_zbranch);
 685
 686        tmp = ubifs_idx_node_sz(c, 1);
 687        c->ranges[UBIFS_IDX_NODE].min_len = tmp;
 688        c->min_idx_node_sz = ALIGN(tmp, 8);
 689
 690        tmp = ubifs_idx_node_sz(c, c->fanout);
 691        c->ranges[UBIFS_IDX_NODE].max_len = tmp;
 692        c->max_idx_node_sz = ALIGN(tmp, 8);
 693
 694        /* Make sure LEB size is large enough to fit full commit */
 695        tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
 696        tmp = ALIGN(tmp, c->min_io_size);
 697        if (tmp > c->leb_size) {
 698                ubifs_err(c, "too small LEB size %d, at least %d needed",
 699                          c->leb_size, tmp);
 700                return -EINVAL;
 701        }
 702
 703        /*
 704         * Make sure that the log is large enough to fit reference nodes for
 705         * all buds plus one reserved LEB.
 706         */
 707        tmp64 = c->max_bud_bytes + c->leb_size - 1;
 708        c->max_bud_cnt = div_u64(tmp64, c->leb_size);
 709        tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
 710        tmp /= c->leb_size;
 711        tmp += 1;
 712        if (c->log_lebs < tmp) {
 713                ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
 714                          c->log_lebs, tmp);
 715                return -EINVAL;
 716        }
 717
 718        /*
 719         * When budgeting we assume worst-case scenarios when the pages are not
 720         * be compressed and direntries are of the maximum size.
 721         *
 722         * Note, data, which may be stored in inodes is budgeted separately, so
 723         * it is not included into 'c->bi.inode_budget'.
 724         */
 725        c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
 726        c->bi.inode_budget = UBIFS_INO_NODE_SZ;
 727        c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
 728
 729        /*
 730         * When the amount of flash space used by buds becomes
 731         * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
 732         * The writers are unblocked when the commit is finished. To avoid
 733         * writers to be blocked UBIFS initiates background commit in advance,
 734         * when number of bud bytes becomes above the limit defined below.
 735         */
 736        c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
 737
 738        /*
 739         * Ensure minimum journal size. All the bytes in the journal heads are
 740         * considered to be used, when calculating the current journal usage.
 741         * Consequently, if the journal is too small, UBIFS will treat it as
 742         * always full.
 743         */
 744        tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
 745        if (c->bg_bud_bytes < tmp64)
 746                c->bg_bud_bytes = tmp64;
 747        if (c->max_bud_bytes < tmp64 + c->leb_size)
 748                c->max_bud_bytes = tmp64 + c->leb_size;
 749
 750        err = ubifs_calc_lpt_geom(c);
 751        if (err)
 752                return err;
 753
 754        /* Initialize effective LEB size used in budgeting calculations */
 755        c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
 756        return 0;
 757}
 758
 759/*
 760 * init_constants_master - initialize UBIFS constants.
 761 * @c: UBIFS file-system description object
 762 *
 763 * This is a helper function which initializes various UBIFS constants after
 764 * the master node has been read. It also checks various UBIFS parameters and
 765 * makes sure they are all right.
 766 */
 767static void init_constants_master(struct ubifs_info *c)
 768{
 769        long long tmp64;
 770
 771        c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
 772        c->report_rp_size = ubifs_reported_space(c, c->rp_size);
 773
 774        /*
 775         * Calculate total amount of FS blocks. This number is not used
 776         * internally because it does not make much sense for UBIFS, but it is
 777         * necessary to report something for the 'statfs()' call.
 778         *
 779         * Subtract the LEB reserved for GC, the LEB which is reserved for
 780         * deletions, minimum LEBs for the index, and assume only one journal
 781         * head is available.
 782         */
 783        tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
 784        tmp64 *= (long long)c->leb_size - c->leb_overhead;
 785        tmp64 = ubifs_reported_space(c, tmp64);
 786        c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
 787}
 788
 789/**
 790 * take_gc_lnum - reserve GC LEB.
 791 * @c: UBIFS file-system description object
 792 *
 793 * This function ensures that the LEB reserved for garbage collection is marked
 794 * as "taken" in lprops. We also have to set free space to LEB size and dirty
 795 * space to zero, because lprops may contain out-of-date information if the
 796 * file-system was un-mounted before it has been committed. This function
 797 * returns zero in case of success and a negative error code in case of
 798 * failure.
 799 */
 800static int take_gc_lnum(struct ubifs_info *c)
 801{
 802        int err;
 803
 804        if (c->gc_lnum == -1) {
 805                ubifs_err(c, "no LEB for GC");
 806                return -EINVAL;
 807        }
 808
 809        /* And we have to tell lprops that this LEB is taken */
 810        err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
 811                                  LPROPS_TAKEN, 0, 0);
 812        return err;
 813}
 814
 815/**
 816 * alloc_wbufs - allocate write-buffers.
 817 * @c: UBIFS file-system description object
 818 *
 819 * This helper function allocates and initializes UBIFS write-buffers. Returns
 820 * zero in case of success and %-ENOMEM in case of failure.
 821 */
 822static int alloc_wbufs(struct ubifs_info *c)
 823{
 824        int i, err;
 825
 826        c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
 827                            GFP_KERNEL);
 828        if (!c->jheads)
 829                return -ENOMEM;
 830
 831        /* Initialize journal heads */
 832        for (i = 0; i < c->jhead_cnt; i++) {
 833                INIT_LIST_HEAD(&c->jheads[i].buds_list);
 834                err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
 835                if (err)
 836                        return err;
 837
 838                c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
 839                c->jheads[i].wbuf.jhead = i;
 840                c->jheads[i].grouped = 1;
 841                c->jheads[i].log_hash = ubifs_hash_get_desc(c);
 842                if (IS_ERR(c->jheads[i].log_hash)) {
 843                        err = PTR_ERR(c->jheads[i].log_hash);
 844                        goto out;
 845                }
 846        }
 847
 848        /*
 849         * Garbage Collector head does not need to be synchronized by timer.
 850         * Also GC head nodes are not grouped.
 851         */
 852        c->jheads[GCHD].wbuf.no_timer = 1;
 853        c->jheads[GCHD].grouped = 0;
 854
 855        return 0;
 856
 857out:
 858        while (i--)
 859                kfree(c->jheads[i].log_hash);
 860
 861        return err;
 862}
 863
 864/**
 865 * free_wbufs - free write-buffers.
 866 * @c: UBIFS file-system description object
 867 */
 868static void free_wbufs(struct ubifs_info *c)
 869{
 870        int i;
 871
 872        if (c->jheads) {
 873                for (i = 0; i < c->jhead_cnt; i++) {
 874                        kfree(c->jheads[i].wbuf.buf);
 875                        kfree(c->jheads[i].wbuf.inodes);
 876                        kfree(c->jheads[i].log_hash);
 877                }
 878                kfree(c->jheads);
 879                c->jheads = NULL;
 880        }
 881}
 882
 883/**
 884 * free_orphans - free orphans.
 885 * @c: UBIFS file-system description object
 886 */
 887static void free_orphans(struct ubifs_info *c)
 888{
 889        struct ubifs_orphan *orph;
 890
 891        while (c->orph_dnext) {
 892                orph = c->orph_dnext;
 893                c->orph_dnext = orph->dnext;
 894                list_del(&orph->list);
 895                kfree(orph);
 896        }
 897
 898        while (!list_empty(&c->orph_list)) {
 899                orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
 900                list_del(&orph->list);
 901                kfree(orph);
 902                ubifs_err(c, "orphan list not empty at unmount");
 903        }
 904
 905        vfree(c->orph_buf);
 906        c->orph_buf = NULL;
 907}
 908
 909/**
 910 * free_buds - free per-bud objects.
 911 * @c: UBIFS file-system description object
 912 */
 913static void free_buds(struct ubifs_info *c)
 914{
 915        struct ubifs_bud *bud, *n;
 916
 917        rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
 918                kfree(bud);
 919}
 920
 921/**
 922 * check_volume_empty - check if the UBI volume is empty.
 923 * @c: UBIFS file-system description object
 924 *
 925 * This function checks if the UBIFS volume is empty by looking if its LEBs are
 926 * mapped or not. The result of checking is stored in the @c->empty variable.
 927 * Returns zero in case of success and a negative error code in case of
 928 * failure.
 929 */
 930static int check_volume_empty(struct ubifs_info *c)
 931{
 932        int lnum, err;
 933
 934        c->empty = 1;
 935        for (lnum = 0; lnum < c->leb_cnt; lnum++) {
 936                err = ubifs_is_mapped(c, lnum);
 937                if (unlikely(err < 0))
 938                        return err;
 939                if (err == 1) {
 940                        c->empty = 0;
 941                        break;
 942                }
 943
 944                cond_resched();
 945        }
 946
 947        return 0;
 948}
 949
 950/*
 951 * UBIFS mount options.
 952 *
 953 * Opt_fast_unmount: do not run a journal commit before un-mounting
 954 * Opt_norm_unmount: run a journal commit before un-mounting
 955 * Opt_bulk_read: enable bulk-reads
 956 * Opt_no_bulk_read: disable bulk-reads
 957 * Opt_chk_data_crc: check CRCs when reading data nodes
 958 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
 959 * Opt_override_compr: override default compressor
 960 * Opt_assert: set ubifs_assert() action
 961 * Opt_auth_key: The key name used for authentication
 962 * Opt_auth_hash_name: The hash type used for authentication
 963 * Opt_err: just end of array marker
 964 */
 965enum {
 966        Opt_fast_unmount,
 967        Opt_norm_unmount,
 968        Opt_bulk_read,
 969        Opt_no_bulk_read,
 970        Opt_chk_data_crc,
 971        Opt_no_chk_data_crc,
 972        Opt_override_compr,
 973        Opt_assert,
 974        Opt_auth_key,
 975        Opt_auth_hash_name,
 976        Opt_ignore,
 977        Opt_err,
 978};
 979
 980static const match_table_t tokens = {
 981        {Opt_fast_unmount, "fast_unmount"},
 982        {Opt_norm_unmount, "norm_unmount"},
 983        {Opt_bulk_read, "bulk_read"},
 984        {Opt_no_bulk_read, "no_bulk_read"},
 985        {Opt_chk_data_crc, "chk_data_crc"},
 986        {Opt_no_chk_data_crc, "no_chk_data_crc"},
 987        {Opt_override_compr, "compr=%s"},
 988        {Opt_auth_key, "auth_key=%s"},
 989        {Opt_auth_hash_name, "auth_hash_name=%s"},
 990        {Opt_ignore, "ubi=%s"},
 991        {Opt_ignore, "vol=%s"},
 992        {Opt_assert, "assert=%s"},
 993        {Opt_err, NULL},
 994};
 995
 996/**
 997 * parse_standard_option - parse a standard mount option.
 998 * @option: the option to parse
 999 *
1000 * Normally, standard mount options like "sync" are passed to file-systems as
1001 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
1002 * be present in the options string. This function tries to deal with this
1003 * situation and parse standard options. Returns 0 if the option was not
1004 * recognized, and the corresponding integer flag if it was.
1005 *
1006 * UBIFS is only interested in the "sync" option, so do not check for anything
1007 * else.
1008 */
1009static int parse_standard_option(const char *option)
1010{
1011
1012        pr_notice("UBIFS: parse %s\n", option);
1013        if (!strcmp(option, "sync"))
1014                return SB_SYNCHRONOUS;
1015        return 0;
1016}
1017
1018/**
1019 * ubifs_parse_options - parse mount parameters.
1020 * @c: UBIFS file-system description object
1021 * @options: parameters to parse
1022 * @is_remount: non-zero if this is FS re-mount
1023 *
1024 * This function parses UBIFS mount options and returns zero in case success
1025 * and a negative error code in case of failure.
1026 */
1027static int ubifs_parse_options(struct ubifs_info *c, char *options,
1028                               int is_remount)
1029{
1030        char *p;
1031        substring_t args[MAX_OPT_ARGS];
1032
1033        if (!options)
1034                return 0;
1035
1036        while ((p = strsep(&options, ","))) {
1037                int token;
1038
1039                if (!*p)
1040                        continue;
1041
1042                token = match_token(p, tokens, args);
1043                switch (token) {
1044                /*
1045                 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1046                 * We accept them in order to be backward-compatible. But this
1047                 * should be removed at some point.
1048                 */
1049                case Opt_fast_unmount:
1050                        c->mount_opts.unmount_mode = 2;
1051                        break;
1052                case Opt_norm_unmount:
1053                        c->mount_opts.unmount_mode = 1;
1054                        break;
1055                case Opt_bulk_read:
1056                        c->mount_opts.bulk_read = 2;
1057                        c->bulk_read = 1;
1058                        break;
1059                case Opt_no_bulk_read:
1060                        c->mount_opts.bulk_read = 1;
1061                        c->bulk_read = 0;
1062                        break;
1063                case Opt_chk_data_crc:
1064                        c->mount_opts.chk_data_crc = 2;
1065                        c->no_chk_data_crc = 0;
1066                        break;
1067                case Opt_no_chk_data_crc:
1068                        c->mount_opts.chk_data_crc = 1;
1069                        c->no_chk_data_crc = 1;
1070                        break;
1071                case Opt_override_compr:
1072                {
1073                        char *name = match_strdup(&args[0]);
1074
1075                        if (!name)
1076                                return -ENOMEM;
1077                        if (!strcmp(name, "none"))
1078                                c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1079                        else if (!strcmp(name, "lzo"))
1080                                c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1081                        else if (!strcmp(name, "zlib"))
1082                                c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1083                        else if (!strcmp(name, "zstd"))
1084                                c->mount_opts.compr_type = UBIFS_COMPR_ZSTD;
1085                        else {
1086                                ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1087                                kfree(name);
1088                                return -EINVAL;
1089                        }
1090                        kfree(name);
1091                        c->mount_opts.override_compr = 1;
1092                        c->default_compr = c->mount_opts.compr_type;
1093                        break;
1094                }
1095                case Opt_assert:
1096                {
1097                        char *act = match_strdup(&args[0]);
1098
1099                        if (!act)
1100                                return -ENOMEM;
1101                        if (!strcmp(act, "report"))
1102                                c->assert_action = ASSACT_REPORT;
1103                        else if (!strcmp(act, "read-only"))
1104                                c->assert_action = ASSACT_RO;
1105                        else if (!strcmp(act, "panic"))
1106                                c->assert_action = ASSACT_PANIC;
1107                        else {
1108                                ubifs_err(c, "unknown assert action \"%s\"", act);
1109                                kfree(act);
1110                                return -EINVAL;
1111                        }
1112                        kfree(act);
1113                        break;
1114                }
1115                case Opt_auth_key:
1116                        if (!is_remount) {
1117                                c->auth_key_name = kstrdup(args[0].from,
1118                                                                GFP_KERNEL);
1119                                if (!c->auth_key_name)
1120                                        return -ENOMEM;
1121                        }
1122                        break;
1123                case Opt_auth_hash_name:
1124                        if (!is_remount) {
1125                                c->auth_hash_name = kstrdup(args[0].from,
1126                                                                GFP_KERNEL);
1127                                if (!c->auth_hash_name)
1128                                        return -ENOMEM;
1129                        }
1130                        break;
1131                case Opt_ignore:
1132                        break;
1133                default:
1134                {
1135                        unsigned long flag;
1136                        struct super_block *sb = c->vfs_sb;
1137
1138                        flag = parse_standard_option(p);
1139                        if (!flag) {
1140                                ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1141                                          p);
1142                                return -EINVAL;
1143                        }
1144                        sb->s_flags |= flag;
1145                        break;
1146                }
1147                }
1148        }
1149
1150        return 0;
1151}
1152
1153/*
1154 * ubifs_release_options - release mount parameters which have been dumped.
1155 * @c: UBIFS file-system description object
1156 */
1157static void ubifs_release_options(struct ubifs_info *c)
1158{
1159        kfree(c->auth_key_name);
1160        c->auth_key_name = NULL;
1161        kfree(c->auth_hash_name);
1162        c->auth_hash_name = NULL;
1163}
1164
1165/**
1166 * destroy_journal - destroy journal data structures.
1167 * @c: UBIFS file-system description object
1168 *
1169 * This function destroys journal data structures including those that may have
1170 * been created by recovery functions.
1171 */
1172static void destroy_journal(struct ubifs_info *c)
1173{
1174        while (!list_empty(&c->unclean_leb_list)) {
1175                struct ubifs_unclean_leb *ucleb;
1176
1177                ucleb = list_entry(c->unclean_leb_list.next,
1178                                   struct ubifs_unclean_leb, list);
1179                list_del(&ucleb->list);
1180                kfree(ucleb);
1181        }
1182        while (!list_empty(&c->old_buds)) {
1183                struct ubifs_bud *bud;
1184
1185                bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1186                list_del(&bud->list);
1187                kfree(bud);
1188        }
1189        ubifs_destroy_idx_gc(c);
1190        ubifs_destroy_size_tree(c);
1191        ubifs_tnc_close(c);
1192        free_buds(c);
1193}
1194
1195/**
1196 * bu_init - initialize bulk-read information.
1197 * @c: UBIFS file-system description object
1198 */
1199static void bu_init(struct ubifs_info *c)
1200{
1201        ubifs_assert(c, c->bulk_read == 1);
1202
1203        if (c->bu.buf)
1204                return; /* Already initialized */
1205
1206again:
1207        c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1208        if (!c->bu.buf) {
1209                if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1210                        c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1211                        goto again;
1212                }
1213
1214                /* Just disable bulk-read */
1215                ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1216                           c->max_bu_buf_len);
1217                c->mount_opts.bulk_read = 1;
1218                c->bulk_read = 0;
1219                return;
1220        }
1221}
1222
1223/**
1224 * check_free_space - check if there is enough free space to mount.
1225 * @c: UBIFS file-system description object
1226 *
1227 * This function makes sure UBIFS has enough free space to be mounted in
1228 * read/write mode. UBIFS must always have some free space to allow deletions.
1229 */
1230static int check_free_space(struct ubifs_info *c)
1231{
1232        ubifs_assert(c, c->dark_wm > 0);
1233        if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1234                ubifs_err(c, "insufficient free space to mount in R/W mode");
1235                ubifs_dump_budg(c, &c->bi);
1236                ubifs_dump_lprops(c);
1237                return -ENOSPC;
1238        }
1239        return 0;
1240}
1241
1242/**
1243 * mount_ubifs - mount UBIFS file-system.
1244 * @c: UBIFS file-system description object
1245 *
1246 * This function mounts UBIFS file system. Returns zero in case of success and
1247 * a negative error code in case of failure.
1248 */
1249static int mount_ubifs(struct ubifs_info *c)
1250{
1251        int err;
1252        long long x, y;
1253        size_t sz;
1254
1255        c->ro_mount = !!sb_rdonly(c->vfs_sb);
1256        /* Suppress error messages while probing if SB_SILENT is set */
1257        c->probing = !!(c->vfs_sb->s_flags & SB_SILENT);
1258
1259        err = init_constants_early(c);
1260        if (err)
1261                return err;
1262
1263        err = ubifs_debugging_init(c);
1264        if (err)
1265                return err;
1266
1267        err = check_volume_empty(c);
1268        if (err)
1269                goto out_free;
1270
1271        if (c->empty && (c->ro_mount || c->ro_media)) {
1272                /*
1273                 * This UBI volume is empty, and read-only, or the file system
1274                 * is mounted read-only - we cannot format it.
1275                 */
1276                ubifs_err(c, "can't format empty UBI volume: read-only %s",
1277                          c->ro_media ? "UBI volume" : "mount");
1278                err = -EROFS;
1279                goto out_free;
1280        }
1281
1282        if (c->ro_media && !c->ro_mount) {
1283                ubifs_err(c, "cannot mount read-write - read-only media");
1284                err = -EROFS;
1285                goto out_free;
1286        }
1287
1288        /*
1289         * The requirement for the buffer is that it should fit indexing B-tree
1290         * height amount of integers. We assume the height if the TNC tree will
1291         * never exceed 64.
1292         */
1293        err = -ENOMEM;
1294        c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int),
1295                                         GFP_KERNEL);
1296        if (!c->bottom_up_buf)
1297                goto out_free;
1298
1299        c->sbuf = vmalloc(c->leb_size);
1300        if (!c->sbuf)
1301                goto out_free;
1302
1303        if (!c->ro_mount) {
1304                c->ileb_buf = vmalloc(c->leb_size);
1305                if (!c->ileb_buf)
1306                        goto out_free;
1307        }
1308
1309        if (c->bulk_read == 1)
1310                bu_init(c);
1311
1312        if (!c->ro_mount) {
1313                c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1314                                               UBIFS_CIPHER_BLOCK_SIZE,
1315                                               GFP_KERNEL);
1316                if (!c->write_reserve_buf)
1317                        goto out_free;
1318        }
1319
1320        c->mounting = 1;
1321
1322        if (c->auth_key_name) {
1323                if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) {
1324                        err = ubifs_init_authentication(c);
1325                        if (err)
1326                                goto out_free;
1327                } else {
1328                        ubifs_err(c, "auth_key_name, but UBIFS is built without"
1329                                  " authentication support");
1330                        err = -EINVAL;
1331                        goto out_free;
1332                }
1333        }
1334
1335        err = ubifs_read_superblock(c);
1336        if (err)
1337                goto out_auth;
1338
1339        c->probing = 0;
1340
1341        /*
1342         * Make sure the compressor which is set as default in the superblock
1343         * or overridden by mount options is actually compiled in.
1344         */
1345        if (!ubifs_compr_present(c, c->default_compr)) {
1346                ubifs_err(c, "'compressor \"%s\" is not compiled in",
1347                          ubifs_compr_name(c, c->default_compr));
1348                err = -ENOTSUPP;
1349                goto out_auth;
1350        }
1351
1352        err = init_constants_sb(c);
1353        if (err)
1354                goto out_auth;
1355
1356        sz = ALIGN(c->max_idx_node_sz, c->min_io_size) * 2;
1357        c->cbuf = kmalloc(sz, GFP_NOFS);
1358        if (!c->cbuf) {
1359                err = -ENOMEM;
1360                goto out_auth;
1361        }
1362
1363        err = alloc_wbufs(c);
1364        if (err)
1365                goto out_cbuf;
1366
1367        sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1368        if (!c->ro_mount) {
1369                /* Create background thread */
1370                c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1371                if (IS_ERR(c->bgt)) {
1372                        err = PTR_ERR(c->bgt);
1373                        c->bgt = NULL;
1374                        ubifs_err(c, "cannot spawn \"%s\", error %d",
1375                                  c->bgt_name, err);
1376                        goto out_wbufs;
1377                }
1378                wake_up_process(c->bgt);
1379        }
1380
1381        err = ubifs_read_master(c);
1382        if (err)
1383                goto out_master;
1384
1385        init_constants_master(c);
1386
1387        if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1388                ubifs_msg(c, "recovery needed");
1389                c->need_recovery = 1;
1390        }
1391
1392        if (c->need_recovery && !c->ro_mount) {
1393                err = ubifs_recover_inl_heads(c, c->sbuf);
1394                if (err)
1395                        goto out_master;
1396        }
1397
1398        err = ubifs_lpt_init(c, 1, !c->ro_mount);
1399        if (err)
1400                goto out_master;
1401
1402        if (!c->ro_mount && c->space_fixup) {
1403                err = ubifs_fixup_free_space(c);
1404                if (err)
1405                        goto out_lpt;
1406        }
1407
1408        if (!c->ro_mount && !c->need_recovery) {
1409                /*
1410                 * Set the "dirty" flag so that if we reboot uncleanly we
1411                 * will notice this immediately on the next mount.
1412                 */
1413                c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1414                err = ubifs_write_master(c);
1415                if (err)
1416                        goto out_lpt;
1417        }
1418
1419        /*
1420         * Handle offline signed images: Now that the master node is
1421         * written and its validation no longer depends on the hash
1422         * in the superblock, we can update the offline signed
1423         * superblock with a HMAC version,
1424         */
1425        if (ubifs_authenticated(c) && ubifs_hmac_zero(c, c->sup_node->hmac)) {
1426                err = ubifs_hmac_wkm(c, c->sup_node->hmac_wkm);
1427                if (err)
1428                        goto out_lpt;
1429                c->superblock_need_write = 1;
1430        }
1431
1432        if (!c->ro_mount && c->superblock_need_write) {
1433                err = ubifs_write_sb_node(c, c->sup_node);
1434                if (err)
1435                        goto out_lpt;
1436                c->superblock_need_write = 0;
1437        }
1438
1439        err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1440        if (err)
1441                goto out_lpt;
1442
1443        err = ubifs_replay_journal(c);
1444        if (err)
1445                goto out_journal;
1446
1447        /* Calculate 'min_idx_lebs' after journal replay */
1448        c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1449
1450        err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1451        if (err)
1452                goto out_orphans;
1453
1454        if (!c->ro_mount) {
1455                int lnum;
1456
1457                err = check_free_space(c);
1458                if (err)
1459                        goto out_orphans;
1460
1461                /* Check for enough log space */
1462                lnum = c->lhead_lnum + 1;
1463                if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1464                        lnum = UBIFS_LOG_LNUM;
1465                if (lnum == c->ltail_lnum) {
1466                        err = ubifs_consolidate_log(c);
1467                        if (err)
1468                                goto out_orphans;
1469                }
1470
1471                if (c->need_recovery) {
1472                        if (!ubifs_authenticated(c)) {
1473                                err = ubifs_recover_size(c, true);
1474                                if (err)
1475                                        goto out_orphans;
1476                        }
1477
1478                        err = ubifs_rcvry_gc_commit(c);
1479                        if (err)
1480                                goto out_orphans;
1481
1482                        if (ubifs_authenticated(c)) {
1483                                err = ubifs_recover_size(c, false);
1484                                if (err)
1485                                        goto out_orphans;
1486                        }
1487                } else {
1488                        err = take_gc_lnum(c);
1489                        if (err)
1490                                goto out_orphans;
1491
1492                        /*
1493                         * GC LEB may contain garbage if there was an unclean
1494                         * reboot, and it should be un-mapped.
1495                         */
1496                        err = ubifs_leb_unmap(c, c->gc_lnum);
1497                        if (err)
1498                                goto out_orphans;
1499                }
1500
1501                err = dbg_check_lprops(c);
1502                if (err)
1503                        goto out_orphans;
1504        } else if (c->need_recovery) {
1505                err = ubifs_recover_size(c, false);
1506                if (err)
1507                        goto out_orphans;
1508        } else {
1509                /*
1510                 * Even if we mount read-only, we have to set space in GC LEB
1511                 * to proper value because this affects UBIFS free space
1512                 * reporting. We do not want to have a situation when
1513                 * re-mounting from R/O to R/W changes amount of free space.
1514                 */
1515                err = take_gc_lnum(c);
1516                if (err)
1517                        goto out_orphans;
1518        }
1519
1520        spin_lock(&ubifs_infos_lock);
1521        list_add_tail(&c->infos_list, &ubifs_infos);
1522        spin_unlock(&ubifs_infos_lock);
1523
1524        if (c->need_recovery) {
1525                if (c->ro_mount)
1526                        ubifs_msg(c, "recovery deferred");
1527                else {
1528                        c->need_recovery = 0;
1529                        ubifs_msg(c, "recovery completed");
1530                        /*
1531                         * GC LEB has to be empty and taken at this point. But
1532                         * the journal head LEBs may also be accounted as
1533                         * "empty taken" if they are empty.
1534                         */
1535                        ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1536                }
1537        } else
1538                ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1539
1540        err = dbg_check_filesystem(c);
1541        if (err)
1542                goto out_infos;
1543
1544        dbg_debugfs_init_fs(c);
1545
1546        c->mounting = 0;
1547
1548        ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1549                  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1550                  c->ro_mount ? ", R/O mode" : "");
1551        x = (long long)c->main_lebs * c->leb_size;
1552        y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1553        ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1554                  c->leb_size, c->leb_size >> 10, c->min_io_size,
1555                  c->max_write_size);
1556        ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), max %d LEBs, journal size %lld bytes (%lld MiB, %d LEBs)",
1557                  x, x >> 20, c->main_lebs, c->max_leb_cnt,
1558                  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1559        ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1560                  c->report_rp_size, c->report_rp_size >> 10);
1561        ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1562                  c->fmt_version, c->ro_compat_version,
1563                  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1564                  c->big_lpt ? ", big LPT model" : ", small LPT model");
1565
1566        dbg_gen("default compressor:  %s", ubifs_compr_name(c, c->default_compr));
1567        dbg_gen("data journal heads:  %d",
1568                c->jhead_cnt - NONDATA_JHEADS_CNT);
1569        dbg_gen("log LEBs:            %d (%d - %d)",
1570                c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1571        dbg_gen("LPT area LEBs:       %d (%d - %d)",
1572                c->lpt_lebs, c->lpt_first, c->lpt_last);
1573        dbg_gen("orphan area LEBs:    %d (%d - %d)",
1574                c->orph_lebs, c->orph_first, c->orph_last);
1575        dbg_gen("main area LEBs:      %d (%d - %d)",
1576                c->main_lebs, c->main_first, c->leb_cnt - 1);
1577        dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1578        dbg_gen("total index bytes:   %llu (%llu KiB, %llu MiB)",
1579                c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1580                c->bi.old_idx_sz >> 20);
1581        dbg_gen("key hash type:       %d", c->key_hash_type);
1582        dbg_gen("tree fanout:         %d", c->fanout);
1583        dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1584        dbg_gen("max. znode size      %d", c->max_znode_sz);
1585        dbg_gen("max. index node size %d", c->max_idx_node_sz);
1586        dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1587                UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1588        dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1589                UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1590        dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1591                UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1592        dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1593                UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1594                UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1595        dbg_gen("dead watermark:      %d", c->dead_wm);
1596        dbg_gen("dark watermark:      %d", c->dark_wm);
1597        dbg_gen("LEB overhead:        %d", c->leb_overhead);
1598        x = (long long)c->main_lebs * c->dark_wm;
1599        dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1600                x, x >> 10, x >> 20);
1601        dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1602                c->max_bud_bytes, c->max_bud_bytes >> 10,
1603                c->max_bud_bytes >> 20);
1604        dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1605                c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1606                c->bg_bud_bytes >> 20);
1607        dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1608                c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1609        dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1610        dbg_gen("commit number:       %llu", c->cmt_no);
1611        dbg_gen("max. xattrs per inode: %d", ubifs_xattr_max_cnt(c));
1612        dbg_gen("max orphans:           %d", c->max_orphans);
1613
1614        return 0;
1615
1616out_infos:
1617        spin_lock(&ubifs_infos_lock);
1618        list_del(&c->infos_list);
1619        spin_unlock(&ubifs_infos_lock);
1620out_orphans:
1621        free_orphans(c);
1622out_journal:
1623        destroy_journal(c);
1624out_lpt:
1625        ubifs_lpt_free(c, 0);
1626out_master:
1627        kfree(c->mst_node);
1628        kfree(c->rcvrd_mst_node);
1629        if (c->bgt)
1630                kthread_stop(c->bgt);
1631out_wbufs:
1632        free_wbufs(c);
1633out_cbuf:
1634        kfree(c->cbuf);
1635out_auth:
1636        ubifs_exit_authentication(c);
1637out_free:
1638        kfree(c->write_reserve_buf);
1639        kfree(c->bu.buf);
1640        vfree(c->ileb_buf);
1641        vfree(c->sbuf);
1642        kfree(c->bottom_up_buf);
1643        kfree(c->sup_node);
1644        ubifs_debugging_exit(c);
1645        return err;
1646}
1647
1648/**
1649 * ubifs_umount - un-mount UBIFS file-system.
1650 * @c: UBIFS file-system description object
1651 *
1652 * Note, this function is called to free allocated resourced when un-mounting,
1653 * as well as free resources when an error occurred while we were half way
1654 * through mounting (error path cleanup function). So it has to make sure the
1655 * resource was actually allocated before freeing it.
1656 */
1657static void ubifs_umount(struct ubifs_info *c)
1658{
1659        dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1660                c->vi.vol_id);
1661
1662        dbg_debugfs_exit_fs(c);
1663        spin_lock(&ubifs_infos_lock);
1664        list_del(&c->infos_list);
1665        spin_unlock(&ubifs_infos_lock);
1666
1667        if (c->bgt)
1668                kthread_stop(c->bgt);
1669
1670        destroy_journal(c);
1671        free_wbufs(c);
1672        free_orphans(c);
1673        ubifs_lpt_free(c, 0);
1674        ubifs_exit_authentication(c);
1675
1676        ubifs_release_options(c);
1677        kfree(c->cbuf);
1678        kfree(c->rcvrd_mst_node);
1679        kfree(c->mst_node);
1680        kfree(c->write_reserve_buf);
1681        kfree(c->bu.buf);
1682        vfree(c->ileb_buf);
1683        vfree(c->sbuf);
1684        kfree(c->bottom_up_buf);
1685        kfree(c->sup_node);
1686        ubifs_debugging_exit(c);
1687}
1688
1689/**
1690 * ubifs_remount_rw - re-mount in read-write mode.
1691 * @c: UBIFS file-system description object
1692 *
1693 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1694 * mode. This function allocates the needed resources and re-mounts UBIFS in
1695 * read-write mode.
1696 */
1697static int ubifs_remount_rw(struct ubifs_info *c)
1698{
1699        int err, lnum;
1700
1701        if (c->rw_incompat) {
1702                ubifs_err(c, "the file-system is not R/W-compatible");
1703                ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1704                          c->fmt_version, c->ro_compat_version,
1705                          UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1706                return -EROFS;
1707        }
1708
1709        mutex_lock(&c->umount_mutex);
1710        dbg_save_space_info(c);
1711        c->remounting_rw = 1;
1712        c->ro_mount = 0;
1713
1714        if (c->space_fixup) {
1715                err = ubifs_fixup_free_space(c);
1716                if (err)
1717                        goto out;
1718        }
1719
1720        err = check_free_space(c);
1721        if (err)
1722                goto out;
1723
1724        if (c->need_recovery) {
1725                ubifs_msg(c, "completing deferred recovery");
1726                err = ubifs_write_rcvrd_mst_node(c);
1727                if (err)
1728                        goto out;
1729                if (!ubifs_authenticated(c)) {
1730                        err = ubifs_recover_size(c, true);
1731                        if (err)
1732                                goto out;
1733                }
1734                err = ubifs_clean_lebs(c, c->sbuf);
1735                if (err)
1736                        goto out;
1737                err = ubifs_recover_inl_heads(c, c->sbuf);
1738                if (err)
1739                        goto out;
1740        } else {
1741                /* A readonly mount is not allowed to have orphans */
1742                ubifs_assert(c, c->tot_orphans == 0);
1743                err = ubifs_clear_orphans(c);
1744                if (err)
1745                        goto out;
1746        }
1747
1748        if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1749                c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1750                err = ubifs_write_master(c);
1751                if (err)
1752                        goto out;
1753        }
1754
1755        if (c->superblock_need_write) {
1756                struct ubifs_sb_node *sup = c->sup_node;
1757
1758                err = ubifs_write_sb_node(c, sup);
1759                if (err)
1760                        goto out;
1761
1762                c->superblock_need_write = 0;
1763        }
1764
1765        c->ileb_buf = vmalloc(c->leb_size);
1766        if (!c->ileb_buf) {
1767                err = -ENOMEM;
1768                goto out;
1769        }
1770
1771        c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1772                                       UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1773        if (!c->write_reserve_buf) {
1774                err = -ENOMEM;
1775                goto out;
1776        }
1777
1778        err = ubifs_lpt_init(c, 0, 1);
1779        if (err)
1780                goto out;
1781
1782        /* Create background thread */
1783        c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1784        if (IS_ERR(c->bgt)) {
1785                err = PTR_ERR(c->bgt);
1786                c->bgt = NULL;
1787                ubifs_err(c, "cannot spawn \"%s\", error %d",
1788                          c->bgt_name, err);
1789                goto out;
1790        }
1791        wake_up_process(c->bgt);
1792
1793        c->orph_buf = vmalloc(c->leb_size);
1794        if (!c->orph_buf) {
1795                err = -ENOMEM;
1796                goto out;
1797        }
1798
1799        /* Check for enough log space */
1800        lnum = c->lhead_lnum + 1;
1801        if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1802                lnum = UBIFS_LOG_LNUM;
1803        if (lnum == c->ltail_lnum) {
1804                err = ubifs_consolidate_log(c);
1805                if (err)
1806                        goto out;
1807        }
1808
1809        if (c->need_recovery) {
1810                err = ubifs_rcvry_gc_commit(c);
1811                if (err)
1812                        goto out;
1813
1814                if (ubifs_authenticated(c)) {
1815                        err = ubifs_recover_size(c, false);
1816                        if (err)
1817                                goto out;
1818                }
1819        } else {
1820                err = ubifs_leb_unmap(c, c->gc_lnum);
1821        }
1822        if (err)
1823                goto out;
1824
1825        dbg_gen("re-mounted read-write");
1826        c->remounting_rw = 0;
1827
1828        if (c->need_recovery) {
1829                c->need_recovery = 0;
1830                ubifs_msg(c, "deferred recovery completed");
1831        } else {
1832                /*
1833                 * Do not run the debugging space check if the were doing
1834                 * recovery, because when we saved the information we had the
1835                 * file-system in a state where the TNC and lprops has been
1836                 * modified in memory, but all the I/O operations (including a
1837                 * commit) were deferred. So the file-system was in
1838                 * "non-committed" state. Now the file-system is in committed
1839                 * state, and of course the amount of free space will change
1840                 * because, for example, the old index size was imprecise.
1841                 */
1842                err = dbg_check_space_info(c);
1843        }
1844
1845        mutex_unlock(&c->umount_mutex);
1846        return err;
1847
1848out:
1849        c->ro_mount = 1;
1850        vfree(c->orph_buf);
1851        c->orph_buf = NULL;
1852        if (c->bgt) {
1853                kthread_stop(c->bgt);
1854                c->bgt = NULL;
1855        }
1856        free_wbufs(c);
1857        kfree(c->write_reserve_buf);
1858        c->write_reserve_buf = NULL;
1859        vfree(c->ileb_buf);
1860        c->ileb_buf = NULL;
1861        ubifs_lpt_free(c, 1);
1862        c->remounting_rw = 0;
1863        mutex_unlock(&c->umount_mutex);
1864        return err;
1865}
1866
1867/**
1868 * ubifs_remount_ro - re-mount in read-only mode.
1869 * @c: UBIFS file-system description object
1870 *
1871 * We assume VFS has stopped writing. Possibly the background thread could be
1872 * running a commit, however kthread_stop will wait in that case.
1873 */
1874static void ubifs_remount_ro(struct ubifs_info *c)
1875{
1876        int i, err;
1877
1878        ubifs_assert(c, !c->need_recovery);
1879        ubifs_assert(c, !c->ro_mount);
1880
1881        mutex_lock(&c->umount_mutex);
1882        if (c->bgt) {
1883                kthread_stop(c->bgt);
1884                c->bgt = NULL;
1885        }
1886
1887        dbg_save_space_info(c);
1888
1889        for (i = 0; i < c->jhead_cnt; i++) {
1890                err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1891                if (err)
1892                        ubifs_ro_mode(c, err);
1893        }
1894
1895        c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1896        c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1897        c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1898        err = ubifs_write_master(c);
1899        if (err)
1900                ubifs_ro_mode(c, err);
1901
1902        vfree(c->orph_buf);
1903        c->orph_buf = NULL;
1904        kfree(c->write_reserve_buf);
1905        c->write_reserve_buf = NULL;
1906        vfree(c->ileb_buf);
1907        c->ileb_buf = NULL;
1908        ubifs_lpt_free(c, 1);
1909        c->ro_mount = 1;
1910        err = dbg_check_space_info(c);
1911        if (err)
1912                ubifs_ro_mode(c, err);
1913        mutex_unlock(&c->umount_mutex);
1914}
1915
1916static void ubifs_put_super(struct super_block *sb)
1917{
1918        int i;
1919        struct ubifs_info *c = sb->s_fs_info;
1920
1921        ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1922
1923        /*
1924         * The following asserts are only valid if there has not been a failure
1925         * of the media. For example, there will be dirty inodes if we failed
1926         * to write them back because of I/O errors.
1927         */
1928        if (!c->ro_error) {
1929                ubifs_assert(c, c->bi.idx_growth == 0);
1930                ubifs_assert(c, c->bi.dd_growth == 0);
1931                ubifs_assert(c, c->bi.data_growth == 0);
1932        }
1933
1934        /*
1935         * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1936         * and file system un-mount. Namely, it prevents the shrinker from
1937         * picking this superblock for shrinking - it will be just skipped if
1938         * the mutex is locked.
1939         */
1940        mutex_lock(&c->umount_mutex);
1941        if (!c->ro_mount) {
1942                /*
1943                 * First of all kill the background thread to make sure it does
1944                 * not interfere with un-mounting and freeing resources.
1945                 */
1946                if (c->bgt) {
1947                        kthread_stop(c->bgt);
1948                        c->bgt = NULL;
1949                }
1950
1951                /*
1952                 * On fatal errors c->ro_error is set to 1, in which case we do
1953                 * not write the master node.
1954                 */
1955                if (!c->ro_error) {
1956                        int err;
1957
1958                        /* Synchronize write-buffers */
1959                        for (i = 0; i < c->jhead_cnt; i++) {
1960                                err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1961                                if (err)
1962                                        ubifs_ro_mode(c, err);
1963                        }
1964
1965                        /*
1966                         * We are being cleanly unmounted which means the
1967                         * orphans were killed - indicate this in the master
1968                         * node. Also save the reserved GC LEB number.
1969                         */
1970                        c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1971                        c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1972                        c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1973                        err = ubifs_write_master(c);
1974                        if (err)
1975                                /*
1976                                 * Recovery will attempt to fix the master area
1977                                 * next mount, so we just print a message and
1978                                 * continue to unmount normally.
1979                                 */
1980                                ubifs_err(c, "failed to write master node, error %d",
1981                                          err);
1982                } else {
1983                        for (i = 0; i < c->jhead_cnt; i++)
1984                                /* Make sure write-buffer timers are canceled */
1985                                hrtimer_cancel(&c->jheads[i].wbuf.timer);
1986                }
1987        }
1988
1989        ubifs_umount(c);
1990        ubi_close_volume(c->ubi);
1991        mutex_unlock(&c->umount_mutex);
1992}
1993
1994static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1995{
1996        int err;
1997        struct ubifs_info *c = sb->s_fs_info;
1998
1999        sync_filesystem(sb);
2000        dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
2001
2002        err = ubifs_parse_options(c, data, 1);
2003        if (err) {
2004                ubifs_err(c, "invalid or unknown remount parameter");
2005                return err;
2006        }
2007
2008        if (c->ro_mount && !(*flags & SB_RDONLY)) {
2009                if (c->ro_error) {
2010                        ubifs_msg(c, "cannot re-mount R/W due to prior errors");
2011                        return -EROFS;
2012                }
2013                if (c->ro_media) {
2014                        ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
2015                        return -EROFS;
2016                }
2017                err = ubifs_remount_rw(c);
2018                if (err)
2019                        return err;
2020        } else if (!c->ro_mount && (*flags & SB_RDONLY)) {
2021                if (c->ro_error) {
2022                        ubifs_msg(c, "cannot re-mount R/O due to prior errors");
2023                        return -EROFS;
2024                }
2025                ubifs_remount_ro(c);
2026        }
2027
2028        if (c->bulk_read == 1)
2029                bu_init(c);
2030        else {
2031                dbg_gen("disable bulk-read");
2032                mutex_lock(&c->bu_mutex);
2033                kfree(c->bu.buf);
2034                c->bu.buf = NULL;
2035                mutex_unlock(&c->bu_mutex);
2036        }
2037
2038        if (!c->need_recovery)
2039                ubifs_assert(c, c->lst.taken_empty_lebs > 0);
2040
2041        return 0;
2042}
2043
2044const struct super_operations ubifs_super_operations = {
2045        .alloc_inode   = ubifs_alloc_inode,
2046        .free_inode    = ubifs_free_inode,
2047        .put_super     = ubifs_put_super,
2048        .write_inode   = ubifs_write_inode,
2049        .drop_inode    = ubifs_drop_inode,
2050        .evict_inode   = ubifs_evict_inode,
2051        .statfs        = ubifs_statfs,
2052        .dirty_inode   = ubifs_dirty_inode,
2053        .remount_fs    = ubifs_remount_fs,
2054        .show_options  = ubifs_show_options,
2055        .sync_fs       = ubifs_sync_fs,
2056};
2057
2058/**
2059 * open_ubi - parse UBI device name string and open the UBI device.
2060 * @name: UBI volume name
2061 * @mode: UBI volume open mode
2062 *
2063 * The primary method of mounting UBIFS is by specifying the UBI volume
2064 * character device node path. However, UBIFS may also be mounted without any
2065 * character device node using one of the following methods:
2066 *
2067 * o ubiX_Y    - mount UBI device number X, volume Y;
2068 * o ubiY      - mount UBI device number 0, volume Y;
2069 * o ubiX:NAME - mount UBI device X, volume with name NAME;
2070 * o ubi:NAME  - mount UBI device 0, volume with name NAME.
2071 *
2072 * Alternative '!' separator may be used instead of ':' (because some shells
2073 * like busybox may interpret ':' as an NFS host name separator). This function
2074 * returns UBI volume description object in case of success and a negative
2075 * error code in case of failure.
2076 */
2077static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2078{
2079        struct ubi_volume_desc *ubi;
2080        int dev, vol;
2081        char *endptr;
2082
2083        if (!name || !*name)
2084                return ERR_PTR(-EINVAL);
2085
2086        /* First, try to open using the device node path method */
2087        ubi = ubi_open_volume_path(name, mode);
2088        if (!IS_ERR(ubi))
2089                return ubi;
2090
2091        /* Try the "nodev" method */
2092        if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2093                return ERR_PTR(-EINVAL);
2094
2095        /* ubi:NAME method */
2096        if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2097                return ubi_open_volume_nm(0, name + 4, mode);
2098
2099        if (!isdigit(name[3]))
2100                return ERR_PTR(-EINVAL);
2101
2102        dev = simple_strtoul(name + 3, &endptr, 0);
2103
2104        /* ubiY method */
2105        if (*endptr == '\0')
2106                return ubi_open_volume(0, dev, mode);
2107
2108        /* ubiX_Y method */
2109        if (*endptr == '_' && isdigit(endptr[1])) {
2110                vol = simple_strtoul(endptr + 1, &endptr, 0);
2111                if (*endptr != '\0')
2112                        return ERR_PTR(-EINVAL);
2113                return ubi_open_volume(dev, vol, mode);
2114        }
2115
2116        /* ubiX:NAME method */
2117        if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2118                return ubi_open_volume_nm(dev, ++endptr, mode);
2119
2120        return ERR_PTR(-EINVAL);
2121}
2122
2123static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2124{
2125        struct ubifs_info *c;
2126
2127        c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2128        if (c) {
2129                spin_lock_init(&c->cnt_lock);
2130                spin_lock_init(&c->cs_lock);
2131                spin_lock_init(&c->buds_lock);
2132                spin_lock_init(&c->space_lock);
2133                spin_lock_init(&c->orphan_lock);
2134                init_rwsem(&c->commit_sem);
2135                mutex_init(&c->lp_mutex);
2136                mutex_init(&c->tnc_mutex);
2137                mutex_init(&c->log_mutex);
2138                mutex_init(&c->umount_mutex);
2139                mutex_init(&c->bu_mutex);
2140                mutex_init(&c->write_reserve_mutex);
2141                init_waitqueue_head(&c->cmt_wq);
2142                c->buds = RB_ROOT;
2143                c->old_idx = RB_ROOT;
2144                c->size_tree = RB_ROOT;
2145                c->orph_tree = RB_ROOT;
2146                INIT_LIST_HEAD(&c->infos_list);
2147                INIT_LIST_HEAD(&c->idx_gc);
2148                INIT_LIST_HEAD(&c->replay_list);
2149                INIT_LIST_HEAD(&c->replay_buds);
2150                INIT_LIST_HEAD(&c->uncat_list);
2151                INIT_LIST_HEAD(&c->empty_list);
2152                INIT_LIST_HEAD(&c->freeable_list);
2153                INIT_LIST_HEAD(&c->frdi_idx_list);
2154                INIT_LIST_HEAD(&c->unclean_leb_list);
2155                INIT_LIST_HEAD(&c->old_buds);
2156                INIT_LIST_HEAD(&c->orph_list);
2157                INIT_LIST_HEAD(&c->orph_new);
2158                c->no_chk_data_crc = 1;
2159                c->assert_action = ASSACT_RO;
2160
2161                c->highest_inum = UBIFS_FIRST_INO;
2162                c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2163
2164                ubi_get_volume_info(ubi, &c->vi);
2165                ubi_get_device_info(c->vi.ubi_num, &c->di);
2166        }
2167        return c;
2168}
2169
2170static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2171{
2172        struct ubifs_info *c = sb->s_fs_info;
2173        struct inode *root;
2174        int err;
2175
2176        c->vfs_sb = sb;
2177        /* Re-open the UBI device in read-write mode */
2178        c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2179        if (IS_ERR(c->ubi)) {
2180                err = PTR_ERR(c->ubi);
2181                goto out;
2182        }
2183
2184        err = ubifs_parse_options(c, data, 0);
2185        if (err)
2186                goto out_close;
2187
2188        /*
2189         * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2190         * UBIFS, I/O is not deferred, it is done immediately in readpage,
2191         * which means the user would have to wait not just for their own I/O
2192         * but the read-ahead I/O as well i.e. completely pointless.
2193         *
2194         * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2195         * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2196         * writeback happening.
2197         */
2198        err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2199                                   c->vi.vol_id);
2200        if (err)
2201                goto out_close;
2202        sb->s_bdi->ra_pages = 0;
2203        sb->s_bdi->io_pages = 0;
2204
2205        sb->s_fs_info = c;
2206        sb->s_magic = UBIFS_SUPER_MAGIC;
2207        sb->s_blocksize = UBIFS_BLOCK_SIZE;
2208        sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2209        sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2210        if (c->max_inode_sz > MAX_LFS_FILESIZE)
2211                sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2212        sb->s_op = &ubifs_super_operations;
2213        sb->s_xattr = ubifs_xattr_handlers;
2214        fscrypt_set_ops(sb, &ubifs_crypt_operations);
2215
2216        mutex_lock(&c->umount_mutex);
2217        err = mount_ubifs(c);
2218        if (err) {
2219                ubifs_assert(c, err < 0);
2220                goto out_unlock;
2221        }
2222
2223        /* Read the root inode */
2224        root = ubifs_iget(sb, UBIFS_ROOT_INO);
2225        if (IS_ERR(root)) {
2226                err = PTR_ERR(root);
2227                goto out_umount;
2228        }
2229
2230        sb->s_root = d_make_root(root);
2231        if (!sb->s_root) {
2232                err = -ENOMEM;
2233                goto out_umount;
2234        }
2235
2236        import_uuid(&sb->s_uuid, c->uuid);
2237
2238        mutex_unlock(&c->umount_mutex);
2239        return 0;
2240
2241out_umount:
2242        ubifs_umount(c);
2243out_unlock:
2244        mutex_unlock(&c->umount_mutex);
2245out_close:
2246        ubifs_release_options(c);
2247        ubi_close_volume(c->ubi);
2248out:
2249        return err;
2250}
2251
2252static int sb_test(struct super_block *sb, void *data)
2253{
2254        struct ubifs_info *c1 = data;
2255        struct ubifs_info *c = sb->s_fs_info;
2256
2257        return c->vi.cdev == c1->vi.cdev;
2258}
2259
2260static int sb_set(struct super_block *sb, void *data)
2261{
2262        sb->s_fs_info = data;
2263        return set_anon_super(sb, NULL);
2264}
2265
2266static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2267                        const char *name, void *data)
2268{
2269        struct ubi_volume_desc *ubi;
2270        struct ubifs_info *c;
2271        struct super_block *sb;
2272        int err;
2273
2274        dbg_gen("name %s, flags %#x", name, flags);
2275
2276        /*
2277         * Get UBI device number and volume ID. Mount it read-only so far
2278         * because this might be a new mount point, and UBI allows only one
2279         * read-write user at a time.
2280         */
2281        ubi = open_ubi(name, UBI_READONLY);
2282        if (IS_ERR(ubi)) {
2283                if (!(flags & SB_SILENT))
2284                        pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2285                               current->pid, name, (int)PTR_ERR(ubi));
2286                return ERR_CAST(ubi);
2287        }
2288
2289        c = alloc_ubifs_info(ubi);
2290        if (!c) {
2291                err = -ENOMEM;
2292                goto out_close;
2293        }
2294
2295        dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2296
2297        sb = sget(fs_type, sb_test, sb_set, flags, c);
2298        if (IS_ERR(sb)) {
2299                err = PTR_ERR(sb);
2300                kfree(c);
2301                goto out_close;
2302        }
2303
2304        if (sb->s_root) {
2305                struct ubifs_info *c1 = sb->s_fs_info;
2306                kfree(c);
2307                /* A new mount point for already mounted UBIFS */
2308                dbg_gen("this ubi volume is already mounted");
2309                if (!!(flags & SB_RDONLY) != c1->ro_mount) {
2310                        err = -EBUSY;
2311                        goto out_deact;
2312                }
2313        } else {
2314                err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
2315                if (err)
2316                        goto out_deact;
2317                /* We do not support atime */
2318                sb->s_flags |= SB_ACTIVE;
2319                if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
2320                        ubifs_msg(c, "full atime support is enabled.");
2321                else
2322                        sb->s_flags |= SB_NOATIME;
2323        }
2324
2325        /* 'fill_super()' opens ubi again so we must close it here */
2326        ubi_close_volume(ubi);
2327
2328        return dget(sb->s_root);
2329
2330out_deact:
2331        deactivate_locked_super(sb);
2332out_close:
2333        ubi_close_volume(ubi);
2334        return ERR_PTR(err);
2335}
2336
2337static void kill_ubifs_super(struct super_block *s)
2338{
2339        struct ubifs_info *c = s->s_fs_info;
2340        kill_anon_super(s);
2341        kfree(c);
2342}
2343
2344static struct file_system_type ubifs_fs_type = {
2345        .name    = "ubifs",
2346        .owner   = THIS_MODULE,
2347        .mount   = ubifs_mount,
2348        .kill_sb = kill_ubifs_super,
2349};
2350MODULE_ALIAS_FS("ubifs");
2351
2352/*
2353 * Inode slab cache constructor.
2354 */
2355static void inode_slab_ctor(void *obj)
2356{
2357        struct ubifs_inode *ui = obj;
2358        inode_init_once(&ui->vfs_inode);
2359}
2360
2361static int __init ubifs_init(void)
2362{
2363        int err;
2364
2365        BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2366
2367        /* Make sure node sizes are 8-byte aligned */
2368        BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2369        BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2370        BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2371        BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2372        BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2373        BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2374        BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2375        BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2376        BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2377        BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2378        BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2379
2380        BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2381        BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2382        BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2383        BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2384        BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2385        BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2386
2387        /* Check min. node size */
2388        BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2389        BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2390        BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2391        BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2392
2393        BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2394        BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2395        BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2396        BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2397
2398        /* Defined node sizes */
2399        BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2400        BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2401        BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2402        BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2403
2404        /*
2405         * We use 2 bit wide bit-fields to store compression type, which should
2406         * be amended if more compressors are added. The bit-fields are:
2407         * @compr_type in 'struct ubifs_inode', @default_compr in
2408         * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2409         */
2410        BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2411
2412        /*
2413         * We require that PAGE_SIZE is greater-than-or-equal-to
2414         * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2415         */
2416        if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2417                pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2418                       current->pid, (unsigned int)PAGE_SIZE);
2419                return -EINVAL;
2420        }
2421
2422        ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2423                                sizeof(struct ubifs_inode), 0,
2424                                SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2425                                SLAB_ACCOUNT, &inode_slab_ctor);
2426        if (!ubifs_inode_slab)
2427                return -ENOMEM;
2428
2429        err = register_shrinker(&ubifs_shrinker_info);
2430        if (err)
2431                goto out_slab;
2432
2433        err = ubifs_compressors_init();
2434        if (err)
2435                goto out_shrinker;
2436
2437        dbg_debugfs_init();
2438
2439        err = register_filesystem(&ubifs_fs_type);
2440        if (err) {
2441                pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2442                       current->pid, err);
2443                goto out_dbg;
2444        }
2445        return 0;
2446
2447out_dbg:
2448        dbg_debugfs_exit();
2449        ubifs_compressors_exit();
2450out_shrinker:
2451        unregister_shrinker(&ubifs_shrinker_info);
2452out_slab:
2453        kmem_cache_destroy(ubifs_inode_slab);
2454        return err;
2455}
2456/* late_initcall to let compressors initialize first */
2457late_initcall(ubifs_init);
2458
2459static void __exit ubifs_exit(void)
2460{
2461        WARN_ON(!list_empty(&ubifs_infos));
2462        WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0);
2463
2464        dbg_debugfs_exit();
2465        ubifs_compressors_exit();
2466        unregister_shrinker(&ubifs_shrinker_info);
2467
2468        /*
2469         * Make sure all delayed rcu free inodes are flushed before we
2470         * destroy cache.
2471         */
2472        rcu_barrier();
2473        kmem_cache_destroy(ubifs_inode_slab);
2474        unregister_filesystem(&ubifs_fs_type);
2475}
2476module_exit(ubifs_exit);
2477
2478MODULE_LICENSE("GPL");
2479MODULE_VERSION(__stringify(UBIFS_VERSION));
2480MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2481MODULE_DESCRIPTION("UBIFS - UBI File System");
2482